

Photographic
Sciences

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

(C)

The Instliute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/

Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quelity of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

Bibliothèque nationale du Québec

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract speclfications.

Originel coples in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated impression, or the back cover when appropriate. All other original coples are filmed beginning on the flrst page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à ia générosité de:

Bibliothèque nationale du Québec

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

CHAMBERS'S

INFORMATION FOR THE PEOPLE.

a POPULAR ENCYCLOPEDIA.

FIFTEENTH AMERICAN EDITION.

WITH

NUMEROUS ADDITIONS AND MORE THAN FIVE HUNDRED ENGRAVINGS.

VOL. I.

PHILADFLPIIIA:
PUBLISHED BY JAS. B. SMITH\& CO., no. 610 chestnut street 1859.

The fo
Chamber
Informati character which the the peop tific techn and thus There rer important history, g and recei costly en standing nical, pro tion for departme as tends fertilizes are of a to prove receipt of

PREFACE

TO THE AMERICAN EDITION.

The following was intended by its accomplished authors, Messrs. Willaam and Robert Chambers, of Edinburgh, to form a complete Popular Cyclopadia, or book of general Information for the People. It is the first attempt to place a considerable work of the character of an encyclopædia within the reach of all classes of the people. The plan on which the work was formed was to select only the subjects on which it is important for the people generally to be informed. The minutix of biography and topography, scientific technicalities, and other matters required only for occasional reference, are otmitted; and thus what usually fills up the greater part of an encyclopædia is at once dismissed. There remains for the full accomplishment of the plan, "a series of articles on the most itaportant branches of science, physical, mathematicel and moral, natural history, political history, geography and literature." This furnishes such a course of reading, as, if studied and received into the mind, will make a well-informed man. The portions of a large and costly encyclopædia, which have been omitted, are such as do not form any part of the standing knowledge of any person whatever, besides those for whom it may have a technical, professional, or local interest. "It will be understood, then, that the 'Information for tie People' is not meant as an encyclopædia unfailing in reference for all departments of human knowledge, but as an encyclopædia including such knowledge only as tends to improve every mind possessing it-such knowledge as expands, liberates, and fertilizes-with the addition of only a very few articles of which the interest and value are of a more limited nature. The ruling object has been to give what may be expected to prove the means of self-education to all such classes of society as are debarred from the rectipt of knowledge in more favourable circumstances."

CONTENTS.

ASTRONOMY
paen
GEOLOGY, OR STRUCTURE OF THE EARTH 26
GEOGRAPHY-DESCRIPTIVE AND POLITICAL 48
PHYBICAL HISTORY OF MAN. 60
CHINA AND THE TEA TRADE 75
OCEAN-SHII'S-NAVIGATION-MARITIME DISCOVERY 94
THE WHALE-WHALE FISHERIES. 111
CONVEYANCE-ROADS—CANALS—RAILWAYS 128
NATURAL PHILOSOPHY 145
MECHANICS-MACHINERY. 168
HYDROSTATICS-HYDRALLICS-PNEUMATICS 179
OP'TICS-LIGHT-ACOUSTICS 196
CHEMISTRY 213
CHEMISTRY APPLIED TO THE ARTS. 230
ELECTRICITY-GALVANISM-ELECTRO-MAGNETISM. 247
METEOROLOGY-THE WEATHER 264
PHRENOLOGY. 281
PRINCIPLES OF CIVIL GOVERNMENT 314
LANGUAGE. 330
ENGLISH GRAMMAR 347
LOGIC. 363
EdUCATION. 380
DRAWING AND PERSPECTIVE. 396
ARITHMETIC-ALGEBRA 418
GEOMETRY 429
POPULAR STATISTICS 446
BOCIAL ECONOMICS OF THE INDUSTRIOUS ORDERS 462
agriculiture. 479
IMPROVEMENT OF WAS'TE LANDS-SPADE HUSBANDRY 498
THE KIITCHEN GARDEN 512
THE FLOWER GARDEN 529
THE FRUIT GARDEN 545
ARBORICLITTURE 562
THE HORSE 578
CATTILE AND DAIRY HUSBANDRY. 595
SHEEP 611
PIGS, GOATS, RABBITS, POULTRY, CAGE BIRDS, \&c 628
BEES 644
THE DOG-FIELD SPORTS. 661
angling. 677
GYMNASTIC EXERCISES-OUT-OF-DOOR RECREATIONS 694
IN-DOOR AMUSEMENTS 711
FOREIGN COSTUMES 726
britisil costemes 743
TIME-CHRONOLOGY-TIME MFASURERS 759
KEY TU JHE CALENDAR 775
PRINTING-ENGR.IVING-LITHOGRAPHY 792
RESOURCES OF HUMANITY-LSEFVL RECEIPTS-THE TOILET 808
PRUVLRBS AND OJD SAYINGS 830

INFORMATION FOR THE PEOPLE.

ASTRONOMY.

Abstract

Astnonomy (from the Greck, aatron, a ater, and nomos, - law) ie, comprchensively, that science which explains die naturo and motione of the bodien filling infinite space, meluding our own globe, in ita character of a planet or member of the solar ay atem. The acience may be dividus into two departments-1. Dencriptive Aetronomy, or an account of the systema nf bodies occupying apace; 2. Mechanical Astronomy, or an explanation of the physical .awa which have produced and which sustain the arrangementa of the heavenly bodies, and of all the various resulta of the arrangement and reistions of these bodies. Uranograp hy is a subordinate department of the acience, prerentug an account of the arrangementa which have been maile by astronomers for delineating the starry heavens, and working the many mathematical problems of which they are the subject.

DESCRIPTIVE ASTRONOMY.

Tho early idess of mankind roapecting the objects deseriled by astronomy, proceeded upon appearances which the uninstructed eyo placed before them, and were far from being true. It was supposed that the earth was, se it seems, a Gixed plane, or, at the most, a fixed aphere, with an outer spherc. ferming the heavens, revolving around it once in the twenty-four hours. Even philosophera deemed the carth the central and most important object in the aystem, and regarded the heavenly bodiee, the sun, inood, planets, and stars, as comparatively small ohjects, fixed in the different crystal apheres, each of which observed its own laws of revalution, according to the apparent motions of the bodics fixed in it. It was not till after much at:udy and investigation that even the most enlightenei ciods arrived at a knowledge of the truth; nor was it for some time longer thet the ider of the earth not being in the centre of the syatem, or sny thing but a smedl and auburdinate part of it, wan generally admitted. Thero is no room here to trace all the etepe by which the truth was ascertained, or to argue the uninstructed mind out of all its first and crroneous impressions. But it may be hoped that when the actual constitution of the heavens has been described, it will be possilble to form some notion of how the oljects in their real character and real arrangements come to appear na they do to our cyes.

The field contemplated by the astronomer is no less than rafixite spack. So, at least, he may well presmue space to be, seeing that every fresh power which he allds to his telescopo allows him to ponetrate into remoter regions of it, and still there is no end. In this space, ovatems, consisting of suns and revolving planets, and Vol. l.-2
other aystems again, conaisting of a numbericas series of aich lenwer aystema, are suspended by the influence of gavitation, operating from one to another, yet each body at such a distanee from snother, as, though the mind of ansn can in sume lnatances measure, it ean in none conceive. We begin with what is usually called the Solar Syatem-that is, the particular solar system to which our earth belonge.

THE SOLAR BYETEM.

The solar aystem, so named froor sol (Latin), the aun. consists of the sun in the centre, twenty-nine plancts, and an unknown number of bodiea named comets. The word planot is from the Greek, planeo, to wander, because the few auch hodies known to tho ancients were chiefly remarkable in their eyes on sccount of their constantly shifting their places with reference to the other luminaries of the sky. Comets are so named from coma (Latin), a head of hair, because they seem to connint of one bright spot, and a long brush stresming from behind it
Planels.-Eleven of the planets are called primary, because they movo directly around the sun, and eighteen secondary, because they move round primary planets. The secondary plancts are sloo denominated satellitea, from satellea (Latin), originally signifying a life-guardmman, but, by a wider application, one who follows and serves another. Only four of the primary plansts have satellites.
The primary planets are Mercury, Venus, the Earth, Mars, Vesta, Cores, Pallas, Juno, Jupiter, Saturn, and Herschel, or Uranus. Most of these names are dorived from the fabulous divinities of aneient Greece. The Earth has one satellite, the Moon; Jupiter has four; Saturn, seven; and Uranus is supposed to have six.
The planets move round the sun an nearly one level or plane, corresponding with the centre of his boly, and in one direction, from west to east. The secendary plancts, in liko manner, move in planes round the centroo of their primaries, and in the same direction, from west to cast. These are denominated revolutionary motions; and it is to be observed that they are double in the care of the satellites, which have at once a revolution round the primary, and a revolution, in company with the primary, round the sun. The path described by a plane in its revolution is called its orbit.
Each planet, secondary ss well as primsry, and the sun also, has a motion in its own body, like that of a boblin upon a spindle. An imaginary line, forming, as it wers the spindle of the sun or planet, is denominated the axza

9
sing the two extremition of the axis arn ealhen the pilcs. obmerved to contruct with great raphlity, and anappeas The axes of the sun and phanets are all nearly at a right like womething melted and aborlayd into a burning fluid.
angle with the plane of the revalutionary movementa, The motion on the arla ia called the rotatory motim, from rom, the lantin for a wheel. The sun, the primary planets, and the mintellites, with the doulaful excepition of two atosiding on Uranus, nove on thelr axea in the wame direction an the revolutionary muvements, from weat to cant.

The Sun ia a aphere or glohe, of 884,010 milea In diameter, of $1,181,472$ times the bulk of the earth, moving round ita axia in 25 dayu. When viewed through a elescope, the surfice appeara litenwely bright and luminous, as if giving out both heat and light to the surroundmig planets. But on this surfuce there occasionally appear dirk apota, generally surrounded with a hordir of lema dark appearance ; some of which upota have been calculated to be no less than 45,000 milee in breadth, or nearly twice as much as the circunference of the uarth. The region of the mun's body on which thee ajots apletar, is confined to a broall ajnce engirdling his centre. "They are sometimes obaerved to come into sight at his western timn, to paas across hia body in the course of twelve or thirteen days, and then disappear. Thoy ure mometimen

Upon the bright purta of the sui's lowly there are aloo wonetimes obmerved streake of culnaual brightions, as it probluced hy the ridgee of an agitutal and lumbous fluid it hua lawis aurmised, that the ann in a dind lagly, enve loped in un atmosphere calculated for giving ont heat and lishit, and that the apota are protuced liy slight breake of opsuinge fin that atnomplere, alowing the dark mam withiln. Though mo mueli larger than the earth, the mater of the sun in of only about a thind of tho denaity or compactumas of that of our planet, or little nome than the denuity of water.

The suil in aurrounded to a great dintunce by a falint light, or luninous matter of extreme thinnem, shaped like a lens or magnifylugeglus, the louly of the mun being in the contre, and the luminous matter extending in the phane of the planetary sovolutiona, till it terminntea in a jmint. At particulur measona, and in finvourable atatea of tho atmomphero, it may be observed, before suntive or aftur minact, in the form of a cone pointing obliquely above the phace where the wus in either alsut to appeas or which ha has juat left. It in wrmed the Zodiscu: Iisht.

Ruts of monement of the Phants in miles per phinuta.

Donsilus of Plamels compared with waser, which is onsidered as 1 .

The San - 1 , 2-t3ths
Mercury 0,1 -dth.
Venus....5, $11-15 \mathrm{~h}$.
Farth4,
Mara 3, 2, 2 than.
Jupiter - 1, 1.24th.
Sajura.... (i, 13-7sed.
Uranux. $0,9 \%-100 \mathrm{ha}$.

Inclinalions of Orbits to the
Nelipric.
Mereury,
$\mathbf{7}^{\prime} \boldsymbol{\theta}^{\prime} \boldsymbol{y}^{\prime \prime} \mathbf{K}^{2}$ $3^{\circ} \operatorname{Venum}_{21^{4}} 26^{6} 8$. ${ }_{10} \mathrm{Mrarm}_{81}$ $1^{\circ} 81^{\prime 2} 0^{\prime 2}$
Vesia. $7^{\circ} y^{\circ} \theta^{\circ \prime} 0$.
$\underset{13)^{\text {Jumo }}}{\substack{\mathbf{4}^{*} \\ 7}}$
Cerea,
$10^{\circ} 37^{2} 80^{\circ}$
I'allas. $34^{\circ} 34^{\prime} 65^{\circ} 0$.
10 Jupitar,
$g^{\circ} 20^{\text {Naturn }} 35^{\prime \prime} 7$.
0 Tramma, $40^{2} 95^{2} 4$

Merrury, the neareat planet to the aun, in a globe of
mout 3 Ho miles in diancter, rotating on its axia in 24 ahout 3140 miles in diannter, rotating on its axia in 2.4 hcurs and $5 \pm$ ninutas, and revolving round the central
luninary, at a diatance of $37,000,000$ of miles, in 88 daya. From the earth it ean only be seen uceasionally in the morning or evening, as it never rises before, or setta affer the aun, at a greater distance of time than 1 hour and 50 minutes. It appears to the naked eye as a mmall and rrilliant star, but when observed through a telescope, is hirned like the moon, becuuse we only see a part of the mufface which the aun is illuminating. Mountaina of great height have been observed on the surface of this phanet, purticularly in its lower or southern hemiuphere. One has been calculated at 10$\}$ trilcs in height, being atbut t.ght timen higher, in proportion to the bulk of the planet, than the lofiest mountains upron earth. The matter of Mercurr is of much greater density than that of the earth, equalling lead in weight; wo that a huinan tring placed upon its surface would be so strongly drawn towards the ground an scurcely to be able to crawl.
Vemus is a globe of about 7800 milea in diameter, or *erly the size of the earth. rotating on its axis in 23
${ }^{1}$
hours, 21 minutee, and 19 meconds, and revolving round the sun, at the distaries of $68,000,000$ of milex in $\$ 25$ daya. Lithe Mercury, it is vivitho to un olverrer on tho earth only int the morning and eveniug, hut for a greatcr

 and atellar bolies, occasionally giviug wo muth tivht at to produce a a ensititle shadow. Olmerved through a telemope, it appears horned, on account of our secing only a purt of itw lumiunous aurface. Thu illuminatrd purt of Venus occaxionully presenta slight spots. It haf been asertained that iss surface in very unequal, the grenteat mountuins lein.g in the avouthern leminisyhere, as in the case of both Mereury und the Earth. The hisher mourtains in Venus range luetween 10 and 22 miles in altitudle. The planet is also envelopend in ann utrouylhere like that by which animal and vegetithe life is vuppurted on earth and it has consequently a twilight. Venus perforne it revolution round the nun in 225 dayn. Mercury and $V_{\text {enus lave lieen terulud the Inferiur Plunet, as lexing }}$ placed within the orbit of the Earth.
The Earth, tho third planet in order, and one of twe
manter
us tha " live, m mean id mean di which 1 57 aceo plantit, variegat dintiusti woild b and dar appear water al uplon it. giman ad aonewi numuntai nuffice anill b and the bmanl By itur surfuce ent apan The planet, flatene The diu in tho e conaçu expluine
The
ia a glot ebout a round it 11 mecor ia 400 ti diunoter of the wu moon ro revulvoa all timee

Inspect

 equal howev like thWity, and amaprean nto a binnuing dudd. nuly there are aloo mal brightuen, an in and lumisous fluid a dark laxly, eiva glving out heat and by ulight lireake or ug the dark man van the vurth, the hirid of the denaity or litto more than
distance hy a faint - thinnewn, ahapend ly of the mun lexing "xtending in the it termingters in a a liavouruble netatea ed, before sunrive juinting olliquely ralxut to njurear med the Zodincu:

alions of Orbite it it Bictipric
 Kchiptic.

Mercury,

Venala,
70 y
$13^{\mathrm{c}} \mathrm{Juno}^{2} \mathrm{v}$,
Ceres,
$00375^{20} \cdot$.
pullins.
4":4 \% 50.
Jupiliry.
Shturn

Trama,
' 46
ceolving round of miles in 225 heserver on the ut for a greater let. Happeara 1 the phanetary inuch liyht an hrough a telefreeing only a inated purt of It haw lieen 11, the greatest rere, as in the higher mousiles in uttitule. wre like hat rtel on carth prefforne ita Mereury and netr, ss lwing
amalier alze, though not the manallest, in important to ua, ${ }^{\infty} s$ the theatre on which our race have been placed to "tive, move, and have their being." It in 7902 milen in mean diamoter, rotating on itt axie in 24 hours, at a mean dintance of $95,000,000$ of miles frem the sinn, roincil which if revolves in 365 daya, 5 hourn, 56 minutera, and O7 scconds. An a planet viewed from another of the phaneta, suppose the moon, "it woull prement a pretty, variegated, and mometimes a mottied appearance. The dintinction hetween ite mean, oceans, contimenth, und islands, would he elenrly marked, they would appear like lrighter muld darker apots upon the disc. The continenta would appear bright, and the ocean of a darker hus beraine water abworbe the greater part of the solar light that falla upen it. The level plainn (exeepting, perhaps, such regionn an the Aratian dienerts of anal) would nppear oi a somowhat darker colour than the more clovated and nountainoun regiona, na we find to the the cane on the surfice of the moon. The inlands would appear like minall bright mjeckn on the darker surface of the ocean; and the lakes and mediterrancan weas like darker apota er broud atreaks internecting the bright parts, or the lami. By ita revolution round ita axis, nuccessive portionn of the aurface would be brought into viow, end present a different aspect fron the parta which preceded." "
'The form of the earth, and probalily that of every other planet, is not strietly apherical, but apheroidal; that in, flattened a little at the poles, or extremities of the axin, Tho diumeter of the earth at the axis in 26 miles less than in the cross direction. Thif peeculiarity of tho form is a connecquence of the rotatory motion, as will be afterwards explained.
The earth is attended ly ono attellite, the Moon, which is a globe of 2160 milea in diameter, and consequently whout a 49th part of the bulk of the earth, revolving round its primary in 27 daya, 7 hours, 43 minutes, and 11 seconds, at the distance of 240,000 miles. The moon is 400 times nearer the curth than the sun is; but, its diameter being at tho sume time 400 tinnes lens than that of the son, it appeary to us of alout the same size. The moon rotates on her axis in exactly the snme time an she revolves round tho earth. Sho consepuently presents at ull times the same purt of her nurfice towards the carth.

Tulemeopic mppesance of the Moon.
Inupected through a teleseope, her surface appears of unequal brightness, and extremely rugged. The dark parts, however, are not seas, as has been supposed, but more like the beds of seas, or great alluvial phains. No ap-

[^0]pearance of water, or of cic uda, or of an atmompliere, bae been detecterl. 'The surfice prusentis numeroun miountaina, mome of them ahout a mill and three quartern in height, wa has heen ascertained by meaaurement of the uhadowa which they eunt on the neighbouring aurfuce. I'lie tope of the monntain of the monn are generally whareal like a enp or hanin, with a amull eminence rining from the centre, like many voleanic hills on the earth. If han hence been numniwed that the moon is in a volcunice state, on the earth appears to have been for many sgee thefore the creatlon of mun, and that it is perhaps undergoing procemen calculated to make it a fit acene for animal and vegetablo life.

The moon, turning on ith axla once in a little more than 27 dhys, preaenth every part of itn aurface in aue comion to the sun in that time, an the earth dows in 21 hours. 'The day of the moon in coneequently nearly fortnight long, sud its nights of the name duration. The light of the mun, falling upon the moon, in partly ahoorbed luto its booly; but a amall portion in reflected or thrown back, and becomen what we call moonlighe. The illus minated purt, from which wo derive moonlight, is at all timen increasing or diminimhing in our cyes, an the moon proceeda in her revolution around our globe. When the natellite in at the greateat diatance from the amn, we, being between the two, see the whole of the illiminated murface,

Phameg of the Moon.
which we accordugly term fill moon. An the moon advancen in her course, the luminons side is gradunlly averted from us, and the moon is auid to wane. At length, when the antellite has got between the earth and the sun, the luminous side is entirely lost aight of. The moon is then said to change. Proceeding in her revalution, she goon turns a bright edge toworls un, which we call the new moon. This gradually Inereasen in brendth, till m moiety of the circle is quite filled up; it is then said to be half moon. The luminary, when on the increase from new to nalf, is termed a crescent, from crescens, Latin for increasing; and this word has been applied to other objecte of the same shape-for instance, to a curved line of buildings.

In the early dayn of the new moon, we usually see the dark part of the body faintly ilhnminated, en apperarance tcrmed the old monn in the new moon's arms. This faint illumination is produced by the reflection of the sun's light from tho earth, or what the inhabitants of the moon, if there were any, might be supposed to consider as moonlight. The enth, which occupies one invarinhie place in the aky of the moon, with a surface thirteen times larger thun the apparent size of the moon in our cyes, is then at the full, slinining with great lustre on the sunlesa aide of its satellite, and rectiving back a small portion oi its own reilected light. The licht, then, which maken the dalk part of the moon visible to us, may be eaid to pen. form three jonrneys, first from the sun to the earth, tinen from the carth to the moon, and finally from the mome back to the earth, before our eyea are enabled to perceive Uhis olject.

Mars, the faurth of the primary planets, is a globe of 4189 milea in diameter, or little mors than a half of that of the earth; consequently, the bulk of this planet is only about a 5 th of that of our globe. It performs a rotation on ita axis in 24 hours, 39 minutes, and 212 seconda, and revolves round the sun, at a distance of $142,000,000$ of milet, in 686 days, 22 hours, and 18 seconds. Mars appeare to the naked eye of a red calour; from which circumatsnce it was, probably, that the ancients bestowed upon it the name of the god of war. Inapected through a telescope, it is found to he occasionally marked by large spots and duh streaks, of various forma, and by an onnaual brightness at tha peles. As the bright polar parts cometimes project from the circular outline of the planet, It has been conjectured that these are masees of anow, cimilar to thoee which beset the noles of the earth.

Vesta, Ceres, Pallas, and Jitm ars four small globes, revolving between the orbits of Mars and Jupiter, in paths near and crosaing each other, and which are not only much more elliptical than the paths of the other planets, but also rise and sink much furthor from the plane of the general planetary revolutions.

Vesta is of a bulk only 1-15,000th part of the bulk of the earth, with a surface not exceeding that of the kingdom of Spain. It revolves round the sun in 3 years, 66 days, and four hours, at a mean distance of $225,500,000$ miles. Though the smallest of all the planets, it gives a very brilliant light, insomuch that it can be ecen by the naked eye.
J uno is 1425 miles in tiameter, and presents, when inspected through the telescope, a white and well-defined appearance. Its orbit is the most eccentric of all the plaretary urbits, being $253,000,000$ of miles from the sun at the greatest, and only $126,001,000$, or less than one-half, at the least distance. In the half of the course nearest to the sun, the motion of the planet is, by virtue of a natural law afterwards to be explained, more than twice as rapid as in the other part.

Ceres has been varinusly represented as of 1624 and 160 miles in diameter. The astronomer who calculated its diameter at 1624 miles, at the same time believed himwelf to have ascertained that it has a dense atnosphere, extending 675 miles from its surface. It is of a reddish colour, and appears about the size of a atar of the eighth magnitude. Ceres revolves round the sun, at a distance of $260,000,000$ of mides, in four years, 7 months, and 10 days.
l'allas has been represented as of 2099 miles in diametor, with an atmosphere extending 468 miles alove its surfice. Anether astronomer has allowed it a diameter of only 80 miles. It revolves round the sun, at a mean distance of $266,000,000$ of miles, in 4 years, 7 months, aidd 11 days. However unimportant it may appear beside the larger planeta, it has a peculiar interest in the eyes of astronorners, on account of its orlit having a greater inclination to the plane of the ecliptic than those of all the larger planets put together.

These four planets, which ,are sometimes called astemoids, have only recently become known to msnkind. Seres was discovered at Palermo in Sicily, on the 1st of January, 1801, by M. Pisza, who gave it this name in nonour of the tutelary goldess of his native country. Pallas was discovered at Bremen, in Lower Saxony, on the 28th of March, 1802, by Dr. Olbers. Juno was c 'scovered by Mr. Harding, at the observatory of Lilienthal, near Bremen, on the 1 st of September, 18014. Vests was discovered on the 29th of March, 1807, hy the same astronomer who had discovered Yellas.

Jupiter is the largest of all the planets. Its diameter $2 s$ nearly eleven times that of the earth, or 89,170 miles, and its volume or mass is consequently 1281 times that of our globe. The denaity of Jupiter is ouly a fourth of that of tho sarth, or about the lightness of water; and a enroar. bing, if transeried to it, would the able to leap
with ease over a pretty large house. It performs a rohn tion on its axis in 9 hours, 55 minutes, and 33 seconds or about two-fiftha of our day. It revolvea round the sun, at a distance of $490,000,000$ of miles, in 4330 daya 14 hours, and 39 minutes, or nearly twelve of our yeara Viewed through a teleacopo, Jupiter appears surrounded by dark lines, or belts, which occasionally shift, melt inte each other, or separate, but sometimes are observed with little variation for several months. These belte are gonerally near the equator of the planet, end of a broad and straight form; but they have been observed over his whole surface, and of a lighter, narrower, and more streaky and wavy appearance. It is supposed that the dark parts are lines of the body of the planet, seen through openings in a bright clouly atmosphere.
Jupiter is attended by four satellites, which revolve round it, in the same manner as the moon round our globe, keeping, like it, one face invariably presented to their primary. They are of aloot the same size, or a little larger lliameter than our moon; the first having a diameter of 2508, the second of 2068 , the third of 3377, end the fourth of 2890 miles. The first revolvea round the primary planet in 1 dsy, 18 hours, 28 minutes; the second in 3 days, 13 hours, 14 minutes; the third in 7 days, 3 hours, 43 minutes; and the fourth in 16 days, 16 hours, 32 minutes. These satellites frequently eclipse the sun to Jupiter; they are also eclipsed by the primary planct, but never all at the same time, so that his dark side is never altogether without moonlight.

The aatellites of Jupiter were discovered by Galileo, being among the first results of the invention of the telescope. They have been of great use in several astronomical calculationa of importance, particularly in auggesting the theory of the gradual propagation of light. It having been observed that their eclipses always took place sooner than was to be expected when the earth was near Jupiter, and later when it was at the greatest dibtance, an astronmmer solved the difficulty by supposing that light required some tine to travel-a conjecture which was afterwards confirmed by other observations.
Suturn, seen through a telescope, is the most remarkable of all the plsnets, heing surrounded by a ring, and attended by seven satellites. In bulk this is the second of the planets, being 79,042 miles in diameter, or about 995 times the volume of the earth. Its surfice appears elightly marked by belts like those of Jupiter. I: performs a rotation on its axis in 10 hours, 16 minutes, and revolves round the sun, at a distance of $900,000,000$ of miles, in 10,746 days, 19 hours, 16 minutes, or about $29 \frac{1}{6}$ of our years. At such a distance from the aun, that luminary must be diminished to one-eightieth of the size he bears in our eyes, and the heat sud light in the same proportion. The matter of Saturn is one-eighth of the density of our earth.
The ring of Saturn surrounda the body of the planes in the plane of its equator. It is thin like the rim of a spinning-wheel, and is alwaya seen with its edgo presented more or less directly towards us. It is luminous with the sun's light, and casts a shadow on the surface of the planet, the shadow of which is also sometimea seen falling on part of the ring. The distance of the inmer edge from the planet is calculated at about 19,000 miles; its cutire brealth from the imer to the outel edge is 23,538; the thickness is not more than 100 . In certain positions of the planet, we con see its eurface at a coulsidurable angle, and the openings or loops which it forms on the sides of the planet. At other times we see its dark side, or only its edge. From observations made upou it in favourable circumstances, it is found to he apparently divided near the outer edge ly a dark line of nearly 1800 miles in breadth, as if it were divided into two con entric rings. From other appearances, it has been surmised to have other divisions, or to lee a colleco tion of aeveral concentric rings, it in alsu occasionally
maiked
ita own ith own
a part rotacint
The the ext the gan withou discern ways a sen $p a$ thread three n larger, seventh Mars, a aixth, o The re accordir rotation primary moon, of their much in Uran rotating tion rou miles, in of Mar part of lites are culate ro to the ec rection tions-n
Some the prin globe of plain, t placed meter, Venus ; Earth; Mars; 1000 to modera diamete

It performs a rotu utes, and 33 secondm t revolves round the miles, in 4330 dayn twelve of our yearm - appearis surrounded onally shift, melt inte nes are observed with These belts are ge tt, and of a broad and served over his whole ; and mere streaky rosed that the dark planet, seen through ere. lites, which revelve ho moon round our ariably presented to the same size, or a on; the firat having 2068, the third of
The first revolves 8 hours, 28 minutes; inutea; the third in fourth in 16 days, es frequently eclipse psed by the primary ne, so that his dark light.
covered by Galileo, o invention of the use in several aatroparticularly in aug. ropagation of light. olipsea always took when the earth was it the greatest disculty by aupposing avel-a conjecture her observations. , the most remaikded by a ring, and this ia the second diameter, or about Ita surfuce appears f Jupiter. I: per8, 10 minutes, and of $900,000,000$ of [utes, or about 29 d the sun, that luieth of the size he light in the tame one-eighth of the
ody of the planet a like the rim of vith its edgo preIt is luminous on the surface of b sometimee seen ace of the inner ut 19,000 miles; he outer edge is 100. In certain surface at a conss which it forms tintes we sec its servations made - tound to be apa dark line of ere divided iuto earances, it ham r to be a colleo lso ocresionally
maked by small spots. The ring of Saturn rotates on its own plane in 10 hours, 32 minutes, 15 secends, and a part of a second, being about the ame time with the rotasion of the planet.

The seven satellites of Saturn revelve around it, on the exterior of the ring, and almost all of them in nearly tho same plane. They are ao amall as not to be viaible without a powerful telescopo. The two inner ones are very near to the outer edge of the ring, and can only be discerned when that object is presented ao exactly edgeways as to be almost invisible. They have then been then passing like two small bright leads along the minute thread of light fermed by the edge of the ring. The three next satellites are alae very small; the sixth is larger, and placed at a great interval from the rest. The eeventh is the largeat; it is about the size of the planet Mars, and is situated at nearly thrice the distance of the sixth, or about $2,300,000$ miles from tho body of Saturn. The revolutions of these satellites range from 1 to 79 daye; and it has been ascertained of some of them that, according to the usual law of secondary planets, their rotations on their axes and their revolutions reund their primary are performed in the same time, ao that, like our moon, they always present the aame face to the centre of their ayatem. The orbit of the aeventh aatellite ia much inclined io the plane of Saturn'a equator.

Uranus, or Herschel, the remotest planet known in The aelar syatem, is a globe of $\mathbf{3 5 , 1 1 2}$ miles in diameter, rotating on its axis in 7 hours, and performing a revolution round the sun, at a distance of $1,800,000,000$ of miles, in 84 of our years. It was discovered, on the 13 th of March, 1781, by Sir William Herechel, at Bath. The sun to thia remote planet must appear only a 400th part of the aize r, nich ha bears in our eyes. Two satellites are known, other four are auspected, to attend upon Urancis. The two which have been observed circulate round their primary in erbits almost perpendicular to the ecliptic, and are further supposed to move in a direction contrary to that of all the other planetary mo-tions-namely, from east to weat.

Some idan may be obtained of the comparative aize of the principal objecta of the aolar aystem, by aupposing a globe of two feet diameter, placed in the centre of a level plain, to represent the sun; a grain of mustard-seed, placed on the circumference of a circle 164 feet in diameter, for Mercury; a pea, on a circle of 284 fect, for Venua; another pea, on a circle of 430 feet, for the Earth; a large pin's head, on a circle of 654 feet, for Mars ; four minute grains of eand, in circles of from 1000 to 1200 feet, for Veata, Ceres, Pallus, and June ; a modarate sized orange, on a circle of nearly half a mile in diameter, for Jupiter; a small orange, on a circle four-

fifthe of a mile indsameter, for Saturn ; and a amall plum or full-aized cherry, on a circle of a mile and a half in diameter, for Uranus. It is calculated that the united mass of the whole of the planets is not above a 600th part of the mass of the sun. The sun and planets are represented, with an approximation to correctness, in philosophical toys termed orreries, of which the appearance is conveyed in the preceding engraving.

COMETS.

Comets are liglit vapoury bodiea, which meve round the sun in orbits much less circular than these of the planets. Their orbits, in other words, are very long ellipsea or ovala, having the $\pi=n$ near one of the enda. Comets usually have two parts, a borly or nucleua, and as tail; but some have a hody only. Tha body appears es a thin vapoury luminous uass, of globular form ; it is so thin, that, in some cases, the stars hava iven geen through it. The tail ia a lighter of thinner luminous vapiot ourreunding the belly, and atreamil.s far out from it, in one direction. A vacant space has been observed between the body and the enveloping matter of the tail; and it is equally remarkable that the tail has in aome instancen appeared less bright along the middle, immediately behind the nucleus, as if it were a stream which that nucleus had in some measure parted into two.

In ignorant ages, the sudden appearance of a comet in the sky never failed to occasion great alarm, beth on account of its threatening appearance, and becsuse it was considered as a aign that wer, pestilence, or famine, wis about to affict mankind. Knowledge has diarelled $n!$ auch fancies; but yet we are not well acquainted with the nature of comets.

Out of the great multitude-certainly net leas than 1000 -which are supposed to exist, ainout 150 have been made the aubject of seientific olservation. Iistead of revolving, like the planets, nearly on the yane of the aun's equator, it is found that they approcsh his woty from all parts of surrounding space. At firet, they are seen alowly advancing, with a comparatively faint appearance. As they approach the aun, the motion becomes quicker, and at length they pass round him with very great rapidity, and at a comparatively small diatance from his body. The conset of 1680 approached within oneaixth of his diameter. After passing, they are seen to emerge from his rays, with an iminense increase to their former brilliancy and to the length of their tails. Their motion then becomes gradually slower, and their brilliancy diminishes, and at length they ara lost in distance. It has been ascertained that their movement round the aun i_{a} in accordance with the same law which regulates the planetary movements, being alwaya the quicker the nearer to hia body. and the slower the more diatant. In the remote parts of space their motions muat be extremely slow.

Three comets have been observed to return, and their perioda of revolution have been calculated. The most remarkatle of these is ono usually denominated Halley's Comet, from the astrnnomer who first calculated its period. It revolves round the sun in about seventy five years, its iast appearance being at the close of 1835. Another, called Einke's Comet, from Professor Enke of Berlin, has been found to revolve once in 1207 dsya, or 3支 years; but, in this case, the revolving body is found, at each successive approach to the sun, to be a little ear. lier than on the previous occusion, alowing that its orbit is gradually lessening, so that it may be expected ultimately to fall into the aun. This fact has suggesud that some part of that space through which the comet passea, must be occupied by a matter presenting some resistance to the movement of any denser body; and it is oupposed that this matter may prove to be the sanie which has been described as constituting the zodiaca

INFORMATION FOR THE PEOPLE.

aght. It is called a resisting medium; and future observations upon it are expected to be attonded with resulte of a most important nature, seeing that, if there be auch a matter oxtending beyond the orbit of the earth, that planet, in whose welfare we are so much interested, will be exposed to the aame ultimate fate with Enke's Comet.

Tke third, named Beila'a Comet, from M. Beila of Josephstadt, revolves round the sun in 8^{3} years. It is very amall, and has no tail. In 1832, this comet passed through the earth'a path about a month before the arrival of our planct at the same point. If the earth had been a month earlier at that point, or the comet a month later in crossing it, the two bolies would have been brought together, and the earth, in all probability, would have instantly become unfit for tha existence of the human family. Comets are often affected in their mocions by the attraction of the planets. Jupiter, in particular, has been described by an astronomer as a perpetual stumbling-hlock in their way. In 1770, a comet got entangled amidst the satellites of that planet, and was thereby thrown out of its usual course, while the motions of the satellites ware not in the least affected.

Comets often pasa unnbserved, in consequence of tha part of the heavens in which they move being then under daylight. During a total eclipse of the aun, which hap. pened sixty yenrs before Christ, a large comet, not formerly seen, becasie visible, near the body of the obscured luminary. On many occasions, their amalluess and distance rende them visible only by the aid of the telercope. On other occasiona, they are of vast size. The comet now called Halley's, at its appearance in 1456 , covered a sixth part of the visible extent of the heavens, and was likened to a Turkish scymitar. That of 1680 , which was observed by Sir Isanc Newton, had a tail calculated to be $123,000,000$ of miles in length, a space greater than the diatance of the earth from the sun. There was a comet in 1744, which had six tails, spread out like a fan across a large space in the heavens. Tha taila of cometa usually stretch in tha direction opposite to the aun, both in edvancing and retiring, and with a slight wave at the outer extremity, as if that part experienced some reaistance.

THE STARS,

The idea at which astronomera have arrived respecting the stars, is, that they are all of them suns, resembling our own, but diminished to the appearance of mere epecka of light by the great distance at which they are placed. Aa a necessary consequence to thia supposition, it may be presumed that they are centres of light and heat to systems of revolving planets, each of which may be furthei presumed to be the thentre of forms of beinga, bearing some analogy to those which exist upon carth.
The atars, seen by the naked cye on a clear night, are not above a thousand in number. This, allowing a like number for the half of the sky not seen, gives about two thousand in all of visible stars. These ure of cifferent de. greea of brilliancy, probsbly in the main in proportion to their respective distances from our system, but nlso perhaps in some measure in proportion to their respective actual sizes. Astronomers class the stars under difeient magentudes, not with regard to apparent size, for none of them present a measurable dise, but with a regard to the various quantities of light flowing round them: lhas, there are stars of the tirst magnitude, the sucond magnitude, and si) ous. Only six or seven varieties of magnitude are within our natural vision; but with the telescope vast numbers of nore distant stars are brought inte view ; and the mugnitudes are now extended by astronomers to at heast si xtcen.

The whars are at a distance from our system so very great, that the mind can form no idea of it. The hriffiant one called Nirius or the Don-star, which is supposel we the nearest, but merely because it is the most hmi-
nous, has been reckoned jy tolerably clear calculation to give only $1-20,000,000 \mathrm{th}$ part of the light of the aun hence, supposing it to se of the same size, and every other way alike, It should he distant from our earth not lesa than $1,060,000,000,000,000,000$ miles. An atteupt has been made to calculate the distanco of Sirise by trigonometrical prohlem. It may be readily supposed that the position of a apectator upon the earth with respect to celeatial objects must vary conaiderably at different parts of the year: for instance, on tha 21at of June, he muta, be in exactly the opposite part of the orbit from what he was on the 21at of December-indeed, no lens than $190,000,000$ of inilea from it, or twice the distance of the carth from the aun. This change of poaition with relation to celestial objects is called parallix. Now, it has been found that Sirius ia so distant, that an angla formed between it and the two extrenities of the earth's orbit ia too amall to be appreciated. Were it no much as ane second, or the 3600th part of a degree, it could be apprecinted by the nice instruments we now possess; but it ia not even this. It is hence concluded that Sirius must be at least $19,200,000,000$ of miles distant, however much more! Suppoaing this to be its distance, ita light would tuke three years to reach us, though travelling, as it does, at the rata of 192,000 miles in a second of time !

It is ascertsined beyond doubt, that some stars, at one time visible, and registered by ancient astronomers, ara not now to be seen; white many instances are on record of atars which have come into sight for a time, and then gradually vanished. A large star subtenty became visible 125 years before Christ, and attracted the attention of Hipparchus, who was thereby induced to draw up a catalogue of stars, the first ever made. In the year 389, a star blazed forth in the constellation Aquila, ${ }^{*}$ and after remaining for three weeks as bright as the planet Venue, disappeared. A star appeared in the region of the heavens between Cepheua and Cassiopeia, in the ycars 945, 1264, and 1572 , and is supposed to be one which comes within our sight once every three hundred and nineteen years, or thercby. At its last appearance, it was very attentively observed by the celeirated Danish astronomer Tycho Brahe, who published a volume respecting it. Its appearnnce was so sudden, that in returning from his lahoratory to his dwelling-loowse, he found a group of country people gazing at it, and was satisfied it had not been in that quarter of the sky half an hour before. It was then as bright as Sirius, and continued till it surpassed Jupiter when brightest, and was visible at midday. It disappeared entirely ahout eighteen months after being first observed. Another bright star appeared, in the constellation Serpentarius, in Octoler 1604, and remained for a year. It is mentioned by conteniporary writers, that at the birth of Charles II. in 1630, a large atar, never before observed, appeared in the day-time, as if to mark something extraordinary in the fortunes of the child that day ushered into existence. Other instancea have been noticed in still more recont times ; but, upon the whole, this is a point in which as tronomice! observation ia defective. It seems, however, to be clearly ascertained, that some, if not all of the stars, have periodical motions throughout space, aome more rapid than others. In reveral of the instances where the perioxl is short, there is no want of positive knowledie. It has been ascerhined, for instance, that the star Omicron, in Cetus, has a periodical movement occupying

- It may be stated here. in anticipation of more particular ax.

 asambagex of sark, each of whesh hears the uame of some chare or wher objurec, as Aynila the taple, retus the Whate.

 magmente when theme are exhausted, will
and mber
clear calculation to e linht of the sun ame size, and every from our earth not miles. An attempl anco of Sirias by cadily supposed thas arth with respect to ly at different parts st of June, he mes, orbit from what he leed, no leas then e the distance of the position with relatlex. Now, it has jat an angle formed © the earth's orbit is it so much as one ree, it could be apnow possess; but neluded that Sirius miles distant, how0 be its distance, ite 1 us, though travelmiles in a second
some stars, at one t astronomers, are ances are on record or a time, and then denly lecame visiacted the attention seed to draw up a In the year 389, Aquila," and after the planet Venus, region of the hea , in the years 945 , to be one which hree hundred and |ast appearance, it celcórated Danish died a volume reudden, that in re-lwelling-house, he ing at it, and wan ris of the sky half ht as Sirius, and hen brightest, and d entircly ahout served. Another 1 Serpentarios, in It is mentioned rth of Charlee II. rved, appeared in extraordinary in ed into existence. still more recent oint in which as seems, however, t sll of the stars, ace, some more lames where the tive knowleflere, at the star Ominent occupying
> ore partienlar exconstelluturs, ur bie luathe of some treus the whate. k III diwiogy. de. the orler of its Gircek ulplaber

Ast dava. It is seen as bright as a star of the second magrutude for about a fortnight: then gradually diminishes for three months, till it becomes invisible, in which cato it remaina for five months, when it again becomes visible, and gradually increases till it regains its former brightness, more or less-for it does not always reach the aame degree of lustre. The star Algol, in tho conmollation Perseus, continues visiblo during a period of. sixty-two hours. when it suddenly loses its splendour, and from a star of the second magnitude is reduced, in chree hours and a half, to the fourth; after which it hegins to increase, and in three hours and a half resumes tis former size There are eleven other stars which exhibit anatogous phenomena, some of them at intervals of five hendred years, to which we may look forward without any danger of mistake. Astronomera have not yet made sufficiently extensive observations to settle whether our own sun liave any motion through space; but that it has such a motion, has been surmised without any apparent reference to this branch of inquiry.

Another varicty in the nature of these luminaries is their being in some instances, not single stars, as they appear to the naked eyc, but a group of two or more, cuidently, from their motions, forming one system. 'I'he atar Custor, one of the twins, is found, when much mugnified, to consist of two stars, of between the third and fourth magnitude, within five seconds (a very simall epace) of each other. Sir William Herschel made obeervations upon more than 500 stars of this kind, where the distanco is not more than half a minute (also a very amall space); snd to this list a foreign astrotomer has added five times that number. Nor is there reason to auppose that, in ull these instances, one of the stars is et a yreat distance behind the other, and that they are only brought together by the sccident of our position. Many of the doulies stars no doubt are thus accidentally brought together; bat of a great number it has been fully ascertained that they are each a system, with a reciprocal relation to each other. They are therefore called Binary Stars. It is generally observed that they move round each other within a certain time, and in elliptical orbits; the revolution of Castor, for instance, is supposed to be accomplished in 334 years; of ξ of Ursa Major, in $58 \ddagger$ years; of 70 Ophiunci in 78 ycars. In fact, there is the same variety in this branch of the starry system as in its other departments, and the revolutions of the few binary dars that have been accurately surveyed range from forty-three to twelve hundred years. Several of these duplicate stars hava mado a revolution since they were Grst observed, and are now advancing in their second period. One, ζ Hercules, was seen double, in 1782, by Sir Willism Herschel; in 1795, it was hardly distinguishable to be doulle; in 1802, it was double no longer, the one being eclipsed by the other, though a small part of one was still jutting out at the side of the other; astronomers are now watching to observe them once more become separate. Whether one of these stars serves to the other as a sun, or whether both are suns, or whether the orga:ized life with which they are probably stored, be of a kind which can endure a perpetual light and heat thrown from the one to the other-or in what other manner theso immense worlds are put to use-it would bo vain to inquire. One remarkable peculiarity in them is, the variety of tints apparent in tho light emitted ivy a considerable number of them; but no accurate account has yct breen given of the reason of this wonderful dillerence of colour in the stars.

Perhaps the most magnificent of all the starry phenomena is the Wilky H^{\prime} ity. This, as is generally known, is a broad belt, of whitish lustre, which stretelies round the whole sky, being parted into two streaks for a large part of the circuit. The ancients formed the mean idea of this light, that it was the milk spilt by the nurse of Mercury, one of the deities; and hence ita name. When
examined by a telescope, it is found to consiat entirely -f starg, "scattered by millions," as Sir John Herseha neautifully describes them, "like glittering dust, on thw black ground of the general heavens." The average magnitude of these stars is about the tenth or the eleventh, and hence their invisibility to the naked cye. It is a very remarkable circumstance, that, though the stars of the larger magnitudes are scattered with considerable equai- ${ }^{-3}$ y over the wholo heavens, there is a notable clustering of the smallet ones towsids the hody of this ring. Sir Wil. liam Herschel, by ganging, as it were, the depth of oul starry system in this and other parts, arrived at what he believed to be an approximation to the figure of the aystem itself-namely, an elongated cake-shaped mass, parting flat-wise intu two at one particular part of the exterior (where the Milky Way is double), and in which our solar system was p.aced somewhat nearer the one extremity than the other. Where the distance between two stars is so great as we have seen, and we can suppose the distance between all the rest to be no less, what must be the entire extent of this star-system, composed as it ia of millions of millions of distinct bodies !

nebuze.

Within the bounds of what has here been called the star-system, great numbers of bodies have been discovered, which, from their cloud-like appearance, are called Nibula. There is one of magnificent appearance in the girdle of tho constellation Andromeda, and another still more splendid in the sword-hilt of Orion, both visible to the nsked eye. Some of these ohjects are of most irregular form, strctehing like a fragment of semi-pellucid membrane over the sky, with patches of brighter matter scattered irregularly thronghout their extent. In others, the bright patches are of greater, intensity, so as to have the decided appearance of gatherings of tho matter towards a particular point. Others there sre, in which these bright parts seem nearly disengaged from the surrounding thin matter, or only bedded on a slight background composed of i. In a fourth class, we sec detached masses, approaching more or less to a spherical form, and with various measures of comparative bjightiess towarda the centre, until they resemble a star with only a slight bur around it. It is a new and startling surmise of astronomers, that these are exsmples of a series of stated in which nebulous matter exists, during a process forming it into solar systems more or less analogous to our own-belated portions, so to speak, of the same soft and diffused material, which, countless ages ago, was condensed into the defined bodies forming the remainder of our star-system?

There is much, it must be owned, to support this hypothesis, startling as it is. The physical laws known to operste in our own solar system are in perfect harmony with it. It has been shown that such matter, in agglomerating, would neccusarily assume a spherical form, just as a drop of dew takes that shape on the joint of a thorn, namely, by the law of attraction. Particles of any flaid matter, flowing towards a centre, will, onless in the oxtraordinary circumstances of their meeting in a direct line (circomstances which scarcely ever occur), form a whirl or vortex. The meeting of two currents of the ocean forming a whirlpool, or of two currents of air forming a whirlwind, or even such a trivial and familiar phenomenors as the sinking of water tlrough a funned, are examples of the working of this law of matter. Hence, then, a rotatory motion would be an almost unavoidable result of the agglomeration of a mass of nebulous mat ter. In this we can, of course, see the origin of auch e motion as that which our sun is known to have upon hus axis.

And not only are the formation and movempinta of suns to be thus accounted for, but it has been shown tua: the sante laws will explain how a whole funetary aye
tem may have been made up. Aa the process of condeneation in a nebular mass proceeds, the whirling motion muat always become more rapid, just as a sling, when the string ia allowed to wind up round our finger, fiee always the faster an the string shortens. While the retatory motion is thus increasing, the centrifugal force may become too great to permit the outer and prohably softer portion to adhere to the mass ; and this outer and softer portion will therefore be left off as a ring surrounding tha prineipal mass at a little diatance. Other portiona may thus be successively detached, till a considerabla number of rings will be left encircling the central mass. Only if the matter of these rings be of a uniform character, can it be expected that they should continue as rings. Almoat neeesaarily, there will be inequalitiea in their composition, causing them to break up into pieces, each of which, by virtue of gravity, will then collapse into a aphere. A sphere, thus formed, must needs retain the same revolutionary motion as the ring of which it once formed a part, and at the aame time it nust acquire a rotatory motion in the same direction. Thue we have a net of primary planets, the bodiea of which have only to undergo the same processes as the central mass, in order to throw off satellites. The two rings which surround Saturn appear an example of two exterior pertions of that planet as yet not advaneed from the intermediate atate, but which may in time beeono additions to the number of his satellites. The zodiacal light may alse lee a residue, of extreme thinness, of the matter of which our system was formed.
It might be supposed that this hypothesis, ingenious as it is, could scarcely be atretched to account for the formation of solar systems in which thero are two suns revolving round each other. But this dificulty is easily svercome. It has been shown that the nebulous matter, in certain cases, may assume that arrangement. On the surface of a flowing stream, in which slight repulsions of water from the banks produce little eddies, how common is it to sue two of those niniature whirlpoola come within each other'a influence, and then go on wheeling round each other: precisely in that manner do the two suns of a binary star eacy on their revolutiona, and from cireumrtancea of a similar nature, though upon so muca greater a scale, may these revolutiona have originated.

REMOTR STAR-GTATEMS.

Our own atar-aystem, inconceivably vast as it is, is but an item of the heavenly inventory. Far beyond its bnunds, the telescope of Herschel has deseried similar syotems in great numbers, each hanging in some tolerably definod shape in the vast empyrean, and each eapable of being resolved, not exactly into stars, though these are in mome instances visible, but into what has been expressly called star-dest, a collection of small brilliant particlea, each of which would probably appear a distinct aun

Inder a stronger power of artificial vision. Ohservationa nave been male upon these ntar-systema chicfly in the "Hection: of the thinner parts of our own gystem, where
the sky is clearest of our own starm, nnd where of courm they are most diatinet from other and nearer objects. But even in these limited fields of the aky very great numbers have been meen-between 1000 and 2000 in tha northern hemisphere alone-a number, we must recolleet, exceeding that of all the ordinarily visible atars in the alame moiety of the heavens.

They are of various forme, but in general, as has been said, tolerably well defined, and therefore diflering entirely from the irregularly diffiased matter of our nebule. Many appear as apherical elustera, with a crowding of the atar-dust towards the centre: of thia kind there is a brilliant example in the constellation Hercules. It ham been remarked, that in the works about the centre of auch clusters, the visible heavena must be inconceivably brilliant, though they will havo no appearances reaembling our milky way. There is another spherieal class, in which the external parts are the most brilliant: in these cases, the visible heavens of a world near the centre will probably be almost entirely composed of milky way. From our earth these annular clusters are presented in various pointa of view, some so nearly edgewise, that we ean barely see the long line of thin natter in the centre. There is one of most peculiar form, namely, an oval, with a regularly formed space of more brilliant matter extending across it in something like the form of a dunb-leell!! Surprising to relate, there are more than one bearing a strond resemblance to the form which has leen presumed as that of our own star-system, namely, a flattened mass, with a brilliant annular exterior, parting flatwise into two at one part! In the Magellanic cloreds, a nebulous olject in the southern hemisphere, there is one remote star-aystem (30 Doradûs), described by Sir John Heraehel as " consisting of a number of loops united in a kind of unclear centre or knot, like a bunch of ribbons disposed in uhut is called a true lover's knot J" "We are," saya an astronomer who possessea eloquence worthy of his noble acience, " lost in mute astoniahment at these endless diversitica of character and form. But in the apparent aim of things near and around us, we may perhape discern some purpose whieh such variety will also serve. It seems the object or result of known material arrangements, to evoke every variety of ereature, the condition of whose being can le made proluctive of a degree of durstility; and perhaps it is one end of this wonderfut evolution of firmaments of all orders, that there too th law of variety may prevail, and room be found for unfold ing the whole richen of the Almighty."

The vast general distance of these clusters, their distinctness from our own system, and their relative dis. tances, have been determined by the comparative powers of the teleacopes employed in observing them. Some of them are distant from us many thousands of timea the distance of Sirius, the nearest of our own stars. The astionomer last quoted speaks of the telescope represent. ing us as in the centre of a sphere, whose cireumference is 35,000 times aa far from us as that atar, "and beyond whose circuit, inlinity, boundless infinity, stretchea unfathomed for ever."

URANOGRAPHY.

Under this term (delineation of the heavens) may be comprehended ull those arrangenenta which have been made by astronenere for artificial representation of the heavens, and for the working of the nuny mathemstical problems of which the heavenly bodies are the subject.

The stars, as they appear in their places on tho apperent eoncave sphere of the heavens, are represented in proper arrangement on the celestial globe, which is expressly designed an a miniature of that sphere, but beas ing also the fanciful figurea assigned to the constellations
*Views of the Arehileciure of the Iteavens, by J. I' Nicho', LI.D. 1807 .
, and where of courme and nearer objection of the nky very great 1000 and 2000 in the ber, we must recollect, ly visible stars in the

I general, as has been herefore differing ennatter of our nehule. , with a crowding of f this kind there is a on Hercules. It ham about the centre of must be inconceivably pearances resembling or epherical class, in ost brilliant: in these d near the centre will osed of milky way. ters are presented in rly edgewise, that we I matter in the centre. namely, an evsl, with -illiant matter extendform of a dumb-hell!! than one bearing a ch lisas leeen presumed acly, a flattened mass, rting flatwise into two neds, a nebulous oljeet ane remote star-sys. iir John Herschel as nited in a kind of unof riblons disposed in "We are," says an e worthy of his noble sent at these endlest But in the apparent we may perhaps dibriety will also scrve. wn material arrangeeature, the condition hetive of a degree of nd of this wonderfut 8, that there too th be found for unfold \because
se clusters, their dishd their relative discomparative powers ing them. Some of pusands of times the ur own atars. The f telescope representwhose circumference t star, "and beyond finity, stretches un-
he heavens) may be ts which have been presentation of tha many mathematical ss are the subject. places on the appa. , are represeuted in slobe, which is exat sphere, but beas b the constellations
and the linea necessary for the working of various probcoma It is required that, in the first place, we give a brief description of the terreatrial globe, or similat miniacure representation of the earth.

Astronomers, for the convenience of their science, have supposed certain lines to pass through and around the clobe. One, passing through the centre, between north and south, is called the axis of the globe, from a Greek word signifying axle. The two extremities are called the poles, from the Greek word polos, signitying a pivot. A line girding the globe in the middle ls styled the cquntor ; all to the nerth and south of which are respectively called the northern and aouthern hemispheres. The circuit of the earth, both in its girth between east and west, and between north and south, ia divided into 360 parts, called degrees. At the diatance of twenty-threa and a half nearly of these degrees from the equator, in loth direccions, are two parallal lines called the tropics, and at the tame distance, from each pole is a parallel circle, styled In the one case tha arctic, and in the other the autarctic cirele. The space between the tropics is called the Sorrid zone, because the aun, being always vertical in some part of that space, proluces a greater degree of heat than what is felt elsewhere. The spaces between the tropiss and the arctic and antarctic circles are called the cemperaic, and the spaces within these latter circles the frigid zoncs. Lastly, a line which cuts the equator obGquely, touching upon opposite points of the tropics, is elled the ecliptic. The ecliptic and equator are called breater circles, becauso they cut the earth at the thickest parts; the others are called lesser circles.

A series of lines drawn from pole to pole over the earth's surfaco (liko the division lines of a pecled orange), and cutting the equator at right angles, are called mcidiuns (from the Latin word neridies, mid-day) or lines of longitude. Every place upon the earth is supposed to have one of these passing through it, although only 24 are described upon the terrestrial globe. When any one of these is opposite the sun, it is then mid-day or twelve o'clock with all the places situated on that meridian, and, consequently, midnight with those on the opposite meridian on the other side of the earth. The exact situation of a place upon tho earth's aurface, or its latitude and longitude, is determined by means of these circles. They are all divided, as alrendy hinted, into 360 parts, which parts are called degrees; these degrees again into 60 equal parts, called minutes; the minute into 60 others, called secobds, and so on. They are all indicated by certain signs placed lehind the figure, and near the top of it-thus, $8^{\circ} 5^{\prime} 7^{\prime \prime}$ is 8 degrees, 5 minutes, 7 sc conds. A degree is 60 geographical niles, or about 69 English statuto miles; a minute is the 60th part of that; and so on. The latitute of a place is its distance mea. sured in that manner from the equator. If it lics nurth of that line, it is in nochl latitude; if south of it, in south latitude. There being only 360 degrees in the circunfrence of the earth, and the distance from the equator to aither of tha pelea being only a fourth part of it, a place Vos. 1. -3
ean never have more than 90 degreen of north or couth latitude. The longitude of a place is the dislance of its meridian from another, which is called the first moridian. The first meridian is quite aroitrary, and it is a matter of indifference through what point we draw it, provided it be settled and well known which one we adopt, so as to prevent mistakes. Foreigners fixed upan the principal observatories of their respeetive countries. In Germany, the island of Ferro is generally adopted; in France, the observatory of Paris; and in England, that of Greenwich. Longitude is reckened either east or west of the first meridian; and 180 is therefore the utmont degree of longitude. Soma geographers, however, reckon longitude all the way round the glohe. From the ainape of the carth, which is flat at the poles, tho degrees of longituda decrease as we approach these in either direction. In order to measure latitude, each glole is furnished with a brase meridian circle, on which the degrees are marked. Longitude is measured by a similarly graduated circle, termed the artificial horizon, in which the globe is auspended.

The other great circle, called the Ecliptic, is divided into twelve parts, called signs, which bear the name of the constellations through which this circle passes in the heavens, as shall be afterwards explained. There aro other amaller circles which run round the earth, purallel to the equator; these ars called parullcls of latitule, hecause, being everywhere at the same distance from the equator, the latituda of every point contained in any ona of them is the same.

The celestial globe, representing that apparent outer sphere, the sky, in the centre of which the earth seems auspended, is marked by lines similar to those upon the terreatrial globo, each line upon the latter veing supposed to have a corresponding line opposite to it in the heavens. Thus, the celestial sphere is divided into the same number of degrees as tha terrestrial. The celeatial poles correspond to those parts of the heavens to which the terrestrial poles always point. The celeatial equator conresponda also to the terreatrial, and ia, like it, every where 90 degrees distant from the poles. The equator of the earth thus lies directly under that of the heavens: the ecliptic does exactly the same, and cute the former also at an angle of 23 degrees, 28 minutea.

The place where the ecliptic cuts the equator at the vernal equinox, is called the first point of Arics; and from this point the distance of all celestial bodics castward and weatward of it is measured. This is called their right ascension, and corresponds to the terrestrial longitude. Their latitude is determined ly their distance from the equator, and is called their declination. The declination of the aun or other heavenly body is therefore called north or south declination, secording to ita proximity to the north or south pole of the heavens. Hence it follows, that when the sun's declination is 10 degreen north, he is vertical at a place whose latitude is 10 degree north. But the right ascensions do not so corrcepond with the longitudes, simply because the first point of the consteliation Arics does not correspond to the first meridian (Greenwich); and because the longitules are not measured quite round as the right ascensions are.
The sun, which is always in the ecliptic, has, of course, no latitude, but he passes through all the degrees of longitude in a year. When any other celestial object has the same longitude as the aun, it is said to he in comiune tion with him; and when the difference of longitude anounts to 180 degrees, half the encle of the heavens, it is said to be in opposition to him. Buth these terms are comprehesded in that of syzygy, which, when applied to any celestial object, means that it is either in conjunction or opposition to him. What is called an equinortind colure, is a great cirele supposed to be drawn thtough the pole of tho celiptic and the points where it interwects the equator. The solstitial colure is a similar circle, whint passes through the solstitial points at righs angles to is

The former colure in a mecondary to the ecliptic, and the latter a secondary to both it and the equator. The equinoctial points are Arien and Libra, where the echptic cuts the equator. The solatitial points are Cancer and Capricorn; and when the sun is in either of them, he is at his farthest distance above or below the equator.
Allusion has already been made to the constellations, or fanciful figures, marked on celestial globes, to aid in diatinguishing the position of the etarn. The earliest estronomers seem to have adopted the ldea of thus mapping out the atarry heavens, being no doubt at first led to do so by the elight reseinblancee bornc by various groupe of atars to familiar terrestrial objects. Thus, a group in the northern part of the aky bears some resemblance to an ancient wain, or to a plough-sas also to tho hiader part of an animal, with its tail extended. Hence, it has been variouely called the Plough, Crsa Major, or the Greater Bear, and Charles's Wain-the last term being in honour of the illuatrious French king Charlemagae. (In ordinary globes, Ursa Major is alone marked.) Another group, in the aouthern heavens, conveys tho idea of a man's figure, and has been called Orion, from an carly Cireek semu-divine bero of that name. Some of the

mames of the constellations were conferred by Chaldcan observers several hundred years before or era: othera have been given within the last few agen, Particular otars of large magnitude also bear particular names, generally Arabic, having been affixed by A rabian astronomere, as Aldebaran, Dubbe, Alioth, \&cc. Arcturus and the group of emall stars called the Pleiades, are alluded to in the book of Job, which is well known to be one of the carliest of the scriptural compositions, and probably not less then 3000 years old.

Twelve of the constellntions ers placed in that part of the heavens which is opposite to the ecliptic in the terrestrial globe; that is to say, the plane of the planetary motions, if extended to the stars, would strike the part occupied by these constellations. This part of the celestial glube is called the Zodiac, and these are named the Zodiacal Constellations, or, more commonly, the Signs of the zodiac. The zodiac is a zone or belt, extending ciglit or ton degrees on each side of the celiptic. It is divided into twelve parts, each of thirty degrees, called the signe * the zodiac. The names of the signe, and the daye in which the sun cnters them, are as follow:-Spring signs-

Aries, the Ram, 21st of March; Taurus, the Bull, 19\%h of April; Gemini, the Twins, 20th of May. Summer signe-Cancer, the Crab, 21st of June; Leo, the Llon, 22d of July; Virgo, the Virgin, 22d of Angust. These are called northern eigns, being north of the equator Autumnal signs-Libra, the Balance, 23d of September, Scorpio, the Ecorpion, 23d of October; Sagittarius, the Archer, 22d of November. Winter Signs-Capricornua the Goat, 21at of December; Aquarius, the Water-bearer 20th of January ; Pisces, the Fishes, 19th of February These are callad gouthern sigus. Within the zodiac are performed the revolutions of all tho principal plancts.

MECHANICAL ASTRONOMY.

It is the province of Mechanical Astronomy to explats the physical laws which have produced, and which sustain, tho arrangements of the bodies occupying space, as well as all the various results of the arrangement and relations of those hodies.

It may in the first place be proper to explain what in meant by a physical law. In the operations of nature, certain reaulis are invariably observed to take place as a consequence of certain circumstances. This has suggested to the mind of man, that there is an order in all things, by virtun of which they aro regulated to the bent gencral purposes, the authorskip of the order being no doubt the same as the euthorship of matter itself, that is to say, referable to the Divine Being. Any particular regulation which we find imposel upon matter, we term a law of matter, or a physical law.

LaWB or attraction and motion.

We have first to consider the laws by virtue of which particles and masses of matter attruct each other, as fas as these are concerned in the province of Mcchanical Astronomy.

Particles of matter, when brought close together, of within inecneible distancee, have a tendency to cohore, or stick together, and this operates in all cases, unlem there be opposing influences of superior force. It is termed the attraction of cohesion.

Pafticles of matter have also a tendency to meve or be drawn towards each other. This is called the altraction of gravitation, because it is what the weight or gravity of all object depends upon.

Under the influence of the attraction of cohesion, particles of fluid matter, when suspended at a proper distance from other objects, arrange themselves round a centre, and take a globular form. The dew-drop, suspended from the point of a thorn or blade of grass, is a faniliar example of rantter thus acting. If two such drops are brought close together, they will unite; a new and common centre will be instantly established for both, and they will resolve themselves into a new mass equally globular as before.

Under the influence of the law of gravitation, when any two masses of matter are brought to a proper dibtance from each other, they will, if there be no sufficient obstacle, rush together, and then remain in union.

We may see this law operating if we take two fragments of cork, no matter how small, and set them aflos on the surface of a cup of water. If kept a considerable way apart, the impedinents to their mutual attraction are too strong, and they therefore do not meet. But, it brought within a ahort distance of each other, we shall observe them begin mutually to exercise an influence over each other, and immediately they will rush tugether, and so remain.

Material lawe are equally ready to act on a large ws a small seale, and on a sinall as upon a large onc. The sanc attraction of cohesion, which causes the tear drawe from our eye by sympathetie feeling to be round, proluced the spherical form of the vast orbe which people ypece These, being originally fiuid massca, gathered themeiven
wund a allactio In their force of apple dr two tea-m and rang

We h
motion of
A mas
the earth,
variably
ball alon
slowly, a causes it
roughnoss sphere) ir force has in setting not, howe in motion, Juat so and on pe pose their or rotatory their orbit marble tal air-pump, longer spac for then it resistance lie in its fric ly drawn a suspension, atance as that case it stances rem
But the why should the influene of motion. the impuls throw them of the eclip result, and c the parcut (the centrif by another is to say, at whore the t

To expl common gri of clay upo horizontal m one after an The cause 0 of the grini is describing from the rev and is only the stone. inatant of i impulse whi rim where it line. It is t diately begin draws it do movements power of at much grento atone; were near by, and drawn, we sl in a circular
e Bull, 1916 y. Summer o, the Lion, ust. These the equator September, gittarius, the Cepricornus Nater-bearer of February he zodiac are d planets.
my to explatn which sustain, прасе, as well and relatione xplain what in ons of nature, ako place asa This has nugin order in all ed to the beat rder being no ar itself, that is iny particulet latter, we term

Tion.

irtue of which ch other, as fas of Mechanical

se together, ot

 ency to cohere, all cases, unlena or force. It iny to move or be d the attraction ight or grovity
f cohesiun, par. proper distance ind n centre, and pended from the amiliar example ops are brought common centre they will resolve ular as before. ravitation, when to a proper dis be no aufficient in union.
3 take two frag. set them aflost it a considerable fal attruction are meet. But, it other, we shall an influence over sh together, und
t on a large mas an large onc. The os the tear drawe ruund, prolucea ch people nyece hered themselven
wund a centre, by the Irrealatible force of the law of the atraction of coheaion. so are the planets restrained in their position regard. we central luminary, by the force of the ame law ol gravitation which causes an apple dropping from a tree to fall upen the ground, or two tea-atalka floating in our evening cup to go together, and range themselves as closely side by side as possible.

We have noxt to consider the laws which regulate the motion of masses of mattor.

A mass of matter set in motion upon the surface of the earth, or within the compass of the atmosphere, invariably comes nooner or later to θ stop. If we roll a ball along the surface, it goes briskly for a while, then alowly, and finslly it stope and remains at rest. What causes it to stop is the resistance it meets with from the roughness of the ground, and the opposing fluid (atmoaplacre) in which it moves. It is precisely when as much force has acted in opposition to its motion, as was exerted in setting it agoing, that it comea to a pause. Were it not, howover, for thia opposing force, the ball, oxce set in motion, would travel on and on for ever.
Just so the orbe of apace, once set in motion, go on and on perpetually, there being nothing whatever to oppose their progress. This applies as well to ther spinning or rotatory motion on their axes, as to their progress along their orbits. If a top were set a-spinning on a smooth marble tablet, underneath the exhausted receiver of an air-pump, it would be found to keep in motion for a far longer apace of time than in any ordinary circumstancea, for then there would be comparatively little sir to give resistance to its rotation, and the clicf opposition would Lie in its friction sgainst the tablet. Could the air be cutirely drawn away, and the top be made to spin in a state of suspenaion, it would be in precisely the same circumatance as an orb revolving on its axis in space, and in that case it would never stop as long as all the circumetances remained unaltered.

But the orbitual revolutions of planets are circular-why should they be so? Because these orbs are under the influence of both the law of attraction and the lawa of motion. Assuming the nebular hypothesis to be true, the impulse which they originally obtained tended to throw them off in a direct lins into space, in the plane of the ecliptic. But the law of attmation prevented this result, and caused them to assuine a circular course round the parent orb. They were propelled by the one cause (tine centrifugal or centre-quitting lorce), but restrained by another (the centripetal or centre-secking force, that is to say, attraction), and they therefore settled into paths where the two forces balanced each other.

To explain. If we take any circular body, asy a common grinding-stone, and, having first put a fow pieces of clay upon its rim, cause it to revolve quickly in a horizontal manner, it will be found that the pieces of clay, ote after another, fly off in straight lines from the rim. The cause of this is, that each particular part of the rim of the grinding-stone, at every instant of its revolution, is deseribing a straight-forward movoment, and has itself, from the revolutionary motion, a tendency to go straight on, and is only kept in its place by being fixed to the rest of the atone. Every bit of clay that flies off receives, at the instant of its parting, the furce of the atraight-forward impulse which at that moment affected the part of the rim where it rested; and hence its going off in a straight line. It is to be observed, however, that the earth immediately begins to act upon the flying picce of clay, and draws it downwards to itself in a bending line, its last movements being in fact a part of a circle. This is the power of attraction, which, in this case, is exercised in much greator force by tho earth than by tho grindingatone; were the grinding-stone the sole mass of matter near by, and the opposing force of the atmusphere withdrawn, we should see the clay begin to fly round the stone in 4 circular course.

And this naturally brings us to consider the cempars tive powers of sttraction exercised by different objects A large mase has a much greater power of attraction than a amall one. When two of unequal bulk are broughs near each other, we shall only be aensible, jerhapa, of the large one drawing the amall one to $i t$, and see no attractive power in the amall one whatever. In reality, each mara, however small in comparison, exerciaes a certain degree of attractive power; and this power will dejend expreasly upon its relative bulk and density, according to fixed ra gnlations of the nicent kind.
One great and important law presides over the attrace tion which one mass exercises over another. This relates to the distance between the two masses. We shall supe pose two globes of unequal size. When the small one is removed to as great a distance from the large one as there is apace between the surface of the large ono and its centre (thst is to say, the dietance of a semi-diameter of the large one), the attractive force in diminished onehalf. When it is removed to twice that distance, or two semi-diameters, the attraction is diminished to a fourtho When it is removed to the distance of three semi-diameters, the force is lessened to a ninth; to four semi-diameters, a^{\prime} sixteenth; to five, a twenty-fifth, and so on; the diminution being always as the squares of the amount of semi-diameters of distance, or these suma multiplied by themselves. The moon is distsnt from the earth sixty of the earth's semi-diameters ; consequently, the attractive power exercised by tho earth over the moon is only a 3600th part of what it would exercise at its surface.

In the revolution, then, of a planet round the sun, and of a satellite round a planet, there are various forces at work, all of them in the nicest proportion to each other, and to the mass of each body. There is first the amount of motion resulting from the original impulse; then the amount of attraction exercised by the central and largee over the emaller orb-the one pulling outwards and the other pulling inwards, but both in union attended with the result of a circular or revolutionary motion.

Gravity has not the same force at all parts of the earth's surface. At the equator, the centrifugal force produced by the rotating motion is greatest; it declines in both directions towards the poles. In proportion as the centrifugal force is greater, the attractive power of the mass of the earth is less, for the first of these forces is directly connteractive of the other. There is of courss least attractive power at the equator; and bodies are there drawn with less force towards the centre of the earth than would be found to be the case elsewhere. Yet this dif ference is not great, for even at the eyuator the attractive force is 288 times that of the centrifugal. Neithor does the difference tell in the weighing of objects, for in that case two equivalents are used, and if a certain object is lighter, 80 also is the weight put into the opposite scale The difference was first detected, in consequence of pendulum clocks being found to go slower as they were brought towards tropical latitudes. It was ascertained that the pendulum of a clock which went right at London, required to be one-eighth of on inch shorter (by which means its motion wan accelerated) when it was placed upon the equator. This effect, however, is not altogether owing to the increase of centrifugal force, but partly almo to the greater distance of the equator from the centre And it was from a speculation as to the slower movements of pendulums at the equator, that Sir Isaac. sewion first conceived the jdea of the sphetoidal forta ... the earth, which he ascertained to be of less diameter at the poles than at the equator, as 229 is to 230 , of by twenty. six miles.

The orbita of the planets, it has been alicady seen, are not strictly circles, but rather ellipses, the sun being in each case placed in one of the foci, that is, the centre of one end of the ellipse. How should this curcumatance affect the rovolutionary motion ? It might he surpersed
that, when the planet came to the part of lis course where It ta neareat to the aun, the attractive force would be craator, and that some dorangement might take place. But this is not the case. At that part of the courme the planet moves faster than elsewhere, and thua bafflea the greater attractive force. Thia phenomena ia particularly apparent in cometa, which have so ecrentric an orblt. I'hene bodies move with inconceivably greater apeed when near the oun than in the remnte parte of their erbita.

It was a discovery of the German astronomer Kepler, In the weventeenth century, that, notwithatanding the increasel apeed, a revolving orb goes over exactly the same amount of ite circuit when it moves nore slowly. Suppose a multitudo of linea radiating from the sun, at equal diatances from each other, the orb would be found to cross from one to another of these, in exactly the samo time when it was farthest from the sun as when it was mearent. In scientifio language, it describes equal areas In equal times.

Another discovery of Kepler estahlished that there is a relation between the times respectively required by the planets for their revolutiona, and their varloua distances from the mun. At a first glance, wo are atruck by the fact that the periods of revolution inerease more than in proportion to the distances. For example, tha period of Mercury is about 88 days, and that of the Earth 365, being in proportion as 1 to 4.15 (or about 4 1-7th), while their diatances, respectively $37,000,000$ and $95,000,000$ of miles, are in the less proportion of 1 to 2.56 (or a little more than $2 \frac{1}{2}$); and a similar reinark holds good in every instance. If we take the aquares of the distances, we arrive at nothing satisfactory, for it considerably excoeds the proportion of the periods. If, however, we take the equares of the periods of two planets, we find they are in exactly the same proportion to each other as the cubes of the mean distances. Some may find a difficulty in understanding the nature of this calculation; but its ingenuity and its resulta form one of the highest boasts of astronomical science. "When we conteuplate," says Sir John Herschel, u the constituents of the planetary syitem from the point of view which this relation atlords us, it is no longer mere analogy which strikes us-no longer a general resemblance amoug them, as individuals independent of each other, and circulating about the sun, each according to its own peculiar nature, and connected with it by its own peculiar tie. The resemblance is now perceived to be a true family likeness; they are bound up in one chain-interwoven in one web of mutual relation and harmonious agreement-subjected to one pervaling influence, which extends from the centre to the farthest limits of that great system, of which all of them, the earth included, must henceforth be regarded as membere."*

The solar syatem, though composed of many different masses distant from each other, is to be considered with reapect to other masees as one mass, having a centre of gravity, by which its position with respect to other massea is regulated. The nearest stars no doubt exereise the force of gravitation upon it, so as to keep it in its position; and it also acts in the same way upon them. It is therefore not atrictly correct to speak of the solar nystem or any part of it as suzpended in space, for that term implies a hanging froin a fixed point. It is in reality kept at its place by attractive influences exerted all round it by other masses. In like manner, we are to suppose our stardustar as poised by the same forces in the midst of other dusters; and these again poised by others-an idea which leads us on and on through the fields of infinity, till the mind loses itself in an effort beyond its finite powers, and pauses contented to wonder and adore!
-Trasuse on Asironomy, 1sx:
diURNAL and annual motion of the eamply.
The earth in to be considered aa a globe of nearly 80uc miles in diameter, perfurming a rotatory motion on it axis once every twenty-four hours. This motion is the rate of 1042 milea an hour to places at the equai w_{1} but only $\mathbf{6 4 4}$ milea at London, and a gradually diminiahing amount in placea nearer to the poles.

From the aituation of the earth with respeet to the sun, it necesarily followa that only one-half of ita aurface should be oxposed at a time to the light and heat ditfused from that body. Ihls is the caso with all the planets. When any one part of the carth is presented to the sun, it is day at that part, and all the other lieavenly objects are lost in the blaze of tise great luninary. When, on the contrary, any part is averted from the sun, it is dark at that part, and the light of the stars is allowed to tell upon our organs. Each part is thus brouglit once every twenty-four hours towards the sun; in short, this is the cause of what wo familiarly know as day and night.

There is a minute difference between the rivil or legal day and what is called tho aidereal day. The entire orb of tho earth in reality revolves in 23 hours, 56 minutes, 4 seconils, or 3 minutes, 56 seconds, lese than 24 hours. This is called a sidereal day, because the earth is then in the same relation to the stars as it was the day before. The fixed stars are so immensely distant from our earth, that its whole orbit is in respect to them but a point; 80 that no sensiblo difference is produced by its revolving round the sun. But the sun being much nearer us, any movement made by the earth can be appreciated. The timo which elapses from the sun's being on the meridian of any placa to its returning to tho same spot next day, is exactly 24 hours, and is called an astronomieal day. The natural day would alwaya be the same as the sidereal day, if the earth had no other motion than that upon ita axis. But in the same time that it has performed one of its daily revolutions eastward, it has also adverce? alout a degreeo westward, or in the opposite rirection, which is the course it takes round the sun; so that, before tho sun can shine exactly upon the same meridian, the earth must make up as it were its leo-way, and this it does in 3 minutes, 56 seconds, the difference of time between a natural and sidereal day. If the earth, then, had no other than its diurnal motion, we should have 366 daya in the year.

When any spot on earth comes directly opposite to the sun, it is noon at that spot, and at every place in the same longitude. At the same monent, it is an hour before noon at the meridian of longitude fitteen degrees to the west of the same apot, and an hour earlier for every fifteen degrees farther to the west; because, as the earth moves from west to cast, it requires so much time to bring those places to the some point, namely, opposite to the sun. In like manner, it is an hour after noon for every fifteen degrees to the castward of the apot where it ia noon, becausce at those placees the sun has already been for so many houra past meridian. Thus the hour of the day varies in every part of the globe where the lougitude er ineridian line is different. When it is twelve o'elock noon with us in any particular part in Britain, it will be twelve o'elock at midnight in a corresponding point on the opposite side of the globe, near New South Wales; and the intermediate hours, sooner or later, will all lie in the countries between these two points, exactly according to their pasition or degrees of longitude.

The earth is at a mean distance of $95,000,000$ of miles from the sun, and perfurms its revolution round him in a sidercal year, which is 365 days, 6 hours, 9 minutes, 11 seconds, mean solar time. I'he earth travels at the rate of 68,000 iniles per hour. Its orbit is, as already stated, not a circle, but an ellipse, the sun being situated in one of the foci, that is, not in the centre, but near one of the ends of the oval-hlaped figure. Neither does the earh
go round th its axis in tur 23 degre ecliptio cuta tinie at whic tying equal equal leugth

Let S repre various places B or D, these tine of the equ the ecliptic. illuminated fro carth an equal the earth hus ing the same p in the atarry he the sun; a gre any particular the period of ness by the pro the circle of t within tho cire continually as t to the inhabitun never set for se ceeded on to D, or this is the At C, again, the summer, when ${ }^{2}$ regione around period, while ds will be seen, too revolve in perpet region, the sun one eontinued ar routh pole, the st reversed-there the winter of the In the middle res tor, the sun's pla and, accordingly, intensity all the day 3 and nights the periocls of the earth travela rou as wo have alre is placed near on letter 8 . In cons iu much nearer us and this happen appears alout on in June. But in
so round the sun in an upright or perpendicular position; is axin is alanting or oblique. The dugree of obliquity In 23 degreea 28 minutea, The pointa at whichethe ecliptio cute the equator, aro called noden: the period of lime at whlch it does this, equinoxes (a Latin term, signilying equal nights, for the days and nights are then of nqual length all over the warld). In consequence of this
obllquity, during one part of the earth's courne, the rorth pole is turned towards the sun, and the south is dark; and during another part of ite courno, the aouth pole to turned to the sun, and the north is dark: and this io the cause of the difference of seatons, which will be bellee understood by referring to the annexed Agure.

Illustration of the Seamons.

THE SEASONS.

Let \mathbf{S} represent the aun, and $\mathbf{A B C D}$ the earth at variaus places of its annual circuit; when the earth is at B or D , these are the periods of the equinos, when the line of the equator intersects or cuts through the line of the ecliptic. At this period, one-half of the globe is illuminated from pols to pole, or there is over sll the earth an equal day and night of twelve hours. But when the earth has proceeded to A , the pole or sxis still keeping the same position, or pointing to one particular place in the starry heavene, it will be turned more directly from the sun; a greater proportion of his rays will shine on any particular spot of the southern half of the glabe, and the period of day, or sunlight, will exceed that of darkness by the proportion of tho light and ahade parted in the circle of the carth. It will be observed, also, that within the circle of the south pole, the sun will shine continually as the earth revalves on its axia, or, in short, to the inhabitants of that part of the globe the aun will never set for several manths. When the earth has proseeded on to D , one-half of its annual course is finished, or this is the spring equinox, or equal day and night. At C , again, the earth has arrived at our longeat day in summer, when' the axis is turned to the aun, and the regions around the pole are in the light for a greater period, while darkness, or night, prevails for a less. It will be meen, too, that now the pole and cirele around it revolve in perpetual light; or to the inhabitanta of that region, the sun never sets for some monthe, but they have one continued and uniuterrupted day. At the other, or wouth pole, the same changes take place, only matters are reversed-there it is summer while we have winter, and the winter of the north pole is the summer of the south. In the middle regions of the earth, or araund the equator, the sun's place does not suffer a very great change; and, accordingly, there the heat is nearly of the same intensity sll the year through; and the length of their days and nights is nearly equal, or nearly the samo as at the periods of the equinoxes. But the orbit in which the earth travels round the sun is not an exact circle ; it is, as we have already mentioned, an ellipse, and the aun is placed near one end of it, as at the small circle and leter 8 . In consequence of this circumstance, the sun io much nearer us at one period of the year than another, and this happens in our winter; accordingly, the sun appears ahout one-thirtieth part larger in January than in June. But in proportion as tho earth spproaches in
her orbit to the sun, her motian is quickened, and she pasees over the winter half year in nearly eight deya' less time than the summer. It is prineipally from thio circumstance, as well as the shorter period of the day, that although the aun be nearer us in winter, and consequently hia power of imparting heat greater, yet tho actual quantity imparted is, on the whole, much lese in the one season than the nther. We have eaid that the north pole of the earth slways points to a particular apot in the heavens; this is not, strletly spesking, earrect; the pole or axis makea a circle round the centro of the axis of the ecliptic in s long period of yeara, and it is this motion that givee rise to the precession of the equinoxes, which will be afterwards described under that title.

abenration of light.

Although the most convincing proof of the earth' orbitual motion is not to be found in any circumstance of which the senses can take immeciate cognisance, but is afforded by the full development of the planetary sytem, there is, however, one direct proof of it in a plenemenon discovered by Bradley, an illuatrious astronomer. It ia called the aberration of light, and is manifeated by a amall difference betweon the apparent and true places of a star, occasioned by the motion of light combined with that of the earth in its orbit. Vision, it is well known, arises from rays of light proceeding from any object, and entering the eye; and we see the object in the direction in which the rays lave come. If both the body giving forth light and that one which receives it be at reat, the former will be seen in its true place, at least in so far an aberration is concerned; but let cither of the bodiea move, and this will not be the case. In order to render this plain, suppose a shower of hail to fall perpendicularly upon a number of tubea-say the pipes of an organ; if the orgsn remain stationary, the hailatones will descend ahcer from the top to the hotom, without any deviation right or left; but move the organ in any direction, and they will strike the side opposite to the direction in whird the motion is made. Now, it is just in this way that the eye misses the perpendicular ray, and, moeting an obhque one, receives an impression that the atar lice in that direction. The object thus appears displaced, and the amount of displacement is aberration. The earth travela at the rate of almut nimeteen miles per second, and therefore is every instant changing its direction Time is alas
cocupid by light in traversing space, which it doen at the amaxing rate of 192,000 miles per second; so that nimo mequires to be calculated for by astronomera. The effect of aberration la to make a atar apparently deweribe n amall ellipso in the heavens, in the centre of which it would he seen if the earth were motionlens. The reader munt carefully diatinguinh between aberration and refraction; their ellecta are the sume-namely, to diaplace tha ray projecting olject-hut they proceed from very differant causea. Beaidea these correctiona which astronomers ase to make in their calculationa, there is another, reculting from what is culled parallax, which may be as woll Introduced in this place.

parallax,

The word parallax, in It general signification, denotea change of place; but in untronomical hooks it has a conventional measiug, and inuplies the difference of apparent positions of any heavenly luminary when viewed from the aurface of the carth alul from its centre. The centre of the earth is the general station to which all astronomical observationa are referred; the situation of a heavenly body, observed from the aurfice of the earth, lis called the apparent place; and that at which it would be aeen from the Imaginary place of obwervation at the centre of the earth, tine true or mean place. Hence the altitudes of the heavenly bodiea ara depressed by parallax, which is greatent ot the horizon, and decreases as the altitude of the olject increases. This nuy be rendered very plain, by supposing that two permons placed individually at the end of a straight line, look at a caudle renoved at, say, 100 yarde distant from them. It in evident that the hurning body will apprear to be projected upon the wall of an apartment, or anly other background, at very dillerent positions to euch of the spectutorn. The angle which this difference of position makes is similar to parallax. The farther they remove from the light, allowiug them aill to remain at the same diatance from cach otlier, the more obtuse the angle would become, and the less the parallax. Thus, the fixed stars, being wo far removed from 18, when viewed from any two positions upon the urths surface, are meen at tho same place upon the elestial aphere, and hence have no perceptible parallax. It in different, however, with the luminaries belonging to our aystem; and by thin means astrononers have been enabled to estimate the quantity of space which separates ua from them. For a complete account of the means by which this is accomplished, we numt refer the reader to more elaborate treatises than the present. A gencral and correct onough idea of it may be formed from tho faniliar oxample we have given. In the same matuer, cuppose two ubarevers, one in the northern the other in the southern hemirphere, at stations on the sanne meridian, observe on thMs same day the meridian altitudes of the sun's centra. "Having thence derived the apparent zenith distances," nays Sir J. Herwchel, whose language would bo deprived of clearness were it abridged, "and cleared them of the effects of refraction, if the distance of the sun were equal to that of the fixed stars, the suin of the zenith distances thus found would be precisely equal to the sum of the latitudes north and south of the placen of observation; for the sum in question would then ne equal to the ineridioual distance of the stations acrose the equator. But the effict of the parallax being in both cases to iacrease the apparent zenith distances, their obcerved sum will be greater than the sum of the latitudes oy the whole amount of the two paralluxes. This angle, then, is oltained by subducting the sum of the lutituden from that of the zenith distanco; and this once determined, the horizontal parallax is easily found, hy dividing the angle so determined by the sum of the sigus of the two latitudes." It may be observed, that the a'gles are determined by meana of very nico instruments. The parallax thus obtained is called the duily or geocentric, in
cor.tradiatinction to the nnnual or heliocentric, ly which in general, to unieratood the diffierence of piace of a heavenly body, an meen from the earth and from the sun: in particular, however, it denotes the angle formed by two linee from the ends of the diameter of the earth'n orbit to ifxed atar, whielh, an we have already obeerved, from the immeence dintunce of the latter, is inalpreaiable. Some idea of the Importunce of parallax muy he obtained from the fact, that liefore the nui'm wan deternined, the distance of that luminary from un was not entimated at within $13,000,000$ of niles of its true amount. Iten paral lax ls, of course, a very minute quantity, only $8^{\prime \prime}$ b

of bolar, bidereal, and anomalitto yeare

There are three ditierent periods at which the aun may, in different senses, the said to return to the same position -when he returns to the saine equinox at which he was before; when he returna to the same point in hian orlith, or the ecliptic; and when, being in perigee (leuat dintunce from the earth), or apogee (furthest distance from the earth), he conses back to either again; or, whieh is the same thing, when, having been at a given didtance from any of theme points, he returns to the aune poist with reapect to them. Each of these may be asid th be a completion of the revolution of the aun (strictly sjeaking, it is a revolution of our own earth round him), and a revo lution thua performed in called a year. The fisat and shorteat in the equinoctial, solar, or cropical yeur; for hia time of returning from tropic to tropic, they binis. situationn holding the same relation to the equinoxier the time being, is obviously the same as that fiom equinox to equinox. The value of this year is 365 dayn, 6 houra, 49 minutes, nearly. But alltough the earth has thua returned to the same equinox, it has not mulde the entire cireuit of its orbit, but must travel a litte further to arrive at the same point it was in a year before. This arises from a back ward novement of the equiunctial puint. (Seo "Precession of the Equinoxes.") The second ia the sidercal year, which consints, a we said before, of 365 days, 6 hourn, 9 minutes, 9 seconds, 6 , revkoned in mean solar time, or a day morr, reckoned in sidereal tine. Here, then, there is a remarkable differeuce between molar and sidereal time, which requires explanation. If the reader will recollect what was said with regard to a solar and sidereal day, the discrepancy by:tween the timea of the years will become apparent. In the course of twelve month, all the little daily deficicucies, as it were, anount to twenty-four hou:s, which constitutex the dillerence botween the two yeara. 'The sun'a apparent annual motion among the atars is performed contrary to the apparent diurnal motion of the aun and stars; hence the sturs gain avery day three minutes, filly-six seconds on the sun, which makes them rive that portion of tinue earliet every day. In the course of a year, the sun will fall behind the stars a whole circumference of the heavens, or one revolution, which delicieney he must muke up to complete the number of dayu in a year. It is evident then, that the sun apparently, or the earth really, turna 366 times round upon its axis; and had it no othet motion, there would be as many daya in a year. After the carth or snis has completed a xidereal year, before it can finish an onomalistic ycar, it must describe a farthen arc of $14^{\prime \prime} 8$ to arrive at ita original position in periholion, the latter having moved furward to that amount. In no doing it occupies $4^{\prime} 39^{\prime \prime} 7$, which must be alleded to the sidereal period, making the anomalistic yeur 365 days, 6 hours, 13 minutes, 49 seconds, 3, in length. All these perioxls have their usces in axtronomy; but the one in which mankind are most particularly interested is the tropical year, or that on which the seasous depond, and which in a compound phenomenon, depending clielly and directly on the ansaual revolution of the eurth romed us sun, but subordinately also, and indirectly, on its ielanua round its own axia.

Altho

edaptered

contly n con but © otar: the anme meusure nationa r but antron determin، being res which in Two caus Arat, the second, 1 mical day equality, into the a bolies are ecliptic, th bath equa equal. ' subject: n Astronom Britunnic: correction to mean t There are end mean nothing. of these, t again, in t 15th and than the n the other i in the case, difference tween fifte are constru

Noxt to warth the m boxiien. T 67' $48^{\prime \prime}$; a miles. Li in a motion ing the va one-fourth magnificen whole orbit econdary its primary sun, and i Owing to t being in th dower, the cman way earth ond trees. the sidereal mo 8, in whiet tion round hours, 44 betweell to with the on axis is perf the earth, seltal to t an her axi anci we are prop of the
ric, hy which of place of from the aunt ale formed by of the earth's eady obmerved, inappreaiable. ay be obtained etermined, the t entimated at int. Ita paral mly $8^{\prime \prime}$ B

TIC YEARI

 h the sun may, namu position which he was in his urtist, of (leat dintunce ance from the , which is the Cimance from point with reid to be a comtly mpeaking, it n), and a revo The firnt and al year; for his ey bning situaequince it the iom éplinox to days, 6 hours, earth has thua made the entire further to arrive e. I'his arises tisl joint. (See I second is the I before, of 365 ckoned in mean real time. Here, tween solar andIf the reader d to a solar and the times of the purse of twelve it were, amount no ditlirence bot annual motion to the, apparent hence the stars neconds on the of tine carlies sun will fall bethe heavens, or ust make up to It is evident, ith really, turne had it no othel " a year. Aftet al ycar, lefore it leserite a farthet sition in periho thast amount. In be alderd to the year 365 days, 6 igith. All these but the one in interested is the uns depurnd, and ading chietly und earth round us y, oll its totuluce

MEABUREMRNT OF TIME.

Althougt: the sidereal day, from its uniformity, la well edaptid for matronomical purpoese, yet it la ararcely sumbeontly marked for the ordinury wants of llfe. No percon but an autronomer over attends to the culmination of a atar; on this account the diurnal return of the surn to the anme meridian has been univerwally arlopted an the meusure of time; and thls is called a ciril diny. Mout nations reckon the beginning of their day from milnight, but astronomers count from noon to noon. The slay thus determined is called the antronomieal or solar day, and, being regulated by the true motion of the aun, the thene which is meaxured by it is culled true or apparent time. Two eausea conapire to render astronomicul day unequal; firat, the variable velocity of the aun in his orhit, und, second, the ohliguity of the ecliptic. A mean astronomical day, which is independent of any causes of inequality, has been obtained by astronomera introlucing into the eystemtwo innginary suns. These (wo firtitious bolies are supposed to move uniformly, the Brat in the ecliptic, the serond in the equator, and an the cireles are bothecqual, tho actual motion of cach of the bodies is equal. To those desirnua of studying this part of the subject, we would recommend a perusal of the article Astronomy in the reventh edition of the Encyclopredia Britannica, pago 778, where it is well illuntratid. The correction or equation, by which apparent time is reduced to mean time, is technieally called tho equation of time. There are only four daye in the year when the apparent and mean time aro the anse, and the equator of time nothing. In the interval between the lirat and second of theso, that is, December 24th and April 15th, and, again, in that between the third and fonrth, that is, June 15 th and September lat, the apparent is nlwayn later than the mean time, or the clock is before tho sun; in the other intervale which complete the year, the reverse is tho caso, and the clock is after the sun. Tho greateat difference hetween aolar and true time amounta to between fifteen and sixteen minutes. Tables of equation are constructed for the purpose of correcting the differences.

THE MOON.

Next to the sun, the moon is to the inhalitants of the earth the most remarkable and important of all the heavenly bouied. The mean horizontal parallux of the moon is $57^{\prime} 48^{\prime}$; and her mean diatance from the earth 236,847 miles. Like tho aun, the moon advancea in the heavens in a motion contrary to that of the atars. Notwithatanding the vast distance she is from us, it is little more than one-fourth of tho sun's diameter, and the globe of that magnificent luminary would nearly twice inelude the whole orbit of the moon! It has various motions; an a secondary planet, it revolves round the earth, which is its primary. Along with the latter, it revolves round tho sun, and it has a rutatory motion upon its own axis. Owing to the aun's apparent movement in the heavena being in the aame direction with that of the moon, only dower, the latter has to make up for that slowness in the came way as we have mentioned with regard to the amben and the time it takes constitutes the diflerence betwee. the sidereal and aynodic month or lunation. The eidereal month ia 27 lays, 7 hours, 43 minutes, 11 seconds, 6, in which time the moon performe a complete revolution round her primary; and the other ia 29 days, 12 hours, 44 minutes, 2 seconds, 87 , the time which elapees between two new moons, or two conjunctions of the sun with the moon. It huppens that its revolution upon its axis is performed in he sinme time as its revolution round the earth, so that the same side of her orb is always presental to the latter planet. Although the moon'a rotation an her axis is uniform, her motion in her orbit is not so, ani we aro by this meane enabled at times to obtain a peep of the equabrial portione of her easiern and weatern
skles. Ifor axla, aleo, la of perpenillcular to her orbit and a amall part of each of her poles alternately lecome visible. Thee phenomena are known by the name of librations of the moon, and they are of two distinct kinda the renuit of different caumen.

The wimlom and beneflence of the Deity are strikingly diaplayed in the economy of moonlight, is dintriluted to our globe during varioun measons of the year. I'he remarkable phenomenon of the hurvest moon is familiar to every one. During the time that our matellite in full. and for a few days before and after, in all alout a wech, there in lean difference between the time of her rising or any two nuccessive nighta, than when whe is full in any other month of the year. By thin means, an lmmeliste nupply of light is obtained atter sunset, so beneficial for gathering in the fruita of tho seamons. To conceive of this phenomenon, it muat be recollected that the noon is nlways oppoaite to the aun when she in full; that she la full in the aigns Pisces and Arien, these being the signa opposito to Virgo ant Libra, which the sun pussen through in September and October, our harvest montha, Thum, although, whenever the moon enters the two former sign: (and she does so twelve times in a year), the anme circomnstance takea place with regard to the timo of hir riming; yet it is not observel on these other oceavions, just recaure she in not jull at the tine. Tho reason of there lehag little difference in the time at which alie risea on several consecutivo nights, ia, that at these perivja hot orbit is nearly parallel with the horiznn. 'I'he hapvent moona are as rugular in south latitude ns with us in nort! latitude, only they happen at different ℓ^{n} riode ef the yoar.

ECLIPsEs.

Eelipses aro caumed by the positions of the earth and moon with respect to euch other and to the sun. An eclipse of the gun takes place when the moon ia between the aun and earth; and an celijese of the moon is the result of the carth being between the sun and moon. In other terms, the shadow of the earth cast ujon the inoon causer a lunar eclipse, and that of the moon upon the earth causes a eolar eclipse.
The following figure explaina an eclipse of the sun $\mathbf{A} \mathbf{D}$ is tho sun, M the woon, and $\mathbf{C} \mathbf{D}$ the earth. 'The

ahadow of tho moon falla upan a part of the earth's sun frice; and there, accorlingly, the sun nppears in eelipse. th body of the moon being placed between. Another dia gram represents an eclipse of the moon. In this instance, A B ia the aun, C D the earth, while tho moon appears

ns a small circle M involved in the shadow thrown by the enrth.

The places of the earth's orbit and the moon's do not evactly coincide, but cross or intersect ench other; and the consequence is, that, in general, the moon, when she is in conjunction with the aun, either passea on one side or the other, and therefore does not intercept the ann's raya, or produce an eclipse. An ecliper of this kind tan only take place when the parth and moon are in conjunotion in that part of their orbits which cross each other
(eallal the nolea), becaume it is then only that they am both in a right luse with the sun. If the orbit of the moon were guarailel is that of the earth, an ecripme would happen every mouth. Partial erlipoen, again, are cansed when ths mom, in preaing the earth, is not alirectiy in a line with the sun, but a littie on elther ajcle; the coneguence of which is, the edge of one aide of the mom only diju into the sun"s diac. When the sun fo ecilipmed, the lutul darknems in conflued to one particuiar jurt of the oarth, but the linnar eclipece can be ween from every part of the earth, when the moon labove the horizoni and both elrcumatancen prove that the earth ia a good deal , arger than the moon. The moon arrivea very nearly at the same situation with respect to the earth, after making 228 revolutiona, which are performed in elighteen ycars, of 365 days, 15 hours, 7 ninuten, and 43 accondm, each; on that, after a period of alout cighteen yearm, the merica of eclipmea recommencen nuarly in the name order, a circumstance observed by the ancients. The mean number of eclipenen whish occur in a year in ahout four, and there are cometimes as many as soven. Thero munt necemarily be two solar eclipmea, but it in poesilite that there may not be even one limar. A remarkable ecipmen, calied an annular (or circular) solar eclipse, huppena when the moon being in conjunction with the sun, the edge of the letter eppeara for a fow minutea as a narrow ring ei light encircling all round the dark dise of the moon. A great colar eclipme, visilije in England, will take place in March 15,1858 , and a atill more remarkable one, when the whole dinc will be neariy covered, in Auguat 19, 1887.

THE 8ATELLITEA.

The earth, we have seen, in attended in her annual circuit round the sun by one satellite, the moon, which sevolven round her an a centre. Strictly apraking, hoth move round a coumon centre of gravity in an elliptic orbit, the regularity of which is dinturbed by their mutual attractions, ao that it is undulaud or waved, thus,
The number of undulations in a whole revolution is, however, only thirteen, so that the deviation from the ellipse in excecdingly trifling. Jupiter, Suturn, and Uranua, are ail uttended ly satellites, as we have seen; and they form, as it were, each of the primaries with its attendant moons, a sort of miniature syaten, entirely mimilar in the lawe by which they are govemed to the great ayatem to which they ali lelong, where the sun may be termed the prinury planet, and the primary planets the natellites. Their crbite are circlea or cllipues of moll eccentricity, the primary occupying one focus Of these synteins, that of which Jupiter forma the tead, has been atudied with the greatest attention. 'The discovery of Jupiler'a satellites by Galileo, was one of the firut fruits of the invention of the telescope, and forma a remarkable era in the history of antronomy, From it reaulted a molution of the great problem of the longitude, und the grand uiscuvery of the aberration of light. It alme eatablishea completely the Copernican systein, and confirined the lawn of Kepler. The satellites of Jupiter revolve from went to east like our moon, but they are much lewn in conparison with their primary than it, whilst their orbits are of amaller dimensions, and less inclined to the eeliptic of their primary than that of our suir lite. The largent of them is about 3377 miles, and the least about 2068 miles in diameter. The satelliten of $S_{\text {aturn }}$ bave been much laws entudied, and have fewer peculiaritien. Those of Uranus, however, are remarkable, insonuch an their orbita are nearly perpendicular to the ecliptic, and in these orbits they are supposed to have a retrogrude motion-that is, from cust to rest, inntead of from west to east, like the -her planetary bodies. No satisfactory cause for this - incuare (uf it be oric) from the general rule can be *. is. It is liy accurcto observation of the satellites that tis Iur sicies of the plonetr, or their weight as proportioned wo their bulks, have beef. uscertained; al aloo, liy watch-
ing their frequent eclipeses, that the velocity with whiet light travein from the heavenly buliea to the earth hae been brought within our calculation.

PEиTUиВатIong.

The name of perturhationa has heen applied to thow incqualitien in the lunar and planctary motiona, which arime from the univerwality of attruction. Thus, not only theen the aun attract the earth, and the earth the moon. but the latter attracts the preceding, and hoth are again lufurnced in their movements by the great centro of the syatem to which they belong. Not only is this the casa, bint every individual planet in the syatem attracta, and is attracted hy, all the fout, although certainly in a very tritling degree when compured with that esurcised by the ann over the wholn of them. Hut in thome miniature nymoms, nuch as the moon and earth, Jupiter and his me tellites, \&e., the perturbations thua arising, though inaesm wilite in short intervale, becone appurent when accumuinted, and derange the eliptic motions and relationas The calculation of the effecta of theme diaturbing forced In famoun in the hintory of analywia, under the name of The Problem of the Thrce Howliss. It in mo worde t, becallse the Sun, Monn, and Farth, and tiee Sun, Inpiter, and Katurn, form each separately as atem littl,
by the rest. Any thing like on attempt 0, methoil by which these nice calculaticun ire mide, wa imponsilhe in this place: of its difficulty, mo inte may be formed, when we conaider, whit in apjusen to every one, that the bolice und r invemibelion am cont nualiy ahifing their relative distances fins cui h other, and alter. ing the intenaity of the diaminung loweo, which evidently must nuterially incrasta the abstrumenem of the calcuiation. One of the principal efferte proslured on our globe by this play of gravitation is called

THE PHECESAION OF THE EqUINOXRE.

The equinoctial points, we have airendy explained, are Arien and Libra, where the reliptic cutu the equator. They are also termed nodes, and the line which joins the two is calied the line of the noder. The longitudes of the atara, as has been also observed, are counted on the ecliptic from the vernal equinox Arien. Now, if the line of the nodes in invariable, the longitude of the starn will of courme rumain the anme from age to age. But, in comparing the actual atate of the heavens with the re corded ohservations of ancient astronomers, it is perceived that the longituden of the atara have considerably increasel; so that, to explain the circumstance, we muat either auppoae that the whole firmament has moved in the orler of the zodiacal signa, or clme that the equinoctial puinta have gone backwards, or retrograded weatward; since thes points dejend entirely upon the motion of tho earth, which was far more likely to be disturbed by mone caume or other, than that the countleas inultitude of stars should have a motion relative to these pointa. Aecordingly, the phenomenon has been explained, by attributing to them a retrograde motion from past to wrest, in conmequance of which the smn arrives at them mooner thar if uey lind remained at reat. Hence the equinoxem,
 he ',3n \& entire cir ... This motion, how-
 alcui seventymix years; so that the equincetial points will take nearly 26,000 years to make an entiro revolution of the heavens. 'Ibis motion was known in very ancient timen, and its diwcovery is ascribed to Hipparchus who lived about 140 years before Chriat. The conse quence of thim retrogrude movement $i s$, that the sun'm place amougst the zodincal signs, at any season of the year, is greatly different from what it formeriy wam. The vernal equinox now happens ir the conatellation Pisces; the auminer molatice in Gemina; the autuiun equmox is Virgo; and the winter molatice is Nagittarius. Astro
nomery,
muinot, the eclip
The ca ertion of of matter tion of th ing fores in of at and the c inttor form the equat the ratato eoincile: to each of force in q tor la con manner w

The ac cension in sording to Twice a nothing ; at maxim and, conse muat be ut to a half changen if the eartin, meana, the motion, wi Its amount be apprecia monn's arti dineovered intence. It moon'a no about that -mail circ diameter, e rent vibrato earth's axi nutation af tuent parta tho wame ca impossible op explain of it, wo re tronomy, p . the same nit subject of varietica of arise from of the plan and the sun each other, matter, and tel on the if the tine 3 thars will But, on ith the re - perceived lerably is, we must moved in equinoc wentward ; motion of nturbed by ultitude of ints. Aced, by at est to west, 'm sooner quinoxem r's lefore tion, howdegres in iul points re revolu. il in very pparchum he conme the sun'a on of the an. The on Piscen: quinix in Astro
nomer, nowever, nill count the wign: from the vermul spuinox, whlit always corresponith to the intermection of the echnue ively the equatort and on this aceount it is necesaary earefutly to dintinguinh between them.

The cause of preceasion is to he found in the combined eetion of the sun and moon upon the protuberant mass of matter accumulated it the earth's equator, the attraction of the planeta pring esarecty menailile. The attencting forse of the mun and moon upon thim ahell of matter Io of a swofold character: one la jarallel to the equitor, anul the other perpenuliculur to it. The tendeney of the Inttar force la th dinuininh the nugie wibleh the plane of the equator makn with ile eliptie; and were it not for the rotutory urofion of the earth, the planew would somn ooincide; but by thit motion the planen remain conatant to each other. The effect produced by the aetion of the foree in queation is, however, that the plane of the equme tor is conatantly, though alowly, ahiting ita place in the manner we have described,

mitation.

The action of the aun and moon in producing preeeseion is vurioun, at different periods of the year, acsording to the reintive diatance of the earth from them. Twice a year, the effiect of the mun in prolucing it in nothing; and twice a yenr, namely, at the molnticee, it in at maximutn. On um two atecenalve dnyo is if alike, and, conecquently, the p.ecession of the equinoctial pointa must he unequal, nind the obliquity of the ecliptie aubjeet ω_{0} a half.yearly variation; for the mun'a force, which changes the obliquity, is variahle, while the rotation of tho earth, which counterncta it, is conntant. By this meane, the plane of the rquator in andject to an irregular motion, which in teclinically salled the solar nutation. Its amount, however, in mo excecdingly amali, an not to be appreciable by ollwervation. That reaulting from the momi's artion, however, is sulficiently ao, as to have leen dineovered by Irndicy before theory had indicated it exintence. Ita period depenela upon tho revolution of the moon's noder, which is performed in 18\{ years, and in about that perion of time the axia of the world degeriben a amall circle in the heavenn, about eighteen mecunda in diameter, contrary to the order of the signs. Thin apparent viluratory inotion in denominated the nutation of the earth'a axia. The two phenomena of precession and nutation aro intimately connectel, or rather aro constituent parts of the aime phenomenon, and dejendent upon the wame caune, an noticell above under Precession. It in impossible here to rnter more minutely into the eubject, or explain it more in detail. For an admirablo account of it, we refier the render to liferwehel's 'Treatise on Astronomy, p. 333. We alao would direct the inquirer to the same adminnble work, for further information upon the muhject of perturthationa, comprising all the complicated varietien of motion. In gencral, they may be said to arime from the play of attractiona kept up by the whole of the planets amonget themaelven, they with the sun, and the sun with them; the distancea of the bodies from earh other, which are alway varying; and the masses of matter, and the ahape of the bodies, which are invariable.

In eonclenting thia part of cit aunject, wa may remarth that it in by means of the perturhations of those planeta which have no satilliten, that imtronomera have arrived at a knowielge of their mamea. Every planct prubuces an amount of perturtation in the nostions of any other, propurtioned to its masa, and to the degree of advantage or purchuee which lise ailuation in the ayotem given it over their movementa.

[WORKS ON ASTRONEMY.

Of the various ereatives on Amunnomy, which may to read with pleanure by thowe who winh to purnue the atudy in detail, we shall mention a few which are eavily obtainable in this country. The two hooke of D_{5}, Disk, entithed, "C'vlotial Scevery" and "The Siterwil Heavens," are written in a delightial otyle, and imholy the reeent discoveries in this interesting and impertant wen nees. The work of Whewell on Astronomy anul General ए-ica, is of the wame popular character. Profenor Kendmi a work, entitlod, "Erarogrophy: or, A Deacrpition of the fir mas derigned for Srhosola and Acodemier, accompanied by ra Allua of the Heaven, shouring the Phuce of the princil 1 Stars, Clustors, and Nebinta," in an excrilent manual fot practical purponea, It wan prepared particularly the ne of the ntuitents at the Obviervatory of the Philadi, hia Higb School, where the inthor is a profmor. It is chietly a translation from the admirahle Gern an origitne of J. J. von Jittrow, Director of the Viema Olservatury, and the mapy which accompany it are eoplied from littow't "Allua of the Sturry Hearens." By adding the divenve en of Struve and Mealler, the new atlas is greatly improv I By the the of this atlas, the atudent may rasily himself familiar with the namea and ponitiona of veral eonetellations; and a proper degree of atten the comparison of the atlas with the stars themem wil enable one who wiahee to make a particular nto ; of thin acience, to fix in his mind the map of the heave an firmly na alinoat overy intelligent permon haa in 1 nind the general figure of the earth's murfice. Althow. few peranne timake a atudy of astronomy as amateura, thime are many who would be delighted with so much knowledge of the sulyject gleaned from the atlum as would enaile them to recognive the most remarkable and conapicuoun of the heaventy bolies. To such persons the atias iv inviluable.

Among the older treatises of Antronomy, that of Fer. gumon has alwny x been mont popular, on necount of that phain, winsitle, Franklin-like atyle which distinguishea the selfetaug't author. Dr. Gregory'a "/istronomy," and tho "dotrommi al Lerfures" of Dr. John Keill, are excellent for thic elsmentary parts, though superseded in a great meanure by terent eirscuveries and inprovomenta. The great worlis of Lalande, Delambre, Newton, and Laplace, are of course istended only for the une of the mast accomplifhed wathenseticinna, who make atronomy their favourite pursuit-Am, Ed.]

Vel. L-4

Basslt.-The Giants' Causeway.

Section I.-Fixplanations-order of rocks.

Graloo (from the Greek, ge, ${ }^{*}$ the enth, and logos, discourse) may te defined as the science which descrites the solid materials of the earth, the order in which they are arranged, the causes which have effected that arrangenuent, and the orgnnic remaine which are found in them. The investigationa of the science are, in present circuurstances, limited to the external crust of the earth.

The solid parts of this crust consist of a variety of substances, to which, whether they be hard or soft, the terin rock is applici, Rocks are distinguished both by peculiaritics in their constitution, and peculiarities in their form and arrangement.

At some phaces the surface of the earth is found to consist of a hard rock of crystalline or glassy texture. generally called granite, though sulject to a considerable number of varieties. Granite is never, except in peculinr circumstances, found in the form of a layer, whether thick or thin, but generally in large irregular-shaped masses; and no other kind of rork, except in equally rare and peculiar circumstances, is cver found henenth it.

At other places the earth's immediate surface is found composed of some one of certain kinds of rock not less hard in texture than granite, and also of a crystalline consistence, but always found in layers or beds, generally of great thickness.

At other places we find, near the surface of the carth, rocks of a comparativedy bof, and not of a crystalline consistence, forming also layera or beds, of greater or Less thickness.

In some places, rock of a very hard kind in found, not exactly like any of the above, deponited in irregular forms, and often with the appearance of having penetrated through gaps forcibly made in other rocks.
Finally, throughout the first three classes of rockn, but particularly the first two, there ase thin veins of diverse ouhstanees, including minerals.
Rocks of the first clans are denominuted Pı.ctovie (from Pluto, the gol of the infernal regions amongst the ancients), as supposell to have lxen formed at great Hepths in the earth, the natter having lwen origimally in a hot and nof state, and afterwarils cowed and erystallizeri slowly, under such enornous pressure as prevented the contained gases trom expanting. The term unstratificd is also nuplied to this class of rocks.
Rocks of the sectond and third classes are called Aqus. ous, as compowed of inatter deposited by water. Those

[^1]of the second class are more specially named Metanom phoric (from the Greek, metumoryhosis, a transformation), as supposed to have undergone a remarkable change in the course of their formation. It is supposed that the matter of these roeks, derived frour rorks of the granitio kind, and suspended in vast oceans, was, when deposited, mubjected to a great beat from helow, which gave it in itu reconsolidation much of that erystallme texture which it had in its plutonic form.

Rocks of the fourth clase are denominated Volcanie, as being evidently composed of lavas, or mussurn of fire-melted rocky matter, which have been sent upwards by volcanoeds

Roeks of the second and third classes are likewise called Stratified Morks, as being invarinlly found in strata or layers. Rocks of the first and fourth classes, as wanting this peculiarity, are distinguinhed as l'nstratificel liocks,
The plutonic, and some of the lower metamorphoric rocks, have benn also called Prinary, or Primitive liorks, as either the first formed of all, or formed very carly. Tho upper metamorphoric rocks have in like manner been cafled the Transition Series, as forming n kind of link between the primary nud thowe which follow, and partakipg of the characters of both. Of the remainder of the aqueous rocks, a considerable number, being the lower portion, are sometimes called the Serondary liocks, while the upper are mined Terfiary. Igncous Rock ir also a various name for the volcunic kind.
When rocks of various classes nre seen at or near the same place, it is found that those of the second (except in the extraordiany circumantances alluded to) lie above those of the first; and those of the third ubove those of the second and first classes. Sjecial kinds of aqueoud rock are also found in a certain order above one another -much in the same way as if we were to place a book of many volumes on its side, having previously arranged the wolumes according to their numbers, in which case the second would le above the first, the third above the second, and so on. Rocks are thua said to obsirve an order of sio praposition-the volcanic kind alone olserving no order.

In sonse of the upper metamorphoric rocks, end in all those of the secondary and tertiary series, remains of plants and animuls are found, showing that when these rocka were formed, the earth had become a scene of vegetable and animal life. The rocks containing these orgazic remains, or fossils, are called Fosunifsmous; and the remaining rocks, from their containing no auch relicas are called Non-fonnilifinots.

Above the harder rocks, there are generally layerm of clayey and earthy matter, topped by what is called the vegetable soil.

The principal rocks, exclusive of tho volennic, ars ranged in the order indicated in the table at the end of thissartion, descending from the highest to the lowest.

Whatever rock, then, appears on or uear the surfacy if it be not of the volcanic kind, we mny form from it some notion of what rocks are, and are not, below. If, fir instance, we anywhere find one of the rocks of the tertiary series, wo may deem it almont certain that rocks of the seconvary, transition, and primary serins, would he found in succession ilownwards, if we could dig to the proper depth. If we find rocks of the secondary seriea, it is equally likely that tramition and primary rooks aro below, and wo on. The wame conelurious may be fonnad respecting aperial kinds of rock of the various clasex ${ }^{\text {a }}$ if, for instance, we find at the surtace a paineular menber of the secondary series, we may know that retain others of the same serias are bolow. What alone prevents this rule from being of constant application, is the act, that in no placo does every aueular of the whole
certes of tnon wanting, in F many places wi -ith respect to

The order of greador certaint tho liat than th find secondnry that none of t? of the secondn transition, becon

Aqueous Non-fousllinerous. $\left\{\begin{array}{l} \\ \text { Plutonic. }\end{array}\right.$
$\mathrm{S}_{\text {gctiov }} \mathrm{It}$.
The whole seid laws, which aro * in consturt oprea equally powerful Into what have Causes.

The degrading oolvilur and wed eath s surface, a bwer levels. Tl
cerles of known rocks oxist. Everywhere coms aro wanting, in France, for exsmple, transition rocks are in many places wanting. The rule, nevertheless, is certuin with respect to the rocka which do exist at any place.
The order of supraposition enablea us to conclude with stenater certainty sa to the absence of all rocks higher in tho list than that which we find at the suriace. If we find accondary recks at the aurface, we insy be certain that none of the tertiary are there; if tranaition, none of the secondary or tertisry; if primary, tone of the transition, secondary, or tertiary.
aupenficial
Vegctable Soil.
Peat.
Gravel Beds.
Blue Clay Beda.
tertiart.
Marl Beds.
Shelly Millstone.
Gypsum.
Coarse Limeatone.
Plastic Clay.
sEcondart.
(Chalk Group.)
Chalk.
Greensand.
Weald Clays.
(Oolitic Group.)
Oolite,
Sandstones.
Lias.
(Nev Red Sundstone Group.)
Varicgated Marls.
Muschelkalk.
Variegated Sandatones.
Zechstein.
Red Conflomerate.
Rock Salt.
(Carboniferous Group.)
Coal.
Gandstone.
Shale.
Mountain Limestone.
Old Red Sandstone.
transition.
(Graweacke Group.)
Granwacke.
Clayey and Sandy Slates, or Lowest Fossiliferous. Phimally.
(Inferior Stratified Serics.)
hay Slate.
Pimitive Limestone.
Protogine.
Gneiss.
(Graniles.)
Plutonic. . . . Granite, in varicties.

Sector It-medusfs of arkangbinent.

The whole science of geology rests on certain matural laws, which are suppowed, or have been ascertained, to be in constant operation, though not always, perhajs, with equally powerful effects. They chiefly resolve themselves Into what have been called Digrading and Elerating Causè.

DEORADINO CAUGFR.
The degrading eaases are those which refer to the disaolving a:3f wearing awny of the elevated parts of the earth a surface, and the carrying of these parts down into earth a surface, and the carrying of these parts down into
fower levela. The dissolving in brought about by certain
chemical and mechanical laws, and the carryang aoven into low la els ia, in the main, a result of the law of grav tation. Considering that the solid parts of the earth are in their very nature liable to the operation of these laws, it appeara quito unavoidable that land should be degreded. It is only, howaver, of lato years that the degradation of land has attracted any attention. The immense scale on which it ia constantly taking placa was first explained in a satisfactory manner by Mr. Charles Lyell, in hia "Principles of Geology," published in 1830.

The causea of the degradation of clevated land may be considered under three heads-moteoric, or thuse connected with the stmosphere; fluviatile, or those depend ing on rivers; and oceanic, or those in which the see is the immediate agent.
The operation of the atmosphere and its vapoury con tents upon the land proceeds in two ways, chemical and mechanical. Thore is a tendency in the hardesi rock to absorb oxygen and carbonic acid from the atmosphere, and to be by that union dissolved. And this is a union which is always taking place, though in some places with moro conspicuous effects than elsewhere. If the soil on any hill of volcanic rock be examined, we shall first find a fine powdery earth, then s mixture of earth and splinters of rock; next splinters alone, graduating into the hard rock below : such may be considered ss an exhibition of the gradual process by which a hard rock is dissolved into powder or earth under the action of the atmosphere. In Jamaica, this dissolution of volcanic rock has taken place to a great depth. In granite, which is considered the hardest of all rocks, one of the compo. nent aubstances (felspar) hass a great tendency to be decomposed, and henco even this rock is sometimes found to have been reducel to gravel or jowder to a considerable depth. A hollow way, blasted through granite, was found by a geologist to have been in six years pulverized to the depth of three inches. These are solely chemical phenomens. Again, water perforstes into minute fissures in rocks. When a frost nrrives, the water swells, and dislodges parts of the rock, which are precipitated into the lower lovel. Or it may meet some claycy veins or strata, hithertus sufficient to keep various masses together. These veins or strata, beirg gradually softened by the water, lose their power of cementing the masses. The upper then fall away or slide into a lower level. A slide of rock froin the Ruffiberg, in Switzerland, in 1806, filled the bottom of the vale below, destroying many villages, and causing the loss of 800 livea. The impulse of wind nnd rain on the surface of rock is also of great efficacy in pulverizing and wearing it down, sharp jarts being roundel, and soft parts hollowed. In Sweden there are some large detached masses of granite, containing perforstions produced by this causo, somo so very large ss to admit of a horse and eart passing through them. 'These effects may be considered as chiefly mechinical. As surely, then, as any part of the carth's crust is elevated into the atmospithere, just as certainly is it liable to be worn down and carried into a lower level.

When wnter collects into channels and follows its well known tendency t find the lowest level to which it has necess, it becomes n mechanical instrmment of still greater force for wearing down the land. In its smallest rills, as it descends the mountain side, it cuts into the soil, and carries ofl whatever particles it can disenazge. When gathered into brooks, its operations are still more powerful. When one of these is placed amongst mountains, every heravy shower swells it into an impetuous river, by which large quantities of detached rock and aoil aro brought down. In the upper parts of the course's of almost all rivers, the greater speed of descent makes up ow the smaller volume of water, as far as the power of bringe ing down stones and soil is concerned. Again ith tha lower part of the conrse, the smaller speet is sulnetimen , compensated by the unevenmess of the courso; in whict
ane, tha water is incessantly driven from one projection of the banks against another, and by that means wears away a great quantity of aolid matter. Many facta have been collected to prove the great efficacy of rivers in wearing down the land. The Nribuddah, a river of India, has scooped out a channel in basaltic rock, 100 feet doep. The river Muselle has worn a channel in aolid rock to the depth of 600 feet. Mesara. Sedgwict and Murchison give an account of gorges scooped ov, ia: beds of tha rock called conglomerate, in the valleys of the Eastern Alps, $\mathbf{0 0 0}$ or 700 feet deep. A stream of lava, which was vomited from fitna in 1603 , happened to fow across the channel of the river Simeto. Since that time the stream has cut a passage through the compact rock to the depth of between 40 and 50 feet, and to the breadth of between 50 and several hundred fect. The cataract of Niagara, in North America, has receded nearly 50 yards during the last forty yeara. Below the F'alls, the river flowa in a channel upwards of 150 feet deep, and 160 yards wide, for a distance of seven miles; and thia channel has manifestly been produced by the action of the river.

Sometimes, during floods, rivers produce great changes in very short periuds. A flood caused by the bursting of the barrier of r. lake in the valley of Bagness, Switzerland, moved at irst with the tremendous velocity of 33 feet per second. From the barrier burst by the waters to Lake Geneva, there is a tall of 4187 Paris feet; the distance is $45 \mathrm{mil} . \mathrm{s}$; and the water flowed over all this space in five hours and a half. It carriel slong houses, bridges, and tries; and masses of rock equal in size to houses were transported a quarter of a mile down the valley.

The matter carried down ty rivers is often deposited at their sides, when it constituter what is called alluvial land. Sometimes it is deposited at the iottom of lakes, when it for ns what are termed lacustrine deposits. In many instarces it has been deposited in large quantitiea at the mouths of rivers, giving rise to what are denominated deltas. Deltas are so called on account of their rasembling the fourth letter of the Greck alphabet. The triangular form of a delta is produced by the river, at a certain point inland, dividing itself into two streams which gradually diverge till they reach the ocean, ensosing the space which constitutes the delta. As an inatance of the great amount of new land formed at the mouths of rivers, the delta of the Ganges is 220 miles in one direction by 200 in another. The lower part of this delta, a wilderness inhabited by tigers and crocodiles, is as large as the principality of Wales!

The matter carried down by rivers, and thus deposited, is nothing in amount compared to that transported to the ocean. The quantity of sand and mud brought down by the Ganges to the Bay of Bengal, is in the flood season so great that the sea is discoloured with it 60 miles from the river's mouth. According to Mr. Lyell, the quantity of solid matter brought down by this niver every day, is equal in bulk to the greutert of the Egyptian pyramida. According to Captain Sabine, the mualdy waters of the Amazon river may be distinguished 300 miles from its mouth.
The constant action of the sea upon the land is strikingly apparent to the inhabitants of coasta. Whole alands have been destroyed by the action of tides and ceanic currents, while the remains of other riae above the surface of the water, like the ruins of nome desolated rity. Many instances of the encroachment of the ses apon the land have been recorded. An inn on the coast of Norfolk, huilt in 1805 , then 70 yards from the sea, was, in 1829, separeted from the coast by only a momall garden. A church on the coast of Kent, which in the reign of Henry VIII. was a mile inland, is now only coout 60 yards from the water'a edge. The inland of urdetrand, oD the coast of Schleswig, was, in the thir-
teenth century, 50 milee long and 35 broad. Alh ut the end of the aixteenth century, it was reduced to an aree of only 20 miles in circumference. The inhahitante erected lofty dykes for the purpose of saving their territories; but in the year 1684 a storm dovistated the whole ialand, by which 1340 human beinga, and 50,000 head of cattle perished. Three very amall islets are nll that now remsin to point out the place where once flow rished the fertile and populous island of Nordstrand. It is an old notion that Great Britain was once united to the continent of Europe; and the identity in structure of the opposite coasts of the strait of Dover scems to tinvour the aupposition. There ia reason to believe that tha Island of Ceylon was at one period united to Hindostan. Humboldt is of opinion that the West India islands once constituted a circuit of land which enclosed the Gulf of Mexico.

It thus appears that there are causes in continual ope ration, for the wearing down of the elevated parts of the earth's crust, and taking the component particles into lower levels. The effects of these causes may be easily traced in the aqueous rocks, many of which are simply deposits of sediment carried by water from high into low places, and subsequently hardened, probably ly heat from below and pressure from superincumbent materiale. Were auch cousea not in some way counterarted, dy lund could not long exist : all would be taken down and buried in the sea. We find the counteraction in what are termed the Elcvating Causes.

Elevating Causes.

Aa Degrading Causea are chiefly owing to water, Elevating Causes are chiefly owing to flre. They are therefore sometimes comprehended under the term Igneund Agency.

The manifestations of igneous agency at present ob servable, may be conaidered under three heado-namely nolcanocs, earthquakes, and gradually cletating forces. These phenomena may be viewed as the effects of suh terranean heat, operating under different circumstances, A voleano may le described as an opening in the earth's aurface, loaring the general appearance of a vent of subterraneous fire, and through which smoke, cinders and ashes, are ylmost continually issuing, bat which wome times dischargea great fragments of rock, und vast quantities of melted rocky matter. The gencral rfliect ia throwing up of carthy material from a low to a high loves.
Geographera at present reckon about 200 voleanic vents in activity throughout the earth. 'The greater number of the whole are in a line along the west conat of South and North America. There ore many in the islands of the Pacific and Indian Oceans, and in the cen tre of Asia. In Euroje, there are only three in great activity-Atna in Sicily, Veauvius in Italy, and Hecla in Iceland. But a vast number of hills throughout France, Britain, and other countriea, hear the appearance of having once been active volcanoes. As volcanie action often takes place in the sea, and as there are prow bahly many on land not yet described by geographers, tha number of such vents throughout the earth raust be con siderably more than 200.

Of the power of volcanoes to throw up large quantitiee of solid matter, we bave many examples. During an eruption of Etna, a space around the mountain, 150 miles in circumfernnce, was covered with a layer of sand and ablies, generally about twelve feet thick. In the first contury, the citie's of Herculaneum and Pompeii were buried heneath such a layer of mater by Veruvius. In 1660, the Philosopher Kircher, after nerurately exumun ing Etna, and the ground adjoining its base, calculated that the whole matter thrown out by it at its varioua ae. tive proiods woull form a masn twenty times as larg? an the tnountain itself, which is 10,670 foct ligh, and 30
milen in lian 1776, there it breadth, twelv carlier period, four aquare Monte Nuove Naplea in one Ico, previousls outburst of vo terminated in feet in height

Of the effee shservations h 1811, an islan St. Michael'r, 700 or 800 fee resembling tha few daya, the about 300 fee full of hot wat In July 1831, cisely similar longitude 12° sisted of stone form, about a crater of hot w This island, nas lang above the uponit. The which is about a few years a! ruse about the y in 1709 . In a rally several h years been gra teen fathoms v three or four ; half. This ris rock, ahout hal in breaúth: : the In 1825 , a new Ocean, abuut 3 cisted of solid fortli smoke fro

Many ialands bear all the np from the bosom and Ascension, land, and many the produce of de la Beche," island: the whe of 4000 equare voleanic matter and Mouna Ka 16,000 feet abo

The causes of factorily explait to be connected frequentiy, and Furape, than it parts where vole parts where ca Ireadful. Tho a sinking of th be considered a conved that the multen interior verat by volean cumstances from the solid ground rime to a certain atriking prool w thia ductrine, iz
milum in liameter at the base. From this mountain, in 177b, the re issued a stream of lave a mile and a half in breadth, twolve milea long, and 200 feet thick. At an arlier period, there was a atream which covered eightyfour aquare miles. In 1538, a lerge hill, aince named Monte Nuovo, was thrown up in the neighbourhood of Naplea in one night ; and in 1759, in a district of Mexloo, previously covered by smiling plantations, a sudden outburst of volcanic action, which lasted several months, terminated in leaving six hills, varying from $\mathbf{3 0 0}$ to $\mathbf{1 6 0 0}$ feet in height alove the old plain.

Of the effect of submarine volcanoes, some interesting haservations have been made in recent times. In June 1811, an island was thrown up by volcanic agency, near St. Michael's, in the Azores. Columns of einders rose 700 or 800 feet sbove the surface of the sea, with a noine resembling that of distant artillery. In the course of a few daya, the island was a milo in circumference, and about 300 feet in height, having a crater in the centre, full of hot water. Some time afterwarle, it disappeared. In July 1831, a similar island was thrown up, under precisely similar circumstances, in hatitude $37^{\circ} 11^{\prime} \mathrm{N}$., and longitude $12^{\circ} \mathbf{4 4}$ E., off the cons: of Sicily. It consisted of stones, mud, and cinders, and was of a circular form, alout a milc and a half in circumference, with a crater of hot water in the centre, 400 yards in diameter. This island, named Sciacca, or Graham's islund, existed so lcug above the sea, as to allow of many persons landing upon it. The Bay of Santorin, in the Greek archipelago, which is about six miles long and four brodd, containel, a few years ago, three volcanic isles, the firat of which rose alout the yoar 200, the second in 1650, and the third in 1709. In a part of the bay, where the water is zelierally several hundred feet deep, a shoal has for wevial years leen gradually rising: about 1816, thete were ff. teen fathoms water upon it; in 1830, there were only three or four; the later nccounts reduced it to two and a half. This rising mass was ascertained to be of sotid rock, about half a mile in length, by one-third of a mile in lireacith : the water deepening sudrienly all icu:ad it. In 1825, a new island was observed to rise in the Pacific Ocean, about 300 miles north of New Zealand. It consisted of solid rock, had a pool in the middle, and sent forth smoke from seversl chinks.

Many islands which have long been inhabited by man, bear all the appearance of having risen, in like manner, from the bosom of the deep. The islanda of St. Helena and Ascension, the Azores, the West India islands, Ieeland, and many of the islands in the Pacific are evidently the produce of volcanic action. "Owhyhee," says M. de la Beche, "is a magnificent example of such an island: the whole mass, estimated as exposing a surface of 4000 square miles, is composel of lava, and other volcanic matter, which rises in the peaks of Mouna Ron and Mouna Kaa, to the height of between 15,000 and 16,000 feet above the level of the sea."
The causes of Earthquales have not as yet been satisfactorily explained, but they are now generally allowed to be comnected with volcanic agency. I'hey occur less frequently, and genersally with less tremendous effiet, in Fiorope, than in some other parts of the world, those parts where volcanic agency is most active being also tho parts where earthquakes are most frequent and most lradful. Though their effeet is somutimes to cause 6 sinking of the ground, they may, upon the whole, be considered as among elovating causes. It is conanved that they are produced by gases confined in the molten interior of the earth, similar to those which find vent ly votcances. Such gases, prevented by local circumstances from escaping, may, it is thought, thus shake the solid ground over a large tract, and even cause it to rise to a certain extent ahove its former level. 'The mowt atriking proof which has been adduced in support of this doctrine, is the effect of the earthquake which mok
place in Chili in 1822. This is part of that continent in which volcanoes are most numerous and sctivo. Or the occasion referred to, a ahock was felt along the coast for more than 1000 miles. The land for 100 miles along the coast, and backward to the line of the Andea, was raised above its former level. At tho shore, and for some distance along the bottom of the sea, the rise wan three or four feet, so that rocks formerly sulomerged, and covered with shell-fish, were now exposed ehove the sea. Old beaches, similar to that now raised, wero also observed in parallel lines along the land, the higheat being about fifty feet above the ocean.
It has since been ohservel that old beaches, similar to those in Chili, exist in tho neighbourhood of many seas. Along the Frith of Forth, in Scotland, there is one about forty feei above the present level of the sea, and which generally appears as a kind of bank a few hundred yards back from the present shore. In the firths of Clyde and Cromarty, similar beaches are traced. They may alwaya bo detected by their terrace-like level, and the presence of sea-shells, rounded pebbles, gravel, and sand, such as usually compose beaches at the present day. In some places, old beaches havo been conspicuous enough to become objects of pmpular wonder. In the vale of Glenroy, in Inverness-shire, as also in some neightouring valem connected with Glenroy, there are three terraces along the sides of the hills, at various heights, which the ignorent people of the district firmly believe to have been roads formed by the hero Fingal for hunting, hut which are now shown pretty clearly to lave been the shores of quiet estuaries or arms of the sea, similar to many which still exist in the Scottish Highlands-three successive elevations, probahly tise etfect of earthquakes, having elevnted the land atove the water, so as to leave as many iefraces. Among the Alps, and in South Ameriea, there are vales markei in exactly the same way as Glenroy.

The existence of a force which gradually clevates the lond in many pleces out of the water, was discovered by Mr. Lyeil. His chief observations were made upon the shores of the Gulf of Botlinia, which he ascertained to have risen several feei in the course of the last century, and a few inches even since 1820 .

Besides the gieater elovating causes arising from aubterrancan fires, there a.e some lesser ones of less mysterious origin. The sands deposited on beaches aro sometimes blown by winds in upon the land, covering the vegetable soil throughout a large space, and in some instunces forming hills of considerable height and magnitude. Some parts of the coast of Holland are thus fenced with ranges of sand-hills, the whole mass of which has leen ablown back from the sea. On some parts of the French coast, large tracts, onee smiling with cultivetion, qre thus buried under a sterile layer of sand, which is continually advancing, notwithstanding every effort of man. On the coast of Moray, in the north of Suotand, a tract once forming the barony of Culbteen, has been transformed into a sundy tract since the fiftenth century. Such sand-beds readily become converted into strata of and tone, if suturated with water contcusing a ling infuston.

In various parts of the world, land is raisel! out of the sea by the eflorts of coral insects. The works of theso creatures are seen upon a vast scale in the Pacitic, where whole ranges of islands are formed by them. On the coast of New Holland, there is a coral reef wheh stretchea out to a thousand miles in length. The insects do not commence their laborious operations at a great drpth bolow water; fron. 60 to 100 feet is conside \cdot :d the utmost extent to which the islands extend downwards. They are generally of n circular or oval shnpe; and Mr. Lyell is of opinion that corals build upon the rims and in tho craters of submarine voleanoes. The outer wall of the building emerges first above the waves, enclosing a pool of tranquil water. The aceds of vegetables are either brought
there by sea-birds, or wafted by the ocean, and the islanda coon become clothed with a mantle of green. The subctance of which these islands and reefa are comiosed, is lime, which the insects seerete from the sea-water, and coment together with a glutinous matter contained in therr bodies. Mr. Lyell, while surveying the Isthmus of Panama, detached a quantity of these animals, and placed them on some rock in a shallow pool of water. On returning to remove them a fow days afterwarda, he found hey had secreted stony matter, and had firmly glued thememelves to the bottom.
If we consider the operation of the elevating causea, mo can be at no lose to underatand how wo should now
sec, as composing dry land, and sometimes in wery lofty situations, strata which were once at the bottoms of neesos ncither will it be surprising, if the irregular nature of voleanic forces in considered, that the strata, so clevated, rarcly are found in their originally lovel position, but is all degrees of inelination, sometimes quite on edge, and even in certain rare instancea folded backwards, so as to be upside down.
The changen produced by the united operations of aqueous and igneous agency are in part represented in the subjoined engraving of a supposed seetion of par of the earth's crust.

- Primary Rock, which has heen thrown ap, to as to disturb and mix iself with the Secondary Rocks.
- Eoeondary Rrcekg, throwo into ineliwations and curves by the rising of the Primary Roek
zTeriary Formation, deposited in a hoiiow formed by the disturlance of he Secondary Rucks.
- Basaltic Columns. e A fault or hiteh in the strita.

The Circles nre 1 boulders or detaehed siones, roubded by travelling in water, sad depositea. n kollows formed by water. The dole indicate beds of gravel, immedistely beneath the soil.
emetion mil-description of rocks and organic REMAINS.

PRIMART.

Granite.

Geologists have been sccustomed to describe this as the loweat and oldest of all rocks. Certainly, no other rock is ever found beneath it, except in peculiar circumetances afterwards to be described: if the mass of the eartn, therefore, were to be judged of from the small superficial crust with which we are acguainted, granite might appear to constitute the bulk of our planet-a vast nucleus on which all the stratified rocks rested. Geologists are now disposel, under a sense of their limited knowledgc, to speak of granite, not as the lowest and oldest of all rocks, but as the lowest as yet discovcred, and as one which, though in most of its forms old, is yet sometimes found of recent formation. Granite, in fact, often appears as a volcanic rock, which has been thrown up in a state of fusion through superincumbent strata of all kinds, penetrating into their chiuks, and spreading over them on the surface. Even tertiary rocks are found perineated and covered by it-a proof that it has been formed since the deposition of those rocks, which is one of the most recent events in geological chronolozy. These are the peculiar circumstances in which it may be said that ouler rocks sometimes lie leneath granite.
Granite, then, may be describet as generally forming -busis or bed for all the other rock-as rising in some places from its unmessured deptha into chains of lofty oills-and as in other places persetrating in veins through ouperincunibent rocks, and partially covering them at the cop. It compoens some part of the monutain ranges of Jornwall. Cumberland, and the Scotiuk Highlands, and
veins of it are found upon or near the surface in many other parts of England and Scotland.
Three substances usually enter into the composition of granite ; namcly, (1) quartz, a gray glassy substance, composed of tho oxygen of the atmosplace in union with one of thenewly discovered metallic bases (silicium); (2) fclspar, also a crystalline substance, hut usually opaque and coioured pink or yellow, composed of sandy and claycy matter, with a small mixture of lime and potash; (i) mica, a ailvcry glittering sulstance, which divides readily into thin leaves or flaker, and consisting principally of fliut and clay, with a little magnesia and oxide of iron. In some granites, instead of mica, we find hornblende, a dark crystalline substance, composed of alumiua, silex or fint, and magnesia, with a considrrable portion of the black oxide of iron. Such granites are called Sycnite, from having been first found iin the islsnd of Syene. Other varieties are-Serpentine, in which thers: are dark spots like those on the akin of the snake (hence the name), and Porphyry, of which the distinguishing peculiarity is its containing little angular picces of felapar cuclosed in the mass.

In inan's coconomy, granite is a roek of great import ance. Its uneommon haniness makes it very suitable fon the ercetion of buildings where great durability is dessred Heuce, the dock of Liverpool, Waterloo Bridge in Loondon, and many other buildings of a similar nature in England, have heen compesed of it, notwithstanding that it had to be brought from a great uistance. Nearly the whole city of Abendeen is built of the granite found in the neighbourhood; nud the housen have consequently a glitering appearance when tue sun is shining upon them. This atone is also the component material of Meninon's Head and Ponney's Pillar, two ancient ettuctures in E'gypl

Abow

brior at ru'k, gnc blendo Platers, an onid that are of t molificed texture. granito of the ef These tw stratified nite, disin wushed i position, the inter form. T oule of th clemical
The m pound, lik blende, an carcely d of tho Hi gueise, of ness in next most and quarte tracts of e to loave b component boldt takes than 9500 or candy st hells of riv which felsp tho chief el also be ace

Clay-stat one with imports, col rally diffuse of any wou state in this their struct thin plates covering ha respect beti former, the the same lin cleavage is the litter cit of roofing s wiuv, the dit through the duced the el had been lai dent of press tion. Probe Clay-slated In the Scotti used at sch palls used in
In the inf neds of limes frow its re: Primitive L_{1} the series. Murnt to Luishest lut is the tarth

Infereo Stratified Series.

Above the granite, in its ordinary position, liea the inSrior atratified series, consiating mainly of two kinds of ruck, gneiss and mica-slate, with alternating atrata of hornblende rock, quartz rock, eurite, talcose slates, chlerite elates, and argillaceous slates; of all of which it may be mid that they follow no determinate order. These recks are of the same materiale as granite, in a very.alightly modificd form, and they are nearly as crystalline in their texturc. Geologists also find in many places that the granite passes into then-a term expressing a blending of the charactera of roeks at tho line of their juneture. These two facts lave led to the supposition that the inferior stratified rocks were formed from the materials of the granite, disintegrated by mechanical or chemical means, and washed into the beds of vast oceana, where, on their deposition, they were reached by the high temperature of He interier, and thereby reconaolidated in a crystallino form. To account for the rocks composed exelusively of one of the materiala of the granite, wa may auppose a chemical separation of those materials.
The most prevalent rock of the seriea is gneiss, a compound, like granite, of quartz, felapar, mica, and hornblende, and ao hishly crystalline as to be sometimes acarcely distinguishable from granite. A great portion of tha Highlands of Scotland is composed of atrata of gueiss, of vast thickness. It ia remarkable for its riehness in veina of the metals. Micu-slate, or schist, the next mest prevalent rock of the series, ia compesed of miea and quartz. It is tho surface rock of many extensive tracts of country. Quartz rock, which we may auppose to have been formed by a chemical separation of that component of granite, is alao a prevalent rock. Humboldt takes notice of a mass of it in South America, more thar 9500 feet in thickness. The round white pebbles, or candy stones, so often found on sea-beaches, and in the hels of rivers, are pieces of quartz rock. Eurite, of which felspar is the main ingredient, and hornblende rock, tho chief element of which is signified by its name, may also be accounted for by a chemiesl origin.

Clay-slate is the geological term for the well-known tone with which houses are roefed. It is, as its name imports, composed mainly of clay-a subatance too lilerally diffused amongst the ingredients of granita, to admit of any wonder as to its being found in a nearly distinct state in this rock. Miea-liate and clay-slate are fissile in their atructure-that is, capable of being aplit into very thin plates: hence the utility of alate, as a material for covering houses. But a curious diveraity exista in that respect between mica-slate and roofing elate. In the former, the cleavage, or direction in which it aplits, is in the same line as the stratification; but in roofing slate, the cleavage is alwaya more or lesa tranaverse. What makes the latter circumstance the moie remarkablo-when strata of roofing slate are found, as often happens, contorted or Favy, the direction of the sleavage ia in one atraight line through them all, indicating that the influence which produced the eleavage in that rock took effect after the whole had been laid down, and after, by some subsequent accident of pressure, they hal been forced into a wavy direction. Probably this phenomenon is of an electric nature. Clay-alated nre found in great abundance in Cornwall and In the Scottioh Highlands. A fine kind makes the slates used at school, and from a kind atill finer are cut the prins umed for writing on sehool-slates.
In the inferior strutilied serien, them occur a few small neds of limestone, sometimes alled Saccharine Limestone, frum its resemblance to refiued sugar, and semetinues Primitive Limestone, from tho period of its occurrence in the serics. In Greece and Italy this rock has been sub-- Mrient to the development of national talente, the buthest hut have ever bepu known of their clasa, for it - Sthe zarble tron which the works of the Greek wad

Italian sculptors have been fermed. In the geolegien hiatory of our globe, its first appearance in the ascending series of rocks is an event of no small censequence, for limestone atrata form a larye preportion of the superior formations, and the manner in which they have been formed has engaged much attention. Linestene is the carbonate of lime, that is, a combination of the earth lime (itself a union of the metal caleium and exygen) with carbenie acid (this being, again, a union of oxygen with the elementary substance carbon). Carbon is the largest . element in the composition of vegetable and animal substances, and this its first appearance in the atructure of rocks is of course a point of much interest, more especially as it is generally concluded that many of tha auperior limeatone strata havo been entircly formed of animal remains. We are thus tempted to aurmise that the formation of the limestone beds of the inferior atratified series marks aome carly and ohscure stage of organic existence on the surface of our planet. No distinct remains of plants or animals have, indeed, heen found in this aerics; and it is customary to point to the next upper series, in which both do occur, as the era of organic life. Yet many geologists are of opinien that the inferior stratified rocks might have contaned auch remains, though the heat under which the rocks seem to have been formed may have obliterated all traco of such subatances.

transition.

Gratwacke Group.

All the rocks hitherto deacribed are of erystalline tosture, and, apparently, ehemical phenemena have attended their formation. In the group we have now errived at tracea of mechanical origin and deposition become apparent; but atill a few atrata resembling the preceding occur throughout the lower parts of this series, as if the circumatances under which tho earlier rocka were fermed had not entirely ceased. Hence the term transition for the senes, as implying a passing from one state of thinga to another.
The rocka forming the lower part of this group, and which are aometimes separately classed as the Loupst Fossiliferous Group, are an alteruation of bedà of chlerite, talcose, and other slatea, reaembling those of the inferior stratified series, with beds of clayey and sandy alate, of apparently mechanical origin, and in which a few fosaila are found. It thus appeara that the cessation of the chemical origin of recks, and the commencement of organic life, are events nearly comueted; and it has thence heen surmised that the temperature of the earth's surface was now for the first time suitable to the production and mainterance of erganic things. At the anme time, the alternation of the recks teaches us the instructive fact that the change was not direct or uniform, but that, for some time, the twe conditions of the surface auperseded ench other. This in conformable with a general obeervation, which has been made by an eminent geologiss, ${ }^{\circ}$ namely, that, however sudden changes may have taken place in particular aituations, a general change of circumstancea attending rock formations is usually seen to havo been more or less gradual. The few fossils found in thi part of the series are, as far as ascertained, the aame a those of the next higher rocks.

These are a serics of arenaceous and slaty rocka, of evidently mechanical origin, intermixed with small lede of limestone, in which that poculiarity is less distinet, the whole being termed more particularly the Grousenine group. The gencral composition of the grauwacke indicates its having been formed of a fine detritus (matter washed frem ether rocka), and ita having been aeponned slowly ; but it sometimea has fragmenta of rock, of various sizes under that of a man's head, imbedded in it, and is occasionally passes into conglomerates. The limesunoe
nixed with the grauwacke beds are larger and more uumerous than in the preceding group, indlcating an increase of the causes which produced carbonic acid. Fossila are also more numerous in them than in some of the other heds.

The glauwacke forms the immedinte surface in many Inem districts in Scotland, England, France, Gernany, sud North America, showing that, at the time of its fornseton," a ame general causes wers in operation over a large portion of the northern hemisphere, and that the result was the production of a thick and extensive deposit enveloping animals of similar organic atructure over a conaiderable aurface." ${ }^{1}$

Fossils of the Grauvacke Group.

I'he fossils of the grauwacke (n few of which extend to the clayey and sandy slates imnediately below) are of Doth planta and animals. Amongst the plants are nlge, or sea-weeds, showing that seas like the present now exlated. Some land plants are also tound, hut of the aimpler structures; as filices, or ferns; equisetacere, a class of plants of the character of the mare's tail \dagger of our common marshes; and lycopodiacec, a class of the character of our club mosses. \ddagger All of these land plants are monocotyledons, that is, produced from seells of a single lobe, and therefore endogenous, that is, growing from within-timber plants being, on the contrary, the produce of two-lowed eeeda, and growing by exterior layers. The flora of this era thus appears of a very aimple kind, indicating the exisience only of marshy nad damp grounds.

The animals are also, in general, of an humble and simple kind. There is abundance of those creatures (Polypi) resembling planta, which fix themselves on the mottom of the sea by stalks, and send forth liranch-like arms for the purpose of catching prey, which they convey into an internal aac, and digest. At present these creature abound in the bottoms of tropical seas, where they Live by devouring minute impurities which have escaped other marine trilies, and thus perform a service amalugous th that of earth-worms and other land tribes, the business of which is to elear off all decaying animal and vegetable matter. But the class of creatures found in greatest numbers in the grauwacke series of rocks are shell-fish, possibly hecanse the remains of these creatures are peecutiarly well calculated for preservation. All over the earth, wherever grauwacke rocks are found, shell-fish are found imbedled in vast quantities, proving that shell-fish were universal at the time when that class of rocks were fornml. In a work cusitled "Remarks on the Geology and Mineralogy of Nova Scotia," by Abralam Gesner,S it is atated that they abound to a surprising degree in the valuable iron ores which in that province accompany or form part of the grauwacke rocks. In reference to the beds at Nictau, the authorsays, "The impressions made by marine organic remains in the ore and slate ure extremely beautiful and distinct. Millions of shell-fish, of the molluscous and crustaceous tribes, which once enjoyed a perfect animal existence, lave lieen swallowed up by this ore, where their remains and perfect likenesses are yet to be seen in the same natural and symmetrical leauty they possessed when alive." At New Canaan, another of

- De la Beclie.

-The mare'a tail is an elegant phant, having a succulent erect jointed stem. with attenuated follage growing in whorls round the joints, the later bemg protected by a distinct striated slicath; the parts of fructifieation conatifute a scaly eath.a ut the nper of the stem-Mantels
I Herbaceous promirate plants found in damp woods and hogs. azing liseir leaves simple and mbricaied, that is, lying over Peh other.
4 Halifax, Nova Scotia. Gosaip ant Coade. 1800.
"They are alnost all brvalver." he adds. "of the genus anomia, al bough sone were ohttined resembling the nattilus disent nat planthis equalis," Ite clsewhere mentions that the enerinite aud trilobile, which in Germany are said not to have

the places where these rocka are dug, the ?ily enerrnita a remarkable exnmple of the radiated tribes, is found. It is ao called from its resemblance to a lily resting on its stalk ; "it is supposed," enys Mr. Gosner, " that the animnl resided in tho bottom of the flower; and those portions of it which were movalle, stool stretehed out like arms to seize its prey. In the grauwacke at New Canaan, this aniwul appeara like the lily with its capsule and petala closed. It is often of large dimensions ; somo were procured during our last viait to their stony graves, as large as water-melons, although in general they are much compressed, and have been flattened by the weight of the rock resting obove them when in a soft state. This appecies of radiated animals is now altogether extinct, and many ages have passed since a living sprecies could he proluced It has never heen discovered in any of the stratn placed above the new red mindstone; and as it does not appear but in a few of the older strata, the whele race must have enjoyed but a short existence."

Among the shell-fish of the early seas, a few of the most remarkable kinds are described by geologists as ammonitrs and natili. 'Ihese lishes havo been found in great varietica of size; but one peculiarity pervalea them ull, that the greater part of the shell is n curve containing nir-cells, while the animul itself resided in the outer portion, as if a human being were to have a house consisting of a long row of chambers, and live only in the front room. Tho anmonite receives ita name from its resemblance to the curved honn on the liead of the statue of Jupiter Ammon. It has beent an animal of wonderful character and habits. Some of then lave been of a minuteness scarcely visille, and others four feet widoThey are found over the wholo surface of the carth. The economy of this animal destined it to live in general at the bottoms of deep scas, but to be albot to rise occasionally to the surfice. While it lived in tho outer part of its wrenthed shell, the interior curls were hollow, containing eir, so as to mako it c^{r} nearly the same weight with the element in which it lived. As the pressure of the water at the bottom of a deeps sen would break in the plates of any ordinary sbell, as it does a bottle when one is lowered te n considerable depth, the slell of the ammonite hus been strengthened by a curious kind of internal arels-work, so as to be alle to resist the weight of the incumbent fluid. This arch-work so completely meets all human ideas of ingenious contrivance for the purpose which it was destined to serve, as to form one of the most striking examples of that adajtation of means to ends which is universal in the vorks of nature, and which. is so well fitted to impress the conviction of a great designing First Cause. The weight of the ammonite was so nicely adjusted to an equality with the water, that its filling with air or water a amull central pije which runa through the whole extent of the curve, was sufficient to make it rise as high or sink as low as might suit its inclimation.
I'he Trilohites are another of the early species which deserve particular notice. Their romains, like those of the ammonites, are universal over the earth. It is curious that, whilo they hive long ceased to live, other genera or kinds of the same clase of creatures (('iustace:i) still exist, and serve to afford aome knowledge of their habits. The trilohite had a head and eyea, below which there was a body of no great length, covered with thelly plates in tho manner of a lobster's tail, and terminative in a narrow rounded point. It is supprosed that it lad solt paddles to make way through the water, which luve not of courso been preserved. But the most intereming fieature in the trilobite was its eyes, of which several specincus have been obtained in n nearly entire state. The eye of the tribohite has been formed with 400 spherical lenses in separate compartments on the surface of a corien projecting conically upmanls, so that the aninual. in its usuan place at the bottoms of waters, could see evers thing around

As there hnve been the viaion no lenses, riple obse is found th the cyes a except tha dilferenere, lusk olontru that in nll same.
This littl ing man t befors his r by which h the sea mus the water 1 ture destine lad no use gard to the that, bud it might haven ing ditherene havelieen for such rays w ilso, we lea orgunization of Light to same at the lirulty of vi val seas, as

A few hot wacke; but really have be said to ine the auimal whrated unim u-brata

This is a only the coal mod athers alt on which the in a state of Limestone, a

The oml lir mand, cemente as comtaon ir strata are som of suveral thot
Monntrin I surface of a va Quick-lime, fo tion of the mi tain limestone building stone. being probably its formation. comprehunds p limestone is t calcareous spar poad of organ thase can he de hut mostly gra situations it aff a considerathe, ut is likewise u the breakwater valuable veins The superio iferores, and vat

As there are two eyes, one of the mides of each would hnve been uscless, ns it could only look across to meet the vision of the other; but on the inner sides there are no lenses, that nothing may, in accordance with a prinmiple observable throughous nature, he thrown away. It is found that in the serolis, a surviving kindred genus, the cyes are constructed on exactly the same principle, exepit that they are not so high, which seems a proper didicrence, us the back of the serolis is lower, and presents less obetruction to the creature's vision. It is nlso found that in nll the trilobites of the later rocks, the cyes are the same.

This little organ of a trivial little animal carries to living man the certain knowledge, that, millions of yeare before his race existed, the air he breathes, and the light by which he sees, were the same as at this hour, and that the sea must have been in general as pure as it is now. If the water had been constantly turbid or chaotic, a ereature destined to tive at the bottom of the sea wond have lind no une for such delicate visual organs. "With regurd to the atmosphere," suys Dr. Buckland, "we infer that, haul it differed wonterially from its actual condition, it might has eno fir affected the rays of light, that a corresponding diflerence from the eyes of existing crastaceans would have been found in the organs on whieh the impressions of such rays were then received. Regarding light itwetl; also, we learn, from the resemblance of these most ancient organizations to existing eyes, that the mutual relationa of Light to the Eye, and of the Eye to Light, were the same at the time when crustaceans entowed with the firulty of vision were placed at the bottom of the primeval seas, as nt the present moment."

A fiew bones of fishes have been found in the grauwarke; but some oliscurity rests on the point. If sach ecally have been the case, the remains of this era may the suid to include specimens of all the four divisions of the auimal kingdom-radiated, jointed, pulpy, and vertethated animals, or radiata, articulata, ruollusca, and verubrata

sECONDARY.

Carboniferous Group.

This is a very comprehensive group, embracing not only the coal strata, and the beds of sandstone, limestone, and others alternating with the $e x$, but two great formations on which the proper coal group may be said to rest (though in a state of intimate commection), named the Mountain Limestone, and the Old Red Sandstone.
The Oht Red Sandstane is a rock composed of grains of sand, cemented by the oxide of iron (the same substance as common iron rust), which gives it its red colour. Its strata are sometimes thin, and sometimes of the thickness of several thousund feet.

Mountuin Limestone is an abundant rock. It forms the surface of n vast portion of the central counties of Ireland. Quick-lime, for the improvement of soil, and the preparation of the mortar used in luilding, is made from mounain limestonc. It is also used in many countries as a building stone. Great caverns often occur in this rock, being probalily owing to some chemical phenomenon in its formation. One of these nt Mitchelston, in Ireland, comprehonds passages several miles in extent. Moontain limestone is frequently traversed by beautiful veins of calcareous spar, at times nppearing to be principally composed of organie remains, while at others not a trace ot these can le detected. 'This rock is of various colours, hut most! y gray, varying in intensity of shade. In some situations it affords good marble, which is susceptible of a considerable degree of polish. From its durable nature, it is likewime ned in building. 'Ihat stupendous work, the breakwater at I'lymouth, is composed of it. Many valuable veins of lead ore oceur in this rock.

The superior group more particularly called Carhoniferots, and variously termed the Coul Measures, is com-
Yos $1 .-5$
posed of beda of that mineral, often very numerous, alter nating with beds of aandstone, shule, limestone, ironstone, and some other substances. As many as forty beds of coal exist in the neighbourhood of the town of Nowcastle. The great utility of this mineral as a domestic fucl, and in the arts, gives it a high importance, and happy is the country in which it exista in any considerablo quantity. In a merely geological point of view, it is equally important. This rock is entirely a mass of vegetable matter, which has accumulated in certain situations, and atterwards been covered over and pressed into a hard consistence under other strata.
'I'wo suppositions have been formed respecting the ciro cumstances under which coal was formed. Accorling to one, the vegetable matter must have grown in a dense forest for many years; then the lnod must have sunk, and become the basin of a lake or estunry, in which situation rivers would wash into it mud and sand, which would cover over the vegetable mass, and form superincumbent beds of shale and sandstone respectively. Then, the ground would be once more elevated, or sufficiently shoaled up, to becopre again a scene of luxuriant vegetation. When the regetation had again become accumulated, the land woukd he again sunk, and become once moro the hasin of a loke, in which case the beds of mud and sand might ngain be formed by rivers. And this alternating process is surposed to have taken place aa often as there are beds of coal to be accounted for. 'I'he other thecry is, that, into some great estuary or lake, rivers coming from difierent quarters would tring the various matters forming the strata of the emboniferous group, n river from one direction bringing the mud which wond form shale, another from another direction the vegetable matter which would form coal, and so on, each deposit perhaps taking place through the efficacy of somo local circumstances, while the causes for the other deposits were temporarily suspended. At present great difficultica beset both thesries.

Fossils of the Carboniferous Group.

In this group of rocks, about 300 apecics of planta have been discovered, all of them now extinct. About twothirds of them are ferms; the others consist of large conifere (allicd to tho pine), of gigantic lycapodiacea, of species allied to the cucter and cuphorbiacea, and of pa!ms. Most of these plants probally exist in the coal beds, forming in fuct their sole composition; but the peculiar nature of this mineral renders it difficult to detect them by examination.* 'Ihin slices, however, have been examined by the microscope, and the vegetable structure has then been detected, where wo external trace of it waa visible. In cannel conl, a kind peculiarly hard, the vegetable strueture is observed throughout the whole mase, while the fine conl retains it only in small patches, which appear as it were mechanically entangled. Slate and cannel coal often bear distinct impressions of plants. The phants are such as grow in hot moist situations; and it is therefore presumed, that a climate of that nature existed at an early period where coat is now found, even in Melville's Island, which is within the polar circle. Dr. Hutton thought that the vegctables mast have been carbonized (or charred) by heat; but Dr. Nacculloch contends, on good grounds, that the change las heen eflected solely by water and pressure, and that by these agents peat is capable of leing converted into coal.

Large lragments of trees are often found in the shale and sandstone leds of the carbmiterons group, more frequently in the former than in the later. As usual with fossil suhstances, they are converted into the material in which they are imbedded, hut jreserve all their original limeanents, except that wey are generally changed from their origimal round to a thattened form, the rusult of the

[^2]pressure they have austainel. In most instances, these fragmenta of treen appear to have been transported from a distance, and laid down horizontally in their present aituatlon; but some have been found with their roots atill planted in their native soil of mud, and the atems shooting apwarda through several superior beda of various subatances. Even in some coal beds, there are found atems of trees in their original vertical position; the roots leing imbedded in shalo beneath. In these instances, we must suppose the fossil to be on the spet where the living tree was planted, grew, and died. In the Bensham coal seam, in the Jarrow coal-fichd, a few ycara ago, there was found an upright tree of the kind called Iepidodendra, thirteen and a half feet wide at the base, and thirty-nine feet high, the branches at the top being also entire; the lepidodendron, a common plant in this group, is so called from the ecaly appearance of its atem, the scales being the roots of the ieaf stalks. Various fossil trees lave been discovered in the saudstone beds of the carboniferous group, at Craigleith and Granton, in the county of Ediubburgh. One found in Cruigleith quarry was twenty feet long, three feet in diameter, with scars where the braschea had been torn off, and was ascertained, by microscopic inspection of slices of the trunk, to have been a cenifera of the genus Arumearia, of which living species exist in New Holland.
The animal remains of the carboniferous greup are much the same as those of the grauwacke-zoophytes, mollusca, crustacea, and a few fislies.

NEW RED SANDSTONE GROUP.

This group of strata, lying above the carboniferous group, comprehents rocks called-
The Red Conglomeratc, formed of pieces of earlicr rocks, some rough, some smoothed by rolling, all caked nogether;

Zechstein, a kind of limestone, alounding in Germany;
Red or Joricguted Sandstones, a group of many vareties of colour, and prineipally of srgilluceous and siliceous consistence, much used for building in England aul other countries;

Muschelkalk, a limestone varying in texture, but most frequently gray and compact; not found in Britain or France, but occurring in Ciermany and Poland;

Variegated Mark-beds of rock of dilferent colours, red, blue, and gray, composed of the remains of shell-fish.

T'S this group also belong beds of rock salt, of which mary exist in England, particolarly in the county of Chester. Rock salt is a crystalline mass, forming regular strata, sometimes of the thickness of many feet. The substance is rarely pure, hut gencrally contains sone portion of oxide of iron, which gives it a red colour. It is dug like coal and other minerals, and when melted and subjected to proper purilication, is sold for domestic purposes.

fossils of the new red sandstone group.

The vegetable remains of this group, are much the mane as those of the preceding; but in the department of enimal life, when we arrive at the Muschelkalk, or Shell Limentone, we find a great ditlirence, leading to a supposition that, at this era of geological chronology, acireumstances had arisen changing the character of marine life over certain portions of Europe; that certion animals abounding previously, and for a great lengt: of time, disappeared never to reappear, at hast as liar has we can judge from our knowledge of orgmic remains;"* and that cortain new forms of a very remarkable kind were ailded.

The new creatures were of such a class as we might expect to be the first added to the few specimens of tish wiich had hitherto existed: they were of the clata of : eeptilea, creatures whose organization places them next
in the acale of ereation to fixhl, lut get below the nigher clase of animals which bring forth their young alive and nourish them hy auck (mammalia). The earth wae un yet only fit to he a partial habitation to creatures breath ing its atmowibere and living upon ita productions. It is supposed to havo been under so high a temperature an to be unsuitable for manmalia: the lands which exinted were probably low and marshy, with a hot, moist atmoaphere, so as to present an approprinte field of existence only for lizards, crocoliles, and crentures of similar character. It is also to ie supponed that the thad was at thim period ondergoing frequent chmages nud convolsions, so that only a class of creatures to which submersiona and tleluges were mattera of indifference, could reside upon it without a greater waste of life than was part of the Gireat General Design. The Reptiles, which first liegin to appear in the Muschelkslk, continued to flourish while a great succession of other rocks was forming throughout the whele of the Secondary Formation, there were lew other land animals. In fact, the world must havo leees in the possession of reptiles for a many thousand times longer period than it nppears to have yet been in the possession of man. "When we see," anya Dr. Buckland, "that so large and important a range han treen assignell to reptiles among the former population of our planet, we cannot hut regard with frelings of new and unusual interest, the comparatively diminutive existing orders of that most ancient fomily of quadrupeds, with the very name of which we nsually nssociate a sentiment of disgust. We slanll view them with less contempth when we learn, from the recorls of geological history that there was a time when reptiles not only constituted the chicf tenants and most powerful possessors of the earth, but extended their dominion ulso over the waters of the sens; and that the annals of their history may to traced back through thousands of years antecedent to that latest point in the progressive stages of animal creation, when the first parents of the human race were called into existence."*
The Reptiles of this early age were peculiar both in size and in structure. Some, which inhalited the sean, resembled lizards, bot were of gigantic size; others, do signed for land as well ansen, resembled the crocoliles which still exist in warm climates.

One of tho most remarkahle kind (genern) has roceived the name of Ithyosuurus (Fish Lizari), of which seven species or varieties have been discosered. The heal is like that of the crocodile, composed of two hong sicuder jaws, provided with a great number of tereth (in some cases 180), and cyes of great size (in onc instance, the cavity for the eys has been leund to monsure fourtren inches), while the nostril, instend of leing near the snout, as in the crorodils, was near the anterior angle of the eye. The boly was tish-like, arranged upon a lona spinal colum, which consisted of more than a hundred joints, and to whicha a series of sender rils was attached nand terminating in a long and broal tail, which mana have possersact great strength. The whole lengeth of some specimens o. the Iethyosaurus was about thirty feet. Instead of the feet, with which the lizard nud crocodite are furnished, the Iethyosimrus had four paldles like those of the whale trilxes, fitting it to move throweh the waters in the manmer of those mimals. It hatid also a construetion of the sternum or breast-arch, and of the fore pudhes, similar to that fonud in the Ornithorynchas, an myatic quadresed of New Holland, and evidenty devigned, as in the ease of that suimal, thenaWe it to desernd to the bottoms of waters in search of foosl. White the lethyosauros, then, is mainly allied to the lizard tribes, it conaned in itself the additional chor racters of the fish, the whate, and the Ornihhorgnchus. "As the form of the vertelire by which it is associated

With the cuass of fir the purpose lizurd inhabiting aduption of a str utes of a whale, extremitics into of a fircula and cluns, offers a thir tion of contrivan live in the eleme cannot be consid adaptatlons of a ot being. Ouly existed in other hreast-nreh, were How strange to were allowed to nature, and ultim in connection wit
Tho internal es Ifthyogaurua, hav made clear ly the of animals found It appears that th tending throughot theon fish and oth must have occasi lougth. Masees fiel ne hard as reclogists under marked spirally, sharks and dog-f greatly, in order room. We thus very important p extinct race of an a space in their h ties of food, and hat the speed of not ${ }^{\text {be cosed }} \mathrm{h}$ imaller intestines auture, rellused n viled like a cork thus diminishect," ahsorbing surfice haal been circular.
The nume Ple remarkable reptile world befforo the cies has been de: which bore some rus, the foriner be and more powerfiu boly of a serpent, but also partaking crocodile and Ieth backbone of this ing it, contained thirty-three of wh bre are found to by of the Iethyosaurn rapid motion. 'Th formed in fiur par trin a capacious ar lumgs were intlate sendle the ribs of are now known to its inspirations. little contidence, t of changing its co tishly necessary both to enable it
cious Iethyonauri. and that it might more readily ma anare and acize the creatures designed to be its prey. The Plewionaurus promally lived eliefly on or near the suriges of the water, brenthing the air, and dabbling far prey like a duck or swan, but might also be able to descend to the hottom, and even to mova, though nwkwardly, upon land. Ona purt of its organization in peculiarly atrikinu, na foreahadowing a atructure of a mare important kind. 'The puldles, which may be considered an 'ane or improvement upon the fina of fishes, are a: same time the type of the lege of quadrupels and os the arms and liahss of man. The fore paddle consists of scapula (shoulder hilado), humerus (shoulder), ulan (upper hone), and radias (lower hone), succeeded by the bones of the carpus und metaearpus, and the phalanges, equivalent to thoso which compose the palin and fingers of a human being. The hind paddle presents femur, tibin, and fibula, snceeeded by the bones of the tarsuas and metataraus, and five toes. Thus "even our own hodies, and some of their most important organs, are brought into close and direct comparison with those of reptiles, which at first sight appear the most monstrous proluctions of creation; and in the very hands and fingers with which wo write their history, we recognise the type of the paddles in the Icthyosaurus and Plesiogaurus."*

Of the Crocolile family found in abundance in this class of rocks, the Iruanodon, of which remains havo been found in the fresh-water formation at Welden in Eugland, may be cited na a specimen. It was a huge animal, resemhling the present Iguma of South America, which chiefly lives upun plants und secds. The smallest part of the thigh-bone of an Iguanodon was found to be twenty-two ineles in circumference, and much larger than that of any existing elephant. Species resembling tho present Gavial of the Ganges have also been found. It may fairly be inferted from the prosent hahits of the Gavial and other kinds of Crocolilea, that at the time when the extinct species flourished, the world must have contained many low shores and savannahs, fitted for the residence of surh creatures. Some parts of England are thus proved to have had nt one timo shores of lakes and estuaries resembling those of tho Gauges, the Nile, and other waters in hot countrien, and consequently a much higher temperature than nt present.

But perhaps the greatest wonder of the Reptile Aga, was the crenture called the Ptrrodur'yle. Mainly a reptile of the lizard kind, its body possessed some of the characteristies of the mammalin; it had the wings of a bat, the neck of a lird, and a head furnished with long jaws full of teeth, so that in this last part of its organizution it bore some resemblance to the crocodile. Eight species of the Pterodactyle which have been found, vary from the size of a snipe to that of a cormorant. Tho eyes were of enormous size, apparently enabling it to fly ly night. From the wings projected fingers terminated by long hooks, like the curved claw on the thumb of the bat. Those inust have formed a powerlul paw, wherewith the animal was enmbled to creep or elimb, or suspend itself from trees. It has ieen conjectured that the Pterolactyle would chiefly live on flying inseets, of which, it is important to notice, secernl varieties existed at the same time, their remains being found in the same rock And it is likely, from the size of the eyes, that it searched for prey by nichtt as well as by day. But it hass nlso been argued, from the great leneth and strength of the jaws, and the length of the neck, that the Pterodactyle dial not live eolely upon flies, hut likiswise sought for fish in the mamer of our own present sca-birds.

Tortoises also existed during this age, ns is proved by the marks of their feet on sheets of sandstone, and by thair remains. But as yet no animals of a higher ciam
nad appearral upon earth for the remaina of ecrtain rreat area of the Opmaxum fimily, found in the oolite at Ritonsmeld, near Oxford, atanil an yet ao solitary, that we cannot consider them an proving that mammalia were ailded to reptles, With, then, fockn of Pterodactyien fying in the air in puranit of huge dragon-fies ; gigantic ervecotilea and tortoinea crawling amidat the junglon of low, moint, and warm shorea, and auch monaters an the Jethynanurus and Pleniosnurus swarming on the surface of the nea, while its deptha were propled by infinite variotiea of finh, ahelled and vertehrated; we can form some faint idea of what mort of world it was while the strata between the conl and the chalk were in the course of leeing deposited.

Olitic Group.

Next in order in a group which derives its name from a kind of linestone conspicuous in it, called oolite. Oolite, again, is named from ita resenibling the rega or ree of fish. The colite group comprehends, hesiltes colite itself, various alternating claya, sandatones, maris, and lime:tonen.
Oolite is a carbonate of lime, intermixed with other Ingredients. The oolites found at Bath, Portand, and Purbeck, are much eatcemed in building. In the oolite which occurs over a censidicrable part of western Europe, there is a general uniformity of structure. In other parts of the worid it differs very considerahly, especially in its min-ralogical charneter; nnd when this is the ense, in order to determine whether certain rceks lelong to the group or not, recourse has been had to the organic remains contained in them. In some parts of Europe these are very abundant, and in other places the revenue. To account for this difference, it has been supposed that in those parts of western Europe where thry are alumdant, shallow sess existed; while in those places, such as Italy and Greece, where few remains are found in the firmation, the waters were decp.

With reepect to the deposition of the oolitic group, nothing very satisfactory can be snid. Whence came the immense quantity of eartonate of lime, is a question not easily answered. Tc account for it by springs, similar in sizo and saline contents to these we now sec, appenrs to be unphilosophical. Many limestones are nea."y uttogether composed of organic remains; and this h, led to a theory, that these animula extracted lime frou، the water, leaving their shells, proluced through miilions of generations, to be gradually converted into limestone. Notwithstanding aill that we can suppose wan deposited from springs and orgunic boclies, "there remains," says Do la Beche, "a mass of limestone to be accoumed for, distributed gencrally over a very large surfare, which requires a very gencral production, or rather deposit, of carbonate of lime contemporancously, or nearly so, over a great area."

In the oolitic group is comprehended ly some geniog:ats an important subordinato group, named the lian, which may be generally descriled as an argillaceous and calcareous deposit, sometimes the clayey material predominating, and sonetimes the limey.

Fossils of the Oolitic Group.

In this group are found, as in some of the preceding, nlge (sea-weeds), equisctarea (mares' tiils), filices (fems), und comifere (allied to the pine). The animal remains are nearly the sarae ss in the preceding group, but of a greater vsriety of species.

Cretaceous ar Chalk Growy.

This group, the uppermost of the secmadary acries of "ocka, is so named from the beds of chalk of which it is manly formed. Chalk is a carbonate of lime. It is vary prentiful in England; and at Dover and other places e rune along the coast in cliffe and mountains of con-
sidernhle mize. Nodules or small masacs of flint, meme times containing momains of ahells and animala, are abundant in chalk, and it is extremely ditlicult to accuunt for their presence there. In the iower parts of the Eing. liah chalk depoxith, the flint dinapprar, becoming gradually more rare in the pasange downwards. From this circumatance, the group han lwen wometimes divided into upper, or chalk with fints, and lower, or chalk withous fins. Hut this chanacteriatic doen not universally prevail. Beneath the chatk there is a rock called greenanuid, whith in Nornandy is used as a luilding stone. An argillacenus dipposit called ganll nimo occura; it in of a bluinh. gray colour, and is frequently compesed of clay in the nypher, and marls in the lower part.
The crelaceous group, tnken na a mass, may, in Eng. land, and over a consideraldo portion of France nud Gurmany, be considerel nas cretacrous in its mpper jurt, and anndy and clayey in its lower part. The group in extensivily distrilutad over Furoper and M. de In lieche mukes the following oleservations upon ity minurulogical rharacter in gencral:-"Throughout the Hritish indands, a large part of France, many parta of Germany, in l'oland, Sweden, and in various parts of Russia, there would appear to have been cortain causes in operation, at a given prefod, which produect neurly, or very nearly, the same reffecta. The variation in the lower portion of the deposit scems merrly to consiat in the absence or presence of a greater or Iess abundance of clays or sands, substnnces which we may consider as produced by the deotruction of previously existing land, and as deposited foom watere which heid surl detrons in mechanical suspension. The Lnequal deposit of the two kinds of matter in different situations would be in accordance with such a supphemi.ies. But when we turn to the highos part of the group, into which the lower portion gradu. atps, the theory of mere transport apprars opposed to the phenomena olserved, which seem rather to have been produced by dejosition, from a cliemical solution of carbonate of line nad ailex, covering a considerable area.' M. de la becho goes on to state, that no springn, or set of springs, coull have produced the great deposits of chalk which cover immense surfaces. "1But," says he, "although springs, in our neceptation of the term, could acarcely have caused the efficts repuired, wo may perhaps look to a greater exertion of the power which now produces thermal waters for a possille explanation of the ohserved phenomena." Mr. Lyell states, that chalk inust have originated in the sea, in the form of sediment, from tranquil water; and that, lefore the existence of the rocks alove it, mast have heen raised in large portions ahove the water, and expoed to the destroying pewer of the elements.

Foseils of the Cretareous Group.

In this group, confervec and nuiles were added to the vegetables; to the animal remains some fishes are alded. Int the number of the saurian reptiles is diminished.

A apecies of rocks, callid the lifalifen rerks, occu beneath the lower green mand of the Euglish series, and are chameterized by the presence of terrestrial and fremhwater remaina in abundance.

tertialif.

The cretaceous group was at one tine though to :e the uppromest; but it was in time discovered that, in se. veral places, and particularly under the sites of the ritics of landon and laris, there exinted astill higher gromp or series, to which the name supra-cretaccons was thereforo at first given, afterwards clanged to the Tertiary Formation or Tertisry Series.
The tertiary rocks appear as if they had loen formed in great hollows or busins in the former surface: henca it is custumary to sprak of the London Busin, the P'aris basin, \&c. The larip lasin has been well explored
and in muppo ary Formati aerien, when orkanic rem trewh water, They have

IVrash-wate
9. Marine fort

3 Steconil fres mation,
4. Sceond ma tion,
B. Thirit fresh mation,
Plustic Cl from its easi to it, and, fro pottcries, It irregular, and of hills and and above $i t$, quently occur he called pinst tains organic mass, it is atat lower parta. rommonly oee ture, sometime remains.
Calraire Gr a coarse limes purpones. It beneath by al ceous or clayey enclosed in it corresponding when the beds Silireons Lin times gray and often full of ce municate witn
Gypsum ant atance compose snd water. It diffierent varieti in ancient time consist of shalt marls ; these m this alternation leen depunited which, from the been deposited

Leper Maria of irregular bed sminal remaius brokell and very lions of sinall in occasionally cov with marine sha

Lpper l'reshconsists of whit, -ilicous compo celebrated kind with shells and
The supratere known by the shot samid. the Wight, and the

Plisice Cling. contsins an whu uneful puiposes,
and in mupposed to present a gool example of the Tert ary Formation. It conviata of five aubordinate groupe on series, whenof the firut, thiri, and fifth, appear, froin the organle remalnn found in them, to have heen formed in trash water, and the seconll and fourth in eea water. Ihey have been thua arranged in an ascending order:-

- Yresh-waler formation,
lingice chay.
i, gnite.
Freah-waier formaion, $\{$, ignite.

8. Marine fomation, Cnicaire arossier

3 Second freabowater for- $\left\{\begin{array}{l}\text { Niticenian limeatone. }\end{array}\right.$
Second freah-water for- $\left\{\begin{array}{l}\text { dy y pain, with bones of anmala, } \\ \text { mation }\end{array}\right.$
Froh-water marla
4. Sceond marine formaHion,
B. Thirit freah-waler formation,
Plutic Cluy.-This muhatunce has been mo named frem its casily receiving and preserving the formn given to it , nud, from possensing this property, it is used in tho potteries. It rests upon a surfice of chalk, which is very irregular, and furrowed out so as to present an alternation of hille and valleys. This clay is of various colours; and above it, and separated by a layer of sand, there frequently occurs another lied of clny, which scareely can be culted plattic. It ia black, sandy, and sometinea contains organic remaina. In this deposit, considered an a mass, it is atated that orgnnic remaina do not occur in the lower parts. In the centrnl portion, fresh-water animals commonly occur, and in the upper part there is a mixture, sometimes an alternation, of marino and fresh-water remains.
Culruire Grossier, na ita name impliea, la composed of conrse limestone, which is employed for arehitectural purposes. It ia frequently separated fron the plastic elay lenenth by a bed of sand, and it alternatie with argilla. cosua or clayey beds. The animnl and vegetable remains enclosed in it aro numerous, and gencrally the rame in corresponding beda, presenting conkiderable differencea when the bella are not identical.
Silireous Limestone ia sometimes white and roft, sometimes gray and eompact, and penetrated ly silex. It ia often full of cells, which are ocrasionally large, and communicate with euch other in all directiona.

Gypsum and Marls.-Gypsum :s a crystalline subatance composed of lime, in union with sulphuric neid and water. Its colours are gray, white, and yellow; but diffirent varieties of it have different hues. It was used in ancient times for window glass. The gypseous rocka consist of an olternation of sypsum an.l limey and elnyey marls; these mar's are also found in thick beda niove this alternation. Theae beds aro coneidered as laving Ieen deposited in freeh water, and above them are othera, which, from their arganic remaina, are believed to have been deposited in the sea.

Upier Marine Sands and Sandstones.-These consist of irregular leds of silicenus sandstone and sand. The mimal remaina in the lower portion of these beda are braken and very rare. In some situationa, however, millings of smull bordiea have been found. These bedy nre occasionally covered with a species of rock which is filled with marine shells.
liper Fresh-W'uter Formation.-'This roek sometimes consists of white ealenrrous marls, it others of dilferent ailiecous compounds ; from one of these, mitstones of a enlebrated kind are formed. They are aometines charged with shells and petritied wood.
The suprawitaceous roeks of England are commonly known by the mames of plastic clay, London clay, Bagdout sands, the fresh-water formations of the lislo of Wisht and the cras of Norfork.
Plasic Cliy.-This deposit, though it occasionally contains an abmolance of clay, employed for various uneful purposes, is also mixed with beds of peible, irre-
gulas -iterna if with manda and clay. It thun difiero from of 1 arie, bat i agreen with it so far an u repperen it in unevi fface of chalk. The organie remain ame prancipally arfue, but thome of fresh-whes, and te trial animala a intermingles withe them.

Lonno Clay.-The at argillar odepemit wh underlies the Loondon district, lism t Itath thim moma It in of a bluiah or blackiwh rolour, ul centains in mo tion of calcareous matter; bedh ol chlotone are oo said to he occasiunally present in it This elay 1 a considerably in thickneas, sometimes it in aeventyoneven to aeven hundred feet. Besidea the rem ine of a ram variety of whell-fish, those of a crocodile and turtle have been found; masses of wood have alno occurred in this stratum.

Ilognhot Sauds,-These rest upon the London clay, and consint of layora of various kinda of aunds and marla containing foesil shella.

The Isle of Wight and London formations, although dilfering considerably in tho nature of their depositn from thoso of Раris, present such an analogy in tho organic remaine of mome parts of the group, that we are justified in referring the deposit to the same epoch, locsal cireumstances and accidents having determined their charactera.

It may be observed, that voleanic agency has been very active during the formation of this group. AEtna, it wuuld appear, has for a long weries of ages given forth itu igncous products, and a considerable portion of these rest upon aupra-cretaceous rocks. In central Franec, whero extinet volcanoes are numerous, this is still more evident; a voleanic mass, called tho Plomb du Cantul, appeara to have burat through and fractured the freshwater limentones of the Cantal, which, according to Mr. Iyell, are equivalent to the fresh-water deposits of Paris and somo of those in England.

Fossils of the Tertiary Scries.

As yet, no distinct traces of the higher forms of or. ganization have appeared. No vestige of the mammiferous or sucking snimals, cither terrestrial or aquatie, which form so large n portion of the exiating animal kingdom-no marks of the bird class, now so extenaive and important-and searcely any token of atheh marine and fresh-water ahella and other productions as abound in the present time-have been discovered either in tho earlier or Jater secondary struta of the globe. 'Tha rare and inileed ulmost unique, cases of supposed exception to this statement, have all been found capalle of such explanations as leave the general truth unshaken.

In the Tertiary Formation wo find a striking and wonderitul change of appearances. These strata are rich beyond all that go before them in animal remaina. At the time of their formation, the aptitude of the earth for the maintenance of organic lifo has vastly increased, and was continunlly increasing, us the priod approached when man hinself and the higher orders of being wers to become its inlalitanta. The way was paved, it will be seen, for this consummation, ly the same regular and progressive steps which eharacterized the organic changes of the geologienl eras alrealy deseribed.

From their relative position, and from the organte remains contained in them, geologists have been enabled to distinguish, in the tertiary series of strata, four great eras of formation. One of the most striking and novel features of these formations consists, as already mentioned. in the repeated ulternations of fresh-neuter deposits with marine ones; a circumstance established heyond question by the character of the fossil shells and bones found respectively in these deposits. 'To the oldest of the tertiary eras, the terin Eucene is applied; the mecond is called the Miocene period; the third the Older Pliocene ; nnd the fourth and latest, the Newer Pliocene ; naunes founded on the respective proportions which thes

مomil ahelia hear to shells of oxinting appeciea. In each of thene perionly in jucluded a mreat frenh-wator, an well as a marine, formation or deponit Of the living beinge which flourinied In each of theee periota, we shall essdeavour to give some account, commencing with the moat ancient, the Eiccene.

After the chalky formation, a period of conadilerable enpose meenta to have ennued, during which a large portion of the exiating continents, and in expreeial the holbuwa and hasine on their aurfice, ajplear to huve been the site of vast lakea, rivers and estuarien Prom thear was depowited the firnt great freah-water formation of the Eocene period. Whillo this deposit wan going on, the glohe, no longer an entire atagnant marah, lut as yet incapable of affording much support to terreatrinl anmuls, was tenanted only by surh quadrupeda as live lwaide rivern and lakea. Nearly fifty extinet anecion of maminalia, chiefly of this character, were discovered by tinvier in the first Locene trealsowater formation. I'he most of these belonged to the clans Paehyleroasta (thirkakined arimals), of which the eleplant, the rhighereros, the hog, the tapir, and the horee, are remarkable exiating oxamples, 'Jhs class of l'achydermatous animala, it may be oberved, only includen such thick-*kinued crenturea aa have no more prominent mark to thatingniad them than their skim. 'I'he seal anl the river-loorve, for example, are thick-skinned, hint then they are nuphombe, and that in a more promine:at distinction. 'Tho extiuct animale to which wo now refer resemble the tapir more than any of the other Pachyilermats. Amony thene extinct ereutures, thon mont worthy of notice are the Pataotherimm, the Anophotherium, the Inphiodon, Anthruestherium, Cherapotamus, and one or two other familien, including, some of them, not less than elevera or twelve distinet species, Them mammiferous finitien had some general traits of resemblanee, and the deweription of the great Palootherium may afford an bites of the main fratures of all. 'Thin animal was of the size of the horse, or about four feet and a hatf in height to the wither. It was more muat and elumsy in its proportions than the horwe; the heal was more massive, and the extremities thicker and whorter. On earla fout were thron large tora, rounded, and unprovided witls claws; the ugluer jaw was much longer than the under. The tupir, sud purtly, also, the hoz, if largo enough, would closely resemble the great Jaleotherium. "The Palsotheria (mays IJuekiand) probably lived and died upon the margins of the then existing laken and rivers, and their dead cancoses may have been drifted to the botton in mensons of floal." The other mammiferous families of the firat Focene furmution, were all, like the l'ulaotheria, herbivorous, and had, it is prohalle, similar habils.
'The number of nnimats, aquatic: not terrestrial, vihose remaina are found in the other drposita of the biocene periol, is immense. In some gypsom (mulphate of lime) quarriea of that era, searrely a lleck can lwe opened which does not disclume some fragment of a fiossil skeleton. The following lint of the nnimale found in the gy posum quarries of Puris will whow wulficiently how very difirent from the gigantic reptiles of the secondary eran were the creatures that tenanted, and fonmi liaing sustename on, the earth during the Eocene fimiod. Hesides varinus extinct Pachydermatous lamilise, there were found ex. tinet spectes of the wolf and fox, of the ruccoon and

 birds, of the buzzard, whl, quail, worl-ctack, sentank,
 diles, and other creatures of the Roplite chase; and everal egecties of rishem:-all of these abimats, be it remembered, lwing cothert specion of exisiong familios, exilusive of the faclaydermatoms animals, and the fishes, which were extinct sprecien of certhet famhles. The occurrence of the birds mentioned in the preceding
liat of the Eiocene animais, forms (nays Dr. Huckiand) "a remarkable phenomesorn in the hivenry of opganie remainu." 'I'he number of foneil sheffis found in the Bucene formations I cutionated liy Mr. Jyyelf at 123 m As in the came of the terreatrial creatures, few of thene whell-fish are of recent or existing apecies, not mare, is the utimont, than $3 \frac{1}{2}$ in every hundied. We to not, inorenver, recognian lin the mtrata now under conmalerin. tion, those promigious accumulations of mirroaropic ahellia, as they are callod from their extreme minntenew, that diatinguiah the fommations of the recondury or greweding agen. One small pilece of rowk, of the ases in gremion. has bees found to eontuin above ten thousand changered shella, thoush the whole wrighed only an mane and a half, In fuet, great beds of secondiary limemasise seem to lue alnoat wholly compomed of nicrosenpic. shells, Sueh phenomena am not promented in the liocerne of euberquent tertiary formationm. 'I'he shells of thene perionle, an has been already olmerved, approximate more to the character of recome or exiatiag nowion

In the Eincene perioml, thent the eurlicat of the Tepo tinry eris-we gerecive, for the first time, the eximence in the animal kingdom of a similar order to that which now prevaila, indiruting that the earth nud its ntmomphere were in a cortan degree aswimilated to their prement condition. It mecons impaanilile, however, to agree with Mr. Lsiell in tho sulpoined remark on the Fowene era:"When we reflect (naya that writer) on the tranquit state of the eurth, implical ly some of the hake-formed and satiolormed deposits of this age, sud comsider the fulues of all the different clasius of the animal kingdom, in dedured from tho stuly of tho fiomsil remains, we are naturally hod to conclude that the earth was at that perionl in a jeifertly metled state, anil alrendy fitted lor the hatitation of mian." Severul strong argumenta might te nddueral againat thia conclusion, tut wo ahall only refor to one ohjection-the tembensturn. From the frepueney of the remins of erosodiles nad other tropical repuiles in the Boorene formations, and from the frequency of palm-lemsen mid trunks, as well as fiom other evi. dencen, the atmonphere may lwe rugariled as having been atill at too high a temperature fior human comfort. Vol eanic action, morcover, ajpears to have leetn of very common orcmirrence.

I'lie mecunil, or Niosene period, however, of the 'Pertiary asea, loringe us a mep nearer to the existing condition of thinge. A strong proof of this in derivion from the shells alone of the strata of this periud. Whereas only thres in the hundred Eiseene fossila were of recent aprocios, of the Mionecte rluells we find dighteen in the humbed to have existing represpontatives, Along with the mammalin, nlso, of the Focene juriod, we find that the Niocene deposits present un with the easliest forms of anininls existing at the present time. In I)r. Burkland's Bridgewater 'I'reative, a table is given, ex. hilhiting the animals found at Darmotadt, in a bed of sund referable to the Niocene period. In this list are mentioned two skeletons of the Dinotheriuro, a large herlivorous animal, called by Cuvier the Cigantic' Trapir; two largo Tapiry; Calicotherium-two large 'lupir-like numals of this name; two Rhinoceroser; Hipputherium, an animal allied to the horse; three lloцs; four large Catm, bome as harge an a lion; the crouture callod the Glatton; Agnotheriam, ullied to the dog; and Mashatrodus, an mimal nllied to the bear. From this list the rember will petewive the gradual njproach in the sjorme mimals to existing लercies, 'The lagest of the werres.
 under notice; it is the. Jinatheriam, or (igantic 'Papir. already momitionad. No complete sheletom lase yet luen
 imagine the maimat to have remelod the extmonlimaty lemeth of rightern teet. The mont remarkable pee diatr tiel of ites structure consinta in two enornory tumbs ul
the ent of reweimblen - the prower firresfinat.
the livead If
half-aquatie
:unke migh
alou 行 мunt jmillings the nimilar pair (lanil) of 11 we recognicomultions os pericils, to ualoun rera

In the 11
If mambern
Whates, is
Fuw of the which exist being great as the consi exinting one temantry of things in It herrestrial n Misecme fo sigantic rej houl мениme port of the time, thee oee In the Mine that many and esturie
It now rer arities of t which, for perinds, the which imme luvial layer of the ghatie.

Proceedin: terrestrial ert as has alread remuins to t markable pr Pliocene preri of the Diesere Plinerne fros cene not lims dred, aro ide great chanse Paleotherimi striking anim ing. In plare matoun or thic the Pliocene Pachydernat, noceros, and belong to vari almo now ni camels, and though it is of cmains in the gressise npper amimal kingch creatures, nows carth, that the porsent elicells in there wond Le this portic atcrutions.
'The enormi loungs to the

Hu'kiond)

forganis

 nd in the at 12:18 N of thene t more, n edo nnt conimiderin yic abrlla, preveding 1 quemtion, chambered nere and a then weem pir. whells. Bincime ol nate more , eximtence that which atmomphere penent conwith Mr. we era :-te tranqui lake-formed onsider the imal kingecil remains, arth was at rrady filted argumenta ut wo whall From the ther tropical therguency other eviraving bern nfort. Vol en lif very ver, of the he existing in derivan fosuils wera nd eighteren vers. Aloug ionl, we find the carliest ne. In Dr. 3 given, exhed of sand at are menlarge herbintio. 'I'apir; e 'I'apir-like plotherium, four large - called tha and Machaithis list the the sliorene f the worres. feriod now fantic 'Inpir. has yet licen ranal oblu'r sthaonlimery Su pextatr tuxhs at

Nie end of the lower Jnw, and the whoulder-hlade, which remetmilem that of a mole, and in calculated to hove given , the power of digging, of other frue movensent, to the forediont. it seemis probable that this atupendeun croutuna Hved in freals water lakee, and had the halfeserrestrial, hulfagusatic haliste of the walrus or tiverohoree. Thee conke might bo uned in digging uj roota and planta, and abo lo mataining the lieal on bank during alecp, or in pulling the boily out of the water, an the walrus uwen a similar pair of cumk. "In thome sharnetors (wny" lluek. (anif) of thim gigantic, herhivoroum, ayuatic gualroped, we rerognton mitaptatione to the luenatrine (hakroenverei) condition of the carth, daring that portion of the tertiary parricha, for whirh the exintence of theme wermingly ancusaloun "renturen meme to huve lseen limited."
lo the Niowene perion, the mean Inewme the habitation tof numbers of marine manmalia, consisting of Dophins, Whates, Sedole, Wilrus, mud the Lamantin, or Manuti, Fow of these animate were of the manse uneries an thome which exist it present, hut the dillerrueen wern fir from bejug great or remarkable. 'I'him rifcumstance, as well an the considerable number of fowil whella dentient with exjating onen, oxhihits an approarl in the chameter mal tenantry of the Miocene mans to the prewerit nente of thing" in these rempects. 'I'he diseovery, also, of true wrrestrial mammalia, as the Khinoceros and Hog, in the Aleceno formations, show, that sine the ern of the gigantic repition, no wlight pertion of the carth's aturliace hat assument the rondition of dry land, fit fur tho nupe port of the common herbivoronn creatures. At the anme tine, the oceurrence of such animals an the Dinotherinm II the Blincene ntratn, proves, na Dr. Bucklund remarkn, thut many regiens were atill covered with great laken and eatuarieg.

It now remains to inquire into the nature and peculiaritice of the animals charncterizing the Plisecne uge, which, for convonipuce, has harol nrmuged intir twn periods, the fheder and Nower Pliocrae, the latter of which immediately preceded the formation of the Dilusial layer constituting the present superficial motter of the ghotie.

Procerding from the deepest seated portions of the terrestrial erust upowata, we find n progocesive appromeh. as has abranly leron stated, in the chameter of the animal remains to the existing varicties of animal life. A reo markable proas of this is premolited by the whille of the Phocene protials. Whereas only eishteren in the handred of the Miserne shells were of recent spercios, in the Ohder Plioene from thirty-five to tifly, und in the Newer Pliocene not lows than from ninety to ninety otive in the hundrod, are illentical with shells of existing spercions. I'his great change in meompanided by the dis, ppearance of the Pabeotherian fimily and others, which formed the mont striking animal remaina of the perials immediately preceding. In place of these extinet specios of axtinet liachydermatous or thick-skinoed familien, we observe in the ntrata of the Pliocene pariods n vast number of remains of enisting Pachydematous limilies, such as the dephant, the rhinoceros, and the hippopotanus, though these remains belong to variction that are now extinct. 'I'he first traces alao now appear of Kuminant mamals-of oxen, derer, cancls, and other recatures of the same clans. llut though it is of impertane to notice the existence of nuth emanas in the I'liorene ages, in order to cashilit the prose gressive approalh to the present state of things in the animal kingelon, it is in the lasso and watramodinary cratures, now no longer tor be neron on the ficer of the earth, that the interest of such an investigation as the posemt chictly lien. 'I'he Plioreme ares are not lewe rich in there wonders than the periomls alreidy demeritiod, and to this portion of the subject we shall now turn onr ethontion.

Ithe mormous creature called the Great Mas'otem. tr kugh to the Iliocem era, Oi all the fossil animads
whose akeletone have been found nomplele, ne nearly a the Mantorlent in the largent, Murh conflualon bine ex. inted rolative to thin animalin true character, many natirnal inta regariling it an an extinct apweles of the elephom and others holding that it approwehed nearer to the hips jмpotannu. Cuvier, however, determined it to be tha heme of a lintiuct fanily, comprolvinding neveral other apectre, It in about one humbed and twenty yearm since remain of the Mantalon were firnt diacovered in Americe, and vant quancition of them have leero minee finnal th the name rexion, buried rlitefly in maraliy groundn. Ona akreleten marly completo was dug up on the banke of the Hulmon in int)], mad it in from thin that a correct know.
 beight, the Mastoron merma to linve heren utwont twelve feed, in atafure which the lmilian elephant ocemonally altaine, Hut the boxly of the Mastodon win grently clongnted in compurinon with the elephunt's, nud itn limhe wore thicker. 'Ihow wholo arrangement of the bony atrueture reacmbled that of the thephant, excepting in one peint, which ©ivior regarded an of mutheiont conec. quenee to constitute the Mantodon a diderent genua 'Jhin wan the cheek-teeth, whieh ure divided, on then upper murfine, bito n number of rounded, ohtuse promineneen, mranged not like the elephant's, but like thove of the wild boar and hippapetamua; whence it ia concluded, then, like tho later mimuts, the Mastomon mont have iival on tender vegutablea, roote, and aquatie plunta and conkl not have lwen parnivorons. 'Ihe lower jaw of the akeleton found on the Iludion ts two feet ten inchen in lougth, and wrighas sirry-three panals. Like the elephant, the Mastoton had two tuakn, eurving up warla, and formed of ivory, nul, in the opinien of Cuvier, it land nlno a trunk of the name kind with the formet animul's.

Altogether, making an allowance for arveral ndditional fert of lenzth, the larger apscimens of the eleghant must In considered as varying lithe from the (iomen Mastoslon. 'I'hugh wot in aquatic animul, the Mastodon, as has lwert mentioned, aprears to have lived, like the hipropotamon, on syuatic vegetablem, and this is corrolorated by the marslyy situntions in which ite remaina are generally fount in the greateat profusion. 'Tho Indinus of Canada lunt observed theso benes, and luilieved them to belong to n preculiar animul which they called the futher of oxene There have been found many hones, leslonging, it is core reived from the tweth and, other peeulda itien, to mmaller variction of the Mastoton. dio complete akeletoina, howevcr, having bern yot dug up, it is untoceswary to attempt muy detailed dempription of what these minor Mastodona minst have lwal. From the immense number of Mastodon lunes which hav been dug up in various parts of the carth, mad particularly in the New W'orll, we munt conchule, that at no distant perion of time the terrestrial surfine was extensively peopilal by these chormoun arcutures. How strauge would the spectarle lawe been, could a human lwitur have been set down in the midst of the grent murshes of the ancient world, and beleld these mimals browsing in hundreds, all like noving mountaius of living mater!

Another creature, belonging to the later Pliorsne ages, if not inderd to the rat of the Diluvial formation, has hern discovered in Amerien, both north and sonth. This in the Mastherim, an numal more widnly removed in character from my existing crenture, than any of the ether fissil remains that have been yet observed. 'I'he Arsatherium was diseovered towarden the end of the las: century, A skeleton, nimost entire, was found nearly at one bindred tore of depht, in exeavations made on the hanks of the river laxnin. meveral leagues to the south. wrst of' Juenos Ayres. 'The Megatherium was a tardisrade (slow-moving) minal, lhee the sloth, and was es loast the size of a rommon is. Ita limbe were terminated by five thich toes, attached to a series of hage, that, hata
tarsal bones, or those bones with which the toes are contimous, as in the human foot. "Some of the tocs (8ays Buckland, in his notien of this creature) are terminated ay large and powerful claws of great length; the bones supporting i lese claws are composed partly of an axis, or pointed core, which filled the internal cavity of the horny claw ; and partly of a bony sheath, that formed a strong caso to recive and support its base." These claws, from their position, were admirably enlculated for the purpose of digging. The legs of this ereature were of enormous thickness, its thigh bune being nearly three times the thickness of the same hone in the elephant. The other bones of the Megatherium were nlmost proportionably henvy. A still more remarkable feature, however, in the nimal's structure, was the coat of armour, of solid bone, varying from three-fourths of an inch to an inch and a half in thickness, which covered its hide, in the same manner as the armadillo's is encased by the same substsnce.
The habits and peeuliarities of this stupendous woth, for so the Megatherimm may be termed, are well deseribed and explained in Dr. Buckland's Bridgewater Treatise. After stating that with the head and shoulders of a sloth, it combined, in its legs and feet, an admixture of the characters of the antenter and the armadillo, snd resembled them still more in being cased in a coat of armour, le continues, "Its haunches were more than five feet wide, and its body twelvo feet long and eight feet high; its feet were a yard in length, and terminatei by most gigantic claws; its tail was probably elad in srmour, and much larger than the tail of any other teast among living or extinct terrestrial manmalia. Thus heavily constructed, and ponderously necoutred, it conld neither run, nor leap, nor climb, nor burrow under the ground, and in all its movements must have been necessarily slow; but what need of rapid locomotion to an snimal, whose oceupation of digging roots for fool was almost stationary? and what need of speed for flight from foes, to a creature whose giant carcass was encased in an impenetruble cuirass, and who by a single pat of his paw, or lash of his tail, could in an instant have demolished the cougar or the crocodite: Secure within the panoply of his hony armour, where was the enemy that would dare encounter this behemoth of the Pampas (the South American region where it existed), or in what more powerful creature can we find the cause that has effected the extirpation of his race?
"His eutire frame was an spparatus of colossal mechanism, adupted exartly to the work it had to do; strong and ponderous, in proportion as this work was heavy, and calculated to be the vehicle of life and enjoyment to a gicantic race of quadrupels; which, though they have ceased to be counted among the living inhabitants of our planet, have, in their fossil bones, left behind them imperishable monumenta of the consummato skill with which they were constructed."

Another extinet tardigrade crenture, presenting many of the characters of the Messtherium, was discovered in a calearcous esvern in Virginia, and received from President Jefferson, who first descriised some of its bones, the name of the Mcyulonyx. Jetficron conceived the claw to be that of an extinct feline animal of vast size (that is to say, an animal of the same description as the tiger, thon, cat, and lynx, all of which are begnis of prey); hut the French naturalists declared the possemsor of the claw to have been herbivorous, or calculated to live on herbes; and this was trinmphantly proved by the diweovery of others ol its bones. The Megalonyx ajpears (for a complete skelston has not vet been foond) to have lreen a Witle smaller in size than tho Megatherium. But the Megalonyx, according to Cuvier, was herbivorous after the manier of the eloth, since its teeth were conformed precigely like that animul's. From the resemblance of their feet, also, ho coucludes that their gait was similar,
and all their movements ulike. The difference in volumw of body, however, must have prevented the habita of tha Megalonyx from being perfectly analogous to those of the sloth. The Megalonyx could but seldom have elimbed up trees, hecause it must rarely have found ary sulficiently strong to support its weight. But its height would enuble it to browse, like the sloth, nmong the lenves of trees, without its leing under the necessity of climhing sny but such tall and strong ones as could bear its weight. It is even possiblo that the weight of the creature may have been serviceable in bending down, and perhaps in breaking, the elevated branchea which contuined its fool.
'The next fossil animal to which we shall refer, is that long called the Mammoth, under the impression that it was a distinct genus, but which is now universally denominated the Fossil Llephant, as heing an extinct speciea of that existing tomily. The Mammoth (which numo we shall retain for the sake of distinction) is rather to be regarded as a creature of the Diluvial than of the Plioecue period (that is to say, belonging to the age, when, by means of floods, the present beds of gravel and hard clay so offen found between the rocks and vegetalile soil were laid down upon the earth), as some specimens have been discovered in Siberia, with portions of the flesh ans ${ }^{2}$ hair actually preserved along with tho bones among the ice. It was at first thought, when numbers of Miammoth bones were discovered in Italy, and other southern countries of Europe, that they wert the remmins of elephants brouglit by the Romans and others from Asia and Africa; but the incalculable quantities of them ultimately detected in Iussit and other districts, where elephunts were never brought in the shape of oriental tribute, as they were to Rome, showed that their presence was to he attributed to natural causers, and not to the casual agency of man. In truth, the beds of the Volga, Don, and other northern rivers, are filled with them, and this can be accounted for only on the hypothesis, either of an alteration in the habits of the elephant, or of a grest change of climate in these parts, or of some immense moving force on the face of the carth, which has carried them thither. The instance in which part of the flesh was found along with tho bones, will supply us with a general description of the Mammoth. When the animal, on thia occasion, was first seen through the mass of ice in which it lay, the soft parts were nearly entire. After the natives hat tid their dogs for a long time with the mountainous hulk of flesh, Mr. Adams of St. Petershurgh heard of it, anil set out to see it. When he reached the spot, the skeletor: was eutire, with the exception of a fore leg. The spine of the back, a shoulder-llade, the pelvis, and the rest of the extremities, were still united by ligaments and a portion of the skin. The other shoulder-blade was found at some distance. The head was covered with a dry skinOne of the ears, in high preservation, was furminhed with a tuft of hair, and the pupil of the eye was still diacemable. The brain wos found in the skull, but in a dry statu The nerk was furnished with a ling mane, und the skin, gencrally, was covered with bluck hairt mud a reddish sort of wool. Of the quantity of hair und bristles that bail been on the body, some iulea may be formed from the f.ce that thirty poonds of them were gathered frou the ground. where the dogs, in cating the flesh, hail dropt them. 'I'se tuxks were more than nine feet long, and the head, witho ont the tusks, weighed more than four hundrid pounds. Altogether, the sktleton of thia Manmeth was abie ut the size of a large clephant's.

Skeletons similar to this have been found in abundance in the istands of the Arctic sea. They ditlier in several minute points of structure from the conmon elepsant, and on this circumstance the most rationnl expluadon oi their beine found in such cold chmates is founded. Thts explanation is, that the Mammoth Elephant was of a arecies fitted to be a native of cold countries; and of this
reusoning, ara held to dot, it seen bave heen to if not e

Diluv
In many compact el sometimes above the h to have bee the earth a formed, and of the stome by the net which are their rubbins ing been rut All over the near the su from great original posi blocks of this originally bel some lave be and Thames brought liithe
The slluve deposited in islands at the
Peat is an mixed with as fuel. ${ }^{\text {. }}$
The Vegets ferior substan from a dista animal matte

The perioc that immedia on the earth' mals, many of The chiuf evi and fragments. posed to have as retreats for of Kirkdale, was found to uanely, IIyz phant, Rhino cies of Deer, Raven, Lark, bones, in all t ments or chip: the gelatinou: They were co the nature of have been dep
Till a recon order was dise man skelcton mbedded in st case, that the and that the b in it, might his nowever, fossil ln 1838, a fo (four-handed sertiary format w the depart

Tol. I. -- 6

in volumm

 bits of the hose of the o climbed sry sultiits height mong tho ccessity of could bear ght of tho down, anl which con-fer, is that ion that it sully denonet species hich name ather to be f the Plioage, when, t and hard getable soil imens have e flesh and amoing the Mammoth thern counf elephants and Africa; ely detected were never ley were to ttributed to of man. In er northern counted for in the haelimate in on the face

The : aloug with crijution of casion, was it lay, the ves had fid pus hulk of it, mud set he skeletor: The spine the rest of and a poras found at a dry skilı nished with till discerna dry state nis the skiah reldish sort ss that bat on the fuct the ground. them. 'Ihe head, witls f. 1 pounde re uhu ut tho abundance in several - deprant, I maxun oi rued. Tlus t was ol a and of this
reasoning, tho different structure and the long thick hair, are held to be proofs. Whether this may he the case or not, it seens certain that the Mammoth's existence must have been very recent, and must have approached closely to if not encroached on, the era of man.

superficial.

Diluvium, Alluvium, Peat, and Vegetable Soil.

In many parts of the earth's surface, a thick bed of compact clay, containing stones of varions sizes, and sunctimes of a red, sonetimes of a blue colour, is found above the hard rocks: it is called Diluriom, as supposed to have leen deposited by a deluge which had swept over tho earth after the most of the present rocks had heen formod, and placed in their preaent arrangement. Some of the stones contained in the dilavium are rounded as by the act of rolling; others contain seams or grooves, which are supposed to lave been occasioned either by their rubbing on some hard substance in passing, or having been rubbed against by smaller stones passing them. All over the earth large blocka of stone are found on or near the surface, which it is certain have heen carried from great distances, as rocks of the samo kind in their original pesition are not to be fonnd near. There are blocks of this kind in Cumbertand, which appear to have originally belonged to hills in the south of scotland; and some have been found in the district between the Trent and Thames, which geolugists suppose to have been brought hither from Norway.

The . Iltuvium is the inatter carried down by rivers, and deposited in large level spaces beside their banks, or in islands at their mouths.

Peat is an accuinulation of decayed vegetable matter mixed with water. It is well known for its properties es fuel.

The Vegetable Soil is generally composed of tho inferior substances in a pulverized state, or of detritus carried from a distance, ningled with decayed vegetablo and animal matters.

Remains in the Diluvium, \&c.

The period when the diluviun was deposited, being that immediately preceding the existing order of things on the carth's surface, 18 marked by the remains of animals, many of which still exist, while others are extinct. The chicf evidenee on this point is derived from bones, and fragments of bones, found in caves which are supposed to have served, about the time of the diluvial aetion, as retreats for Hyamas and other beasts of prey. That of Kirkdale, in Yorkshire, discovered a few years ago, was found to contain remains of twenty-thres species; nanely, Hyana, Tiger, Bear, Wott. Fox, Weasel, Elephant, Inhinoceros, Hippopotamus, Horse, Ox, three species of Deer, Hare, Rubbit, Water-rat, Mouse, Pigeon, Raven, Lark, a species of Duck and Partridge. The bones, in all these casea, were broken into angular fragments or clips, and were all more or less decayed, though the gelatinous matter yet remained in some of then. They were covered liy a layer of mud about a foot deep, the nature of which led to the supposition that it must bave been deposited during the action of the diluvium.

Till a recent period, no trace of uny animal of a higher order was discovered in rocks. Some remains of a hinman sketeton hat been found in a cave in Guadaloupe, subedded in stony matter; but it was concluded, in that case, that the enclosing matter was of recent lommatien, und that the human being whose relies were discovered in it, might have bren alive at no distant ara. Latterly, nowever, fossil zoolugy has made one step in advance. In 1838, a fossil jaw-lone of one of tho quatricmerna (four-handed or menkey tribes) was discovered in the fertiary formation at the northern foot of the Pyrenees, w the department of Gers, in Franco. Two depusits Vul, I,--G
there nre very rich in fossils, affording remsins of no fewer than thirty mammitcrous animals. In the second and nower of these, which is lacustrine, or a deposi, from a fresh-water lake, the jaw-bone of the monkey was found, containing, four incisor teeth, two canini, four false grinders, and six true grinders in a continued series. The monkey is supposed to have been about three feet in height. The bone occurred in a stratum of marl, covered by compact limestone. Another jaw-bone of a _oonkey was discovered with other remaina, in Augusa, 1839, in a brick-field at Kingston, near Woodbridge, in the county of Suffulk: the particular bed in which it was found has not been stated. The hone indicates a speciea of the quadrumana not now existing.

These must be considered as very interesting diseoverics. The earliest animals and plants are of the simplest kind. Gradually, as we advance through the higher strata, or, in other words, as we proceed through this record of progressive creation, we find animals and planta of higher and higher structure, till at last we come to the superficial strata, where there are remains of kinds approximsting to the highest of all the animated tribes, namely, man himself. But, before the above discoveries, there remained one remarkable gap in the series. The quadrumana, or monkeys, who form an order above common mammalia, but below the bimana, or human tribes, were wanting. Now this deficiency is supplied; and it is shown that every one of the present forms of snimated existence, excrpting the human, existed at the time when the superficial strata were formed. The only zoological event of an important nature subsequent to that period is the creation of man; for we may consider of a lessen importance the extinetion of many of the sjecific varie ties which flourished in the geological ages, and the crea tion of new.
volcanic.
Rock of this kird owes its origin to internal fire, which seems to have sent it up in a state of fusion. It is spread over large parts ul the surface of the earth, particularly in France, where there are many extinct volcanoes. The apertures hhrough which it has foreed its way from below, and the cfifinks and rents formed at the time of its eruption in adjacent rocks, are often found filled with it Large mountains are also composed of volcanic rock. Is is remarkable for the fine soil formed out oi it.

The chief varieties of volcanic rock are :-

Trap, a term from the Swedish, expressive of the appearance of stairs which a hill of this rock often presents -a bare precipice alternating with a grassy platform or terrace. In trip rocks, nolules ure often found; that is, little isolated masses of a diflerent consistence from the including matter: the rock is then said to be of amigdaloidal structure, from the Greek word for an almond. This peeuliarity is owing to the porousness of the original matter: it contained many small air-cells, which, being afterwards filled up with silex, carbonate of lime, zeolite, and other ingredients, became nodules of those substances.* In I'lutonic rocks, no such peculiarity ia ever found.

Bissalt, a dark gray rock, of crystallized form, maseen of which resemble grot-ps of pillars, the various pillare generally having regular sides nnd angles, and the whole joind compartly together. 'The Giant's Comseway, in Ireland, and the Iskind of Stalla, in the Hebrides, are notuble exanyles of lasalt. The structure of hasalt is found to have originated in the manner in which relrigerution, or cooling, took place at its formation. The prow cese has been imitated on a small scale by the fusing of a few hundred-weights of hasalt, and allowing the mana to cool in the furnace : as the cooling gradually proceetech,
sl hules appeared; these enlarged till they pressed latesally [sideways] against each other, and berame converted into jolygonal [many-cornered] prisms. Thus tho rock was replaced in something liko its original form, in a conmon furnace.

Greenstonc, a compact, hard, tenacious rock, of dark grayish colour, sliyhtly tinged with green.

Lava (a term from the (Gothic, signifying to run), the product of molern voleanic mountains.

Section IV.-MINERAL VEINS.

Throughout the primary, transition, secondury, and dertiary rocks, but particularly the two first kinds, there occur what are called reins, containing divera substances, most commonly metals, quaitz, and calcareous spar, the last being a hard and shining substance deposited from lime. The form and direction of veins may be best understood from the way in which they mostly seem to have originated, namely, by chinks or crates formed in all directions throughout the rocku, and which have subsequently been filled with various sulstances.

Those filled with metals penctrate downwards so far, that their lower ends are rarely found, and miners have an idea that they reach quite throigh the earth. Near the sarface of the earth, they are generally found pooreat in the metal they contain, rieher at a certain distance down, and then poor again. They also often change their metal at difierent depths In France there are veins which contain iron alove, then silver, and next copper. One of the Cornwall mines have zinc above, and copper in great quantity below. These veina also change their width at different deptha: thas, tho Dolcoath mine in Cornsuall varies from forty feet to six inches in width." What at first appears extremely strange, a vein will sometimes be rich, or contain abun-
\mid dance of the metal at tho place where it passes through one kind of rock, and poor where it passes through another. Thus, for instance, a copper vein will be prodnctive as long as it is dug through slate, and become poor when it passes into granite. Such a vein, it may also be remarked, is generally found richest in the slate when it approaches the granite.

Till a recent time, two theories as to the formation of metallic vems were predominant-one representing them an the result of a forcing of fused matter from helow into the clinks, the other accounting for them by supposing al. infiltration of the matter in water from nbove. These theories, resuectively termed Ilatonian and Wernerian, are now given op: "many wins are fissures of mechanical origin, into which netalliferous matter has been sublimed from the effects of high temperature; lut others have resulted from an electro-chemieat separation or segregation of certain mineral and metallic particles from the mass of enveloping rock, while it was in a soft or fluid state, and their determination to purticular sentres." \dagger Within the last fow years, much light has deen thrown on tho subject by electro-chemical experiments, whereby tho workings of nature, in this departsent of her econmay, were imitad on a suall scale.

[^3]Becquerell and Mitcherlich, fircign mincralogists, have succeeded in forming erystals by electricity. Our own countrymun, Mr. Andrew Crosse, of Nomersetahire, hus in like manoer formed calearcous spar out of water which had percolated throush a limestone rock, und which saa forming crystals naturally at the place where the experimentalist obtained it. The same gentloman produced guartz erystals, and thus made the formation of what are called precious stones no longer a mystery. 'Jhe clectric apparntus used by Mr. Crosse was of small power, but kept long in ojeration, such being the way in which natture works the same ends.

In Mr. Crosse's expriments, the same molation produce different suhstances at dillirent ends of the electric pole For example, a hattery operating for six months on tluat of silver, produced at the negative pole six-sided culses of silver, and at the positive, erystals of silica and chalcedony This opens up a most interesting fichd of speculation. The ditlirence of substances fonnd in certain veins, their comparative richness and poorness, may have been the consequence of diflerent electric states in the rocks in which they were deposited.

I WORKS ON GFOLDGY.

Geology, like all other branches of nalural history, is best studied in the fields. Accurate and extensive observations are absolutely necessary to the acquisition of any considerable knowledge of this vast and important science. Books nur usuful chiefly in directing attention to the things which ure nevessary to be observed. A comparison of the various theories of diffirent phitosojhers, respecting the structure of the carth, with the phenomena upon which those theories are founded, will cmable the careful and judicious olserver to form and monlify his own theory in conformity with his own olservetions. Theories are chiefly valuable for the assistance which they afford us in chassifying facte, and every one who propes to take un any sulject of natural science in earnest, will read the mont noted general works on that subject. Cuvier's Theory of the Earth is important as the production of the greatest naturnlist since linnarus. Lyrll's Principles of Geology shonld he" resd for general information on this subject, and his Travela in the Cnited States, as well as Featherstonhaugh's Fxcursions in the Slave States, and Jameson's Discovery and Adventure in Africa, are important for thone who are desirous of learning the geology of this country and Africa. Brande's Dirtionary of Scicnir, Literuture, and .ffrt is a usseful book of reference swita respect to the mraning of terms used in this us we'k as the other seiences.

Buckland's Lieliquire Diluriana, the Transactions of Gcological Nueiety of lamdon, and Leonhard's Churi.. trristics of Rorks, are also vuluable. Mineralogy, which is a subodinate branch of Geology, is extremely into. resting, and throws light on all the kinilred beanches of science. On this suljoct Cleareland's 'Tratise is one ot the best that has heen written. The Transactions of the Amerisan Philosophical Sieciety, and the Acadeny of Natural Sciences of Philadolpha, contain many interes. ing tracte on Geology and Mincralogy.—.2ms Eid.]

Tas Eantay in the article As mass of matter, which at rarious centic, and rece blessings of ligh smaller sized of of the diameter of ter of Jupiter, amall portion of ence to the stars, tion.

According to th is 7902 miles in $\mathbf{2 5 , 0 0 0}$ miles in thichness is greate in the contrary dir exphained in Ast verted to. The di or imarinary poles. than the extremitio in a soft state, it The extent of thi whole thickners, or centre of tho earth. of an orance, or twenty-xix miles gr equinioctial line, thi adjustment of the that if it were only fly off, and if the whole mass of ear frasments, or, in ot as tirt as com be asc in all its parts, and and water-the liat ores, soils, mad a va onr) ; while the w; tiox, fiesh and saitwhe fatter in tla sea

GEOGRAPIYY.

IN'TRODUCTORY.

Tus. Eintu which we inhulit, ns has been explained in the artich Asrnososm, is a nearly round globe or mass of matter, forming one of eleven primary planets, which at various distances revolve round the sun ns a centre, and receive from that splendid luminnry the blessings of light and heat. The enrth is one of the smaller sized of the planets, being only alout a fourth of the diameter of Uranus, and an eleventh of the diameter of Jupiter, and forms, therefore, a comparatively small portion of the planetary syetem, and, with reference to the stars, only a speek in the vast extent of creation.
According to the enkelations of astronomers, the earth is 7902 miles in mean dianeter, and measures noont $\mathbf{2 5 , 0 0 0}$ miles in circumference. But the diameter or thickness is greater at the middle, or equinoctial lime, than in the contrary direction. 'I'he cause of this has been explained in Asrnovosis, but may here be brioly actverted to. 'The tiurnal motion of the earth on its axis, or imaginary poles, causes a grenter whirl nt the middle than the extremities of the mass, nod the earth, originally in a soft state, has been there bulged out all round. The extent of this bulging is twenty-six milds on the whole thickness, or thirteen miles from the surface to the centre of the earth. 'Thus, the form of the glowe is that of an orange, or flattened sphere, and its diametor is twenty-six miles greater from one side to another, at the equinoctial line, than betwist the proles. Such is the nice aljustment of the daily motion of the earth on its nxis, that if it were only a bitte greater, the sea wonld rise and fly off, and if the velocity were still more increased, the whole mass of earth niel water wond he dispersed in fragments, or, in other words, he destroyed. 'The rarth, as fir as ram le aseortamed, is a solal thaly, woll habamed in all its parts, and ronsists of two kink of matter, land and watur-the land hothy compoatel of rocks, metaltic ores, soils, and a varisty of other subataneos (see (inantons) ; white the water, as is well known, is of two qualithes, fiesh and shit - the former in liahes and risors amb the latter in the seu or occun. The greater part of the
earth eonsists of solid land or rocky metier, but a large proportion of it is covered by the waters of the ocean; and therefore, to appearance, the orean forms the principal portion of the globe. It is so, however, only in nppear nnee, notwithstanding its imposing extent, the water being merely a superficial covering to the land.

The manner in which the land is mixed with the ocean is quite irreqular, and the relative situntion and dimensions of each are constintly shilting. From causes which have been exphnined in the article Growodr, the sea is daily making enerouchments on the land, while the land at other places is in the course of being left dry ly the sea. Thus, in point of fact, the extermal features of tho globe are ever changing; and it may be sufely averred, that in the course of nges there has been a thorough niteration over the whole surface of the globe-that not one part now resembles that form which it originally pos sessed.

In order to facilitate the operations of the navigator and traveller, and with the view to mark the relative situation of every spot on the earth's surtive, the globe has been suljected to divers measurements, by means oí ideul lines drawn from north to south, and enst to west, as represented in the figure which forms the frontispicee. In the first phace, the whole surface is represented ns spread out in the form of two hemispheres-the Eastern Hemisphere contuining the continents of Europe, Asia, and Afriea, and the Western Hemispliere North and South Ameriea. The line which appears to eut across the hemispleres at the midulle is the equator or equinoctial line, and from this are moasurements in degrees of latitute.
'The earth's surface has been calculated to contain $198,943,750$ square miles, of which searcely a third part is dry land; the remaining two-thirds are water. 'I'he land is composed principally of two large maseses or racts, ong of which comprilumis the continents of Europe, Asin, and Afrion; the other romprehemls the continent of Anerien. Anstratia, which lies in the orran in a southerly dienetion from Asia, is ser extension as to be entited to the name and charator of a fillh division. Atl the detached and suather masses of haml. rallod ishuds, when taken togeiner, are comprated to contain as much land as the
continent of Europe. In reference to maps of the earth, Europe, Asia, Africa, and Australia, with their islands, are distinguished as lying in the enstern hemisphere; while Ameriea, with the West Indian and other islands, are comprehended in the western hemisphere. The seas which encompass these extensive tracts of land have locally various names; but the two principal expanses of water are the Atlantic and Pacific Oceans-the former separating Europe, Asia, and Afriea, from America, on the west, and the latter lying betwixt the western shores of America and the eastern shores of Asia. The extendive oceans surrounding the north and sonth poles are called the Pelar Seas, which have not been explored sufficiently for us to be able to say whether any large tracts of lund lie in these remote quarters of the glole. Great diversity of opinion prevails with respect to the depth of the ocean. By numerous investigations, it does not appear that the depth is anywhere much more than two or three miles, generally it is a great deal less; and it might be argued, that notwithstanding the large surface of the ocean, the body of its waters csan only be considered as lying like lakes in the hollows of the land; for the earth, as already noticed, is cight thousand miles in diameter, and to that liuge mass of dense matter the sea bears no proportion in its depth. While the surface of the lanil exhibits a variety of mountnin ranges, hills, vales, and plains, so also is the bottom of the sea varied in its configuration, abounding in sandbunks, hills, rocks, and reefs, dangerous to the mariner; and the ishands which rear their heads above the surface are only the tops of the highest hills and mountions in the sea.

The waters of the ocean, as every one knows, are salt to a greater or lesser degree-a quality which is considered necessary to preserve them from putridity. How they should possess this saline prourty, no one has yet been able to explain satisfactorily. Some have imagined that the aaltness is caused hy rocks of salt at the hottom of the sea, but this is obviously incorrect, for rocks of salt do not abound to such an extent as would be required for performing this important oflice. It is more probable that the saltness is an inherent property in the water itself; there is at any rate nothing more strange in this than in the circumstance of the atmosjphere leing in its nature composed of divers kinds of air or gases. For an examination of this point, however, and for a regular account of the ocean and its tides, we refer to the article Tins Ocean.

According to the beautiful harmony of design manifested in all drepartments of creation, the earth, with its ocean, its atmosphere, its rivers, and its varying climates, forms at appropriate field for animal and vegetable existence. The manner in which animals and plants are thus distributed in situations and circumstances exactly suited to their character, is a matter of deeply interesting observation. Nature-by which, as a phruse of convenience, wo denote the great Creating and Disposing Power-has appointed very few forms of animal or vegetable lifo to be localized in any portion of the globe approaching to its entire terrestrial surface. Most of them are calculaved for certain degrees of heat and cold, dry ness, and moisture ; and, accordingly, are to be found distributed in rirgs or zones around the globe, or at certain elevaLions, with a direct reference, in all cases, to the temperature and other conditions of the situation.

It appears, from the researches of geologists, that the distribution of animal and vegetable forms has, in the course of ages, undergone variations conformable to alterations ot condition in soil, climate, and other circumstances. Races of animals hive thus entirely disappreared from the surtace of the earkh, while insular tracts of land, which have rise: from the bosom of the deep, have become clothed with vegetation, and aro now the ajpropiate theatre of existence of various kinds of animals. The aispersing jower of winds and currents, not to speak of
the active interference of man, is supposen to he capally of accounting for the distribution of many plants; but it is clear, that without the ever-vigilant supirintendence of an all-wise Providence, tue earth, taken in its whole $\mu \mathrm{x}$ tent, could not exhibit those remarkable forms of animis and vegetable life which are so nieely suited to the locali ties in which they are placed. In Europe, and nearly all othe: temperato regions, we find the horse, the cow the dog, the ent, the crows, the sparrow, the house-fly, and other crentures with which we are familiar, because the noture of these snimals ja suited to climates of molerate beat and cold. In the warm and dry regions of Asia and Africa, other forms of minmut life prevail-as the lion, tiger, and camel ; tho latter being suited to traverse winle sandy deserts, and to endure privations of drought for a greater length of time than any other beasts of burden. America has the condor, the Washington eagle, the lloma, and otlier great birds and beasts of prey pecoliar to itself. A remarkable distinction in animal forms is that found in Australia. There, as will le afterwards mentioned, the quadruped races are furnished with pouchea for their young, and move forwards by leaping, peculiari ties conformable to the locality in which they hapren to be placed.

EUROPE.

Europe is the smallest of the great divisiors of our globe, but distinguished above the rest by the character of its population, the superior cultivation of the soil, and the flourishing condition of arts, scinnces, industry, and commeree, tho nultitude of large and well-built citien and its power and influenso over the other jarts of the world.

It is whiled on threo sides by the sea, which is called by different names, and belongs cither to the Northem Arctic or the Atlantic Occan. A narrow strait of the Mediterronean separates it from Africa. On the east alone it joins the mainland, beine there separated from Asia ly an imaginary line. Europe is situuted in the northern frozen und the northern temperate zone:, between 10° and 73° east longitude, and 36° and 71° north latitude. Including the islands, which contain alout 317,000 square miles, the whole extent of Europe anmounts to about $3,250,000$ square niles, of which Russia comprises nealy one-half. The greatest length, from Cape St. Vincent, in Portugal, to the northern extremity of the castern boundary, at Waygatt's, is uhout 3560 miles. The greutest breadth, from Cape Matapari un the Morea, to the North Cape in Norway, is about 2500 miles.

Europe is remarkably well watered, although its rivers have not so long a course nor such large cataracts as those in other parts of the globe, particularly in America. The principal rivera are the Ebro, the Rhone, and the P_{0}, running into the Mediterranean; the Danule, the Dne;per, and the Dueister, into thie Black Soa; the Don, into the Sea of Azoph; the Wolga, into the Caspian; the Dwina, into the Arctic Ocean; another Dwina or Duna, the Vistula, and the Oder, into the Baltic; the Elhe, Weser, and Rhine, into the North Sca; the Seine into the Enclish Chamel; the Thames into the German Ocean; the loire and Garonne, the Doure and I arus, the Gaudiani mul Gaudalguiver, into the Atlantic. The Wolga and Danule are the longest. By the Danulie, which penetrates the continent on its southern, and ths Rhine which penetrates it on its north-westernside. Europe is almost cot in two ly water-courses. 'I he Rhine is celedrated for the romantic beauty of its banks, on the mindle and higher part of its course. At the distance of 200 milery from the sea, it is as broal as the 'Thames at Westuinster, and suitable for navigation with steambaste and small vessely.

Europe possersecs numerous large lakes, tut none mo extensive as thove in N roth Ancrica. The largest in
lake Lailo beauty and in Switzerla A great p more so that is Switzerlar minates on th plains. The and Norther 'he highest Italy, which rections, ext nected by the rate France f south toward crly course, \mathbf{r} Apennines. Alps, through ish provinces north, and se east of Europ one aide mee mountains of ${ }^{r}$ in Europe is which is ssid rea.
Several of t Etm, Vesuvi tice, that non furnd in any have just beer tinent is Vesuv considered as Etna, in the or cleven thous latgest Europe called the -Eol bear evident m of thein, subter land, too, prese sence of volean devastations; A not the only so the possesivion of a line of coa Europe is great ts inhabitants it favourable to tha nake great adva
The chief is? in the north sea ture; Great Br in the Atlantic Sardinia, Sicily, Candia, and C Earopean prenin Jutland, Crimea, Earope, though tropics, is almor tracts in the nort
With respect three parts-the grow wild, as fa spring, a hot sum as far as $65^{\circ} \mathrm{N}$., hion, to the extre notudeer moss, al the reindeer. IT athers parts of th nally brought fron on the other han entivation. Am wheh are of the广ий, Surony, a
le capalı nts; bul it ndence of whole 4 xof aninus the locali and nearly e, the cow ase-fly, and ceause tho f inoterates of Asia ard o the lion, averse wide ought for a ; of hurden e, the llamn, suliar to iturms is that wards menith pouched ig, peculiari y hapien to
sier.s of our the character the soil, and industry, and H-built citices jarts of the
hich is called the Northern strait of the On the cast re separated is situated in nperate zones, 36° and 71° hich contain nt of Europe f which Ros t lengtl, from ern extremily 3 about 3560 Matapar 14 is about 2500
jugh its rivers aracts as these Anerica. The and the Po be, the Dneithe Don, into Caspian; the vina or Duna ic ; the Elthe, to Seine into the German 0 and I Iarus, tlantic. The the Danulie, hern, and tha n side, Kurope The Rhine is banks, on the le distance of do 'Thames at th stcamboate
s, tut none on The largest in

Lake Ladoga in Rusisia. Th. lakes celebrnted for their beauty and extent aro Lake Constnnce and Lake Leman in Switzerland, or on the horders of that country.

A great part of Europe is mountainous; the southern more so than the northern. The most elevated region ia Switzerland, from which there is a descent, which terminates on the side of the North Sra and the Baltic, in low plains. The lowest and most level parts are Holland snd Northern Germany, Denmark, Russia, and Prussin. I'he highest mountoins are the Alps, in Switzerland and Italy, which spread from those countries in various directions, extend westwardly into France, and are connected by the Cevenues with the Pyrences, which separate France from Spain. One ehain of the Alps stretches south towards the Mediterranean; then, taking an eastarly course, runs through Italy, under the name of the Apennines. Several branches run eastward from the Alps, through the south of Germany, as far as the Turkish provinees. Another chain, the Jura, runs to the north, and separates Sivitzerland from France. In the east of Europe are the Carpathian mountains, which on ona side meet the Sudetic range, and on the other the mountains of Turkey in Europe. The highest mountain in Europe is Mont Blanc, in Savoy, one of the Alps, which is said to be 15,766 feet above the level of the ea.

Several of the European mountnins are volcanoes; as Etna, Vesuvius, and Hecla. It is a fact worthy of notice, that none of the veleanoes of Europe are to be found in any of the great chains of mountains which have just been enumernted. The only one on the centinent is Vesuvius, and this is too much detached to be considered as properly forming one of the Apennines. Atna, in the Island of Sicily, rising to the height of ton or eleven thousind feet above the level of the sea, is the largest European volcano. The Lapari Islands, anciently called the Solian, a few miles to the north of Sicily, bear evident marks of a volcanic origin; and in several of them, subterrancan firea are still in operation. Iceland, too, presents the most abundant tokens of the presence of voleanic fire, and has often suffered under its devastations; Mount Hecla is the most noted, although not the only source of the eruptions on this island. To the possession of inany inland seas, and, consequently, of a line of coast very extensive in propertion to its area, Earope is greatly indebted for the great advancement of its inhabitants in civilization; these circumstances being favourable to that intercourse without which nations never auke great advances.
The chief islands belonging to Europe are-Iceland, in the north sea, lying in the 65th degree of north 1 ' j tude; Great Britain, Ireland, and other British Islanus, in the Atlantic and German Oceans; Mnjorca, Minorca, Sardiaia, Sicily, Corsica, Elba, the Ionian Isles, Malta, Candia, and Cyprus, in the Mediterranean Sea. The Earopean peninsulas are six in number: Scandinavia, Jatand, Crimea, Italy, Spain, and Greece. The soil of Europe, though not equal in luxuriance to that of the tropics, is almost throughout fit for cultivation. The tracts in the northern zone are alnost the only exception.

With respect to climate, Europe may be divided into three parts-the warm region, where the lemon-trees grow wild, as far as 48° north lat., having a pleasant apring, a hot summer, and a short winter; the temperate, as far as 65° N., in which grain ripens; and the cold resion, to the extreme north, where nothing will grow but rotndeer moss, and no domestic animal can live except the reindeer. The products are not so varions as in other parts of the wordd, and many of them were originally brought from foreigu countries and naturalized; but, on the other hand, Europe can loast of a more perfect cultivation. Among tho animals are horses, some of which are of tho nobler breeds; horned eattle; sheep in suin, Susony, suld England, of the finest wool; assea,
goats, swine, dogs ; reindeer; wild beaste of different kinda valuable for their flesh or fur ; whales; sea-cows, ses-doge \ddagger abundance of wild and tame fowl; large quantitiea 0° fish in the seas, lakes, and rivers, among which the ber ring, in particular, afiorda sustenance to many of the in habitants; useful insects, sueh as bees, silkwornis, kermex gall-flies, and Spanish-flies. Oysters and pearl mussels also abound. It produces all kinds of grain, and suffi cient for its consumption; beautiful garden plants; aburdance of fruits, including those of southerre climates, suck as figs, almonds, chestnuta, lemons, oranges, olives, pomegranates, dates; also flax, hemp, cotton, madder, tobacen: the best kinds of wine; and a great variety of wood for fiel, and for house and ship building. The birch and the willow best endure the cold of the northort polar circle. Europe produres all the varieties of metala and minerals in great excellence and abundance. In gold and silver, Hungary and Transylvania are the richest; in iron, the northern oountries, Sweden, Norway, and Russia. Salt of all kinds, rock, sea, and spring solt, is also abundant in Europe.

The inhahitants, estimated by Malte-Brun at $200 \mathrm{mi}-$ lions at least, are unequally tistributed; in Russin and Sweden there are from fifteen to eighteen to n square mile; in the Netherlunds, where the population is most dense, Italy, Franee, Great Britain, and Germany, the same extent supports from one liundred and fifty to two hundred and fifty persons. The inhabitants consist of several different races, speaking cistinct languages. The stocks to which the principal languages belong, are-the 'reutonic, which is the mother of the German, Dutch, English, Swedish, and Danish; the Latin, or Roman, now spoken only by the learned, but the mother of the Italian, French, Spanish, Portuguese, and Wallachian; the Slavonic, to which belong the Russian, Polish, Bohemian, Bulgarian, Vandal, and the Servian, or Illyrian. Besides these, there are the modern Greek; the Turco Tartaric; the Finnish and Fungarinn; the Celtic in Wales and the north-west part of France (Bretagne); the Highlands of Scotland and Ireland; the Basque, among the Pyrences. The most widely spoken is the German, with its kindred languages, formed by a union of the Roman with the Teutenic.

The prevailing religion is the Christian, which in eludes several churches, viz., the Roman Catholic, which is the most numerous; the Protestant (Lutheran, Calvi nistic, and Anglician), consisting of numerous sectsAnabaptists, Mennonites, Quakers, Unitarians, Metho dists, Moravians, and the Greek chureh. A part of the inhabitants profess the Jewish, a part the Mohammedan religion. Among the Laplanders and Samoeides, there are also some heathens, but their number is small.

Agriculture Las made great advances in Europe, and is daily improving. In this respeet, those countrics are particularly distinguished where the Teutonic languages aro spoken, as also are France and a part of Italy. In no part of the werld are manufactures carried to such perfection as in several of the European countries, esjucially in Grent Britain, France, the Netherlands, and Germany. The iwhalitants work op not only native European, but also foreign products, and supply all the vants and luxu ries of life. Commerce is not less active, and is promoted by well-construeted roads and canals, by well-organizet posts, lanks, insurance conymanies, cominercial conpanies and fairs. The commerce of Europe extends to all quar ters of the world, and every sea is filled with Europear slips. In this respect, (ireat Britain is most distinguished. Europe is the seat of art and science; to her belongs the honour of aliscovering the most important truths, of giving lirth to the most nseful inventions and the finest productions of genius, and the improveraent of all the sciences. In intellectual progress, the Teutonic races, and thoso who speak the languages derived from the Latin, have aurpmased the Slavonic nations. The

Turka have remained atrangers, in many reepects, to the viterary and acientific improvement which has marked the other European nations, Eighty-five universittes provide for the higher branches of cilueation; numerous gymnasia and scademies for the preparatory studies, and a great number of lower achools, particularly in Germany, are employed in educating the common people. In many places there are academies of science, and socicties of all kinds, for the cultivation of the arts and sciences.

By its physical situation, Europe is divided into East and West Europo. Weat Europe comprises the Pyrenean peninsula (Spain and Portugal), the conntry west of the Alps (France), the countrica north of the Alpa (Switzetland, Germany, and the Netherlands), the couniry south of the Alps (Italy), the Isiands of the North Niea (Great Britain, Ircland, and Ircland), and the countries on the Baltic (Denmark, Norway, Sweden, and Prussia). East Europe contains tho countrics north of the Carpathian mountains (Russia and Gallicia), and the countries south of the Carpathian mountains (Hungary, in its more comprehensivo sense, and Turkey).

The following are the politicnl states of Europe:The three empires of Austria, Russia, and Turkey; seventeen kingdons, viz., Portugal, Spain, France, Great Brithin, Hollaud, Belgium, Denıark, Sweden, (including Norway), Sardinia, the Tiwo Sicilins, Greece, Prussia, Bavaria, Saxony, Hanover, and Würtemberg; ono erclesiastical state, the papal dominions ; eight repullics, namely, Bwitzerland, tho Ionian IslanIs, San Marino, Hamburg, Lubeck, Bremen, Cracow, nul Frankfort; one clectorate, Hesse ; six grand-duchies, Baden. Hesse-Darnstadt, SaxeWeimar, Meckletbury-Schwerin, Mecklenburg-Strelitz, and Tuscany; ${ }^{-t w e l v e}$ duchies, viz., Oldenburg, Gotha, Meiningen, Altenlurg, Brunswick, Nassau, Dessuu, Bernburg, Cüthen, Modena, Parina, and Lucea; one landgraviate, viz., Hesse-Homburg; twelve principalitics, viz, Hohenzollern-Hechingen, Hohenzollern-Zigmaringen, Schwarzhurg-Ruilolstadt, Schwaraburg Soude:shauen. Waldeck, Lippe-Detmold, Schaumburg-Lippe, Lichtenstcin, Reuss-Griiz, Reuss-Schleiz, Fecuss-Lobenstein, and Reuss-Ebersdorf.
Austria, Prussia, Bavaria, Saxony, Hanover, Würtemberg, Hamburg, Luleck, Bremen, Frankfort, Hesse, aml the above grand-duchies and duchies, compone the region which we call Germany, but the proper nane of which, as given by the natives, is Deutechland-the land of the Teutones, an ancient people of central Europe.

THE BRITISH ISLANDA,

These istands, the most important belonging to Europe, lie at a short distance fr m the north-west coast of France, betwixt the Atlantic Ocean on the west and the German Ocean on tho east. From their southermmest boundary upon the British Chanued to the most northerly of the Shetland group, is a distance of very nearly eleven degrees, measuring from the 50 th to the 61 st degree of north latitude. The main island, whirh since the Union has been called Great Britain, is compoved of two portions, with considerally distinctive featurea, under the names of England and Scotland. England forma the larger, the most aontherly, an:l much the finest portion of the island, and lies betwixt the 50th and 55th degree. Scotland lies on the north of this division, ned reaches tho 58th degree. Ircland is a large and beautiful island lying to the reest of Englame, from which it is separated only by a ctannet half a day's nail in breadth, and exterds in 'er, gth from 51° i0' to $55^{\prime} 20^{\prime}$ north latitute. Its gres'on. length, measuring from N E. to \mathbf{S} W., is aloout 2010 mil s: the greatest brealth alout 60 miles. The rhet of the minor islants are the Iste of Man, lying in ane Irish Chamel; Anglesea, on the coast of Wales; the Hehrides, s series of large and small isles on the west conast of Scotland; the Orkney Islanda, separated irom the n orth point of Scotland liy the I 'entland F^{\bullet} th; ; and
the Shetland Islands, lying conriderably north of the Orkneys. Besides thear, there are some lalanda in the British Chnnnel, near the coast of France, called Guern scy, Jersey, Alderney, \&rc. Reckoning large and small. the British islands amount to some hundreds in number but many of the smallest aro not inhabited.
In 1831, the population of England and W/alea wan $13,894,569$, of 8cotland $2,365,807$, and of Ircland $7,734,365$; adding tho number of individuals in the army and navy, 277.017, the total population nmounted to $24,271,758$. Reckoning the inhalitants of forcign countries sulbject to Great Britain, the entire population of tho British empire amounts to about $118,000,000$.
[It is considered] unnecessary here to say sny thing further of the British Islands, as they form tho sulject of various other articles, entitled Hiatony of Gineat Bay tain, Dibciniption of Eingland, Descuiption of Scotlann, Deachierion nf Iueland, Conatitution and Resounces of the Bnitiai Emeine, not to speak of the accounts of Canadn, Weat Indies, Esst Indies, and other foreign possessions, each formtng distinct numbers of tho present work.]

France.

After Great Britain, France is usually reckoned the most powerful and influential country in Eorope. In point of territorial extent and amount of pounlation, it stands much higher than Great Britain, which is buts anall country, and it likewise possesses a finer climate; nevertheless, such bave been its unfortunate prditical and religious dissensions and misarrangements, that it has permitted itself to be outstripped in the race of improvemont by England. Fet under all its backwarducss, in many points France forms a great nation, well deserving of the symputhy nud respect of its neighbours; and it is greatly to be desired that in future a good understanding should subsist between it and Great Britain.

France is situated between latitude $42^{\circ} 20^{\prime}$ and $51^{\circ} 5$ N., and longitude $3^{\circ} 51^{\prime} \mathrm{L}$. and $9^{\circ} 27^{\prime} \mathrm{W}$, comprifing an extent ot 213,800 squaro miles, with a population, according to official returus, in 1827, of $31,851,545$. It is bordered on the north-east hy the Low Countries, the Prussian province of the Lower Rhine, and lhenioh Bavaria; on the east, it ia separated from Baden bv the Rhine, and touches Switzerland and Sardinia; on the south, its boundsrie are the Mediterrancan, the Pyrenees, and the Bidassoa; the ocean bounds the rest. 'The island of Cossica, and the Hieres, in the Mediterrancan, and the Islea of Oleron, Ré Neirmoutier, Belle-Isle, Dieu, and Ushant in the Atlantic, lelong to l'rance. The foreign possessions are of litto valuc. They are in Asia, Pondicherry and Karical on tha Coromandel coast, Ysnoon in the Northern Cirears, Chondernagore in Bengst, Mahe on the Malabar coant, a factory at Surst, and some factorics in Arulia, centineng in all 179,000 inhabitants, in Africa, Benegal, Gorec, tho Isle of Bourbom, and some factories, containing $\quad 23,0000$ inhahitants; in America, Martinique, snd Gatudaioupe with its dependencies, Guiana, and the amall islands of St. Pierre and Miquelon, near Newfoundland, containing 225,000 inhahitants. The territory is divided into 86 departmenta, which generally derive their names from the rivers. They are suldivided into $\mathbf{3 6 3}$ arrondissements, 8844 cantons, and 38,339 communes. Lech department is cyverned ly a prefect and each arrondissement by a sulprefect. The cantons have no administrative powers. The communes sor under a mayor. The provincial olficers generally are appointed liy the home minister, only those of towns under 5000 inhalitants beine appointed by the prefect.

The principal mountains of France are-1. 'The V'osgey on the north-east. They are of a rounded outline, with gentle slopes, and afford nuch open basturage. The highest summit is not "aore than 4500 teet nign. 2. The Jura mountains lie t the south of these, and their sum-
mith ris dranche centre o vergne, the Mon ous. 5. lant ment (hlout 6 part of th: mountain form and influence valley of open basi stretch in the Pyror other rive the Oiso Sarthe, an receives tt tho Sorgue ronne. 'I joined by communicn
In respe northern di ders, Artois where there in extent. frinble sand ture sufficie $7,654,561$ a tremely prol the precedin vergne, is co would. It feet deep, for The calcareo clalk provin influenco of carcous loan mors product mmense her annly deserts juniper. The fiwrnty lengue inmaining pr nedominating to cover a s are thore of A northern and portion by in the shores ar mough to be therefure few, suedoc is very harbours. 'ry the kiugdom, of late much suathern half, nés, snd olives than the weste ardent summer fhe most coms

The auperfic cxtimatal by $]$ $132,694,000 \mathrm{l}$ investel in 37,922.061,476 4,578,709,88.5 $3,314,005,515$; capital. The pi tricts, and on th ris per acre: an
orth of tive laula in the alled Guern e and smath. $*$ in numbes
[W/alea was of Ireland duals in the on amounted ts of forcign re pojulation $3,000,000$.
say any thing the auljeet of Gaeat Bui cutprion oy onatitution k, not to speak cast lndies, and stinet numbers
y reckoned the n Europe. In of population, it which is but a a finer rlimate; ato poditical and nts, that it has race of improvesack warduess, in a, well deserving hours; and it is x) understanding tain.
$2^{\circ} 20^{\prime}$ and $51^{\circ} 5$ 'W., compriving th a population, $31,851,515$. It ow Countries, the he, and Klienish mi Baden by the Sardinia; on the anenn, the Pyreds the rest. The he Mediterrancan, , Belle-Isle, Dwh to Irance. The They are in Asia, nandel coast, Y8hagore in Bengal, t Surat, and some b,000 inhatitants, ourbon, and some ats; in America, ependencies, Giuiro and Miquelon, inlabibitants. The , which generall; fey are sulxivided ons, and 38,339 raed by a prefect ret. The cantons e commuises aro ers geucrnlly ane y those of tewne 1 by the prefect. c-1. The Vosge nded outline, with vas:urage. The feet mign. 2. The ree, and their sum
imin rise t, the height of 6000 feet. 3. Many Alpine dwanches intersect Duuphiny and Provence. In the centre of the kinglom are-4. The monntaina of Auvergnn, of volcanic origin, of which the Puy de Dome, the Monts d'Or, and the Cantal, are the most conspicuous. 5. The Cevennes lic to the south-enst of the range last mentioned. Their highest summit is Mont Lozère (nhout 6515 feet). 6. The Pyrences form the principal part of the boundary between France and Spain. These mountains divide the country into fortr great basins, the form and exposure of which necessarily have a great infuence on their climato and preductions. The narrow valley of the lhone runs from north to sonth, while the open basina of the Scine, the Loire, and the Garonne, stretch in a north-western direction. The Adour rises in the Pyrenees, and washes the walls of Bayonne. The other rivers are principally trihutaries. The Marne and the Oise fall into the Seine; the Allier, the Loire, the Sarthe, and the Mayenne, into the Loire; the Rhone receives the Suône, the Irére, the Durance, tho Ain, and the Sorgue; the Tarn and the Dordogne join the Garonne. The numerous branches of these rivers are joined by eanals, which form an extensivo internal water communication.
In respect to soil, the richest part of France is the northern diviss, , comprehending the provinees of Flanders, Artois, $P_{3}: r d y$, Normandy, and the Isle of Frnnee, where there is a deep rich loam; about $18,179,590$ neres in extent. The valley of tho Garonne is composed of a friablo anndy loam, with a calcareaus mixture, and moisture sufficient for every purpose. This district contains $\mathbf{7 , 6 5 4 , 5 6 1}$ acres. The great valley of Languedoe is extremely prolific, thongh the soil is not so fine ns that of the preceding districts. The limagne, a valley of Ansvergne, is considered to have one of the finest soils in the world. It consiats of heds of earth. said to be twenty teet deep, formed from the decomposition of soft basalt. The calcareous and chalk formations are extensive. The chalk provinces are unfruitful in grain, but the genial influence of the sun allows them other riches. The calcarcous loam on the borders of the chalk formation is more productive. The Bretagne, Anjou, and Maine, are imunense heaths. The litudes are extensive tracts of anily deserts, producing nothing but broom, heath, and jutuiper. The most extensive are the Inndes of Bordeanx, twenty leagues in length by tivelve in breadth. In the icmaming proviaces, gravel, or a gravelly sand, is the medominating soil. The wools and forests are estimated th cover a space of $18,795,000$ acres. 'The principal are thowe of Ardennes, Orleans and Fontnincbleau. The northern and western coasts are formed in a great proportion by immense dowts and sandbanks; and where the shores are formed by clits, they are seldom bold enaugh to be appronched with snfety. Tho harbonse ess therefure few. On tho Mediterranenn, the conat of Langucdoc is very dangerons, but Provence abourds in good harlours. The culture throughout the northern half of the kiugdom, consists of wheat, harley, onts, pulse, and, ef late much more than formerly, of potatoes; in the suthern half, corn (farticularly inaize), vines, nulbernes, and olives. The eastern parts, being more elevated than the western, have more rigorous winters and more orlent summers. Conl and iron aro fuund in abundance. The most common fuel is wood.
The superficial extent of France has been recently cetimated by Baron Dupin at $53,533,426$ hectnres, or 132,1991,000 English aeres. 'The amount nt capital invested in agricultural pursuits is estimated at $37,322.061,476$ franes; the gross annual produce at 4,578,708,885 franes; the expenses of cultivation at $3.3: 4,005,515$; leaving a profit of 34 per cent. on the carital. The produce of whent in the best cultivated districts, and on the leest soil, hardly exceeds eightcen busheit per acre: an English fariner exyects twanty-five on the
anme extent. In 1812, the number of horses in Fruos a was 2,176,000; but in 1819, the horses anil mules togethe! amounted only to $1,057,071$; at present the number is estimated at $2,500,000$. The number of horned caule is $6,973,000$; of aheep, about $45,000,000$. The total number of all kinds of poultry is shout $51,000,000$ The French are the hest wine-makers in the world. The Champagne, Burgundy, Claret, Hermitage, are universally celel rated. For a long time, the choisest growthe were in the bands of the chureh; and in the frequent ehanger of property which have taken place since the Revolution, many vineyards have deterioruted in consequence of had management. The brandies of France are belicved to he unrivalled. The value of the whole produce of wine and brandy is about $800,000,000$ francs, The culture of the vine is supposed to have increased nearly one-fourth since the Revolution, owing principally to the small proprictors, each of whom endeavours to supply his own consumption by a little patch of vinoyard. M. Dupin eaye that many hectares of French territory are yet uncultionted, merely for want of caftle to stock and manure them; that two-thirds of the inhabitants are without nuimal food; that more than one-third subsist entirely on oats, buckwheat, rye. chestnuts, or potatocs, and that the agricultural population is too great for the prosperity of France. 'Two-thirds of the popula. tion is agricultural.

France possesses a soil and climate capable of furnishing her with all the raw materials of manufncture except cotton. The mmufacture of fine woollen eloths at Sedinn was introluced under the anspices of Colbert. The machinery used was very defective until M. Chaptal engaged on Euglish machinist to instruct the Freneh artisans. Stam-engines are rare ; the spiming-mills being worked chicfly by water or by horses. I'he quantity of native wool manufactured in 1819 was $38.000,000$ kilogrammes (of atoout 23 lbs. ench), and, in 1826 $42,000,000$, with $8,000,000$ of imported wool; the value of the manufactured articles was $265,000,000$ francs; of the rav wool, $105,000,000$: the quantity exported was about one-thirteenth of the whole quantity manufictured. By the exertions of Henry IV., the mullierry-tree vas cultivated in all the southern provinees. At'Cours, silk stuffs for furniture are chiefly manufnctured; at Ganges, and other places in the Cevennes, silk stockings. Iyyons is the principal place for silk manufactures of all kinda. Paris wanks next after Lyons. In 181~, the value of the raw matcrial amounted to $45,560,000$ francs, of which $22,000,000$ were the price of imported silk. The value of manufactured goods, at the same period, was $107,500,000$ franes, of which less than one-third was exported. Forty years ago, the spinning of cotton by machinery was hardly practised in France. Cotton mills have been ablished within that period, and the munufactures of Alsace are now superior to those of England in the brilliancy. of their colours. In $1812,10,362,000$ kilogrammes of cotton were spun by machinery ; and in 1825, $28,000,000$ of greater fineness. The cumbrics, gauze, and lawn of St. Quentin, Valenciennes, and Cambray are among the most valuable products of Franel indus try. Lace is made in great quantities.
The whole produce of the linen and hemp manufac tures is estimated at $200,000,000$ francs. In 1814, $100,000,000$ kilogrammes of east-iron were produced; i; 1825, 160,000,000. Gilding and watch-making are carried on, chirfly in Paris, to the annual value of about $38,000,000$ lranen each. Printing also employs a great number of persous at Puris. In 1814, the number of printed alucts was $45,075,039$; in $1820,80.021,302$; and in 1826, 144,561,004. Notwithstanding the low price of tabour in France, the industry of that eountry cannat enter into competition with that of Fnglanis One of the circuinstances which depress it is the wast of internal communication by roads and canals. The
practicable roads of France are not more than one-third of the extent of those of England. The crosa-muds are few, and the great romila are meldom kept in good oriler. The length of the canals in France is not more than onceleventh of those of England. Another point in whieh France is inferior is in the une of ateam-engines, nttributable in part to the deficiency of coal, or the difficulty of transporting it. The total force of steam-engines in France :a reckoned to he equal to that of 500,000 men ; that of England is equal to a power of $8,000,000 \mathrm{~mm}$. All the power derived from machinery of every sort, or from constructive ingenuity, and applied to purposes of Industry in France, is only one-fourth of the similar power employed in England.
The commerce of France has been very much diminished by the loss of her colonies. 'lhe value of the colonial imports, in 1788, was 227,000,000 france; in 182\%, it was only $50,000,000$. The exporta for 1788 amounted to $119,000,000$; in 1824 , to $44,000,000$. The total value of exports from France in 1824 was $440,5 \cdot 12,000$ franes; of which 163,056,000 were proluctions of the comntry, and $277,456,000$ manufactured nrticles. The amonnt exported to the United States wrs $55,000,000$, being more than that to any other country. The imports for the same year were of the value of $454,861,000$ franes ; of which $272,873,000$ franes were raw materiala for manufacture, $121,057,000$ natural productions for consumption, and $60,030,000$ manufactured articles.

The French are descendants of the Roman provincials and ancient Gauls, and hence their language is a mixture of modified Iatin and the tongue of the original inhabitants, but much altered in orthography and in tone of speech in modern times. The Kinglom was for many centuries governed in a despotic manner by a line of sovereigns of different dynastics from Clovis, in the year 481 , to that of the Bourbons in the person of Iouis XVI., 1793. One of these monarchs, louis XIV., who reigned during the latter half of the seventeenth century, exharsted the resources of the nation in forcign wars and personal extravagance, and, lesidea, greatly cormptad the manners of the people. I'his laid the foundation of a course of events which terminated in the national ruin and fearful outbreak of the Revolution in 1789 . This revolution deluged the country in bloor, and ended with the establishment of a republic; but this was speedily succeeded by the elevation of Napoleon Bonaparte, first as consul, and nest as emperor. 'The casecr of Napoleon cluaed in 1815, with the battle of Watcrloo, and the Bourbons were restored by the arms of Itritain and other nations. The Jourbona were expelled in 1830, since which period the reigning monarch has been Joouis Philippe, a descendant of the brother of Louis SIV., and in whose male descendants the monarchy is hereditary.

On the establishment of the present limited mon archy in 1830 , the national constitution was reorganized on the following footing: -The king is the supreme hea of the state; he commands the land and sea forces, declares war, makes treaties of peace, allianee, and commerer; appoints to all ofices of the public udministration, and makes all the regulations and ordinances necessary for the execution of the laws under the responsible advire of his ministers. Any of the three branches of the legislature can propose laws; the Chamber of Peers may sit without that of the Deputies only as a court of justiee; peers may apeak in the house at the age oi twenty-five years; princes of the blood may sit in the Housf of Peers without a special summons from the king; the deliberations of the peers are pullic; the renewal of one-fitth of the deputies every year is ebolished; persons ar: cligible ms deputjes at the age of twenty-five years; the deputies elect their president without the concurrence of tise kins; and the electors choose the officers of the clectoral colleges without the interference of the king; articles 46 and 47 of the old sharter, respecting amendments, and
the adoption of the trx acta by the deputies, previousi) to being sent to the peers, nre repealed; as is also article 56, exempting tho ministers from impeachment, except for treason or extortion; the prevotal courts are abolishell; the king takes the constitutional oath, not at the time of the coronation, but on his accession, as in England. Be. sides this, provixion is to be made, by mepurate laws, for-1. The trial of ollences of the press by a jury, 2. 'I'se responsibility of ministers, and other agenta of power; 3. Pior the re-election of deputies promoted to othees with walaries; 4. The ammul vote of supplic's for the army; 5. The organization of the national guard; 6. The settling the rank of all naval and military oflicers; 7. Do partmutal and municipal goveruments foundel on the elective system; 8. I'ublic instruetion provided for; liberty of tenching allowed to all: 9. The abolition of the double vote, and of the olortoral candidates and their cligibility. The charter is intrusted to the protection of the national guard, and the patriotism of the nation. 'The charter, with the "changes and molifications expressed in the declaration of the Chumber of In puties," was presented to Jouis Philippe, who, on the 9th of August, 18:10, took the constitutionul oath; and thus the constitu'ion octroyed was changed into a real contract between the ruler and the peopile.
lly the letter of these provisions, France possesses e free constitutional governosent ; but surh is the influence of the exreutive, that, practically, the people enjoy much less liberty than tho British. So unsuttled, likewise, is the system of thinga, that a large stunting army and militin force (National (iuarl) lias to be maintained, at a heavy expense and inconvenience to the nation. In 1837, the army amounted to 300,001 men. 'I'he na tional expenditure in $18: 88$ was alout $£ 14,000,000$, to which the revenue was inadequate: the national debt at the same time amounted to $251,566,496$ francs. The French navy, in 1836, consisted of 49 ships of the line, 62 frigates, 31 corvettes, 49 brigs, and with other vessels amounted to a total of 321 .

Previously to the revolution of 1789 , the Roman Catholic was the estahlishod religion, and the country cortained a vast number of monasteries and convents. Latterly, since 183 At , there has beron no estahlished ehurch. but the Roman Catholic worship predominates, and is athered to by the reigning family. In 1830 there wase 14 archlishops, fif bishops, 174 vicars-gencral, 660 canons, $31 t 1$ curés, 27,776 dessarvans, and 6184 vicarics-tota of clergy, 37,275. 'I'be bishops have each about C600 a year of salary, and the working clergy from $£ 20$ to $£ 60$ each. There are ahout $1,000,000$ of Protestants in France The entire cost to the riate of religious establishmenta, Romane Catholic, Protestant, and Jewish, amounted in 1838 to $35,143,500$ francs. With respect to cducation, France at present possesses 26 universities, 163 hishschools, or neademies, in the large towns and districts, 73 normal achools for trivining teachers, sis hoarding. schools, 36,000 clementary schools for boys, and 11,000 elementary sehools for girls. Thes whole are under the supreme direction of the minister of public instruction; and the total cost in $18: 98$ was, $19,005,673$ francs, of nearly $\mathrm{f} 800,000$.

France persersen a consideralle number of towns, with populations of from five to thirty thousand, and more particularly abou: twelve thousand, but not many of aty consequence with a larger amount of inhabitants. Paris, the capital, in $18: 27$, had a population of 890,531 , which is about half the amount of the population of London 'ino other chief towns are Jisle, with a population of 69,860; Rouen, 90,000; Strashurg, 49,708; Nantes 71,739 ; Boulogne, 19,314; Havse, 21,0.19; Rheims 34,862; Brest, 26,655; Cambray, 17,031; Iyons, with suburba, 170,875 ; Marseilles, 115,943 ; Toulon, 30,171 Aix, 23,132; Grenohle, 22,149; Clermont, 30,010; De ssuçon, 28,795; St. Etiemme, 30,615; Dunkirk, 24,E17;

Amlena, in the no nel, and on the mon Franco in gooll harl seas conaet which ls a

Paris, mandstone, river Seine plisherl mes the palace Vorsailles, ny Louis hias been ! literary and is the plac trooks in all bratel as a engraving, reapects to I ple has usun bu! in this tl certain that anxious desit a settled form

Spain. or an extensivo tromity of Et as surroundec isnean Sen, e l'yrenean chi France. In miles in leng 850,000 нqu:1 tione l, lies lik facing the At into two uneq the central r Spsin is easen extensive plai huight of from There are co the air being The principal and Guadalqui they are not trade. On the arast, the clim plaind the hea piercing in win and vari us. every valuable are alao a num finest quality is other principal maize, rice, oil, silk, sund barilla muperior quality figs, oranges, unimal producti on the Mediorre the tinest in the ber; and the se:
The country
sf follows:-Nia
Arragon; Catal Estremailura; Neville, and Gra the Mediterrane or parlisment, is Vol. I.-7
:s, prevlousty is alno article ment, excep ur abolished: the time of ingland. Be. c parate laws, by a jury ler ngents of promoted to upplies for the ruard; 6. The hiecr: 7.1 Do minded on the l.d for; liberty of the double lueir eligibility. of the national 'l'lie charter, pressed in the was presented ust, $18: 10$, took 'itu'ion ortrayed the ruter and
ice possenses is the intluence ple enjoy much led, likewise, ts g army and mimaintained, at a the pation. In men. The ne£ $\$ 4,000,000$, to national deht at if frames. The hips of the line, vith other vessels

the Roman Ca

 the country corconvents. Lat ablished church ominates, and is 1836 there war reral, 66t canons, 34 vicaries-lota rach ahout 5600 from $£ 20$ to $£ 60$ estunts in France s establishmurots, wh, amounted in wect to education, rsities, 363 high; and districts, 73 , 873 barading. boys, and 11,010 ble are under the , hlic instrurtion; 15,673 Trancs, on
ber of towns, with

 usnad, and more not many of ant habitants. Paris, if 800,581, which lation of London a population ol 49,704; Nantes 21,019; Rheims 131; Lyons, with - Toulon, 30,171 10nt, 31, 010; 1le Dunkirk, : 4, E 17 ;Amiens, 42032 ; and Orleans, 40,340. The chef port in the north of Franes io Havre, on the English Chan. nel, and Marseilles and Toulen are the principal outlets on the wouth. In point of capability for maritime trade, France is fir inferior to (ireat Britain, from its want of grod harbours, though perhapa that circumstance is of uess consequence than the peculiar genius of the peopla, which is adverse to naval adventura.

Paris, the capital, is a benutiful city, built of white mandatone, situated n n a flat ground, on both banks of the river Seing. Here reside the most learned and accomplished men in France, arll aleo the cnurt of the king in the palace of the Tuit . At a few miles' distance is Verailles, a royal residence of extraordinary extent, built ny Louis XIV., and since considerably improved. Paris has been long distinguished as a place of residence of literary and scientific characters, and in the present day is the place of publication of an immense quantity of trooks in all departments of literature; it is likewise celubrated as n depôt for works in the fine arts, as painting, pagraving, and seulpture, in which it is auperior in many resjecta to loondon. The character of the French people has usually been represented as exceedingly frivoluns, but in this there has been much exaggeration; snd it is certain that in recent times they have demonstrated on anxious desire for improvement in the useful arts, and for a wettled form of government.

GPAIN AND PORTUGAL.

Spain, or the Peninsuln, as it is frequently called, is an extensive country, occupying the aouth-western extromity of Europe between latitude 36° and $44^{\circ} \mathrm{N}$., nnd ts surrounded by the Alantic Ocean and the Mediterranean Sen, e:cept on the north-east, where part of the Pyrenean chain of mountains form its boundary with France. In its dimensiona, this country extends 700 miles in length by 500 in breadth, forming an area of $\mathbf{8 5 0 , 0 0 0}$ aquare miles. Portugal, afterwards to be mentionel, lies like a patch on the side of the Peninsula, facing the "Atlautic. Spain, proper, is divided naturally into two unequal compartments, one of which includes the central region, and the other that of the coast. Spain is essentially mountainous. It consists chiefly of extensive plains traversed by lofty ridges, towering to a huight of from eighteen hundred to two thouasnd feet. There are comparatively few trees in the country, and the air being dry, the number of rivers is not great. The principal are the Ehro, Douro, Tagus, Gaudiana, and Guadalquiver; but from the had syatem of things, they are not put to their full usea for navigation and trade. On the lower parts of Spain, particularly on the asast, the climate is delightful, but in the high central plains the heat is as intense in aummer as the cold is piercing in winter. The productiona of Spain are rich and vari us. Iron, tin, copper, quicksilver, and indeed every valuable mineral, abcund in the Peninsula. There are also a number of coal and salt mines. Wheat of the finest quality is produced in most of the provinces. The other princijal productione of the soil are oats, harley, maize, rice, oil, honey, augar, hemp, flax, cork, cotton, silk, and barilla; the wool, as is well known, is of a very nuperior quality. There are many fine fruits grown, as figs, oranges, pomegranates, lemons, \&c. Among the animal productiors, the horse of Andalusia, a province on the Mediterranean, opposite Africa, ia csteemed among the tinest in the world. The sheep are millions in numbur: and the sea-coast supplies sibundance of fish.
The country is divided into 14 provinces or districts, sf follows:-Navarre; Iliscay ; the Austuriab; Galicia; Aragon; Catalonia; Lemon; Old Clastile; New Castile; Estremalurn; Valencia; Andalusia, including Cordovn, Seville, and Granada; Murcia; and the Balesric Isles in the Mediterranean. The eapital, and seat of the cortes or parlisment, is Madrid, in the province of New Castile,
at the centre of the kingdom. Population in 1825, 201,344. The principal seaport is Cadiz.

About the beginning of the prement century, the popso Intion of Spain amounted to $10,409,179$ individuals, among whom were the following clakeus:-Beginning with the religious bodies, there were 148,242 clergy and monkn, and 32,000 nuna, exclusive of about a fourth of the population living on their property without doing any thing; there were 100,000 Individuala existing an amugglera, robbers, piratem, and aseassins, escaped from prisons and garrisons; about $\mathbf{4 0 , 0 0 0}$ officials appointed to capture these, and having an underatanding with them; nearly 300,000 servants, of whom more than 100,000 were unemployed and left to thelr shifs; $\mathbf{6 0 , 0 0 0}$ students, most of whom begged, or rathar extorted, charity at night; and if to this melancholy liat wo add 100,000 beggars, fed at the doors of monasteries and conventa, we shall find that there exiated in Spein nearly 600,000 persons who were of no use in agriculture or the mechanical arls, and who were only calculated to prove dangerons to society. Having made these, we find there then remained 064,571 day-labourers, 017,197 peasants, $\mathbf{3 1 0 , 7 3 9}$ crtisuns and manufacturers, and $\mathbf{3 4 , 3 3 9}$ merchants, to sustain by their exertions upwards of ten millious of inhahitants. These results, which are as epplicable at the present day, when the population has increased to about $14,000,000$, as at the time when they were deduced, exhibit a state of society so radically cor rupt and dehased, as to render all hopes for its regeneration very nearly desperate. Lately, on the death of Ferdinand, the reigning monarch, the queen, in the capacity of regent, mado a powerful attempt to eatablist. constitutional govermment, which was the first step to warda practical reform of abusea. Her daughter Isaballa, according to the will of Ferdinand, was proclaimed queen whereupon ensued a civil war betwixt her forcea and those of her unclo Don Cnrlos, who wished to assuma the sovereignty. Thia war has greatly injured Spain and what its results may be no one can forctell.

Portugal, which lies on the western frontier of Spain, facing the Atlantic, and measures 41,500 square miles in extent, is an ancient small kingdom, intimately resembling Spain in almoat cvery particular, and at present in much the same unsettled condition. Tho country possessee two fine rivers, the Dourn, which forms the great maritime emporinm of Oporto, and the Tagua, which is that of Lisbon, the capital. Portugal ia rich in natural productions, but wants the cultivation of induatrious bundm The rich mines of precious metals are now neglected, on account of want of hands and fuel. The chief source ot profit is in the fruits, which are exported in abundance, particularly the orange and grape. Wines of several sorts, port and sherry in particular, are produced, and exported chicfly to England. Agriculture, commerce, the arts, every thing in short, is neglected in Portugal, which in the present day ia a miserahle poverty-struck country. Like Spain, it is caten up by clergy, secular and regular; and these classea have moreover rendered at least a third part of the year holidays, greatly to the loss of the nation. The late Don Pedro, father of the present queen Maria, had the address to abolish the monastic institutions, and to aequestrate the property to the state, which was an important measure of national regeneration.

The assumption of sovercignty by Maria led to a civil wnr or contest letwixt her forces and thode of her uncle Don Miguel, which was most injurious th the country Miguel was ultimntely defeated and expelled. The population of Portugal was stated in 1826, s' 3,214;000.

ITAII.

Italy, once the seat of the Roman empire, but which since the overthrow of that power, has never formed an independent whole, is a narrow peninaula, exterifing from
the Alpe (48° to $38^{\circ} \mathrm{N}$. lat.) Into the Medithrraneant Sta, which on the east aide of Italy is called the Adriatic, on the weat, the T'uacan Sea. The Apenninea, rising near Whe marisime Alpa, are the principal chain of mountains, and stretch through the country, dividing lombardy from the Genoese territorie and Tumcony, and Tuseany from Romagna, intersecting the atatea of the Church, and running through the kingdom of Naples to the Strait of Measina. Upper Italy (Iombarly) is remarkably well watered. The Po, which receiven a great number of rivers from the large lakes at the foot of the Alpe (Lago Maggiere, di Lugano, di Como, d'Iseo, and di (inrla), and the Adige, are the principal rivers. 'They both rive in the Alpa, and fiow into the Adriatic Rea. In Midille Italy (Tuscany and the states of the Church) are tho Arno and the Tiber, which rise in the Apenninen, and flow into the Turcan Sca. In Lower Italy (Naplen) there are no large rivers, on account of tho shortnesa of the course of the atreama from the mountnins to the sea: the Garigliano in the principal, The climate in warm, withont exceasive heat, and gencrally salubrious. The winter, even in Upper Italy, is very milld: in Najles it harilly ever snows. The abundnace and excellence of the productions of the soil correspond with the breuty of the climate. In many places both of the north and south there are two, and even threc, crops a year, The volronic character of the consts of loower Italy ia partizularly remarkable in a geological point of view, especially in the region of Puzzuoli and Vesuvius. The ne ighbourung inlands of the Mediterrancun are distinguished by the saine character. The prewent mumber of inhubitants in much inferior to the former population of this delightsful country, the total amount being $21,97,500$.

The national character of the Italians, miturully cheerful, but alwiys marked by atrong parsions, has heen rendered. by continued opprewsion, dissembling and selfish. The Italian, moreover, possesses a certuin ucuteness and versatility, as well as a love of money, which stamp him for a merchant. In tho middle ages, Venice, (ienou, Florence, and Jisa, were the chief marts of the European commerce with the East Indiea; and Italians (then calied Lombards, without distinction, in Girmany, France, and England) wera scattered all over Burope for the purposes of trade. Tho discovery of a passage hy sea depried hem of the India trade, and the prosperity of those republiss declined. The Italian, restricted alinost solely to traffic is the productions of his own country, has nevertheless always remained all able: and activo merchant. Before Rome had (2100 yeara ago) absorbed all the vital power of Italy, thia country was thickly inhabited, and for the most part by civilized nations. In the north of Italy slone, which offered the longest resistance to the Romans, dwelt a barbarous people, the Gaula. Farther south, on the Arno and the Tiher, a number of small tribes, such as the Etrusci, the Sumnitew, and Latins, endeavoured to find safety by forming confederacies. Less closely united, and often hostile to each other, were the Greek colonier of Lower Italy, culled Magna Grecia. The story of the subjection of these nations to the Roman ambition, belongs to the history of Rome. Italy, in the middle ages, wan divided into Úpper, Middle, and Lower Italy. The firat division comprehended all the states situated in the basin of the Po; the second extended be:tween the former and the kingdon of Naples, which formed the third.
Ihaly is in nodern times cut up into a number of disnot atates, partly irdependent, with native princes, partly uader the rule of Austria, and a portion under the cival iwsy of the head of the Romish church. I'liruaghont we greater part of this fine country the system of police a wretehed. and robbery ia excredingly common; comuerce, agriculture, and the usefinl arts, are in a low condition; bigotry prevails, and the national character is - duced to the lewest moral standard. 'I'lie most civilized
and bent governed part of Italy in Tumenny which otitheo very materially from the adjacent states. In the promen duy, Italy in only celebrated for its munic, and its collec. tions of workn in the fine arta. The following aketch givea a view of the amount of population in the five great divisions into which Itoly is partitioned :-

The population of the stitea of the Church is about $2,000,000$. The capital is Rome, the seat of empire of the nement Jomana, but now greatly altered in figure and appearance, and completely chunged in churacter; thin verierable city posmesmes a population of 150,000 The other chief towns are-Mologna, with a popuiation of 65,000 ; Ancona, 30.000 ; P'erugia, 30,000 ; Ferrara, $2.2,000$; and Raveina, 24,000 . I'licre are other eight towns, with a jopulation of from 7000 to 14,000 .

The duchy of I'uscany, in 1820, had a popilation of $1,275,000$ inhabitants. 'the capital of this state in Florence, the population of which amounte to 80,000 . The other chicf towna are-licghorn, 66,000; l'isu, 20,$000 ;$ Sienna, 18.000; I'rato, 10,000; l'istira, 0600; Avezza, $7000 ;$ and C'retona, 5000.

Austrian Italy, or the Lombardo-Vencian kingdom, which consiata of the great plain of the I^{\prime} o, is suldivided into the governmente of Milan, Venice, Purma, and Modena. 'The chief towns of the state of Milan are-Milan, 151,000 ; 1 rencie, 31,000 ; Cremona, 26,000; Mantus, 95,000; Pavin, 21,000 ; Lodi, 18,000; and Como, 7000. The chicf towns in the stane of Venice nre-Venice, 101,000 ; Veroma, 48,000; Pudua, : 15,0000 ; Vicenza, 19,1000; Vilina, 18,000 ; ' 1 'revimo, 15,000 ; Bulluno, 8000, and Rovigo, 7000. The atate of Purmu has the town of Purma, 30,000; Placentia, 28,000; und Guastalla, 6too. 'Ilic atate of Moluna posserses the town of Mo devn, $87 . g \pm 0$; Reggio, 18,000; and Mirandola, 6000.

I'he Surdinian Statea are composed of Piedmont, Go. nea, Savoy, and the Inland of Sarilimia, the whole of them divisions having a population of $\mathbf{3 , 8 3 1 , 5 5 0 \text { . The prin }}$ cipal town und sea-port in thin diatrict is Genos, which possensen a population of 80,000 inhahitants.

The fifth division of Italy is composed of the atates now included in the kingdom of the 'I'wo Sicilies. This forms the southern, and perhaps the fineat portion of the Italian peninaula, and branches out into the tivo maller peninaulas of Otranto and Calabin. Naphes is the chief town, with a propulation of 354.000 inhahtants, being thus the largest city in Italy. Naples ia famed for the beauty of its environs, particularly the hay on which it is situated, and for the exceeding fineness of itn climate. Sicily, an island belenging to the kingilom of Naplea, measures 180 miles long by 150 in lireadth, nad is one of the most beautiful islamis of Europe. It is chictly distinguished for its celebrated volcano, Mount Etas Malta, an iblet in the Meliterrancan, about fifty-four miles to the south of Sicily, now belongs to the British govenument.

mussta.

The Russian empire ntretches over the half of Europh and the whole of Northern Asia, from the Haltic to the l'acitic, and includer vast territories on the north-western coast of North America. It lies between lat. 38° and $79^{\circ} \mathrm{N}$. It is bounded on the north by the Northern of ley Ocean, went by Norway, Sweden, the Haltic Sem Austria, and Prussia, and suthth by 'I'urkes, the Black Sea, I'ersin, the Caspian Sto, Inlejn'mdent 'Tartary, and Chins. The total superficial urea is cortimated at $8,000,004$ sypare miles, of which alout $1,500,0000$ are situated in Hurope, and $5,600,000$ in Asia. 'The Russian dominiona compose about one-seventl of the habitable gholse. Tlie surface of Russia is generally level, und some tracts on land of this that natore, frequently heak and hurrer, are called stuppes. I'he country also possessea chains al lofty mountaina in dinfereat gusters. Russia ruisea var quantitica of corn, which it exports; mall it maluce
fruce and - imprutant a and snetep, for the ax puentry or ailver, ulum of rovenue. maguitude, on a conside 'Tho popt land, is 67,1 nians $\mathbf{4 4 , 0 0}$ among whot searing arme over the cou ($3,000,000$) cosus (2,000 without agric мiana (2,000 , gole, to who (including T particularly is there are nati Asia, an Greel onil Danes. sighty tribee, trom the ride of EJuropean o four classen, 1 mon, and jea persona nuhje 6.43,135 perse prasatis: 10,1 $1,077,636$ ap! $18,335,730 \mathrm{~m}$ tullow, candles of the linden to the Russians, since his rejgn perfection, and duced. In $|x|$ establishments ; government an and there are, vate catallishlu lahoratories; a $120,000,000$ ga building is carr and in the sea-1
'the govermi peror is autocra bo; the ruler c other country (Poland), and m the succession y oí primogenitur line. All the princes. By U clared that only by the emperur The higheat cou the presidency o with four depart tribunal in civi that of civil and 2, the senate, for sisting of eight wat in Moscow state. 'I'he min perial council and illan three neeti, marine, the home tion, and finunce of the public aeco
which tithm the preven oul ite coller wing sketch he five greal

rch in about

 of empire al ind in figure in character: of 150,000 a popalation 100 ; Ferrara, e other eight 4,000 . jopulation of ntate in Flo30,000 . The Pisa, 20,000t 000 ; Avezzainn kingilom , is suldivided ruma, and Mo(1) are—Milan, 000 ; Mantus d Como, 7600 . are-Venice, 10) ; Vicenza, Belluno, 8000, han the town and Guastalla, c town of Mondela, 6000. ${ }^{\prime}$ iedmont, Ge whole of thew 30. The prin (ienoa, which nts.
d of the states Sirilies. This portion of the he two smallet hlex is the chief ablitants, beitug famed for the on which it is of ita climate. uns of Naplea, lth, nud is ono

It is chiefly Mount Etua dhout fifty-four (t) the British
balf of Europa
(6. Batic to the north-weatern in lat. 38° and he Northem or he Baltic Sea, kry, the Black it 'Tartary, and ed at 8,000,000 are situated in sian tonainione le ghole. Thie some tracts on und bartel., are ssem chaina at nssia raike vall and it moluca
fruts and wine in abundance. The foreat nano yields - tmpatant articles of export. Cnttlo of all kinda, horsces. and anoep, are likewime bred in lmumene numbera, chielly fur the axportation of their akina. The minea of the enentry are productive of platina, zince, copper, quicksilver, alum, and nalt, all of which are continual sourecs ot revenue. Runia fosmemea varlona rivers of the first magnitule, and eanals are in the courne of entablishment un a conaiderable scule.
The population of Russia, Ineluding Poland and FinIsnd, is $67,000,000$, of nine different races :- 1 . Slavoninns $44,000,000$, Incluting the Russians $(42,000,000$, among whon are the Cowacka, about 000,000 capalle of searing armas) and the l'oles; 2. Finns, who are acuttered over the country, from ''ornia and the Niemen to the Obi $(3,000,000) ; 3$. Tartara, from the Duiester to tho Caucasus ($2,000,000$), mostly under their own govermment, without agriculture or fire-arma; 4. Georgians or Cireasmisn $(2,000,000) ; 5$. Samoieden ; 6. Muatchoos ; 7. Mongols, to whom belong the Calnucks; 8. Baxtern triliew (including Tehutaches, Kuriles, and Aleutians); 9. Jewa, particularly in the Polish provincea. Besidea these races, there are natives of ahnost all countrice of Euroje and Asia, as Greeks, Arabs, Hindoos, Gipsien, French, English, and Danes. There are among these Ruasian subjects sighty tribet, differing in tanguage, religion, and manners tom the rudest state of barbarism to the higheat degree of Eurepean civilization. 'I'lo population is divided lito four claswes, the nobility, clergy, common people or freemen, and peasunts or serfs. In 1811, the number of prisons subject to do military duty was ns followa:6/4, 135 persons engaged in trade; $8,389,269$ erown prusants; $10,113,1: 7$ peasants belonging to individuals; 1,077,636 appanage peasants; 112,453 frecmen; in all, 18,335,730 men. We find manufacturers of lenther, tullow, candles, soap, felt, coarse linen, mats of the bark of the linden tree, hardware and the urt of dyeing, among the Russians, before the time of Peter the Great; but siace his reign these havo been carried to much greater purfection, and many now manufactures have been introduced. In 1815, Russia contuined 3253 manulacturing establishments; twenty-threo of these deliver to the govermment annually cloth of 700,000 roubles in valuo, and there are, bexides, one hundred and eighty-one private establishments. Drugs are prepured in forty-tive laloratories; and there are diatilleries of brandy, of which $120,000,000$ gallons are consumed in the country. Shipbuilding is carried on in the large viltages on the Wolga and in the sen-ports.

The government is an unlimited monarchy; the emperor is autorrat of all the Russins; the state is indivisiblo; the ruler eannot be, at tho same time, ruler of any other country (siace 1815, howevor, he has been king of Poland), and must be of the Greek religion. In 1797, the succession was settled in tho male line, by the rules of primogeniture, and, in failure of males, in the femalo line. All the princea of the blood are called grandprinces. By the ukase of March 20, 1820, it was declared that only the children of a marriage acknowledged by the enperor are capublo of sueceeding to the throne. The highest councils are, 1, the imperial council, under the prenidency of the emperor, erected January 1, 1810, with four departments- that of legislation (tho alupreme trihunal in civil and cectesiastical suits), that of war, that of civil and ecclesinstical atluirs, and that of finnace; 2, the werate, for home atliara (a deliberative body, consisting of eight departments, three of which have their seat in Moscew ; 3, the noly synod ; 4, the ministry of stite. The ministern have a reat and voice in the inperial council and in the senate. The ministry is divided info three sections-that of foreign ailairs, war, tho marine, the home department, ecelesiastical athins, education, and finance; that of the imperial treasury; and that of the pulalic accounts, roads and canals, and justice. The
whole atate is dhided Into finy-one governmenta and several provincen; of theme forty are in Elurope, exelunive of the Coasickn of the Don, the Comackn of the Black Nen, and the kingdom of Poland. The military force of Rumaia la exceedingly great, yet nothing to exelte any drearl. Hy mome arcounta it is atated an having totally mounuted to 870,100 men; but a vast proportion of thin foree in eomponed of irregular militia, or armed alavea. It is considered by recent writers on the aulject, that the utmont ninount of regular foree which luasuia can bring into the field in 150,000 men, infnatry, cavalry, and artillery. It is indiaputahte that Rusmia has no pecuniary reo noures to support a large army long in the field, and therefore any liear expressed hy Europeun powere on thle score in ridiculous. The principal dependence of Ruania in upon England, and a quarrel with the British government would moat likely had to a merioun commotion in the state. The prevailing rellgion is that of the Grcek church, with a full toleration of all religiona. The state of aoriety ia a strunge mixture of refinement and barbaro inm. 'I'he population is composed of four diflerent classen as has already beon mentioned. The hoors or peasanta are the property of the crown or of individuals; they anount to about $35,000,000$, and are in n state of great roverty. I'ney are sometimen emancipated by their owners, and are nometimes permitted to purchase their freedom. 'The noble families are about 150,000 , com prising 750,000 individuals, and enjoy some privileges and exemptions. The freemen, not nolles or clergymen, ate divited into nix clasmes- the inhabitants of citien, the three guilds (capitulists, according to their income tar.), the trades, forciguers or stmagens, the notable citizens (savans, artists, bankers), and the colonists. In regard to rank, these classes form fourteen gradations; and all who can claim either of the eight higheat uro considered as noble. Distinction of any kind, however, is only guined by the possession of a superior military rank.

Debused as Russia ia, it has recently made great advances in civilized usages. Seicnce, literature, and the nrts, are highly cultivated, and liberally andowed. The Russians, it seems, have not much original genius, but they aro the best imitators in tho world, and quickly adopt foreign manners, language, and improvements The wretehed system of territorial slavery is gradually disappearing, and the peasunts are now more protected by the laws than formerly. The punislument of criminula is also becoming more lenient. Russia possemses a number of towns of from 10,000 to 30,000 inhabitunts. Peters burg, the cupital, hes a population of 425,000 , and Moscow 240,000. Petersburg, which id luilt upon the flat banks of the Neva, is considered to be in appearance the most aplendid city in the world.

germant.

Germany as it ia called by the English, l'Allemagne by the French, and Deutachland by the nativea themselven, is a large territory extending from the Baltic Sen on the north to the Gulf of Venice on the south, having Hungary and Russia on the east, and France and the Netherlands on the west. At its south-west corner it is touched by Switzerland. This immenaely large territory occupies the bulk of the centre of Europe, and consists of an nrea of 250,000 square milea. The most remarkable cireunstanco about Gerinany is its being composed of a considerable number of states, each less or more indeproudent within its own tounds, but externally dependent on the other states of the confederation, as is mentioned already under the head Consticuticnal Govennmenta. Altogether, thero are thirty-four mos urchical states, and four free cities, which enter intr aconfederation as equal sovereigns. For mutual aafety they compose a diet or congress, at which each atato hus a certain number of votes. The principal states of Germany are Prussia and Austria; Sayony, Bavaria, and Hanover, are of lemor
dimenaiona and importance. The othera do not require eny notice.

In the days of Noman greatnem, Clermany, out Carmasia, an it was then callod, was inhabited by a barbaroua but powerful people, reeklens of control, and ambitious of cecuring the apoils of richer nationa. They broke looes at differmit periods, overrunning Italy and other fair porcione of Europe, and, under the genaral appellation of Cloths, finally prontrated the empira of Rome. The term Goth in now umed in a contemptuou menee, but it has to be remarked that modern Europe atanda Indebted for ita liserties as the Goths. The free Inatitutiona of Germany were carried into Eingland and other countriea, where they have since grown and tlourished; and in tater timen the world hae received various unefill arta from the same cource, in particular the art of printing, which tranacenda sil other invention. In the eighth century, Charlemagne anited the Roman imperial crown (a thing merely so in name) with the German empire, and the great territory we are apeaking of wan thenceforward ralled the IIoly Roman emplre of Germany, I'his empire lastel till its diseolution in 1806; but long before that era (iermany had been broken op into statea, by the enterprime of its native dukes and princes, and the name empire was little else than nominal. In 1815, the otates entered inte the confederation which now binds them.

This large confederated country in watered hy 500 rivers, of which the principal are the Rhine, the Danube, the Wemer, the Elbe, and the Oder. The must aouthern chain of German mountaina is firmed by the Tyroteme Alpa, the Alpa of Algau, and the Carnian and Julian Alpa, running from east to went. 'I'o the nouth-eant are the Carpathian mountains, to the north-west the Bohemian Gorest. There are also alpine regions on the Upper Khine. Ia Northern Germany there are sandy heatha and moors, and many diatrieta contain fertile atripe only along the large rivern. On the whole, the soil is fertile, and the climate in general is temperate and healthy. 'I'he number of inhabitanta in eatimated at nearly $40,000,000$, in 3390 towna, of which 100 have over 8000 inhabitanta; 2340 market villagea; 104,000 villages, and numerous mall settlements. Of the inhabitants, there were in 1825, Germana, 27,705,855 ; permone of Slavonic origin, 5,325,000; Walloona and F'rench, 309,000; Jews, 292,500; Italians, 188,000; Gipsies, 900 ; and Armeniana and Greeks, 900. In the same year, the number of persons of different refigious perauasiona was as folIowe : - Roman Catholica, 18,376,300; Proteatanta, 15,150,500; Jews, 292,500; (irceks and Arminians, s00. It should, however, be atated, that in this cnumeration there are in all likelibwod many religioninta who are altogether unsettled in belief, although ostensibly lelonging to mome comıounion; for in no country in the world is there such latitude in thinking upon points of faith. Germany containa 24 univeraities, which are atuended by about 30,000 studente-a clase of wild young men, having habith and an appearance very diflerent from what usually characterizes attendants at colleges in Great Britain. The publishing and reading of books prevail to a great extent in Germany, which is ensentially literary in its tastes. There are public libraries in 150 places, with about six millions of volumes. Ten thousand authors produce annusily from about $\mathbf{3 3 0}$ to 5000 new booke. There are akout one hundred political joumals, two hundred and twenty other journals, and at least one hundred and fifty periodical publications. Most of the beat English productions are regutarly translated and printed in (larmany. It is curious that, with all this abundance of literature, and the prevalence of education, with also freedom of religious opinion, Germany is far from being a free country It is despotically ruled by great or petty wovereigas, hes only here and there the mockery of represenLative gove:nment, and the people in the maes ore deatithe of the powar to better their condition. Germany,
from which all our frceslom aprang, is itwelf ranked aming the leant free of the nations of Chriatenden.

One of the chief of the amall (lerman Kinglome is Saxony, lying in the centre of Europe, and conalating princlpally of the plain of the river Eillm, in lita uppet part, with a population of $1,700,0 \times 1$) inhabistanta, it is rich in agricuthural produce, and feeds abont a nillien and a half of shecp, the wool of which is rumarkably fise and valuable. Nuxony han varhoun flourishing manintiveturea, Hnen and woollen goorls being the staple. It alno carriea on a briak trade with vartous parts of the world. 'f'ha grand centre of its commerce, and indeed that of all Germany, ia at leipaic, one of tinchinf townas. Here a great fair in annually held, which in attended by merchanta from all parta of Europe, and at which, in particular, the sale of buokz in very great. 'I'he mont elegant town in Baxony in Dremien, aituated upon the banka of the Ellir.
(iermany posnesses four free citice, acting on inclejme dent atates within their own bounds, and individually cttitled to vote in the Germanic diet; nancly, Humbing, Lubeck, Iremen, and Frankfort-on-the-Maine. Tho independence of the towna ja a rcminant of a confederacy of citien, which was eatahilialied in the thirteenth century, under the name of the Ilanmeatic lieague. Hesides thene four free cities in Germany, the l'oliah city of Cracow was declared a free city by the general act of th. Congrems of Vienna, and la uniler the protection of Kuasia, Austria, and I'rumaia. Hambury, nituated upon the Filbe, which flowa into the North Nea, in one of the chief commercial and maritime cities of Europe. It posseanes a population withis its territory of 150,000 inflabitants.

augtria,

Auatria is a monarchy now forming one of the leading powers of Burope, and is nsually eateremed the principal of the German atates. Only a portion of the territory, however, belongs to (iermany. Am a government, it in cluden a number of ancient mates, which have been ao quired and added in the course of time by a seriea of ambitious novereigns. 'Ihese are (in addition to Auatria I'rojer, composed of Upper and Iower Auntria), Bohemis, Moravia, with the olpine regione of ityria, (Garinthia, and the 'T'yrol; several of the Polinh provincen, now called Gallicia; the kinglom of Hungary, and the licm-bardo-Venctian kingdom in Italy. I'his grest country is governed ly an aboolute jaince, who taker the title of enrperor. It comprimes mere than $\mathbf{2 5 6 , 3 9 9}$ square miles, and upvarda of thirty-two millions of inhatitants. Of these it in reckoned that there are twenty-two millions of Konsan Catholics, three midlions of the (ireek church, two millions of Protentants, and half a million of Jews The military force of the monarchy in 1819 almounted to 270,000 mert, independent of nilitia. Austria numbers 777 cities, 2224 market townh, and 69,105 villagea. The most pophlous citien are Viema, Milan, Venice, L.cmberg, and l'adua. The priscipal men-ports are Trieste, Venice, and Fiume; other places of trade are Viensa, Prague, Pesth, Lemlerg, Brody, and Grata.

The cepital of Austria is Vienna, which is a city of greal extent, aituated on tho Danulie, sund greatly improved in modern times. Iatterly, much has been done in Austria to establish schoola and educate the people, by which they may ultimately be prepured for the enjoyment of political freedom. Meanwhilo great improverments are taking place in the condition of the mation by the extensmon of trado and commerce then-navigation, toads, Nc.

prugsia.

Prussia in one of the most remarkalle kingdema th Europe. It has risen frons nothing at the lueginning of latt century to be one of the principal continental nations The increase of its size from its original dimensions, a the Duchy of Branienburg, to the condition of a finst-ratio singdom, has been effected by the intrepidity of ita peoph
and the military if Prederick II., tuted, liea in the Baltic Sea on the primes the diatrict sia, Posen, I'onie and the Khenish portion of Poland tition of that 11 extent of thew milea, with a popu millione of which lo greatly weaken tent of territory. purta, townida R1 aituation ia dejrell military force, con mo Jarge an alditi nearly half a millic an alowolute nimur freedom which ne of the nowt atrikin, which it beatowa o are nowhere fowter countrice in which fused. (Bee our on soms maritime inland trade is pron and Suale, the Rhin Apree, Weser, Moe Prussia, or belong inhabitunta of l'rus four and a half nill

Switzerland ia the alpine regions having Italy on the country han, from a hardy and indep attached to republic really to defend the aggreanion of the 8witzeriand measur in brealth, and is miles. I'olitically, two smull states or each other, but cont lectionh Some ntat goverommont than ntl to two andi a half hali are Iroteatante () wholice and Jews. mowl cantons.

Geneva is the an proportion to its size town of Geneva. up miles in longth and eot mountaina of \mathbf{S} of Uni, Berne, Und sixty Swiss mountai highent is Monto R Chalet, in 3000 fee limita of Savoy, is being 15,668 feet hig are pastoral in therr covered at top with ing here characteris tinual alternation of ing matural scenes rome places, within the saine tine all the possible to stand bret collect snow with on
and the military character of its wovereigne, particularly of Frederick II., or the Great. Prusuia, an new conatiunted, lies in the northern quarter of Europe, with the Baltio Mes on the north, and lRussis on the eaat. It comprises the diatricta or provinces of Eant and Weat Prusdia, Poeen, I'omerania, IIrandenhurg, Bileala, Wentphulia, and the Wheniah previnces; which divimion include the portion of Puland which was taken by Primuia at the pare tition of that unfortuaste kingdom. I'he aggregate extent of thes territories anoninta to 106,454 gyuare milea, with a population of $14,000,000$, upwards of eleven millient of which are Germana, I'rumsia in conaidered to te grently weakened as a power by ite large scattered exwit of territory. The kingiom sias three vulnerable parta, towurda Rumsis, Austria, and France; hence ita situation is dependent. It in compelled to kecp up alarge military force, connanting of 180,000 regular troope, with no large an arddition of irregulars, an make up in all nearly half a million of soldiers. The king of l'russia is an sliumlute monarch, yet he in surrounded hy a spirit of freedom which necenarily influencea his actions, One of the mont atriking features of this monarchy in the care which it beatows on science and education. The sciences are nowhere fontered with more care, and there are few countrien in which common schooin aro more widely diffused. (See our articlo Enceation.) Prumbia carriea on some maritime trade by meana of the Baltic, and its inland trade is promoted by the rivers Oder, Vintula, Elbe, und Eaale, the Hhine, Memel, Pregel, Warta, Netze, Janel, Spree, Weser, Momelle, \&ce., which either thow thrungh Prussia, or belong to it. Nine and a hulf millions of the inhabitants of Prumeia are of the Reformed Church, and fuur and a half nillinns are Catholics.
owitzerlaikD.
Switzerland is a mountainous territory, occupying the alpine regiona betwixt France and Germany, and having Itaiy on the south. 'This beautiful and romantic country has, from time immentorial, been occupied by - hardy and independent race of inhabitanta, mostly attached to republican forma of governinent, and always realy to defond their righta and their country from the agreasion of the great powers in the neightourhood. Switherland mearures about 300 miles in length by 140 in breadth, and in supposed to contuin 19,000 squaro milea, Politically, the country is divided into twentytwo minull or cantons, generally independent of each other, but confederated for purposes of mutual protection some states are more free in their forms of govermment than nthers. The total population amounts to two and a half millions, of which upwards of oneball are I'rotestantr, and the remainder chiefly Roman thatholie and Jews. The German language is uned in mout cantons.

Geneva is the amallest but moat populous state in proportion to its size, and in this canton is situated the Lown of Geneva, upon s beautiful lake of about fifty miles in length and eight or ten in breadth. The highmountains of Switzeriand are found in the cantorsa of Uń, Berne, Vnderwalden, and Grisons. Of about inty Swiss mountains which have lieel measured the higheat is Monto Roan, 15,535 feet high; the lowest, Chalet, in 3000 feet high. Mont Blane, within the limits of Savoy, is the highest meuntain in Burope, being $\mathbf{1 5 , 6 6 8}$ feet high. The mountains of Switzerlund are pastoral in therr lower parts, and in many instances covered at top with perpotual ice, the icy coverings being here claracteristically maned glaricrs. The rontinual altermation of hill und dale affords the mont striking matural scenes in every part of Switzerland. In woms places, wittin a short distance, one may see at the same time all the scasons of the year; and it is often possible to stand butweon spring and nummer, so as to collect snow with one hand, and to pluck flowers from
the soil with the other. Every mountain has its waves falla; and as their sources are sometiman lowt in the clouds, the cataructa seen to descend from the skiem Switzerland abounds in lakes and rivern, the fisheriem of which ase valuable, and which merve to eniveilish the lindarape, but none of the rivern arn navigable. Small nteun-veneels now ply on the laken of Gieneva, Zurich, Constance, and Neufchatel, and are a greut convenience to travellerm. The chidf rivers are the IRhine, the IReunn, the Khene, and the 'I'eamine. The cultivation of the vine in carried on to conaliderable extent in Nwitzerland; the breding of cattie is, however, the chief employment of the inhabitante. Swise cheenes are limported in great numbera intw Uermany, France, and Ituly.

Manufartures of silk, cotton, and linen, have of late years greatly lucreamed in Switzorland, which is riva'ling Eugland in some kluda of gooda, particularly printed calicoes. Recently great lmprovementa have heen made upon the roads through thle attractive territory, and travellera are now weil secemmodated on all the main router.

The people of Switzerland form one of the beat educated, most industrious, and best behnved nations in the world; and conmequently they are generally happy and in good circumstances. Although the country does not anywhers touch the sea, and all goods have to be carried many miles by land journey through other atatea, the Swiss pousess a thriving system of trade und commerce, and are rapidly ndvancing in a career of national prosperity, thum proying that nothing is denied to good conduct and industry.

NORWAY, SWEDEN, AND DENMARK,

These, with the province of Finland, form the northweatern frontier of Euroje, facing the North Sea or German Ocean, snd reaching to the shore of the Baltic on the nouth. Norway lien on the shore of the North Sea, Sweden is behind it with its southern extremity to the Baltic, and Denmark is formed by the penineula of Jutland, projected northwards from the Netherlands and Kingdom of Hanover into the mouth of the Baitic. Norway and Sweden are now erected into a kingdom, under one movereign, much in the same manner as England and Scotland are united. Bernadotto, one of Bonaparte's commanders, has for a number of yeara been the reigning monarch. The united kingdom meaaures 1550 miles in length by about 350 in breadth. The country is moatly mountainous and pastorai, and covered with dense foresta, producing the fineat timber in the world. The climate is dry and cold, but that of Sweden is warmer then that of Norway. The mineral kingdom is rich, particularly in Iron, copper, and silver. The inhalitants of these countries are of the ancient Scandinavian racea; bardy, honest, industrious, and kind-hearted. In the seiences, the Swedea have mhown a sound and penetrating mind. The two kingdoms, Nerway and Sweden, had, in 1825, a population of nearly four millions of inhabitanta. Stockholm, the capital, had a population of nearly 80,000 ; Gottenburge the princiunal commercial city, had 24,000 ; Christiana, the capital of the Nor ogisn division, had 20,600 ; and Hergen, the chief com.me.cial city in Norway, 20,800 . Few towns, however, numieer nore than 4000 inhabitants, and many have scarcely 500.

The Danish monarchy is composed of the peninsuls already mentioned, with nome islanits and detached por tions. 'The principat of the attached territories are tha duchies of Holstein and Ianenberg; likewise the Fermen Islanda, in the North Sea; Iceland; the westerns coast of Greenland; sone places in Guinca; and the eity and torritory of 'Iranquehar, in the Ene' Indies. 'The exult measurement of so scattered a territory is of little mo went; and it ia auflicient to state, that Denmark Proper
and the duchy of Scleswick contain $\mathbf{1 7 , 3 7 5}$ square miles. Denmark Proper ie estimated to contain $1,230,000$ inhabitants ; Holatein and Lauenburg, 370,000; and the wtal population under the monarchy amounta to something under twe millions. The peoplo are partly Danes and partly Germsns. Denmark is a level country. The coasts are low, and protected from tho nea by dykos. The soil consists partly of marshes and heaths, and is on the whele but moderately fruitful. By the improvident extirpation of the woods which protected the north end nerth-western coasts of Jutland againat the sea, vast oxtents of fruitful territory have become barmen and aendy daserts. The staple proluctiona nre grain, rapemed, and tobscco; and the breeding of cattle forms a principal source of profit. Denmark now contains, witheut including Iceland and the Feroe Islands, 100 cities, 73 boroughs, 2305 parishes, and 5500 villages. The government is an absolute monarchy. Copenhagen, aituated on the east coast of the island of Zealand, is the capital, and contains a population of 105,000 inhabitants.

holland and bergium.

These countries, under the general appellation of Netherlands, occupy a large flat territory atrctching southward from the confines of Denmark on tho north, to France on the south; having Prussia and the small kingdom of Hanover on the east, and the North Sea or German Ocean on the west. They therefore form that part of the continent of Eurcee which lies opposite the east consts of Scotland and England. The entire extent of the Netherlands amounts to 24,870 square mites. Through the centre, from east to west. flows the Rhine, one of the finest rivers in Europe, and which parts into a number of channels before pouring its waters into the ocean. On the lower part of one of these channels stands Rotterdam, s large and thourishing commercial city. The aurface of the Netheriunde is flat, and rich in the luxuriance of vegetation, So low ia the land, that it has to be pretected from the sea by dykea or embankments. The country is everywhero intersected with canals, which are of prodigious use for commercial and general interceurse. Locslly, the Netherlsnds are divided into a number of districts, among which the old Flemish or Flanders provincea find a place. The whole territory is nearly equally divided into the two distinet etates of Holland and Belgium.

Helland is thst part of the Netherlands which lies on the north-east side of the Rhine, while Belgium is upon the south-western eide, or nearer to France. Holland is composed of the following provinces: North Brabant, Guelderland, North Holland, South Holland, Zealand, Utrecht, Friesland, Overyssel, Groningen, and Drenthe, being ten in number, containiny, in 1833 , a population of $2,444,550$. Of these there are $1,541,748$ Protestants, 836,920 Roman Catholics, and 45,493 Jews, besides a few thousande of other sects. The country, however, is easentially Protestant, notwithstanding that all sects are freely tolerated, and their elergy paid on a nesrly equal principle by the state. The estahlished church is Preshyterian, resconbling that of Scotland hoth in discipline and doctrme.

Hwland las been for ages a commercial country, its people chiefly mubsisting in some way conneeted with ships and maritime tratlic. It is, however, not at present advancing very sensibly, owing to the peoplo's want of enterprise, and their hatred of modern inventions and improvements. Since 1830 , when the kingdion of the Netherlands was divided by a revolution into Holland and Belginm, the country has been governed separately by a constitutional monarchy. 'The Hague is the capital of Hollani, where the government is conductet, hut Amsierdam is the chief town, bath for commerce and amount if population -its popuiation was aome vears
since upwarde of 200,000 . The languago of ilolland in a species of German, spokell nowhero elso in Europo.

The districta or provincea of Laxembourg and Lim. burg aro now considered to belong to Itolland. Lakeinbourg lies on tho south of Belgium, and Limburg in the lower valley of the Meuse, on the Belgian side of the Khine.

Belgium, the country of the ancient Belgw, afl in later times the country of the Flemings, now consists of the provinces of Brabant, Antwerp, Hast and West Flanders, Hainsult, Namur, and Liege, the whole mea suring 12,000 English square miles, and containing $4,000,000$ of inhabitants. The people of Belgium are from tho aame original stock as the Duteh, lut circumstances have made them widely different in manners. Belgiun was long held in suljection by S_{p} nin and Austria, and afterwards was attached te France, and partly from this eause the prevalent religion is Roman Cutholic, and tho languago chiefly French. 'I'hese two peculiaritios give a turn to the national feelings. The Belgians, though as industrious na their neighbours, the Dutch, are lese steady of purpose, and more enterprising. Neverthaless, they are now a thriving people, under a constitutional monarehy, with Leopold as their king, and many improvements are at present in operation in the country. Brussels, a henntiful large town in Brabant, is the capital-population alout 80,000 . The manufactures, internal tratic, and commerce of Belgium, are undergoing a rapid extension. The towns next to Brussels in size and importance are Antwerp, a sea-pert on the Seheldt, Ghent, Bruges, Louvain, and Liege. The twe muin rivers are the Meuse, which falla into the Rhine, and the Scheldt.

TURKEY.

Turkey is a territory partly in Europe and partly in Asia, and is inhabited by an Aeiatic-Thrtar race, called 'Turks, who in the year 1453 conquered that jortion lying within the confines of Europe, formerly the metropolitan part of the western empiro of the Romans, and have there ever since, at Constantinople, held a barba. reus sway of this beautiful diatrict of Europe. 'Turkey in Europe is separsted on the south-west from Asia only by a long range of straits called the Dardanelles, and by the Black Sea, and is hounded on the northern side by the dominions of Austria and Russia. On the west it has the Adriatic Sea, which in part separates it from Greece, till lately a portion of itself. The 'Turkish monarchy nominally possesses Egypt and some other possessions in Africa; but, not computing these distant territories, it may be estimated that 'I'urkey in the present day taeasures in Elurope 178,928 square miles (hut including the insecure provinces of Moldavia, Wallachia, and Servia), with a population of upwards of nino millions of inhahitants; and in Asin 425,000 square miles, with a population of alove ten millions. The bulk of the population in both regions is Mohammedan, and uncivilized. The climate of Turkey is among the moas delicious in the world; its soil is renerally productive and its natursl appearance is beantinul.

Constantinople, the capital (called Stanhoul by the Turks), situated on the Posphorus, in strai hetwixt the Mediterranean and Hack Sea, is a large and populous, though crowded and inemvenient eity, excellently situated for trife, communications loeing earried on with it by the Mrditeranean on the west, and the Black Sea on the east. Every region in Turkey yields its productions in shondsnce. The staple articles of export are whest, rice, cotton, tobacco, silk, figa, and other fruits; hair, wool, and opism. Mining is totally neglected; and them is in general little manufarturing industry in the country 'fhe inhohitants are at once extremely ignorant, proud. and slothful, and the commerec carricil on is chiefly in the hands of Jews and Christiana. The apread of knew.
adge has wall carric transcribi mon empl berause th bile the i was lately onne civil he eatablia and Turki
The sul hammed, modan wor the suprem the jropert highest offi death at w favour, or stations. cession to man; the often dectid cluded fron not crowne Osman, aft Mohammed part Circas as slaves. the number contest fo t Latterly the spect, still : ion are on
The most of governme is the agure addition to ulema, or pri The mufti $;$ lighest inter lected. The four times ahis absence hunals of th anall towns, the excentor justice is as common pun ing, stranylit meni of the Sublime Por from Europe stantinople a and ether for cormed Frank
The land miserable As armed, and d ciple, and par of Turkey h European sy, likewise heen Malımoud (de empire may towards civiliz

The anorther inte two large, Eusopean con the A Iriatic, nsula, or tom, the origina ame nation h

The bulk of ammedan, and tmong the moat ally productive
tamboul ly the rais lietwixt the e and populous, xacellently situried on with it e Mlack Sea on : its productious port are wheat, Cr fruits; hair, cted; and there in the country gnorant, prouil, on is chichly in pread of tnow
sdge has been seduloualy provented; printing, till lately, wan carricd on on:ly by Armenians, Jews, or Greeks; and transcribing books with the pen ia pursued as a common employment. Painting and sculpture are neglected, berause the Koran, or Bible of the Mohammedans, forbids the imitation of the human form. A great effort was lately made by the suitan Mahmoud to introduce sone civilized usages, and, among other improvements, he extablished a newspaper at Constantinople, in French and Turkish.

The sultan, as caliph, or successor of the prophet Mohammed, enjoys the character of Pope to the Mohammelan world, and unites the highest spiritual dignity with the supreme secular power. He has unlimited contrel over the property and lives of his subjects, especially of the highest officers of state, whom he can remove or put to death at will. The people have no rights. Merit, or favour, or intrigue, can raise the lowest to the highest stations. There is no hereditary nobility. The succession to the throne is hereditary in the family of Osman; the will of the peoplo and of the jamizaries has often decided upon the individual. Women aro excluded from the succession. The padishah or sultan is not crowned; he is merely girded with the sword of Osman, after he has sworn to uphold the religion of Mohammed. The women of his harem are for the most part Circassians or Georgians, who have been purchased as slaves. On account of this plurality of wives, and the number of male descendents, there is generally a contest for the throne at the decease of every monarch. Latterly there has been some improvement in this respect, still the whole arrangements for a regular succession are en a precarious footing.
The most remarkable thing about the 'Iurkish system of government is, that the Koran, or Book of Mohammed, is tho aource of all civil, political, or criminal law. In addition to the code of laws, the interpretations of the ulema, or priesthood, have great weight in the tribunals. The mufti is not only the chief of the priests, but the highest interpreter of the laws. His decisions are collected. The highest tribunal, the divan chaneb, is held four times a. week ly the grand vizier, in his palace, or in his absence by the tchansh-haschi. In the iower trihunals of the largo cities, the mollas sit; in those of amall towns, the cadis. Tho moslens are, under them, the excenturs of the sentences. The alministration of justice is as simple as it is prompt and encrgetic. 'Jhe common punishments are the bastimado, hanging, drowning, stranyting, mul impaling. The court or governmeni oi the sultan is known by the name of the Porte, Sublime Porte, or Divan, und the subtan has received from Europeans the title of Grand Seignior. In Constantinople and other parts of 'Turkey, English, French, and other foreigners from western Europe, are generally tarmed Franks.
The land forces were uniil recently organized on a miserable Asiatic system. They are now modelled, armed, and diseiplined, on the common European principle, and partly dressed on the same plan. The havy of Turkey has been also organized according to the European system. In civil lifo many reforms have tikewise been effected by orders of the late Sultan Mshmoud (deceased 1839), and altogether the 'Jurkish empire may now be described as in a transitive state towardy civilization.

arpece.

The northeastern part of the Mediterranean is divided inlo two harge brys or galfs, which run far up into the Enopean continent; that towards the west feiner called the A lriatie, und the other the Aspean sira. The perlmaula, or tongue of lund which lies between the two, is the original roun ry of the (irecks. Colonics of the same nation have, fomi time beyond the reach of history,
occupied the whole cosasts and islands of both taese gulfo from Sicily almost to Cyprus; but the parent statea el the middle peninsula are those to which tho Grecian name is indebted for all its splendour; and it is this country only which is properly called Gireese. From the situation of tho Grceks in a region whose bays, headlands, and ishands, present a great extent of sea-coast, habits of adventure and mutual intercourso were produced among then in the carliest tumes, which had the greateat influence in cherishing a national activity of character, and making each community eager to rival the prosperity of the others. The people were early accus toned to make voyages, sometimes for tratlic, sometime for war, betwixt the opposite coast of their gulfs. guiding themselves by the stara from island to island. From thia and other circumstances, Grecee in early times attained the first rank as a state, or confederacy of states. (Sce articlo Ancisnt Hisionf.) After being conquered ly tho Remans, it fell a prey to the Turks, from whom it was in part only recently wrested by a skilful rebellion or revolution.

In the prespnt day, Greeco comprises in its northern parts the districts of Allmnia and Macedonia; next, in a southerly direction, Epirus and 'Ihessaly; the Morea (anciently Peloponnesus) is an island-like peninaula, almost cut off from the latter divisions by a strait called the Gulf of Lepanto. Altogether, modern Greece measures about 400 miles in length, and little more than 100 in general breadth. Greece is a mountainous and romantic region, with several besutiful rivers. Its agriculture is in a very rude condition, bit its commerce is increasing; und the leng-exhausted nation ia gradually assmoning a settled powerful character. A constitutional monarchy, not very well organized, has been imposed on the newly erected nation by the European powers, with Otho, a Bavarian prince, as king. Athens, the etiel town or capital, is now undergoing improvements, and frequently visited by strangers. The population of the continental part of Greece is stated at three milliona, and nearly half a million for the islands adjacent.

A814.

Asia, which forms the eastern and northern porton ot the great tract of land in the eastern hemisphere, is the oldest known portion of the globe, and ia usually called the cradle of the human race, of nations, and of arts It is separated from Australia by the Indisn and Pacific Oceans; from America on the north-east by Behring's Straits, and on the east hy the grat Eastern or Pacific Dcean; from Afriea ly the Aralian Sea (with wheh is connected the l'ersinn Gulf), and hy the Arabian Gulf, or Red Sea, with the straits of Babelmandel; from Europe by the Sea of Azoph, with the Struita of Caffa, hy the Bark Sa with the Bosphorns, by the Sea of Marmora and the Dardanelles, and by the Grecian Archipelago. On the other hand, it is united with Airica by the desert Jsthmus of Suez, and with Europe by the waters of the Wolga, which rises near the Baltic, and fuls with the Ural into the Caspian Sea.
Tho area of Asis is about $16,175,000$ square miles. It extends from 26° to $190^{\circ} \mathrm{F}$. longitude, and from 2° to $78^{\circ} \mathrm{N}$. latitude. dts greatest breadth, from north to south, is 4140 miles, and its greatest length about 8000. It is four times larger than Europe. It is divided into 1. Southern Asia, emprehending Natolia, Armenia, Curlistan, Syria, Arahin, Persia, Hindostan, Farther India, Niam, Malacca, Annam, 'Ionquin, Cochin Chinn, Laos, Cambodia, Chim, Jnpan; 2. Middle or Upper Asia, containing Caucasus, Tartary, Bucharia, Mongolia 'Tungousia; 3. Northern or Russian Asia, from $44^{\circ} \mathrm{N}$. latitude, contaiuing Kassan, Astrachan, Orenhurgh, Kı ban, Kahanta, Georgia, Imireta, Silneria, with the alpin zegions of Daurin and Kamsehatha.

The large portion of Asia composing the n orthern asw
mddle diviviona, inhabited by wandering Tartar racea, pomessos littlo interest, and is generally viewed as little wes than a great wilderness. The parts which are important, either from their historical interest or their preeent condition, are the three lohes or masses of land, partially jutting out from the continent on its southern side ; the tirst, on the west, comprehending Arabia, Syria, and Persia, the second, or mid part, Hindostan or India; and the eastern part, Chins and Japan Arabia is a fine targe peninsular tract lying betwixt the Persian Gulf on the east, and th3 Red Sea on the weat. It containe about $1,000,000$ square miles, and is aituated between the 12 th and 30 th degrees of north latitude. Its chief towna are Mecca and Medina, near the shore of the Red Sea. The couthern portion is entitled Arabia Felix, or the Happy, and its northern purt Arabia Petrea, or the Rocky. Adjacent to this northern division, and stretching along the border of the Mediterranean Sea, is Syris or Palestine, the ascient country of the Jews, but, along with the surrounding country, now held in subjection by the Turkish power, and in a state of barbarism. A description of Paleginge is elsewhere giveu in the present work.
The district of country anciently termed Asia Minor, but now forming part of Turkey in Asia, and called Natolia or Anatolia, is a territory 650 miles long, and 400 lroad, having Armenia on the east, and a part of the Mediterranean on the west and south. It is a fruitful and delightful part of Asia; its principal town and seaport is Smyrna, with which a considerable traffic is carried on with western Europe.

Persia lics on the eastern shore of the Persian Gulf, between the 25 th and 40 th degree of north latitude. It has the Caspian Sea, or \& great inland lake, on the north, and the Arabian Sca on the sonth. It comprises about 390,000 square miles, with a population of about $6,500,000$. The people are Mohammedans, and in a semi-barbarous condition, governed by a shah or despotic sovereign. Lepahan is the capital. Within a portion of country anciently called Mesopotamia, and now generally entitled Turkey in Asia, and lying at the head of the Persian Gulf, between Persia and Arabia, are the rivers Euphrates ead Tigris, also the towns of Hagdad and Bassora. It was by these channels, the Persian Giulf, the Hiuphraten, and also the Red Sea, that a great trade was once carried on betwixt India and the shorea of the Mediterrancan Sea; now this traffic is at an end, in consequence of the barbarous state of the whole region round about, and the opening of a communication betwixt India and Eingland. Uf Injui, and also Chisa, no account need here be given, as they are fully described in other parts of the present work.

In ail parts of Asia, excepting the mid and northern regions, the climate is delightful, and Nature has spread ber most bounteous gifts. "T'js the clime of the East, the land of the oun," but sunk in fulse religion, soperatition, and in a state of moral and intellectual torpor"all but the spirit of man is divine"-and when or how it to to be rescued from such a condition, no one can foretell. In the southern divisions within the torrid zone, whom genial warmth converts the juicer of plants to apicen, baleanns, sugar, and coffee, with which Asia has enriched the West Indies, the .palms (sago, cocom, late, and umbrella-palms) reach a heisht of 200 fret, and the white elcphant aitaine a size surpassing that of all other quadrupeds. From hence the xilk-worm was brought to Europe. This region concerals in its bomom the most teautiful diamonds, the tiasst gold, the bewt in, dec., whilst the waves flow over the purest pearls and corala. I'he temperate zone hus given to Europe the melon, the vine, the orange, and many of ite most agreeable garden fruita, an well an the most productive farimaceaun graseen, and the mont charming flowers; and "onites, it its profuctions, symmetry with richnces, particularly in the wembra regions. Here the oldeat tradi-
tions place Paradise; bere lie the enchanting Cashmers and the Garden of Damascus; here blossoma the rose of Jericho, near the cedars of Lebanon. The eastern coln. tries in the sams latitudo possess the ten-shrub and the genuine rhubarb. The camel, tho Angora goat, the Thibetan sheep, the pheasant, and tho horse, are natives of thia zone. In the north blossome the Alpine flora of Dauria, and from the icy soil grows the dwarf-like Si herian cedar, till, at 70°, vegetation mostly ceases. Here live the smalleat of quadrupeds-the shrew-mouse of the Yenisey. Sables, ermines foxes, others, \&c., afford the finest fur. The minert. kingdom furnisher rieh ores, rare precious stones, and remarkable foss:! : imains of thia mammoth, in high northern latitudes.
The inhabitants of Asia (amounting to $390,000,000$; according to some, to $580,000,000$) are divided into three great branchea:-'The Tartar-Caucssian, in Western Asia, exhibits the finest features of our race in the Circassian form; the Mongelian race is spread through Eastern Asia; the Malay in Southern Asia and the islands. 'I'he north is inhabited by the Sanoiedes, Thhooktches, and others. Twenty-four tribes, of different language and origin, may be distinguished, somo of which are the relics of acattered tribes of Nomades: Kamtschadales, Ostiacs, Samoiedes, Koriacka, Kurilinns, Aleutians, Coreana, Mongola, and Kalmucks, Mautchoos (Tungoos, Daurians, and Mantchoos Proper), Finns, Circassians, Georgians, Greeks, Syriaus and Armenians, Tastars and Turks, Persians and Afghans, Thiketane, Hindoos, Siamese, Malaya, Annamites (in Cochin (hinn and Tonquin), Burmese, Chinese and Japanese, beoides the indigenoua inhabitants of the Enst Indian islands, Jews and Europeans. The principul languager are the Arabian, Persian, Armenian, Turkiah, Trartar, Hisioo, Mslayan, Mongol, Mantchoo, Chinese, and Sanserit I'he principal religions which prevail are Mohammolanism in the western parts, the worship of the Thibet in the central region, Budhism in the b territory, and Hindooism or Bralıminism in
I'hese and other religions of the Asjatics are diectixd in the article Pauan anio Monammeian Religions.

arrica.

Africa ia a vast peninsula of a triangular form, with wa narrowest point towaris the sonth, containi..f $12,256,060$ aquare miles; situated letween $18^{\circ} \mathrm{W}$. and $51^{\circ} \mathrm{E}$. lon., and from $34^{\circ} \mathrm{S}$. to $37^{\circ} 30^{\prime} \mathrm{N}$. lat.; bounded on the north by the Mediterrancan, on the rast by Asia, the Red Sea, amd Indisn Ocesn, and on the south and west by the Southem and Attantic Oceans. It hus a greal breadth from cant to west. 'The northern portion is much larger than the nouthern; the greatest breadth, from west to east, from Cape Negro to Cape Cuardalui, is 69°. Dinder the equator, the breadth is 4500 geo graphical miles. 'Ihe internal structure of Africa is marked by many peculiarities. It prossesses deserta on arid sandy tracts of immense extent, uninhabitable by a settled population, and only traversed by troopm of wild Arals, and caravana or companien of travellers on the hacks of catoels. In theme awfinl solitudes, lions, tigers and other witd animiln, hunt for a prey, and diaputa possession with the savages who intrude upon their donain. Africa also possesses inunensely long chains of monntains rising to an fhormous heiglit. Such am the Aths mountains, the Mombains of the Moon, ant others. The highest ${ }^{\text {wish }}$ of the tinmeromes is 13,000 fiet nbove the lewel of the sea. Arsea has few riverf suitable for navigation, and hence its impsuctruble character. The principal river is the Jiiger or Joliba, which flowa some hundreals of miles from the interior, to the Atlantue on the west ceast. In this quarter also are the Gambia, the Congo, and the Senegnl. 'Ihe Nile has lieen the longent and best known; it flows from Abysrinis through Eigypt to the Mediterraceas.

Erceptin aabited by the possces or vary eli Of the lat gion of Bar habitants of vallay of th and Syria we can find in described work. We nominally s of Tripoli a conquered of Morocco angle of ter lantic. Cer states, amor Along this and Dutch countries in Cape of Go promontory,
The islan Madeiras, th also St. Hel the large isld in the ocean

Madeira African islan by 11 in brea hundred mil of vessels pro Hope or Indi latitude, it er tender consti and the grape wine, usually sion of Portu for the sake o

The Africa to the inquire from the rest black comples in the constr of the nerves ariginally a d this primitive for example, of the Guane nes) in the ne bably betwee lions. The int since, within forty millions notwithstandir the countries mon computed wen millions, conntitute but twenty million a numeroun p the Joliba, of inhabitante be to the black o Joliba to the standing their to the Caucasi hary, Copts, th snians, and th to be regarded scattered them nart of the no

Vol. I.—才

Ercepting in some small spots on the sca-coast inasbited by European colonists, the whole of Africa is . 1 the possession of races of men, black and fiercely anvage, or very alightly civilized, and of a copper comploxion. Of the latter variety are the Moors of the extensive region of Barbary on the north, and also the modern inhabitants of Egypt. Egypt, which is little else than the valley of the Nile, and lying adjacent to Arabia Petrea, and Syria in Asia, is the only country of Africa in which we can find any interest from histurical recollections. It is deacribed at length in a separate number of the present work. West from Egypt is Barbary, a country in part nominally subject to Tartary, and containing the districts of Tripoli and Tonis, also Algiers, which has lately been conquered and appropriated by the French. The empire of Morocco is likewise in this northern division, in the angle of territory between the Mediterranean ond Atlantic. Central Africa comprises a number of savage states, among the rest Guines on the Atlantic const. Along this coast aro certain British, French, Portuguese, and Dutch possessions. Southern Africa comprises the countries inhabited by the Hottentots and Caffics, and the Cape of Good Hope, which is at the extreme southern promontory, and now forms a flourishing British colony.

The islands considered to belong to Africa are the Madeiras, the Canaries, Cape Verd, and Azore islands, also SL. Helena and Ascension, all in the Atlantic; and the large isle of Madagascar, with a few of smaller size, in the ocean to the east of the continent.

Madeira is the finest and most accessible of the African islauds. It extends to sbout 37 miles in length by 11 in breadth, and lies at the distance of arout five hundred miles from the coast of Barbaly, in the routo of vessela proceeding from Europe to the Cape of Good Hope or India. Lying at about the 31st degree of north latitude, it enjoys a delightful climate, suatable for the lender constitution of i:svalids. Vrgetation is luy uriant, and the grape grows to great perfection, and yip'as a fine wine, usually called Madeira. The island i., in possession of Portugal, but many English reside upon it, both for the sake of commerce and health.

The African races of men offer many pointe of interest to the inquirer. The majority of them are distinguished from the rest of the human family, not only by their black complexion and curly hair, but also by peculiarities in the construction of the bones of the head and even of the nerves. This seems to imply that the negro is originally a distinct race. It is thought that traces of this primitive race may still be detected here and there; for example, of the original Egyptians in the Copts, and of the Guanches (the original inhabitants of the Canaries) in the natives of Barbary. The population is probably between a hundred and a hundred and ten millions. The interior of the country must be very populous, since, within two centuries and a half, it has contributed forty millions of vigoroue men to the slave-trade, and, notwithstanding, is any thing but depopulated. Even the countries along the coast are thickly peopled. Jarkon computed the population of Morocco alone at sevenwen millions, und the Barbary states, with Egypt, which constitute hut an eighth part of the continent, contain twenty tnillions. The torrid Guinea has, on the whole, sumerous population; and large cities are situated on the Joliba, of which we hardly know the names. The inhabitants belong to two branches of the human family; to the black or Ethiopiun race, which extends from the Joliba to the nouthern extremity, compriaing, notwith. standing their tawny complexions, the Hottentots; and to the Caucasian race, which includey the natives of Barhary, Copts, the Arabs or Moors, the Agaziones or Abysenians, sud the nations of Nubia. The Arabs are not to be regarded as aloorigines of Africa, but they have scattered themselves and become occupants of the greater nart of the north and west.

Vul. I.— -8

The prevailing religions are Mohammedanism, and dif fcrent kinds of Paganism. The arts are exercised only on the northern coasts, where the Moors manufacture much silk, cotton, leather, and linen; an active commerce is carried on by them with the maritinse nations of Europe, and, by means of caravans, a affic fully as important, with the interior, to which they convey their own products and those of Europe. The wonts of the savage races are exceedingly simple, and every article uned by them is preparcd by themgelves; the cloth which surrounds their loina, the hat which protects them from the weather, the bow and arrow necessary for the chase and self-defence, as well as all their household furniture, are manufactured by themselves; the gold which they collect from the surface of the earth is wrought by them into ornaments, and iron into arms. Commerce, however, with Europeans has taught thom many wants, and increased their list of necessaries; among which may now be reckoned fire-arms, Ic wder, brandy, tobacco, different kinds of cloth, glass brads, coral, \&c.: for which they barter slaves, ivory, gold, and gums, the staples of Afriea. The most odious branch of traffic is nat carried on in the sale and export of slaves; although in some respect limited in recent times, it is calculated that still 50,000 negroes are carried off annually tor tho South American market Of all the vincs of Africa, Barbary alone uses coin; in the rest not frequented by Europeans, money rarely scrves as a mediun of exchange; in some, on the western coast, cowries (small shells) are made to answer the purpose of coin; in others, pieces of salt.

AUSTRALASIA,

Which now ranks as one of the great divisions of the earth, consists of a number of large and umall islands in the Indian or South Pacific Ocean, between the 10th and 45 th degrees of south latitude, in a south-casterly direction from China, which is the nearest part of the Asiatic continent. These islands also lie in a southeasterly direction from India, or Hindostan. The chief island in the group is Australia or New Holland, whicl. mensures 2000 miles from east to west, and $1 \% 00$ in breadth from north to south. The physical charocter of Australia is very peculiar. With the exception of some inountain ranges, it is generally flat, and in many places the inclination is inwards, instead of outwards, to the sea. There being a general absence of hills, clouds are not aftracted over the laud, and hence there is a deficiency of rsin in the country; the climate is nevertheless one of the finest in the world, and no country on the globe seems so suitable for sheep pasturing. The chief native quadrupeds of Australia are pouched snimals, such aa kangaroos, of which there are several varieties The native human beings are of the Malay race, and in a low state of barbarism.

Australia now possesses three distinct British settle-ments-New South Wales, which stretehes about 1500 miles along its eastern coast, and some hundreds of miles inland; South Australia, on its southern shore, which has been but recently opened for emigration; and Western Auctralia, or Swan River Settlement. Van Diemen's I and is another British settlement. New South Wales, which is the oldest and mest populous of the Australian colonies, lies at the distance of 16,000 miles from Great Britnin, nnd its capital, Sydney, to which most vessels proceed, is reached in from 100 to 120 days' sailing. Lying on the opposite side from us, its seasons are reversed in relation to ours; its winter is in May, June, and July, and its summer in November, December, and January. Sydney, which is agrecably situated on a fine bay of the sea, called Port Jackson, now possessea a population of 25,000 souls. The whole population of New South Wales, free and convict, is understood to lo about 110,000 , but the number of inhabitants is rapillly increasing.

South Auatmlia, to which no convicts are allowed to de pent from England, is at presenta a thriving colony; the town of Ade.nide is its cepital.
Van Diemen'a Land is an inland of alout the size of E.ggiann, lying at a ahort distance south trom Austraiia. and poseesaing many oxcellent herboura. Van Diemen's land is more hilly and hetter watoreel than Australia. and therefore better adapted for agriculture. Its capital is Hobart Town, on its southern sila. On its northern Nhore, 'opposite Australia, is Launceston, the second largest town in the island, and a busy sent of trade. The pepulation of the island was lately eatimated at 25,000, about one-half of which were convicts.
The New Zealand Islands, which belong to the Australesian group, ure aituated at a greater distance to the east of Australia.
For a complete description of the whole of these interesting territories, we refer to the articles on the subject, in the present work.

amenica.

The continent of Arnerica lies in the weatern hemisphere, in a aituation altogether aloof from the continents of the Old World-as Europe, Asia. and Aifriea, are termed. America, or the New World, was first discovered by Columbus, in the year 1492, but its coasts were not fully known to Europeans for nearly a century after that period. It was long a matter of doubi whether America was connected at its northern extremity with Asia, and many expeditions were fitted out to discover if auch were really the case: it is now aseertained that it in not connected with Asia, but is a detached continent. Although Columbus is entitled to be considered the first discoverer of Ameriea, it happened that he was robbed of the honour of giving it his name by the superior sddrese of Amcricus Vespucius, nee of his adventurous maccessors. America consists of two lergo portiuns, very nearly separated by the intervening Gulf of Mexico, and only connected by a neek of land called the Isthmus of Darien. The northern portion is namel North America; that in the sonth, South America. From its nortinern boundaries to the Gul. of Mexico, North America extends about 4376 miles ir length, and 3000 miles wide at the broadest part. South America conmences at the ninth de $\boldsymbol{v}_{\text {ree }}$ of north latitude, reaching to the 56 h degree soum latitude, being a length of 4550 miles, by a breadsh, at wident, of nearly 3000 miles. On this vast double continent, the works of nature are found on a arge scale, calculated to excite our wonder. Mountain angea, plains and riverg, are all larger and more magnificent in their proportions and appearance than those in the eastern hemisphere. The soil is alao very geocrally fertile, and equered with the most lofty timber and luxuriant vegetation.
At the period of the discovery of America, it was found to be thinly inhalited by a number of tribes of aboriginal people, generally of a copper colour, and more x less savage in character and hulits. The sulmequent settlement of colonists from Spain, Portugal, Holland, England. France, and other European nuti had the effect of either extirpating these races, or of unaing them westward towards thethores of the Pacific Ocean. They are now comparativily few in number. While they have decreamed, the colonists have vastly inereased in number by emigration, and the nathral increase of popuiation. In a gempral semse, North Aucrica has fuilen to the share of British colsmists, while South America has fecome the partion of the Spanish and other bigeted und bad-manariug Europroans. In the courne of time, the colonisis in nearly all parts have connacipated themselves from the dinnimion of the mother counties, and eit up ow indepeatent nations. In duing so, they have embiraced the opporiunily of trying to establish demorratic instintions, with an alsence of arintorratic distinction. Tha
grentest of the repulifiea thus estahlished is that of the United States of North America. A third race, the doscendants of negroes imported as slaves, is rising into a large amount of population over the whole conlinent, prartly emancipated, and still partly as slaves; and being most unfortunately or inhumanely kept as a despisal caste, their increasing numbers and condition ore at pm sent exeiting the attention of the civilized world. It has tren computed that the whites and their elescendar to in all parts of America amount in number to 15, C 0.010; Indians, $10,000,000$; negroee, $8,000,000$; mixed breeds, ns mulations, mestezos, ece., 8,$000000 ;$ total, $41,000,000$; but the number of Indians is declining so rapidly, that in ull likelihood they do not at present amount te more than from six to seven millions, whiin the whites have increased in an equal proportion. It is reckoned that there are space and fertile soil on the Abacrican continent for at least $800,000,000$.
South America comprises the states or independent repullics of Colomhia, Guiana, Brazil, Peru, Bolivia, Chili, Duenos A; res, or the united provinces of La Plata and Patagonia. The principal range of mountaiva is the Ardea, and betwixt these and the Athatic are many great flat plans, receiving the name of Pampas. The rivera in South America are among the largest in the world; the principal are tho Amizon, La Plata, Orinoco, Panama, Paraquay, St. Framcisco, and MngdaIena. The principal isiands are the Falkland Islands, Terra del Fuego, off the southernmost point of land, Juan Furnandez, and tho Gallapagos. For a complete account of Soutu Ambinca, we refer to the article on that subject.

North America comprehends the fo'lowing political divisions:-On the North, the country of the Esquimaux, who form independent tribes; also Greenland, a large insular or penins:lar tract, stratching towards the north pole; next these, to the south, Lablrador, a country belonging to Great Britain, and chiefly appropriated hy hunters and natives; on the northeeast coast the island of Newfuundland, a British possession; Canada, Nova Scotia, and New Brunswiek, likewise British possessions; thus the larger portion of territory in the norihern part of the continent belongs to Great Britain. Aidjacent to Canala, and occulying the whole fromtage to the Atlartic, are the United States. Behind them, on the west const, are the united states of Mexico, and in the norit.western part a territory claimed by Russia. The ertreme sonthern part of North America, occupying a division of the isthmus of Panama, is the state of Guatemala, which now claims to the indepentent. Except in Mexico, the larger proportion of the western side of the continent is still in possession of native Indian triben, but these are quickly disappearing before the advances of civilized man. To this continnt beiongs a series of islauds on the Atlantic side, in tho seas between North and © , uth America, now lmaring the name of $\mathrm{W}_{\mathrm{sap}}$ 1.ymifs. Among these are St. Domingo, Jamaica, and other islands of importanee, chiefly devoted to the cut ture of the sugar-cane, coffee, and other tropical productions. (See article Wisar Innins.)
North Ameriea uhounds in fine large rivers, suscep. tible of navigation for several humalreds, and, in a few instances, thousainds of miles. The priacipal river in the north is the St. lawience, which ixsuen from a series of Large fresh-water lakes, the must extensive on the glole: these are Lhakes Suparior, Huron, Miehigan, Erie, Ob tario, and others. They in general divide Canada from the luited States. Next in size to the St. hawrener, on the nortineast coast, is the itudson river, which enters the Athuntic nt New Sionk. The other chief riversare the Mississiden, and ita trithutarnes the Ohio and the Mis souri. Nhese low through the centiad parts of the cain try, and terminate, on the sooth, at dee Guff of Mes sea Dhe vallyy of the Missimeippi in separated fom the sluxs
on the A .n the called th adjacent and uthe course cal the inexh North An the earth. yeara, or revolution planted as portion of of towns a ordinary i The Unit as follow: chusetts, R as the Ne Pennsy Iva: North Ca Miwsissippi, Ohio, India sas. The sition of ne ington the Baltimore,
Tho prin tions are T Dohna. Fo mana and ticies on the

Polynesia name now gi cattered ove on casterly within about They are pe Sandwich, 1 Islands, dec. are inhatited found much the other pa fruitful and romantic, anc civus on the the Society I

GEOGRAPHY.

a that of the race, the dorising into a le continent, 8 ; and being s a despisal m ale at pm rorld. It has escendas ts in $15, \mathrm{C}$ 0. 0100 ; mixed breeds, , 41,000,000 , rapidly, thst ount te more 3 whites have eckoned that can continent
dependent reBolivia, Chili, La Plata and mtains is the atic are many 'ampas. The largeat in the a Plata, Ori. , and MagdaIkland Islands, point of land, or a complete the article on
wing political of the Esquio Greenland, a ng towarda the ador, a country appropriated ly const the island Canada, Nova sh possessions; e nerihern [rart

Adjacent to e to the Atlasb, on the west da in the north. wia. The er. occupying a di state of Guate nt. Except in ern side of tha - Indian tribea, the advancea of po a series of betweren North chame of Wsat b, Jamaice, and ted to the cut r tropical pro
e rivers, suscepf, and, in a few ipal river in the from a series of "t on the gloke; iigan, Erie, On 10: Cangila from c-SI. lawrence (or, which eiters chidf rivers are io and the Mis irts of the ceman Bulf of Mevire if ou the slutcs
on the Allantic, by the Alleghany range of mountains. in the western part of the continent is a similar range called the Rocky Mountains, which are the boundary adjacent to the slopes on the Pacific. By menna of these and wher water-coursea, personal and commercia! intermourse can be carried on to a boundleas extent, and, with the inexhaustille fertilit. of the aoil, will in timo render North Anerica the most populous and wealthy region in the earth. Alrealy, within the period of two hundred years, or more properly since the epoch of the Ameriean revolution in 1770-80, the Anglo-Saxon race, originally planted as settlers by Britain, has apread over a large portion of the country, and founded an immense number of towns and cities, and otherwiae effected the most extraordinary improvements in all the art of civilized life. The United States were lately tw anty-eight in number, as follow:-Maine, New Hampshire, Vermont, Massachusetts, Rhodo Island, Connecticut, all which are known as the New England statea; New York, Now Jeraey, Pennsylvania, Delawnre, Columbia, Maryland, Virgnia, North Carolina, South Carolina, Georgia, Alabame Mississippi, Florida, Louisiana, Tennessee, Kentucky, Ohie, Indinua, Illinoia, Missouri, Michigan, and Arkansas. The number is eonstantly increasing, hy the acquisition of new territories. The principal cities are Washington the capital, New York, Philadelphia, Boator Baltimore, and New Orloans.
The principal cities or towna in tho Britiah posseaaions are 'Toronto, Montreal, Quebec, Halifax, and St. Juhns. For an account of the United Statis, Cavada nid Nuva Scotia, wo refer to tho acparate articies on tineso suljects.

polynesta.

Polynesia-a word signifying "many islea"-is the bane now given to the numerous groups of amall islands ncattered over the Pacific Ocean, but principally lying in an easterly and north-easterly direction from Australia, within ahout thirty degrees on both sides of the equator. They are perhaps hetter known under their titles of the Sandwici, Frienlly, Society, and Queen Uharlote's Islands, de. They sre many thousands in number, and are inhabited by races of men who have generally been found much more tractable than the barbarous tribes of the other parts of the world. Most of the islanda are fruitful and beautiful; aome are exceedingly high and romantic, and their climate ja reckoned the moat delicivus on the glohe. Otaheite is one of the principal of the Society Islands. Dwhyhas, or Hawai, is the largeat
of the Sandwich [slands, and measures eighty-four miles in length by seventy in brcadth. Here Caphain Cook, in 1779, fell a victim to a sudden resentment of the natives with whom hia party unfortunaiciy had a dispute. Tho lslands are in the course of being Claristianized and improved.

[WORKS ON GEOGRAPHY.

A general knowledge of geography has now become one of the elements of cominon school instruction. But the sulject is sulficiently extensive and interesting to form a study for the riper years of those who have leisure for it. Among the achool geographies, Morsc's is preferred, on account of the great number and minuteness of the mapa, which, in fact, are the principal thing in thia study. . Murray's Encyelopadin of Geography ia a very extensive and interesting work ahounding with mapa nad picturea, and going minutely into every branch of the aubject. Malte-Brun's is annther of the enme class, and is greatly prized by acholars. The snoat convenient books of reference on this subject, of course, are Gazetteers, and of these Macculloch's is the most recent and extensive. The most agrecable mode of atudying geography, however, ja by reading hooks of travels, written by livoly and interesting writers, like Stephens, Slidell, Darwin, Dama, Fiak, Mrs. Haight, Hunboldt, Kendall, Kay, Kohl, Mackenzie, Dr. Olin, Captaing Parry, Reynolds, Sedgwick, Cheover, and othera of the asme class. By reading their delightiul books, with the map before us for reference, we have the features of the countries which they visited indelibly fixed in our minde, in association with the manners, customa, and history of the places.

For the purpose of rendering our knowledge of geography still more minute and avnilable, it is an excellent practice to draw maps, and however imperfectly or unscientifically this task may be executed, its effect in aso sisting the memory is acknowledged by all who have mado the experiment. It is worth ome's while, also, to embrace any opportunity which may present itself of examining the maps which have recently como into fashion, in which the mountains are represented in relief, being actuall; raised above the aurfnce of the paper or card of which the map is made. Such maps are common in Euroje; but few have reached this country, and we ars not aware that the making of them has ieen attempted hete. $-A m$. Ed.]

PHYSICAL HISTORY OF MAN.

Ter Phystew History of Man io a science which propooes to investignte the characters of the different racea of the human faunily, as they exist in difficrent regiona of the earth. The great distinctions between the various races must have been marked with wonder at an eurly period; but no serious effort was made to ascertain the nature and causes of those varictien till the present century, when the aubject has been illustrated by the researches of Cuvior, Blumenbach, Pritchard, and como other writers. Ae yet the science is far from having arrived at distinct or satiefsctory resulta; but much of what has been ascertained is nevertheless of a meat interesting nature, and vall deserving of general attention.

POPULATION OF THE GLOBE-RACES-THEIR orneral peatures.

Amidat the almost infinite varictued observable in the nations of the earth, naturslists have anxiously sought for well-marked characteristics, which might enable them to clase the whole under a few comprehensiva appellations. They have arrived at very diferent results; MaltoBrun, for axample, describing sixteen races which he conviders as brosdly distinguished from each other, while others reduce these to five, and even three. The arrangemont now most gencrally approved, and the one which we desiga to follow, is that of Blumenbach, which divides mankind into five leading classes or races, esch distinguished by such peculiarities in the skin, hair, eyes, and shape of the head, as to stand considersbly apart from the rent. They sra named the Caucabian, Monoolian, Ethiopic, Ameaicax, and Malax:

1. Tha Caucasian race is one widely spread on the face of the globe, and, in addition to physical beauly of the highest order, is distinguished for intellectual em; nence. The skin of this race may be generally described es fair; but it is susceptible of every tint, and in sorme nations is slmost black. The hair is fine, long, curling, and of various colours. The akull is a large rounded oval, and the brow full and elevated. The face ia comparatively amall, oval in form, and weli propertioned. The nose is arched, the chin foll, and the teeth vertical. The chief familiea of the Caucasion variety are the Caucasians proper, the Germanic branch, the C'elir, the Arabian, the Libyan, the Nilotic, and the Mindostanic.

The race of C'aurasians proper are traceable to the confines of the mountainous range of Caucasus, between the Black Sea and the "arpian-a region not far distant from the apparent birth-p.ce of mankind. The Caucasiane aill drelling there form at this hour the physical type
of this grest variety of humen beinge The Circamaian and Gcorgians are vary perfectly formed, approaching elosely in shap, and features to tho cognste race of Pe. langi or Greekr, who, emanating from this region, spread early over Gricece and parta of Italy, and thore founded Caucasian nstions. At this day a great part of the peoplo of Parsia, and especialiy the upper classes, are of Cavcasian descent, the remainder being Mongol Tartars, a r.ce equally distinguishable when pure. The Persian raen and wornen have, generally epeaking, fize persons, und they are, like the whole of the pure Caucasian va ricty, highly imsginative, and fond of music and poetry. The tribes of Affghanistan and Koordistan belong in part to the same variety, and exhibit its wonted physical perfection.

A small body of pure Caucanians fiunded the Roman nation. The personal differences between them and the Greeks arose, doubtless, from the extensiv. admixture of the early Romans with tha Sabine and other ourrounding tribes.

The Germanic family, a great branch of the Caucasian variety, tiomed one of the mighty wavee of popular tion, which, emanating from tha original seats of the race, passed over a grest part of central and northern Europe, filling Germany and Scandinavia, and partly, slso, Russia snd Poland. In the latter regions, however, they met with 'l'sitars from Asistic Scythia, and the mixtura of these races produced the Slavonic subvariety, snd originated the Slavosic tongucs. The docline of the Roman power brought out the Germanic tribes from their northern settlements, and, under various namss, they formed new locations in the south-west of Europe. Among others, they founded the languagea ol England, Holland, Denmark, and Bweden, though at lifferent periods. Robust forms, light hair, blue ayes, florid complexions, and large, broad-fronted heads, constitute the chief physical characteristica of the pure Germsuic family; while, morally and intellectually, they stand proeminent shove all the other triben of mankind. 'i'hey are conspicuous, in particular, for what may be called the indions trial virtues, exhibiting a degree of indomitable persever ances in all improving pursuits, which has rendered thetn the grat invet;ors of the human race. The admixture of German and T'artar blood in the north-eastern nations of Europe, has given to these darker hair and complex ions than the preceding section, and has also lessened their propensity to intellectual cultivation. The effects of the Tartar conquest of Russiz in the twelth century by Zenghis Khan, whose successors ' eld the country for 200 years, will probably be observable: carcer of thin people for ages to come, and, indeed, pe. .ataps as long as the rice exists.

The Cellic branch of the Caucasians formed extensive settlementa, at a very early period, in Western Europe. The whole, it may be said, of Italy, Spain, France (called Gallis Celtics), and Britain, was peopled by them. The nuccessive commingling of races, caused by incursions of the Gireeks, Romsns, and Germans, did much to ain literate the traces of this variety in its pure state; yet the race, language, snd name, atill ramsin in their primutio condition on the on!skirte of the original Celtic doms nions. We sllude biefly to parts of cotland and Ire land: In Brittany, G scony, and B: ay, the traces of the people are also distis tly observalic. These pure Caltu show us what the pl. sical cl:r cacteristics of their anoe
ons w?
their fon nome and their frat and hery oly patie acute ane ciedt in t distinguis The p the Celtic Germanic the mode French p their quic moat prol ness of d paratively A branch opfore the came Dan that the p lands of Lowlende there is ev subsequent of the istas the Germal ront of the markable o the Caucas poesessed c prise, it ba the globe, of and its arts Anglo-Ame rior only to ble the race British char infuesion of of the Nors aprinkling 1 also, in givi heavy, maes may judge mixed Gern would evide apecific gra infusion of pretty equal veins; and trial virtues admixture o
There ma malysis, but the pronnrtio are mingled owar out the tugai, infuato comparativel Spuin were end it may with a sprin alood in the them, the fat lasughty virtu manized Celt and Italian n their charscte languayes of tiona.
The subjec the Catcasiao taviane prope

The admixture h-eastern nations air and complex has also lessened ion. The effects e twelith century d the country for
career of this
c. دaps at long a
formed extensive Western Earope. in, France (called d by them. T'lo ed by incursiens did much to otr ure state; yet the in their primiture inal Celuic domi cutland and lre , the traces of the These pure Celin ca of their anow
ore wire. Thetr framen nre athletio, apare, and wiry; cheir forehe w rrow, and the head itself elongeted; the nose and mow argo, and the cheek-bonea high; in all, their featurea are rather harsh. In character, they are hot and hery, but genarous and brave 1 and they ere remarkaoly patient of fatigue. Intellectually considered, they aro acute and ingenious in the higheat degree, but are deficient in that breadth and solidity of understanding which dintinguishes the Germanic family.
The present popuiation of France partakes largely of the Celtic blood, notwithatanding various invasions of the Germanic tribes, from one of which, the Frank, came the modern name of the country. From the Celts, the French people darive their proverblal vivacity of temper, their quickness of perception, their dashing bravery, and, most probably, their undeniable inconstancy and flightiness of disposition. Britain, again, hae retained comprratively alight traces of her early Celtic inhabitants. A branch of the Germena had visited the island oven offorc the invasion of the Romans; and after the latter came Dana, and Saxon, alil Norman, in auch numbere, that the pure aboriginal atoci: were left but in the Highlanda of Ecotland, und pertly in Wales. The Scottish Lowlanda had aarly been colonized by the Picts, a people, there is every reason to think, of Germanic origin; and subsequent intermixtures with the aouthern inluabitante of the island apeedily gave the population atill more of the Germanic character. In thia manner was formed the ront of the existing British nation, one of the most remarkable on the face of the earth. Inferior to no one of tha Caucasian families in intellectual endowments, and possessed of indomitable courage and unbounded enterprise, it bas scattered its coloniea over a large portion of the glohe, giving to new regions its language, its genius, and its arts. Above all, it has given prigin to the great Anglo-American nation-a nation, if infarior at all, inforior only to the parent atock, in those attributes that ennoble the race. Much of the excellence that belonge to the British character certainly arose from the preponderating infision of Germanic blcod, resulting from the incurslons of the Norsemen upon the aboriginal Calts. But the sprinkling left of Celtic blood seems to have had its use also, in giving a aliars of vivacity to the comparatively beavy, massive temperament of the pure Germans. We may judge so from looking at the character of the unmixed Germanic families. The Dutch, for example, would evidently have been an improval race bad their epecific gravity of character been li ned by a little infusion of Seltic mercurialism. The Belgians have a pretty equal ahare of Celtic aind Germanic blood in their veins; and consequently, whila they display the industrial virtues of the latter race, they also ahow no alight admixturo of Celtic fightiness.
There may appear some fancifulness in this mode of analysis, but we believe thint an sccurate exnmination of the pronorthons in which the Germanic and Celtic bluxd are aingled in all the countries of Europe, would fully oar out the views nuw taken. In Italy, Spain, and Purtugsi, infuaions of Germanic bloed took place, but to a comparatively slight extent. The aboriginal Celts of Spailu were extenaively mingled with Roman immigrants; and it may be said that, at this day, Romanized Celts. will: a aprinkling of Gothic (Germanic) and Saracenic alood in their velns, form the existing population. In them, the taults of the Roman character, as well as its haughty virtues, are even yet diatinctly traceable. Romanized Celts constitute the basis also of the Portugucse and Italian nation, and the preceding remark applies to their character as much as to that of the Spaniurds. Fiow languayes of the three countries bear out these observations.

The subject of the Germanic and Celtic branches of the Catcasian variety of mankind, as woll as of the Cautexiane proper. has been treated of at some length, becauce
these tribes have been the great civllizers of the surls The Egyptian or Nilutic branch forms ain:oet the oaly excaption to thia atatement. Most of the existing nations of Europe can diatinctly trace their origin to thewe Cav carian tribea. Dr. Pritchard tracea a chain of connection between the roota of the Sanscrit, Greck, Latin, and German languages, which leada him to imagine them to have all aprung from a common origisal. A remarkable aimilarity has been traced betweep the Celtic and Phoenician languages, These and other circumstancen, to a certain axtont, point to a common origin and place of origin; but the affiliation of nationa, as Humboldt juatly observea, cannot be diatinctly made out in this way. Yoaquest and colenizations must confuse all such attempts.

After treating of the three great influxes of population which founded the past and existing nations of the Europesn continent, the Arabian and Libyan branches of the Cancasian family fall to be noticed. Sparo but active persons, aking of a light brown, sallowed sometimea by tunuaual exposure, high foreheada, large dark eyen, oval Soaturea, with aquiline noses and amall thin-lipped mouthe, form the personal characteristica of the Araba. They have occupicd the confines of the present Arubia from time immemorial, and their natural habits have vever been pastorai and migratory. The Bedouin Arabs claim de: ecent from Iahmacl, and, however this may be, it is plain, from physical characteriatica alone, that they are a cogmate race with the Jews. The latter wers originally derived from the Chaldeans, an elder branch of the Arab race nettled in Babylonia, and they were a pastoral and wandering people like their congeners, until they settled in the cities of Palestine. A body of Canaanite Arabs, -rpelled by the Jews under Joshua, are underatood to have settled in Africa, and become the nation of the Mauri or Moors. Governed by Mchamnied and his euoeusors, the Arab race roso to high consequence, and, ander the name of Saracens, made great conquests of territory in Asia Minor, Africa, and in Spain. They were afferwards deprived of auperiority in aome of theas countries, but left extensive tribes in the African cortinent and Asia Minor. The Berbers (or Libyans) are a race who seen of Arab descent, but who probably aettled in Africa at a far diatant date. They resemble the Arab in person, but are more darkened in complexion. Undes the name of Tuariks, they range both to the north and south of Mount Atlas. They are wilder in habits than the Arabs, but nuay be spoken of as the same race, and with the same capabilities. They form a large part of the existing population of the north of Africs, occupy ing, with the Arabs, nearly the whole of the Meditarra mean shores of the continent, from the Straits of Gibraltar to Egypt ; and, either under the name of Moors, of Arabus of Tuariks, or of Felatahs, they are repidly insinuating thomselves within tire tropics, obtaining everywhere that auperiority over the Negro race, which the Caucasian family seldum fail : a acquire wherever they plant the foot It seems more than probable that the Arab race will ultimatcly push the Negroes from Africa; and indeed may annililate them, as the European whites have dons, of are doing, in the case of the Red Indians of America. In the latter instance, but a few centurics have been necee ary to accomplish the change of population, and large at the African continent is, many centuriea may not paw away ere it rest ontirely in the hands of the Caucasian race:- The Negroes have inded lost more than half of

[^4]* already, for there car, be little doubt the they once aintrhed to the M/diterraitern. Benevolence at first ehrinks from the jden of a conaumantion liks this; but robection soon reconciles us to it. The aupplantirg of one mee by another does not imply the extensive deatruction of individuala which it at firet appears to do. It enly, in the main, denotos a stronger principle of population in the ona race than the other. The development of num: bers in the one ia repressed, in the other encouraged, in ${ }^{\text {. }}$ at length the first may be sald to dis out, leaving the intruding race in possesnicn of the soil. Gienerally, where such changes take place, the soil becomes the means of aupporting far greater numbers than formerly.
Ih- Wahabees in modern times, and-in pist daya the Ihic slans and Idumeans, whose respective capitals were I'yre and Petra, are futher specimens of A rab tribes. I ha last two tribea aprung, it ia prohable, from the priantive Chaldean branch, settled at Babel or Brbylon. Whatever be its ultimate destiny, we may anticipate that tio Arab race will yet piay a greater part on the scene of earthly affairs than it has bitherto done. The capacity of the race is high, and under favourahle circumrances, sa when settled in the cities of Spain, their native talents for poetry, music, and the fine arts, developed themselvea in no ordinary degree. Planted in citiea on the fertile banks of the Niger, of which they are rupidly assuming the mastery, they might in time renow there all the splendours of the Caliphate.

The Nilotic (Coptic or Egyptian) branch of the Caueasian family, is chiefly remarkabse on acconnt of its high distinction in past times, when the tribe founded the civilization of the world. The Nilotic branch consisted of the Egyptinna, Nubians, and Abyssinians ; and, though these aations have iong been cominingled with the Arabe, producing the mixed race of Follahs, yet the pure Nilotic sharacteristics can atill be traced among them. Slendor persons, long limbs, and dclicate feet, narrow oblong loreheads, eyes elongated in a peculiar manner, long noses, with awarthy brown complexions, seem to have been the main personal fcatures of the old Egyptians. The pure Copts now-a-days exhibit various ahade of colour, from a pat olive to a deep brown. The fiat features and bushy ha'r of the Sphinx led the traveller Volney to form the hypothesis that the old Egyptians were Nugroes; but his desire to arrive at a liberal condasion carried him too far. The numberless paintings since discovered, in many of which negroes appear as captives, exhibiting features perfectly distinct from those of their Egyptian captors, prove incontestably that the Nilotic race were of the Cnucasian variety of mankird. Even at this day, the Nubians, certainly the purest descendants, as a nation, of the old Egyptians, have in no case the woolly hair, fiat features, or loug heels of the Negro race, though sometimes nearly jet black in complexion. They have the Caucasian heads and forms most undenially. At what time the banks of the Nile from the Abyssinian mountains to the seven-streamed Delta, were peopled by the Nilotic race, it would be vain to conjecture. It ia only in the case of countrics far mare distant from the cradle of the race, that we can form any rational conclusions upon the date of immigration. It is scarcely necessary to add, that history proves the Coptic race to have possessed the highest intellectual capabilitics.
The Hindostanic hranch of the Cnucasians presents an extraordinary variety of complexions. from a derpish black to a beautiful brisnette. Shadea of olive, however, are the predominant hues. Sionll, clongated, und narrow hra ls, oval faten, noses sightiy aquiliue, bright hack eyes, and dark glossy hair, with very short slender persona, mark the pure Hindoo race. I'assing by the claims which they themselves prefer to immense antiquity, there can be no doubt that they have been longer settled as a nation han alinost any on the earth. I'her eurly attained io
distinction in the sciences, and particulurle i u matheme tics, poetry, and the drana. What was thic preciee place of their origin has leeen long a matter of drpute. From the gicat reverence borme ly them for the n trh, and from the unquestionable intercourse exiating between them and the Egyptiana in the very earliest timen, as well as from the numeroun points of similarity between the two na tions in many important respecta, a cominon and inter mediate spot might be regarded as likely, have prodnced both. But conjecture on thia point wonld be fruitlean.

We have now gone over the various prominent lranchea of the great Caucasian fumily. To them we owe nearly all that dignifies the name, and enhances tho happiness of the human being. All that we possess of written literature-from the poetic, historical, and philosophic treasures of Greece and Rome, and the romantic crentiona of Arabian fancy, to the productions of the modern prees -has emanated from th Cascasian varicty of mankind. The Pelangian branch in ancient times, and the Teutonio or Clermanic in modern ages, have been nust diatinguiahed for their institutions, and the varioua productiona of the higher intellectusl powera.

The Germans, in an early age of their history, were the first who rained woman from the condition of a alave to that of an equal with man, and made her a partuer in his powers and rights. The importance of this change is best shown by the fact, that, to woman's condition among them at thia hour, the Mongals mid other varie tics of men certainly owe much of their inferiority. Free political inatitutions, elective senates, and jury triale, came from the Germanic race. 'Ihey were the lliseoverers of printing, of the compass, of the steam-ctigine, of gunpowder (a great invention, however abused), and of accurate time-measurers. To these discoveries numerous others miglit be added; but when we think how much the happiness of man now depends even on the few, we feel it unnecessary to extend the list. The Catcasians proper, and the Celtic family, have slown surprising genius in many departments of intellectual exertion, but, in all the industrial arts that lear practically on human comfort, they must yied the palm of merit on the Germanis family.

2. The Movaoljan variety, as regardn numbens, to a family of vast importance; the tribes of the Mongol Tartars, the Turks, the Chinese, the Indo-1 Whinese, and the Polar rnces, being included in it. These tribes cover an immense portion of Asin, from the line of the Iral and Hinmaleh mountains to Betring's Sitrats; and they are apread over more than one-half of North America, towards the Arctic Circle. They also occupy (Greonland and a portion of the north of Europe, comprising the Findand and Iapland coasts.
'The physical chamaters of the Mongolian race vary considerably, but the following general aleseription will be found to apply extensively. 'The skin is commonly of a nallow or olive tint, and in some case nearly yellary. the hair is black, long, and atraiglit, seldem curling ; th beard usually scanty; the iris black; the note is lutui

and sho

tugoinal
tho aidem the foreh poliana a tinguishe faculty a of cultiv variety h ture and iow. Ch may be specimens The Turk onqueron the Caucn been repel nuccumbin these the other varie ω be a r whom the verge of th The Eisqui Lapland, h them from affect chief sea a degr
3. The E characterized hair, cyes lars lips, and widh forrhead low, jecting, and also, and a fla The principal Africa, the Cal and some of t the Paeific O, sprend (nuinh portionally of picd by any of exception of d expiicit, occup ciasians (their atand second pration slight Lithiopic variet are lowest of will further she ings in a rough the Americans, (1.1.20th. 'Thi 4frica south Síw (iuinea; mands. Most In dispasition, and checrfin; ; "urausly the n

matheme

 reciee place mite. Froms th, and from an them and well an from the two na n and inter ve prodnced c. fruitlean. ent branches c owe nearly ow happiness ss of written philosophic nlec creationa modern preme of mankind the Teutonic distinguimhed ctiuns of the
histery, wery

 tion of a alave or a partier in of this change an'* condition nd other varie eir inferiority. und jury trials, cre the disco steam-tmgine r abused), and eoveries numewa think how even on the 0 list. The Caur ave shown sur atellectual exer hear practicaily alm of meritand whort, and the cheok-bonen broad and flat, with malient zvgomatio arches; the akull la eblong, bu. flattened at the sidea, so as to give an appeannce of nquareness ; and the forehead in low. In intellectual character, the Mmnkolians are hy no means defective, hut they a 'e more dibtinguished for lmitative than inventive getiug. Thia faculty at the anme time renders them highly susceptible of cultivation. In many casen, however, tribes of thin variety have arrived at cenniderahle proflciency in literature and the arts. Their moral character ia decidedly iow. China, Inpan, Tlibet, Boutan, and Indo-Clina, may be mentioned as locationa where tha beat-marked sperimens of the Mongolian variety ate to be olserved. The Turkish and Mongol-'Tartar tribes have been great conquerors in past times, nnd have eften even vanquiahed the Caucasius ; but, in most casew, they have afterwards been repelled from their acquisitions hy the Caucasians, auccumbing to the apparent law of nature which gives these the ultimate superiority in all struggles with the other varieties of men. The Fins and Laplandere appear ω be a remnant of nome primitive Mengolinn people, whon the Caucusians originally pushed to the extreme verge of the Arctic sean, and were content to lenve there. The Esquimatux, as well as the people of riniand and Lapland, have some physical peculiarities distinguishing them frem ether Mongolians, but these seetm to be the effect chietly of local position, which undoubtedly exerdee a degree of influence on the human frame.

Fithopte, or Black Race.
3. The Etiofoetc or Beack variety of mankind are charncterized by eomplexiens of jetty hue, black woolly hair, eyes large and prominent, nose broal and that, thick lips, and wide mouth; the head is long and narrew, the forchead lew, the cheek-bones prominent, the javs projecting, and the chin small. A long protruded heel, also, and a flat shin-bone, often distinguish this variety. The principal Ethiopic families are the Negroes of central Africa, the Galfres, tho Hottentots, the natives of Australin, and some of the Islanters of the Indian Archipelago and the Pacific Ocean. The lands over which this variety is apread (nufiners being left out of the question), are proportionally of somerhat smaller extent than those occupied by any of ine other varicties of mankind, with the exceptien of the Malays. The Mongolians, to be more expiisit, occupy the largest share of the glove; the Caucasians (their various colonial settlenents being included) atand second in this reapect; the Americans occupy a pantion alightly less than that of the Caucasians; the Cthopie variety atand next in the list; and the Malaya are lowest of all in the scale. The following "gures will turlser show the proportions of these territorial holdins in a rough manmer:-Wongolians, 4; Caucasians, 3; He Ameri ans, 24; the Ethiopians, 2; nud the Malays, 0.1.30th. The chief locations of tho Ethiopic race areffrica south of the desert of Sahara; New Holland; Snw (iuinen; New Georgia; and a few other Polynesian Auds. Most island Negroes aro of a dingy brown hue. In disposition, this variety of mankind are easy, indolent, and cheerfinl; in intellect, the rsce variea inuch, though ertuinly the majority of itw tribes stand low in this re-
apact. This may we in part aseribed to want of cultivation, and opportunitien for cultivation; but even while adopting thia lenient viow of the matter, it is Imposajbin to shut our eyey to the fact, that the race have mown no inventive geniua. They would otherwise have long ago originated the arta of civilization for themselves, as other varieties of men certainly did. At the mane timd, many of the Negro race have ahown no mean degree of talent, and aome of tr em have exhibited such address in the arta of politicn and war, as indicated the capability of attaining to a high atate of intellectual advancement, had their pewera been properly foatered and directed.

American Race.
4. The Amenican variety of mantind occupy well-dofined territorial limits. They were originally spread over nearly the whole of the Americas, south of the sixtieth degreo of north latitude, though their numbers are now thinned, and their territerial possessions curtailed, oy the colonial incursiona of the Caucasians. A red!lish brewo comploxion, long black lank hair, deficient beard, eyed black and deep set, receding brow (sometimes from artificial compression), high cheek-bones, orominent nquiline nose, small skull, with the apex high and tha back part flat, large mouth ind tunid lips, with fine symmetrical frames of middle neight, form the chief physical chareoteristics of this race. "In their mental character," saya Professor Morton, by whom they have been thoroughly atudied, "the Americans are averse to cultivation, and slow in acquiring knowledge; restless, revengeful, fond of war, and wholly dentitute of maritime adventure." The same writer divides the Americans into two great classes, one of which (Toltecans) embraces certain semicivilized nations, as the Mexicans, Peruvians, and Bogotese, while the other includes all the hunting tribes of North America, the Brazilians, the Patagonians, the Fuegians, and other misor tribes, nowe of whom have exhibited the same capacitics for cultivation na the tirstmentioned nations. The Americans differ much in colour of skin and atature. Some of them are not brown, but of a perfect copper tint. The Patagonimns are of almost gigantic size, while the Fuegians are very short in stature. Yet there are characters common to all, which have led accurate inquirers to set them down as being throughous one and the N^{-}me people. Their languages have certain peculiarities found to be of universal occurrence among them, from Cape Hom to the far north. By those who, like Cuvier, have not viewed the Americans as an ind;genous race, the mode in which the New World was peopled has been curiously inquired into, and it has been conjectured that they either came by Behring's Straits from Asia, or that some small party, in ages long pasi, was wafted accidentally across the sens to these vast shorea, Such in occurrence as the latter has been proved to be not impossible, to say the least of it. But assuredly the weight of evidence is in favour of the opinion that the Americans arc, not a casual ollshoot from some other human family, hut a peopla so fir indigenous, at ceast, and primitive, as to be derived from a cotamon root, endowed with specific and unique physical characters. The manner in which they were planted in their deatinal
bume, and received these peculinr charactera fitting them for ita inhabitation, must remain, aceording to thie view of thange, among the my aterioe which tha Crestor has scen ift to loavs in darknese. It lo undeniable, it may be obeerred in conclusion, that the American race in tending to ortinction

Malay Race.
6. The Maxar variety of mankind are characterized by mawy or dark brown akins, coarse black hair, large mouth, ohort broad noses, seeming an if broken at the root, flat expanded faces, with projecting upper jawa, and salient tecth. The akull in this race is high, and aquare or rounded, and the forehead low and hroad. The moral character of the Malays, generally apeaking, is of an inferior order. They are a race differing much, in some respects, from the Negro and Red Indian, being of peculiarly active temperamenta, and fond of maritime enterprise. They oxhibit considerable intellectual capacity, and are un ingenioun people. Borneo, Java, Sumstra, the Phillipine Ialands, New Zealand, part of Malagascar, and various Polynesian islanda, are inhabited by thin variety of men. It is extremely probable, from the fact of their leing found in iolends surrounded hy others in the handa of the Fthiopic race, that the Malays have puahed out the lese active variety from these isles, and, in short, annilhilated thrsa. It is but too likriy, moreover, that the Malays will in turn suffer extinction at the hands of a superior varicty, or a variety rendered superior by civilization, if not naturally w. Safely, indeed, may one prophesy that, in Nrw Zealand, ere many yeara pass away, the nativea will have dinappeared before the European colonists. Not many monthe ago, the last native thus disappeared from Van Diemen's Land. So will it be ere long with New Holland, large as that continent is. Amalgamation of races is in these cases next to imposaible, and no other preventive, as already atated, could be found.

DEETARUTION OF THE RACES-CIIANOES AND AMAL-

 OAMATIONSThis point, really one of the most curious and important connected with man'e physical history, may be illantrated by further referencea to the changea in geographical position, undergone by the five great varieties of mankind now deseriled, from the earliest juriods. Very few portiona of the earth have retained the inhahitants by whom they are known to have been first propled. With rompect to Europe, it seems extremely probable, as Dr. Prichard and othera admit, that the Celtic and Germanic races were not the earliest settlers upon this territory. They poshed out, from sume parts at least, a previous race, of which the Fins and Laplanders may perhaps be held to give us some idea. The Celtic population of the south of Europe were in a great measure overwhe!med by the Germanic tide from the north, and, though renturies of confusion followed the collision, the good ultimately effected by the intermixture was immense. It appeared, indeed, an if a navage people there crushed a rivilized one, but the result, in reality, consiated in the infusion of healthy blood into a vitiated frame. At this
day there is but one important part of Eur x in the nonds of the pure Mongolian race, uamely, Turkey. But can we doubt that at this very hour the once formilatile power of the Ottmana in verging to extinction ! The Catcasian atutes around it have gradually meized province after province, and jealouay of each other alone prevente them from at thia moment annihilating tho petty remmant of the Mongola len in Europe. The power of the enn pire in not only going to decay, but, an M. Lamartine has lately shown, the Turkn ars in reality lecoming ex. tinct as a people. They are sinking beneath the presoure of the supurior or superiorly cultivinted nationsaround them

In Afriea, na han been waid, the Negroes have already been atripped of one-balf of their continent by the Caucasinn Arala, and are likely to be ultimately extinguishec by them. If the climuto of the same great country had bsen more favourable to the pure Crucasian whites than it is, they would assuredly have taken a larger share in the ocen jation of it than they have donc. As the cenes atand thrir aggremions have been conniderable. Not to apeak of their coast stations, thry havo colonized the mouthern extremity of Africa, and the Cutfree and Hotentots are falling before them, or are receding to the intorior, to le finally crushed leetween the oppowing forcen of the Aratis and Europeans. The Arabs themaelvea are beginning to feel the retributive pressuro of the French on tho Meditertancan coast. In Eigypt, again, we may trace striking proofa of the same grand movement. Alto. gether, what with tim Arabs and the whites of Europen Africa may be expected, ere many agea puss, to be in the hands of the Caucasians.

In Asia, the conquering Mongola long held extensive rule, hut the semi-Caucasian power of Russia in the north, and the lBritish in the wouth, have torn from them iminense turritories, and every few years behohl additioual lonses on their part. Even at this time the great Mongol power of China, whici, lyy a policy cautioua to an extraorlinary degree, maintained fir ages its independence, has forgot itself so fur as to provoke a atrugglo not likely to terminate until China becones little else than : Caurasisn colony. The Australian contiuent, and the Polynusian islauda, are also on the direct way to the same consummation.

The truth of the view now taken is mon remarkably borne out ly the hintory of the Transatantic Continenh than hy that of any other country. Rapilly, indoed, hava the red men of North, Amerira fallen before the march of Crucasian colonization. The numerous islands of the Mexican dulf have lren so completely cleared of all tracea of native population, that it has lecome a matter of doubt whether, on several of these inlanda, any nativo population ever existed. South America han been largely aubjected ta the anme influences, and would have suffered more from them, had the Caucasians who went thither been a branch apecially adapted for the buainess of colonsts, and had not a consideratide adenixture of races peculiarized that colonization. As it is, the natives have keen thinned, though the amslgamation alluded to, arixing from the rompuratier similarity between the racen, rendera the truth difficult of discovery. In short, if we look at the whole course of the past history of mankind, wo shall find the Caucasian race everywhere gaining the ascendancy, and alowly but surely renovating the populatio.d of the world.

In those instancea where an amalgamation of varicties of men has taken place to a consilderuble extent (and there sre a for prominent cases of the kind to tee obmerved at present on the face of the globe), a population of a most extraordinary and heterogencous kind has been the result. In parts of South Ancrica and Mexico, net only Europeans and native Acmericauna, but also Negroen and Malaya, tranaported thither chicfly as slaves, Lare contributed to form the exiating population. Europana and Negroea produce a race called Mulattoes; the chit dren of Europeana and nutive Indiane ara termed Mess
area ; and II
woen. Of $\mathbf{e c}$ almoat nunst dure Tercerc Europeall an of Quadroons Quadroon, lit in teost comint rightes of pure tefon. Mesia Seuth Ancric Hrazil, with th are the chiof Undouhtedly cious. The wl eswarda the do of raste are ac Whether, out of sjeriea there homogeneous r_{1} fill by the undin which the purit? uintrel. If we dutirent varieti happier conswipu quention whether priments of 1 m ine said to have American contin the insue in the r must ere long fi place of hordes o and warring life 1 nul, will be found the arts of pesure, ent pilch, and ext, blasinga with wh it, and which bee The general chat of aen, tho mokle the causea which w affect, their futu tion; and our nexd alle fealurea of dif human fumily.
variet
It has leen alrea nally diatinguiehed polians are yellow, cans red or copper-
la former timea, Hack, were recogni. cmplexion was sim mys. This illea wo weved that exposur while meclusion tend the brick nations wi pical countries, whil prite zone. The Wire the perfiection who entertained $e_{\text {: }}$; Aftian sun, were si the Negro nations ben changel into is nys. This untion c noty by naturalists, wat the latist of the The views of natu en consideralily a hourena concerniug ta." The white,

But call de power he Uaus province preventa remnan the emp nmartino ming axa preseure und thein ve elready the Cins tinguiahet untry had hites than or share in athe cam . Not to onized the and Hotento the inte ag forces of neelved une the French sin, wo may nent. Alto of Europe to be in the

do extensive

 ussia in the n from them old additional e great Monutioua to an its independ struggle not le clse than rent, and the it way to the- remarkahly tic Continent , indeed, have res the march islanda of the ed of all tracea batter of doubt ive population ly subjected ta red more from been a loranch 18 , and had not ized that colo hinued, though he rompuralirt uth difficult of thote course of tho Caucasian and slowly bul orld. tion of varicties le extent (and kind to be ob). a population f kind lias heen and Mexico, not at also Negroet an slavea, Lare n. Europeana tues: tho chil termed Mext
anea : and thoae of Negrocs and Indianm aro atyled Zamthee. Of courme, the sub-varieties are numerous-indeed, almont numberlesa. The Fiuropean and the Mulatto produce Tercerons; the children of the Terceron and tha European aro called Quarterons or Quatroona; and thowe of Quadroons and Europeans are Quinterons. In the Quadronn, litte or no veatige of dark blood is visible; but in roouf conutrion where theme almixturea take place, the righta of pure whito blookl are only amsigned to the Quinteron. Mexico, and the greater part of the states of the south American continent, Incloiling Peru, Chili, aud Brazil, with the coloniea and inlunds of the West Indies, are the chicf ecrenes of these amalgamations of blood. Undoubtedly theí imanodlates conserpuencea aro pernicdoun. The white blond in everywhere haughtily dinpowed towards the dark, and all the jealousien and oppressiona of raste are accordingly displayed to a dreadful extent. Whether, out of the numerous varictien sud sub-varietien of apecies there at present to he beheht, one perfect and homogeneous raco shall ever to formed, in rendered doubtful by the undiminished, if not inetensed, eagernesm with which the purity of the white blood continues to be mainuined. If we could muppose that the amalgamations of diffirent varicties of manklad were never to probluce happier consequences than in these instances, we might quertien whether such admixtures be deairable. The exprimenta of amslgamation mad non-amalgramation may ine anid to have been tried, on great scalen, in the two American cominente, and it is of importance to notice the issue in the respective cases. In North Amerien, we nust ere long find the slorigines extinct; and in the phace ef hordes of aavages, shationarily pursuing the wild and warring life led hy their fathers from time immemoral, will be found a great aul improving race, cultivating the arts of prace, carrying human civilization to the highont pitch, and extracting from their vast continent all the bossings with which the Creator has so liberally endowed t. and which he certainly meant not to lie unased.

The general characters of the grent varietics or tamities of eaen, the mole of their distribution over the earth, and the causes which have atfectel, and are likely hereater w aflect, their future fate, have now oceupied our attention; and our next duty is to advert to the most remarkWhe features of difference in the various branches of the human family.

varieties of skin in mankind.

It has been nlwaily seen, that the Cancasians are geneally distinguished by a white or fiir skin, while the Mongolians are yellow, the Ethiopiuna black, and the Americons red or copper-colourd.
In former times, when only two varicties, the white and Back, were recognised or thought of, it was aupposed that ramplexion was simply a result of the action of the aun's rass. This idea would naturally arise from its being obueved that exposure to the sun darkened a white person, white seclusion tended to Heach or whiten him; and that the breck nations were those which chiefly occupied tropical countries, while the whites were phaced in the temprate zone. Tho Greeks, who never doubted that they wire the pertection sond standar! of human nature, and who entertaned caaggeruted notions of the heat of the African sun, were strongly impressed with the idea that the Jegro nations had been originally white, and had been changed into black purely ly the action of the wolnr pays. This notion continued to be set forward undoubtitingty ly naturalists down to the time of Butlion, and it is Win the letief of the ignorant in most countries.
The views of waturalists on this sulject have recently men considerably aflerted by the investigations of M. lourens conecrning the actual stroetore of the coloured kn." The white, as is well known, has a skint com-

- On the Nataral Itistury of Man thy M. Flourena EidinGqu Niew IMdorophicul Jourual, July, 1 tis.
posed of threo integuments. First, fis the outer or ararf skin, a thin transparent pellicle, neoningly mecreted by the parta helow, and devoid of recognisable vemela on nerves Next below in the rete muusum, a nof, pulpy net-work. Next, or undermont, if the cutis or true akin, a atrong layer, alundantly vasecular, ind very mennibles. It wus formerly aupposed that the colouring matter of the dark races lay in the rete mucosum, and that the only difference letween the two racen, in that rempect, lay in the one having a mucous integument chargel with glohules of colouring mutter, and the other a mucous hutegument in which there were no such globulea. If the invertigations of Ptonrens lee comeet, the differonee in conxideratily greater. Ife statea that, in a auficient variety of exporimenta ujon tho akins of Negrocs and red Amaricans, he has found, treneath the rete mucosum, two distinet additional layern, capable of being detached, and the outer of which in the true neat of the colour of those races. N. Flourens considers this na a difference much more lmportant than any depending on form. Being a atructural difference, he thinks it should be held as one of the first clane, while differences of shape ought only to he considered as accondary. Without following him in thene apeculations, we may readily allow the importance of a peeuliarity which consista in a distinet and additional part. M. Flourens, it may le remarked, has found the two layera aloo in Mulattoes. Ife had not hal an opportunity of experineenting upon Mongotians or Malayatas; but he infera, from the other cases, that in them alao tho extra integuments would be found.
M. Flourens adds, that, in the case of Europeans tinged by exposure to the nun's raya, the mocons web is what is nffected, hecoming, ne it were, slightly dyed. No degree of exposure can, he thinks, conter the colouring layera of the Negro and other dark ruces. Jlo remarke, that the Arrican Moora, wholiave lived beride the Negroen for centurtea, have never acquired the colouring apparatus of that race; and it has been observed by travellern (Captuin lyon among others) that the Tuariks, a race of African Caucasians, of a dark-brown comptexion, are nearly as white on those parts of their bodics covered up from the sum, as mont Europeans. It is also well known that the progeny of an European, howeser much he may huve been tinged by the sun, is invariably as white as he hinself was at first.

The bhack races aro localized in the warment regiona of the glube, and their skin and genernl constitution seem to be fitted for their allotment. A black man can lite naked, exposed to the hottest sun, without injury, while the skin of the white man, if exposed to similar heat, breaks out in blisters. The black man can labour under a barning sun with impunity; but the white man sink: under exertion made in such circumstancen, and this is well known to le the cause why slaves were introduced from Africa into the settlements of Europeans in tropical America. Sir Everard Home, who mado sume laborioun investigations into this subject, was puzzled by the obvious phasical fict that the black skin must absorb moro heat than the white. But it has since been suggested by Dr Johan Davy that the btack ferspires most readily. "In the Negru," he says, "the blond thows more readily through the versels, so as to promote perapiration, and by that means contributing to the cooling of the surface, it contributes again, when it fows hack In the heart, to the cooling of the internal parts." After youting this remank, 1)r. Gloser of Noweastle mags-a. Wirn the inhabitant of
 could not respund to the stimulas of heat, by a deter mination of tluid to the surface of the fondy ; and the heat absorthod by the akin being pusented thath ehbring the system by the perspiratory preecess, the greate: rudatiage power of a dark skin must he trueficial in cooling. Aggin, the dark shin places the Negro in the coudisions of bie climate, by causing him to radiute leeat at night, and ho
onne athet time cooler than a white under the marne circumatances." Hence the love of the Negroes for night dancing and exercise.
M. Flourens deems the difference of structure between the white and coloured races as sullicient to prove that they are of differnut sticke, and he accordingly ajeaka of them na " cumentinily distinet races." Hut there are sonne considerations which gratly confound all auch conclitaons, an Jrawn firm differencéa of colour alone. Coloura, it is to be observel, are not invariable characterintica of graricular races. Mont Gancanjanm, it is tive, are white; fut then there are alwo black Cisuesainus. The Hindson are unduabted Caucasiana, being proved to be so hy manty sharacters of form. Yet the Bengalewe and Malabara, varietiea of the Hindooa, are often an black as the generality of Negroes. Cnuceniann of similar colour are nprend through Perwia and Wewtern Aala, into Northern Africa. It hat indeed been said that the Hindoo branch of the Caucasiana alone includes overy varlety of colour, from the deepent hack to eomething very nearly white. There are similar variations in at least one of the other four races. "Although the Americans," may: Dr. Morton, *posess pervading and characterintic complexion [which he dewcribea more hrown or cimmanon-coloured than redj), there are occanional and very remakable deviationa, inclusling all the tintu from a deruled uchele to an whe aquirocully black skin." "The white triber have twon found ehiefly in the high regions in the northern I part of Eouth Amerira: With such facta befuro us, we cannot admit that the colousing apparatue of M. Flourens decides that the ruces are diatioct.

differrnces in mair ann eyes.

Dr. Prichard has endeavoured to class mankid.d, witt. - regard to the colour of their hair, into three varietiea, Le Melunic, the Xinthous, nud the Allino. The Melanic, or hark clase, comprisea all indiviluala or races who bave black hair; the Xnnthoun includen all who have brown, aulurn, or red hair; and the Albino all who are tintinguished by white hair and red eyea. With all Iue deference for the alle writer who proposed this arnangement, it seems one from which no diatinct or uarfal conclusiona are dedurible. The hair, however, is certainly a atrong individual characteristic in man. Its colouring principlo is ovidently the same, apeaking comprehensively, with that of the skin. The hairs issuc from bulls or roots beneath the true akin, where vesmela supply them with nourinliment. An external horny covering, and an internal pith, constitute the looly of each hair, and tho pith is to some extent vascular, becouse liahle to diseane. It is, douhtess, in this vancular pith that the colouring prinriple lies. The fact of the pith leing supplied both with versels and nerven, is furthor proved by the effect which great grief ran produce apon the colour of the hair. Dr. Prichard had personally observed one case in which the hair srew white in - single night through gricf, and many similar casex aro on record. One distinguished French anatomist went ©o far as to assert, that in the bullow of the hair lay the whole colouring matter of the skin; but, adoniting that minute hairs exiat on the gencral frume, we could not thus exphain the hack hue of the invide of the Negro's lip, which ia quite free from hair. However, when we consider that tho woolly hair seems to the insepuratle frem the jetty akin of the Negro, and the lank struight heir from the red win of the Indian, we mast letieve in the exiatence of some atrong bond betwern these physical characteristics.
In like manner do we trace a gencral correnjomilence lietween the colour of the eye and the skin and hair. The hue of the oye dependa on a pigment or dye, liting the choroid coat or membrane. According to the tint of the pigment, is the eye lilue, gray, hrown, bazel, or hlack. tiwteralls ajeaking, lighecolourct eges are conjoined
with fair complexion and lisht hair, and the curerrone holin an commonly goonl. To thic rule, it is wil: known, there are exceptions; yet Mongola, Ethiopiaus Malays, and Americans, in ninety-nine rawe in the hundred, show the estent of ite appliaubility. The Caucasiane dipplay, in this respect, greater variation.

The Allinoes are marrely to the called a variety of mankind, lesing a race whone $h^{\text {preculiarities depend on }}$ ieffects. Red eyes and white hair are their chief tures, though theme fraturee vary a litto according to the race to which the individual lielongs 1 and thier are Allinues to the found in alnone all countrics. The reduene of the oye depende on the abwence of plgment on the choroid coat, premitting the red blowl-venaeln to be eren. From a deffiency in the power of ahmorhing the raya of light, which purpoos in eerved hy the pigment, the eyes of Albinoes are weak. The Albinces of the black race are called white urgroes, from tho colour of their skin, and they have white woolly huir. Among the eoppercoloured nativea of the Darion isthmus, Albinoes are common. Their bodien are of a nilk-white tint, covered with a short down; and they have white hair, with red eyen. They loye such light an the mown gives, and lyy night are all life and activity, whilo by day they are mineralle, the ray of tho son making their wrak cyea strean with water. It in needlens to dwell on thite sulject, however, an the Allino prenliarities are, In the main, much the mame cverywhere. Europeana of this description are somethines exhilited in public. The comection letween skin, hair, and eyer, and the unity of the moure of colour for all the.we parta, in very strikingly exemplified liy the prenliaritice of the Albino race.

gkytis of mankind.

Amorgent the external distinctions of racea, the form of tho skull calle for particular attention. In deecribing these varieties, the shape of the akull of each wan noticed in a gencral mamer, mul it would be obwerved that great differences exinted with respiect to this feature. Froir olvervation of an innurise nomber of heals, Blumerhach arranged the akulle of men into three great diri nions, the Caucasian, Mongolian, and Ehhopic, holdirg theree to stund at extremes from ono another. The skulls of the American and Maluy acemed to him to ntand internedintely beiween these. As, beyond all doubt (without carrying our Is liff to extremes, ns sone have perhape done), we oughe to consider the form of tho skull as indiratiso of the intellectuil powers, the dis tinctions in this organ necesasarily laceone of grent inportance. The mont perfere tyife of the Caucasian skull is found, as mighe he anticipated, in the molern Cank sian-proper, such as na the ticorginna. "The hemal [of a female (ieorgian, described hy Mlumenbarth) is of the tnost symmetrical shape, nimowt rouml; the forehead of modernte extent; the cherk-tones rather narrow, with out any projection, hat having a direction downward, from the imalar process of the frontal bour ; the alvolian edge well roumided; the frout terth of each jaw flaced perpendicularly."

The head of the perfet Mongolian type in, says hilur menharh, "almowt sypure; the cherk-lones projecting out sards; the nose flat; the nusal losnes, and the spare between the eyctirnw, marly on the same horizontal plane with the clock-lonen; the superiliary athes ecarcely to be percoived; the mastrils narrow; the maxillary pit slightly marked; the alverolar cage im none degree rounded forwardn; the chin alizhtly pumb nent."
In the Ethiopic variety of men, "the hual na narom. and compreswed at the sides; the forel ead very convel, vaulted; the cheek-lones projecting formurda; the now trila wide; the maxillary pita derply :arkidat poinu the jaws lengthened; the alveclar edge narrow, luna
and elliptical : alliguely forwar In the Amerie w that of the M is more rounded, mit of the Mala arched, and the If would bo ampe far trilues marke buab been slone wi elansiffention of siana, Mongola, a divilual differenee celing descripuium No mole of e diflierenres in shang as that called liy which the variou upon the lower ja ainl behind. Exa the Caucasian aku cumpurative small hidlen by the rour perpenticular line, would larely touct Segro heul, in the trant of the precedi head hera permits checks and juws in and greatly elonga Mongol. again, wo The bones of the equally visible as ewh aide, not puahe ness of the Mongol bis lateral expunsio gives to themo varieti of mesobirgmite, asenc eppressive of the ch si, med to them.
This remarkable facial twnes, conjoi equally striking diffi of the skull, has lee kasure of the higheen dewe physical chara dyren of intellect a Lie whole membera akull and brain. degrec of prominency hy him in the folloi drawn from the ear Gom the prominent ulvancing part of th riewel in profile. two lines," says the sist, not only the dint excral speries of an mond to exist betwee be concluded that na wae time, of this an! be anima! kingdom, tron the inferior trils Thich are fomil in befound that the he nate, and that it alw frportion ad the anin mand figure. Thus cre, in which the he kefres ; in nother " one of thowe remide whan figure, the fil spees, Next to this Wich, as well as that n lathimus, milk-white lave while the mown hile by day mking theis nn to dwell diaritien are European 1 in pullie en, and the narta, is very of the Allino
ces, the form In describing I was noticed ced that great inture. Frore fula, Blumea ve great divio iopic, holdirg wother. The ad to him to s, beyond all -mes, nu sume the form of wers, the dis of great im aucasian skull witern Canco The head fof ach] is of the te forehead of narrow, vith a downward \because the alveola cli jaw placed
e ix, nays Blur nes projecting nond the space the horizontal ciliary anhes narrow; the colar rdge m slightly jumer
wad is narrow. d very conver, alds; the not rked at puinu narrow, lom
and elliptical; the front teeth of the upper juw tirned of mevonty deureew, while the angla diseovered li the dilijuely forwarila ; the lower jaw atrong and large."

In the Amirican akull there is an approach in shape w that of the Mongel, with this difference, that the top wore rounded, and the siden lem augular. The summit of the Malay head in narrow, the foreheal a little arehed, and the upper Juw pushed aonewhat forwarl. It would be migerlluous to enumerate liere the particufar tribes marked hy theme varietien of akulla, an thin has leen done with aufficient distinctiean in the general clasiflcution of the rucem. Of courme, among Cnucadina, Mongola, and Negroen, there nre considerable individual differences in the form of the head, bint the precesling demriptions give the type of each divixion.
No mode of examibution exhlita so atrikingly the dilferetwes in alayse hetween the akulla of different races, st that eulled liy Blumenhach the verlienl method, in which the various akulla are placed in a row, reating upon the lower juwa, ant aro then viewed from above and behind. Examinel from above, the faclal henes of the Cancasinn wanll are acarcely viaille, both from their comparative mallnems of aize, and becanse they are hidden by the rounded and well developed forehend. A perpendicular line, falling from the midille of the brow, would burely touch the front of the upper jaw. Ithe Segro head, in the aane position, presenta a strong contruit to the preceding ono. The narrow alanting foreteal hero pernits the whole fuce to come into view, the shecks and jaws leing womewhat compressed laterally, and greatly elongated in frout. In the case of the Nongol. again, we find a contrast not lews remarkable. The bones of the nose, cheeke, nad jawn, are nhmest equally visible as in the negro, but are expanded on each side, not pushed angularly forward. The wyuareness of the Mongol head nrisen in a great degree from this lateral expunsion of the facial lones. Dr. Dricharl gives to theso varieties of tho akull the respective names of minobregmate, sicnobregmate, and platyhregmale-wordn repressive of the character which have here been asHigned to them.
This remarkable contrast in the prominency of the farial bones, conjoined, aa it commonly is, with un equally striking difference in the anterior development of the skull, has been deemed by mome physiologista a Gature of the highest importance. Camper founded on these physical charmeters a selieme for estimating the degreen of intellect and sagncity hestowed by nature on hie whole imembers of the animal kingdom possessing sokall and bruin. The farial ungh, as he terined the degree of prominency in the fuciul bones, wis zieanured by him in the following way. One struight line was Jrawn from the ear to the base of the nose, and another from the prominent centre of the forehead to the m^{-}. whancing part of the upper jaw-bone, the head heies: viewed in profile. "In the angle problined ly thes. two lines," says the plysiologist, " may be said to consith not only the distinction between the skulla of the weral species of animals, but also those which are fond to exist between different nations; and if might be concluded that nature has availed herse!f, nt the sne time, of this nogle, to mark out the diversities of be animal kinglom, and to establish a sort of scale from the inferior tribes up to tho mont beantiful forms which are foumd in the human quecies. Thus it will be found that the homeds of birts display the smallest ange, nall that it always hecomes of geviter extent in Paportion as the aumal approaches most nearly to the taman figure. Thus there is one species of the upe twe, in which the hem! has a facial ungle of forty-two derress; in unother aninal of the same family, whinh bone of those aimice appronching most closely to the tuman figure, the fircial angle contains exactly fifty legrees. Vext to $t^{\text {b }} \mathrm{ix}$ is the head of the African Negro, wish, as well as that of the Kalmue, forms an angle
heads of Europenna eontains vighty degreen. Un thiw difisrence of ten degrees in the faelal angle the wuperion twauty of the Eurepean inpends; while that high chwracter of nublime beanty, which lu wo atriking in wome works of ancient atatuary, in the head of the A pollo, and in the Meiluan of 'l'loceles, is given by an angla which announta to one humired degrees."

Ir. Prichard, in quoting thia pasage, rumarke, that "the facultiea of each race of andmala seem to be perfiet in relation to the aphere of exlatence for which they are leuthed;" and hence, in as fir an the neusurement of the firial angle in applied to the determination of the comparative intellectual characters of dillierent teihes of the lower animala, he holdm Camper'a meheme to he imperfect and ineffertive. An a method of diatinguishing varieties in the shape of the actual cerebral came, moreover, the measurement of the facial angle in not alwaya a mafe guncl. "I have now liffore me," ways Blumenbach, "the skulla of a Lithuanian I'ole and a Negro, in which the fachal anglea are nearly equal, bue the difference between the shape of the two crania in otherwise prodigious." Nevertheless, as a gencral teat of the mental eapacity of individuals, "I think," may" Prichard, "we must allow that experience is In favour r the position assumed by Camper. It is certain that every man is atru!, with the expreasion of dignity or elevation of mind and character in the ancient busth, which have a grea faciul angle, and that this expreanion wou't the lont if the farial angle were contracted. 'The fact becms, ind , to be ngersial one, that men of great intellect have fully develop 'braina, an indicated by clevated and capracioun fre" piola." Since the time of Cumper, it is acarcely n oseary to tell the reader, the sulject of craninlogy has veen nomply invastigated by Dr. Giall and his era, who have fou apon their inquiries a sy te in of mental philosophy in a great measure new to te world, anil of which the fundamental prineiple is, that the aizo and form of the skull, as de jensling on the size and form of the brain within, denove the intellectunl nud moral character.

Whatever may be thought of the phrenological dootrine in its detaila, it in at leant seareely poswible to disent from the moderate conelusion of D_{5}. Prichard, that "fully diveloped brains indicate great intellect" Hence, leaving out of the question the conncetion of tho develonment of the skull with that of the facial bisues, the simple raparity of the cerebral case becomen in itself a matter of tho higheat consequence. We happily have it in our power, from the experiments of a most arcurate inquirer, Professor Morton, to determine the comparative capucity of the skulls of all the varieties of mankind. The following are Professor Morton'm . . sclusions:-

Having obtnined a considerable number of the skulla of the various races of men, Dr. Morton measured their internal enpacity by means of white pepper seed, and found the following results:-

Races.	No, of nkulis.	Mean Internal capaeily in cabie inches.	Largest in the series.	Smallest in the meries
1. Conucasian,	52	87	109	75
2. Mongulian,	10	83	93	69
3. Malay,	18	$8!$	89	64
4. Aboriginal American,	147	80	100	611
5. Ethiopian,	29	78	44	65

It thua appears that the aboriginal Americana rana fourth with respect to the sizo of their braing, the Ethiopians being lowest and the Cancasians higheat.

This result is certainly the precise one to be expectod, : onsidering the capacity of the cranium we an index of intellectual power. The Caucasian race, whith stands nighest in the scale, is that which has produced the most civilized nations; while the Mongolian, the next in order of capacity of cranium, has proluced a number of nations which remain at a fixed point in semi-civilization. The Malsy is a degree more oarbarous, and the American and Ethiopian the most barbarous of all.
Though thus compelled, both according to the views of Camper and those of other physiologists, to admit an inferiority of organization, accompanied by an inferioriv of faculties, in certain mes as they at present exist, there is yet an encouraging \boldsymbol{y} rospect to cheer us. Reasons exist for the belouf, that cultivation, in the case of both races and individuals. A., capatle of modifying even the ahape of the skull; and hence, whatever be the peculiarities attending this physical characteristic in any existing raca, we are not left, in this viow of things, to despair of the possibility of improvemunt. Without come such compensating prospect, it would be painful ω admit that the protruded bence of the face, the proportionably amall cerebrum, and the almost sinuious lowness of forehead in the Negro, indicstad a natural inferiority in the race. Many writere will not, indeed, countenance this conclusion. "I lave not met with an individual, out of a great number of intelligent Weat Indian planters and medical practitoners." says Dr. Prichard, "who has not given a most positivo testimony as to the natural equality of the African Negro and the European." The same writer aleo points to instances in which Negroes becane excellent ocholars, and wrote elegant Latin verses. But, on the other hand, Mr. Lawrence, with many able physiologiets, gives countenance to the supposition of a decided inferiority of cerebral organization in the Negro, attended with a cortesponding inferiority of faculties. It is certainly one remarkable circumatance, that, in the majority, at least, of those cases in which Negroes exhibit atriking talent, their heads are found to approsch tho Cancasian formation in respect of shape. Phillis Wheatley, for exnmple, a coloured girl, who wrote very pretty verses at an early age, is represented, in the plate attached to her little bouk, as having not only a Caucasian brow and head, but these of the finest order.
The physical characteristic now under consideration variea considerably among the white nations of Europeans. The Turks, who, though originally a Mongol race, have had their primitive physica! attributes modified by continual intermixtures with Greeks, Georgians, and Circasejians, present a form of skull combining, apparently, the mingled characters of the two varicties. The square Mongolian head has been rounded off in their case, and we find it to be now almont a perfect globe. The Greck head approaches the same shape. It was long nsserted that the globularity of the Turkish loend resulted from artificial compression in infancy, but modern physiologistes diacrerlit this notion. "A single plance at the Turkish head," nays Mr. Jawrence, "at the aymmetrical and elegent formation of the whole fabric, the nice correapondence and aljustment of all parts, the perfect harmony between the cranium and face, in all the details of each, demonstrate most unequivocally that it is a nstural formation, and a very tine work of nature, too." The writer now quoted priceeds also to rumark, that, sthough no sufficiently extennive examinatione have yet been made, the prolability is, that between tise European nations, nuch as the Germans; Swise, Sweies, French, and others, distinct differences in the diape of the nk ll would certainly be found to exist on inquiry. Mr. George Lewis ubserved in tmvelling on the continent, that the French have the lower and anterior paits of the cranium large, while the upper and anor x regaun is more prominent in the Germane. The

Italian head, though comparatively mall for the n.os: part, is marked by great elegance. The Jewa have long been noted for the fine Caucasian shape of their headr.
It is worthy ot remark, that, though the giobularity of the Turkish skull is not to be deemed the result of art, there are certainly races of people who modify the shape of the head by compression in childhood, and the viawa of Camper, as well as of the phrenologists, must be applied with some reservation to the skulls of one great variety of mankind. Many, very many, of the tribes of North and South America are so partial to low and retreating foreheads, that they have long been in the habit of assisting nature in producing that form of head. The comparative sofness of the osseous texture at birth, and the partially mobile state of the cranial sutures, enable them to effect this object. "The Caribbs," sayn Labat, in his account of a voyage to the isles of the C_{a} ribbean Sea, "are all well made and proportioned; thein features are sufficiently agreeable, excepting their fors head, which appears rather extraordinary, heing very flat, and as it wero depressed. These people are not born so, but they force the head to assume that form, by placing on the forehead of the newly-born child a amall plate, which they tie firmly belind. This remains until the bones have acquired their consistence; so that the forehead is flattened to that degree, that they can see almost perpondicularly above them without elevating the head." The consequenco is, that the heads of these people, naturally somewhat depressed in front, become hideously so; and unnatural bulges behind show that the ccrelral matter has been forced into new positions The possitility of changing tho form of the akull has been doubted by sone plyysiolugists, but the circumatance is authenticated beyond all question. In Morhn'a C'rania Americana are delineated many specimens of skulla thus altered in form, some so greatly changed by a pres. sure which has been applied both before and behind, as to resemble half-moons. It is not necessarily to be inferred that injury results either to the mental conatitution, or the general health, of those who submit to this process. Supposing the pressure to be slow and gentie, the dnctile organs will easily accommodato themselves to it, and it is prolable that the lrain, as tir as its size or wolume is concerned, will remain unatfected. A akull in Dr. Leach's possession, bearing the marks of extraordi. nary compression, in known to have been that of a C. ribb chief distinguished for intelligence and prudence.

teerh of mankind.

The gencral differences of features, accompanying these variations in the shape of the skull, were pointed out in going over the great divisions of the human race. The tecth of mankind differ very little in shaje or position. "The oblique position," says Mr. Lawrence, "of the antenior incisons in the Negroes, and sone other trikes who have prominent jaws, is the only natimal ditiference I know of in teeth. Their size and form exhibit merely in dividual differences," One of the most remarkatle individual varieties in the teeth, it may be observed, consiss in the phenomenon of a doulle set in the same mouth This is of rather rure ocrurrence, hut the writer is awne of one instance, in which hoth upper nod under jaw are encircled by a double row of extraordinary leanty. In case of a colonial settlenent bring frumided ly such an individual, and the dental duplicity wing perpetunted in numerous descendants, would wo not he apt, sering : preculiarity so striking, to rutertain doubts of the descen of the parties from the ordinarily jawed race of men!

FIGURE-PROPORTIONG-WEIGHT AND SThENQTh

The differences which exist among the races of trian kizd, with reapect to Yigure, Proportions, and Strergith form a liranch of the prement subject not less interceting than any yet noticed. It has long been attempted, it
the civiliz trandard o there cert proach to with the power and model-figur words, to th possiblo pr of man va extent his kind allude and excepti standard of would be s possess phyl Hottentot al animals, and nate Hindoo borse for day at home in th or vessel. • \mathbf{Y} from the Gre power ia at le Grecian artiat duale so mou tioned, with a

Different ra of etature, the different nation accur in the sa thentically kno occupying the do la Plata and occupied by th probably migra gree of discrep different writer Patagonians to in height, Eng and conversed that few were जiderably above could barely to manding on tipbably examined of the Patagonis len to aix feet, a as feet seven. made by the \mathbf{S}_{1} rea at least Patuas of from six and wowhat less, of men existing ulmit them to their height.
A people situ Aland nearly at tt kature. The Es ure for the most p and their congen They are of the Elbinpic variety
and in ond in particular rery commonly jons, there are al atives of Terra gлііад.
Theso nations the humanal race, hy if much mor tighlv interestirg.
for the n .0 os : we have long their heads. a globularity the result of o modify the ood, and the ologists. must skulla of one many, of the partial to low ng been in the form of head. exture at birth, ial autures, enCaribbs," says sles of the Ca ortioned; theit ting their fore being very flat, e are net born that form, by on child a amall is remains until co; so that the they can sec abut elevating the heads of these in front, become chind show that to new positions. of the skull has the circumstance In Morwn's Craecimens of skulls rauged by a preare and behind, an cesssrily to be inental constitution, ubmit to this propw and gentle, the - thentselves to ith as its gize or voceted. A skull in arks of extraondieent that of a Ca . and prudence.
companying these ere pointed out in humain race. The slıa]e or position. Lawrence, "of the some other triles national ditierence , exhibit merely in. at remarkable indiolmerved, consists , the same mouth. the writer is sware and under jaw are linary benuty. in ounded by such an -ing perpetunted is ot le apt, neeing a buhts of the demen d race of men!
and sthength a the races of nasn ions, and Strergth not less interesting been attempled, ic
the civilized regions of the world, to ascertain and fix a otandard of physical perfection for the human body ; and there certainly dnes seem to be a model, the closest approsch to which combines tha quality of pleasing the cye with the posacssion of the greatest degree of corporeal power snd activity. Artista have usually looked to the model-figures of the Caucasians of Grecee, or, in other words, to their ancient atatues, as exemplifying the finest possiblo proportions of the human frame. But the taste of man varies so much, and habit molifics to auch an extent his physical powers, that any standard of the kind alluded to must be open to numberless objections and exceptions. If judged of by the common artiacical atandard of the civilized world, certain races of men would be set down as out of proportion, and yet thay poseess physical powers of the most perfect kind. The Hottentot and the American savage will outrun wild animsls, and hunt down the deer; the slim and "effeminate Hindoo," as we call him, will keep up with the horse for days; and the South Sea islander feels himself at homo in the raging surf, which would whelm a beat or vessel. Yet these races depart widely, in many cases, from the Grecian model. Such facts show that physical power is at least not confined to men moulded after the Grecian artistical standard, theugh it may be that incividuala so moulded would aurpass in the oxercises mentioned, with equal training, those otherwise fashioned.

ETATURE.

Different races of men exhibit considerable diversities of etature, though there are no varieties of stature in different nations so remarkable as those which frequently uccur in the same family. Tha tallest race of men, authentically known to exist, are the Patagonians, a tribe occupying the coast of South America, between the Rio de la Plata and the Straits of Magellan. The territory occupied by them is of immense extent, and they are probably migratery in habits; hence a censiderable degree of discrepancy in the accounts given of them by different writers. Magellan's companions declared the Patagonians to be commonly about seven feet four inches in height, English measure. Commodore Byron saw and conversed with many companies of them, and states that few were under seven feet, whilo others were considerably above it. Nearly six feet high himself, bo could barely touch the top of a chief's head, though standing on tip-toc. Captain Wallia, again, having probably examined a different tribe, says that the majority of the Patagonians seen by him averaged from five feet tea to six feet, and that bo only asw one man so tall as ax feet seven. By later and accurate measurements, made by the Spaniards, we learn positively, that there we at least Patagonian tribes, reaching the average height of from six snd a half to seven feet. Wers they oven wowhat less, they would be decidedly the talleat race of men existing on the face of the earth. All voyagers udmit them to be large and muscular in proportion to their height.
A people situated in the polar circles of the north, atand nearly at the other extreme of the scale as respects wature. The Esquimaux, or at least some triles of them, are for the most part between four and five feet in height, ind their conguners the Iaps are alno a dwarfish race. They sre of the Mongolian variety of mankind. The Bthinpic variety also numbers some very small triles, and in particular the Bosjesmans, a race said to be also refy commonly deforined. Among the American nabons, there are alao dwarfish tribes, and in particular the natives of Terra del Fuego, near neighlours of the Patugonians.
These nationa ouly present us with the exiremes of the human race, as respects stature. The subject is worthy of much more minute investigntion. It would be highlv intereatirg, and indeed instructivn, to know the
comparative average atature of each of the ordinsers variaties and aub.varietiem of mankind. Unfortunately, the observations of naturalists respecting stature bave not been carried far. Quetelet and othera hava attentively examined tha relative beights of individuals of single nationa, at different ages, with a view to determine the general phenomena of man's growth; but few obsorvations have been made upon the reapective haights of different races or nations. The stature of the Csucasian has not been fully compared with that of the Mongol, as tho Negro, or the Red Indian; nor have single nations, belonging to any of these great varieties, been satisfactorily contrasted with one another, as reapects height. No accurate comparisons, for example, havo yet been mado of German with Spaniard, of Briton with Frenchman, or, in fact, of any one European nation with another. The following table, exhibiting tha comparative beights of a small number of Englishmen and Negroes, is given in the work of Mr. Lawrence, upon the Natural History of Man. Tha Negroes were from various regions,

The Caucasian here has considerably the advantage of the Negro, the average height of the former class being nearly 5 fect 9 inchea, while the black averages litt'o above 5 feet 6 inchea; and the advantage would still te on the samo side, were we to leave the first Engliakman, certainly a man of uncommon height, entirely out of the reckoning. But it must be admitted, that from auch an insignificant amount of examples, no satisfactory conclusione can be drawn. The accounts of recent travellers in Africa would lead one to imagine that the majority of the Negro nations, excepting in the case of a few particular tribes, such as the Bosjesmana, aro not below the Europeans in average height. Tha Caucasians have indeed the advantaga in one respect; no tribe ol section of them sinks a low in the scale of altituda as some of the other races do.
'The stature of the Chinese, who must be regarded at amongst the purest specimene of tha Mongol variaty, was accurately and extensively measured by Mr. Rollin, the surgeon who accompanied Le Porouse. He found the ordinary height of the natives of the great Inle of Tchuka, on the east coast of China, to be five French feet.* Tho natives of the mainland, near the aame region, measured 4 feet 10 inchea (French). This examination places the pure Chinese below the average height of Europeans, and, we believo, correctly. Other Mongel races have not been accurately examined, with is view to the point under conaderation. In that variety of mankind, however, as in the Fthiopic division, there are individusl races which atand much lower in the scale of height than any Cancasian tribe. The Esquimaux and Fins prove this ascertion.

The Americans also present great differences in height; so much so, that it would be valn to attempt to discover or strike an average for the whole vuriety-a variety which comprises the giant Patagonians and the dwarfs of'Ierra del Fuego. For determuning the heights of individual tribes of Americans, we have at present no hetter authority than the loose reporta of travellers. The sama may be said of the Malays; and, such being the case, it would be 9 waste of time to attempt any comparative eatimate, having reference to theoe races. One conclusion may be drawn

- The French foot alighily exceeds that of Enslana. thet prn porions of the former to the after beit g as 1.00 to $1 \cdot 000$.
from the little which we do know, and that is, that eivilization equalizen the stature of mankind, and keepa it noar a ateady mean. All the less cultivated races present extremes not to be observed among the Caucackans.
Professor Forbea of Edinburgh (the nble successor of Jesslie, in the chair of Natural Philosophy) has recently made a series of experimenta upon the physical differences between English, Scotch, Irish, and Belgians, the results of which constitute the moat interesting information we are ablo to lay before the reader, with respect to the comparative heights of sub-varieties of tho Caucasians. The following is a talle drawn up by Professor Forbes, to exhibit the relative heights, at different ages, of the students attending his class, during a series of yearis, and belonging respectively to England, Scotland, and Ireland. The Belgian measurensents were probably derived from other sources. The number of individuals eubjected to examination was very considerable, so many as eighty Scotch and thirty English being occasionally measured at once.

Heights-Full dimensions with shoes.*

Agro.	English.	Scolch.	Irish.	Belgians.
	Inches.	Inches.	Inches.	Inches.
15	64.4	64.7	...	61.8
16	66.5	66.8	...	$6 \cdot 1.2$
17	67.5	67.9	\ldots	66.1
18	68.1	68.5	68.7	67.2
18	68.5	68.9	69.4	67.7
20	68.7	69.1	69.8	67.9
21	68.8	69.2	70.0	68.0
22	68.9	69.2	70.1	69.1
23	68.9	69.3	70.2	68.2
24	68.9	69.3	70.2	68.2
25	68.9	69.3	70.2	68.3

This table places the Irishman uppermost in the acale of stature, the Scotsman second, the Englishmsn next, and the Belgian lowest. The comparison secma to be fair as regards the parties taken, for, if there were any peculiarity in their condition as students, it must have been common to all. As a compsrison of natiens? heights, therefore, the tablo perhaps exhilits conclumiun:s pretty generally applicable, and we shall find it borno ctic by similar comparisona of uetight and strength. Profeswor Forbea's observations are confirmed, in one point at least, by the following passage in Quetelet's work upon Man :-u، When in England, we chose the terms of comparison from rather higher classes of society the has been apeaking of English factory children]; we find the stature of man rather higher than in Frsnce or the Low Countriea, at least for young persona between eighteen and twenty-three years of age." Quetelet then alludes to cighty different measurements of Cambridge students, taken in groups of ten each. The average height of every ten was 58 feet, or 5 feet 9 inches and 3 -5tha to each man. Thia is above Professor Forbes's average; but, as the English universities are only attended hy tho aristocracy, who are undenisbly a section of the people above the average nationsl stature, it is probalile that, as - national emparison, Professor Forbes's talle .approacher nearest to the truth.

The table allucled to indicates the cessation of growth to take place at twenty-two, the case of the Melgians being the only exception. This exception may he accidental, Sat it is remarhable that Quetelet, a Delgian writer, and shose observations were chiefly drawn from Brusarls and Hrabant, lays down the following ss one of his conclu-:onn:-- It does not appear that the growth if man is

[^5]entirely completed at wenty-ive years of agg." One can ecarcely doubt tho accuracy of thia conclusion, which was founded on an examination of 900 individuals at the ages of nineteen, twenty-five, and thirty. It is perfeetly possible, however, that climate and other circumstancen may cause a difference in this respect between the Bel. giana and British. We learn from another of the valuable inferences made by Quetelet from his investigations, that the stature ia materially influenced by residence in town or country. "The staturo of the inhalitants of towns, st the age of nineteen, is greater than that of the country resident by 2 or 3 centincters." An examina. tion, accompanicd with vest labour, of not lesa than 3500 individuals living in towns, and 6000 residing in the country, brought Quetelet to this conclusion, which is thereforo in all probability correct, and will be found to hold good in all situations. It was only ot the age of nincteen, however, that the stature of the townsman was found by Quetelet to exceed that of the rustic; and he conceives it possible, though it was not in bis power to obtain full proof on tho sulject, that, "the inhabitant of the country may attain to a greater height than the in. habitant of tho town, before the coumpletion of the full growth." Tho truth is, that circumstances greatly toodify the rate at which tho growth is developed. The lam of nuture on the sulject is thus stated by Quetelt:"The growth of the human being, from siveral month before birth up till the period of complete developmen', follows such a law of continuity, that the accessions of growth diminish regularly in amount. in proportion to the nge." Here, of course, each successive addition of grouth is ennsidered relatively to the growth previously nequired. "We shall find," he says, "that the child ineresses in size 2.5the from linth to the end of the first year; 1.7th during the second year; 1-1 th during the third year; 1-14th during the fourth year; 1-15th during the fifth year; 1-18th during the sixth year, and so on ; the reda. tive growth always decreasing from the time of birth." This simple law of nature, however, is liable to be greatly affected in its operation by circumstances. "Dr. Villerme remarks," says Quetelet, "that the height of man irecomet grester, and the growth takes place more rapilly, other circumstances being equal, in proportion as the country inhabited is richer, the comfort more general, hovese, clothes, and nourishment better, and labour, fatgue, and privations less during infancy and youth; or, in other words, the circumstances accompanying misery put of the period of the consplete development of the body, and stint human stature. There can be no dou!t of the aceuracy of these remarks. The simplo exposure to the action of cold, not to apceak of toil, materially influeures the growth of man; and we see this proved, conversty as well as otherwise, in oll the extreme climutes of the world. The warmith and luxury of cities develop rapides the growth of all but tho lowest classes. Our British gentry bear out fully the conclusion of Quetelet, that "individuals who enjoy affluence generally exceed the mean height; hard labour appears to be an obstacte to growth."
' F wo other conclusions, of those wi ' Quetelet give as the reault of his patient and cautuols investigations are as follow:-"The limits of growth in the seas are unequsl ; first, because woman is horn analler than man; secondy, because she sooner reaches her complete development; thirdly, because the annual increase of buty which her frame receives m amaller than that of man: Tho seventh and last deduction is, that, "from the fiftiet year, the human hody undergoes a diminution of st iure, which beeomes more and more marked towarls the close of life." The writer toes not assert that the 古 clension is more than in uppearance, und it probatly 4 nothing more, though not less palpalke to mensuremy than if real. On the other pointa it is unnecessary s make any remark. The prewent treatise cannot be on
ried beyond particulars, titha of man

The atatu form but pi these proper is at least object here bensive raths weight of the been inquire But, as in th only to a ver amined the different uges, single nation termine the \mathbf{c} sian, or Amer would be att come may th however, is m takinga that re more particula clearly ahown, ever the superi cess, other cir tend. An obs on the field of been found to Professor Fi atudents, Eugl adding examins of Belgians.
:"eig

Agt.	Englis
15	1148
16	127
17	133.6
18	138
19	141
20	144
21	146
22	147.6
23	149
24	150
25	151

Here, again, othera holding th of atature. The case the weight mgly low-134 it in our power, of Profeasor For ful as the Engl eighty students o in groups of ten, Quetelet, of 151 arved, of the E weighed ly Proft however, were ln olu, and therefore than that of Prot of samitie. Witl \pm oxamined by of the Cambrilge much exceeds th arealy the mame a the obher depart:n duala at thie is perfeetly reumstanceq en tho Bel. of the valu. vestigations residence in hahitants of a that of the In examina. as than 3500 iding in the on, which is le found to t the age of iwnsman wus ustie ; and he his power to inhubitant of t than the in. on of the full s greatly mored. The law (Quetelet:everal months developinert, accessions of roportion to the lition of growth ionsly acquired. rild increases in rat year; 1.7th the third ycar; during the fifth so on; the rela. time of birth." ble to be greatly "Dr. Villerme of man becomes re rapidly, other 2 as the countr? general, houses, our, fatigue, and th; or, in sth: misery put of of the body, and doubt of the ac. exposure to the crially influences oved, conversely - climates of the a develop rapills cs. Our Britioh of Quetelet, that erally exceed the e an obstacle

1) Quetelat give is investigations in the secor are maller than mani ir complete deres. increase of buts an that of man." "from the fiftieth iminution of sta arked towards the asert that the de and it probably - to mensurelut is unnecessary th ise cannot be ca
ried beyond generalities, and we must be content, in many particulars, to regard the sexes only under the common title of mankind.

witght of the huilan betng.

The atature, weight, and atrength of the human body, form but parts of one and the same subject. Each of these properties or characteristics, if not dependent on, is it least elosely related to, both the others. As the object here is to maks the view of the species comprehensive rather than minute, it were to be wished that the uvight of the body, among the various races of men, had been inquired into with some attontion by naturalists. But, as in the case of the stature, this has yet been dons only to a very imperfect extent. Quetelet has fully examined the comparative weight of tha human body at different ages, and of differently placed individuals in a single nation; but no attempts have been made to determine the comparativa weights of Mongol and Caueasian, or American and Negro. The endeavour to do so would be attended undeniably with vast trouble, and come may think the matter not worthy of it. This, however, is not a correct view of things, In all undertakings that require the exertion of physical energy, and more purticularly in war, bodily weight, it has now been clearly ahown, is a most important element; and, wherever the superiority in this respect lies, thither will success, other cireumstances being equal, slmost infailibly tend. An observation of the various collisions of troops on the field of Waterloo, whether of horse or foot, has been found to substantiate this proposition.

Professor Forbes extended his inquiries among his students, English, Seotch, snd Irish, to bodily weight, adding examinations of similar, and also of mixed classea of Belgians. The results were as follow:-

Weight in Pounds, including Clothes.

Ags.	English.	Scotch.	Irish.	Belgians (nol mixed ctasses.)
15	114.5	118	116.	102
16	127	125.5	129	117.5
17	133.5	133.5	136	127
18	138	139	141.5	134
19	141	143	145.5	139.5
20	144	146.5	142	143
81	146	142.5	151	145.5
22	147.5	150	153	147
23	149	151	154	148.5
24	150	152	155	149.5
25	151	152.5	155	150

Here, again, the superiority lies with the Irish, the others holding the same relative positions as in the case of atature. The mixed classes of Ilelgians, in whose case the weight of elothes was deducted, ranked exceedungly low- 134 lbs. being about the average. We have it in our power, fortunately, to compare the conclusions of Professor Forbes with those of other inquirers, in as fal as the English and Melgians are concerned. The eighty students of Cambridge, weighed (with the elothes) in groups of ten, gave an average, as we nre informed ly Quetelet, of 151 bs .-the precise mean, it will he oberved, of the Finglishmen of twenty-five years of age weighed hy Professor Forbes. The Cumbridge students, bowever, were between eightien and twenty-three years olo, and therefore the Cimmbridge estimate is a little higher than that of Professor Forbes, as it ulso was in tho case of sathice. With respect to the weight of the Belgiann, m oxamined by Quetelet, he states that the mean weight of the Cambritge stulents of eightern and twenty-three much exceeds that of Helgians of the same sue, being vearly the mame as that of men of thirty in Brabant and the other depart:neuts of Flanders.

The superiority of the Irisl. In poin of statare and weight is remarksble. We shal find it borne out by a corresponding superiority in physical power, as shown in the table of Professor Forbes having reference to that charsctenstic.

Quetelet's conelusions respecting the weight of the human being at various ages, and the general laws regulainatg his growth in this particular, are nearly as folluws. -The mean weight of male children at birth is 3.20 kilogranumes.* The weight of female infants is less, being 2.91 k . A child loses weight for the first three d:ys after birth, and does not make nny decided incrense until about the seventh day. Ages being equal, man generally weighs more than woman; but at the age of twelve this is not the ease. The sexes are then nearly equal in this respect. The period of complete development in man, as respects weight, is the age of forty. Woman again does not nttain her maximum till the age of fifty. According to observations made on the most extensive scale in Belgium, the mean wright of man at twenty-live is 62.93 k ; at the age of forty (the maximum period), it is 63.7 k . The mesn weight of woman at twenty-five is 53.2 k. ; at fifty (the maximum period), it is $56.16 \mathrm{k} \cdot \dagger$ The maximum weight of the human being is nearly twenty times the sum of his weight at birth. The mean weight of tha human being, neither sex nor age being taken into account, is 45.7 k . From the ages of forty and fifty, men and women begin respectively to sustait. a decrease of weight, from six to seven kilogrammes being the usiual loss before the close of life.

STRENOTH OF MAN.

The strength of the human frame is a subjeet which has received much more attention than has been paid either to its weight or proportions. It is obviously, indeed, a subject of the utmost moment, whether we view it with reference to the comparative physical powers of different races, or simply as a question interesting to civilized man from its bearing on prnetical mechanics, Various methode have been proposed for determining accurately the strengtb resident in the loins and amms of tho human frame; and the instrument called the dyna nometer, invented by Regnier, is that most generally approved of and employed to she purpose. The dynamometer, however, thongh used by Quetelet, Professor Forbes, and others, in their experiments, is sllowed to be far from perfect, and it is only ly uncommon care and caution, that results csn be olitainal from it worthy of being depended on. It is an instrument which cannot well he described in mere words, and all that mav he said of it here is, that it is so contrived as to urdoctut to the experimenter, on a dial-plate, the physical power resident in the loine and arms of the parties sulyerthed to trial.

Observing the extraordinary dispia;s of pbysical power and energy frequently made by favages, scientific men wero long of opinion that civilization diminished the strength of the human frame. Other cireumstances tended to foster this belief. The Negro is possessed of longer arms, or at least forearma, than the Caucasian, holding in this respect, it is worthy of remark, a middle place between the white and the ape, which latter creature has arms of great length. "I measured," says Mr. White, "the arms of alout fifty Negroes, men, women, and chiliken, born in very different climes, and found tha lower arm longer than in Europeans, in propertion to the upper arm and height of the hody." The same writer says that whites of 6 tiet 4 inches, whom he measured haid shorter arms than Negroes of middle size. Similar sources of physical superiority appreared to vayagers to he possessed ly the Pacifie Islanders, the Malays, and many other uncultivated races. But more attentive ob

[^6]
INFORMATION FOR THE PEOPLE.

mervation bas disproved the suppositien. The voyager Perno took with him to the gouthern hemisphere a dynsmometer, with which he experimented on the following number of individusla: twelve natives of Van Diemen's Land, seventeen of New Holland, fifty-six of the island of Timor (a fine race of men), \&eventeen Frenchmen, and fourteen Englishmen. The following numbers express the mean result in each case, the strength of the arms and loins being respectively put to the tost. It is by lifting a weight that the atrength of the loins is tuated with the dynamometer.

Mean strength.
Arms. Ioins.

		Kilogramme	grainmes.
	Van Diemea natives,	- $\quad 50.6$	
	New Hollanderd,	50.8	$10 \cdot 2$
	Timorian*,	58.7	11.5
	Frenchmen,	60.2	15.2
	Englishmen, -	71.4	$16.3{ }^{*}$

The highest power of arm ahown by any of the Van Diemen natives, was 60; by the New Hollanders, 62; while the lowest in tha English trials was 63, and the bighest 83. In lumbar pewer, or that of the loins, the higheal point reached hy a New Hollander was :3; the lowest of the English was 12.7, and the highest 213.
" These results," soys Mr. Lawrence, "offer the best auawer to the declamations on the degeneracy of mon. The attrihute of superior strength, so boldly assumed ly the eulogists of the savage atate, has never been questioned or doubted. Although we have been consoled for this inferiority by an enumerution of the many precious beneifts derived from civilization, it has always been felt as a somewhat degrading disadvantage. Bodily strougth is a concomitunt of good health, which is produced and mpported by a regular supply of wholesome and nutritious food, and by active occupation. The induatrious and well-fed middle classes of a civilized community, may be reasonably expected to surpass, in this endowment, the minerable savizes, who are never well-fed, and too frequently depressed by absolute want and all other privations." Such is the case, as Peron's experiments show. But indeed the same thing is ahown by a hundred historical facts. The Spaniards, on their first visits to the New Werld, found the natives much weaker than themmelves, and this was proved not only by hand to iand struggles, but hy the labour of the mines, in which the Indians were tiar defirient. The backwoodsmen of the States have always shown themselves stronger, in singlo combats, than the Indians. The Russians ni Europe, also, are said by Pullas to excel the Mongol tribes of the empire, to a remarkable extent, in physicai pewer.

Proper and extended comparisons are yet to be made of the relative plysical power of the varicur Caucasian nations. The following table of Professo: r'orlsea gives Es at least a glimpse at the cempurative streugtha of Engtiah, 8cotch, Irish, and Belgiana:-

Lumbar Strength in Pounds.

Age.	Engtish.	Scolen	Irish.	Belgiaps.
15	**	280	**	20.1
16	$33{ }^{\text {r }}$	314	\ldots	236
17	352	340	369	260
18	36.4	360	389	2×0
19	378	378	404	296
20	38.5	392	416	310
21	392	402	423	322
22	397	410	457	330
23	401	417	430	335
24	402	421	431	337
25	403	423	432	339

- Peron-Correct"d Lidition of bia Voyages. (The myrio-
gramme is nearly 23 Iba. English.)

The samo relations are here preserved as in the pre vious tables, and as, with reapect to weight and height an least, there could be no mistake, the prohability that the last table is correct is much strengthened by the con. formity ir question. The difference between the Irish pad Bolgiano is inmmense, the former exceeding the latter in strength $-y$ nearly one-fourth; while between the Finglish and Be'gians there is also a great difference, amounting to 62 pounds. The English, in Peron's table, alowed a lumbar strength equal to abeut 376 lhs,, a point considerably below that of the English in Professor Forbes's table. But we might expect such a difference between students und sailors, or stout colonists, which latter classes were those examined by Peron. Betweea the Scotch and Irish the difierenco is amall cumparatively. It is much to be wished that the examplo of the Edinburgh professer ware extensively followed, both aliroad and at home, so as to give us sutisfuctory vievs of tho relativo physical powers of the different Europesn nations, Such questions, as alreedy histed, will be found to bear more directly on tho prosperity of nations than has bith. erto been commonly imagined.*
Kegnier, the inventor of the common dynamometer, was led to the conclusion, after many experiments, that, between the ages of twenty-five and thirty, mon is at tha maximum of his strength, and that he is then able, by pressing strongly with both hands, to make an cffort equal to 50 kilogiammes, and to raise a weight of 13 myrio gramnes. Man preserves (ayy the same observer) much of his physinal jower nearly till the age of fifty, when it üminiahes progreesively. The experiments of anothe Frenchman, M. Fansounet, made upon 345 of his countrymen, sailors of the port of Havre, give results some what different fron thaw of Regguer. Ransonnet found the mean manual $F-\alpha \cdot r$ of these men to equal 46.3 kilogrammes; and the I mbar jower, or that of the loins, to amount to 14.2 myring ummes. 'There is every reason to believe, however, thit the particular mode of using the instrument employed iy each experimenter, is the cause of such differences in its results. Quetelet's observations led to the following cenclusions:-

Lumbar Power oj Men and Women.

The highest point which the dynamometer here gave, for the powe: of the loins in Belgian men, was 15-5, twenty-five being the age when the power resched this maximum point. The conclusion agrees very closely with those made by Peron on the French sailors of his party, who exhibiled : lunhar power equivalent to $16 ?$ myriogrammes, falling below that of the English, which was 16.3. Other observations, however, would lead ue to auppose that the difference is more in favour of the Britisli, whell compared with the Jelgians, than this cultivation would indicate; and this would probably have appeared, had Britons beea texted under Quetelet's own eye, and by his directions.

The difference in lumbur strength between men ano woben is remarkable, as shown in Quetelet's table. At the age of twenty-five, when both attain the mavimum of lumbar stringth, the woman is deficient ly more than one-Julf. "T'he difference," say" Quetelet, "is com mon!y lesa in eurly youth than at tise purioc' of complen

- We have heen informed wat the mere puysicat power of the different companies of me, to whitan te Luke of We:tiss ton was nptrised in hin canp isus, was Mwaye with hiu at
object of seriova coasiaeration.

Leaving t

 whether in may be gaid ally evinced. could fell a home on hi later times, Emperor Auas in the pre. it and height an sability that the ed by the con ween the Irish eeding the latter le letween the great difforence, in Peron's table, 376 lha., a point ah in Professor wheh a differenco colonists, whick cron. Betwees Il cumparatively. uple of the Edin. both abroad and iews of the relauropean nations be found to bear ns than has hith.
on dynamometer, etperiments, that, irty, man is at the is then able, by ake an effort equal ight of 13 myrio ne observer) much e of fifty, when it ments of another 345 of his coungive results some Ransonnet found to equal 46.3 kilohat of the loins, to re is every reason mode of using the aenter, is the cause telet's observationa

Womer.

Women.
Myriograiames 3.0

503
6.8
7.7
5.9
nometer here gave an men, was 15.5 , wower reached this grees very closely cuch sailors of his equivalent to 15.2 the English, which ver, would lead u e in favour of the tians, than this culfuld jrobally have der Quetelet's own
between men sma retelet's talle. A1 tain the mavimum cient ly more than Quetelet, "is coan perrion of complete Livays nith hims
divelopment, the rutio being at first as 3 to 2, and becomlng afterwarde as 9 to 5 . The power of the right hand, when tried eeparately from that of the left, exceeda that of the latter by nearly a sixth. If the results which I have attaired be comparer with those of MM. Regnier and Ranwnnet, differencea of a remarkable kind will be obsarved, which I ascribe to the manner in which the handa were laid upon tho instrument, and to the distanco left between them. Accorling to the resenrches, however, of the gentlemen mentioned, the mean strength of man is estimated at about 46.3 and 50 kilogrammes, a weight n tt equalling that of man himself. , Henco a man should not be capalle of supporting himself with his hande. Now, experience tells us the very opposite of this. Among the sailors examined by Ransrnnet, there would not probably hdve been found a single man who could not sustain himeelf for some instants at the end of a rope. Peron, who estimates the manual force it 69.2 kilogrammes, approaches nearer to the truth, but my awn experiments carry the estimate considerably higher."
These conflicting results cannot but lead us to look with suspicion on the dynamometer, when in the hands of different experimenters. But the conclusions of single experimenters, who have compared a variety of individuals, are still to be held of value, since they would cause the different subjects of experiment to operate on the instrument in the same way. The conclusions of Peron respecting civilized and uncivilized men, as well as Englishmen and Frenchmen, are by no means to be deemed unworthy of credit, because Quetelet arrived nt different general conelusions; and the same may be suid of the observations of Quetelet upon the comparative strength of man and woman at different ages. To the observations of Professor Forbes the same remark applies, and we believe, with reterence to then, that the conclusions which they indicate will hold extensively good. The Belgiars partake largely of the Celtic blood, and the Celtic race will probably be found inferior to the Germanic, in almost all cases, in height, weight, and strength of frame. The superiority of the Irish. it may be thought, does not countenance this view of things, as they are in the main Celtic people. But it is the English portion of the Irish population, chicfly, who ire in circumstances to quit their country in quest of academical education, and such was, in all likelihood, the character of the majority of those who became the subjects of experiment to Professor Forbes. The peasantry, in some of tho more retired districts of Irelund, present characters very different from those of the parties settled within what was called the English "pule." They are pure Celts, unquestionably, with short, spare, wiry trames, and features strikingly Celtic. Not to these, but to the Euglish portion of the nation, must the conclesions of Professor Forbes be lueld chiefly to apply; and the people of the Scottish Lowlands, who encircle and attend the Edinburgh University, are, in like manner, a Germanized race. It is in this ligith that English, Scotch, and Irish, are to be ranked together, sud collectively contrasted, as being all of them branches of a Germanized population, with the continental Celts. In height, weight, and stature, the superiority, wo repeat, sems to lie with the former, and their national career may have been mare affected by tho circuinstances thnus has hitherto been dreumed of. Futt, inquiries are likely to give to auch physical characuristics a degree of wei-ht not ascribed to them in time past.
Leaving the question of comparative degrees of strength, whether in varieties or sub-varieties of mankind, a word may be said respeeting the extraordinary physical powers which individual men, of various nations, have occasionolly evinced. Wi leam from history, that Milo, a Greek, could fell an ox with his fist, and afterwards carry it home on his shoulders. Firmus, a man who lived in later tines, being born in Seleucia about the reign of the Eimperor Aureliam, could suffer iron to bo Gorged on an
anvil placed on his breast, his wody leing then in the po sition of en arch, with only the two extremitiea resting on supports. He exhibited other feata of muscular etrength, nearly all of which were 昭cessfully imitated, during the past contury, by a German named Van، Eckeburg. This man sat down on an inclined board, with his feet atretched out against a fixed support, and two atrong horsey were unable to move him from his position. In imitation of Firmus, he lay down, with his body in the form of an arch, and allowed a stone, one foot and a half long and one fout broad, to be broken on his abdomen with a sledge hammer. He alzo atood on an clevated platform, and, by means of a rope round his waist, sustained the weight of a largo cannon, a burden for several horses. A flat piece of iron was likewise twisted by him into the form of a acrew.

Dr. Des igulicra, a sciontific gentleman who witnessed the German's feats, showed, however, that akill was more concerned in the matter than mere strength. With the a:d of some friends, the doctor actually performed many of the same feats, on the very night on which he witnessed them. The simple sustaining of the atone, it seems, was the chicf difficulty in the most striking of the experiments, as the breaking of it caused little additional annoyance; and, in place of inercasing, the arched position of the body greatly diminished the shock of the blows. In the case of many of the other feats, in like manner, a skilful application of ordinary physical powers was found competent to their accomplishment. There appeared, nevertheless, about the same time with the German, an Englishman, named 'Topham, who performed equally wonderful feats by sheer strength, unaided by skill. He out-pulled a strong horse by main force, though in attempting to pull against two, he ultimately got himself hort, being totally ignorant of the contrivancea which his German predecessor used in aidan... of his museular powers. Topham rolled up pewter plates with ease, and wnrolled them; he struck an iron poker, threu inches in circumference and three feet long, against his bare right arm, till he bent it to a right angle; be placed a similar poker against the back of his neck, and, with a hand on each end, twisted it round, till the pointa met in front; after which he pulled it nearly atraight again, his arms acting in a most unfavourable condition. while he did so; and, finally, among other feats, he liftec with his teeth, and held out for a timo, a strong table six feet long, with half a hundred weight langing at the farther extremity.

We have accounts of men performing more wonderful feuts than these of Topham, but they are cither ill authenticated, or seem to have rosulted as much from skill as strength, as in the case of the German. Topham appears, on the whole, to have been gifted with physical powers as remarkable as any that we can believe any buman being ever to have naturally possessed, judging from the iuails on such matters given in merely secular history.

mental character.

It is only a recapitulation of much which has been stated in the carlier sections of this treatise, that great diffrrences of mental character are exhibited by the various races of mankind. The black intertropical nations, generally, are decidedly the lowest in the intellectual seale. They are generally churacterized by great indoInnce, as well as by \underline{c}^{-}arharism and superstition. The ides of a social conn aty has made hut a sinall advance among them, thumsh more among eome tribes than others. The lowest of the class are to be found ir. Australia and some of the islands if the Pacific. Yet there is scarcely any tribe of black :. nean, but they possess certain traits of mind calculated to produce ro speci, being in some instances surprisingly ingenious its fabricating particular axticles, or in the management of canoes and tho use of warlite implementa.

Vus. I. -10

on the rrual ty of mases the north of 1 to the sug ig uecful for sue the Hinthis principle, gh they have 'an Diensen's o their service ason is shown eral European unds of various te same ar in tutes, yet show with the anjon has-relicisa of the ancient rds in eastern dduces reasons rm a larga porHistory itself,
The Franks, to 5th century, y nation. The corthern half of bout 100,000 in as into England c; but the Nor60,000 soldiers original greund, uracter, are both encription which d Germans. Tha and precipitate, 10 power of sus nd this is the cha nch people down e Britons as cool, ntellectual talent, , the livelier man1 qualities chsrairentury, and they 1 in similar terms r the state of thein ying, and virtuoua haracter; and tha - It is scarcely yes and fair hait to the Germans heir external phy

* is supported by inclusion with recen repeate ily ob 4, that a particula c, is handed down ssing perhaps ore third. A cerain thus hereditary in al centuries. The kperienced nothing cas Sophia, if not am Howitt, in b^{4} c Places," ist ated out to ${ }^{\text {4.ar. }}$, f Sluaker and ronsider . a resem 'I'be prent writu seell a claiment of - hearmy pecisely hree of the childres
of the baron of Quee. Mary's time, as represented in a family group painted by Antony More, and engraved in Pinkerton's Scattiah Gallery. Tha likencas in thia case was as great as is ever econ betwean brothers. Another circumstance, in which the writer was peraonally concerned, will perhaps be considered as a curious illustratuon of the same point. He was one day, while walking in the country, struck by the appearance of a middleaged gentleman who passed in a carriage, and who atrongly reminded lim of the comman portrait of Sir Willian Wallace. He had previously, as might be auprosed, no inclination to attach any eredit to that portrait, but lee could not help being greatly surprised when, upon inifuiry, ho learned that tha gentleman who had just passed was General Dunlop of Dunlop, whose mother he well knew to have been tha daughter of Sir Thomas Wallace, of Craigie, the last lineal descendant of a branch of the family of the Scottish hero. It may be added that the rencontre took pluce sixty miles from the sent of General Duslop. As Wallace is now known to have visited France, it is not impossible that his visage may have been painted; or, suppoaing the portrait not his, it is likely to be that of some carly member of the Wallace-Craigie family, in which case tha anecdoto would be not much less valuablo as a proof of the leng descent of a family face.
eftects of local circumstances in producing CHANGES.
On the other hand, there are proofa of considerable wlerutions having been produced in the external features of taces by peculiar local circumstances. The descendants of the English settlers in the American states display a considerable variation, in general form and aspect, from the parent nation. The children of European eettlers in New South Waler are tall, thin, and weaker than their progenitors. In the West Indies, some distinct new peculinrities of structure have been observed in the descendants of Enylish settlers. Their checkbones nre ligher, and their eyes deeper aet in the heud, than those of the English nation gencrally. In these respects, they approximate to the form of the aboriginal races of the American continent and islands; and it has been pointed out that such a form in useful in protecting the eye-xight from the glare of the tropical sun. The Creoles lave also cooler skins, and are keener of sight, and more mupple in the joints, than the English. It has betn remarked of the descendunts of Africans in the Luited Sitates, that, after three or four generations, their features lose much of the native African east, arid approximate to those of the whito people, tho mouth beeooning smatler, the eyes lively and sparkling, the nose higher in the ridge, and the hair considerably longer and less crisp.

Anulogous circumstances are observed among the lower animala. For example, the woolly aheep, brought inte a tropical climste, loses its fleece, and retains only a thin cont of hair. Tho hoga of Cuba, all of which are descended from a European atock, are twice aa large as modern European hags. The horses which run wild in Paraguny, though all descended from variegated European races, are nc.v of one peculiar colour, which we cannut doult is the effect of aome peculiur local circommanaces.

Dr. 'riehatd says-" On considering these and analogonz phemomrna, w' can hardly avoid concluding that the variatons of ammals proced according to certain laws, hy which the stru ture is mapted to the neerssity of local circumstanec. . If such be the case, it must be held as a circumstance favournhle to the supposition that all the races are aprung from one stock. The varations might, in that case, be regarded as altogether proxiuced by locnl circumstances operating durlige a long course of time.

It is certain that the Negro akin, and, indred, the whola Negro constitution, are better adapted for a tropical clinute than those of the white man. It is also true that intertropical countries all round the globe ars irhabited by black races, excepting only those in tropical America, which are so much clevated as to enjoy a temperate climate. We here see much reason for believing that tho Negro is a being adapted, in a special manner, to live in a high temperature; and this seema the more likely, when we consider that llacks, on mettling in uorthern latitudes, become the victims of several acvere silments, which seem to forlid that they should over multiply in such countries. Blacks, indeed, and whites, appear to be respectively adapted to tropicsl and to temperate latitudes; and their attempts to interchange their proper situationa are not in general attended with good effects, although, as we have seen, there is reason to believa that nature makes an effort, to u certain evtent, to accommodate them to the changed cireumstances.

CONCLUSTON.

From all that has been written or learned on the subject of man's physical and social luistory, it a pears evident that the constitutional character of the human being admits of a vory high degree of culture and improvement. Nature ushers him into existenca mors weak and helpless than any of the lower animala, and, left uncultivated, he growa up an ignorant savage. In the most debased condition, however, in which he can be found, he possesses the rude elements of intelligence, and sapires to a destiny altogother beyond the reach of the creatures over which ha hus acquired dominion. His pre-eminence in the scale of being inay be proximately traced to the structure of his brain, or organ of thought, which greatly exceeds in relutive magnitude that of any of the lower animals; likewise to the capacity for speech, and to his upright posture; his superior mental development, when operated upon by a combination of happy circumstances, usually classed under the name of education, enablos him to trace effects to causes, to convey an account of his experience to his fellows, and, above all, to put not only this experience, but his numerous and varied thcughte, on record for the bensefit of future genarations. In this manner, the savage, which man originally is, ia gradually improved. Each new generation enjays the benefit of an sccumulated experience; and at last, as cultivation advances, man is fourd to be a highly intellectual being, with a frame more elegant and porverful than he possessed when hia race
was in a state of heathen darkness,
Under an all-wise Providenc, man has assuredly been placed on this earthly scene to f urform a part immeasurably more dignified than that ssigned to tho lower orders of animals, each of whose a acrations is in no rospect advanced, and cannot po.,nty advance beyond the precise and humble station which was first occupied by its race. "In this point of vicw," to use the language of Lawrence, " man stands alone: his facultics, and what he has effected hy them, place him at n wide interval from all other animals-at an interval which no animal hitherto known to us can fill up. The man-like monkey, the elnust reasonable elephant, the docile dog, the agagcions beaver, the industrious bee, cannot he compared to him. In none of these instances is there any progress either in the individuals or the species"

Elevated, however, as is the meanest among human beings above the hirher of the animal tribes, it is evidont that for the proper performance of his part he must
maplty meana for aivancement, else he reats in a condition of ignorance and barbarism mont deplorable to concomplate. Placed in a large and beautiful world, abounding with enimal and vegetable existences at hia command, and accountable for his conduct, it behoven him to puraue auch a course of activity as will enable him to enjoy the full benetits of his situation. Hy pursuing that line of policy whirh leada to social melioration, he riees step by step to a hasc: degree of civilization, and bequeaths to posterity alizost imperishable monuments of his greatness. Attaining this enviable height, should he pursue or be the victin of a contrary line of policy, he sinks in the same ratio, and perhaps with greater apeed, down to the original and humble level from which he hal formerly arisen.
To be assured that these are not mereiy conjectaral apeculations, wo have only to diroct our attention to hiatory, wherein examples are offered of the gralual rise, the eminence, the deeline, and the ultimnte extinction, of civilization. Again, like the growth of a now order of plants on tho soil of an exterminated forest, we find on the apot once consecratel ly deeds of human greatnens. a different branch of the family of mankind, pursuing by toilsome stepa a similar rise from barbarism, and asserting, in their turn, the exalted capacity for improvement common to all varieties of our race.
Although it is established both by seriptural record and geological discoveries, that man was placed on earth last in the series of animal existencer, his race possesses a sufficient autiquity to embrace various instances of the rise and decay of nations at a period so reinote as to be beyond the reach of ordinary record, and only known by the wrecks of man's inventive genius. Thus, in the east, are found remains of urchitecture and aculpture, of the origin or meaning of which the aldest known nations were altogether igaorant, and which are a puzzle to modern archeologists." Thus, also, throughout North and Central America, there are found vast monuments of antiquity and objects of art, of a date long anterior to that of the earliest recorded nations, and which these nations looked upon with awe and wonder. The valley of the Mississippi, in particular, abounds in an immense quantity of artificial mounds of various shapes and sizes, and forts of different hinds, the origin of which is altogether unknown, but which are doubtless the remaina of an extinct civilized race. Thia country, as is well known, was found, in the carlier periods of A merican discovery, in the possession of thase red races usually called Indians, who are now retiring before the advance of the whites. These red races manifest no symptom of possessing, or of ever having possessed, either the power or the inclination to erect ouch works: they disclaim having erected them, and in their traditions speak of them as the profuctions of a Deople whe were their predecessors in the cowntry, and nave long been extinct.

To close thia imperfect sketch of man'a phyaleml hitary wo havo only is add, that from all the existing remnina of antiquity, both in the eastern and western hemispherd. and from all written history, it conclusively appeara that mankind, taken in the mass, have in no respect degenerated in physical structure, but that individually they are as tall, bulky, snd powerfinl, ns they wero in tho carliest periods of thein progress, whilf, ns respects mental qualifications, they row, in all en lightened ancieties, occupy a station in the acale of loeing whirh it is reasonable to concludo was never before enjoyed.

[BOOKS ON TIIE PIYYICAL ItSTORY OF MAN

It is aurprising that, when so mueh has been writtox. on the natural history of all the inferior nnimals, so litth has been written on that of Man. There are probably at this moment twenty books extant on the varieties of butterfies, for every one on the varicties of the human race. With respect to the anntomy and physiology of man, there are abundance of books, becauso the medical profession demands them; but his external appearance in different parts of the world, and the influence of slimate, customs, \&c., on his configuration, have been little studied by scientific men. The most complete general work on the natural history of man is that of Dr. Prichard, with coloured plates, of which a now edition was recently issued.
D. Morton's Crania Americana and Crania Egyptiaca are by far the most accurato acientific nod important works connected with this subject which have ever appeared, as they not only discuss the present state. but the past history of the races to which they rulate.

It is understood to be the intention of the United States government to publish a complete natural history of man, as a portion of the scientific result of the late Exploring Expedition; nod a gentleman of profound science, who nccompanied the expedition, has, since its return, visited Asin and Africa, in order to render the obscrvations and researches required by so extensive an undertaking complete. Whenever this work shall appear, a most important addition will be made to the stock c ${ }^{2}$ information on natural science at present within the stic aut's reach.

It begins to be understood that the distinctions of race havo a most important bearing on nstional charac. ter and history; and under this impression inquiries int: this branch of science will hereafter be prosecuted with great vigour and effectu-Sint. Ed.]

GKOGR

CarnaMiddlo Kir heart of tld of tise worl mense cou 4 lat parall 123 d degre estimated a according to guare mile mis the nort the Pacific the Chinese ste:ilo deser and on the it is separat name of the length. Th the Japanese China, Cin ter countries dominions, i the last-nam name of Ch derization fro Tsin, or 'Ta provinees ac chumerate o rincea, as gi Shan-se, anc hwuy, Che-k Kan-suh, all Kwans-se, \mathbf{Y} pih, How-nan again suldis cuunties, shi vey was mad the Chinese cution of whi ?is. by a Cl in now preser of Hzitain.

al hiotary

 rom all the ity, both in omisphere. ry, it cosmankind, In no resical strucly they are ful, aa they yla of theit ets mental , in all en py a station chit is reanever before nala, so litth are probnbly varieties of f the human hysiology of se the mediernal appearthe influence on, have been ost complete zan is that of which a newCrania Egyp. c and importtich have ever prexent state, they rulate. of the United ntural history ult of the late n of profound , has, since its to render the bextensive an work ehall apmade to the present within
distinctions of ational charac. 1 inquiries ink: rosecuted with

OHINA AND THE TEA TRADE.
1

The Chinese doodh.
GKOGRAPMICATA POEITION-BOUNPGMES AND DIVISIONS.
Chins-called hy tha irihabitants 'rchong-Kouc, or the Midillo Kingdoin, from an idea that it is the centre or heart of the universe, around which all tho other nations of the world lie scattored like minor provinces-is an immense country of Asia, extending from the 18th to the 41 st parallel of isorth latitude, and from the 98th to the 123d degree of east ingitude. The length has been estimated at 2000 miles, and the breadth at 1500 ; and, according to M. Gutzlaff, it containa an area of $1,298,000$ equare niles. It is conterminous with Aajatic Russin nin the north-west ; bounded on the south and cast by the Pacific Ocean (that part of it beine iummonly called the Chinese Sea) ; on the west by huge mountaina and sterile deserts, separnting it from the great body of Asia; anl on the north liy the regions of Tartary, from which it is separated by the stupendoua erection known by the nome of the Chinese Wall, which extends 1500 miles in length. The Tarturs call China, Catay and Nicancarou; the Japanese, Thau; and the natives er Siam and CochinChina, Cin (pronounced Chin or Tsin). From the latter countries, lying nearest (nautically) to the Hirdostan dominions, it is conjuctured, with much probability, thut the last-numed appellation first gavo rise to the European name of China. Some theorists, however, set down its derization from the patronymic of the first imperial family Tsin, or Tai-tsin. The country is divided into eigliteen provinces aecording to M. Gutzlaff; but other geographers eaumerate only fifteen, and somo fourteen. These provinces, as given by M. Gutzlatt, are-Chih-le, Shan-tung, Shan-se, and Ho-nan on the north; Keang-80o, Ganhwuy, Che-këugg, and Fuh-keën on the cast; Shen-se, Kan-suh, and Sze-chuen on tho west; Kwang-tung, Kwank-se, Yun-nan, and Kwei-chow on the south; Hoopih, Hoo-nas, und Këang-se in tho centro. These are again subdivided it."a portions corresponding to our counties, shires, and tistricts. Of these provinces, a survey was male by some' 'ruit missionarics, employed by tho Chinese government, noarly a century ago, the execution of which occupied ubout ten years. A mannstript me, by a Chinese, constructed according to this survey, is now preserved among tho arehiver of the Royal Library of Hritain. Po-cheli is now the priaripal province in the
empire, from lts capital Pekin being the residence of the emperor, and the seat of government. Its nama signifew the northern court, in contradistinction to Naukin, or the southern court, where the emperor formerly resided.
internal appearance and climate.
From its immenee extent, it may easily be imagined that Cbina presents almost every variety of scenery. It is intersected by three large rivers, one of which, the Yang-tsze-reang, is described as perhspe the largest in the world, and is connected with all tho others by canals. There are also many other atreains, and several largo lakes in tho interior ; but nothing is known aa to their actual extent. "In the long line of internal navigation," says Mr. Barrow, "between the capital (Pekin) and Canton, of 1200 miles, with but one short interruption, the traveller will observe every variety of surface, but disposed in a very remarkablo manner, in great masses. Fur many days he will see nothing but one uniform extended plain, without the sanallcst variety; again, for as many days, he will be hemmed in letween preeipitous mountaina of the same naked character, and as unvaried in their appearance as the plains ; ond, lastly, ten or twelve days' aais among lakes, swampa, and morasses, will complete the catalogue of monotonous uniformity. There is a constant succession of large villnges, towns, and cities, with high walls, lofty gates, ard more lofty pagodas ; largo navigahe nivers, comununicating by artificial canals, both crowded with barges for passengers and barks for burden, as different from each other, in overy river and every ennal, as they are all different from any thing of the kind in the rest of the world." One general feature, however, pervadea the empire-the utter nakedness of the country as respects trees and hedges.

The clima, of Clina embraces almost every degree of the thermometes. In Canton it ranges from 80 to 90 degrees during the $\cdot 1 \mathrm{mr}$ r, but the winter monthe are 00 cool that many of the int: 'ants use fires. There can be siu more certain crevic "f the climate of any country than its vegetable productions, and we may thesefore mention here generally, that within the bounds of China are all the varieties of treo, shrub, flower, and herb, to be found growing in every other country of the world. The temperature, however, may be generally described as rather warm than cold; but it is much affected by the direction of the winds, which may be literally said to "box the compass," with uniform regularity, during the varinus seasons of the year. - They how from the north and north-east in October, November, Wecember, January, February, and March, during which months the weather is rather cold: in April and May, from cast and south. east, when it, witit, but still cool; in June and July, from the sowh a.is suuth-svest, when it is hot; and in August ead September, from the weat, when the temperature is oppressively sultry and hot. Speaking summarily, the coldest months are November, December, and Jannary; the warmest, July, August, and September. Canton, although situated in the same parallel of latitude as Caleutta, is so much cooler during tho winter months, that fires nre generally used; nay, ico has frequently been found at Canton of the thickness of n ilolar, hut snow is never or rarely seen. The uir is generally dry during the north, moist during the sor.ti, and clear during the west winds. The north winds are the most violent, and the south the most fecble. In the months af July, August, and Sertember, the hurricanes, called by

The inhabitants Tay-fun, usually occur, which, although 3xtremely vieient, and coining in suiden gumta, seldom sceasion much diwaster, nving to the inhabitants being prepared for them. The climute of China in, on the whole, highly aalubrious; and many of the complaints common to the whole of Europe are there unknown. The Chinese profens to be free from atone, gout, and gravel complaints; and they are at all events seldom affiectel with cutaneous ciseasea. Much, doubtless, is owing to their uncommonly t-mperate mode of living, of which we will have occasinn tu any more heirafter. Epidemic fevers, however, are very frequent and futal, arising from the crowded atate of the towna and numerows nezupm, The mall-pox, too, was formerly very In ' +1 e. 14 wi: the characteristic prejudico of the Chl we mgst at "1 ifreign innovationa, however oneficicl in tho maso of treatment. Their phymicians pretended w dis' iaguish forty different kinds of amall-pox; atid when a favourable sort appeared, they endeavoured to propagate it, not by inoculation in the usual mode of tucision, lue by inserting into the noatrile a little cotton wool dippred in the virus, or putting on the clothen of the infected Of late yearn, however, the European mode of vaceination has generally been adopted, ans n": nresent moment has entirely supersedel tirc suctuat practier. Sore eyea. and even total Mindnase, aro very common, and are undoubtedly to he aneribed to their low, erowded, and amoky habitationa, conjoined with their practice of hathing the fuce in warm water even in the hottest of the vummer montha.
Several parts of China have suffered much from earthguakes ; but there is no appearance of volcanic eruptions throughout the country, though various rubatances of that feecription are found in some of the islanda along the weatern and southern cossta.

HIETORY.

From the grossly fabulous and exaggerated nature of Lse Cbinese records, an arr of doubt has been thrown cver all their early annala. Pretending, as they do, to trece the foundation of their empire not only as far back to the time of the Deluge (of which, it is well worthy of remark, their traditione bear atteetation), but even to a period long antecedent to it, it can scarcely be wondered $\mathfrak{z t}$ that a diaposition should provail to reject the whole an purely fictitious. There may be as much error in too great dislelief, however, an in too ready acceptance. The cerly annals of every nation are mingled up with much. that is alsurd, and ohscured by tho suggestions of ignorance and uuperstition. Nur are those Chinese historinns, who trace the origin of their kingdom back through uinety millions of years before the Christion era, a whit more deserving of ridicule than the Romana themmelves, who, with all their enlightenment, holieved that the gode of their harharoun mythology took an immediate and active share in sublunary mattera. The cnly substantial ground ior wonder, in regard to China, is, that many modern writers, some even of our own enuntry, ahould have given in their adhesion to the fabulous recorda of the native hiatorians, and pretended to have established beyond doubt that the Chinese empire was founded more than 2000 years beforo tho Christian era! The following may be given as an abstract of the rest ", of their veracious thouries:-They auppose the Moses, by Mount Ararat, does not mean to prarticul in ay individual mountain, but merely the first land o showm itself upon the subviding of the deluge, whict they fonjectured to be the elevated parts of Asin: That Noah followed the track of the large nivern of China which flow wouthward, as leadng to a fertile nind open country, and became the founder x the (thiucse monarchy-identifying him with the Fooee or l'oo-mhee of their history: That, becoming offiended wibl the impiety of his rebel offipring, he separated him--li from them shorly lefore their presumptuous erection © the Tower of Bahel : and, strering his cyrne enatward,
afer 200 years' peregrination, wettied himarll in one of the nerthern provinces of China (2114 years before Christ). Here, having eettled his colony, and catablishal the religion, lawa, and government, which hy hail recelved from hia antediluvian ancestors, he died in the 115th year of his relgn, and 950th of his life (1999 years before Christ). He was succeeded ly shlo-nong or Ziug-nung, who reigned 140 years, and at hie death (1N59 yents before Christ) left the erown to Whang-tee or Hoang-tee the inventor of Chinese arithmetic and other arta, who reigned 100 yeara; and at him death left the crown to Shau-hau (1759 years lefore Christ).
But it were a mere waste of room to complete the enumeration of this genealogicul aucceasion of princes, Suffice it to may, that these theoretical historians trace it, with painful nccuracy, down to the reign of Yau (1452 years lefore Chrint), in the 67th year of whose monarchy happened the remarkable aolstice mentioned in the book of Joshus, and which in netually noticed in the ohd Chinese annala, althnugh without the sprecification of any yenr. From thia time downward, the national recorda have undoubtedly mome appearence of veracity, being priucipally contained in the Shoo-King (or history) written by Confucius, who lived about 500 yeara befoto the birth of Chrisu. Mr. Barrow, to whose researches tho present age is chiefly indebted for the information most deserving of helief respecting this eingular nation, suggests a much more moderate and rational suppositu, ita, of which the following ia the sulatance:-He observen, that inthough the Chinese may be admitted to havo been among the first nations of the world, aRer the Flood, yet they do not uppear to havo made such progress in arts and loarning as the Chaldeana or Anegrians; that it is only from the ume of Confueius that they meem to have advanced in civilization; that provicun to his time, the country wan divided into a number of petty kingdoms, under separate chicfs, with a recital of whose reciprocal ware and strugglen for sulperiority the Chinese annala are chiefly filled; that their historical records are mufficiently abundiut and comFlete during the last 2000 yeara, and the tranaactiona of each reign fully detailed without interruption, down to the present ume; and that, fluring this time, the empiro of China has been less disturbed bu 'reign wars or intestine commotions than any other po. of the world of which we posasess any accounts.
Even from this view of the sulject veryogrmat deduc. tiona muat be made. We are, lowever, minpelled to walk according to our lighta, and to offer he to lowing summary of the Chineso dynasties, from the period when their chronicles begin to assume arl air of proba. bility :-
From the reign of Yau (mentioned alove) until the final auccession of the present royal fnmily of Tching, or Tai-6in, in 1644 (A. d.), the Chinese annals enume rate twenty-two imperial dynasties. Three roynl famp liea are mentioned na having possessed the throne from 1767 till 258 before Christ-Kia, Shang, and Chew. About the latter year appeared a Chinese hero, Chi-hoang-ti, who overran the empire, extirnating all the petty chiefs ainl rulers, and uniting tho whole of China. Ho also lmile the great Tartar or Mongolian wall, and reigned unil the year 207 lefore Christ. This prince was the firat of tho present family of Toi-sin, who of course sre justly proud of their great claims to antiquity.
The empire was, however, agnin dismemberel, after his death, onder his son Ul-shi, but was re-united, ten years later, ly Lietu-pang. He adnoted the new name of Hang, and founded the dynasty of Hang. The princes of this dynasty extended their conquests con siderably to the west, and tonk part in the affiaiss of Central Asis. The religion of 'Tao-tse prevailed during their ascendeney; and in the same period Judaism wat introduced into Ching. In the course of time, the

Princess divisided is uniteu' by Europe w two empit of the dyn other in ly internal mparate il Nhao-Quan dynnaty 8 imneedinto fired consi Under Yin. sibute to threw the e possersaed th (Pe-cheli), reigned ove emperor Nit Genghis-Kh great conqu tumed their jected them, (1260). I divurished in wiveb were I Mongolian d 1368), and K was tho first by foreign pri adves entirely manners, and of the empero the death of 'I 1307, and atill Tai-ting (131 quently occasi atrength of th anns againat and tho Mon themselvos. II where he died reaidence in t and was the northern Yuen but, giner the d curer ith own of which, they kept in subjecti wards called 'T' of the throne, il and founded the gave the empir men of merit. maina of the still existed. lands in the pro was male soon fully, under thei of Leao-tong, uf omperor. H of the Chinese bie death. His iming. a good bu hoing on the thro tho 'rartars did discontinued the an insurrection, 6 his lifo (1614) Mantchoos to th Pelin, and of th Mgn. Under I collquest of Chis
priticew degenerated, and, under Ilien-ti, China was divided into three kingdom (220), which were again anitei hy Wuti (280). Whilat the whole aspect of Europe was changed by the general migration of nations, two empirea were formed in (Thina, with the extinetion of the dynanty of Tain-one the north (386), and the otier in the south (420). Nuer thia, China was torn ly internal commotions, aid almoat every province had a epparate ruler, when, in 090 , the people elected the able Bhao-Quang.Yu emperor. He was the founder of the dynanty Sing, or Song, which reigned till 1279. His imnedinto aneceasors resemhlid him, yet the country muffired considerably by the devantations of the 'Turtars, Under Yin-tangy (1012), the Chinose were forced to pay tribute to the Tartar Leao-twang. Whey-tang overthrew the empire of Leac-taung (1101); but the Turtarn poesessed themeelves of the whole of the north of China (Pe-cheli), $1125 . K$ Katitsong II. was their tributary, and reigned over the aonthern provinces only. Under the emperor Ning-trong, the Chinese formed an allinnce with Genghis-Khan, and the Niu-cheng anbmitted to this great conqueror (1181). But the Mongols themsolvea tumed their arms against China, and Kublai-Khan aullected them, after the death of the last emperor, 'Ti-ping (1260). Under the Tang dynasty, arts and sciences flouriahed in China; several of the emperors them*ives were learned men. The Chinese authora call tho Mongolian lynaty of emperora Yuen (from 1279 till 1368), and Kullai-Khun is by them called Shi-tsm. This was the firnt time that the whole of China was subjected by foreign princes. But the conquerors conforned themadves entirely to the Chinese customs, a.dd left the laws, manners, and religion of the country unehanged. Most of the emperors of this line were alle princes. But after the death of 'Pimur-Khan, or 'Tsing-T'ang ('Tamerlane), 1307, and atill more after that of Yeaon-'l'imur-Khan, or Tai-ting (13!8), diviaiona in the imperial family frequently occasioned internal wara, which weakened tho sirength of the Mongols. The Chinese Chu took up anas against the voluptuous Toka-meur-Khan or Shunti, and the Mongolian grandees became divided among themselvos. Toka-mur-Khan fled into Mongolia (1368), where he died (1379). His son Bisurdar fixed his residence in the ancient Mongotian capital Karakorum, and was the founder of the empire of the Kalkas, or northern Yuen. This atate did not remain long united; but, anter the death of Tokoz.' Timur (1460), each horde, cumer its own khan, hecome independent ; in consequence of which, they were, with few exceptions, constantly kept in subjection to China after this period. Chu, afterwards called I'ai-tsoo IV., a private individual, but worthy or the throne, lalivered his eountry from the foreign yoke, rad founded the dynasty of Ming (1368 till 1644), which gave the empire gixteen rovercign, most of whom were men of merit. On the frontiers of the empire, the remains of the Niudshee 'J'urtars, ncw called Mantehoos, still existed. The emperor Shin-tsong II. gave them landa in tho province of Leao-tong; and when an attempt was made soon after to expel them, they resisted auccessfully, under their prince Tai-tsn, and obtained possession of Leao-tong, upon which their chief assumed the title x emperor. He continued the war during the reigns of the Chinese emperors Huan-tsong and Hi-tsong, until bis death. His aon Ta-tsong suceeeded him, and Ilaaitung. a goonl but weak pince, was the aucceator of ILiwoing on the throne of Chime. On the denth of Ta-tsong, the T'artars did not appoint any one to succeed him, sud discontinued the war. But in China, Li-tching excited an insurrection, during which Hong-Puan put an end th his life (1644). Li-tching's opponents called in the Mantchoos to their assistance. They got possession of Pekin, and of the whole empire, over which they atill regn. Under Thum-chi, n child of six years old, the conyuest of Ching was completed (1646-47), and tho
prement dynamty of Taing wan finally stablimited. Ile was ancceeded, in 1662, by hia mon Kang hi, who supdueu the khan of the Mongom, took Formosa, und made ceveral other alleitions to his empiro. During the reign of this prince the Christian rellgion wan tolerated, hut hia man Yong-ehing prohilited it in $\mathbf{1 7 2 4}$ The mos of the Intter, Kien-Lung, continued the peraecution againat the Chris tians (1746-78). He conquered Cashgar, Yarkand, the greatent part of Bongaria, the north-eantern part of 'Thibet and Laasa, the empires of Miao-tne and Niao-Kin-tahuen, and extended hin territories to Hindontan and Bucharia. IIe peopled the Calmuek conntry, which the expulnion of the Bongariana bad reudered alimoat a deaert, with the fugitive Torgots and Songariuns from Rumsin. In 1768, he wha totally defeated by the Ilurmese of Ava: neverthelens, the Chinese took possession of a town in Ava in 1770, and returned to their country with the lown of half their army. They were more successful againat the Miao-tse (mountaineers). Thowards the end of his reign him miniater, finvourite, and son-in-law, Ho-Tehing-tou abused hia influenee over him. Kien-Lung was auc ceeded, in 1709, by hila 15 th son, Kia-King. Hia relgn wan frequently disturbed by internal commotions. The Cathollea, whom he favoured, have lost mont of their privilegea by their inconsiderato zeal; and at Pekin, the preaching of the Christian religion has been atrictly prohilited. Kia-King was auceceded, in 1820, by his aeconal son, Tara-Kwang, whom the Rumians call Daoguan.

Such ia a brief summary of the historical annals of thia aingular people. I'hroughout their clironicles occur many perioda whieh are completely blank, and thees chasma having been filled up, as usual, with grows fableas which throw an air of doult over the whole; but it is worthy of remark, that many of the leading facts recorded in their more veritable histories, have been confirmed by contemporary travellera and historiaus of othes nations.

On the whole, howover, it appears, that, instead of having existed as a great and united nation from a perind of 3000 years before Clurist, ns the natives pretend, Chine was not furmed into one state until between $\mathbf{2 0 0}$ and 300 years before Christ. Since the estahlishment of the Mogul dynasty, the empire has not been again divided, but has experienced two great revolutions, at the accession of the Chinese dynasty of Ming, and the re-acceasion of the Mantchoo 'Tartor dynasty ('l'siug) in 1644; and has acarcely in any reign ben free from rovolta, ware and domeatic seditions. Instead, therefore, of having a right to be regarded na a privileged country, governed from time immemorial by the same constitution, exempt from foreign conquest and intestine commotions, the only peculiarity it possesses, distinct from the other empires which have been swept from the earth, is-that owing perhaps to its peninsular situation, nt the extremity of the habitable world, and its consequent exemptions from the destruetive sweep of those conquering nations who supplatifed those whom they overthrew, it has preserved its usages and mannera in a great measure unaltered, ambl the many internal revolutions it has undergone Stili, the fuet of this, the greatest mass of poputation which was ever united under one government, being kept together in one bond of union for a period of time far exceeding that at which the earliest European nation may le said to commenco, presents a moral phenomenon of the grentest interest, and reems altogether inuxplicable by any of the usual principlea whieh are nupposed to bind socicty together. That it has neither been owins to the nature of the government, nor the vintue of the princes, nor the morality and peaceable disposition of the people, is certain; and we can only conjecture that the system of atrict exclusion from all communication with foreign nations, and the national habit of appenling to ancient usage as the universal ruld of conduct in all matters of life. have serval to preserve their primitive hatite.
anl INaas in a great moasure unchanged, and ieft unatimulated thome energie invariably callod Into action by he free intercourse of mankind.

Government.

The government of China la not mo much what is usually understonl by an "absolute monarchy," an a apecimen of what we learn from hiatory to have limen the nocial arrangement of a patriarchal family. The enperor, like the "hred of a house" In thome timeen, is perfectly unlimittel in his power over all under him. IIe can diapowe of the lives of his subjects at pleasure; can make or abrogute whatever laws he clioomen; all oflicen and emolumenta emanate from him alone; in ahort, he is equally the nouree of all power, honour, and mercy In the statc. He can even appoint hle own suco ceser to the throne, either from his own family, or whatever clase of his aubjects he pleases. One ef the leading principles in the Chineac constitution in to place angreat a distance as possibla between this universal nutocrat and his aubjecta, and to holl hlm up an a demiged, a sort of dragomin betwixt heaven and mortala, alternately communieating the decrees of the one and the petitions of the other. He in altogether exalted above the common grona aphero of humanity. He in atyled tho "Holy Ben of Heaven, sole guardian of the earth, and father and mother of him people." In fact, he is believed to the of heavenly origin; and this superstitious notion appeared suffielently obvious by the obwtactes oppowed to the nuccemion of the present Mantchoo dynasty, on account of their family not lefing alie to trace its descent through more than cight generations. The new monareh, aware of the danger of this atigma to the atability of hin throue, caused his geneslogy to be traws out and publiubed, whereir it was given out that the daughter of lieaven, deweending on the horders of the lake Poulkouri, at the foot of the White Mountain, and eating some ret fruit, concelved and bore a aon, partaking of her nuture, and endowed with wimfom, strength, and lieauty; that the people of that nation chone him for their novereign, and that from him was descended the present Son of Heaven, who filled the throne of China. Thia explumation at once satisfied all the scruples of his celestial nubjects. Offeringa are made to his person and throne, and he is worshipped by prostration, not merely in his presence, but in places where he is supposed to be present-an nur sailors lift their hats on coming upon the guarterdeck of a man-of-war. When Lord Anherat, in his ill-starred miseion to Pekin in 1816, stopped at one of tho ntagen towards that capital, a rapast was found propared by ordens of the emperor, and he and his suite were ordered to prostrate themselves nine timen lefore the table, as if the descendant of the red fruit of lake Poulkouri had been personally present. It is, of course, only in keeping with such nuperstitions notions, that the rmperor should the reckoned not only the sovereign of China, but of all the world besides, the other royal pernonagen being inerely his vissaln. "Hesven has not two nons; earth Las not two kings; a family has not two masters ; sovereign power has not two directors: only one God and one emperor." Such were the precepts of the learned Confucius, 500 years before Christ; and such is the doctrine of the Chinese at this hour.
This irresponsible nutocrat lears two distinct characters: first, that of high priest; and, recondly, that of the movercign of the empire, or "father and mother of the people." In the first character, he is sole mediator with Heaven for the sina of the nation; the sole officiator at all molemn rites and sacrifices fur propitiating the fivvur of God. He has thus the exclusivo credit of all the blessings the people enjoy-such as plentiful crops, favourable weather, \&cc.; and although oecasions of publie calamity, storms, inundations, and such matters, are alow laid to his charge, yet such is the infatuation of the
people, that they forgive his faulta in conalileration of the prowif thus affordeal of the attention of Heaven to him concluct I Int eare ia alway taken to prement him character lit the noost amiable digit powible to him aubjecta who only herst of him an practising all the Utophan virthes of hia sation-remiting taxes and puniahmenta protection ditue, frisiahing opprewaion, relioving the poor. So math 'y the head of the exceutive. What may lu calied the alminiatrative goverument, conainta of the emperor'm council and the great pulilic tribunala The councll is compomed of the minintery of atate, taken from the firut onder of mandarina, and previdenta of the muprene trilunala, but in nover anmemblidedecept ujon oreanions of extreme public importance: overy thing being in general direeted by on inner conncil, where the emperor sita in premence. There are nix muperior triburials at Pekin. The first, named linjum, watehem over the tralning of manilurime, or jermonn to fill utheial aitustions, ne well as over their combuct aflor lniag aypointed to office; reports their procceding nad character to the emperor, and, in short, han them cutirely under its sun veillance. The weond tribmal, called Ilopoo, nay he tealguated the court of finance, where wll the revenues of the empire, the roysl trensureas and domains, and every branch of public expenditure, noe managed. The thiril tribunal. leecopo, or the court of ecremonien, superIntende the olomervance of ancient cuntomes ant religious ceremonies; examinem the public whooln, and reports the progress of the sciances; receiven fureign embassien; (a great tax on their time!) atul regulaten all matters of ettignette alout the court. The fourth tribunal, Ping-poo, is momething akin to our war-office, in having the management of all the uilitary eoncerns of the empire. Fifth, Hong-poo in the police department, directing every thing relating to the thetection and punishnent of crimes The nixth trimnal, Kong-pro, is tho trilmual of pullic workn, having charge of the palaces, pulilie buildings, canals, mines, manufactorice, \&e. All these tribunaln have under them a great numier of sulordinate triliunala seattered throughout the empire, mulvervient to their various objecta of inatitution. Each of the aix supreme tribunala has two presidents, one of whom must be a Tartar hy birth, and the other "Chincwe. They have, almo, twenty-four assessors, who are hall Chineac, half Tartars.

There in also another tribunal, the nuture of which sufficiently demonstrates of itwelf the srand principle upon which the Chinewe government in bamed-namely, of making every thing depend upon the emperor. This is a board of cenaurs, who aernl an ingpector to watch over the prociedinge of each of the tribunala-both the supreme and suborlinate. 'These functionarien take no part in the procerdings of the trihunaln, but merely sit and attend to all the proceeding, which they report to their principala, and theme again to the empurgor. These agents are, in ahort, his spies; and by them he indirectly governs lis empire. The mandarins ure ehanged ron one situation to another every three yrars, to preveat their acquiring too much influence with the jeople, it which times they are obliged to appear regulurly at court-to resign the aeals of olice, we suppome, and kive the ground, upon entering un a new one.

The beautifully compliented machinery of government just described, might le supposed, if properly rughlated, well adapted for accomplishing it olyect; but it is only by that very claborateness of construction remdered the more liable to be abused. The emperor lowing the prime source of all power, it wonld be regluisite for him to mansge the whole machinery with his ownu hands, ot under his own insbection at least-a tusk which would require him to pos. ss an many hands, heada, and ryes as Briareua and Argus had lnetwgent them. The niwer sity, therefore, of relying upon the fidelity of so mang thousand agenta for lis information and the cxprution n!
bis will, in in every advantage of t and t to a suiform myatern dion, from the prince
sors (or apiea) vinit arn (ar apien) vinit
waitnd upan by the their fuvour with rie of coume been raine from the poor inhat with any temporary 1
maken all he can if maken ull he can of and, ly loribing the lowed tu sit down in complainte mut pane
 againat auch oppremail happen of a guilty m
woned, and his richea well known that them
well ariginate in motiven M. de (hulgnea, one of dern travellern, " make sporige, to nuck up th
the sponge ia full, ho the aponge in full, ho ne to bo Alled anew,"
lord Macartury, wan gavernment of Wuang-t lowing oherruation :-4 re many European cur in ever sent to ine." T eering on his goverumen
abio to oltain an audien able to oltain an audient
of 15,000 or 20,000 pia lang time in China," oln trwersed that vast eimpirt whers seen the strong n who possessal any prortio to burden, und to crush
louny and auspicion whic louay and auspicion whic
bera of the goverument, of the magistratea, nulficis between themaclves to th influence of which they pr the happinems of the peor
The great basia nf the The great basia nf the (
inculeation of the sacred hearts of the young. The unlimited power over lis a maxins which has been morlieat frelingn and jilcas. whation to the father as th So wickedneess or unnatur rulieve a son from his su cood action performed by 1 tut the son hears his own alrealy mentionesl, the so of the country's prosjerity misfartunen, To be consis and vigorous at the meercy peror sets an example, by p meacement of every y ear, betare secuiving the prostrut ants. This eamo principle wothority; the governor of n the father of oll under hi thin atate-mnorality is, while
as the cause of the long st at the cause of the long st teeriorate the principles an
destry all genuine sentimen reggar upwards to the suven dise of him immediately a morse, all are aware of the h
bere am no other bon dere am no other bondla to be chains of tyrannt
$V_{0 L} 1-1$
hie will, is in every slepartment of hin goverument taken advantage of and the whole may be generally deacribed wa infform syatem of eorruption, plunder, and oppres. sion, from the prince to the heggar. As acon as the censora (or apien) vinit the provincen, they are iustantly waited upon by the mandarina, who attempt to purcham their fivour with rich preacnta, the value of which has of courue beon raised by the mont grinding exactions from the poor inhabitanta, Fivery mandarin intrunted with any temporary lucrative commianion from the court, makes all he can of it by the moat unacrupulaus meana; and, by hriblug the higher ofliears about the court, is alInwed to sit down in quiet with his ill-got gnina. As all emplainta must pama through the handa of these officers, of courme no remonstrance ever reachea the throne againat anch oppremaions. It is true, frequent exanyples hapjen of a guilty mandarin, who in mometimea impriwoel, and hia riches conflscated to the state; hut it is well known that thewe exnmples of puniahment do not originate in motiven of juntice. "The emperor," waya II, de (inignen, one of the most intelligent of our modern travellorm, "maken une of hils grandeen, a* of a sponge, to suck up the richem of his auljecta. When the aponge is full, the apueczen i, and sends it elnowhere to the filied anew." Ono mandarin, complaised of by lourd Maenrtney, wan dismissed by the imperor to the government of Quang-tou and Quang-see, with the following oherervation:-" I place you in neity where there we many Europenn curionities, hut from which nothing in ever sent to me." 'The hint wan not loist. Ujon entering on his goverument, the inhabitants found it imposwible to oltain na audience of him for leme than a presest of 15,000 or 20,000 pinatres ($£ 4500$). "I have lived a long time in Chima," obwerves M. de Guignes: "I have travered that vast empire in all its extent. I have everywhere seen the strong opprese the weak, nud every man who possessed any portion of wealth, employ it to harass, in burden, und to cruah the prople." In fact the jenlousy and auapicion which prevail letween all the metnhers of tho goveriment, from the emperor to the lowest of the magistrates, sutiiciently evince how little thoy trust between themeliea to their fine moral maxima, by the influence of which they pretend the throne is upheld, and the happinews of the people necured.
The great basis of tho Chineee government ia the atrict inculeation of the sacred nature of filial ubedience into the hearts of the young. The parent is underatood to ponsess anlimited pover over his offipring as long as they livea maxim which has lwen for ages interwoven with their eurtiest frelinga and ideas. The child stands in the same wation to the fither as the father does to the sovereign. No wickedness or unnatural treatment by the father can rdieve a aon from his aubjection. The merit of every gool action performed by the son is ascribed to the father, lut the son bears his own disgrace. In liko manner, as already mentionet, tho novereign receives all tho merit α the country's prosperity, but ineurs no disgrace for its misfortunes. To be consisteut, in thus placing the young ond vigoroun at the mercy of the old and feeble, tho emperor bets an example, by prostrating himself, at the commencement of every year, before tho empress-downger, before seceiving the prostrations of hia officers and attendanta. This eame priaciple pervades all the brauches of ruthority; tho governor of a province or city being held as the father of all under his jurisdiction. 'The etliect of tin state-morality ia, while it must certainly be vicwed as the cause of the long atability of the government. to Weriorate the principles and feelinga of the prople, and dearoy all genuino sentiment annong them. From the reggar upwards to the aovereign, ench individual is the Wuve of him immediately above himectf; and, what ia wors, all are aware of the hypocrisy of each other, ansl there arn no other bonila to hold society together suve the chaina of tyranny
$V_{\text {at }}$ 1-1

LAWH.

The lawn of thite singular nation may be leacnied to those of the lamboo, the cord, and the scinuitar, "'Thim great nation," nayn Mr. Harrow, "may le aptly er me, oh compared to a great school, of which tho magintr tua are the manters atd the people the acholars. 'The animo is the furula, and eare in tuken that the child ab ,i not up apoiled for aparing the romb. 'J'he batnlon, lueviver, ta not used merely an an Inatrument for logging the peo ple. In the findamental laws of tho empire, it fortie the sealo liy which all punimbment are aupponed to be proportioned to the erimee committed, and whilsh are carefully dealt out by weight and menuure. Puniaho ment, an an example to deter othere from the comanision of erimen, would meem, indeed, to be lese the oljecet of Chineme legislation, than that of watinfying the chaime of rigid justlee-to wipe off a certnin degree of erime by the infliction of a proportionate degree of nutfering."

The lnwa are embraced in a cosle called the lieu-lee, which has generally undergone some modifications under each new dynanty, but has continued fundamentally the sume from time immemorial. It in ore of the duties of the mandarins to inntruct the people in the provisions of these lawn, and they are likewise promulgatel in all the melowls and pulilic seminaries. The code of the prement fumily, called Thi-tain Leu-leo, connista of six great headn, to correxponal to the functions of the six supreme tribunala, atul embrace an epitome of the whole syatem of government. Our readera would not, we lelieve, thank' un for an exponition of thia instituto of Aniatic jurisprudence; but the fifth division, relative to crimes and pun inhmente, containa matter anficiently curious and inted renting. I'renonn-which, besidea the crime of rehellion, evenprehends nine othor specien of offence, among which are purricile, impiety, and desertion to a foreign powir-is invarially punished with death, in the forme' case with the most lingering tortures. But it in not merely upon the criminal himself that tho penalty for trenson falls. All the male relations of such persona are indiscriminately beheraded, tho females sold into alavery, and nll their connections relentlessly put to doath. And it is well did the vengeance of the law alwayn temminate here; but it too frequently happens that whole villages, nuy, sometimes entira districta, arn liseriminately slaughtered for the crimo of one indivi | 'oo intrude into the line of the imperiul retinue whil in eror is
 most extraordinary decrees is, that if,
aician is diseovered compoundine or in a phyaician is diseovered compounding or ner not annetioned by eatnbli 1.1 with 100 blows. If any I - 11
 mixes any unusual ingredient ot jesty's palate does not agree with, he rec. 1 ut blows, and in compelled to awallow the articlo hitself! All cases of deliherate murdor aro punishable by death; and death, with the most lingering torture, is denounced againat parricides. The penalty of death is also awarded against a alave who shall strike his master; a son who shall strike his father or mother; a grandson who shall striko his grandfather or grandmother; a wifo who ahall strike her husband's father, mother, grandfather, or grand mother. But if a father kill a son, grandson, or slave, even designedly, the punishment is no more than aixty blows of the bamboo, and a year's imprisonment Eren this lenient punishment is generally remitted for a fine, an the law jresomes the cause of the oct to the the disobedience of the child, which is held as a crime of the deepest dye, as aflecting the principle of the whole aystem of government. The jealousy of the Chineen law on this import. ant point is further illustrated by tho following decret"That a child or grandehild, who ja guilty of addessiun abuaive language to his or her father or mother, patc-nal
arandfather or grandmother; a wifc who is guilty of the wime to her husband'a fether or mother, paternal grandfataer or grandmother-shall in every case zuffer death liy lieing atrangled !"

There are five degrees of punishment for offenders:I he first la inflicted by the lesser bamboo," and is said merely to be in the way of reproof and admonition. The correction axtends from four to twenty blows. The aecond dingree extends from twenty to forty of the larger bamboo. The third is temporary banishment to the distance of 150 miles, extending from one to three years. The fourth degree ia perpetual banishment, with one hundred blowa of tha bamboo. The fifth and ultimato punishment is death, either by strangulation or decollation. There are also various kinds of torture to extort confesaion and evidence. The punishment by tho bamboo, however, is, in the case of offences committod by tho officers of government, commuted to fine or degradation, and, under peculiar circumstances, the benefit of commutation by fina is extended also to private individuals. In fact, there is a regular scak of charges for those not legally exeluded from the degradation of flogging, of which all who are rich enough may avail themselves. The motive of this regulation ia evidently to fill the coffers of the royal treasury.

REVENUES.

No correct estimate, for want of the necessary dats, has ever been ascertained of the actual amount of the revenues of this immense empire, and the most different statements have been put forth on the sulject hy various writers and travellers The Chinese themselves, of course, attempt to impress foreiguers with n most exaggerated idea of its mayroitude. A Chinese minister represented it to Lord Macartney as amounting to a sum pxeceding sixty millions sterling, of which, after defraying all the civil and military expenses, about tweive milbons were supposed to remain for the emperor's private support. Mr. Barrow reckons "that fify mialions, In an economical goverument like this, where the officers and magistrates are so shamefully paid that they enuld not live without robbing the people, may be consideted as an ample revenue for all the neceasities of the state." Somo late writers have reduced the estinate as low as twelve millions; but such a calculation is evidently abaud. Perhaps the nearest to the truth is that of the intelligent M. de G! $f_{\text {ges }}$, who accompanied the Dutch embassy in 1794 . He drew up a minute summary of each individual tax and branch of expenditure, and their ainount, and the resulf: was as follows:-

Revenues,
Expenditure,
---:
$22,222,221$

Surplus,
29,333,333
-the aurplus, after the emperor tnkes what he immedi. ately requires, being deposited in the public tressury. If this calculation be correct, it is evident that enormous sums must thus sometimes be secumulated. Mr. Barrow, it is true, saye, "that the immense treasures said to have been amassed by the reigning dynasty, exist onls in the imagination of the Chinese." But he recms to heve forgotten whit he himself states in another place, where, speaking of the various means moloptid to pre--arve the emperor's popularity, he tells us that the soveseign sometimes renuits a whole zear'a b.ves to his peo-ole-a proceeding which coull not casily l_{s} put in prace tice with an empty exchequer. The cinperor has also

- The Chineso code is which makes ao conspicuous a figure it he Chinese code. is of IW, Jics: The targer is Ave fect, ght
 - the came le akih, two Inchers brand. oue ond once finh thek and waiphe one and five-eixilie of a pount. The inftictont satyd to to open count inmediately mpon rentence telag
privato domains, the revenue of which was eatimated in M. de Guignes at upwards of four inillions.

The revenue is raised from land-tax, amounting to ebout a tenth of its produce, one half of which is paid in money, and the other half in kind. Thero is, besiden this, a tax on salt, cosla, and manufactures; and a capi-tation-tax upon merchants, artisans. \&ce, who are hall lowest in the scalo of society. It is a curious fact, that the regulations for collecting the duties on manufactures and preventing amuggling, resemble exactly the Britiah system of permits, excise-officers, hicenses, \&c. In addition to these revenues is the large amount raised by the duties on foreign shipping and merchandise, of which we will have further to speak when wo come to treat of the trade of China.

Royal family-court dress and ceremoniays.
As may be inagined, tho emperor is domiciliated in a style suited to his immense wealth, high rarik, and pretensions to unlimited sway. His train of courtiers, officers of state, and other attendants, when he appeara in public, which is exceedingly seldom, is inconceivably no merous; and being all npparelled in gorgeous silks and satins of the brightest dyes, garnished with gold and silver, theic nppenrance is inexpressibly magnifieent. But it is only while going through this public exhibition that ull this show of wealth and magnificence has ang reality. When released from duty, they retire to their mean and solitary cells in the outskirts of the palace, where they devour their rice out of wooden bowla with their ehop-stieks, and then lio down ou their mats on the uncovered floor, to slumber away the hours till their mervices are again required; fur to enter into conversation with his fellow-slaves, wouk, as being so strange a de. parture from the national taciturnity, subject the partien to the suspicion of conspiracy.

The enuperor has three classes of wives. The firs consists of one who has the rank of empress; the serind of two queens ond their attendants; and the thiru, of six queens and their attendants. 'J'he emperor's wives and women are doomed to reside for ever within the walls of the patace, and are, after his death, impsoned for life in a prison called the "Palace of Chastity"

The princes of the hood who are deseended in a diret line from the reigning timily, have their names and daten of birth registered in a yellow book, and havo the pring lege of wearing a yellow girdle; lut those who are only of collateral descent, have their mames enrolled in a red boot, and wea- a red girdle. So inimical is the spinit of the government, however, to a multitudinous iolility, that even the grinces of the blowl beyond the third gree ration, unless they fine talents and learning to recommend them to some honourable employment to which rank is attached, gradually mergo ieto the common masa The princes have the privilege of lsviiag tried only by their peers, and may procure exemption from anay corpo real punishment by a fiue. The persons of those who wear the yellow girdle are held so sacred, that uny one insulting them incurs death. Those who hold no offire, only receive a salary equal to the pay of a common sot dier in the Tartar hauds, and zeceive 100 tachs (ahoat 30 guineas sterting) at their marringe. The rmperor and his children wear roles of satin of a bright yollow oo lonr, while all the other bramehes of the royal family, like the numdarius, werar roles of a violet colour. The empreror, his sons, and those of the first rank, are ale distingnished ly figures of dragons with five chas cor broilered on their vestmente ; priuces of the second rand have dragons with four claws: those of the thirit sank as well as the mandarins, have, instead of dragons, sen ponts with four claws. The lutton of rermuny on the head-dress of the emperor consists of three dragone of golis, placed one alwise the other, encirclad and studded whis pearls. His uprex role has fund cirthes embroided
xith Aragons composed of p numents of ru of a bright yel rulnes, sapphir emperor, called his futher, only coral, and he but unadomed. apparent have sons of the er fishion as the these distinetion deed the appar expressly regula The prithe the pomp and ei to certain fixod his birth, begint former oceasion officers of the g princea, being i served on such o -nover vary, the given by Lord N faithful account 'The 17th Septe eet out for the e We reposed ours the entrance of t warm milk, and At last, notice wu begin, and we in where wo found their rolies of stat tion. The emper concealed behind could see and enj ence or interruptio where his majesty seemed to express of the day. Slow deep-toned bells, sulden the sound rere renewed, and during which,'sever wards in the prose engaged in prepar length the oreat bo with all their pow trhole court fell fla Tebuchadnezzar. sort of birth-day which was, 'Bow the Earth! How d long ! the great Kie upon Clinneearth ti down their heads, ground, at every rer religion, either ancie been addressed, I be of worship and ado w the phantom of mole of cetebrating accorving to the con the whole day; nor approach him, for th moment we did."
All who aro adin of his "celential tmaj, arsemony of prostra prosirating thomselv bealing it as often wi

timated in

ounting v ich ia paid is, besiden and a capio are hell s fact, that inufacturea the British In addiaised by the of which we treat of the
emoniays.
cilinted in a rik, and preourtiers, off e appesta in iceivably nuus silks and gold and silificent. But ic exhithition ence has any retire to their of the palace, en bowls with ir mats on the s till their mer o conversation strunge s de ject the partica

The firs ss; the serand d the thiru, of inperer's wives ver within the th, ilurisoned hastity ded in a dimed ames and daten tuve the priris 0 who are only rolled in a red is the spint of inous :olitity, the third gene ling to recomment to whick common mase ; tried only by roun any corpo s of thow who , that any one hold no office, a common ret tacls (about 30 e cmperor and ght yellow ro 0 royal family, t eolour. 'the rank, are ald five claws emp the secound rand the thiris' s ank of dragulis, veb armony oo tha rree dragene d ad and studide thes embroiderd
sith Aragons. His neckuce, wh a In his case aione ls composed of pearle, consinis of I tra penris, and other ornuments of rubies, sapphires, and amber. His girdle is of a bright yellow, with four cirched of gold, atudded with rubues, sapphires, and pearls. The oldest son of the emperor, called Hoang-tay-tse ass a similar button with his futher, only with fewer pearla. His necklace is of roral, and he has a bright gellow girdle like his father, but unalorned. The bonnots of the sovereign and heirapparent have also a figture of the idol Fo. The other wons of the eraperor ald adorned in much the same fashion as the cldest, bat with fewer orusments. All these distinctions of dress in the royal honsehold-as indeed the apparel of every class in the kingdom-are expressly regulated by law.

The puivic exhibitions of the royal person, amid all the pomp and circumstance of hia houschold, are limited to ecrtain fixed festivals, such as the anniversary of his birth, beginning of the year, \&cc. "Those on the former occasion are the most splendid, all the principal olicers of the government, tributary ehiefs, and Tartar princes, being in attendance. As the ceremonies olserved on such oceasions-like every thing else in Chins -nover vary, the following description of one in 1793, given by Lord Macartncy, may be taken as an equadly faithful account of the exhibitions of the present day :--The 17th September being the emperor's birthday, we eet out for the court at three o'clock in the morning. We reposed ourselves about two hours in a saloon, at the entrance of the palace enclosure, swhere fruit, tea, warm milk, and other refreshments, were hrought to us. At last, notice was given that the festival was nbout to lugin, and we immediately descended into the garden, where we found all the great men and mandarins in their roles of state, drawn up licfore the imperial pavilien. The emperor did not show himself, but remnined roncealed behind a sereen, from whence, I presume, he could see and enjoy the cercmonies without inconvenience or interruption. All eyes were turned to the place where his majesty was imagined to be enthroned, and meemed to express an impatience to begin the devotions of the day. Slow, solemn music, unuffed drums, and dep-toned bells, were heard in the distunce. On a fulden the sound ceased, fand all was still. Again they were renewed, and then intermitterl, with short pauses; during which,'several persons passed hackwards and forrards in the proscenium, or foreground of the tent, as if eagaged in preparing some grand conp de theatice. At leagth the creut band, vocal and instrumental, struck up with all their powers of harmony; and instantly the whole court feil that upon their faces before this invisible Sebuctadnezzar. 'Ihe music might he considered as a wort of birth-day ode or state-anthem, the burden of which was, Bow down your heals, all ye dwellers on the Earth! Bow down your heads before the great Kienlong ! the great Kien-long!' And then all the dwellers upon China-earth there present, except ourselves, bowed down their heuls, and prostrated themselves upon the ground, at every renewal of the chorus. Indeed, in no religion, either ancient or modern, has the Divinity ever been addressed, I helieve, with stronger exterior marks of worship and adoration thar were this morning paid w the phantom of his Chinese majesty. Such is the mole of celehrating the emperor's anniversary festival, according to the cont ritual. We saw nothing of lim the whole day; nor dik! any of his ministers, l presume, appoach him, for they all seemed to retire at the same munent wo did."
All who are ndmitted to the honour of an audience of his "relestial majesty," are compelled to perforin the cerentiony of prostratich, or koutou, which consists in prossating themselves uine times on the ground, and leating it as often with their forchesds. This humiliating ceremony is cxacted from foreign ambassadors as
well as natives, as typleal of the emperor'a diminion over all the earth, and has been hitherto complied with by all the European plenipotentiaries who have visited the Chinese court, with the exception of the British ; of which more hereafter. Of the other internal regulations of the royal houselold, nothing is known.

Clabars of population-OCCUPations.

The population of China, under the emperor hinteelf and his family, may be divided into eight distinct classes. And one of the most striking circumstances in the aocial syctem in this great despotism is, the want of that which has almost universally heen reckoned indispensable to the stahility of a monsreiny-a nobility. With the exception of the princes of the blood, whose persons are in some degree held sacred, there ia no rank but what is deived from the holding of some office in the state. But although those thus favoured are, by courtesy. esteemed noble, and even some families are, by the emperor's favour (such as the descendants of (Oonfucina), allowed to retain e title of honour, they derive no power, privilege, or emolument therefrom. The sone of the highest mandarins derive no digrity or advantage from the rank of their fathers. As the possessions of the parent, too, are all equally divided among his sons, the riches of the greatest families diminish in proportion to the number of heirs; and if these are no way distinguished by talent, they soon sink back into the common mass of the people.

The great body of the people may be divided into the following elasses:-The Manimains, the Militant, the Lathanti, the Bunzes (or priests), the Husaand men, who are the most favoured class in the state, the Anrisins and the Menchants, who are the least re spected, csperinlly those who traffic uith foreign nationsl lt is one of the most curious features of this singular government, that, being so essentially despotic in itself, both in principle and practice, it possesses one feature generally reckoned the main principle of a democracy -namely, thst the highest honours and offices in the state are alike open to oll rlasses of the people. The meanet origin is no bar, and the proudest rank is no recommendation to the individual. This system, no doubt, soothes the public mind, and induces the people to bear with greater patience that insolence of office and stretch of wer which they themselves have the prospect of exercising in turn. The result, however, is exactly in the inverse ratio to the plausibility of the system, "Where the offices of state," says Mr. Barrow, "are open to the very lowest of the people, when possessed of the requisitc qualifications, the candidates for employment become so numerous, that every trifting fault ia laid hold of to create a vacairiy; ond these frequent removals and degradations fall in precisely with the system of government, which is to break down all connection between the officers and the people, and to turn the rerpect and vencration of the latter exclusively to the sovarcign." It is found, that the more mesn the original condition of a mandarin has been, the more oppressive and extortionate is his conduct to those under him, not only with the view of naking his origin be forgetten in his present clevation, but, knowing the insccurity of his situation, of making the most of it while it is in his power. The people, however, suhmit patiently to his cxactions, ap sured that his dismissal (of which they are certain) witl open the way for one of themselves to enjoy the same opportunities of robbery and oppression.

In accordance with the natienal syatem, howeren, the office of mandarin, to which all ranks eigerly appirt, is almost wholly engrossed by individuals sclected from the three humblest classes-the husbandmen, the artisans, and the merchants. Those who have acquire! wealth, by whatever m. as, generally enter into some of these orr arations to render them mere eligible for the office, in order that, by attoining it, they may enjoy \$sie
possossiona in more security. Othera purchase the office with their whole fortune, secure of finding tho means of recruiting their finances during their three years' ec土miniatration.

The mandarins consist of two classes, the civit and the military. The former, however, are the chief officers who govorn the empire, although they aro placed under auch restrictions as to prevent their ever becoming dangerous to the emperor. They cannot marry in the province or city they govern, nor hold office in a province within fifty leagues of that where they were born, until they are sixty years old; with many other despotic regulations of the same onture. A mandarin has unlimited power in his district, but his conduct is watched by those above him, as it is the policy of the Chinese government to make every department responsible for tho one immediately inferior to it. Notwithtanding this surveillance, however, and although their salary is barely anfficient for simple maintenance, it is regarded as a phanomenon by the Chineso to see a mandarin leave office without alnassing grest riches. Their means of accomplishing this we have already explained ander the head of Government. Notwithstanding their infamous exactions, the people observe towards thein the greatcat reverence. They are saluted with the title of "Great Lord," and every one bends the knee while addressing them. The two chicf classes of mandurins are divided into nine different orders, who are all minutely distinguished by particulur parts of their dress. The most markel, however, is the button on the bonzet, which, among those of the first orier, consists of a red ruby ; others of a meaner order have a rock crystal; and the moat inferior, one of gold. The number of civil and military mandarins is calculated at between 20,000 and 30,000 .
The literati form the most distinguished part of the Chinese nation, as it is from amongst these that the individuals necessary for discharging all the higher duties in the atate are recruited. To insure the adequate accomplishment of these learned statesmen, thero is, as before stated (under the head of Government), a board of censors, named $L u ̈$-poo, to direet their studies, and examine into the progress of their erudition; alld government has fixed for every city of the first, second, and third class the number of literati allowed to qualify themselves annually in each, by taking out a diploma, wrresponding to the degree of Bachelor of Arts in Britain. There are, then, in China, upwards of 24,700 individuals annually added to the qualified literati; and it is thereiore conjectured, that there are never less than 495,000 of this body. These are all exempt from taxes of every description; and as soon as they have taken out their degrees, their name are enrolled is the lists of the Lii-poo, who choose from amongat them the ligher orders of mandarins.

It is, however, in productive labour that perhnps twothinls of the Chinese are employed; tho remaining third, ameunting, after deducting the civil and military oficers, students, literati, \&c., to about ten millions, being engaged in trading and manufactures. It is the great maxim of the Chinese govemment, that agriculture is the true source of national prosperity and wealth; and they have in every age honoured and protectel the eultivators of the soil. This chasa, indeed, may le romondered nuch the happiest and most independent of the nation; for although they pay to the amount of a tenth nnnualiy to the emperor, they have neither prienthood nor poor to aupport-unless the poor of their own fuminea, whom ull classes are bound to provide for. The unonarch is the universal proprietor of the suil, and the tithe exacted from it in the whole rent paid by the yrmer. But though the: cultivator is thes in a manner - tenant at will, he ia zefor disturbed in his possession co loog te sontinues to gay his land-tax, and has the
power of letting out any part, ol the whole, if he pleaman. to snother. As there are no public funds in which te vest capital, and commercial speculations are reckoned degrading, all classea are eager to lay out their capita in land. It is for this reason that oven the princes and nobility vie with each other in countenancing agriculture. Yet, notwithstandiug all this encouragement, the amount of land cultivated is triffing in comparison to the extent of the empire. By a report made to Kienlong in 1745, it appeared that there were only about $6,000,000$ of acres under cultivation, wat of the $640,000,000$ calculated to be capable of tillage. From the want of enterprise, but atill more from the want of akill and suitable implements, immense tracts of land are allowed to lie waste; and it is catimuted that a fourth of the whole conntry consists of lakes and swamps, toost of which are eapable of being drained. It will easily bo seen how inulequate the produce of the soil is to insure a regular supply of food to the inhabitants, in seasons of scarcity, occasioned by long droughts, which frequently occur ; and when it is considered that there is no foreign supply of grain to make up for deficiencies, little wonder need be expressed at the terrific famines which often afflict the nation. To provide rgainst these scarcities, a year's produce of the lath is always kept stored up in public grunaries; but this provision is never found sulficient to prevent the frequens recurrence of the most dreadful scenes of starvation,

We are somewhat puzzled what to say regarding the amount of the population of Chinu; for although sll nccounts agree that it is something enormous, there is a difference of millions hetween the statements procecding from what may be termed the most authentic sources known. The mandarins attendant on Lord Macartney, in the year 1793, gave out the population ut 333 miltions; and ly a census ta'en in 1813, by order of the Chinese government, this enormons mass is swelled up to $367,821,617$, which gives about 268 to the square mile. According to a statement in a Chiness oflicial document which is quoted with approbation by Dr. Morrison, the popalation at present is $352,866,01 \%$. Of the truth of this statement nothing can be sa:d, and, considering the small extent of cultivated land in the compire, it appears to be greatly exaggerated. The supposition is, that it not only includes China Proper, but all the surromading states, which are either depens. ant upon, or may tritute to the empire. According to Thom, the pop.alation is $181,788,163$, which he divider into the following religious sects:-

Fo!lowers of Confucius, Lhon-tnze,

 and T'aon,$150,220,163$
Worshippers of Lama,
Mohamenedans,
$18,000,000$
Roman Catholies. 1,600,400

Jews, $8 \times, t 000$
sil.000
Hoolhists and others,

- 2,830,000

181,754, 163
This table is perhaps as near an approximation to the truth as can le made, although the calculation is thoughe by some to be too high for the extent of cultivated ground. according to a parliamentars paper pullished in 1830, the population of China l'nper, caclusise of Tartary and the other dependencioss, is $111,100,0$ on souls. In the German stitintical Ahmana*, puhbidhed at Wermar in 18:18, the porulation of 'them Properis estimated at 118,0 e0,0,010. From the same authority we learn that the army in 18.35 was $1,250.0106$ strong: comprehending $\$: 40,000$ infantry, and $\mathbf{1 : 2 0 , 0 0 t}$ cavaley: and the naval force is calculated at 32,110 men.

PRODUCTIONS-AGMICLITURR-TEA CRIP.
The staplo productions of China are rice, tea, mh cotton, sugar, salt, porcelain, tin, lead, munk, rhuldit
qricksit , saltyeti facturea.

Rice is tho great 4 its imnortance re at the commenceme performs in person. occasion by three da forth in great pomp, opena a furrow, und son. The anme is on the same day, by grain reaped from thi and reserved for sa grain, of which there little or no labour; for the most part th port of the empire.
euity in their various from the rivers, by m buckets, \&c. The fil and the second in Jul sickle three months nf there is a grent deal o besides wheat, maize, p up spontancously, are implements of hushan plough is held by one piece of crooked timbe is armed with a hook, hand; while a perpen the middle of the beam piece is phaced lengthw the handle, while the ot This implement does n of more than six inch rached; and being tha oten to be left fallow fo
Agricultural improve been encouraged nod considered an honourahl and ranks next to men The soldiers and the pr latter generally having 1 The empire, however, is inen asserted by many tra antirely under cultivatio trats of waste ground. horticulturists, the Chine merit, but on the great whe mentioned with an ductions extend to every carcely a grain, a fruit, Europ., that they do not
The Chinese excel in ture, and especially in grounds ; and this may le elegant arts in which they style, inderd, strongly ies most magnificent and exte are those of Yuen-min-yt Tartary; the laterer of whic年Lond Macarthey, whos muregronnds nt Lowtherwe, however, ous is bom English miles in diameto within their precinets this enperor, sach resombling
Landed property is cons emperor; the land boin, first holler, who is allow, whe continues to piay a mad capable of viciding and than his fatnily can c in mother, on condid ton o
qrickailv, saltyetre, wines, fruits, and various manufactures.
Rice is tho great atapho. article of food, a.td so much -4 its imnortance regarded, that a high featival is held st the commencement of each sced-time. The emperor performs in person, and prepares himself for the solemn oression by three daya' fast and prayer. He then goes forth in great pomp, takea the plough in hia own hands, opens a furrow, und throwa in the first seed of the season. The anme is done in every part of the empire, on the same day, by the viceroya and governors. The grain reaped from this seed is preserved in granaries, and reserved for sacrifices. The cultivation of this grain, of which there are two cropa annually, requires little or no labour; wnter supplies every purpose, and for the most part thia element is abundant in every port of the empire. The growers display great inge--uity in their various contrivances for raising the water from the rivers, by meana of wheela, levers, swinging buckets, \&c. The first crop of rice is sown in March, and the second in July, the grain being rendy for the sickle three months nfter it is sown. Exclusive of rice, there is a great deal of barley grown in some districts, besides wheat, maize, peas, and heans. Oats, which spring up spontaneously, are pulled up as a uscless weed. The implements of hushandry are extremely simple. The plough is lield by one hand, and consists but of a single piece of crooked timber, the lower extremity of which is armed with a hook, and the superior guided by the band; while n perpendicular piece of wool rises from the middle of the beam, across the top of which another piece is placed lengthways, one end of which is fixed to the handle, while the other is connected with the traces. This implement does not turn up the carth to the depth of more than six ineles, so that now earth is never reached ; and being thus exhausted, the ground requires ofen to be left fallow for want of manure.
Agricultural improvement in China lins in all ages been encouraged and honoured. The hushandman is considered an honourable and useful member of society, and ranks next to men of letters and officers of state. The soldiers and the priesta nlike cultivate the soil; the latter generally having land attached to their couvents. The empire, however, is not s' generally cultivated as has heen asserted by many travellers ' some distriets are almost entirely under cultivation, but many contain extensive tracts of waste ground. Dr. Abel is of opinion, that, "as horticulturists, the Chinese may perhaps he allowed some ment, hut on the great scale of agriculture, they are not whe mentioned with any European nation." The productions exteud to every uscful vegetable, there being karcely a grain, a fruit, a tree, or a culinary vegetable of Europe, that they do not cultivate.
The Clinese excel in gardening more than in agriculture, and especially in the art of laying out garden groands; aud this may be considered the only ous at the elegant arts in which they display genius or taste. 'ITheir atyle, indeed, strongly sesembles that of England. The most magnificent and exteusive of the emperor's gardens re those of Yuen-min-yuen, at Pekin, nand of cehol it Tarary; the latter of which is deseribed in glowing terms by lord Macartney, who says it reminded him of the pleanuegronnds at lowther-Hall in Westmoreland. They we, however, on a isonewhat larger seate, being ten English miles in Niametor, or 60,000 acres, containing within their previncts thirty separate hahitations for the enperor, sarh resembliag n village of considerable size. Landed property is considercel the ahsolute right of the emperar; the labl beiug held by a sub-proprictor, or fire hoder, who is allowed to kerp posessions so long whe contimes to pry a tenth of what his firm is sopmosed cupeble of vibhling. If one person hodes more and than his fatnily can converiently cultivite, he leis it another, on condi won of receiving laif the produce,
from which he pays the emperor's tax. There are no extenaive eatates or farms in the country. The whole ingenuity of the inhabitants seems to be excrcised on the cultivation of small spota, rather than in cultivating large tracta.

The Tcha, Ths, or Tea-tree, growa equally in the mountainons and level districts, but prefers a light and rocky soil. It is sown by putting seven or eight seeds into a hole, two or three of which only apring up, and these are afterwarda transplanted into rows. They begin to yield leavea three years after being planted, but require to be renewed every five or six years, as the leaves then begin to grow hard and harsh. The appearance of the tea-shrub resembles that of the broad-leafed myrtle, with a flower like that of the wild white rose. There are different modes of cultivating the tea-crop in diffcrent provinces; but there are in fact only two distinet species of it, the green and the black. All the rest are mere combinations of these two in different proportions, or are simple varieties produced by difference of soil, cultnre, gathering, or curing.
The black tea is grown in the maritime province of Fo-kien, with the exception of about one-third of the bohen, which is produced in the north-east corner of Canton province, in a district called Wo-ping. Green tea is all grown in the maritime provinces of Kiaguan, Kiang-si, and Che-Kiang, but chiefly in the two former. Some of the buds of the plant in Fo-kien are picked in the early part of the spring, before they have burst, and a sinall portion of these is mixed with the best parcels of congou, to give them a flavour. Pekoe is also brought to Canton unmixed with other leaves.

In the beginning of April, the leaves are stripped off tho plant; a new crop is then thrown out, and pieked about six weeks afterwards, snd a third crop about the end of May: the two first pickings are the best, and nearly equal in quality. The third crop of leaves yields tea of tote strength and inferior flavour: hence the best crops are composed wholly of the choice lesves of the two first gatherings, with a small sprinkling of the buds or pekoe. 'The inferior crops contain a larger share of the third pickinga, and none of the pekoe. The black tea in Fo-kien is cultivated largely by cottagers in smail plots of ground or gardens. The leaves are picked by the family, and immediately sold to persons whose business it is to colleft quantities of them, and manufacture them in parts, that is, expos: them to be dried by the wind under the shade, and afterwards to be further dried in a heated warehouse. The tea-merchants and the agents of the Hong merchants come to the tea districta, and purchase quantities of the dried leaves of the first. second, and third gatherings, discriminating the leaver of the young and old plants, and those grown in well-known favourat!' spots. They then complete the drying or roasting process, and employ women and children to select the hard, the beat leives, with more or less discrimination, according to the ohject of making very fine, middling, or conimon tea. The green tea is less highly dried than the lhack; and Mr. Barrow supposes that it is from the formor thus refnituing moch of ite nntural juices, that its nervons ןropertica (generally ascribed to its being dried in copper vessels) are to le imputcd. The greels tea is usually pressed into chests while hot, to give it a finer flavour. 'I'he tea is made into pareels of from 100 to 600 chests each, with a distinctive name to each parcel. and conformity of equality, whese the tea-merchant acts henestly; herer those pareels of tea, which, under certain Chinse names, have proved, in a series of years, of excellont quality and similar chnracters, and which are greatly sought after at the London sales. are not the produce of any particular farm, but owe their character te the skill nud geod faith with which the tra-merehant on the Hong merchant's agrat have executed their comuig sious in selecting only superior pareels of leaves in the
markets of Wuoy-shan. Like tho black tea, the different classes are formed by selecting the better from tho inferim leaves after they have been iried; the light leaves soparated by a winnowing machine from the heavier, the iatter of which constitute the gunpowder tes; the lighter are of inferior quality, and only used by the commen people. The blooning appearance of hyson, gunpowder, dec., is and to arise from the effecta of carefully ronsting the leaves in iron vases placel over a fire, and by rubbing them againet the sidee of the vesael; in this process, with the green teas, much skill is requisite, and there is a chass of persons hired by some of the tea-merchants to superintend their reapective manufsctories. The bohea tes is composed partly of the lower grades of the Woo-y-shan toa, which has been left unaold after the departure of the last ships of the season, and p.rtly of the tea grown in the district of Canton called Worping.
The tea-chesta undergo sevore scrutiny in Canton, previonsly to being purchased; and if, when fisally examined at the period \dot{x} their shipment, they aro found superior to the quality which has been attached to then, their price is raised; if inferior, they wie rejected, or their price lowered. The scientific mode of proving the finer teas is to put a small quantity into a cup; pour on it pure apring water at full boiling lecat; place the saucer aiove the cup, filling it also with boiling water to increase the heat: after a sufficient time has elapsed for the leaves to uniold themselves, to examine the appearsice, flavour, but particulariy the Colour of the infusion. The latter quality is of course only known to the initiated.
Tea is the universal beverage of Chi.ıa. It is drunk. at all meals, and is almost the only liquor used at feasts, and while visiting each other. But it is a general rute amongst them never to drink tea immediately after a long fast, it being apt to allect the nerves, und create giddiness. The tea-shrub is cultivated only in China and Japan, and is supposed to be indigenous to one or both of these countries. All attempts to introduce it into Europe have hitherto failed.

The qusntity of tea annualiy plucked in China, it is impussible to calculate, unless we also knew the quantity conaumed by the natives. About $54,000,000$ of lbs. are annually exported from Canton to all parts of the globe; and it is a remarksble fact, thet of this quantity Great Britain and Ireland alone consume marly $32,000,000$ lba-being about $10,000,000$ lbs, more than sll the notione of the civilized word put together!

As substitutes for tea, the Cbinese use a apecies of moss common to the mountains of Shan-tung; an infusion of different sorts of ferns, and the leaves of the common cammelia.
A plant called the oil-bearing ten, is acuch cultivsted for ita seeds, from which an oil is expressed, in very general use in the domestic economy of China. The reeds are ground to a coarse powder, boiled in bays, and then pressed, when the oil is yield-d. 'Ihere is also culCivated a tree of considerable height, called the tallow-tree, from the seeds of wluch a sulastance ia preparel, having all the properties of animal callow. A species of white cabbage is in very general use, and is cousidered to the to the Chmese whst the potato is to the Jriwh. Fruits of every kind abound, but they are not considered good, except the orange, and a speciea called let-tehec.

manupactures.

From the inveterale adherence of the thinese to ancient customs und practices of every deseription, thry have foren lef comparatsucly behind by alanost every civilized bation in all useful medanical arts, even thome wheh originated with themselves. Every thing neems to lave stord sull in China but time. Nothing eaube more illuso Irative of this fuct than the case of the silk-mannfacture, of which they were undoultedly the insentors, und the knuwledge of whech, as their amalin twast, they possessead

3000 years before Christ. The native reeler and weaver still continue to labour on by the same tardy process, snd with the very game materiald, as were used by their an cestora; while in England, whore the manuficture wa totally unknown until the fourteenth century of the Christian era, Sii Thomns Lombe, so far back as $1 / 18$ erected at Derby a machine driven by a water-whect, br every revolution of which wheel $73,726 \mathrm{ysrds}$ of orgat. ized silk-thread were thrown ofl; and amounting per day to 318,504 ' 90 ysrds! At this day, the silks of China will not hear comparison with those of Lyons, Epital. fields, and Edimburgls ; tise first for light fubries, the second for the nore substuntial, and the lnst for shawis Again, in the articlo of porcelain (from the Portugucse poralle, a cup, they being the tirat who introduced it into Europe), which, until a very late period, continued to he the admitation of the world, we have been enalled, through the researches of Reaumur and other chemists, to compound carths ratching that witio which nature voluntarily furnishes the Chinese, and not only equal them in the fineness and durability of the ware, but in. finitely excel then in elegance of manufacture. For nearly a century, the clumsy fabrics of the Chinese, with their daubs of blue paint, which formerly were the principal ormaments of the mansions of the wealthy, have been driven out of the market by the keautiful wares of $\mathrm{D}_{\text {res }}$ den, Staffurdshire, and severs.

I'he same remarks m:cy bo applied to all the othet manufartures of China, the principal of which, besides the two above mentioned, are hose of cloth, nankeen (or cot. ton), linen, paper, and ink. In whatever department of art the Chinese continue to mainta a a superionity over, or equality with, lise rest of the w rld, the cause is to be found in the bounty of nature, not heir own ingenuity, Thus, the beantiful yellow which distingaishes the nale keon cloth, is a natural guality of the cotton grown in the province of Kiang-nan (of which Naukin is the capital), and is to be found in no other district of Chinh The Chinese still percinaciously adhere to their ancient practice of fabricating their paper from the bark of the bamboo and koo-tchoo (by the latter of which name they term it), notwithstanding their being perfectly well aware of the superiority of that made from rags, and the intinitely greater cheapuess und simalicity of the manufacture.

The Chinese ink is obtained from the soot produced by the smoke of pines and the oil in lamps, mixed with the isinglass of asses's skin and musk, to correct the odour of the vil. It is principally made in the province of kiang nain.

ABTA AND BCIENCES.
What we have alid respecting the stationary condition of the manufactures, applies equally to the arts and sit caces of China. The process of printing continues the same as when originally inve..'re! by themselves show 1700 years since. The characters so first written on paper, which is glued upon hoards of hard wood, and the engrsver carves the characters upon the wood, hollowng out the intermediate parts. When an impression is tw be taken off, the printer lays on the ink with a brush, sp. plies the sheet of paper, which be presses duwn with sonter hrosn than the other, and with a greater ir lest degree of presware, arcording to the quantity of ink laid on. Such is the primitive mode of printugg still prse vered in throughout the interior of China, although movahle tyines are of course socenowary in printing the Rosul fiactite of P'okin, winell is issurd daily, and obla docunents.

Ohe of the noont wismellar featurps of Chinose gemius developed in their athemptes at painting. I hry divfa! extrawrlanary powers of minate: initation, und will wit whin the utmonl resa "ress the number of pertals, thoria aperas, fen of a Auwer, and tho males of a fiah; but the
are, utterly unat every' defect as imitation. The tive, considering of distant object and they therefc fureground. W a portrait of his a pity it should \rightarrow mesning the picture of the en impioua to repre tions, and theref attendants-the people consider pre-eninent over the remonstrance

In sculpture, ception of order, be nothing more which adorn th affirmed, indeed, statue or column
The Chinese m simplicity in whis nariarous mations. dies of this nation tish tunes;" that Grecec:" and tha considered as ratu the Greeks, consist lones; but the y down their musie, without any attem They alwnys enden of counterpoint or ments are extreme tells, triangles, \&c. of Europe ure n spe silk, and a small org equal reds, struck by a pipe for th. the reeds. Dr. Bu a scale to this instru taste, in short, is in instruments at ouce of rank, who, twing to one of the theatre menced, he appeare with the nimost ind followed, asking im going to play aroin friend was puazled to upon the performers instruments after th clamed, in rapture That's it now!" of the Chinese, inde of music. They lik in-like the Tarks, of pleasure. It ia tol he saw, at a ball give the n bility and gen the floor. be exprewse demselven но much alsly, "We make ou And thus it is with ti In almoss all the nese are womderifully a kerree of perfertio Nup jeophe hive carra medering materiuls r:olostane's, so far as xilitut any scientific

I wuaver

 cear, anc their an ture ${ }^{W}$ of th. as 311 vhecl, bu of orgat. per day of Chia s, Epital. trics, the I shawis ortugucse ell it into ued to he enabled, chemists, ch hature only equal c, but in ure. For nese, with the princihave beed :s of Dresthe othe besides the en (or cotnurtment of iolity over, lse is to be ، ingenuity, es the nalgrown in is the espit of Chins. reir ancient bark of the hich manna erfectly well ugs, and the the anaur
roduced by cad with the he odour of ce of kiang
ry conulition rts and cii ntinues the culves slow written on ood, and the 1, hollownt sion is to be

a brush, ap

 lown with 1
'ater it has

of ink laid
rtill pursoo
a, although
priating lat
b, and uthia
sie gemuse
Thry dyplat
nud will wi?
ctals, thumbs
hi wathat
are, utterly unable to mix and soften their tints, nad copy every defect as well as oxcellence in the object of their imitation. They have not the slightest idea of perspective, considering the diminished and faded appearance of distant objects as the consequence of a defect of vision; and they therefore insist upon placing every olject in the fircground. When one of their ministers of state beheld a portrait of his Britannic majeaty, he remarked that it was a pity it should have been spoiled by the dirt on the face -meaning the shading of the nose. When they draw a picture of the emperor, they consider it woutd be almost impioua to represent him of the ordinary human proportions, and therefore make him twice as large as any of his attendants-the head particularly. But this self-conceited people consider themselves in this, as in every other art, pre-cminent over all other nations, and reject with diadain the remonstrances of European artists.

In senlpture, as in painting, the Chineso have no conception of order, attitude, or proportion; and there can be nothing more monstrously grotesque than the figures which adorn their temples, bridges, and tombs. It is affirmed, indeed, by recent travellers, that there is not a statue or column in the whole empire worth not e.

The Chinese music remains in that state of primitive simplicity in which it has been observed to exis in all oarbarous nations. Dr. Burney says, that "all the melodies of this nation have a strong analogy to the old Scottish tunes;" that "both resemble the sougs of ancient Grecee:" and that "the music of all three ought to he considered as natural music." Their gamut, like that of the Greeks, cousista of five natural tones, and two semitones; but they uee neither lines nor spaces in noting down their music, which they do in a column confusedly, without any attempt at mariing time, key, or expression. They always endeavour to play in unison, having no idea of counterpoint or parts in music. Their musical instruments are extremely rute, consisting chiefly of drums, tells, triangles, \&c.; and the only kinds resembling those of Europe are a species of lyres or harps, with strings of silk, and a small organ, or rather Pan's pipe, ma's of unequal reads, struck into a hollow cup of wood, rnd hlown by a pipe for the mouth, which conveys the xind to all the reeds. I)r. Burney tried in vain, however, to adapt s scale to this instrument. The great delight of Chinese taste, in short, is in the commingled sounds of all sorts of instrumests at suce. An ancedote is told of a Chinese of rank, who, being in London, was carried by a friend to one of the thestres. When the orchestra at first commenced, he appared inexpressibly pleased, hut listened with the utmost indilference to the beautiful overtore that followed, asking impatiently if the musicians were not going to play argin the fine air they did at first? His friend was puazled to inagine whai the air could he; mintil upon the prefomers proceediag to re-tune their varions instruments alter the first ac. was over, the Chinese exdamed, in rapture at the medley of sounts, "Theie it is -lhat's it now !" The affected gravity and unsocial life of the Chinese, indeed, are unfavourable to the cultivation of music. They like to sce dancing, but not to practive th-like the Tarks, considering it a species of labour, not of pleasure. It is told of a Turkish ambassador that when he saw, at a bull given ly some nobleman in Hondon, all the n bility and gentry of both sexes capering ahout on the floor. he expressed unfrigned womder at their giviug dicmselves so much trouble, and observed contemptuansly, "We mular our nhaves do all these things for as!" And thon it is with the Chinese.
In alnest atl the mechanieal arts, however, the Chinese the wonderfully expert, ant in some have attaned a legree of perlection morivallot by any other nation. Sin people have dearned the art of dyeine or of extrmetme dyeing thaterimls from animal, mineral, and vegrathle robotanes, so far as the Cluncse have done, and this aniacte my sciontific chemieal knowledge. They show
particular dexterity in fashiciang ivory fana, basketa. nests of eight or nine movable balls one within another "yet it doea not appear," says Mr. Barrow, "that they practise any other means than that of working in water with small saws. As litte can Europesns pretend 1,1 rival their large horn lanterns, of several feet in diameter, perfectly transparent in ever y part, without an opaque spot, and without a scam; yet a small pertaik stove or furnaco, all iron boiler, and a pair of common pincets, are all the tools required for the manufacture et those extraordinary machines. Their expertness in cut ting tortoise-shell, mother-of-pearl, and all kinds of stones and gems, is extraordinary, and in all the metals they work with extreme nentess."
Respecting the state of science in China, Mr. Barrow salya, "Nothing has yet appeared in Europe, from an ruthentic souree, to warrant any other conclusion than that of the utter ignorance of the Chinese in the pure, speculative, and nhstract science of mathematics. Their knowledge of arithmetic and geometry is bounded by mere practical rulea. Their numerical notation is marked down by symbols of tho language, as that of the Greeks and Romans was by letters of the alphabet. The common operations of arithmetic are generally performed by a few balls strung on wires (called the stcam-pan), somewhat resembling the Roman abacus, and sometimes by joints of the fingers. The measure of quantity is usually determined by reducing all surfaces and sides to the dimensions of squsres and cubes; and with thoae few practical operations they contrive to manage all the common purposes of life." All other recent observers concur with Mr. Harrow in attesting the defective knowledge of the Chinese in the science of astronomy, for their proficiency in which they have hitherto enjoyed a great r.putation. Their high pretensions in this depsrtment turn out to the founded fulty as much on superstition an scientific observation. So sensible are the Chinese monarchs of this fart, that for many generations the construction of their vaunted Imperial Almenac has been intruated to foreigners, the wative astronomera only contributing the important department of fixing the lucky ard unlucky days, days of festivals, \&cc. "The Chinese s.jstem, if system it can be called," says Mr. Barrow, "resembles so closely that which remains of the Hindon, that both must have been derived from the same source. The period, or cyclo of sixty years, by which their chronology is regulated-the period of 10,800 years observed by the Tao-tse, which is the sum of the first three Hindoo ages, with their internediate periods-the division of the zodiac into twelve signs, and also into twenty-cight constellations, or habitations of the moon, corresponding with the tweuty-cight Hindoo maschatras-are so many siens of a common origin; and both may perhaps bave derived the remains of this science from some third nation, more ancient than either; as the little which both nations do possess appears to le the remains rather than the elements of tho science." There is, nevertheless, a board of sstronomers and mathematicians maintained at Pekin, which is, in fact, one of the official departments of government ; and a committee is annually appointed with great cer mony to superintend the conspilation of the mationai calendar. It is curious to see this ostentutious show of a love of learning kept up by a people who are atill so ignorant as to reckon that the firmament is a boty enereling the earth, the latter of which is a solid tixed square, and round which the son revolves, us well as the moon; that all the stars are stuch into the eky at an equal distance from the earth:-whe gravely docitle, by the state of the planetary system, the days proper for taking medicine, marrying a wile, settitu: out on a juurney, baying the foumdation of a house, sia 'I'heir reograplical is on a par with their astomontras' knowlealge, as may be imagined from their surposins China to be tho middle region of the glotr, an'r termine

INPORMATION FOR THE PEOPLF.

one in tain, whilh is reckoned the centre of the empire, the ". vol ti the Earth." The more educated are at ais day well acquainted with the fallacy of such doctriner, out thej are still propagated umongst the mase of tho people, as it would he equally impolitie and dangerous to expose the delusions which have ohtained credence amongst them from time inmemotial, and the grosa ignorance of their idolized sages. The fact is, that the pretended knowlatge of the literati, and ostentatious patronage of learning by the government, is a mere state-trick, for the purpose of exciting the veneration of the ignorant multitude.

Of natural philosophy, or chemistry, the Chinese know literally nothing, except from a prac cal ncquaintance with the risult of certain causes. Of medicine, as a science, their whole stock of knowledge is a combinution of quackery and empiricism; and it is a remarkable fact, that the healing art, which, in almost every other fuarter of the known world, whether aavage or civilized, justly obtaing for its professors the higheat respect, honours, and emoluments, is in China so little eatimated, that all classes are allowed to practise it ad libitum. There aro no echools for medical inatruction; the theory of the human frame ia wholly unknown to them; and they even rujeet the doctrine of the circulation of the blood. Their remedies are chictly of a vegetable nature, and consint almost wolely of ginseng (a native ront, which they pretend to prepare in seventy-seven different ways), rhubarb, Chirnroot, and ten. Their surgieal knowledge is equally defective, ns may be judged by the fact, that the practice of it is limited almost entircly to the honourable fraternity of barbers. Their operations consist in setting a fracture, reducing a dislocation, letting blool, by searifying, cupping, or acupunctuation (for they entertain a sentimental horror of the laneet and scalping-kuife), eutting corns, cleaning the cars, tweating the noss, beating the hack, pualling the joints till tiey crack; in short, we may sum up our account of Chinese knowledge of the healing art with the remark of the lnte Dr. (ircgory of Edinburgh, that "the cmpuror of China conld not command in all his dominions such medical aid as a smart boy of sixteen, who had been apprentice for one year to a well-employed Edinburgh surgen, would te able to afford."

language and diterature.

The language of the Chinese is another branch of their history, respucting which the rest of the world has been impressed with the most preposterous and exaggerated weas. It has bexn represented as consisting of nillions of characters-as being pe rfectly unattainable by foreigners, and so forth; and thus has this :xu!y ber!erous nation acquired a reputation for philologiral science as spurious * that which thry have enjoved for other branches of antique erudition. "It is trime" ns Mr. larrow rays, "that their language, more than any thing else, stamps them as an original prople. It has no resemblaner whatever to any other language living or dead, ancient or nodern. It has neither borrnwed nor lent any thing to any other mation or people, excepting to those who sre unqueationally of Chinese orign. The written character is just now as distinct from any alphabetical arrange ment as it wase some thonsands of years ago; and the apoken lanzust" has no: proseded a single step Im yond the original meate and inflexible monosichable." All this certainly goxs to prove the Chinese to tue a primitive feople, and fis far the circumstance is a moral cariosity ; but at the wane tinie it shows their inveterate and imnowable obstinary in adhering to a syatem of charactera so otterly unredurihte to any kinel of intelligible vorabulary. 'The foundation of the langunge in purely hieroglyphic and symb, ical, iurluding all the remsrksble objects of nature, auch os the aun, mowi, farth, fire, water, wout. stone, a lorwe, a cow, a dragon, \&cc. ; the uteusila
most commonly in use-a knife, a spoon, a bor, \&c. the primary relations of life-a father, mother, brother, am, \&e.; some of the inost obvious qualities of bodies, as straightness, crookeduess, \&c., \&c. 'To give a detuli of the history of the Chinese Innguage. through ita various modifications and arrangemente, would occupy a space of volumen, and to no purpose heyond the amusenient it might afford to those antiquariana who delight in t.e in vestigation of matters as frivolous aa they are olnslete. Suffice it to say, that the Chinese language, which has hitherto proved such a mystery to all the reat of the world, has at length been fattiomed and rendered clear by the industry of British genius. In fact, the diffieultien attending the acquisition of it have proved alnost altogether visionary. Tho industry of Mr. Marshalman and Dr, Morrison has supplied us with grammars ánd dictionaries of this singular language, und plneed within our reach all the supposed treasures it contained. "Europeans," says Mr. Barrow, "havo been deccived as to the vast mumber of characters in this langunge, which was supposed to create its difficulty. In the great Dictionary of Kaunghee there are not more than 40,000 characters, of which about 30,000 or ty are in ure. The Lexicon of Scapula contains about 44,000 words, Ainsworth's Dictionary 45,000, and Johnson's nbout the nome number. Thie whole works of Confucius contain only nbout 3000 different characters. The Ictelec may have, on the whole, about 100,000 characters, but not more than 1860 dillerent ones throughout the whole work. Where, then, can there possibly be any dilliculty?" The same writel also adlluces numerous instances of Europeans acquiring the Chies ofe language in a comparatively short time.

From all that has yet been suen, the trouble of tearning the Chinese langunge will be very inadequately compensated ly the literary "treasures" of which Mr. Barrow speaks. There are no doubt a profusion of pocme (sis) called), novels, histories. and dramas, dec.: hut of what charater nre they? From the translations which we have yet been favourel with, the poems, like some of Oskian's sublime passages, consist of unintelligible imagery; their novels of silly and pointless stories; theit histories, as we have already seen, of fables; and their dramas, although for the most part true to nature, yot exhibiting wature in her most revolting forms. M. de Guignes, Mr. Barrow, and other visitern of Pecin, assure un, that the theatrical exhibitions aro lxyond e.ery thing ahominuble and diggusting.

It luss furnished matter of surprise to all writers, how a govemment so despotic as that of Chi cshould make the cultivation of letters a subject of such special anxiety Even lise intelligent Mr. Burrow makes a marvel of this fact, notwithstanding that his own weitings (had we no other authority) furnish a sufficient explanation of the seeming anomaly. It is true, there is a selool to be found in cery village of China, and that the instructica of the pupils forms one of the most anxious concerns of the government: but what is the nature or purpose of their education ? 'I'o instruct them in all the erroneous doctrines of their parents-to ronfine their knowledge ic the uative productions of Chinese writro-bs make, in short, Chinese goliticians of them. The bonsted system of colucation in China is not for the purpore of entight. ening the lsople, but of kepping them in darkueses. 'I'hey $^{\text {a }}$ are allowel to know nothing of other nations, and ian not therefore comprehend their own legrated and ea alived condition.

RKLIGION

The religion of the Chinese is nllipd in character to the IBondhism of the Himman empire, Japan, Siam, and other parts of Eastern Axia; and, unler whatever name, it may he definerd as a superstition intimately assoriatal with ceremonial ohervances in pagodas and temples. According to Howard Malcom, the latest autharity on tha
authect." 1 theme of J
"The J or, sa the nbout 560 temporary and a man roted hims Redueng t valuable ex of his own, the ultimat的 a popula birth and el doctrines, h the atate rel maintained united with and sometin empero: hits teraples.
"The syst pean writers accounts of stop to deser lese than pol social virtues tral habits,
"The sect Laou-Keum, lis followers profess alchas on the palm search and sul in general, the the system ef
"The third Fue is said to the Chinest Boodhism of an account of ligions, in th is certainly fa generally supp Kempfer dates - Warma, a gre foundation,' \&e hip of Folii William Jones tionably the Fo
"This seet population. Tl it, at one time d amtributing to sone phacards e enperor, to repa unier to propiti priests are num sume of them it iadly well-dresse and dirty, somet
Mr. Malcon a Boodhist temp in Canton, Iresid the streets. I sis which are said within. I'loy Europe The la suburlo of IIo-nas accompanied by who were ucyuni shown every prat

[^7]whbect, the Chincse are diviled into threo aceta, nameis, these of Ju-kea-su, 'Puou, and Boodh.
"The Jukeasuists are the followers of Kong-foo-tze, or, an the Jesuits Iatinize it, Confucius, who flourished about 560 years before Christ, and was therefore conteonporary with Pythagoras. He was of royal decent, and a mandarin, but carly resignol olficial life, and devoted himself to literature, morals, and political economy. Reducmg the maxims of former anges to order, he added valuable extracts from current werks, and prudent sayings of his own, and proluced a digest which continuea to be the ultimathule of Chinese piety. Travelling extensively as a popular lecturer, and sustamed, not less by his high birth and eloquent address, than by the oxcellence of his doctrines, be soon founded a sect which became virtually the state religion. It is, however, much lens intolerantly maintained than either Popery or Protestantism, where united with the state. The other religions are allowed, and sometimes fostered. Great officers, and even the empera: himself, build and endow Boodhist and Taouist teraples.
"The system of Confucius is highly extolled by European writers, and most extravagantly ly Chinese. As accounts of it ato accessible to ali readers I need not stop to describe it. He seems to have regarded religion lese than polisics, and the hurden of his works relates to socisl virtues, civil goverrment, and adherence to ancestral habits.
"The sect of Tasu (literally reason) was foumiled by laou-Keum, a contemporary and rival of Confucius. Itis followers may be called the mystics of China. 'They profess alcheny, assume mysterious airs, read destinies on the palus, und make great pretensiens to deep reexarch and sinferior light. Their practical works contain, ia general, the same landablo precepts which distiuguish the aystem ef the Ju-kna-su.
"The third seet follow Foee, sometimes spelled Fohi. Fue is said to be the old orthography of $F{ }^{\prime \prime} /$, which is the Chinese abbreviation of Fithta, or Boodha. The Boodhism of China is the same as that of Birmal," (for an account of which we refer to the article Patian R_{s} laglons, in the present serics of papers.) "The system is certainly far older than cither of the others. It is cencrally supposed to have been introduced about A. n. 70. Kempfer dates the introluction ahout $1 . n .518$, when - Darina, a great stint, came from the west, and haid the Guadation,' Sc. Chinese historians agree that the worship of Fohi was arisinally brought from India. Sir William Jones says confitlently, "Boodh was unquestionably the Foee of Chum.'
"This sect probahly embraces one-third of the entire population. The goverument acts with indecision towards it, at one time denonncing it as dangerons, and at another antributing to its rupport. M. Gutalatf saw at Pooto sone phacurds calling on the prople, in the name of the unperor, to repair to the Boodhist temple of that place, in oder to propitiate Ifeaven for a fruitful spring. The priests are numerous, but not greatly renpected. I saw mome of then in the streets daily. A few were exceediandy well-dressed, hut generally they were both shably wid dirty, sumetimes quite ragged."

Mr. Makn gives the following account of a visit to a Broblist temple at Cauton:-"'Thero are 124 temples in Canton, hesides the numerous pholic altars seev? in the streets. I siav the principal ones without the walls, which are said not to be inferior, on the whale, to thuse within. 'I'lury strikiugly resemble the monasteriee of Europe The handsomest is one of the Soulhists, in the suburb of Ilo-nath, on the opposite side of the river. Being accompanied by Me'sses. Bridgman, Parker, aid Morrison, who were uequainted with the superior, I was not only shown every part hy hia order, but had the pleasure of

[^8]Bua sucicty for an hour. -Joisters, carridora, courtyarda, chapels, inage-houses, and various offices, are scattered with little regard to order, over a apace of five or aix acres. Priesta, with shavon crowns and rossries, loitered about; but I nover asw common people come to worship either at this or other establishments. Some of the priesta occupied small and mean apartments; but those of the superior aro apacious, and furnished not ouly with the ordinary conveniences, but with chandeliers, mirrors, pictures, \&c., and with an extensive library. The build ings are chiefly of brick, one stery high, the walks handanmely flagged, and the courtyard ornamented with large trees, or beautiful parterres of flowers. The printingoffice contains stereotype plates chough to load a small vessel, so arranged as that every work is readily accessible. The principa! apartment or temple is about 100 feet square, with the usual images, \&c. We attended here to wituebs the regular evening service. It seemed to create little interest, for out of 160 resident priesta, there were but lifty present; and these uttered their repetitions with the most obvious indifference. Their prayers are in Pali ostensibly, but I am tolu not truly, as their modo of writing renders it utterly unintelligible to any one. They keep time by striking a wooden drum, and oeeasionully a hell. At a certilin stage of the process, the wholo company formed into single file, and marched romad the hill, without ceasing their refectitions. This gave us a fuli view of their countenunces; and so far as these indicated, a more stupid set conld not le picked out in all Canton. I have already remarked this characteristic of the Boodhist priesthood in other countrics, and un confirmed in the belief of its being attributable to the character of their religion, and the nature of their duties
"Instead of the humble dress or Birman and Siam priests, these were as handsone as they can get, with shoes and stockings. What is worse, some are in rage, barefoot, and squalid, with apparent poverty. They have, however, a common refectory, where I presume ail fare wike. The buidings were erected at diflerent times by the munificence of individuals, and by the revenuen of the establishment, which amount to about 8000 dallars per anntm.
"While we walked over the premises, the superior had prepared us a repast of nweetureats and fruits, to which he sat down with us. His manners are easy and elcgant, his dress unostentatious, and his countenance full of intelligence and mildness. His nge is but thirtyeight. We of course endeavoured to make the visit profitable to him. My heart yearned over him; and when he assured me that he meant to visit Ameriea in a year or two, I was happy to piomise him a most cordial reception. Priests may leave the country and return, without the restrainte which make it dangerous to others.
"The whole number of pricsts in Canton is estimated at 2000 ; of nuns, 1000 . The annurl expeuse of the 124 temples is 250,000 dollars. An ecmal sum is required for the periodical festicals. Half a million, aonnally paist in one city for religion, by prgans! And the whole amount which all Christendom ģives for pugans in a year, is but six times as much!"

For many yeas, Christian missionaries of different dreominations have been estrblished at Canton, Macao, and ather parts of China; but they make litte progress in prosety tiaing the pepulation, on acconnt of the difficulties of the languare and the rigorous mherene of the natives to ancient rustoms. China likewise contains somu Mohammedans ani Jews; and these, with the Christians, werm to be tulerated merely on account of the public usefulness and learning of the missionaries of these sects The Christians, for the same reasin, are the most generally respected, but have heen treated, from time to time, with the most arbitrary capriciousness, being persecuted by one emperor and encouraged by another. In the year 1747

42

Eve missionaries wore beheaded in Fo.kien, and two Jesuits trangled in the mame year in Kiang-nang, all of which wan done "accarding to law," which anya, that the clinef of any sect who seduces the people from their duties under religious pretencea, aball be strangled.
metiev of manners, charactitr, and condition.
From all we have said, it will be evident that civilization has an yet advanced but little beyond the infancy of what may be called agrieultural aociety in Chima. It may be rearlily ndmitted that they were among the first of existing nations who arrived at a certain degree of excellence ; but it is not less evident that they have long remained stationary, and have even in some points retrograded. "They ean only be said," observea Mr. Barrow, to be great in :rifles, whilst they are really tritling in every thing that ia great." The following assertion of Sir Wiliam Jones may almost be literally adopted:-"Their .otters, if we may so call them, are merely tho symbols of ideas: their philosophy is in mo rude a state as hardly co deaerve the appellation; they have no ancient monuments from which the + origin may be truced. even by plausible conjecture; ther aciences are wholly exatic; and their mechanical arts have nothing in them characuristic of a particular family -nothuer which any set of men in a country so highly favoured might not have discovered and improved,"

In their moral qualities, the Chinese are a strange compound of vanity and meaness, aflected gravity and real frivolity-an utter want of all manly judgment and serise, combined with the most insidious art and cunning, the usual accompaniments of vulgar ignorance. The Tartar race are distinguished by a blunt and unstudied frankness of manner and openness of disposition; hut the true Chinese Intray the most debasius survility of tone and manner-plausible, sly, and artful. They have not the slightest regard to truth, and will assert and deny any thing with the most unblushing eftrontery, being also eatirely destitute of shame. The pain inilieted by the hamboo is the only consideration they attach to public and diagrsceful ecrporal puovishment. 'They have neither sense of honour nor self-respect. "A Chinese prince, or powerful maularin," says a recent traveller, "will commit extortion or oppression whenever he can do it with impunity, and regards it as a matter of right attached to his station. A Chinese trader will cheat and defraod whenever it is in his power, and even piques himself upon his skill in overreaching, as a proof of his talent. A Chinese peasant will pilfer and steal whatever is within his reach, whenever he can hope to escaje detection; and the whole nation may be altimed to have almost not!ing ill view but their own selfinterest and security. 'Their general character, in short, in point of morals, compared with the mimute enforcemem of duty by the prenal laws, affords an irresistible proof of the utter incompencocy of legistation, without the aid of religious principh, to reach beyond the mere external conduct of individuals, or to produce any thing like real social virtue nnong human beings." In their fectings, the Chinese are crued, sensual, and vindictive. Mr. Barrow, M. de Guignes, and other travellers, all agree in their representations of the inhuman conluct of those in authority. One of the arbitrary laws of China is the compelling of the natives to pull the innperial harges along the esmals; and Mr. Barrow had several upportunities of wituensing the nurriles exercise of this mutherity on the vart of the milary. The mupressed labourcers took, of rourse, cerery opportunity of deserting; anc whenever there was a deficioney of hands, the despotic officiala set off to the nessext hambet, rousid the mallure out of bed with the whip, made them jomp Ento the water to asaint the towing operations, lashing thent with hotg cart-whips all the while with the most rutbers bartacty. Mr. Barrow also relates another specizen of Chinese indifferente to buman life, which he
witueser ! in passing down the great canal lutwixt (Yanton and 11%

Neveral persolis who had crowded th the briak of the eranal, had posted themels ra upon the nugh projectuns stern of ant oht vessel, which broke down with their weighs, and precipitated the whole group into the water. Although numbers of boats were plyiug nhout at the very sjat, not one was ohserved to go to the assistance of the drowning wretches, whose slaricks and criea were totally disregarded.

Nothing is so aignificant of the monal contition of a people as their treatinent of the female sex, and nowhere are the women A) inhumanly used as in Chinn. They are not permitted to stir out of doors, excepting thio wives of the lower ordars, who are to be secen toiling at all kinds of laborious tasks, while their indolent hum bands are sitting quictly smaking their pipes. In the country they are even to be necon trav ing the plough and harrow, while their luzy helpunte drives them on.

The practice of deforming the feet of femmes of the better classes has long treen prevalent. While still chibdren, the feet ure bound or compressed in such a manner as completily to prevent their growth. "At five, tis rich man's duughter has her fioot so firmly botwd, that, in the native phrase, the whole is killech. The foot brlow the instep is pressed into a line with the leg, to add to the height of the litt!: sullerer, while two of the toes are bent under the swie, that its breadth may the only of the least dimensions. The agony of such a process it would lee hard to estimate; but it is said to hast about six weeks, when I nuppose the wasting of ull the parts, nad the coss sation of many of the functions, have remadered the whole insensilale to pain. The developnent of the musil, which forat the calf of the leg leing checked, the lis, consequently tapeirs from its socket down to the fous without any risings or inflections. This is regardeu as the perfection of heauty by the Chinese, who say that the knce of the fernate is not protubrant, like the kite of th.s male, and is so well covered, that fhe ean rmain know ing a long time without inconsenience. It is perhaps less throughout its length thun when the foot is allowid to retain its natural size; but whether this be from the want of excreise, which ever acts as a stinulus to muserde lar deformity, or from the lack of mutriment through functional disturbaber, I cannot take upon me to syy out I suspect the former is the renl causer ; otherwiso the matter would grow from had to worse, till the whole wis destroyed by ntrophy. A foot two inches in leugth is the idel of a Chimman, on which he lavishe the moat pros cious epithets which nature and language can supply, But its !eanties are allogrether ineal; for when stripld of its gay incentuments, it is a piteous masn of lifelcoss ine tegumenc, which resemile the skin of a washerwomaril hand atter it has lubdergone a long maceration in serp and water. The sight of it in wall fitted to excite onf eompaasion, not our commendation--n trautiful lims "rashed into a hrap of deformity? It wan the constom in former ages for the danes to *ear long rolus, whit swept upen the ground, and k'pt the feet out of sight: would be as angenious devire for the ladies to reaner then again to use, and allow the insiruments of progn sion to retain thair matural size in the asylum of a lon? train. Powts might still cevelorate the lithe a goldeu lilis"? in conformity with hoary rustom; and it would be mo diblierent as to the morality of the thing, whether be sud a foot wan only two iuches long, which was thice fat length; or called that the perfertion of leauty which a in truth, mily a mass of deformits.""

Amonget the other moral iviegrition of the Chinsere is the crine winfaticide ; and from the contiomp in whis
 Chiddres withuat tha elightest remorse. It is a pat of the duty of the Pehin police to go their rounds with cata

[^9]'an early hot of the infiants in the courme quiry, to a co they are throw lated that there infints thum yes

In comparise the condition e was thit of pri furniture, berside eurthenware, a atove. They us all the family sit a bowl in ear. the pot whei, 6 which consist ut of porcupines ${ }^{\circ}$ angers of the rig throw their food pedition. Boiled tion of millet or b animal and veget hogs thrown over are greedily picke market, dogs, eat must degrading so amoking, tho ethec from un indulgene
intencounse
Tho systematic govermment ollers explains the trilling a country adapued for its prosecution, aituation, its prode The inuamerable comntry is intersect munication posseds no regular system of solely of barter, the cepting a small copt too minute for cale grand Pekin canal barges of various de interchange of nat capainiities or Chinn the immense nounl These are divided by cording to the numb of the tirst class alo them-the natives is much exaggeration ung the number of so a fourth. of what is enormous rosurce of of life is here shown kinds of British mant the renoval of the nerce! That the pe free intercourse witl shown; and in fact tim suaticienty guara would rosage in firs colstrainte of tha gose their medks. Whate' chasest, thers is now wis tive, which is consecion kad to the braking tuling. I'heir joatous: womberted at, conn idera the alse of the British
an earty hour of the morning, to pici ip the hodien of the infants that have been thrown out ato the atreeta in the courne of the night, and to earry tha, without ingutry, to a common pit without the city walls, whare they are thrown in primiserously. It has been caleufated that there are between 20,000 and 30,000 female infants thus yearly sacrificed in China!

In comparison with the lower ours of the Chineme, the condition of the shaves in our West India colonies was that of princes. They have scarcely an article of furniture, bedides two or three jars, a few basins of coarse earthenware, a large iron pot, a frying-pan, and a portable stove. They use neither tables nor chairs, but at meals all the fanily sit upon their heels round a large pot, with a bowi in ear" Ctheir hunds. After taking the rice from the pot whe. 6 poon, they then take their chop-aticks, which eonsist of wo s:mall pieces of wood, or generally of porcupines stails, and are held betwean the two firat fingers of the right haml. With this strange utensil they throw their food into their montha with remarkable expedition. Boiled rice is beeir atapla food, with the addijun of millet or harley; but they likewise eat all sorts of animat and vegetable putreacent substances. The dead hogs thrown overboard the ships in the river at Canton, are greedily pieked up by the nu-jves; at the publie market, dogs, culs, and rats, are exlsibited tur sule. The noost degrading serial vice of the Chineso is that of opiumumoking, the ellicts of which are $י$ ach wove than those from an indulgence in intoxicati. is iquors.

intercourse witit poreion naitons-british

 tea-trade.The systematic diseouragement woich the Chineso gevenument ollers to all intercourse with foreign natious, exptans the tritling amount of commerce carried on in a country adapted better than any cther 11 the world for its rrosecution, whether wo consider its geographical situation, its proluctions, or the genius of the people. The innumerable rivers and canals with which the country is intersected, present facilities for intermal comaunication possessed by no other country ; yet thero is no regular syatem of trate among them: 't congists almost solely of barter, there being no circulating median, excepting a small copper coin, the value of which is almost too minute for calculation. It ia rechoned, that on the grand Jekin ennal there are upwards of 10,000 boats and barges of various descriptions continually employ d in the interchange of nutional produce. Of the commercinl capaiiities of Chinas indeed, wo have a no evidence in the immense nuolser and erowied stut of the cities. These are divided by the Chincse into thine classes, according to the number of loagues whils they occupy; mad of the tirst elass alone-or imperial eit wh as they term them-the nutives enumerate upwards of 4000 . There is much exaggeration here, no doubt; but even estimutthg the number of social communities at a thirl, or even a fourth. of what is set down by a Chinese, what an enomous rujuree of consumption for all the necessaries of life is here shown! What an unbou: ted mart for all kinds of British manufactures would bo thrown open by the removal of the government restricticise upors comarese! 'That the people of Chima are anxious for this free intercours with other nutions, has been abundantly shown; and in fact their greedy and peculatory disposi(i) sunticiem?'y guaraties the readiness with which they wuid ingage in fireign trallic. But the wil-powertul cotatritints of the gowermment hang like a min. \cdot otonewourd that medks. Whateser be the ipnorance of the lower dhasises, there is nos want of enlightenment in the execotive, which is conscions that a free trade would inevitally Led to the lreathing up of the whole desputic system of ruling. 'lheir jorahousy, indered, is not so much to too wombered at, condadering the procedent before them in the the of the Brotush power in t's. in inbruring pernin-
sula of India; the only wonder is, that amix \because the tur moila of war which have disturbed tha world daring so many ogen, this country, so fartile in every thing which can mako a country deairable, should have remained comparatively unmolested.

It is well known that the foreign trade of China is confined exclusively to ong port-that of Canton. I'he overlaid trada with Russia and India has now almons entirely ceased. So grent io their jealonsy of the Rum sians, indeed, that the latter are the only people mero dieted from even visiting Canton.

Ten does not appear to have been known in Britain previous to 1650 ; and it is evident, from the following note in Mr. Pepys' Diury, that many years clapeed previously to ita coming into general use:-"September 25, 1661. I sent for a cup of tea (a Chima drink), of which I had never drunk before." And in $\mathbf{1 6 6 4}$, thero is mention mady of the Lat India Company commissioning their foreign agent to purchase $2 \mathrm{l} \mathrm{hs}_{\mathrm{s}} 2 \mathrm{oz}$ of tea an a present to his majesty! From this time forward, however, the consumption of tea increased with a rapidity scarcely less wonderfuj than the progress of the British cotton manufacture.

Canton, at which the principal foreign commerce is carried on liy the Chinece, and at which all the exporta of tea take place, is situated on the eastern bank of the river Pekiang, a heantiful placid streain, as wide as the Thames at London. Ihis great outlet of Chinese trade is abont 400 miles in length, and Cmiton stands at the distance of 80 miles from its mouth. Canton consiste of tive descriptions of towns-that which is enelosed by walls, and the suburhe; both togother, they are aaid to contain from seven to eight hundred thousand inhabitants The circuit of the walts, which are of a moderate height, and fumished with a few cannon, is extimated by some nt five, nnd by others at nine miles. Only about a third part. however, of the space enclosed is covared with buildings; the rest is occupied with pleasure-grounda and lish-ponds. The neighbouring country in very charming-hilly towards the east, and presenting in that quarter a lscautiful prospect. The atreets are long and narrow; the houses generally low, and tow ring above them may be seen temples and pagodas. At night the gates are closed, and bars thrown across the entraice to the streets. From this enclosed city, as well as from every other town in China, all foreigners are rigorously excluded; and theser, if they obtain permission, musk take up their abode in the suburba, which contain a very miscellaneous population, though not therefore inferior in point of accommodation or appearnuce. But the most curious particular regarding Canton is the existence of a floating town on the river, consisting of perhaps forty or fifty thousand harks, junks, and vessels of various kinds, arranged chose to each other in regular rows, with passages between them to allow other vessela to pass. This floating town extenda several miles in length. For what renson we know not, the owners of these vessels and their familica are not allowed to coma ashort, and so they spend the whole of their lives on the water.

Forigners are not permitted to go nahore and reside at pleasure at Canton. Their only land establishment consiats of hongs or factories, which extend in a line along the bauks of the river, from which they are distant about a hundred yands. Thay are built on a broad quay, with a spacious promenade in front. The hong or factorice individually consist of courts or lanes, aifmitting of no thoroughifire, and solely dedicated to the accommodation of the foreign residents. Largo warehonses for the reception of goods are aljacent. 'Ithe Thee of tho Chinese suburhs whach is most frequented by foreigners, is termed Chima Street, consisting entirety of shops, in whieh the mative deakers are to be meen sated from morning till nisht. Their tricks in entrapping British acamen into purchasing thein conuoudities

Lave long heun matter of notoriety. Their signa uniformly exhibit un Einglish name as well an a Chinewe one; and having picked up an acquaintance with the mont familliar of Jack's expreanions, their mode of addressing their rough cuatomers evincen at once the crafty and unscrupulous disposition of the natives.

The manner in which foreignera have heretofore conducted husinese at Canton is as follown:-When a ship ardiven, it in necesary immediately to get a native merchant (or, hu is callert, hong merehant) to hecome security for tha the good hehaviour of the crew. In thir there in never found the slightert difficulty, there being, on the contrary, alway: a conpetition amongat the natives for the honour of a consignment. The import dutien annaiat of a tax upon the different apecies of gooda, as well at a tonnage upon the versel. In aidition to tho connage and cargo chargea, there is pion levied what is called a kumahau, or present to government, exigible from ships of every purden alike. It has been eatimalad that ali these various port-charges, including the expens of vietuailing - ship, \&c., amount to about 7000 dollars on a ship of 400 tons register.

The foreign merchants of Canton consist of Dritish, American, French. Dutch. Danish, Swedish, Spaniah, Portuguese, and Indian British aubjects, who in 1882 emountel to 110 . There are eight British estahlish. meste, reven Anserican, and one joint Dutch and F'rench establishment. 'T'wo Euglish newspapera are published in Canton: the Canton Kegister once a fortnight, and the Chinese Courict once a week.

The personal intercourse of Europeans with the Chinees at Canton is chiefly carried on by meane of a gibberinh (for it cannot be called a language) compowed of Engliah, Portuguese, Chinese, and other words, but the whole greatly broken or altered in sound, and possemsing no sort of grammatical construction.

At the elltrance to an estuary of the river on which Canton is situated, is the island of Macao, containing a uwn of the same name, part of which forms a acttlement or te".anty of the Portugucse, and here also the families of Fivorun-n merchants at Canton have bren sulfered to raits, Ih Portuguese privileges have been latterly (:) If curanacribed, and their trade greatly diminished. - Prof, Macao to the Boca Tigris or true entrance of the river [preceeding upwards] is just forty miles, affording a ver, wefo channel for the largest whips. As far as the Boca or Bogue, the whole is a hroarl eatuary of the sea, interspersed with islands, of which the well-known I.intin lies just midway between Macao and the Borgue. Lintin is on the right of the channel for ahips, and abreast of it on the left ia Lankeet Island, forming behind it the harbour of Kumaing-moon, where the opium shijp of late years were accustonned to lie at anchor in safety. T'here in no entrance to the Canton river to the eastward of the Boca Tigris; but on the west the case ja widely dilferent; and it is there that the principal difficultice of a hockseding squadron exint. The ntain part of the river flows through the Bogue; but to the westward there stratches a great delta, which has been gradually formed by dejoaftiona of soil from the turbid waters, and is crowsed in all directiona by shallow channela communicating with gach other and with Canton. Some of these clanmels form the inner pussage, by which the British traders used generally to procted between Canton and Macao, passing a town called Heang-shan, the resuilence of the clucf magistrate of the Macao district. I'hese shallow channels to the westward, though they are itupaswble hy English ahips, present no olstacle to the flat-bottomed trading craft of the Chinese, below the size of the larger junks.".
It has ieen by meana of the navigable inlet thus de-

- Davic's sketches of China: 1841 .
acrikel, that nearly all intercouree with the Chinese hee tak as place; all the other ports which lie to the northward being shut agaluit European commerce. The greateat pomible care bas at leant lween taken to prevent any intercourse hy the river Yang-te Keang, which, by ita connection with the great canal, ivala to Pekin and the chief northern diatriets.

The principal traderim with the "ranese have latteriy been the Amerlcuns and British. "The American intercourse with China," anys M. Cullorh, "comntenced ahortly after the termination of the revolutionary war, and han since grous on rapidly inereasing, mo as to constitute one of the mert valuable branchen of the trade of the United States," "I. M•Culloch gives a table showing the extent of the exports from Canton to America from 1804 to 1826-7, by which, in the last-mentioned year, it in seen that the Amerieana had twenty-alx ships in the teatrade, and that the total value of exports from China wan $4,363,788$ dollars. "The jrincipal articles," conInnea this most necurate nuthority, "carricd by the Americana to China, are bullion, furn, 'Turkey opium, English woollens and cottons, and ginseng. The commodities exported by the Americans from Chinn are ten, nankeens, raw and wrought silk, sugar, caskia, ansl camphor, with minor articles." 'The Americans are excedingly enterprising in thia, as in every other trade in which they elazage.

The Britimlı trado with Canton wan formeriy carrie] on by the East India Company, but by an act of parliament which came into operalion in April, 1834, the trade was thrown open to all claseea of British subjecty From enjoying a monopoly, the Eant India Company were the only sellers of tea in this country, and could thereforo regulate the price as they thought proper. It is but fair to say, that the Company did not abuse this monopoly ; but. from the expenaive manner in which tha trada was carried on at Canton, the price of tea was grea.er in this country than it has been wince competition was allowed. The duty on tea, lown to the $22 d$ April, 1834, wan 96 per cent. on all teas sold under two whillings a pound, and 100 per cent. on all that were sold at or above two shillings. A discriminating scale of dutien was afterwards established, with a view to allow the introduction of the cheapest kind of tea at the lowent duty; but it was found that merchants did not seruple to introduce better qualitien ol the article nuder inferior denomnations; and to put an end to this impropriety, as we.d as stop all clamour on the sulject, a atatute wus passed (1836), enaeting that 2a. 1d. per Ho, ahould le charged on all tean without exception, entered for home consump. tion in the United Kingiom. In 1835, the first year of open trade in ten, the imports to the United Kinglom amounted to $43,0011,000 \mathrm{llw}$., leing more than $10,000,000$ above what had ever been imported in any single year by the Last India Company. In 1837, the importa were $36,973,981$ lbm. (of which $30,625,206$ were retained for honie consumption), and the duties produced a revenue of $£ 3,223,840$. In exchange for the tea brought from China, there is imported into thut country woollen and cottun articles copper, iron, lead, glase, earthenware, and jewelry, the value of which in 1831 was $\mathcal{L} 593,755$. Bullion used formerly to be ment to China; but of late years it has been imported from Cnina into Eingland, insteal of the contrary.

The preceding details refer to that condition of affuins which prevailed previously to 1838-9, when Dritiwh is: tescourme with China was zuddenly brought to a clom hy events arraribent on the forcilile suppression of the "opium trade," As already mentioned, the Chinse is duge in opiun-smoking, hut from the injuriona eflers of the practice, it is ontumilly prohibited. and the intro. duction of the anticle is legally declared to be contrabard | Notwithstanding the illegality of the traflic, howevar, in
ane aver lieen ext juen manner, by at otrances againat enerally diaregar sanctioned it for
that all menacea slireatn, apparently decency. Lulled in they were more enc continued to pour i outhreak, the whole weized and publicly three millions of po It is here necessary of the opium trade the atoppage of it w Inritish intereats in petty princes of Hin poppy, and it is in The beat opium is pr From that quarter it pees ($£ 12100$.) per 400 to 500 ruprea on the Chinese const perhape much more. proft, acts all plans "The opium trade tatefut it may appear recollected, a wource if ment, returning, I hav two millions and a thase who are no eag some methorl of maki revenue that must n government, whose ex income."
The semzure and de known, precipitated a (May, 841), far froin the British people and manner in which the Englith as well as othe to agkravate the diapute gree of vanity, the Chir habit of treating and al rians, and has on no ace conatil or amhasador The only chaunel of co aese commissioner nt envoy from Britain, who whand. Added to this, the Chinese havo proved negotiation. The depre lish power, having frustr the diapute, nothing wan attention to their claims f for indignitien, ly force year 1840 was destined pectacie of a Brilish n

- Six Montha witu
sea over been oxtenaively carried on, bat in a secret, but pren manuer, by amuggling-vesaels on the coast. Remonotrancen againat it by the Chinese government were generally iliareganied, becuane the masdarina and othera ssnetioned it for private reamons; and it wan observed that all menncen on the aubject were merely empty strenta, apparently put forward for the aake of exterinal decency. Lulled into fancied mocurity, and foeling that they were more encouraged than diacouraged, the Britiah enntinued to pour in opium from India, till, by a audden outbreak, the whole atock in the vemsels at Canton was seized and prebliely burnt, causing a loss of from two to three millions of pounds sterling to the parties interented. It is here neceasary to mention, that the chief promoters of the opiuin trade were the East India Company, ant the atoppage of it was likely to prove mont disastrous to Hritish intereats in that great empirc. The rajahs and petty prinees of Hindostan arn the chinf growern of the poppy, and it in important to conciliate their finvour. The bent opium ia produced in Maliwa, a diatrict of india. From that quarter it pays at Bombay ss of 125 rupees ($\mathbf{£ 1 2} \mathbf{1 0 s}$.) per chest, fotching in il from 400 to 500 rupres ($£ 60$ to $£ 50$). This on the Chinese coast for 700 dollara (E15) perhspe much more. The temptation
elts perhspa much more. foust, aets all plans for stopping the
large a
"The opium trade (observes liond Jocely bateful it may appear in the cyes of many, mian government, returning, I buve heard, a rovenue of upwards of
two millions and a half yenrly. It therefore becomea those who are so enger for its suppression, to point out wome methol of making up the serious defalcation of revenue that must necessarily acerue to the Indian government, whose expensen already outrun its present income."

The selzure and deatruction of the opium, as is well known, precipitated a quarrel with China, which is atill (May, '841), far from being settled to the astisfaction of the British people and government. The contemptuous manner in which tho Chinese have alwuys, treated the Englith as well as other Europeans, has tended greatly to aggravate the dispute. Puffed up with a singular degree of vanity, the Chineso government has been in the habit of treating and apeaking of the English as barborims, and has on no account allowed the settlement of a consul or ambassador to watch over British interests. The only chatnel of communication has been by a Chinese commissioner at Canton and a commissioner or envoy from Britain, who in late times was not allowed t land. AdJed to this, the mean cunning and deceit of the Chinese have proved an obstacle to every find of fair negotiation. The depreciatory view taken of tho English power, having frustrated the peaceful adjustment of the dispute, nothing was left the British vut to compel attention to their claims for compensation, and an apology for indignities, by force of arms. Consequently, the year 1840 was destined to present the extraordinary opectacle of a British naval and military fore on this
n Six Monthe with the Ch nese Expedition
coant of China. Cluman, an filand on the coast, wan captured in the monith of July, afier in feeble resiatance. and various other anccensea attended the Britiah arma in a few montha aflerwards. Up till the period we write however, owing to the temporizing policy of the British commissioner, nothing definite las occured in the war, and wo therefore leave it to the courm eventh. Mean while, the tea-trade ham auffered no matesial interruption as it has been carried on in a great menmary under cover of other flage than the Hritiah, though with a loan Britinh naval interests.

Works on citina.

- Among the recent works on China, there are severa. of value and interest. "The Chinese \rightarrow A General De scription of the Empire and ita Inhabitants, by Jous Faancia Davie, Eap." puhlishel by the Harper one of the best. It is founded on the allthority of r w.er travellers, and well embellished with maps and enfro it This is the mose completo ascount which has 's: lished In this country. M. Pauthier, Mrmbel of toc Asiatic Society of Paria, hns polbished a volume an part of "L'Univers Pittoresque," entitled "(Chine, ou Desrription Ilistorique, Geogrmphinue at Iitteraire the ce vaste impire, d'apres des documentn Chinois, Premiere Partu, rmmprenant un Resumé de lhiatoire ot de la civilization Chenoises depuis les temps les plus anriens jusqu'it nos pres. In writing this work, M. Pauthier appears to have exerted the same spirit of indefatigalle research which actuated M. Charnpollion in his inyuiries respecting Egypt; and his rovelations are not less interesting and surprising than those of his illuntrious cotemporary. One feels amazed ut the fact, that alnost every modern improvement in the arts of life was anticipated by the Chinese some centuries ago. Their progress in' political seience, moral acience, legislation, and the ornamental urts, is not less surprising. All these are developed from original Chinese autborities hy M. Pauthier, in the course of his history. The work is embeltished by seventy-two copperplate engravings, the greater part of which are copics from Chinese originals.

The recent war between Great Britain and China has caused a multitude of books to be written respecting the latter country, most of which nre worthless; but the late treaties between Chinn and England, and China and the United States, will occasion more Intereourse than hitherto between tho Celestial Empire and the nations of Europe and Amerira. The gentlemen who were nttarhed to the Amorican embassy havo not yet published the result of their inquiries; hut it is to be hopel that thero is something worthy of notice yet to proceed from them.

From what is already diselosed in the work of M. Pauthier, it is quite appurent that there yet remains an immense amount of interesting, histoneal, antiquarian, and ethnographical information to be fouml in the archiven of the Celestial Empire and the numerous worka of ite literati, to reward the persevering renearches of fiture inquirers. $-A m_{\mathrm{L}}$ Ed.]

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

THE OCEAN-SHIPS-NAVIGATION-MARITIME DISCOVERY.

THE OCRAN.

Paz Ocenn may be comprehensively deacribed as a dinet of water, resting in the hollows of the solid atructure of our planet, and covering not less, probahly, than two-thirds of the entire surface. From calculations, ita greatent depth is believed to be nbout 30,000 feet, or between four and five miles, which, it may be remarked, is alno the greateat height of any lend above the surface of see coun. But the greatest depth which has been ascure tained by actual measurement is not moro than 5000 feet; for such is the pressure and density of the liquid mass at that ciepth, that no counding-lead or apparatus poseseseed hy marinera can poseibly be made to aink below that point from the surface.
The quantity of water composing the ocean, by the unelterable laws of evaporation and condensation, remains alwaya at a fixed point, there being neither increase nor docreusc. It has been remarked by La Place, a French astronomer, that if the existing waters of the ocean were increased only one-fourth, the earth would be drowned, with the exception of some of the highest mountsina; aud that if, on the other hand, the waters were diminished in the same proportion, the largest rivers would dwindle to the capacity of brooks, and some of the principal arms of the wea would entirely disappear, while at the same tine the earth would be deprived of its due proportion of humidity, and the face of nature be dried up and rendered desolate. Broad, therefore, as are the limita of the ocean, they are only in exact agreement with the wants and arrangements of nature in the inhabitable portion of the glabe, and as such afford a convincing testimony of the puwer, wisdom, and goodncse of the Divine Creator.
The bottom or bed of the ocean is marked by the same irregularities of surface as the diy ground. It consists x beights and hollows, rocky protuberancea and caverns, nills and vales, aand-banka and reefa, of every imaginable form and extant. Like the land, aleo, it bears a luxuriant vegetation, consisting of plants of various kinds, all of which are exactly suited to their respective situations. The mea has likewise its tribes of animals, from the huge whale down to the minute coral insect, by whose incesmant laboura the hardest rocky substances are conatructed and reared to the aurfuce of the waters. When the more devated protuberances in the bed of the ocean are raised above the surface level, they assume, as is well known, the character of islanda, and when of a large size, of continents. Thus, the tracts of dry land are in one mense the tope of mountains rising from the bosom of the deep. How islands are formed, sometimes by the action of volcanoes bursting upwanda in showera of lava in the midet of the nea, and sometimes by the gradual accumulation of matter deposited by coraline insects; and also how tracts of land are addad to continents, and selso sometimes taken from them, by tha influence of currents, rivere, and other natural causes, has been already explained in the article Gzoloot.

TiDEg.

e waters of the sea may exhibit to the eye a calm, uniufficd surface when not agitated ly winds, but they are never altogether still. Their ceaseless motion, which has the important effect of preserving them from stagnation, th caused hy twn great risings and depressions, or flowungs and eblings, of the waters, in the course of twentyfour hourn, known by the name of tidea.' The two tides or flowinga of the sea are experienced daily all over the globe, though in some seas, fr m peculiar local causcs, they are lows powerful than in ther places. It is not a
little remarkable, that the condition of high water, or full tide, occurs at directly opposite sides of the earth at the soma time. When it ia high water at longitude 0 , it in also high water at longitude 180, and so on with every other two opposite pointe of the earth, on the same paralel of latitude.
It has been ascertained, beyond all reasonable doubt that the tides are caused by the attractive influence of the moon. By the universal law of attraction or gravitation. all masses of matter have a tendency to be attracted or drawn towarda each other. The moon, therefore, an a mase of matter, in passing round the earth, has a ton dency to draw the earth after it, or out of its natural rela tive position, and it reslly does so to a mall extent. As it passes round, ft drawa up the watera in a protuberance, or, in common language, draws a huge wave after it. But it als. drawa the land beneath the protuberance, and so causea the opposite side of the globe to be drawn sway from the ocean, leaving the waters there to form a similar protuberance or high wave. In the one case, the water is drawn directly up or towards the moon; in tha other, the water is in some ahape laft behind by the land being pullod awsy from it. In both a similar effect is produced; two high tides are caused at opposite extremities of the earth. Where the higher part of either of theee great billows strikes our coast, we have the phenomenon of high water; and when the lower touches us, it is low water. Each of the waves is brought over any givec place in the circumforence of the earth in twenty-four hours, so as to cause high water twice a day. The sun is also known to have a certain attractive influence on the waters of the oceau; but from the great distance of that luminary, the effect is comparatively omall. But when this minor influence of the sur coincides with that of the moon, or acts in the same way, we perceive a marked increase in the tides; on such occusions wa have what are called spring or large tides. When the aolar and lunar attractions act in opposition, we have neap or amall tides. The spring tides happen twice a month, when the moon is ut full and change ; and the neap when the moon is in the middle of its orbit between those two points. A tide requires six hours to rise, which it does by mmall impulses or ripplings of the water on tha shore, and six hours to ebb or fall; but every auccessive high water in from twenty to twenty-seven minutes later than the preceding, or, on an 'average, ebout fifty minutea for two tides, in consequence of the earth requiring that time above the twenty-four hoors to bring any given point again beneath the moon. The tides are thua retarded by the wame reason that the moon rises fifty minutes later every day. It is evident that the tides will be greatest at that point of the earth's surface which is neareat to the moon, or where the latter is vertical. She ia on between the tropics; and accordingly the tides are there greatest, and they diminiah as we approach either poles. It is further to he remarked, that tha moon does not anywhere draw up the tides immedistely. Three hours elapse before the waters are raised, in consequence of the law of inertia, or a disposition which everybody has to continue in the condition of reat or motion in which it happens to be placed. This stinbornness to resist the moon's influcnce is unly overcome hy a three hour's action upon the watera; and thus the tidal wave ia always three hours behind the moon in ite passage. 'Twice a year, namely, in March and September, the tides ars higher than at other times, because then the attraction of the sun asd moon is atrongest. In some of the firths or arms of the sea on the cast coast of Scntland, it has been ocrasumb
wily noticed that there have heen four high watcra in the urcuty-four hourm Thase, however, are not nimple tides. Thw double risings are caused by the irregular passage if the tidal wave from the Atlantic round the north and wouth pointa of the island of Great Britain. When that portion of the wave which proceeds by the south reaches the east cuast sooner than that by the north, or vice vera, there will be two lisings of the water instead of one. A rimilar phenomenon may perhape be observed in other parts of the carth. In the Mediterranean Bea the tides ure sinall, and in some places scarcely perceptible; this ia caused by the general confinement of that inland branch of the ocean, by the Straits of Gibraltar, which prevent tha full action of the tidal wave either in its rising or recession.

colerents.

Besidea being affected by the regular motion of the tiles, the occan, in many parts of its extended hounds, ia influenced by currents, which act continually in particular directions. Currents aro the result of various causes, ach as temperature, winds, peculisr construction of coasts and inlets, but chiefly. as ia believed, of the rotatory motion of the earth. The globe in its diumal motion leaves, as it were, the fluid behind; and hence there is a perpetual flow of the sea from the westem coasts of Europe and Africa towarda the eastern Innd-board, sa it is called, of America, and from the west of America to the eastern coast of Asia. This movement is chiefly confined to the tropics, unless where the sea is turned aside by the land, and caused to diverge towards the north or aouth. If we atart in a survey of this motion from the western const of America, we find it producing a conatant current actoss the vast expanse of the Pacific, till it is turned off by Asia and Australia. A great diviaion of its force is directed through the seas on both sides of the latter centinent, and so on through the Indian Oceen, and round the Cape of Good Hope, till it reaches the frec expanse of the Atlantic, across which it proceeds in the same manner as acress the Pacific. The current of the Atlantic otrikes the coast of Brazil, and breaks at Cape St. Augustine into twe divisions, one of which proceeda round Cape Ilorn into the Pacific, while the other advances through the Caribbean Sea, and so on into the Gulf of Mexico. This latter branch conspires, with the vaat issue of fresh watere which pours into the Gulf of Mexlco, to raise the level of that soa above that of the neighbouring ocean; and cauaing the surplus to force its way out between Plorida and Cuba, produces the celebrated Gulf Stream which is perhaps the moet powerful sea-current in tho world.
It is obvious, that to the mariner currents must be of great importance. From Portugal, for inatance, ships have sailed to the Bights of Benin, on the Guinea coast, being 150 leagues, in two days, theugh they could not return in less than seven weeks. It is also common for vesela to descend to the latitude of the Canary Islanda, tro ordar to get into the tropical current across the Atlantic, which carries them to America in a comparatively short tima; it was by this current that Columbus was carried on smoothly on in hia first voyage to the new continent. The Pacific, it is said, can be crosed in this way in about ten weeks, being at the rate of 1000 milea per week; and oone marinets have expressed an opinion, that China might he reached by this route in less time than by the eharter course round the Cape of Good Hope.
For the same roason that the sea flows from east to west, the air has a tomlency, when not counteracted by other causes, to move in the same dirction. The earth in i's motion lcavea the eir, like the rea, a little behind it; in other worls, does not carry it so fast forward: hence what are cailed the trade-winds, which, operating in the mune direction with the sea-currents, increase the facility of navigation to the westward in a very great degree. It
is impossible to avoid remarking. that these natural phe nomena, which, it is to he supposed, might have beer: counteracted or neutralized from the beginnlng, muat have been designed for some end useful and necessary in the economy of the world. Perhaps, like the diffusive powers given to the seeds of certain plants, they wore intended to aid in the dispersion of the human race over tha globe. It is well known that population exista in many places, which appear cut off from all connection with others, by seas that muat have been impassable by navigators in the early ages of their art. Men could only be drifted to such placea in early ages by the currents of the sea and air; and thus the cultivation of large and important regiona must have commenced much earlicr than would have otherwise been the case.
Beaidea the granil equatorial or tropical current, thero ia one of a less decided character from the poles to the equator. The sea under the tropics evaporates to a greater extent than elsewhere, by the influence of a vertical sun The vapoure are apt to proceed towards the north and south, where they deacend in rain. A aurplus of water is thua produced in the high latitudea, which naturally flows back towarila the equator. Hence a constant but comparatively slight flow from the north and aouth towards that warmer region of the earth. Under the infitence of this atream, large masses of ice are constantly hecoming detached from the polar stores, and drited to the tropics. In some of the bays on the north aida of Iceland, thia frigid subatance comes in vast quantitien, inaomuch as to choke them up to the depth of 500 feeh What is atill more strange, these massea of ice are sometimea mixed up with trees, ame of which arc known to be the produce of the torrid zone in Amcrica; this ia accounted for by the action of the northern division of the great current which parts at Cape St. Auguatine. That northern diviaien, after rushing into and out of the Gulf of Mexico, proceeds northward to Newfoundland, and thence at a high latitude returua athwart the Atlantic. finally sweeping along the western ceasts of Europe, and rejoining the current which gave it its first impulse. By thia current, it is supposed, American timber may easily be carried to the northern shores of Iccland.

The operatlon of the tides ia leas observable in the great currents we have alluded to than in thoes which prevail in the more aecluded seas. The abstraction of water from a secluded sea by the recess of the the, and the rush inwards produced by its flow, are sutheient of themselven to cause very impetunus currenta, more particularly in the narrow channels by which the inland seas are connected with the occan. We find it stated, in a pamphlct respecting the condition of the Orkney islanda, that the Pentland Firth, which sepurates the continent of Great Britain from Orkney, "has no fewer than four-and-twenty contrary currents of the tide at the flood of epring, besides numerous sete and eddies, which, under the local namea of wells, sucelches, and roosts, boil more madly on the Orcadian ahore than ever did witch'a cal dron on the kindred coast of Norway, if we may dolieve old tradition and Bishop Pontoppidan. - The Boar of Papa,' at the opposite extreme of Orkney; is another terrible tide; when he gets a vessel in his tuaks, he shakes the masta out-an operation which, in the country phrase, goes by the name of hackling." The contraricty of influences which are aometimes brought into play by poiar and equatorial currents, nud those produced by the tides, occasion many phenomena extremely perplexing, and sometimes very dnngerous, to the navigntor. In the Cattegnt, by which the Baltic is connected with the German Ocean, one current always goca in by the side next Jutland, while another issucs forth by that neareat to Sweden. In like manner, a current secma to proceed along the eastern coast of Britain towarila the aouth, while another, flowing in an of poaite direction. edvancea along the coast of Holland What is vuli
more curious, under-currents are sometimes found going; ner as a touch upon tha surface of a soap-ball reducoe m a contrary direction to those upon the surface: At the resplendent mase to n drop of commun wator. the 8 strite of Gibreltar, it is sald there in alwayn a murface curront going in, as if to supply a want in the Mediterranean, while, at a certain dapth, there is another gong out. So atrong and so ateady is this contrariaty in the Caribbean Sea, that a boat may be moored hy dropping a heavy subatance to a certain depth; the upper current impela the boat one way, while the under one draw: the aunk object another, and between the two the boat is steadied.
Two currenta of equal foree, but of different directions, meeting in a narrow passage or gut, will cause a whirlpool, a phanomenon which hau lgnorantly been said to be produced by subterranean rivera, gulfa, chasms, \&ec., bat ementially is only an eddy, produced by the contact of two currente meeting on a centre. The whirlpool named the Euripidos, near the coeat of Greace, alternutely abeorbe and rejecte the water seven times in twentyfour hours. Charybdis, in the Straits of Sicily, absorbs and rejects the water thrice in twenty-four hours; and the Mseistroem, on the coast of Normandy, which is considerably the largest, absorbe, every six hours, water, shipe, whales, in ehort, every thing that approachen its malignant influence, snd the next six houra is employed in casting them up sgain. These eddies sre sometimes augmented by the force of contending tides, or by the action of the winds. Thay draw vessela along, dash them upon rocks, or engulf them in their furious vortices, the wreck not appearing until some time after.

WATERSPOUTS.

Marine waterepouts are csured by the action of atmospheric currents, and are as dangerons in their effects as they are wonderful in appearance. Malte-Brun thus decriben them :-" Underneath a dense cloud, the sea becomes agitated with violent commotions; the waves dart rapidly towards the centre of the agitated mass of water, on arriving at which they are diapersed into aqueous vapours, and rise whirling round in a spiral direction towards the cloud. This conical ascending column is met hy another descending column, which leana towarda the water, snd joins with it. In many capes the marine column is from fifty to eighty toises (fathoma) in diameter near its base. Both columns, however, diminish towards the middle, where they unite; so that here they are not more than three or four feet in diameter. The entire column presents itself in the shape of a hollow cylinder or tube of glass, empty within. It glides over the sea without any wind being felt; indeed, several have been ecen at once following different directions. When the cloud and the marine bace of the waterspout move with unequal velocitiem, the lower cone ia often seen to incline sideways, or even to bend, and finally to burst in piecen. A noise is then heard like the noise of a catarect falling in a deep valley. Lightning frequently issues from the very bosom of the waterapout, parlicularly when it breaks; but no thunder is aver heard."
Bailors, to prevent the inminent danger which their remels would be exposed to by coming in contact with these tremendous columna, discharga upon them a canmon ball, which, pansing through them, causer them invarisbly to huret, and, consequently, removes all chance of injury connected with them. This phenomenon is accounted for in the following manner:-Two winds meet-a vortex onsues: any cloud which happens to lie hetween them in condeneod into a conical form, and curned round with great velocity : this whirling motion drives from the centro of the cloud all the particles consined in it ; a vacuum in thereby produced, and watar or any other body lying beneath this racaum is carried into it upon the uaual and well-known principla. The cannon ball, breaking thic cylinder, which is viways pristy hollow, cauces it to fall to piecee, in the name men-

timplraturz of the bra.

The temperature of the sea, like that of the air, in liable to be affected by the latitude and the season of the yenr, but not to nearly so great an extent as the air Within the tropica, where the season has hardly any influence, it is generally found st about 80 or 81 of Fsh renheit's thermometer, being eomewhst more, in general, than tho warmth of the neighbouring air, which is deprived to a certain extent of its heat, in order to carry oa the procese of evaporation. Taking the month of March an one of those during which the heat of the sun muat be equally determined in both directions by latitude, we find that in that month the sea has been found, at 11° 32^{\prime} south, of 80.6 Fahrenhelt; at $31^{\circ} 34^{\prime}$ south, of 75.7 ; at $40^{\circ} 30^{\prime}$ south, of 59.9 ; though in some in. atances it has heen found several degrees more or less at the same season, and under nearly the same latitude. The chiaf cause of the variation is the perpetual fon of water from the poles to the equator, which has been already explained. It has been pretty nearly ascertained, that, in the tropical seas, it ranges ahout 9 degrees of Fahrenheit; in the middle of the temperate zone sbout 12; and after that, decreases with a more rapid and moro equabla gradation. The temperature of the sea is also affected ly its depth. In deep mens betwee,? the tropics, the heat diminishes townrds the bottom ; while, in more frigid latitudee, it is sometimes observed to become warmer. Tha sea is a bed conductor of heat ; the solut rays can only penetrate about three hundrell feet belon the surface, nor does the light descend any farther. A small difference is discovered between the observations on temperature in the two hemiapheres. For the firt 25° towards the south, the decrease of heat is slower, and after thst more rapil, than towards the north.
-It must be evident to every one who considers the great mass of waters composiug the ocean, and the interchange of position which must alwaya be taking place, to a greater or less extent, hetwcen the upper and warmee parts and the lower and colder, that this comparative equability of temperature is unavoidable, even if there were no other cnuees to account for it. The uses of that equability are still more obvious, and must sdd grently to the wonder we slways experience when the economy of nature in minutely traced. By this equability, the natural result of high latitude :s mur: lass corrected, for tie advantage of the human be: io happen to be so placed. A milder sir brestn' n the sea sontens the climate all over the adjacent lanis, and produces a frestness which is of the grestest service to vegetation. On the other hand, in those torrid regions where heth snimated and vegetable mature is apt to sink benesth the vertical rays of the amn, the cnoling breath of the ocean comes generelly e: fixed times, reviving the parehed soil, snd communicating to man seneations of relief and pleasure, which are harcly to be imsgined by those who have not experienced them.

GALINE PROPERTY OF THE BEA.

Tho saline property of the ses has never been eccean tifically accounted for ; it baffles all human investigation Some have alleged that it is caused by fossil or rock nath at the botom, hut for this there is neither proof nor probability. The mont reasonable conclusion is, that the sen is a homogeneous sall hody ; that its waters were created, and have continued, and ever wils continue, in thin saline condition, in the mame manner that the atmoophere hu been created and oxista as a compound body. The inquiry, therefore, why the sea in salt, is junt as needira as why the atmosphere is composed of two or thre gasee. The two quentions are equally shrouded in mytery. "The priportion which the saline matten beu
to the wna antic 0 twenty-fo rom the at the surf cularly far ucting the 'rer, must caline mat the water. ration, the water supp the salt ma There are contained it glauber salt and muriate weter; and of two simpl and bromine except the fo Atlantic Oc matod se fo graine
"Wbr
Muri
Sulp
surp
Muri

Thua, it is is the principa and that mur sotwates is t spocific grnvit not, ua ship d thirty-fifth, in fresh water of swimming sup in s river." thermometer. rqually in its say, it expands or by a dimin rommon freezin ar icy form. T of emallest volu periments of che expand by a d because it is re and when it doe being full of $p o$ great degreo of t strong briny liqu Sea-water, on sticas to the sun's of common salt ; means of pans an d almost every been the attemp ment of food or nater on shiphoa 0 swect water be heause the salin vaited with it, anc mechanical. The best advantage en athered and cond out entirely fresh o ing certain gaseou han, the liquid sho te action of the 4ir as possiblo n

Cnemiary of Na
VUL. I. 13 sason of the : as the air adly any ln 81 of $\mathbf{F a h}$, in general, which is det to carry on nth of March he sun munt latitude, we found, at 11° 34^{\prime} south, of in some in nore or less it vame latituda serpetual fow hich has been ly ascertained, 9 degrees of rate zone abous rapid and more the sea is also e. the tropics, while, in mors ved to become heat ; the sola adred feet below any farther. A the observationa :8. For the firnt - heat is slower, the north.
to considere the cran, and the inbe taking place, pper and warmer thia comparative le, even if thers The uses of the 18t add greatly to the economy, of bility, the natural corrected, for the happen to be so he sea soltens the produces a frestr getation. On the re both animated eath the vertical the ocean comes parched soil, and ief and plessure bee who have not

8EA.
ever heen arten nan inveatigation. fossil or rock nath er pronf nor pro on is, that the set ters were created nue, in this saline atmosjhere hus 1 body. The in juat as needira of two or thro shrouded in my line matters bea
th the water varies considerably. The water of the Atnantic Ocean, within the tropics, contains about one twanty-fourth of its weight of saline matters. There, rom the great heat, very great evaporstion muat go on at the surface; and from the great mass of water, particularly far out at sea, the influence of rivers in counterweting the effect of the evaporation, by adding freah watre, muat be less than usual. In the Firth of Forth, the saline matters form only one-thirtiath of the weight of the water. There loss freah-water is removed by evaporation, the climate being much colder; and the fresh water supplied by rivers is greater in proportion, so that the salt mattera bear a amaller proportion to the whole. There are chiefly four matters (continuea our authority") contaned in sea-water, common salt (muriate of soda), giauber salt (sulphate of soda), muriate of magnesia, and muriate of lime. Potash has been detected in seawater; and it also contains extremely amall quantities of two simple substancea lately discovered, namely, indine and bromine, in union with hydrogen. Diaregarding all except the four first, the composition of the water of the Atlantic Ocean, as analysed by Dr. Marcet, may be saved sallowe. The quantity examined was 500 grains

500 grains."
Thus, it is seen that muriate of soda or common salt is the priacipal aslid ingredient in the waters of the ocean, and that muriate of inagnesia is the next in importance. sea-water is to a certain degree more dense, or of greater aporific gravity, than pure water. According to Dr. Arnot, "a ship drawa leas water, or awims lighter, by one thirty-fifth, in the denso aalt water of the sea, than in the fred water of a river: and for the same reason, a man swimming aupports himself more easily in the sea than in a niver." Sea-water freezes at 28° of Fahrenheit's thermometer. Freah water, as is well known, expanda equally in its volume, 8° above or below 40°, that is to say, it expands by an increase of temperature up to 48°, or by a diminution of temperature down to 32°, the common freezing point, when it assumes the crystallized or icy form. Thua 40° ia the point of mean denaity, or of smalleat volume, in fresh water. By the recent experiments of chemists, it is found that sea-water does not expand by a diminution of temperature down to 32°, because it is reluctant to assume the cryatallized form, and when it does freeze at 28°, ita ice ia very imperfect, being full of pores and interstices, and composed in a grest degree of thin spicular fikes, enclosing drops of a strong briny liquid which cannot be crystallized.
Sea-water, on being boiled, or exposed in small quantities to the aun's rays, evaporates, and leavea a residuum of common aalt ; and the manufacture of thia article, by means of pans and furnaces, is carricd on upon the shorea of slmost cvery civilized country. Innumerable have heen the attempts to render sea-water useful as an clement of food or drink, in cased of great scarcity of fresh miter on shipboard, but in no case has a perfectly pure os sweet water been procured. Filtration lia no effect, meause the saline matters in the water are chemically united with it, and cannot be removed by menns merely mechanical. The procesa of purifying the water to the best advautage consists in distilling it, the vnpour being athered and condensed into a liquid. . Hnt this liguid is at entirely fresh or sweet, in consequence of its containing certain gaveous matters: and threrefore, after distillution, the liquid should for a length of time be exposed to the action of the atmosphere, so as to allow the cescape 4 far as possible of the gases with which it is churged.
©Conmiary of Nature, by Itugo Reid. Ediaburgh, 1837.
Vul. $1 .-13$

A small quantity of potash or moap put mito the watef previous to distillstion, is said to be useful in purifying it and rendaring it more palatable. The following plan for procuring freah water at sea, in a case of emergency, was pursued by a Captain Chapman, when selling of the north conat of Finland. By accident he lost nearly all hia water; and whila thus circumatanced, a gale of wind arose, which blew hard for three weeks, and drove him far out to sea. The Captain was in grest anxiety. The water in the ship would last but a short time, and he had no still on boand. But necessity, the mother of invention, aided him in contriving one. By means of an old pitch-pot, with a wooden cover, and a pipe madn of a pewter plate, and a cask for a receiver, he commenced operations. He put seven quarta of sea-wster and an ounce of soap into the pot, and placed it on the fire. As aoon as tha pot boiled, the condensed vapour began to flow through the pipe into the receiver. In half an hour he obtained a quart of fresh water. This water, though not very palatable, snswered for all neceesary purposes. He kept the atill constantly at work, and got a gallon of water every two hours. And thus the crow was saved from great suffiering, if not from actual death.

PHOSPHORESCENCE OT THE SEA.
Every one who has been at sea, and observed the action of the waters at night, must have less or more remarked certain luminous appearances in the waves. Accounts of the phosphorescence of the sea may be found in the narrative of almost every voyager. The following description is given by Mr. Stewart, in his Journal of a Residence in the Sandwich Islands:-"The exhibitions of the day have been followed at night by a phosphoretic scene of unrivalled splendour and sublimity. We had often before observed luminous points, likn sparks of fire, floating bare and there in the furrow of our vessel, but now the whole ocean was literally bespangled with them. Notwithatanding the smoothnese of the surfaee, there is a considerable swell of the sea; and sparkling as it did on every part as with fire, the mighty henvings of its bosom were indescribably magnificent. It seemed as if the sky had fallon to a level with the ship, and all its stars, is ionfold numbers and brilliancy, were rolling about with the undulationa of the billows.
"The horizon in every direction presented a line of uninterrupted light, while the wide space intervening was one extent of apparent fire. The sides of our vessel appeared kindling to a blaze, and as our bows occasionully daahed againat a wave, the flash of the concuasion gleamed hali way up the rigging, and illuminated every object along the whole length of the ship. By throwing any article overboard, a diaplay of light and colours took place, surpassing in brilliancy and beuuty the fineat exhibition of fire-works. A charming effect was produced by a line coiled to some length, and then cast into the water at a distance, and also by a bucket of water dashed from the side of a vessel. The rudder, too, by its motions, created splendid coruscations at the atern, and a flood of light, by whicll our track waa marked far behind us. The amaller fiah were diatinctly traceable by running lines showing their rapid course, while now and then broad gleamings, extending many yards in every direction, made known the movements of some monster of the deep. But minutencss will only weary without conveving sny adequate impression of the scene: it would have been wise, perhaps, only to have said that it was among the most sublime natura herself ever preenelits.
"The rause of this phenomenon was iong a aubject of apeculation among men ot science, but is now satistactorily ascertained to be a sea animalculse of the luminoum tribe, particularly the apceiee Medusu. The Medund
peluerns of Bir Josoph Banks, and the Medsea acintiolune of Mr. Macartney, emit the most aplendid light. The degree and brilliancy of the exhibition are supposed to depend on the state of the atmosphere and sces. A more grand display than that which we have witneased vrobahly seldom if ever takes place."

This phenomenon has been ascribed to varioun causes, sut the explanation presented by Mr. Stewart is the one now most generally admitted. The little animal hy which this light is produced is sometimes called the glow-worm of the sea. This enimal is exceedingly small, thin, and transparent, and, like the fire-fly, with which we are well acquainted, emits a brilliant light. The sea containa many animals of this nature, of different species. The Medusa have little antennm or horns, from which they dart a strong light, while the rest of their body remains in obacurity. All the zoophytes appear to be in a greater or less degree phoaphorescent. Some eccurate obeervers have also thought, that in addition o this glow-worm light, there is a luminous appearance orlginating from the decomposition of vegetable and animal aubstances, similar to the phosphorescence of roten wood.

THE COLOUR OF THE SEA.

The water of the sea is colonrless when exnmined in amall quantities, but when viewed in the mass in tho wide ncean, it appeara to be of an azure or blue tint. The cause of this generally blue colour of the deep sea has not been as yct clearly explained; but it seems to be in some degreo accounted for by reference to certain principlem connected with the science of optics. Probebly most are aware that light consists of the set of colours which we see so beautifully displayed in the rainbow. Now, it is a law of light, that when it enters any body, and is either reflected or transmitted to the aje, a certain portion of $i t$, consisting of more or less of its colours, is lost in the body. The renainder, being reflected, strikes our visual sense, and whatever colour that may be, the ohject seems of that colour. Now, it chances that the portion of light most apt to he reflected from masses of transparent fluid is the blue; and hence it is, or supposed to be, that the air and sea both appear of this colour.

While there can be no doubt that the ocean is generally of a blue colour, it is equally certain that there ure many portions of sea in which a different hue appears. The causes of these exceptions from the rule seem to be of various kinds. Frequently, the ordinary colour of the sea is affected by the admixture of forcign substances, these being sometimes of a living and organic nature, and sometimes the reverse. The most simple example of the latter class of cases is the common flooding of any stream, when quantiues of mud and earthy particlea are introduced into the river, and emptied into the wea. What is thus atrikingly seen on overy coast, on a amall scale, will readily be conceived to be of infinitely wider extent in the mighty rivers of the principal continents of the globe. Somi seas are coloured yellow from a similar canse. Vegetable matter is known to have a colouring effect; but more usually the peculiar tint of the sea results from an infusion of animala of the infusoria tribes. Another class of cases in which the ocean appears to be tingell with n peculiar colour, is referable to the reflection of riys of fight from the bed or bottom; and helice, in shallow and clear seas, the colour of the ground is a main cause inr any particular tint which the water assumes to the eyc.

WINDE-TRADE-WINES.

A change in the temperatnre, a diminution of the rapour, or any other cause that may orcasion a portion * the surrounding atmopphere to contract or expand,
will give rise to the acirial currents denominutal wirula which, indeed, bear a strong analogy to the curre.ti. which occur in the ocean. When the air by whid we are surroundad becomes heated, it exprnds, and becomen specifically lighter, in consequence of which it mounto upwards, and the colder and denser air which aurrounds the mass thus rarified rusher in to aupply its place. When, also, a condenaation of vapour in the atmosphers suidenly takes place, giving rise to clondn which apeedily dissolve in rain, the teinperature of the surrounding air is sensibly altered, and the colder rushing in upon the warmer, gives rise to a audden gua of wind. For this rcason, a cold heavy shower panaing over head, with a hasty fall of unow or bail, in often attended with a violent and sudilen gust of wind, which ceasea when the cloud dismppeara, but is renewod when another cloud, sweeping along in the sams direction brings with it a freah blast. Accordingly, a whistling, or howling, or noise of the wind, is universally considered to be a prognostic of rain, because it indicates that a change is taking place in the temperature of the atmosphere, owing to the vapour in its higher regione being condensed into rain-clouda.-(Sce article Mrtiomoloor.)

The most remarkable winds are those which travere the ocean atcadily in one direction, and are called " trade-winds," from their use in mercantile navigation An explanation of their cause is given in the artich Metnonolooy. The external limits of the trade-winds are 30 degrees north and 30 degrees south of the equa. tor; but each limit diminishes os the aun advancea to tho opposite tropic. Ihe larger the expanse of ocean over which they aweep, the more steadily do they blow; accordingly, they are more steady in the Pacific then in the Atlantic, and in the South than in the Nort Atlantic Ocean.

Nen and Land Breczes.-In most countrica near the shores of the sea, but particularly in tropical climates, there are periotical winds callod sen and l and breezea of which the navigator takea advantage. The cause of the occurrence of these winds is desertbed in the artich Metenfolone.

Hurrirancs.-The most dangerous Friade to the nat gator are those which oceur in sudden gusts, or squalla and for the approach of which the nkerpest outlook i required. When the squall is in the form of a violex tempest, accompanied by rain, iightning, and thunder, it receives the name of a hurricane. Hurricancs occu most frequently and with the greatent violence in tropienl climates; lecause, in consequence of the very grat heat which there prevails, the rnrefaction of the air, and also the condenaation of the vapour it contains into raitdropa, take place more suddenly and completely than in more temperate regions. By this ueans the electricty of the atmosphere-that sulitle fluid which secms in pervade all borlies, and which universally mecks its own equilibriun-is disturbed, and no longer maintaina an equal distribution through the aierial vapour. It acto mulates in vast quantitics in one masn of vapour or cloud, while in another it is defieient ; and consequently, to regnin its equilibrium, it flashea in the form of light ning from the surcharged clond to the clond that is undercharged, or to the earth itaelf. Henco hurricapes are always attended with electrical mmifestations which adid greatly to the horrors of the apectacte. Hurricanes coumeure in varinus ways: sometions from a single and small cloud, which suddenty expanda overoproding, as with a dense shiroud, the whole tienvena; and wonetines from a slowly gathering mass α clouds which appear to twe irradinted with clectric fre I'he Weat Indies, the Isle of France, and the kingduan of Siam and China, are the countries which are ned subjected to the ravages of hurricanes. In the Wed

Ausuat, nally taug prouch m however, nosticatore nent who Calnian old pro axpenda its nneues a at slapse befc sea, subsld waters are fully calm, of a lake. nuanco, is a a driving te course ; the of removing tunately, de unce which begins to ate the hitherto show a aligh crow's foot. foolish beliet breeze, and ti intonation on

The seas south pole, \mathbf{c} the coldest se form of a fog, os alender ici und so extren excoriate the fantastic clust surface of the called the fros the production relatively warn the dispersion of the atmosph the sea itself h 2 ahcet of ice thicknces of an The most ap giona is the flo berge, which at antw on the ne ations on the mountains, and by winde or the the occan, whe now, and final southwards, and unfrequently do the United State ressels in the ni ing against them tic by the curren exst; and after lower latitudes, prar probahly in

The wavea of dimensions, accor rinda, contendin est account we ten by the lea tements of Phys
minith.al wryme o the currult ir by whiob we. ds, and bucomen which it mounto air which surn to supply its : vapour in the g rise to clondr nperature of the the colder rusho a sudden gua y shower pasking or hail, is often st of wind, which is rencwed when sane direction, ngly, a whistling universally consicause it indicater eniperature of the its higher regions enticle Mitio
ose which travere 1, and are called cantile navigation. ven in the article of the trade-winds south of the equa ve sun advances to expanse of ocean :adily do they blow; n the Pacific than than in the Nort
countrics near the in tropical climatea en and land breezea age. The cause of crthed in the artich

a ritide to the nsvi-

 en gusts, or squalla nterpest outlook is io form of a violews tning, and thunder, Hurricanes oceut est violence in trupp tee of the very grat iction of the sir, and it contains into rain1 completely than in neans the electricily (iid which seems in rsally seeks its own longer maintains an al vapour. It acce mans of vapour or ; anl consequently. in the form of light the clond that is Hence lurricanes ical manifestaticns s of the spectacle. ways: sometime In sudilenly expanda oud, the whole her y gatheriug mas d ed with eloctric fire e, and the kingdeas ries which are met canes. In the Wed ar in the monthAuruet, and the Indians, from their experlence, originally teught our planters the signs by which their apmoach may be prognosticated. All ordinsry algna, however, may prove delusive ; and the best of all prognosticators of storms is the marine baromoter, an instruinant whose services are of incalculable value.
Calno-Dirceses,-" After a storm comes a calm," is II old proverblal expression. The fury of the tempest axpends itself, and in all likelihood there shortly after ansues a state of tranquillity, though several days may nlapse before the "swell," or heaving agitation of the sea, subsides. When hoth the stmosphere and the waters are tranquil, the surface of the ocean ia beautifully culm, and almost as smooth as the glassy surface of a lako. But a perfect or dead calm, if of any continunce, is almost as disagreeable to the navigator as a driving tempest. The ship makes no progress in its course; the ssils are uselese ; and there are no means of removing from the dull and distressing scene. Fortuastely, doad calms are not generally of that continuance which leads to any serious result. A gentle breeze begins to steal upon the extended face of the deep, and the hitherto unruffied surface of the wators begine to show a slight tremulous ruffling, technically called the anw's foot. Snilors have superstitious, and of course foolish belicf, that whistling in a calm will bring up a brecze, and this they do with a drawling and beseeching intonation on some prominent part of the vessel.

THE ARCTIC BEAS.

The seas within the arctic.circle, at the north or wouth polo, exhibit some remarkable appearances. In the coldest season, the air deposits ite moisture in the form of a fog, which freczes into a fine gossamer netting, of slender icicles, dispersed through tho atmosphere, und so extremely minute that they seem to pierce and exconate the skin. The honr-frost settles profusely in fintastic clusters on every prominence. The whole surface of the sea steams like a lime-kiln, an appearance salled the frost-smoke, caused, as in other instances of the production of vapours, by the waters being still relatively warmer than the incumbent air. At length the dispersion of the mist, and the consequent clearness of the stmesphere, announce that the upper stratum of the sea itself has become cooled to the same standard; 2 sheet of ice quickly spreads, and often gains the thickness of an inch in a single night.
The most appalling phenomenon of these dreary regions is the flosting of huge masses of ice, cslled icebergs, which are formed from the water of the melted snlw on the nearest coasts ; little by little the incrusutions on the shores and cliffs increase to the size of mountains, and these being torn from their fastenings by winds or their own great weight, are swept off into the ocean, where they accumulate by the falling of now, and finally resemble great islands. These float southwards, and are the terror of navigators. Not unfrequently do the regular packets from Iiverpool to the United States fall in with these flosting islands, snd ressels in the night have been dashed to pieces by driving against them. They are carried towards the Atlanbie by the current, which generally flows from the northeast; and after they reach the warmer water of the lower latitudos, they rapidly dissolve, and finally disapper prolably in the space of a few nonths.

WAves.

The wavcs of the ocean are various in figure and dimensions, secording to the force and direction of the rinds, contending currents, sud other causes. The fost account wo have of the theory of waves, is that firen by the learned Dr. Arnot, in his work, "Tho elements of Physics," from which we may quete s few mages. "The common cause of waves is the fric-
tien of the wind upon the surfece of the water. Littls ridges or elevations first appear, which, by contit:uance of the force, gradually increase, until they become the rolling mountains seen where the winds sweep over a great exteut of water. In rounding the Cape of Good Hope, waves are met with, or rather a swell, so vast, that a few ridges and a few depressions occupy the extent of a mile. But these are not so dangerous to ships as a ahorler gea, as it is termed, with nore per: pendicular waves. I'lie slope in the former is so gentle, that the rising and falling are scarcely felt; while the latter, by the sudden tossing of the vessel, is often do structive. When a ship is sailing before the wind, and riding over the long swell, she advances as if by leaps; for whilo each wave passes, sho is first descending headlong on ite front, sequiring a velocity so wild that she can scarcely be ateered; and soon after, when the wave has glided under her, she is clinbing on ita beck, and her motion is slackened almost to rest bofore the following wave arrives.
"The velocity of waves has relation to their magnitude. The large waves, just apoken of, proceed at the rate of from thirty to forty milee an hour. It is a vulgar belief that the water itself advances with the speed of the wave, but in fact the form only advances, while the substance, except a little spray above, remains rising and falling in the same place, with the regularity of a penduluin. A wave of water, in this respect, is exactly imitated by the wave running along a stretched rape when ons end is shaken; or by the mimic waves of our theatres, which are generally undulations of long pieces of carpet, moved by attendants. But when a wave reaches a shallow bank or beach, the water becomes really progressive, for then, as it cannot sink directly downwards, it falls over and forwards, seeking the level. So awful is the spectacle of a storm at soa, that it is generally viowed through a medium which biasser the judgment; and lofty as waves really are, imagination pictures them loftier still. Now, no wave rises more than ten feet above the ordinary sea-lavel, which, with the ten feet that its surface afterwards descends below this, give twenty feet for the whole height, from the bottom of any water-valley to an adjoining summit."

sHIPs.

Bhips are vessels of a certain size adapted for sniling on the ocean, and the ingenuity of their construction io one of the proudest triumphs of human skill. Of the early history of ship architecture little can be said of any importance. The buoyant property of water, particularly that of the sea, must have been soon observed by mankind; and, therefore, beginning with rude akiffs and canoes, they would in time acquire aufficient experience and skill to form vessels of a larger size, and to guide them in the required direction by means of rudder and sails. The cultivated nations of antiquity, Egyptians, Carthaginians, Phœnicians, and others, poesessed ships for commerce and war, some of whick were of large dimensions, and moved either by rowers or by the action of the wind on the suils. But of theas esrly ships it is unnecessary here to speak, and wo proceed to notice the construction and character of vessels formed accorting to the principlea of modern and improved science.

The nicest and most difficult operation in ship-building consists in first forming a draught or model of the proposed vessel, or, as we may call it, the plan, which the mechanics are to adopt and follow out. In forming this plan, the designer is geverined by a considerstion of the precise object to be sttained. "There are two classes of vessels-ships of war and merchantmen-and each must possess certain qualifications. In a ship of

War the great object in apeed, with ease of movements, and capacity to accomnoolato her crew, and cerry a safficient weight of guns, atoren, and proviaiona. One point, moreover, it enpecially to be looked to; this is, that the ship float high enough above water to run no risk of recoiving wavea or mean In her lower ports during ection, when these holes munt be neccasarily open. In order to he secure of this, the conatructor make an entimate of the whole welght of the ship, including body, spars, armament, men, and munitions, and must so model the bottom that it will have displaced an equal weight of water when arrived at the deaired depth. In the case of merchantmen, the primary consideration is to sttain the greateat capacity to carry cargo, combined, as far as poseible, with eafis and eany movementa and rapid asiling.
The English excel in ship-huilding, but In some respecta they are outdone by the Americans, whome packet chipe carry enormous weighta, while they are noted for their extreme aped. Among the edmitted and well. exablished principles of conatraction la the leading one, that the greatent breadth must alwaya be before the centre, and consequently the bow or front be more blunt than the atern or hinder part. Abetractly, it would neem moet important that the bow should be the sharpent, so an to cleave the water with the least posaible resiatance; hut experience has proved that it is far more essential to encilitate the escape of the displaced water slong the side of the remel; for when once a passage is opened for the ohip, the fluid tends to reunito behind the point of greateat breadth, where, instead of offering reasistance, it presecs the ship forward, and filta up the space constantly openIng behind her. The principle is evident in the form of the duck and other aquatic animals, which are uniformly broment in front, and gradually diminish to the tail. As it is, then, less esmential that a ship should be sharp forward than oft, there is a further advantage in having the bow full towarda the edge, that it may cherk her in decoending into the waves, not abruptly, but gently ; pitching, or riaing and falling endwise, being the most dangerous to hull and spars of all a vessel's movements. Though sharpness towards the atern-post is vitally eseential to fast eailing, yet care muat be taken to leave the buttock full towards the surface, in order to check the atern gently in deacending, and when scudding before a gale, to lift it in timely season, on the arrival of a sea. To hit the exact mean in these respects, so as not to retard the sailing on the one hand, nor to endanger the ship on the other, requires all the akill of the architect.

There must likewise be a due correspondence between the general buik of the vemel and its length and brcadth; the whole must be properly proportioned. If unduly long, apeed may be gained, but there is a difficulty of turning, and aloo of rising to emespe the breakinge of the mea; long shipe, therefore, are apt to roll and go through waves instead of breanting them, by which their safety is perilled. When a ship is unduly short for its general bulk, it is ept to pitch, which is equally dangeroum, and hence the greatest care is required to proportion the various dimensions.

All oesential preliminaries being settled, the ship is begun to be constructed; and this ia olways done in the yand of a ship-builder, close by the water's edge. The wood considared to be best adapted for ship-building is oak, pine, teak, elm, or beech, and whichever is employed, it requires to be strong, well-seasened, and dry ; the greater part, likewise, should be bent or crooked, to s it the rurves and angularitien in the etructurc; and for this end growing timber is often constrained to assume particular forma. The keel, which is the lowest part of the veseel, and correspondm to the back-bons of an aniand, from which the riba apring, is formed and laid firat on s dip and blocka ent for the purpose. As the frame--ork aroceeds, all parta aro firmly onlted and riveted
together, and the whole is finally covered with the plant. ing in even linew from how to stern. When it is necest anry to bend a plank for either the bow or atern, it f beated hy steam, and then forced into its place by acrewo and levers. The planka are fastened to the ribs by wooden pins, and the plan fa followed of allowing a mam or apace between each plunk, which ix Gilled up or calked with oakum, and the whole in smeared with pitch. In nome instances, the lottom in further necured hy slicathing it in sheets of copper. Meanwhile, the interior beams and partitiona have heen placed; and when duly prepared, the veasel is lawnchrd, or ahot by an casy movement down the inclined plans on which it rewts inta the water. Afler launching, the rudder, or helm, is ahipped. The rudder ja a woolen apparatus placed at the stern of the ship, a large portion being in the water, and by means of it the vesael is atcered and turned about at pleasure; the ateering part of the eppraratus is on deck, and consist of a wheel placed perpendicularly and connecting chaing and pulleys. The principle ons which the rualder acts is very simple: the object is to turn the veasel, and to what ever aide the inclination is in be anade, the rudder is caumed to present an obstacle to the water in that direction. I'he maste of the vessel are now set ; and the npara, comprehending the bowsprit and yards, atid also the rigging art attached. The spars of a ship are not ebandoned to their own unsupported atrength, but are suatained by what is called the stunding rigging. Beasiles this, there is the running rigging, which consists of the tacks and sheets that serve to spread the sails, the halyards, traces, Ifts, clewlines, and all uther ropes used in making, taking in, or mancouvring the sails.

The sails of a ahip are square sheets of canvas bena to the yards, end fore and aft sails traversing on stays of bent to gaffs. Let us proceed to deacribe an entire auil of sails, beginning forward. On the extremity of the bowsprit ja the flying-jib, a three-cornered sail, which goes from the end of its boom upward along its atay, leading to the fore-topgallant-mast-head, and confiped to the atay by rings of wood or iron, called the hanks. It is hoisted by means of the halyard; hauled down by downhaul; and when up, in trimmed to hold the wind by o sheet or rope leading to the forecastle. The jith which leade from its boom to the fore-top-mant-head, is of eimilar form, and so is the fore-top-mast-atay-sail, run. ning from the bowsprit end towards the mast-head. On the foremast wo have tha fore-snil, bent to the lureyard, and spread at the foot by means of tacks and sheets; Above it, the fore-top-sail, bent to tho top-sail-yard, by means of which it is hoisted aloft, while its lower cornes are spread to the extremities of the fore-yard; next, the topgallant-sail, bent to its yard, and aheeting hone it the top-sail-yard; and so with the royal and riy sail All these saila turned at pleasure, to le presented to the wind, by means of braces attached to their yand-smm and lcading to the main-mast. The main-mast is fur nished with a similar suit of saila, somewhat larger; the mizzen-mast, also, though smaller than cither, instesd α a square-sail on the lower part of the mast, has a gaif sail, hoiating up or down abaft the mast.' Some ship have simillar galf-sails on the fore and main-masts, whicd are found of great use in gales of wind, as a sulstitute for storm stay-sails. Most c'arry, also, light stay-sails he tween the masts; but they are very troubiroune. Stwh-ding-sails, spread beyond the agluare anila lihe winga, th found useful when going before the wind. 'I 'he prefis tion of equipping a alip with spars, rigging, and wild consists in so disposing them, that. in a whole-sail brecz the centre of effort of all the sails will be in the sane line with the ship's centre of rotation; or that the eflort of the forward and alter-rids to turn the shijp will ho exactly balanced, as not to require any continued awidr ance from the rudder in cither direction.
'The retarding apparatun of the vessel consists of hem
iman inatr wually m. suite of a lurgent, al y 'Two bo nourr, so e atream ancl three last a to place in by a atrong of the wind the water, show where time, or in times left, w point out h anchor is 8 cular betwe rome home wl be foul wher Ruiling at an or fixed by t letting it dow it from the bo principal kind

At the head with three ma muts, and wi square aails. line-of-battle canrying 120 g magnificent flo I'be decks are o
th the plant. en It is necep or stern, it in uce by acrows the rihe by lowing a meam d up or calked ith pitch. In d by sheatbing interior beams hen duly prean caay moverewtu inta the elnt, is alipped. at the atern of r , and by means ut at pleasure; sek, and ronsiats nnecting chains e rubiler acts is nel, and to what rudder is cassed t direction. The e npers, compre - the rigging ans ot ahandoned to are suatained by enides this, there of the tacks and c halyards, tracea in making, taking
ts of convas bert ersing on stays or fibe an entire suit extremity of the ed sail, which goe ng its stay, leading 1 confiped to the the hanks, it is hauled down by : to hold the wind recastle. The jih, re-top-mast-head, is mast-atay-sail, rune 1e mest-head. On nt to the lureyard, tacks and sheets; e top-sail-yard, by lo its lower comers ore-yard; next, the sheeting loome to royal and sky sail to be prosented to Ito their yardorm main-mast is fur mewhat larger; the n either, instead or he mast, has a gaif mast. Some ship muin-Inuste, which visd, as a rulstituth , light stay-suils te roubirsonie. Stub saila lihe wingr, aft wind. 'Ithe prefies , rigging, and wilt a whole-mail breez will be in the sume ; or that the eflioth In the shij) will ty ny continued asuit on.
sel cunsista of bem
ima ind ruments called anchors, of which osch veasel has muslly more then one. Large ahipe carry the following suite of anchors:-1. The ahret anchor, which is the lurgeat, and only used in the came of violent storma. y 'r'wo bower anchors, namoly, the beet bracer' and amall nower, so called from their situation at the bows. 3. The arram anchor, the kedge, and groppling, or grapnel. The three last sre often used for moving the whip from place to place in a harbour or river. Each anchor is let down by atrong cable of iron or rope, and in lifted by means of the windlass placed on deck. To the cable, when in the water, a buoy or floating object may be attached, to phow where the anchor has been let down; end to save time, or in an emergency, the anchor and cable are sometimes left, while the vemsel proceeds, the buoy acrving to point out where the anchor may be recovered. The anchor is aaid to be a-prak when the cable is perpendiculer between the hawse and the anchor; it is said to come home whon it does not hoid the ship; it is said to be foul when the cable gete hitched about the flukes. Ruling at auchor is the state of the vessel when moored or fixed by the snchor. Dropping or rasting anchor is letting it down into the sea. Weighing anchor in raising it from the bottom. We shall proceed now to notice the principal kinds of veasels.

War Veanets.

At the head of the list stande the ship proper, a vessel with threo maste, called the fore, the main, and mizzenmats, and which is square-rigged, or carrying large aquare sails. The largest ships are vessels of war, named line-of-battle ships, having three complete decks, and earrying 120 guns. A representation is given of euch a magnificent floating apparstus in the accompanying figure. 'the decke are equivalent to different floors. On the first or

Pirmbrute war-versael.
appermost, extending on each side of the fore-mast, is the forccastle, and next to it, between the fore-mast and the main-mast, are the vaist and gangway; between the min and mizzen masts is the quarler-derk; and next to $i_{\text {i }}$ towards the stern, is an elevated part called the poop. A narrow passage on each side of the veseel, communicatmg from the quarter-deck to the forecastle, is called the gansway, and in nettings alove it the seamen's hammocks are stowed as a protection during action.
The forecastle is appropriated to the best or able-bodied wamen, the quarter-deck is the proper situation for the officers, and in the poop are stationed the marines. The quarteraleck is a privilegell spot, and as, by ofiction, the wrereign is supposed to be present, every one who enters his deck must salute it by touching his hut, and all pesent return the compliment by touching their hats Wrewise. Benesth the joop are the apsitments of the captail, and some otherr. Descending from the upper nnge of decke, we arrivo at the main-derk; at the fore
part of which ts the ack-ward, and next to it tas galks or cook's room; at the efter part, benenth the captain's cabin, is the admirsl's cabin, The next, or third range of deck in the middle-deck, at the fore part of which in the ward-room, or genersl spartment for the officers. The fourth range in the louer-deck, where the sailora sleep and mems, sind on which, almo, is the gun-room, for inferiur officers. On ell the decke mientioned, cannon or large guns are ranged, each having its appropriate port-hole; and by these holea, on which temporary windowa are fastened, light is admitted to the interior. We now descend to a floor benesth the surface of the water, which is calied the orlopoderk, on which, between the main and mizzenmaste, is the cock-pit, or surgeon's room; the purser's, boatswain's, and carpenter's berths, and midahipman'e mess-room. Benesth the orlop-deck is the hold, a apecica of cellar in divimions, containing the boatswain's and carpenter's stores, the powder magazinc, shot, the watercasks, and provinion stores.

War veacels receive their designations from the number of their decks, or of the guns which they cacry. Line-of-battle shipe are of various ratee. The first-rates include sill carrying 100 guns and upwards, with a company of 850 men and upwards; second-rates carry 90 to 100 guns, and from 650 to 700 men ; and thirib rates carry from 60 to 80 guns, and from 600 to 650 men The rates thus diminish in bulk and complement of men down to sixth-rates. A common rate is a 74 gun-ship, which carries 600 men . The following in a list of the titles and number of the crew of a first-rate ship, clamed in the order of their amount of payt

Captain, Lisutenania,
Masier.
Chaplain,
Surgeon,
Purser,
Second Manter
Ascisanil Surgeans,
Gunner,
Boalaw elin,
Carpenter,
Male,
Midshipmen
Master'm Amaiatents,
Schoolmanter, * Clert,
Master-al-Arms,
Ship's Corporals
Captain's Coxawain Lnunch ditio.
Quartermasters,
Gunner's Mates.
Boalawein'a Mate Caplains of Forecaatle Capiain of thold, Ship's Cook,Snil Maker, Rope Maker, Carpenter's Átates, Caulker,
Arinourer,
Captains of Maintop, Captains of Foretop, Caplaina ot Math, Captainn of After-Guard,

Yeoman of Signala,
$\overline{106}$

Brought forward, 108 Asilmakerts Miste, Caulker's Mste Armourer'a Maten, Cooper, -
Voluntears Gunneris Crew, Carpenter's ditto,
Sailmaker's ditio Cooper's ditto,Yeoman of Store-room Able Semen, 1 Ordinsry ditio, $\}$ - - 478 Cooks'mate, Barber,
Purser'a Steward
Captain'a ditto. Cupisin's Cook, Wardroom ditio, Wardroom Steward Steward'a Mate, 1, andaman, Boy a,

Tolal Seame] - 600
Captain of Msrat.siz - 1 Sieutenanis,
Corporala,
Drurgmers,
Privsies, :
Total war complement of officers, neamen, and marines,

A number of the above officers and subalterns are not appointed to third or inferior rates, Latterly, engineers have lreen added to the list of men in the royal nevy, intended for survice in the stesm marine; they take rank below csrpenters.

The burden of e first-rate is from 2700 to 2800 tons: the leugth of the lower gun-leck is 205 feet 6 inches, and length of keel for tonnage 170 fect 6 inches, the upper decks being longer in proportion; the leight from keel to midships from 50 to 60 feet. The guns are generally distributed as follows:-Forecastle, twe 18-pounders and two 34 carronades; quarteraleck, twe 18 -pounders and fourteen 32 carronades; msin-deck. thirtyfour 32-pounders; middle-deck, thirty-four 32-pounders:
and Inwer dectr, thirty 82 -poundors and twe 08 carrondea Total, 180 guns

- Dhipe of lews than 44 guna are termed frigappe. A trigate, of which the following ongraving it a sketch, has

onif one gun-deck beneath the qua-ter-deck, and beneath that lighted and ventilated partly by ankylightas and partly by mall holea in the sides, la a deck appropristed to the men, officers, de.
The following aceount of the organkation and arrangomente on board of war-vemels in abridged from a work entitled, "Two Yeara and a Half in the American Nary." by E.C. Wines, 1833. Though strietly applying to an American frigate, it is generally applicable to a similar vemel in the Britiah navy. "Time on shiphoard in divided into watches, and reckoned by bells, Hence you sever hear the queation, ' What's o'clock ? hut 'How many bells in it ${ }^{\prime}$ ' The twrnty-four hours ase divided into six equal portions, called watches. At the end of the first half hour of one of these portions, the bell is struck one; at the end of the second, two ; and so on, till the serica reaches eight, when it commencea again. In the ahip's journin, the dates are put down according to the common mode of reckoning time. The division of time into watches differs nomewhat at nea and in port.
"Order in the firat great rule on board a man-of-war, and that to which all others muat bend. From day to day, from week to week, from month to month, and from year to yenr, the mame stroke of the bell is followed hy the eame whistle, the same call, and the recurreuce of the mame duties. Every thing has its place, too, and muat ho kept in it. So true is this, that a permon acquainted with the details of a ship, can lay his hand on a given sbject in any part of her es well in the dark as if a thoueand cunn were shining en it. To the same grand prin-ciplo-nanan-are to be attributed the numerous divicions and subdivisions of the officere and crew.
"At the head of the list of officets atends the eaptain, whose will ia supreme; and from his decinions, for the time being, there is no sppeal. He has n general superintendence over the affairn of the ship, and every order of - general nature must originato in him. No important alteration can the made without his knowledge and con ent. It is his duty to take a general oversight of the officern' conduct; to see that they are guilty of no improprieties, and to punish such an are. He is mesponsible for the eafety of the ship, both at mea and in port. If any juminens of a pullic nature is to be traneacted with a Greign power, it falls of course into his hanils. Theso are his dutien in time of pence; in war he has atill higher responaibilities.
"Next in rauk come the wardroom officers, consisting, on tmard of a frigate, of six licutenants, a purser, aurgrenn, thaplain, sailing-inaster, and licutenant of marines. "The tirnt iicute:ant in nert \ln oower to the captain ; and though
his atation ia leon reaponaible, his duties are mom hals rioum. He has a general supervision over the ahiph, and in to aee that alie in kepte elean and In proper oriler. 'To this ond he in oliliged to inapuet every pratt of her nt lram once a day, and report her convilition to the captain. When the ahip is put in commimion, it devolves cliefly upon him to atation the men, a huainese of the noom laimrioun and dimieult nature, requiring great patience, a illucrimi. nating juilgment, and deep Inalght intu the human hearh It ha hia duty to have the men frequently exercimel at the guna; to regulate the expenditures of certain publis ntores; to take care that the men keep themeelven riom and decently olad; to auperintent the watering ant yr. tualing of the ahip; and, in ahort, to aee that all lier mul tifarioun and complieatel concerne move on regularly and harmonlously. In coming to an anchor aud getting under weigh, and when all hande are called to reef top aaile, or for other purpoecn, he takes the trumpet. 0_{n} him, more than on the captain himmelf, deprenula the comfort of the officers. In port, it belonge to hims to graut on withhold permienion to go nshore ; and there are n thoumand other waya in which, if he is a man of capricious or malignant diaposition, he can gratify him whime or hie apleen at the exponme of the cemfort and feeliugs of hia fellow-officers.
"The other lieutenants are divided into watchen, and takt turns in performing the duties belouging to their atation. The licutenant on duty ia atyled in writing the officer of the watch, but in familiarly called the officer of the deck Solne of hin duties are common at wea and in port, and nthers are peculiar to each of thene rituatious. In buth he in reaponaible for the deek while he han clarge of it and luas also to take a general overright of hle ship. Ho must mee that the mien'a rationn are properly cooked, and that they have their meala nt proper hours. The serving of the grog is alse under his coutrol. At aca, his duty " to sail the ahip, keqpiug her on the course given her by the captain, and reporting to him any change in the wind the discovery of land or atrange saila, and any extraorith nary occurrences. At night, he has the captain wated at etated periods, and the atate of the weather rejorted te him. On receiving the trumpet, the firat thing the officet of the deck does ia to glance at the compass, the esils, the dog-vane, the sky, and the wuter, to discover the state of the ahip, the wind, and the weather; and at the eud of the watch, be muat have a general account of the weather, end other matters which he may deem proper, inserted is the ship's log-book. The duty of the officer of the deed in port is to receive any supplies of water or provisiona which may confe alongside, to regulate the acndiag awey of boata, to keep a look-out as to what is geing on in the harbour, to report the arrival of ships, and any importnnt occurrences to the captain, \&c. The liew tenants are also officers of divisious, and frequently hat to exercise the men at the guas, besidea superintending the monthly issues of sleps to their renpective divisions
"Next in rank to the lieutenants comen the aailing master, whose duties are more comprehensive and arive ous than thowe of any other oflicer. His sujpervisia and reaponsilility extendm to almost all the public einea in the ship, but particularly to the water, spirita, cabiea and anchors. He reporta the daily expenditures of wate to the captain. It is his busincss to keep the shapi place, and report it at least twice a day to tho commander together with the bearings and distance of the port whirh she is bound, or the nearest land desired to N made. Some commauders leave this entirely to them sailing-matters.
"'Iluete is no berth on baril a man-ofi-war mure mut than that of purser. He holds the keys of the stlung box; and though his regular malary is nce much, bin emoluments, arising from other sources, sre considendie All the provisions on toard are comunitted to his chare and the ship's accounta aro all kept by him. His requo

collite

 jually "Th maft of deas of and mi moen is atherag eare of may be rank, di board, a Prom ti the surg diseasea from the list, cont for the 0 cusc eith of his be view of fut. On onppers © colloct up to attend wuch pree provent di afficers an is a chapl administer a schooluna "The in they requii are also us the deck t charge of e while at at quadrants, out the la: made good, captain. 'I at night. tho cruise, log. This manding of when calle by a curtail the olidest dutues are u the others."The boat $a \operatorname{diatinct}$ cla boalswain is port attends him hy his the rudly hu that issue fro the militery main rigging belonging to ing of the st alterns. The mocks, and g tr in abliged to the condition tenant every
"The gran mamen, orlin aion has refere consideratious military divixixic ovard-watehes, toppuen, afterg "The petty

- are mom labs ver the ship. and roper order. 'To art of her at icuat e eaptain. When iven clalefly upon 10 noot lahorieus jenee, a liwarimithe human heart ly exercised at the of certain pullin themaelven cloan watering and vir. e that all hee muleon regularly and chor and getting ralled to reef tope the trumpet. O_{a} ; dependa the com to him to grant ot d there are in thow man of capriciow ly hia whims or hin and feelinga of hin
to wstelies, and take ing to their mation. riting the officer of oflicer of the deck a and in port, and situations. In buth lie lian charge of it ght of the ship. lis iroperly cooked, and hours. The serving
At sea, his luty" course given lier by change in the wind e, aud any extraorde the captain waked weather reported 5 first thing the officen ompask, tho wuils, the discover the atite of ; and at the end 4 count of the weathen, mpropor, inserted is So nficer of the dets water or prevision egulate the sending to what ia going on I of ahips, and any in, \&cc. The licu and frequently har sides auperintendint enpective divisions \& comes the sailing prehenaive and arler r. His supurvision all the public ainur water, spirits, cabien xpenditures of wotes to keep the shupt ay to the commander, tanee of the port io land desired to to his entirely to ther an-of-war mure my keys of the at enge y is ne: mach. bin res, are considerable: initted to bis charse. y him. His requa
abplitien are very great, and heavy bonde are therefore jually exacterl from him.
"The argeon and hie two aesiutants form the medieal meff of a frigate. The ammiatant-surgeonn form a ilistinct deen of officera, ranking between tha wardronm officera and midmhipmen. In frigatee and ahips of the line they moes in tha rock pit, but in all other puhlie venmeln in the ateerage. The buminena of the ataff in of courne to take care of the aick, and perform auch aurgical operationn as may be necesaary. A daily journal is kept of the namen, rank, dinenaen, and constitutional hatits of all the siek on board, and alao of the medieines adminimered to them. Prom the journal a report is mada out and slgned by the aurgeon every morning, atating the namea, rank, and diseuses of the sick, and the number added to and trken froni the liat. Thia is handed to the eaptain. Another list, containing only the namea, ia placel in the binnaelo for the une of the offleer of the deck. Nothing will excuse either an officer or a man from duty, but the fuct of his being registered on the siek list. A general review of the aick takea place every morning afler breakfroct. Ona of the ansistant-surgeona inspects the ship's onpers every day, to see that no verdigria la allowed to collect upon them. It is the duty of the aurgeon not only to attend to the sick, but aleo to recommend and enforce guch precautionary measurea aa will havo a tendency to provent dinease, and thus mecure the general health of the officers and crew. On board of every war-vesael there is a chapiain, who conducta tie Sunday servicea, and administers spiritual conaolatims to the dying. Of iate, a achoolinaster has been added to the lint of funetionarica.
"'The midshipmen may be calied apprentice officers, and they require to learn certain duties of neamen. They are also useful by enrrying menauges from the officer of the deck to the captain, and in port one of them takes charge of every boat that leaves the rbip. Towards noon, while at sea, they are obliged to go on deck with their quadrants, and take an observation. They hnvo to work out the last day's run, and report the course, distance made good, and ahip'a place at noon each day, to the captain. 'They muster the crew when the watch is called at night. They are also required to keep a journal of the cruise, which is, however, only a copy of the ahip's log. This in examined every few weetk by the commanding officer; and if it happena not to be written up when called for, the deliuquent is generally punished by a curtailanent of some of his indulgencea. Five of the oldest midshipmen are master's mates; and their duties are more important and responsible than those of the others.
*The boatwwuin, gunner, carpenter, and auilmaker, form a distinct class of officers, called warrant-oficera. The boatawain ia charged with the rigging of the ship, and in port attends to squaring the yards. You may know him by his siiver whiste, rattan cane, and, abovo all, by the rudly hues of his countenance, and the olious vapoutis that issue from his mouth. The gunner has charge of the military stures, and, when all hands are called, of the main rigying. The carpenter is reaponsible for the storea beionging to his departinent, and superibtenids the caulking of the ship, and other work performed by his sulaterns. The sailmaker in charged with the suils, harnmacks, and generally ali the canvas in the ship. At sea, bo is obliged to g alof on each of the three masts, examine His condition of the sails, and report it to the first lientenant every morning befare brakiast.
"The grand divisions of the crew are into petty offiecrs, mamen, ordinary sesmen, landsmen, and hoys. This division has reference to rank; but there are others, into which considerations of this kind do not enter. Such are the militser tifisiuns, and the divisiuns into larhoard and star-ourd-watches, inuo furenstlemen, fore, main and mizzenuppmen, afterguard, waisters, \&e.
w'The petty or warlant officers are oppointed by the com-
manier, and may be degraded by him without the formatio tine of a court-matial. They are selected from among the mont experienced and trustwerthy of the seamen. They consiat, ou boaril of a frignte, of n manter-at-arma, eighi quarter-mantern, four boninwaln'a maten, eight quarter. gunnera, a boatswain'a sud gunner'a yeoman, a carpenter and sailmaker'n mate, an armuurer, a cooper, covis. anl eocknwain.
"The highent and moat reaponsibla of the petty officere is the master-at-arma, who may be called the principul policeofficer of the ship. He has charge of all the privonera, and every morning makes out and hanila to the commander a liat of their nanies, with a specification of the erime for which cach ia confined, and the time whirn he wua put in confuement. Ito haa churge also of the berthodeek, anul it is his duty to mee that it is kept in gond order. All property that falls in his way for which he cannot find ant owner, is thrown into the 'lueky-bag, the contents of which, if not finally claimel, are sold a auction.
"The office of quartermaater is one of mome dignity and considerable importance. It ia his duty to keep a leokout with hia apy-glass for signala from other ahips, and to report them to the officer of the deck and also to report to him ali boats that come aiong-ride, and all other movenents and oceurrencea in the harbour, which he may deem of sufficient importance. One quarter-maater in statoned at the wheel to ateer the ahip, and tho othern keep a look-out, as in port. When the log ia thrown, they hold the minute-glasa, Ali the coloura and signale are under their charge.
"Boatswain'a mates are an indispensable ciass of men on board of a man-of-war, but their office is the mont invidious and least desirable of all. They have to perform ali the flogging, and the men accordingly hold them in zome degree of detentation. Each of the boatswain's mates has a siver whistle suspended from lis neck, with which he echoes the ordera of his auperiors. The armourer is the ahip's blacksmith. The cooper opena the provision barrela when their contenta are wanted, and performa other mattera in his line of business, when necessary. The dutioe of the cook are somewhat arduons, and it requires a good deal of patience and care to perform them acceptath; to the crew. The meuls must always le reported 'rcc.is?', morning, noon, and night. At noon, whe: dinner is reported ready, the cook takea a specimen to the officer of the derk, who inspeets it, to see that it is properly cooked.
"The alove are the principal petty offices; and we now come to the rest of the crew, or neamen, who are of different elassea. The firat elans consists of seamen, or ablobrodied men, who are expected to be finished sailora; the next elsse are ordinary seamen; and afler these are loys, who perform various nsefut olfices, but chiefly as servants. The boys, and ull others on shipboard, who do tot lieep watch, are called idlers.
"On bourd of a frigate there are six military divisions, one on the quarterderk, one on the forecustle, three on the gundeck, and one on the berthdeck. The last is commander by the purser, and each of the others ly a lientenant. It is the business of those who compose the purser's divivion to pass up powder to the combatants. Every officer nad man ia ineluded in one or the other of these divisions, and is atationed in a particular part of the ship. These are the stations for action, and are colled gencial quarters. The crew is muatered and inspeeted at quarters always onee, ond on thard many of our shipre twice a day. There are ten or twelvo men to each of the guns in a broadside, called first and second captains. spungers, londers, powder-boya, \&e. On the intimation bring givent the hoarders run for their eaps, and rver man seizes a cullass. At the first tap of the drum, ther, is a seneral rush throughoot the ship, and lufore the music has reased, you may hear the midshipuren of tho
divianona calling over the names, George Bell-frat cup ' an reprewented in the preceding fgure, with three men tain, sir-Jamen Andermon-second captalit, sir-Wil. Liam Btokes-puwder-boy, sir-and to on. Having called the namen, the milabhipmen report to the offecers of their divinions, the officers of the liviniona to the firm lientenant, and he agaln to the captain. Sheold the order be given to retire, another ruinh taken place, the cutlanees and boarding-eape are roturnel to their placen, and the micn, as the came may be, proceed to their iluily laboum or their evening diversiona. Ail this in but the work of a moment. Sometinen the call to quartorn is beaten in the dead of night, and then the men are olliged to get up, lash their bammock, take them on deck, and stow them in tho net. tinge, and le ready to anawer to their naines in the njrace of about eight or ten minutes. The midembipmen have to do the same.
"In aldition to their general quartera, the men are alao atationd for getting under way, and coming to an anchor, for tarking and veering, and for other general evolutions. I have mometimea been aatonished to mee how quick, in the darkent night, it in discovered that a man in miseing from his post, and how speedily ho in eearched out and brought to it. But not, only diees overy man know his atation; he han a apecific duty to perform at every onler, and a failure on his purt might dimeoncert the whole operation. Thus, it will be acen that, notwithatanding the complicated nature of naval evolutions, and the apparent confusion which must necenearily prevail when all hands are called, there in in fact the greatent powible order, efficiency, and harmony of action."
The marines act an a boly of oolliers, and do duty both as entries at different parta of the vessel, and as marksmen, both bolow and alof, during action. Being in some respects an armed police over the sailors, there in ofen a feeling of jealousy between the marines and other members of the crew.
The following is the gradation of officers in connection with the royal nary:-Midshipman; lieutenant; manter and commander (usually called coptuin); posteaptain; rear admiral (of which there are several gradntions, atyled red, white, and blue); and admiral. The eenior enptain of a squadron, which convists of a few vemela sent upon an expedition, is atyled commodore, and he lis the general commander for the time being. A fect $\leq a$ large number of vemels commanded by an admiral. The affuirs of the royal navy are managed by a department of government called the Admiralty, whence the commissions of tho officers are issued. Latterly, the condition of both officers and men in the royal nuvy has been greatly improved, and rendered much more collfortable than formerly.

Merchani Vensela.

Vessela employed in trade, or merchantimen, are of mnumerable sizes. The largest is of the ship-proper,

Merchans shy:
and myare auils, but having only an upper doek, the aidea of which are umually pierced to carty guna Vee mela of thia kind pomeses holda of very large dimensiona for ntowing guodin, and thetr burien la from 1000 to 1600 tona.

Next beneath the clame of whlpen is that of brizn. A brig, of which we here offer a sketch, han only two manta, but it possemes square rigging, like a ship. Driyt are handeome and roony vaselw, eurrying from 700 to 800 tona.
With briga, square rigging terminaten, and wo now come to classen of vemelu in which the rigging in ot a

different character. At the bead of theme mante the arhuonur, a vemeel with two makts, and capable of carnod ing a lurge prese of canvas, but their rigging is various.
Vrasely posseming only one mast, are either alowps or cuttera, lxth distinguatied by their tull mast and as.

Sioop.
tretorly large maineail, which projects towaris the mem Sloulis are chi fly engaged as coasting traders, and an of all burdens, from 100 to 600 tons. The clase of sloopis employed to carry goorla anal pussengera betwero Landon and leith are ordinarily styled smitkk. Then are schooners and sloops of war carrying from ten ic twenty guns; they are generally employed in the cus tom-houne aervice, and adapted for quick aailing. trim of th equally bal Latterly introduced nine, almo in limited qu liy the pali力ипсее. drive the ve the paddle metand the n addition to Article Con

Navigutio

the direction term is deriv ugo, to mana the term $n n v$ terms murine latin root, Vemels a currents, and principal mo dists in rend blows anherer The winds those which ship's courac when the win perhaps two cumes oblityur and receive a in the rigging rowers : sorn is with a very while others wind becones and others ar upective yards Reefing and painte of seam
Bhipa are
Vol. 1 - 1
th three mentur pper deeck, the y guna, Ves rge dimenalona from 1000 to
hat of briys. thas only two ko a nhip. Briga ing froin 700 to
en, and wo now 10 rigging is ot a
theme atanja the 1 caprable of carry igging is various. are cither aloope or tall mast and ox.
towarda the mem traders, and are Tho clase of ansengera between d amarks. Then ying from ten tc loyed in the cu* ds sailing.

A hager la a amall kind of vesel, but carrying three cours and a running howaprit, with alle of the form calliod lug-alles. A brigantine is arig which can the ather milled of rowed. A xebee is a light wwift-malling remel, of three masta, and a long prow, peculiar to the purts of the Mediterranean. A galley is another vamel poeuliar to the ports of the Mediterranean; it is low bult, and carries two musts, but depends chiefly on being powedl with oura : condernued eriminain are often ment ga a puniahment to row these galleys. A yarht in a suall vemel dealigned either for atate or plenaure. All the precoling clasees of vemacls posmeme tlecks. Small open vero ala, not pomemning the accominolation of a ileck, are of the clawe of boats, of which there are many varietien-a a the long-boat, pinnace, wherry, gig, barge, and ao forth. Boate are mostly huile with the side planks lapping over one another: and thin, which is called loing rlinker built, given them greater buoyancy and atrength than if luilt in the manner of ships.
In every clans of merchant vemole, the prime ohject in to accommodate an large a quantity of goodn an poanible, and therefore comparatively little apace is nccupied with secommodation for either the captain or hia erew. If the cargo be light, nuch an cotton, hailinst is required to be put on hoaril ; the couniata of and or any other heavy muterial, which is placed lowest in the hold, in order to balance the vessel, and give it due hold of the water. In ntowing cargo, care in taken to prewerve the trim of the veswol-that in, to keep it upright, and also equally balasced fore and af.
Latterly, vesneln propelled by nteam power have been latroduced and largely employed in the commercial marine, alao in the royal navy. Steam veasela carry only a limited quantity of rigging and canvas, the propulaion ing the paddlen being aufficient in all ordinary clreumolunces. Much sail, in the case of atiff breczen, would drive the veasel finter than the stesm, and thereby caune the paidiles to ilrag through the water: an thin would retard the motion, sailn aro mounted only to give a small addition to the impetun, and to nteady the vessel. (Bee Article Converanca.)

Navigation.

Navigution is the art of conducting vensels ac sea in the direction in which they aro deaigned to proceed: the term in derived from the Latin word navis, a nhip, and upo, to manage or govern. From namis, alno, in derived the term navy, which signifies a collection of ahips. The lerms marine, maritime, and mariner, are likewise from a Latin root, to wit, mare, the ses.

Vessels advance in their course by meana of tiden, corrents, and winds; tho winda are in inost instancen the principal moving agent, and the art of the mariner consinta in rendering slmost every breath of wind which blows rulservient to the purpose of the intended voyage. The winds most favourable for propelling the vesel are those which blow on the quarier, or slantingly on the ship's course. The reason for thia is very obvious: when the wind blows directly astern, it ean affect one or rerhaps two nuils with cormmenaurate force; lut when it cumes ollitiuely, every sail may be trimmed to meet it, and receive a share of the impulsive farce. The variety in the rigging of vessels causes much diffrence in miling nowers : some will sail close to the wind, as it is ealled, $\dot{\sim}$ with a very ainall angle to the direction of the brecze, while others require winds much more fair. When the wind becomes too powerful, certain aaila are taken in, and others are reefed, a portion being bound to their reapective yarda, so an to reduce the surface of canvas. Heefing and bracing the yarda are among the niceat pointe of seamanahip.
Ships are navigated, as nearly as pomsible, by the Vol. I-14
path which in the whortent diatsace between the purt whence they depart and that for which they are dew tined t but from contrary winds and intervening land, it is generally necemary to aail in a track of a zig-raty form. When a vensel is oblignd to mail to the right of leff of the direction of the intended port, it is maid in turk; when the shipf tacking towards the left, and the wind consequently on the right, it ia sald to be on the atarbourd tack; and when It is tacking towards the right, it is sald to the on the larbonrid tack. A ship does not aail exactly in the direction of har keel, hut doviatea towards the side that is opposite to the wind; and the angle contained between the apparent and real direction la called lef-uvy.

The tacking or chunging of directionn, in order to present the saila at a proper angle to the wind, in a procean requiring conviderable seumanship. 'The thip being already close to the wind, the helm is gradually eamed down, no that the rudder may not exert ita full furce untl ahe begina to turn, not act andideuly to cheek the headway, so essential to the succeas of the ovolution; at the mame time the head sheets ars flown, 00 wo to cause the anila before the centre of rotation to inake, and lowe their power of baluncing the after ones. As the ship approaches the wind, the npanker in drawn gre dually from the lee aide towards the centre, that lt may keep full, and, by ita action so near the atern, continu promoting the rotation. An moon ne the aaila reach the direction of the wind, and ccase to draw, the cornert of the cournes are drawn up, and the tacks and sheeta overhauled, ready to awing the yards. After a while, the mails catch aback, and the fore-saila, soon manking the after onea, act with a powerful lever to turn the bow. At length, having come head to wind, without lose of headway, and the evolution being eertain, the after yards are awung round, ready to receive the wind on the opposite nide; which operation is then more easily performed, from the asiln boing becalmed by the fore ones. Lastly, when the atter asils are fillod by the wind, the hearl yards are alao braced round to receive its inpulse, and the nhip at once recovers headway, and proceeds on her new tack.

Thus casily is a ship mancuuvred in fine weather. Not unfrequently, however, a gale comea to diaturb the penceful course of the mariner, and call forth all hia exertions. Let un suppose that, whilst our ship la contending againat the head wind, the minfortune la aug mented by its gralual Increave. Shortening sail beconen necessary, and it is determined by two leading considerations-the atability of the whip, and the strength of her inasts; it is to diminish the careaning of the one, and avoid endungering the other, that the surfice spread to the wind is reduced. In ohortening sail, we always begin with the highest and lightest eailn, descending gradually, and kecping pace, with an inverse ratio, with the increase of wind. The saile do not, hawever, come in uniformly in the direction of the length; but the after saila most rapidly; because, as the wind increases, the energy which it exerts in a forward direction upon the masta tends, with a powerful lever, to depress the bow and raine the atern; hence the latter drifts more easily to leeward, therehy bringing the low towards the wind ; this effort is also promoted by the action of the sails passing sarther to leeward, and by the ship ceasing to sail on an cven keel. From alı these reasonis, the more the wind increases, the more she tenla to come to; so, to avoid a constant recurrence to the action of the rudder, it hecomea necessary to shorten anil fastar aft than forward, taking in the mizzen-topgallant-sait, and even the apranker, befoce the fore and main-topgallant-nails ; for the same reason, when it becomen necessary to reef, it is not unusual to begiu with the mizzen-topsail. Reefing consists in hinding a portion of the maile to their respective yards, so as w
reduce the anrface; and in the case of a heavy gale, it becomes necessary to reef or take in the whole from atum to stern; the helm being at the aamo time kept constantly hard down, the vessel is said to lie to. Should the gale abste, the recfs are shaken out, sail is odded, and the vessel bounds sctively on its course.

THE COMPASE.

The most important instrument for the guidance of the mariner is the compass. There are different kinds of compasses, to suit peculier purposes; bat that which is commonly in use on shipboard is of the following construction :-The most casential part is a nagnetized bar of ateel, called the needle, which is supported horizontally on a central pivot, round which it is free to move and to point in any direction. The pivot of the needle rises from a circular card, resembling the datplate of a time-piece, and round the circumference of which are mained thirty-two points. The adjoining 3gure represents the card of a compass. North, South, Fast, and West, are the main or cardinal points, and are indicated by their initial letters respectively, while the subordinate points are also marked by letters, as N6E for north-by-east, NNE north-north-east, and so an. To be able to recite the various points is said to «box the compass." The north is usually indicated by en ornemente! figure, or arrow head, as in the aketch of a compass card here presented.
The card and needle are fixed in a round oox, enclosed by a sheet of glass, to secure it both from the agitation of the atmosphere, as well as to exclude dust, moisture, and other things which might interiere with the correatness of the indications. The whole is onclosed in another box, suspended by two concentric brass circles, or gimbals, as they are technically called. and in such a manner, that the compass hangs as it were on points like a awivel, by which, during the lurching or heaving up and down, or motion from side to aide, of the ship, the needle and its card remain in a horizontal position, and under all circumstarees indicate the various points corrertly. The compass, thus encased, is placed upon the deck in a covered stand called the bineracle, in front of the man at the helm, so that the direction in which the needle points can be conetantly seen in guiding the vessel. The point of the needle, which, for distinction, is some way orn.mented, is understood to point towarda the north, but properly,

is points a little to th, west of due north; and this, as well as other variations to which it is subject in certan latitud s, must the thoroughly understood by the navigator. In the whole of the northern hemisphere of the globe, the point or northern pole of the neeille is the ac dire agent in pointing the direction of the comprasis. In
the southern hemisphere, the aunthern pole of the needle assumes the activg management of the instrument. and, by pointing towards the south pole of the ea:th, keepa the point of the needle pointing towarda the norit as before. Practically, it is of no consequence to the mariner which point of the needle is most affected hy tho polarity of the earth, for in all places and conditiona (slight variations excepted) the needle keeps its northern ornamented point towards the north pole of the globe.

The needle being liable to he affected by the proximity of iron, no piece s' that metal is used in the construe tion of the binnacle, or is allowed to be near it. In the case of iron ships, or shipa having much iron on hoard. means ure adopted to counteract the tendency which the needlo has to point in a wrong direction. From want of attention to this important point, serious disasters at sea have ensucd.

THE LOG-SEXTANT.

Provided with a compass, the next object of import. ance ia the log, an instrument for measuring the rate at which the vessel proceeds through the water, in given apace of time. The log is a very simple contriv. ance. It consists of a long cord, having u piece of wood sttached to one end, ond called the chip. I'his is of a quadrantal form, and being slung at the corners with line, and loaded at the circumference, when thrown overboard it remains erect and stationary, and drags the line off as fust as the ship passes through the water. The line is divided into knots and half knots, representing miles and half miles, or minutes of a degree, to which they bear the eame propertion as the log-giass does to an hour. Thus the log-glass being filled with sand to run through in $20^{\prime \prime}$, the length of a knot must be 51 feet, the firat being the same proportion of an hour that the last is of a mile. As, however, the log is four.d to come home a little in the effort to draw the line out, it is customary to mark the knot a foot or two less than the true length. The mode of henving the \log to measure a ship's rate is as follows: The log-reeh, upon which the line is wound, being held by one of the sailors, the officer places himself on the rail to leeward. and a third person holding the glass, he proceeds to prepare the chip, so that the peg of one of the lines holding the chip in a perpendicular direction will drew out, by the force of the water, when the wheel is stopped, and allow it to haul in casily. Then, heving gathered a sufficient quantity of line into his hand, he throws it far to leeward, that it may not be effected by the eddios which follow in the wake. The stray line, which allows the chip to get astern, now rune of, and the instant that the white rag, which murks its termina. tion, passes through the hand of the officer, he crips "Turn!" and continues to veer out line until the glass runs out, and the person holding it cries "Stop!" Then the line is grasped, and the number of knots tha have passed off mark the speed of the ship. When this exceeds five miles, it is usual to use a glass of is instead of $30^{\prime \prime}$, counting the knots double. The rate of sailing, per hour, multiplied ly the hours, thus givet the mariner the measure of his rmu.

In addition to these essentia instruments for direrb ing the course and ascertaining the distance, the nasio gator must be provided with octants of double reflectiot, to measure the altitude of the heavenly bodies, snd a circle, or sextant, more nively graduaterl, to measure distances betwren the moon and star.s. IHe shonhald alon have with him a book containing the lognithas of numbers, sines, tangenta, and accants, to facilitate trigononetrical raleulations; tables for correcting ultitures for dip, parallax, ame refraction; also lists of latituisa and longitudes for every part of the world; and of una several d they be south, so the great and depa made goo difference by addin the equat before the longitude, of the me grees of inte 6t 1 from being ontil they many way ference of being kno the citcum circumfere departure easy and longitude.
ole of the needla the instrument ${ }^{-}$ ole of the eath, awarls the nonid nsequence to the most affected hy es and conditions keepa ite northorth pole of the
ted by the proxidin the construo e near it. In the ch iron on board. tendency which direction. From int, serioua disas-
object of importcasuring the rate h the water, in ry simple contriv. aving a piece of the chip. I'his is ng at the comen nice, when thrown tionary, and draga through the water. If knots, representes of a degree, to on as the log-giass ss being filled with gth of a knot must e proportion of an however, the \log is effort to draw the knot a foot or two ode of heaving the lows: The log-reeh, F held by one of the the rail to leeward. ass, he proceeds to of one of the lines direction will drew hen the whed is ily. Then, having e into his hand, he not he affected by c. The stray line, , now runa of, and marks its terming he olficer, he cries line until the glass it cries "Stop!" mber of knots that the ship. When o use a glass of $t \mathrm{~b}$ buble. The rate of hours, thus gives
ruments for directo distance, the naif double reflectiot:, culy bodies, and 3 wated, to measurn 4. Ile shonh alm the losarithan of Ls, to faciliate tri. correrting alitudes o liste of latituify vorld; and of una
chlgh water at every port, at the period of full and change of the moon, from which, at all times, to be able to find the tide; and a variety of tables to facilitate the various problems of navigation. He shoull also have with him the Nautlcal Almanac, containing the places and declinations of the fixed stara and planets, and capecinlly the distancea of the moon from the aun and other stars, and all that relatea to that body, with a view to calculate the longitude by observation. Finally, he muat be provided with the general and local charts applicable to hia contemplated voyage. Thus furnished, the mariner may set sail with confidence; many do ao with no other aide than their compass, log, quadrant, a single chart, nnd book of navigation, and arrive in aafety. But it is less our business to ahow with. how little care a ship may be navigated, than to show how she may be carried from port to port with the greatest possible certainty. Having taken leave of the port, and, when the last land is about to disappear from view, either from the growing diatance or the intervention of night, the mariner selects nome conspicuous headland, of which the latitude and longitude are noted in hia tablea, and placing a compass in some elevated position, remote from any iron object to disturb its polarity, procecds to determine its bearing, and estimate his distance from it, either by the progress made from $i t$, or by the ready estinnte of a practiaed cye. Or, taking the simultaneoua bearings of two distinct points of coast, be has atill surer data for deducing his position. This is called taking the departure, and is carefully noted or the logalate, with the time of making the ohservation. Thenceforth the \log is thrown every hour, and the course and distance are entered upon the slate, to be copied into the log-book at the end of the day.

working a reckoning.

At the first noon aucceeding the time of taking his departure, the mariner worka up his reckoning. Noon is an epoch fixed by nature, being determined by the passage of the aun over the meridian, and is therefore well chosen aa the beginning of the day. The log-slate being marked, he copies the courses and diatances, if from head-winds or other causes they have been varioua; the departure from the land is also converted into a sourse, as is also the current, if there be any known one. He next proceeds to find the difference of latitude and departure from the meridian corresponding to each course, either by geometrical enlculation, or, more expeditiously, by reference to tables; then he adda the several difiereneea of latitude and departure, and, if they be of different names, as some north and some wuth, some east and others west, deducts the less from the greater. With the remaining difference of latitude and departure, he nut only finds the course and distance made good, but also the latitude and longitude in; the difference of latitude being applied to the latitude left, by adding or subtracting, in sailing from or towards the equator, at once gives the latitude of the ahip. But before the-departure can be thus applied to find the longitude, it is necesmary to reduce it for the converging of the meridians towards the poles; for. though all degrees of longitude are divided, like those of latitude, into 60 minutes or miles, yet they decrease in length, from being equal to a degree of latitude at the equator, ontil they become nuthing at the poles. There nre many ways, more ar less accurate, of deducing the difference of longitude from the departure, the latitude being known; they are founded upon this princiole: the circumference of the earth nt the equator is to its circunfermese at any given parallel of latitude, as the departure is to the difference of longitude. The most sasy and correct way of obtnining the iifferenco of longitude, on an oblique course, is by the aid of a table
of meridional parts ; for, naving taken out the meridional difference of latitude, the mariner han this simple proportion : the proper difforence of latitude is to the meridional difference of latitude, as the departure to the difference of longitude. The difference of longitude thua obtained, is applied to the longitude left, adding or aubtracting, in aailing to or from the first meridian, and the result will be the ship's longitude; which, with the latitude previously ascertained, determines her position on the chart. The mothod of navigating thus described ia called dead reckoning. It is far from infallible, and leavea much to desire. It will, indeed, do pretty well in ahort runs; but as errurs daily crecp in from many causcs escaping calculation, such as bud steerage, leeway, heave of the sea, unknown currents, and ns these accumulate, and become considerable at the end of long voyago, it becomes necessary for the mariner, reinoved from all reference to terrostrial objecte, to resort to the immovable guides in the heavens. All the hearvenly bodies are, by the revolution of the eurth, daily brought to the meridian, at which time, if their altitude ia measured, their declination or distance from the equinox being known, the latitude is readily deduced; it may also be deduced from single or double altitudes of bodies not in the meridian, the times being accurately known. But the meridian altitude of the sun is what furnishes at once the easiest and most correct method of finding the latitude. So great, indeed, are the advantagea offered by the meridian altitude of the sun, that no other means of finding the latitude are uned, except when these have failed from a clouded at mosphere, or when the momentary expectation of making the land quickens the mariner's anxiety. We ahall, therefore, now explain the method of deducing the lati¿ide from the sun's meridian altitude.

TAKING AN OBSERVATION.

Furnished with a sextant, circle, or octant of refleo tion, the observer goes upon deck, and having examined the adjustment of his inatrument, proceeda to bring down the image of the aun reflected by its mirror, until the lower limb just sweeps the horizon. He continues to follow and measure its ascent, until it ceases to rise; the monent that it begina to fall, and the lower limb dipa in the horizon, the aun has passer the meridian. The altitude marked by the index being read of, it is next corrected. And first, the observer adds the semidiameter, in order to make the altitude apply to the centre of the ohject; next, he subtracts the dip, to meet the error caused by the extension of the horizon, in consequence of the rotundity of tho earth, and the elevation of his eye above its surface; also the refraction of the atmosphere, by which the object, when not vertical, is made to appear higher than its true place; lastly, he adds the parallax (a small correction, inconsiderable from the sun's distance), in order to reduce the calculation for the centre of the earth; from which point all calculations are made, and which is ever eupposed to be the station of an observer. Having made all these correctiont, which many mariners despatch summarily, by an addition of 12 minutes, he has the true meridinn altitude of tho eun. 'Taking this from a quadrant, or 90°, gives its zenith distance, or distance from that point in the heavens whieh is inmedintely over the observer, and would be met by a straight line passing from the centre of the carth through his position. Now, if the sun were for ever on the equinoctial, the zenith distance would alwaya be the latitude; for, whilst the zenith is the olserver's poaition, referred to the heavens, the equatot is there, in like manner, represented by the equinoctialand we have already seen that latitude is the diatance from the equator. But as the sun is only twice a year upon the cquinoctial, and as his distunce from it al
times increases to more than 20°, it becomee necessary to take this distance (called his declination) into the extimate. Thy aun's declination is given in the almanac, for the noon of each day; by correcting it for the time enticipated or elspsed, according as the sun comes first to him or to the firat meridian, by his position east or went of east of it, the obwerver obtaing the declination for noon at his own position. This declination applied to the zenith diatance, by adding when the sun is on the mame aide of the equator, by subtracting when on the opposite side, gives the true latitude. A daily and eccurate knowledge of inis latitude is, then, to the marinet of our day, desideratum of easy attainment. By its ald, nothing is easier than to sail clear of any rock or shoal that crosses his track, either by s wstchful look-out at the mement of passing ite latitude, or else by avoiding its parallel entirely, until it he surely pessed. Moreover, this is his best and aurest guide in alming at his destued jert; for be has but to attain the exact latitude it lies in, and then sail directly upon it, esat or weat, to be sure of success. And here nature is again his friend: by s singular coincidence, discoverable in clancing at the map of the world, meat coasta and continente lie in a northern and anuthern direction. Hence the value sttacher by seamen to an accurate knowledge of the latitude; and hence the saying of "Latitudo, lead, and look-out."

TO FIND THE LONGITUDE.

Various ways have been devised to find the longitude, In all of which the grest element ia time. The earth performa her diurnal revolution in 24 heurs, or, in other words, each part of the circumference of the globe, which is divided into 360 degrese, is brought under the sun once a day. Hence, each part of the circumference (reckening from east to west) has its own peculiar time of day. When it is noon st one place, it is one o'clock afternoon at another place, two at another, and so on ; the time differs all reund the giebe. Dividing the 360 degrees by 24 , we find that 15 in the result; for every 15 degrees, therefore, along the circumference, going westward, there is an hour of difference, in advance; and, going eastwards, an hour behind. If it be noon at Greenwich, it will be one o'clock at a point 15 degrees east from it (that is, the sun has passed over it an hour ago), and eleven o'clock forenoon at a point 15 degrees west from it that is, the sun will be an hour in getting up to it.) Dividing the 60 minutes of on hour by 15 , the result is 4 ; the earth, therefore, moves under the sun at the rate of a degree, or 60 geographical miles in four minutes, of 16 miles in the minute, or one mile in the four meconds, or a quarter of a mile in the second. Here, then, the element of time is brought at ence, and in the mont satisfactory manner, to bear apon the distance of any given place, east or west from any other given place. The measuring of ouch a diatance is called finding the longitude. Different places on the globe have been eatablizhed as starting points in making these measurementa. The French reckon from Paris, and the English from Greenwich, a village near London, where an astronomical observatory has heen'long establiabed and supported at tho public expense. In all Engliah works of geegraphy, the longitude is reckened from G.eenwich, although not expresaly mentioned. Navigators determine their lengitude by watchen or chronometers, whose movements are an exact as can possibly he obtained from inectianism. In setting out on a voyage, the chronometer is aet to Lendon time, and kept gning at that time. At the hour of noon of each day, as determined by an observation with the sextant, the difference in extimated between that hour and the hour indicated by the chroDometer, and that difference is the longitude east or weot of Grecnwich, we the came may be. Bome mari-
nere, for socurity, take severai chionometers wom with them, as one only is by no means a safe guide. In goneral, however, the masters of coasting traders, on thowe who pursue short voyagee by regular linee of route, depond on booke containing lists of longituden as well as of latituden.

MARINE BAROMETERS-LOG-BOOK.

The last grest requisite in navigation is a good barometer to indicste the approach of foul weather. The most delicste instrument of this kind ia the aympemometer of Adie, by which the earlieat snd most certain indications sre presented of coming storms. In treating of the nature snd value of instruments of this nature, Dr. Arnott makes the following observations:-"The watchful captain of the present day, trusting to this extraordinary monitor, is frequently enabled to take in auil and to make ready for the storm, when in former times the dreadful visitation would have fallen upon him ubprepared. The marine barometer has not heen in general use for many years, and the suthor was one of a numerous crew who probably owed their preservation to ite almost miraculous warning. It was in a southern latitude. The sun had juat set with placid appearance, closing s beautiful afternoon, and the nausl mirth of the evening watch was proceeding, when the captain's order came to prepare with all haste for a storm. The barometer had begun to fall with appalling rapidity. As yet, the oldest suilers had not perceived even a threetening in the aky, snd were surprised st the extent and hurry of the preparations: but the required measurea were not completed, when a more awful hurricane burat upon them than the most experienced had ever braved. Nothing could withstand it; the sails, alrcady furled and closely bound to the yards, were riven away in tatters; even the bare yarda and masts were in great part disalled; and at one time the whole rigging had nearly fallen by the board. Such, for a few hourn, was the mingled rear of the hurricane above, of the waves around, and of the incessant peale of thunder, that no human voice could be heard, nid amidat the general conaternation even the trumpet sounded in vain. In that swful night, but for the little tube of mercury which had given the warning, neither the strength of the noble ship, nor the ekill and energies of the commander, could have saved one man to tell the tale. On the following morning the wind wa agnin st reat, but the ahip lay upon the yet heaving wavee an oneightly wreck."

A journal of events and ohservations on boserd ship in usually kept in what in called the log-board, and trangferred thence into the log-book. The log-board consista of two boarda shutting together like a book, and divided into neveral columne, contuining the houra of the day and night, the direction of the winds, and the course of the ohip, with all the ratcrisl occurrences that happen during the twenty-four hours, or from noon to noon, together with the latitude of observation. From this table, which in written in chalk, and daily effaced, the officers work the ship's way, and compile their journsle. From it, um, entries are carried to the log-hook, in an expanded ferm, with any observatione and arditional particulare suppond to te necessary. The log-book in thus the journal of the ship, and is preserved with grest care for exhibition, if required, at the termination of the voyage.*
Thus, then, lyy the use of various instrumenta and practieal experience in navigation, a ship is comuluctel from port to port. dangers avoided, and difficulties over. come. Though they who traverse the vast orran leave no tract for the guidance of thome who follow, it is thun converted into a plaii and convenient highway, extend ing to the extremitice of the earth.

[^10]

 tury), Itahene the Me proper history the four the mari obwervat or its ten tion is 8 nettem; this pola the navi of m mag poised on first made Flavio Gi great disc nised-it out these

 forteenth eatablished Navigat formerly. viards, pus previously for maritim zade use struction, gal, and wh Navigator. 1394, died sovernmen with the vi then Atlantic ful; the isla lied $\%$ are crown of 1 penetrated which was other expedi and discove Verd Iales; made known of thia nature, tions: - "Thb ting to this exI to take in eail in former times upon him un been in general one of a nume. servation to its southern laticid appearance, usl mirth of the e ceptain's order rm. The bare apidity. As yet, a threatening in ent and hurry of sasures were not burst upon them praved. Nothing urled and closely tatters ; even the art disaliled; and carly fallen by the - mingled roar of round, and of the pan voice could be ernation even the ful night, but for iven the warning, nor the skill and saved one man to ing the wind wes yet heaving waves3 on board ship is hoard, and trang-log-board consista book, and divided ure of the day and the course of the at happen during oon, together with ta table, which is officera work the
From it, alen n expanded form ticulars supposed the journal of the for exhibition, if ge."
instruments and hip is conductel 1 difficulties overvast ocean lave follow, it is thus highway, extend

MARITIME DISCOVERY.

- No people of antiquity possessed the courage or skill to navigate their vessels out of aight of land, or, ot least, to push into the open Atlantic or other great oceans. Maritime intercourne, for the sake of traffic, was carried on only slong the shorea of the Mediterranean, or down the Rel Sea, and along the coast to India, or along the western shore of Europe to Bitvin. The Romans thought they performed a wonderfi" "id feat when they sailed a ship as far as the nori $\mathrm{c}_{\mathrm{c} 2}$ anda of Scotland. In these times there was no cther i. sinn guide, with reepect to the cardinal pointe, than the miars by night and the aun by day ; and, therefore, when cloude covered the visible horizon, or when total darkness enaued at night, the ship was necessarily brought to a pauso, or placed in the most imminent danger of being wrecked on some unkncwn ahore. This, however, was not the only difficulty. The nations of antiquity, with all their learning, were utterly ignorant of the foim and aize of the globe. They believed that the world was a great flat plain, with the ${ }^{-}$habitable earth placed in the midst of the ocean; that this ocean was of interminable breadth; and that, at a certain distance from land. the waters were shrouded in eternal darkness. With such notiona prevailing among mankind for thousanda of yeara, it ia not surf rising that they should have made so slow advances in the art of navigation, or done so little for maritime discovery.
During the middle ages (fourth to the fourte enth century), ship-building was considerably improved by the Itahans, who then conducted a large maritime tratio on the Mediterranean; but the art of navigation, in the proper sense of the term, was atill in its infancy, and its history cannot be said to commence till the bepinning of the fourteenth century, when that wonderful iivitiamion, the mariner's compass, was discovered, or came first int ${ }^{2}$ obervation in Europe. Of the polarity of the magret, or its tendency to point to the poles, a sufficient explateation ia given in the article Elbctricity and Mao. natism; and it is here only necessary to describe how teis polarity is rendered subservient to the purposes of the navigator. The mariner's compass, which consists of a magnetized alip of metal, or needle, as it is called, poised on its centre, and free to point to the poles, was first made known, as far as it can be ascertained, by one Flovio Giojs, an Italian, in the year 1302. As with all great discoveries, its advantages were not at once recog-nised-it had to contend against a variety of prejudices; out these in time vanished, and ebout the middle of the fourteenth century ita important uses were allowed and eatablished.
Navigation now assumed a much bolder character than formerly. The English, Portuguese, Italians, and Spaniards, pushed their vessela into diatricts of ocean naver previously traversed, and thus the way was fairly opened for maritime discovery. The first great discoverer who rade use of the compass, and partly improved its construction, was Prince Henry, a son of the king of Portugal, and who is known in history by the name of Henry the Navigator. Thia intelligent and enterpriaing prince (born 1394, died 1461), with the concurrence of the Portuguese govemment, set on foot a series of maritine enterprises, with the view of dircovering a route to Indin hy way of thin Atlantic. These voyagea ultimately proved successful; the islands of Puerto Santo, Madeira, and the Canatien are successively discovered, and annexed to the crown of Jortugal. In 1433, the Portuguese navigators penetrated heyond Cape Bojador, on the coast of Africa, which was considered an extraordinary performance; another expedition afterwards went as far as Cape Blanco, and discovered the island of Arguin and the Cape do Verd Isles; and in 1448, the Azores were renched and made known. Henry the Na vigator thus struck a spark whech kindlal to a fame all over Europe. Not long
after his death, the Guines coant was ndded to the Portuguese dincoveriea In 1484, the Congo was reached by Diego Cam; in 1487, the Cape of Good Hope wan doubled by Bartholomew Diaz; and in 1498, Vanco de Gama touched the shores of Hindostan. The Portuguens having received an assignment from the pope of all land that could be discovered on the African coasts, the Sponish government, burning with anxiety to emulate the late proceedings of its neighbours, was compelled to seek out new countriea in a different direction. Ferdinand and Isabella, the movereigns of Spain, listened, therefore, to the apecnlations of Columbua regarding a route to In a dia acress the Atlantic, and sent him off on a miseion. In this his bold attempt to reach Hindostan by pursuing a direction across the Atlantic, he landed on one of the American ialands, now called tha Bahamas, on the 12 th October, 1492. About the year 1499, Amerigo Veapuccii, under an appointment from the Spanish government. discovered the coast of the South American continent, and hence the name of America was given to the New. World, although, as is well known, Columbua had prevously discovered and landed on South America, without teing aware that it was the continent which he had reached.

Several subsequent voyages by Spaniah navigator! discloaed the extent of the east const of South America; and in 1513, Nunez de Balboa crossed the isthmus of Panama with an exploring party of hia aailors, and made the discovery of the Pecific Ocean on the west coast of that continent. It was now seen that America was not, as had been at firat believed, a portion of Asia or India, but was a separate territory of vast extent lying between the Atlantic and Pacific. There was yet a doubt with respect to the aouthern extremity of America, but in 1520, Megellan made the pansage from the Atlantic to the Pacific by the atraits which separato America from the tisland of Terra del Fuego, at about the 53d degree of ecuth latitude, and so removed all doubt upon the suijiect. This navigator extended his voyage across the Pacitic in the Philippine islands, where, unfortunately, he was killed; but this comranions proceeded in the routo homewarda by the Cape of Good Hope, and thus, by circumnavigating the globe, settled the long-disputcd priblem with respect to the ephericity of our planet This most important voyage was made between the years 1520 and 1523.

In the meanwhile, several maritime discoveriea were made by the English nation. In 1495, John Cabot, a Venetian pilot, settled at Bristol, obtained from Henry VIII. letters patent, empowering him and his three sons, Lewis, Sebastian, and Sanctius, to discover unknuwn lands, and conquer and settle them. In consequence of this permission, the king aupplied one ship, and the merchants of London and Bristol a few smaller ones, and in 1496, John and Sebastian sailed to the ncrth-west. In July of the same year, they discovered Nowfoundland, and explored it up to latitude 67°. In a subsequent voyage, the father and aon sailed as far as Cape Florida, and are believed to have been the first who saw the main land of America. By these and succeeding voyages of discovery in the reigns of Henry VIII., Edward VI., and Elizabeth, the English becane possessed of the castern coast of Nerth America and some of its islands. Between the years 1740 and 1744, Anson was employed in circumnavigating the globe, and visiting tiflerent parts of the Pacific, but this extensive and protracted voyage added little to the existing knowledge of goography. At a later perion, in the reign of Gearge lll.. Cook explored the groupa of islanda in the Pacific, making carions interesting discoverics, in which was included a survey of the eastern coasts of Australia and Van Dicmen's Land, also - visit to the New Zealand islands. After the voyagea of this enterpriaing navigator, little was left to perform in the way of maritime discovery, except in explorang
we northern extremition of the American continent. A serien of voyagen for this purpose was begun in 1818, conlucted by Rose, Parry, and othera, and which lately cerminated by establishing the fact, that a passage for shipe exiats between the Atlantic and Pacific, round the northorn promontoriea of Amorica, but that, from tho olucking of ice, auch a paseage can only on rare oocasions be open to navigators, and is therefore of no practical value.

The great maritime discoveries made in the course of the fifteenth century, which at once opened up a nuw viow of the globe, led to various improvements in navigation. The log, for moasuring the ship'a progreas, aso charts on Mercator's projection, were introduced. In 1814, Napier dincovered the calculation of numerical juantities by logarithme; and about the year 1620, Gunter invented a scale, by the help of which, and a pair of compasses, overy question in trigonometry might easily the calculated by the mariner. In 1731, the ort of navigation was greatly advanced by the invention, or rather improvement, by Hadley, of the quadrant, an instrument for aecertaining, by an obeervation of the eun, the true Iatitude of a ship at mea. Till nearly this period, an inatrument called an astrolabe, a species of sun ring, had been omployed for this purpose, and was very imperfect in its operation. Between the years 1785 and 1774, Harrian invented a chronometer, or time measurer, by which the longitude could be secertained at nea with nearly perfect accuracy; and thua the art of navigation may be aaid to have been completed. In the course of the eighteenth century, the true figure of tho earth was fully made known by the voyages of Aneon, Cook, and others; and, at the same time, discoveries were made of almost every accessible island and tract of land over the globe. Thus, in the short space of four centuries from the time when the lirst impulse wae given hy the Porcuguese, the civilized part of mankind had acquired a nearly complete knowledge of the features of our globe, as well as of ita true figure and dimensions.

MOMINION OF THE BEAS.

It is a common law of nations that the ocean is a free and universal highway, which no state can appropriate to its own special une. While this existe as a principle generally recognised by all civilized powers, Great Britain has for a considerable period of time claimed the dominion of the seas, as a right acquired by its extensive conquests, and the akill and valour of its seamen. By this claim, it is not assumed that Great Britain ponesses a legal right of property in the waters of the ocean, or the lands which they may cover. The claim resolven itself into what ia termed in law "a military sovereignty," which it would be exceedingly difficult to dofine, and is practically an empty and vain-glorious bosst. Within the lant twenty yeare, during which a large maritime force han grown up in Francs, Ruacia, and the United Statem of

America, the claim of the British to the dommion of the weas has been little heard of, and in perhapa now a dend letter in maritime law, as it is in fact. Each nation retains a judicial control over its vessela and their crewa, in whatever part of the ocean thoy may bo; a'l crimee and misdemeanours committed on board of a ship are runimb able by law, as soon as the vessel reuchea the country to which it bolonge.

[BOOKS ON THE OCEAN, MARITIME DISCOVERY.

 AND NAVIGATION.The Encyclopadia of Geography by Murray, slread) referred to, contains an excellent treatise on the Ocean in its introduction. Malte-Brun has another in his Geo graphy. The aubject of Maritime Discovery has seldom been treated in a general way; but there is a multitude of booke in illustration of it. Among these are, Tytler'a "Discoveries on the Northern Coasts of America," "Circumnavigation of the Globe," from Magellan to Conk; Ellis's "Polynesian Researches," Lealie's "Discoveries and Adventuria in Polar Seas," "Cook's Voynges round the World," "Liven and Voyages of Drake, Cavendish, and Dampier," Humboldt's "Travels," "Lives of the Early Navigatora," St. John'a "Iives of Celcbrated Tra. vellers." Thewe are comprehensive works, not being confined to the explorationa of single travellers. D_{r}. Robertson's "History of the Discovery and Conguest of America" is full of information, and has the additional advantage of his delightful end faultiess atylc of writing. His "History of India" is not less intoresting and valua. ble. Mr. Wheaton'a "History of the Northmen," and Crichton and Wheaton's "Hislory of Norway, Siveden, and Denmark," abound with information respecting the bold, extenaive, and auccessful enterprises of the early Scandinavian voyagers. One of the booka in Lardner's Cabinet Cyclopedia, entitled "Maritime and Inland Discovery," is, on the whole, the most general and systematic work on this aubject, which has been pubished in a clieap form.

The beat and most comprehensive work on Navigation is Dr. Bowditch's "Practical Nasigator." Although it was written expressly for the use of mariners, it is rendered perfectly intelligible to the general reader, and it ia no full and complete that it fully answers the purpose of making the reader as familiar with "all the ropes in the ship" a it is possible to become by the use if books alone. Fur the purpose of learning the history of the progress of marine architecture, the French have a highly embellished popular compend, entitled "La Marine," by M. Eugene Pacini. The same speciea of information may be obtained by consulting the eeveral ciapters in the Pictorial Hiatory of England, in which the useful arta are troated -Am.Edi]

The * the n tulguish as it we While formed ease and tribes in being wa the atmo land. T cient in object of atrong cl consequen especially which wil tion. In dom, the mdividuall The wh largeat of excluaive which it pe greateat mi which attai of these a land whal one, from it of their P northern \mathbf{r} bulk, and fishers; and With the goticed uft shale are by calling a His species, ultimately bu
The size exagucrated Alwut fifty sverted that as hundrad Nlandard, the bufure man b altaleg " two an previou question. M out de subjer.

minion of the

 pa now a dead Pach nation re thoir crewh, in ${ }^{1}{ }^{1} 1$ crimeo and hip are punish the country to on tho Occan, ther in his Geovery has seldem is a multitude of sec are, Tytler's America," "Cirgellan to Conks ie's "Discoveries s Voyages round rake, Cuvendish, " "Lives of the f Celchrated Travorks, not being travellers. Dr. and Conquest of as the additional s style of writing. resting and valuaNorthmen," and rway, Sweden, and enpecting the bohd, the esarly ScandiLardner's Cabinet nland Discovery," d systematic wort fished in cheayork on Nsavigation "Although it wan ers, it is rendered er, and it is so full purpose of making ea in the ship" ooks alone. Fut the progress of highly embellished ", by M. Eugene tion may be ebs in the Pictorial 1 arts are tristed

TIIE WHALE, AND WHALE FISHERIES.

DESCRIPTION OF THE WHALE.

The cetaceous order of animala, of which the whale W the most remarkable and important member, ia distuguished by various peculiarities which render it a link, ss it were, between the cresture of the land and the sea. While living in part or whnlly in the ocean, and so formed as to make their way through its waters with easo and velocity, the cetacea differ from the true fishtribes in being mammalian or suck-giving animsla, in heing warm-blooded, and in having organs for respiring the atmospheric air, like the ordinary inhalitsnts of the land. These striking diatinctive features would be auffcient in themselves to render this order of animsle an object of interesting study, but the 'cetacea have also drong elsims upon attention, as being of very great consequence to the wants and comforts of man. This is especially the cave as regards the whale and its varieties, which will form the subject of notice in the present section. In the general account given of the animal kingdom, the dolphin, porpoise, and othere of tha cetacea, are undividually described.
The whale, or balana, as naturalists term it, is the largest of all known animals. The polar seas, if not its exclusive dwelling-place, are at all events the region which it peculiarly frequents, and where it herds in the greatest numbers. There, also, sre found the varicties which sttain to the greatest bulk. The three prineipal of these are the bakera mysticelus, the common Greenland whale, and what British sailors call the "right" one, from its being the most valued and valuable object of their pursuit; the balena physalis, or the great northern rorqual, a variety which exceeds all others in bulk, and is termed the "razorback" or "finner," by fishers; and, thirdly, the cachalot, or dpermsceti whsle. With the exception of some few points, which will be aoticed sfterwards, the characters of the Greenland shale sre identical with those of the whole tribe, and sy calling attention to the peculiarities of structure in Whis species, in the first instance, much repetition may ultimately le spared.
The size of the common whale was the subject of very exagyerated notions, until within a very recent period. Alout fifty years ago, a standsrd writer in natural history aserted that whales were frequently "to twe seen above and hundred and sixty feet long;" and that, even at this slandard, the animal was much sinaller than it had been befure man began to disturb and destroy the race. That Whales "two hundred and fifty feet in length" were often ann previously, is represented as a thing leyond all question. Mr. Scoreaby, however, n very high authority m the subyort, declures that the common whale seldem
or never exceeda seventy feet in length, and is muct more frequently under aixty. Out of three hundred and twenty-two whales which he had personally aided in cap. turing, not one exceeded fifty-eight feet; and the largent over taken, of which he know the reported measurenient to be suthentic, came up only to sixty-seven feet. Tyo body of a large individusl of this family measures from thirty to forty fect round the body at the thickest grizt, or a short way behind the head, which is of grest proportionate size, and occupies about one-third of the whele extent from snout to tail. When the mouth is open, it is suffieiently large and long to admit a whaler's jollyboat with its full compliment of men. The bulk of the head, which is somewhat conical in form, and has a sort of round eminence above and posteriorly, rendera the aspect of the mysticetus clumsy and unshspely. A very slight diminution of the circumferonce indicates the position of the neek, and behind this, tho body swells to ita greatest calibre, whence it tapers sharply away again towards the tail. The animal has no back or dorsal fin. The two side or pectornl fins aro placed about tivo feet behind the angles of the mouth, and are nearly five feet broad by nine feet in length. The tail is something in the shaje of a erescent, with an indentation in the middle of the conesvity, the convex side being united to the body. This sppendage is placed horizontally, and is about twenty-four feet broad. It is an instrument of immense power, and the whale has sometimes given a stroke with it which has sent large boats high into the air in a thousand splinters. The colour of the body is mainly a velvety black; the under part of the head and abdomen, and the junction of the tail, being partly white and partly of a freckled gray. In old whsles, much more of the body assumes the latter tint, and the atreaks sonetimes resemble a besutiful landscape of trees. On the tail, in one instance, noticed by Ray, nsture, in a freakish mood, had set down the number 122, in large and very distinct characters. The cyes of the whale are sbout a foot behind the angle of the meuth, and are not much larger than those of the ox. Tho iris is of a white colour, and the organs are guarded by lids and lashes as in quadrupeds. The two blow-holes of the whale, situated on the summit of the hearl, and descending perpendicularly through it for a length of twelve inches or so into the top of the windpipe, are the only other features worthy of notice in the exterior aspect of the Greenland whale.

The mouth of the commnn whale is an organ of very wonderful construction. In a large specimen of the tace, it may uneastre, when fully opened, about stxteen feet long, twolve feet high, and ten feet wide-an apartment, in truth, of very goolly dimensions, [t cont:י. .. : terth
and enormous as the bulk of the creature in, ite throat is to narrow that it would choke upon a morsel fitted for the deglutition of an ux. An inch and a half ia atated to be the diameter of the gullet in the very largeat whales. From this peculiarity of formation, it may be anticipated that the food of the animal ia of a vary minute nature, notwithatanding the vastness of the cavity which ia prepared for ite primary reception. The animal is indeed eupported upon a multitude of amaller inhabitanta of the deep, and, to permit this, ite mouth is provided with a remarkable epparatus, composed of what is called the baleen, or the well-known whalebone of commerce. Tho baleen ia arranged into two rows of laminse or thin plates, projecting literally from a line in the centre of the arch of the palate, momewhat like the lamine of a festher. Tewards the point of origin, they ure comparatively few in number and atrong, while towards the lipe they divide and taper away into mere briatles, forming e loowe hang. ing fringe or border. There are about three hundred of these plates on each side, and, when dried, they weigh uaually above a ton. In the rorqual whelo they are more numerous, and we find from the description given by Mr. Frederick J. Knox, of the akeleton prepared and oxhibited at Edinhurgh, that three hundred and fourteen external plates were counted on each aide in the mouth of that animal. The whole number of plates which could be counted, not including the more minute briatly terminetions, was 3768 . The longeat plate of baleen, which is alwsys placed about the centre of the series on each side, measured two feet two inchea in length by fifteen inches in breadth. "The substance when recent (anys Mr. Knox) is highly elatic."

The use of these platea, with their pendulous extremities and fringes, is to retain, as in a net, the multitude of amall animals which are floated into the mouth of the whale whenever it ia opened. Were it not for auch a drainer, formed by these fringes with the aid of the tongue, which is merely a great mass of fat tied down to the lower jaw, the emission of the water would be attended by the escape of all the objecte which entered with it. Aa it is, the most minute mattere are retuined; and chrimps, sea-anails, amull crabs, medusse, \&ce, are thus entrspped to support the great monster of the deep.
T'he remaining features in the atructure of the whale need not be individually described at the same length. The akin consists, first of the scarf-ekin, or epidermis, which is moistencd by an oily fluid, enabling it to resist the action of water; secondly, of tho rete mucosum, a layer usually beld to contain the colouring matter of all suimal aurfuces; and, thirdly, of the true akin, which, for particular purposes, is open in texture, 80 as to contain oil, or blubber as it ia called, in great quantities. Thia nase of oil, surrounding the whole animal, and someimea weighing more than thirty tons in all, serves the mportant end of keeping the animal warm by its weak onducting powers, amid the coldeat receases of the polar ocean, and is also calculsted to resist the enormous preseure to which the body of the creature must be subjected at the depths to which it often descends. Whalos have been known to take a line perpendicularly down to the full extent of a anile; and had not this ampla layer of fat, between one and two feet thick, been wrapped around them, powsessing a resisting power like that of caoutchouc, it is difficult to imagine how, in such a case, they could endure the immense weight of auperincumbent water. Moreover, being inferior in apecific gravity to the water, it is obvious that all this body of oil must le of incalculable use in sugmenting the buoyancy of the animal's frame. Below the akin are situated the muscles or flesh, and the character of this atructure is much the aame in the whale as in the ox or herse. With the exception of the tail, the arrangemert of the various muscles of the whale down not differ very much from that of quadrupeds; and Un: eame remark applies to the osweoua atructure. 'I'he
fins are merely rudimental arms, containing nearly tho aame bonce as in man, and the chest atrongly resembilu that of ordinary quadrupeda. The vertebrial column of the rorqual whale contains aixty-three bonce, those of the Greenland whale are not quite 60 numerous. The okull consiate of the crown-bone, from which the facial bonea and upper jaw project forward, while the lower juw io composed of two long curved bones, that meot at the point or fore-part of the mouth. These are often put up over gates, and make a handsome archway. The whola of these benea are hani and porous, and aome of them, as the lower jaw-bones, contain oil, but they are said to have no proper medulla or marrow. The total weigit of Dr. Knox's rorqual skeleton, was twenty-eight tona.

The organs of respiration in the whale are formed upon the same principle as those of land animals, but with modifications to suit the peculiar element in which the cresture lives. It is plain that some provision was required to permit the whale to breathe without the risk of having the lungs filled with water. This is accomplimhed by the extenaion of the top of the windpipe into the nostrila or blowholes, or rather into the passage which terminates in these in the common whale. By thia contrivance, the creature can inhale air while it is feeding or has its mouth full of water. As with terrestrial animale, the air gives a red colour to the blood, or, in other words, oxygenates it, and austuins the animal heat. The whale has frequently to come to the aurface, accordingly, to get its air; but this operation in rendered less frequently nccessary by the provision of a reacrvoir of oxygenated blood, which can be drawn upon when required. This ia the cause why the animal has such a vast proportionate quantity of blood in ita frame. The brain of the whale ia held by Cuvier to be large in relation to the animal, but no determinate conclusiona have been reached on the aubject. The arraogements of the whole nervous aystem are equally little understood. It is known that whalen possess pretty actute vision, but there is a doubt whether or not they have any external ear. Their senee of amell aeems to lie in the blowholes, yet the atrongeat reamon for ascriling such a faculty to thein at all is founded upon the halftralitionary notion of sailors, that if certain atrong-amelling substances are thrown overboard, whales will fly from the apot at once. The mamme or duge of the common whale are two in number, and attached to the abdomen; in the case of some other varieties, they are placed on the breast. In both casea they are situated inferiorly. The milk of the animal is said to be rich and creamy.

Such are the general charactera of atructure in the whale tribe, and, on regarding them attentively, one cannot but feel amazed at the seeming simplicity of the whole supplementary contrivancea by which a mammalian animal, so thoroughly terreatrial, one would say, in its general formation, is fitted to live in the deep The Greenland whale, or mysticetus, to which, more \mid articularly, the preceding description applies, is aaid by Scoresty never to be found beyond the limits of the Aretic seas, There is an excellent reason for thia lonalization. Within the polar latitudea, vast pasture-ficlda are spread out for the enimal which warmer clines havo never been known to provide. These feeding grounds, if they may be called 00 , conaist of large tracts of green w itcr, covering in sll not less than twenty thousand syuare miles of the Greenland seas. This green weater is of a deep olive hue, and remarkably opaque. Mr. Scoresby discovered its pecaliar appearance to arise from the presence of innumerable animalcules of the meduas tamily, one conmon aperies of which is known by the name of aca-blubiber. ''o give somo ides of the numbers of these creatures, Mr. Scores. by calculated that two square miles would contsin $23,888,000,000,000,000$; and that 80,000 persons $1 a u 4$ have entered on the task at the creation of man in orifes to complete the enumeration at the prasent tine. Thew

mgature

nictusco whale, b twhich th with ope that lic in by tho ba the aimpl land what sive lifo j its atrengh being fon (accordin When a t the aight sents. On weight (ne - grand en mast a gre denient! çe must 1 mous livin altogether frequently at a unfe dis which is the nives its pro centration i apinal colun cmprises a hundred aqu head downs in the air, cload of vap tance of two ly the marin atrament, the hilly or down but their uaue xilea in that of motion an must be main Lain.
W ben the which it does in twenty, it b accompanics rapour, in a st or spouting of more londly th luve other voce n) power of m quoutings of th water to the he same aperturea seen and heard is a doubt amon of mucus secret from the mouth at once to say doubt as to the holes in this w that the animal, thuid by means may be, the apov wriling to the a
No point relat uffeets one so 1 m thi offspring. T limot ten inonth diserved to hare snce. In auckl inke for the conve takes place on Vol. I.-i5
mgaturea, many of which are visible only through the nleroscope, do not all dlrectly merve as aliment to tho whale, but they feed myriade of the amaller fishes upon which the whale does live. When feeling, it swime with open mouth under the water, and all the oljects thut lie th the way of that vast moving cavern are cuught hy the laleen, and make their egress no more. "'This is the simplo food (says an old writer) of the great Greenland whale ; it puraues no other animst, leads an inoffensive life in its element, and is harmless in proportion to its atrength to do mischief." It is gregarious in its habits, being found in shaals, and migrating in this manuer (accurding to most writers) from one ocean to another. When a herd of large ones is scen gambolliug together, the sight is as magnificent as the range of nature presents. One whale of sixty fect in length, and seventy tons weight (nearly equal to that of three hundred fat oxen), in a grand enough object of itself, and how much mure so inust a great herd be when soen sporting in their native elenent! Let the reader imagine what an effect on the eye must be produced by the sight of one of theso enormous lixing masses leaping right into the air, clear altogether out of the water. This is a feat which they fequently perform, to the high ndmiration of all who are at a anfe distance. They effect it by means of their tail, which is the great instrument of motion, and which denives its prodigious pawer from tho termination and conrentration in it of all the muscles and tenalons of the spinal column. In some of the larger species, the tail canprises a surfuce of not less than from cighty to one hundred square feet. Sometimes a whate will turn its head downwards. and, maviug ita tremendous tail high in the air, will lash the water with violence, raising a clozd of vapour, and sending a loud report to the distance of two or three miles. This is called " lob-tailing" ly the mariners. . With the aid of the same great inatrument, they can travei throagh the water, horizontully or downwards, at the rute of eight miles an hour; but their usual mode of travelling does not exceed four aries in that spnce. Considering their bulk, thoir ease of motion and buoyancy are altagether wonderful, and must be mainly ascribed to the ibasees of oil they conLin
W ben the Greenland whale ascenss to the surface, which it does nsually onee in ten minutes, or at the most in twenty, it breathes nine or tea times, and a loud noise sccompanies the act, along with an emission of light vapour, in a straight column. This is called the blowing ur spouting of the whale. When alarmed, it snorts much nare loudly than usual. It is helieved that some whales lave other vocul organs, but the mysticctus seems to have ns power of making noise but by the blow-holes. The spuouting of the whale consist of the ejection of jets of water to the height of twenty or thirty feet through the sale apertures, in such a manner that the act is both seen and heard at the distance of several miles. Thera is a doubt among nuturalists, whether this be an ejection of mucus secreted in the blow-hales, or of water merely from the mouth. Tho quantity emitted would lead one at once to say that it must be water, wero thera not a doubt as to the possibility of water entering the blowholea in this way. Tho most probable explanution is, that the animal, acting beneath the water, forces up the Huil lyy means of the air from the lungs. Howe ser this any be, the spouting phenomenon is a beautiful one, acworling to the accounts of all abservers.
No point relative to the habits of the Greenland whale offects one so much as the creature's lave and care for th offypring. The period of gestation is supposed to be anout ten reothes, and scarcely any dam has ever been diserved to have more than one young one in attendauce. In suckling, the mother throws herself on her whe fur the couvenience of her ollapring, nnd this usuatly whes place on the surface of the water, to permit, no
YoL. I.-is
doubt, of free breathing. At birth, the voung whan measures from ten to fiffaen feet, and continues a nurseline for about a year. It attains to its full growth very alowly; not sonner, according to moat naturalists, than in twenty years. The whale-fiahera turn the strong affeo tion of the whale for its offspring to most fatal account They try to strike the young one with the harpoon, and if they effect this, are sure of tho old one, for she will not leave it. Mr. Scoresiby mentions a case where a young whale was struck benide its dam. She seized it and darted off, hut the fatal line was fixed in its body. Regardless of all that could be done to her, she remained bexide her dying offspring, without moving, until ahe was struck again and again, and finally perished. Some times, however, she becomes furious on these occasions, and extremely dungerous. A naval officer gives the following account of a case which he witnessed in the Atlantic. Being out with fishing boate, "wo saw (suys he) a whale, with her calf, playing around the coral rock:; the attention which the dnm showed to its young, and the care which she took to warn it of danger, were truly affecting. She led it away from the boats, swam round it, and sometimes she would embrace it with her fins, and roll over with it in the waves. We contrived to get the vantage ground' by going to seaward of her, and by that means drove her into shoal water among the rocks. A ware of tho danger and impending fate of her inexperienced offspring, she awom rapidly round it, in decreasing circlea, evincing tha utmost uneasiness and anxicty; but het parental admonitions wero unheeded, and it met its fate." The young one was struck and killed, and a harpoor: fixed in the mothor. Roused to reckless fury, she flow upon one of the boats, and made " her tail descend (sayo the witer) with irresistible force upon the very centre of our boat, cutting it in two, and killing two of the men; the survivors toak to swimming for their lives in all directions." Her subsequent motiona were alarmingly furious, but, subsequently, "exhausted by the fountain of black blood which she threw up, she drew near to her calf, and died by its side, evidently, in her last moments. more occupied with the preservation of her young than of herself."

The Greenland whale ia captured, it is scarcely necessary to eny, chiefly for its oil, about thirty tons of which aro procured from tha body of a large individual, being nearly the half of its whole weight. The flesh and blubber, also, when recently procured, and pickled and boiled, are not unpalatable, and the Esquimaux, in particular, hold thom to be superb feeding. But it is for the oil that mariners from all quarters of the civilized world expose themselvea to the dangera and privations attending the pursuit of the animal in the Polar seas. If recent statemuents be correct, bowevcr, these sufferings and riaks may be greatly diminishod, by the adoption of new fishing routes. Scoresby, as has been mentioned, says that the Greenland whale is to be found only within the Arctic circle, but othor observere aver, that the mysticetus, as well as other varietics, migrate southwards every year. anil in reality make an annual tour round Cape Horn, beginning their travel about March or April. Many persans represent themsolves as having been eye-witnosses of their course; and, among others, the naval officer lately quoted, deelures that he haa repeotedly seen them rassing Bermuda in shoals. The main objection to thas statement is, that the grevn waler exists only near the ples, whd that, at the very time when these journeyings ant saic? to be in progress, aur fishers are finding and killine whales by hundreds in the narth. At the same time, is is undeninhle that the whale is migratory in its haikits, u:d the matter is worthy of a thorough investigation, as the estahlishment of fishing stations in warm latitudes would prevent much suffering at present ondured in the North Sea fishing. Tho female alone, how ever, is said to take the cirsuit mentioned, and the reasw

In underntood to be the inatinctive deaire of the animal to give atrength to her young by taking them to a genial clime.
Being by far the mont raluable and frequent object of the fialseries, the Greenland whale hus received much more attention here than it is necessary to bestow on the great rorqual, though that variety execed all others in magnitude, and is indeed the largeat of all the living creaturea of the earth. 'I'wo speciniens have been obmervel which measured the enormous length of one hundred and five feet. One of these, it is stated by Scoresby, was found floating lifeleam in Davis's Suraits, and the rkeleton of the other was observed by Captaia Clarke on (Oolumbia River. This lant individual, when alive, must liave mearured nearly one hundred and twelve feet, allowing aix or seven for the tail, and it may therefore be regarded as the largeat creature of which we have the authentic measurement. Other apecimena have measured a hundred, and othera from ninety to eighty feel. The rorqual cast ashore at North Berwick, and preserved by Dr. Knux, was eighty-three feet in length. The colour of the rorqual is a pale bluish black, with the oldominal regions of a grayish tint. In shape, the body in not nearly so cylindrical as that of the mysticetus, but is compressed on the sides, and angular on the back. Hence the common name of "razorback;" and from the dorsal fins, which is low down, and of a small size, aprings the equally familiar name of "fiuner." 'I'he blubber of the rorqual is less abundant than that of the Greenland whale, and is seldoos more than half a foot in depth, and cight or ten tons in weight; while its buleen, also, is much shorter, coarsec, and every way less valuable. This latter circumstanse arises partly from the upper jaw being less arched than in the common whale. There is another cause !or the inferior fineness of the buleen in the rorqual, which is the greater size of the oljects which it employs as food. In the stomach of one individual, six hundred great cod, and immense quantities of other large fish, were found. The gulfet, accordingly, is much wider than in the mysticetus. Another striking feature in the rorqual, and the one from which the name is derived, is an immense sort of fold or pouch alung the under jaw. Thia was thought to be an air-bag or awimming bladder, till the observationa of Dr. Knox satisfied every one that it was merely a great water-reservoir, for augmenting the capacity of the mouth, otherwise so much dimisished in this creature by the want of curve in the upper jaw.

The great rorqual has two blow-holes, through which it blowa violently and very loudly; and it awims with much speed, its rate of motion varying from five to twelve miles an hour. The speciea is very numerous in the Arctic seas, and particularly about Spitzbergen and Nova Zembla. It is a much bolder animal than the mysticetus, and having so little oil in its frame, fishers seldom meddle with it, and dislike, indeed, to see it, as it is aupposed to be avoided by the more valuablo varietics of its tace. If aruck by the harpoon, it ia excited to most dangrous energy; and on one occasion, an individual drew a whole whaling-vessel, with its crew, with such violence on a bank of ice, that every inan on bourd perished. A rorqual struck by Mr. Scoresby dived with so much velocity, that it ran out 2880 feet of line in one minute, and ultimately snapped the cord. Theugh thus dangurous, however, well as compuratively valucless, the Laplanders an: Greenlanders meize every oceasion of attacki:1g it in then amall bosts. They usually send as miay harpoons usto it an possible, and get out of the way, leaving it to die alone, as it usually does, and is then cast or hauled ahare.
A lesser specien of the rorqual is found in the Greenland seas, having, like the greater one, a lorsal lin, and mearuring usually betweentwenty and thiny fect in longth. that thin was a dastinct species of roriual was proved by

Dr. Knox, who got possession of a apecunen I. at wa cast aahore at Queenaferry, and found it winve only turtr. eight bonen in the vertebral columa, wnereas the uther had sixty-three. This was deciaive of ita maviduality en a genus. It has a fine blue tint in the skin, and its oil in considered us highly delicats and medicinal by the luelanders, but otherwise the specles in one cr no general insportance.

Not no with the cachalot, physeter macrocephalua, or spermaceti whale, of which there are soveral varieties All of thom are distinguished by tecth in the lower jaw, by one blow-hele, and lyy the want of baleen. The leach. ing diatinctions letween the various kinds of the mperm whale lic in the possession of two fins of thres fina; of a spout in the neck or in the snout ; of flatted teeth on sharp teeth; and finally of a black, a blue, or a whitish back. But, generally speaking, the choractere now to be noticed are proper to all. The eperm whale attuins to a great size, varying betweell sixty and eighty feet. The head is enormous in bulk, being fully more than a thir' of the whole body, and it etde like sul ubrupt and ateep promontory in front. On the upper part of the anout in placed the blow-hole, often verging a little to one side; and it is a remarkahle fact, that this is but one of the various deformitics, whether congenital or acquired in the terrible battles waged by the creutures with ono another, which are commonly found in the body of thin whole. Its cyes are unequal, and the left frequently useless. The back haa a greenisl-gray tint, and below, much of the creatu:e in white. On the back, there are in most of the apeciea one er two wanall fins, with large protuberancea; the side fins aro also of small size, but the tail is as instro ment of amazing power. Tle teeth are usually abow forty-two in number, and fit into depreasions in the upper jaw. In this whale the gullet is wide enough to admit: man, and the animal feeds on large fish. A molluecoun animal (eepiu octopus), called aquad by the aailors, in its chicf food in deep seas.

The size of head in the aperm whale has a very extre ordinary purpese to serve. 'I'o assist in floating the ani mal, a great cavity in the interior of the skull is filled with a fine oil, which hecomes concrete on cooling, and forms the spermuceti of commerce. Some of this oil in also found ulong the vertebral column; and in a bag is the intestines nnother valuable substance lies, the ans bergris of traders. Some authors, it is proper to stala assert that tho anibergris is merely the mimul's fices These are the principal objects of the sperm whule fishery, the blubler procured from this variety of the cetacen not being nearly so abundant as in the case of the mysticelas At the same tince, the blubler of the sjerm whale in valuable, and is usually culled sperm oil. The saibn know this whale at a great distance by the act of blowing which it performs with great regularity, at intervula of ten minutes or so. 'I'he spout serit up is visilhe at the dis tunce of two or three miles, and has the appenrance of a misty cloud or bush. Having thus hown, or expired, sixty or seventy tinnes, and made insjirations ns often, the unimal descends, und can remain under water mone than an hour, subsisting on the store of blowl which it has oxygenated, and keeps in the reservoirs alrendy describeh This alternation of appearameen und disajpearames in gone through by the aninal with undevinting regularity, unless it be disturbed. The sperm whale is timit before man, yrt it fights tiercely with those of its own reca Fights usually take pare when mute whules, or "hulls," as they are called, and one or two of which always atted a particular horel of females, meret with rivals desimus of entering their company. They lock jaws with ons suother, and exert a dreadful degree of power at one unomeris cost When ularmed, or harponned, they some tina's roll uren and over on the surfice of the water in an anazing nabner. Still they nre not firious or dangerous iowards the meriner, but are commonly killed with ease. The ailul
rall her 1 masters." ninlen by a fond of their (a), that, by dintroyed, a panion.
It has bee that the male of temperame nte and ung leaving the fe the gentler c guarding thei thenselvea to simplicity, the tinus, and car They have the larly out of th when in this the purpose of present the ap sidd to have th cominunicate th the manner in Besle, froin wh fishery we sha citations, gives can comntunira wen seven mil lir, above wate whatever, if we the act of respi indeed, that the struggling in tl enotradicted by its other hahits, Gireenland whal congener, to leap ${ }^{3}$ s the guilors cal of varicun auckir freting a lodgme Thich often rems tured anumal by been erroncously remous crenture, fishes that come impradicalility wiclly bulk, the grent whale of th and inoffensive wi deep. As in the have gifted this teness proportion nerolent view to lided, the spermway than sinning have been ohserve citr, and to throw
It has been men cachalot is the acp animal of so curiou cisl notice. The e naine of the cuttle bis molluscous tril winla, or arms, ran with suckers which th rocks or any othe Sune of the tribe lic whale :n, will fu ful. In the grullet tntaculum of a sen trenty-seven feet lo Seas have a mortal
ren l. at wer ve unly luttr. san the othen anviduality an , and itn oil n 1 by the no oo general ino-
rocephalus, or eral vanetiea lo lower jaw. n. The leat of the uperm thren fins; of flatted teeth or e, or a whitish thers now to be ale attuing to fity fect. The ro than a thind rupt and sheep of the snout in le to one side; but one of the arepuired in the ith one another, f this whale. Its y useless. The iv, much of the $r e$ in most of the , protuberances; Lail is an instrore usually about ions in the upper nough to admit 1. A mulluscora the sailors, in its

has a very extro

 floating the ani the skull is filled on cooling, and omo of this oili ; and in a bag is nee lies, the sur (proper to stala, o unimal's froes erm whale fishery, if the rectacen not of the niysticelan - sperm whale in oil. The sailon he act of blowing at intervals of ten visible at the dis - appearane of a lown, of expired, irations as often, hunder water more blowl which it has ulrendy described disaplnarances u inting regularity, ale is timil befon of its own race hales, ot "hulls," ich always attend rivals desirones at with one suothet, bue unomer's cush netinues roll uver an unazing nap crou: :iswarde the rase. I'the seilateall a het it aschool, and the old bulln the wschoolmasters." The femalen are sald to be smaller than the malea by a fourth. I'hay are, like the mysticetua, very fond of their youns. in 11 naso of one another; so much mi, that, by cautiois in nagoment, a whole herd muy be d'stroyed, as they will acarcely quit a wounded compamion.

It has been noliced, however, by the sperm-whalers, that the males do not exhihit any such atfictionateness of temperament, but, on the contrary, make an immediare and ungallant retrent on the approach of danger, leaving the females to shift for themselven, and to show the gentler constitution of their nature by helping and guarding their woundel compnnions. Though exposing themselves to risk on these occasions with no much simplicity, the aperm whales are neverthelesn very cautinus, and careful to avoid peril in the first instance. They have the power of raising their heads perpendicutanly out of the water to a very considerable height, and when in this attitudo, which seems to the assumed for the purpose of viewing tho surrounding expanse, they present the appearance of huge bluek rocka. They are sid to have the ability, also, on noticing nny objoct, to cominunirate the intelligence to their companions, though the manner in which this is done remains a secret. Mr. Bale, from whose excellent work on the Pacific swhalefishery wo shall immediately make some interesting citations, gives it as his opinion that the sperin-whale can comnunicate signals to a distance of four, five, and ren meven miles. This cannot be efleeted by sounde, l.r, above water at least, the animal utters no noime whatever, if we excopt the hissing sound uecompanying the act of respiration. Baron Cuvier und others aver, indeed, that tho cachalot sends forth lond groans when struggling in the mortal sgony, hut this statement is contradicted by all practical whalers. With regard to is other habits, the sperm-whale much resembles the Greeniand whale. It is often seen, like its northern cagcener, to leap directly out of the water, or to bretich, as the sailors call the action. Its purpose is to get rid of various surking-fish and crabs, which are fond of effecting a lodgment upon its mountainous body, and Which often remain there till plucked from off the capured anumal by the whalers. The sperm-whale has kern erroncously represented by mnny writers as a voreious creature, pursuing and destroying all the lesser fohrs that come in its way. Leaving out of sight the impracticability of such a thing, arising from its unwilldy bulk, the truth of the matter really is, that tho great whale of the South Seas is peculiarly harmiless und inoffensive with regard to tho smniller tribes of the feep. As in the case of the elephant, nature seems to have gifted this mighty creature with a degree of gentencs proportioned to its size and atrength, with a benevolent view to the comforts of other oceanic races. Indeed, the sperm-whale is more sinned against in this way than siuning. The sword-fish and other animals have been ohserved to attack it with the utnost audacity, and to throw it into a state of prodigious nlarm.
It has been mentioned that the principal food of tho cachalot is the sepia octopus, or sea-squid. This is an simal of so curious an order as to merit a word of special notice. Tho common sepia ia weil known ly the nase of the cuttle-fish. The principal preuliarity of this molluscous tribe is the possession of powerful tentarnla, or arous, ranged round the mouth, and provided with surkers which give them the power of ndhering 3 rocks or any other substances with surprising tenacity. sme of the tribe attain to a creat size, and, large as lie whale $: 8$, will furnish it with no contemptible mouthful. In the gullet of one spermaceti whale, an arm or mntaculum of a sea-mquid was found, measuring nearly weaty-seven feet long The native divers of the South Scas havo a mortal dread of these squids, and no won-
der, seeing that the strength of man is totaily inefficient to tear away their tentacula when they are once fired A naval captain, we are informed by Sir Cirenville Temple, once came in contact with a large sepia when bathing. 'I'hu animal attarhed itaelf to ona foot; ho felt this, and strove to disengage the creature with the other foot, but it fixed upon that too. He meemed then to have undo an attempt to free himeelf with him hands. Theae almo ware tlimly grasped, and the poor man wa soon after found bound hand and foot, and drowned past recovery I Mr. Heale relates an miventure which he himself had with one of theme creatures. Ho suw it near the surf on one of the Bonin ialanda, and made some half sportivo attempts to capture it, not anticipating any poasible harm from a creature which had a blubhery hody not above the size of a clenehed fist, though ite tentacles appeared about two feet in length. He took hold of one of them, and was endenvouning to pull the creature from the rock, when auddenly it turned round and aprang upon his Arm, which had been bared for the purpose of seeking ahelis. It fastened lts cold alimy body upon him so firmly that he was in great alarm, eapecially ns it endeavoured to fix it mouth next. He ran to the boat to hia friends, and the animal was diaengaged, but only hy cutting it in pieces. These squida are very numerous in tho Pacific seas, and the spermwhale has abundant feeding upon them and othor smals fishea.

The cachnlot is seldom or never meen in the Greenland seas, at least hy modern navigators. It is spread, however, over nn immense expanse of the ocenn, having been captured, at aome time or other, almost cverywhere between tho latitude of 60° south and 60° north. The cousts of Now Guinea and the aljacent archipelagoer, tho shores of New Holland, Mitchell's Group, New Zealand, Navigator Isles, Ellis'a Group, the ohores of Peru, Chili, California, Japan, the Porsian Gulf, the Chineso scas, tho Molluccas, and many other parts of the occan, abound more or less with this valuable ceteceous tribe.
In the Naturalist's Library, an able periodical, under the conduct of Sir Willinm Jardine, we find the following minor genera of whales enumerated, after a description of the mysticetus, the rorquais, and the cachalot, the three varietica of greatest use to man. 1st, thio nar whal, or sca-unicorn, an animal from sixteen to twenty feet long, and provided with a straight tusk or horn (sometimes two), about four or five feet in length, and projecting from the snout. The animal has a spotted, grayish body, handsomely rounded off, and containing usually near a ton of oil, much prized by the Grecrilanders, on whose coasts the narwhal is often scen. The horn yields beautiful ivory, and is greatly aought on that account. 2 d , The diodona, or two-tecthed whales. These are of a bize similar to the preceding, and are a varicty of little or no value. 3d, 'The hyperoodona, animals of a dark colour, about twenty feet long, and distinguished by knobs in place of teeth. 4th and 5th. 'The aodons and the ziphins, two clnsses of small toothleas whales. 6th, The beluga, or white whale, a creature of pure white colour, exceedingly rounded and symmetrical in form, and from twelve to twenty leet long. It abounds on the northern consts of Asia and Ainerica. In 1815, a heautiful sjecimen of the sace haunted the Forth for three months, and was finaliy killed, and plared in the Edinhurgh Muscum. 7th, 'The delphinapterus, a South-sea whale, is about six feet long, and remarkable only for being beaked somewhat like a bird. 8th, The deductor is an Aretic animal, black in colour, and twenty or twenty-four feet long. It has scarcely any anont, nud is most noted for its power of uttering loud cries when in distress, whel circumstance has obtained for it the name of the rinimg (calling) whale. Whether other specics can rry or nok
was alroedy noticed an a mattor of doubt. Thene are the moat important of those minor varietien of the cetaceous family, which are ranked anong the whales. The dolphin, porpoine, and grampus, on the other hand, have beon imolated by naturalista, and are usually consilered by themelves.

THE WHALF FISHFRY.

Whale-fiabing is a practice of long atanding in tha world. It is natural to suppoee that those nations dwelling on the shorea of the Arctic sean would be the partues earlient engaged in auch pursuits; and accordingly we And, that not only did tho Norwegians and other Northmen proceds all the other nations of Europe in this perilous but profitalle line of enterprise, but they aleo wero the firat introducers of it among the southern nations. The shorea of the Bay of Biscay, where the Normans formod early settlements, became famoun through them for the whalo-fishing there carried on. in the mane segion was it firt made a regular commercial purauit, and as whalea then visited the Bay in groat quantitien, the trallic was convenient and casy. The Bincayans maintained it with great vigour and succoss in tho twelnh, ihirteenth, and fourteenth centurics. We find from the work of Noel, "Upon the Antiquity of Whale-fiabing," that, in 1261, a title was laid upon the tonguea of whalea imported into Bayoune, they being then a highly eateemed speciea of food. In 1338, Edward III. relinquished to P'eter do Puyanne n duty of ± 6 eterling each whale, lid on those brought into the port of Biarrita, to indemnify him for the extraordiuary expenses be had incurred in fitting out a fleet for the service of his majosty. The Biscayans, however, soon gave up the whale-fiahing, from the want of fish, which coased to come sonthward, no longer leaving the icy seas. The voyages of the Dutch and Englist to the Northern Ocean, in order to discover a passago through it to India, though they failed in their primary object, laid open the remote haunte of the whale. The Britioh Muscovy Company obtained a royal clarter prohibiting all vessels but theirs from fishing in the seas round Spitzbergen, under pretence that it was discovered ly Eir Hugh Willoughhy. The fact, however, was, that Barentz, a merchant-seaman of Amsterdam, had discovered it in 1596; and neither Dutch, Spaniards, nor Frenchinen, were at all disposed to almit the juatice or propriety of the clain made by the English. An extraordinary secne succeeded in the northern seas. The Muscovy company aent out six or soven atrongly armed vessels, which took up a position near Spitzlergen, and commenced an attack on all foreign ships that refused either to quit the region at once, or pay the very moderate toll of one-half the proceeda of their fishing. The English succeeded so far an to annoy overybody else, and to prevent themselves from taking almoat a single tish, mo buay were they in looking aner others. All the nations of Europe remonstrated loudly through their envoya against these proceedings, but the Dutch, cver iearlens at sea, sent out a atrong flect, which effectually guarded their own fishing At length, in 1618 , a general engagement took place, in which the Euglish were worated. Hitherto, the tivo govermments had allowed tie fishing adventurers to thght out their own battea; 1 iut in consequence of the event mentioned, it was conwidered prudent to divide the Spitzlergen bay and seas iato fishing stations, where the companies might not truable each other. After this periol, the Dutch quickly sained a superiority over their rivals. While the English prosecuted the trale sluggishly snd with incompecent means, the Duth turned their fiaheries to great account, and in 1680 had about 260 ships and $14,0 \mathrm{CO}$ uilose amplejed is them.

Though there have been, in English hintory, one on two magnificent instances of the succems of great companien, poavenaed of monopolies and exclusive privilegea, there can the little doult that the attempt to prowerute the whale-fiahing at thia era failed from ita not being openod up to private entorprime. After the cessation of the Muncovy Company, a Greenland Company, with an actual capital of 545,000 , entered on tho trailo, and in nine yeara came to a ruinous clowo. In 1725, the South Sea Company took up the adventure, and in eight yeara, attor the outlay of a vant amount of money, they almo were compelled to aulmit to a dead toan of their capital, and throw up the attempt.
The legislature now tried a new scheme, leing sin. corely desirous to enedurage and establish the trade, an well as to make it a nurary for seamen. In 1732.a bounty of 30w. a ton was granted to every ship of 200 tona lurden that engaged in tho fixhing. In 1749, it was thought uecessary to raise the hounty to 4 th s., when, as Mr. M.Culloch observes, na many ships seem to have heen fitted out for catching the bounty as for catching fish. But a traio supported on any other principle than that of direct benelit received from it by the partica sn gaged thercin, can never be of an eiwluring nature, and this truth noon appeared in the prement came. In i777, the bounty was reduced to 30a., the consequence of which was, that during the next live years the number of shipa employed in the trade was reduced from 105 to thirty-nine! In 1781, the bounty was raised aguin to its old lovel, and an inducement was thus held out for the revival of the spirit of trale. But, after nill, whot a million and a half of money, expendel in auccessive donations under the name of bounty, war totally ineffio cient to do, the apirit of private enterprise, once fairly nwakened, apecdily acromplisised. Tho Britiah whalefiaheries throve rapidly between 1781 and 1705, and the legislature found themselves justified in reducing the bounty, at intervala, from 40s. to 20s. The long continental troubles consequent on the French rovolution put a complete period almost to the Dutch fiaking, while in the same apace of time the British fisheries werc continually improving, tino conduct of them being lon entirely to the private spirit of the nation. A amall bounty, indeed, was given even down till 1824, but it was uninfiuential, and was then withdrawn altogethe:. Of the change which has of late years conie over the whaling traffic of Britain, n few words will be said be fore bringing the general sulject to a close.
No species of fishery, prosecuted anywhere on the face of the ocean, can compare in intensity of interest with the whale-fishery. The magnitude of the object of the chase, and the perilous character of the seas wlich it peculiarly frequents, are fentures which prominenty diatinguixh the profeasion of the whale-fisher from ail similar purauits, and which invest the details of its ivis tory with the atrong charm insepmrable from pictura of atirring oxertion, privation, and dauger. Such lwith tho case, we shall present, chiefly from the writinge ot Captuin Scuresly, the highest authority on the suljeet a full deacription of the proceedings comurcted with the Britimh whale-fishery. long a whalemmen himself, Cap tain Scoresby had ample opportunitice of personal onservation, and he was gitted, fortmately, with puch powera as ennblid him to describe the serness whirh fel under his notice with clemness, acecuracy, and force.
The ships designed for the whate-fishery are usualtr from 300 to 400 tons in burden, mind require to be verg sulstantially built, in ordes to resist the pressure of the ice. With the view of increnking their strenget, mast of them bave additional planks and timbers, and often, also, irou-plates and stancheons, introduced into thes structure, hoth internally and externally. Such appur tenances and provisiona are technically known by the samen of doublings, treblingo, fomifyings, pointers, cu
ungs, tece with'in uoed in th wnech are The wh in length, nars. It formed as They are mado onea pled and be elasticity is ous moven ties indixpet whale-fisher The harpoo long, and co whank," an sir inchea ir withers and the withere The united shank is fixe poon is tho formed of th being usually more than Mach attentic because on it whale depenal plunges of th Unless the sh bar of iron, again tuwoun The socket is point of ite ju two inches. tion of the har point a amalle Gablhbook. Th
Tha lance is ten feet long, ar a fir stock is in inch in diamete thel, seven ineh ment and the we ell the appa the whate. So which projects found extremely
The alips deat in March, or dur of one of these 5fy men, compri much as harpoone less, landsmen, a of Shetland, on a ers commonly rea gen in the end of Ley continuc the of 79° or $78 j^{\circ}$ (mee with whale in the ice, lying be whalers for th rourse must be rep On maching a ti prepirations are in Nsiness of captur re alsays kept e ship, in such Eto the water, wit thole necessary n Priousty to this
intory, one an of great consive privilegen, it to promerute itn not being se ceamation of upany, with an o trade, and in In 1725, the enture, and in ount of money a dead tona 0
reme, heing shon ish tho truile, a c11. In 1732. very shlp of 200 g. In 1749, it ty to t(1)., when, ips seems to have y as for catching ner principle than y the partics atr uring nature, and it case. In 1777, , conme'puence of years the number juced from 105 as raisud again to thus held out for t, after all, what a idel in anccemaive , wae totally ineff. erprise, onco faisly The British whaleand 1795, and the d in reducing the 8. The long conFrench rovolution the Dutch fiahing, the Britich fiaheries duct of them being e nation. A mall vn till 1824, but it dudrawn altogethe: cars come oves the ds will be asid be

close.

anywhere on the ntensity of interes itude of the object of of the seas which which promineaty hale-fisher from all he details of its his rable from pinturs nuger. Such lwing om the writingsot rity on the sulyect, comected with : mun limself, Cap ies of personal ob nately, with rech o secones whirh tell racy, and force. fishery are usials require to be verg the jressure of the heir strength, nud timbers, and often roduced into thea ally. Such appur ally known by the yings, pointers, cul
unge, Ace. Of co irse, the whale-ship la alwo furnimhed with'in ample atock of the apparatue and instrumenta ased in the flahing, ae weli as with the peculiar boate whieh are employed in capture and purnuit.
The whale-bost is from twenty to twenty-eight feet in iength, and provided with from four to aix pair of varn. It mhould float lightly on the water, and he so formed is to move with speed, and to turn eanily round. They are "earver-huilt," as it ia calied, and the best made onee are composed of straight oak planks, supe pied and bent to the required manpe, by which means their elauticity in greatly increased. The rapld and dangerous movements of the whale render these various qualitien indispensable. The'principnl wenpons with which whate-fishere are suppliel, are the harpoon and the lance. The harpoon is an iron instrument about tiree feet long, and consluts of three conjoined parts, the "socket," "ahank," and " withers" or harbs. The socket is about sir inches in length; the ahank, which is between the withers and socket, is nearly eighteen inchea long; and the withers are eight inches long by six in breadth. The united withers ars trinngular in shape, and the shank if fixed hetween them. The shank of the harpoon ia the mont important part of the weapon. It it formed of the most pliable iron, old horse-slice nails being usually preferred for the purpose; and it is not more than four-sixteenths of an inch in diameter. Much attention is paid to the manufacture of the slank, becuse on its flexibility the retention of a harpooned whale depend. If the shank ahould break during the planges of the whale, the animal is lost to the fishers. Unless the shank will bear to be wound round an inch bar of iron, in the form of a clome spiral, and to be again unwound, it ia held to be of imperfect materials. The socket is hollow and strong, and swells, from the point of its junction with the shank, to a diameter of two inches. It is only necessary to adil to this description of the harpoon, that each of the withers has at its point a amaller and roversed barb, like the beard of a Gish-hook. The use of thia provision is obvions.
The lance is a more simplo instrument. It is nearly ten feet long, and conaists of a hollow socket into which a fir stock ia inserted, of a shank of iron ahout half an inch in diameter, and of a sharp, flat point or tongue of meel, seven inches long by two in breadth. This instrument and the harpoon, together with lines and boats, are all the apparatus alisolutely necessary for capturing tho whale. Some ships have a harpoon-gun, or a gun which projects the harpoon; but this weapon has been found extremely uncertain when put to use.
The ships deatined for the Greenland fishery put to sea in March, or during the firat daya of April. The crew of one of these vessels usually conaists of from forty to Gffy men, comprising various classes of inferior officers, much as harpooners, boat-steerern, line-managers, carpenlers, landsmen, and others. Strering from the direction of Shetland, on a course to the east of north, the whalers commonly reach and pass the west side of Spitzhergea in the end of the month of May. From this point diey continue their course till they arrive at the latitude of 78° or 783° (the best parallel for fish), or till they met with whales. There is a remarkable indenterion in the ies, lying between longitude 5° and 10°, which the whales for the most part strive to enter; hut their foure must be regulated greatly by the state of the ice. On reaching a fishing station where whales are seen, proparations are intundiately made for commencing the masiness of capture. 'l'wo or three boak. at the least re always kejit suspended from eranes by the side of the ship, in such a position that they can le lowered Intu the water, with their complements of men, and tho thole necessary npparatus, in the agace of one minute. Periousty to this time, the harpoons and lines have ben got in order. 'Tho socket of the harpoon has been
furmiahed with a mock or handic, mix of seven feet tong and fantened in ita place by meane of a aplice of utrous rope, cailed a forgganger, the sye of whis h is kept firmly Axed to the iron of the harpocn by the ruelling of the socket. To the loone end of the foreganger are attached five or six fathoms of line, called the atray line, nnd this again is connected with the other lines of the boat. In each boat there are about 4320 feet of rope, neat? though loosely colied up in aix eeparato portione, and luid down in places appointed for the purpose. The line or rope is made of the bent hemp, and la about 21 inches in circumference. An axe, to cut the lines if necessary, a bucket to lave the linen and keep them from belog overheated ly friction, and a few other articien are also laid down In the boats for use.

MODE OF Ftshino.

Whenever there is a probability of seeing whales, the master, or nome experienced officer, keeps a clone lookout from the crow'a-nent, a station at the mant-head mu called. With the assistance of a teleacope he seana the aurface of the waters around, ready, at the first glimpse of a fish, to give notice to the watch on deek. In fine weather, a boat is kopt afloat, manned, and engaged nlso in the look-out. The short time during which whales usually remain above water to breathe (being only two minutes), renders the discovery of them leas easy than might be anticipated from their great bulk. Besides, while below water, the animal frequently traverses a mpace of half a mile in the ten or fficen minutea intervening hetween the respirations; and hence the spot at which it may again rise, after being once seen and again disajppearing, is left in a great measure a sulyject of conjecture. The previous direction of the whale's movements, and occasionally a sort of eddy on the surface, are the only guides to the boatmen in this particular. When the whale does come up within reach of a harpoon-cast, and lies uncosscious of the approach of its enemies, "then (says Captain Scoresby) the hardy fisher rowa directly upon it, and an instant before the boat touches it, buries his harpoon in its back. But if, while the bont is yet at a little distance, the whale should indicate his intention of diving, by lifting his head above the common level, and then plunging it unler water, and raising ita body until it appear like the large segment of a aphere, the harpoon is thrown from the hand, or fired from a gun, the former of which, when skilfully practised, is efficient at the diatance of eight or ten yarda, and tha latter at the distance of thirty yards or upwarda. The wounded whale, in the surprise and agony of the moment, makes a convulsive effort to eacape. Then is the moment of danger. The boat ja aubjected to the moat violent blowa from its head or its fins, but particularly from its ponderous tail, which sometimes oweeps the nir with such tremendous fury, that both boat and men are exposed to one common destruction.
"The head of the whale is avoided, because it cannot be penctrated with the harpoon; but any part of the body between the head anil tail will admit of the full length of the inatrument, without danger of obstruction. The harpoon, therefore, is always struck into the back, and generally well forward towaris the fins, thus affording the chance, when it happens to irag and plough along the back, of retuining its hold during a longer time than when struck in closer to the tail.
"'lhe moment thint the wounded whale disappears, as leaves the bont, a jack or flag, clevated on a staff, is displayed, on sight of which, those on wateh in the s!ip give the alarm, by stsmping on the deck, accompanied by a simultaneous and continued shout of 'a fall!'*

[^11]Ite aloepung erew, rouned by the nound, jump from thair beda, rumh upon deck, with their rlothes tied by a atriog in their handa, and crowd into the hoats, at a cemperature of sero. They generally contrive to drese themeelven, in pert at loeent, as the boates are lowered down ; but mometimes they puch off in the atate in which they riee from their beta, row away towarile the fant boat' 'that is, the boat attached by its barpoon and line, to the whale, and hava no opportunity to clothe themcelven for a length of unve aferwarda. The athrm of -a fall' has a singular offect on the feelings of a sleeping person, unaccustomed to the whalo-fishing businesus. It has often been mistaken fine a ery of dintresm. A lindsman in a Ilull ahip, acoing the crew, on the acenaion of n fall, rush upon deck, with their clothes in their hanila, when there was no appearance of tanger, thought the men were all mad. But with another hudividual the offeet was totally diffivent. Alarmed with the extraordinury noise, and still more wo, when he reached the lleck, with the spprarance of alt the crew mented in the loats in their shinm, he imagined the ship was sinking. He therefore enalenvoured to get into a boat himself, but every one of them treing fully manned, he wan afways repulmed. After meveral fruitleas endeavours to galn a plare among his connrades, he rried nut, with feelings of evident listrene, © What ahull I do ?-will none of you take me in ?
"The first elfort of a 'fant finh,' or whale that hass been metruck, is to eacapm from the bont, by ainking under water. After this, it pursurs its courne directly downwaris, or reappeare at a litle distance, and swima with great celerity, near the surfice of the water, towarde sny neighbouring lre, among which it may attain an imaginary shefter ; or it returna instantly to the surface, and givea evillence of its agony ly the mont convulaive throen, in which its fins and thil are atternalaly diuplayed in the air, and ilnshed into the water with tremendoua violence. The former hehaviour, however, that in, to slive towarila the hottom of the eea, is so frequent in comparison of any other, that it may be condillered as the general conduct of a fant finh.
"A whale struck near the eige of any large aheet of ice, and passing undernenth it, will sometimes run the whole of the linen out of the boat, in the apace of eight or ten minuten of time. This heing the came, when the - fant boat' in at a distance, twith from the ship and from any other boas, it freyuently lapprens that the lines are all withdrawn hefore amsintance arrives, and, with the nish, entirely loat. In some rnsea, however, they are meonvered. To retarit, therefore, an much as possible, the flight of the whale, it in unual for the harpooner who atriken it, to cast, one, two, or more turna of line round a kind of poat, ralled a ballard, which in fixed witnin ten or twelve inches of the stern of the boat for the purpores. Such is the friction of the line, when running cound the ballard, that it frequently envelopeas the harpooner in amoke; and if the wool were not repeatedly wetted, would prolnably set fire to the tmat. During the capture of one whale, a groove is nometimes eut in the ballard, near an inch in depth; nad were it uot for a plate of brana, iron, or a block of lignum vitis. which covers the top of the stem where the line passen over, it is apprehended that the action of the line on the material of the hoat would rut it down to the watrr's ellee, in the course of one merman of suecressful fishing. The approaching distress of a boat, for want of line, is indicated by the resesation of an oar, in the way of a mast, to 'ich is aultiel a specond, a thiri, or even a fourth, it pr : rition to the nature of the exigencp. 'The utroxt is, "i attention are requisite, on the part of every persw, tho inoti, when the hues are
 Tratured by the atyme inflity negiect. When tow lise happens - to min icul,' aind ciduot be cleared in tho in-
atant, it monnetimes drawn the boat under wnteri on which, if no auxitiary bont or convenient piece of ! so Tre at hand, the crew are plunged into the mea, ainl ure obllgesl to trumt to the buayancy of their oara, or to their akill lit ewimming, for sulpjorting themmelves on the surface. 'To provile againut nuch an aceilent, as welt at to tie realy to furnish an additional antply of lines it is unual, when boate are sent in pursuit, for two to gn out in company, and when a whale has been atruck, fie? the firme amisting tomt which apprimehes to join the fint troat, and to stay by it until the fish reapipara, The other boata, likewine, make lowarde the owe carrying a thag, and aurround it at various distances, awaiting the appenanee of the wounded whale.
"()n tiny first voyage to the whale Ashery, nuch on accident, an athove alloded to, oceurred. A thoumand futions of line were alremly out, and the fant heat wa foreibly pressed againas the side of a piece of iec. Thes harpoouer, in his anxinty to retard the llightit of the whale, applied too many turna to the line round the bollard, which, gelting entungled, drew the twat bencait the icc. Another boat, providentially, wan at ham, into which the erew, inctuding mymelf, who hapyeurd to be prement, hall just time to encape.
"'The whate, with nearly two miles' Iength of line, was in consequeace of the acchent lost, but the brat was recovered. On a subsequent occasion I underwent a aimilar misadventure, but with a happirer result; Ho encapel with a little wetting into an arcomplunying boat, and the whale was afterwards captured, and tie buat with its lines recovered.
"When finh have been atruck by mymelf, I have on different occasions eatimated their rate of dencen it. For the first 300 fathoms, the averago velocity was usually affer the rate of cight to ten milea per hour. In wie Inutunce, the third line of 120 fathoms was run out in sixty-one aeconds ; that in, at the rate of eight and one axxth Einglish milew, or moven and olluorighth nautial miles, per hour. By the motiona of the fiast bount, the nimultancous movements of the whalo are entimated The nuxiliary boats, necorlingly, thke their stations abous the situation where the whale, from these motiong may rensonably be aperted to appear.
"I'he average stay under water of a wounded whate, - hich steadily descends after being struck, according to the most unual conduct of the animal, in ubout thint minutess The longeat I ever ulmerved was fiftyon minuten; hut in slallow water, I have lwen inforined it has eametimes hern known to remain an hour andi half it the botton after beiug struck, and yet has it turned to the surface alive. The greater the velocifs, the more conmiderable the distance to which it descendi, and the longer the time it remaina under water, w much greater in proportion is the extent of its exhaur tion and the consequent farility of accompliahing th eapture. Immeliately on its reappearing, the awsisting bonts make for the place with their utnomt apperd, and as they reach it. each harpooner plunges hia harpoos into its back, to the amount of three, four, or more, so cording to the nixe of the $\mathbf{w}^{\mathbf{1}}$ I. and the nature of the vituation. Mont frequently, hu te:v minutes after receivio
it diemercoula for obliges the other boats to. - prona, and before suy further ather cand cube to the surface heenre muy further athack can he made. It in afterwas budy, niming at its vitals. At lenuth, when eshanstel by numeroas wounds and the lose of bookl which fum from the huge animal in coplous sureans, it indieso the approach of its dissolution ly diselarsing from a - bluwhles' a mixture of hood along will the air sm muens which it ustally expires, and limally jets of hoo aloue. The sea, to a grent estent ariomil, is dyed my its blool, and the ice, boats, numb men, nue mometmas drenched with the wane. In track in likowise main
by b,
under whiep; un ient prece of !se o the mea, and aro ir oara, or to thein comelves on the accident, an wel| al supply of linex mit, for two to an leeen wtruck, for nes to join the fave a reapluearn, The he one carrying, nces, awaiting the

- fushery, wuch on red. A ihoumand I the fant bom wha piece of ise. The the tlightit of the he line round the w the lunat hencals ally, wan at hamb, elf, who hapmed
ley' length of line, t loat, but the boat casion I underwen happier rewull; we an accomphay ing eaptured, and the
y myself, I have ロa ate of demerith Fur clocity wus usually per hour. In hat oma war run out in to of cight and one. onnocighth nautical of the fiant loost, the whalo nere entimated take their matanat , from these motions, ear. ft a wounded whale, ntruck, according to imal, is alout thisty erved was fiftyois have luers inforined main an hour and ck, and yet has re greater the velocity, o which it descend ns under water, o xtent of its exhaur of accompliahing to caring, the axsistion r utmont njured, and blunget hia larpout c, four, or more, x the nature of the nexecody for 1 pron, and isti. to the Rurface, ale. It is afterwat's are thrust intu is th, when eshauted of blowl which flum: stremus, it indictes diselharging fromo ong with the airs and 1 tinully jet of blow around, is dyed mis millt, ate somatime ia likewise malo
by b oad pelliele of oll, which exudes from its wounde, adi appeare on the ourface of the mea.
ulta final capture is aometimes preceried by s convul dive atruggle, in which lita tnil, reared, whirled, and violentiy jerked in the air, resounda to the iliatance of milea. In dying, it turns on ite hack or on ite mile, which joy. ful circuinatancen In announced by the enpturere with the atriking of theur finge, accompaniel by three livrly buzxas I"
The writer of thin animated deacription pointa ons how remarkally nature seens to anaint man in the cajture of the whale. Hy no effortn of ite human ammitiants cosid the atrength of the creature he no fir seduced as to premit of its dentruction, were it not that its dec scent, through fright, to a depth of 700 or 800 finthollm, mint aubject ita baly to the exhaunting premenre of more than 900,000 tons of auperiucuminent watar! it ie through thia cause rutlier than from the wounde the whale has received, that it comen to the murfice in so holplons a state of exhauation. The apare of time in which different individualm are enptured and killed, variea comalderally, aid, in part, for the name reason. Large whales luve leen monetimen killed in twenty minuter, whil", In other inntances, the abimal coota hia mailan' \quad un le wistern hours' duration, and in
 ater alt. The avera te time, under favourable circumsntances, in new hour, hat two or three houre are no unnomis.i' ; rind for the content to lant, even in favour, ble circuimsinces. Two harpoone unually denpateh a thale of midillugg mize, and ita movemente mny rome inonly be restruised within the linita of 600 fathoma of line. O° n the career or flight of a firat-aize whale, no check can be placed, until ita own exertiona exhaunt the powers,
The case with which some whalen are sutulued, and the slightness of the entanglement by which they are taken, have often heen the cause of agreenble murprime to Bahera. The fullowing case would almost incline one to arcuse the whale of a degree of stupidity unknown among the lowent of the hrute creation :- A whale was atruck from one of the hoats of the ship Nautilua in Davia' Straits. It wan killed, and, an in usual afler the rapture, it was dimentangled of the line connected with the firmt 'fadthoat,' by dividing it within cight or nine yarin of the barpon. The erew of the boat from which the figla was fint struck, in the mean time, were employed in heaving in the linen, by means of a crank fixed in the boat for the purpome, which they progressively ellietted for some time. On a nudilen, however, to their grent ustoniahment, the lines were pilled nway from them, with the mata force and violence as hy a whale when first atruck. They repented their nignal, indicative of a whale being esuck; their shipmaten florkel towards them; nad while every and exprensed a similar degree of astoniahment with themelves, they all agreed that a fish wua fast to the line. In a few minutes they were agrepably confirmed in their opinion, and relieved from nuspernse, hy the risiug of a large whale close hy them, exhausted with fatigue, and having every appearance of a fast-fish. It permitted itsu!f to be ntruck lyy several barpoons at once,
! was apedily killed. On examining it after death, on discover the ee ime of auch an interesting accialent, thoy bund the line lofonging to the ahove-mentioned that in its mouth, where it was atill tirmly fixed by the compression of ita lipe 'The occasion of this happy nond puzzling arcilunt wan therefore salved. The eral of the lime, ather being cut from the whilo firat kilted, was in the act of unking in the water; the fint in question, engaged in fealag, was alvancing with its moush wide apron, and ace ilentally caught the line betweeat ita extanded jawsa womation s. utterly unuil al sen thit produced by the line, had induced it to shat ita mouth and gring the line, which wan the cause of ite alarm, so tiruily between ita

Hips, an to produce the effect juat ntated. Thle cirruin atance tonk placo many yeare ago, but a amilar one no curred in the year 1814."

A nother ense of eany eapture, though one net quite me dixparaging to the inteliect of the whale, han been recotdeil by Neoreuhy $\mathrm{f}-\mathrm{A}$ A harponner, helouging to the Prinee of Brazil, of Hull, had atruck a small finh. It demenderf, nul remuineal for mome tine quiet, and st length apprearal to be drowned. 'I'he strain ou the line being then conmiderable, it was taken to the ship, with a view of heaving the finth up. 'The force refuintio for performing thix onve. ration was extromely varions; mometinus the line catie wilh onve, at othera, a quantity was withbrawn with great foree and rapidity. As much, it appenred evident the the fish wan yet illyc. The heoving, however, was persintel in, and after the greater part of the lines had bect drawn on boatd, a doad fixh appeaied at the surface, eecured by meveral turna of the line roand its body. It was diveli. taugled with diffirulty, and was confidently befinved to loe the whale they had struck. But when the line was clenred from the 'tinh, it proved to the merely the "bight,' for the eul atili huug perpendieuliarly downward, What Wan, then, their murprime to find that it wan ntull puilled "way with conaiderahle force! The capstan wan again resorted io, and ahortly alterwarda they bove up, also deas, the fiah originally ntruck, with the harpoon atill fint. Hence it appeared, that the ginh frat drawn up load got accidentaily entangled with the line, and in ite atrusglea to earajo had atill furtier luvolved liself, by winding the tine repeatedly round ite body. The firme tish entangled, an wan numpected, had long been dead; and it wam thia lucky interloper that occusioned the jorke and other mingular "ffeets ohmerved on the line,"
'Jhe whalc-linhing is apt to be impeded, as may rearlily be inagined, by the great masses of ion evprywhere abounding in the northern seas. The usual course of proceedinga in open water has been deacribed; in dithern ent circumstances, different plans thuat be adopted. Puch-fishing in the name given to the chase of the whale on the bordern of clome packs of drittice. 'The animad loven to whelter his vant bulk under the lee of theme frozeo inasses, and, when atruck, usually fies to them for refuge, thus endangering the lines and lives of the whalemen. 'The comman method of providing ayninst such contingencies, is either to atrike the fish with two harpuone from different boats at the same monent, or to nufix the line of a mecond boat to that of the one from which the whale han been harpooned, so that the strength of two lines is brought iato play againat the fisls. Sometimes, when the fisil gete entangled in the dritt-ice, the meventuroua acnmen climb over it, and lance tho animal from that perilnus sistion. Altogether, pack-fishing is troublesone and dangerons, and were it not that the large: whalen ofen resort to such aituationa, whalers woold se! 1 um attempt to fish there.

On the other hand, firll-fishing, as it is callol, or fisbing on the edges of those wide connected plains of ice termed tiells, is one of the most productive of all the mode of tiabing prosecuted in the fireculand seas. When the wenther is tolernbly mild, it is uno a pretty secure mode. The mont murked of the advaitagen held out by fieldfishing, in the curtailment of the range of the whale's movemente. When harpooned, it eommonly descenda obliquely benmath the fiedd, now, being unable to rist throngh the iee, is torced to return to the edge, or nearly to the sput where it male the plunge. 'Ilans, the ahip's lratas, if ntatoned along the margin of the fiedr, can al once larpoon it a necond time, and despateh it. In open water, the whale. ly rising at a mpot far apart trow whert it disin, guins time to breathe freply and recruit ith ntrought, and so cither breakn away altogether, or greatl! protracts the struggle. For thim reasolt, six boats at a linio' will do the work of twelve in oprll mea. Two or hoor, theh are frequently taken ut a tied at one tint, and on r .
particular occavion six fish were aetually captured at once by the seven boats of a single ship. Even in such weather as retiders fishing impracticable elsewhere, field-fishing can he prosecuted with success, But there are disadvantages also sten? iant on this mode. The movoments of fields of ice are so rapid, various, and unaccountable, and their powers of doing mischief so unlimited, that the utmost prudence and skill cannot entirely secure vessels lying in their vicinity from the risk of severe danage or total destruction. Small fields or floes are esprecially dangerous, particularly if they contain sunall cracks or noles in tho centro of them. The chance of a sulden morement in such floes is much greater that in the case of the large fields, and, morcover, after being struck, the whale generally makes for the apertures in the ice, und there breathes freely, rendering it necessary for the men to cross the field on foot, and despateh their prey with the lance. Even when they aucced in doing this, there is no way of getting out the whale but by sinking it, and dragging it from below the ice, at the great risk of pulling out tho harpoon altogether; or by cutting the blubber away, and transporting it over the surfuce of the floe, piece by piece. Thewe operations are attended with vast labour and loss of tine. "As comeeterl with this sulject (says Captain Scoresby), I cumot pass over a circumstance which occe.red within my own obervation, and which excited my highest admiration. On the 8ila of Joly, 1813, the ship Esk lay by the cilge of a sheet of ice, in which were several thiin parts, and sume holes. Ilere a fish haing heard blowing, a harpoon, with a tine comected to it, was conseyed across the ice from a loat on guard, nad the harpooner succeded in strihiug the whale at a distance of 350 gards from the verge. It dagged out ten lines (2400 yards) , and was supposed to be seen blowing in different hows in the ice. After some time it happened to make its sppearance on the exterior, when a barpoon was struck at the moment it was proceeding again bencath. About 100 yards from the edge, it broke the ice where it was a foot in thickness with its crown, and respired through the opening. It then determinately pushed forwarl, theaking the ice as it advanced, in spite of the lances constinnly directed against it. It reached, at length, a kind of basin in the ficld, where it flosted on the surface of the water without any encumbrance from ice. Its back being fuirly exposed, the harpoon, struck from the lwat on the outride, was olserved to be so dightly entangled that it was ready to drop out. Some of the officers tammed this circumstance, and expressed a wish that the harpain were hutter fast; observing, at the sance time, that if it should slip out, the whate would either loe lost or they would be under the necessity of cutting it up where it lay, and of dragging the pieces of hubler over the ise to the ship-a kind and degree of lthour which every one was anxions to avoid. No sooner was the wish expressed, and its importance made known, than one of the sailors, a smart snd enterprising fellow, stepped forward and voluntered his services to strike it bether in. Not at all iutimidated by the surprise which was manifested in every countenatiee by such a bold prophomal, he pulled on his pocket-knife, leapred upan the back of the living whale, and immediately cut the harpoon out. Stimulated hy this courago ous exampls, one of his companiuns procerded to his assistante. While one of them hauled upon the line and hell it in his hames, the other set his shoulder agsiust the extromity of the" hopoon, and though it was without a stock, he contrived to atrike it again into the fish more ellectually than it was at first; the fish was in motion betire they timshet. Ather they got off its back, it advaneed a coumilerable diotunce, ireaking the ice all the way, and survival this uncommol, tratment ten or fiffeen minutes. This atnirable art was an essential benefit. The finh fortunately oank apontaneously after being killed, on which it wan aunied out to the edge of the ice by the line, und secured
without further trouble. It provec a stout whale, and he aceeptable prize."
If whalors could choose their own ground for fishing, many of them would prohably profer a position among open, navigable drif-ice, where the force of the sea is broken, and heavy swells prevented from affecting tho vessel. This kind of fishing is called oper park-fishme, and is hold to be advantageous for the capture of whales. Where the ice is crowded, however, and affords room for boats to pass through it, the chase becomes difficult and hazardoua. Still, as the fishers must take the seas as they find them, fishing is often conducted in this situation of things. Suceess lepends on the hoats leing spread widely, on the incessiant watchfulness of the harpooners, and on their occasionally taking the benefit of a muss of ice, from the elevation of which the fish may sometimes be scen hlowing in the interspuces. Celerity in rowing, and the highest degree of activity in all the proceedings, can alone give a clance of success in open pack-fishing.

Whalers inust also lee prepared to meet and conhat all the difficulties attending the prosecution of their employment in storms and fugs. When a gale occurs during a chase, and after a fish has been lharpooned, fishers are offer obliged to cut the lines and let the prize go. Sometimes this takes place cyen when the fisl1 is killed, and it is worthy of remark that a whale so abandoned becomes the lawful prize of the ship that first gets hold of it, theugh this inay occur in the face of the original captors. But it is common enough for whalers during a stom to keep a fish arcured ly a hawser to the ship, and to retain it thus till the return of moderate weather. Few whalers venture to commence fishing while a storm exists, and it is a matter of equal difficulty and uncertainty to fish during a fog. The mist on such occasions is so thick that it is impossible to seo objects, however large, alore 100 or 150 yards off; and when a hoat is led away ly the chase to such a distance that a bell or a born cannot the heard, ita situation becomes very perilous. The only rule in these cases is to make every possible exertion for the rapid despatch of the whale, and if this be imprac. ticable, to leave it.
Captain Scoresby gives an interesting occount of the plan pursued by himsell in bay-ie fishing. Being lockn! up with his ship in a field of thin bay-ice that was untit in mary places to bear a man's weight, he placed a numler of bouts in various openings which existed a shot way from the versel. When a whale canc to these apertures to breathe, it was struck, and the men endeavoured to drown it, when it darted below the iecepy kreping a steady strain on the line. If this plan failed, Captain Scoresby planted his feet in a puir of ice-shoes, formed simply of thin deal-boards, to the centre of which the feet were tied, and then he boldly crossed the thin ice to the point where, by the direction of the line, he knew the fish would rise. In three instances he was fortunate enough to ace the wale through the ire and to plunge his harpoon into its bardy, after which he used his lance, till in each case the fish was killed. The fish actually rose once of twice bencath the very spot where he stoonl, and brike through the ice with its head. He was hucky cnough to eseape all injury, however, though the ife in mont pheres could not have lsme the weight of a loy standing in common shoves. This kind of buy tee fisting, thangh suectessful, will be regarded by nont $ן$ ersons as somewhat daring and i:zazartous.

Of course, in all these variont ways of fishing, aro cumstancer now and then occur which set at detiance ofll ortinury rules. The whake, for "xample, when struch near the margin of a small hoc, is usnally held in restram, and hilled hy the use of the lines from at most the lxatis On the 25th of June, 1812, however, a harpooner belonging tin the Resolution of Whithy, struck a fisla close by a small flos, under which it disu!! isurd. Assistance was quichly given, and a second loat's lines were attached
no those of aftdr wheh nat for a mignals wer be afforded, the sea. I mank .n ho whole maje stance had p were picked It was ere 1 each having in the anima pav secure pushed impe boat found th them. 'The from the bod mained in ec till darted f only pulled ou It fy along lih the whale wer bout 3$]^{3}$ Eng tion to its pr the lines also, immense, yet It was pursuet it was first stry and yielded at tienal lines use niles of lines.
Afler all, the w diidd size. Bu difficult, in gene
The harpoon Mlood, even afte Aberdecn whal quence of a stor to cut the line and again got whale was is Leith whaler, it forty hours after iaterval four othe This animal con loag period nient boats through the the soatmen coul on board the ship, to say, the streng atter its wounds, that it dragged t an hour and an though the sails sible resistance, an proved to be of srength which it
Whales on trein harpoon, by a su lody. A curiones kyed the harjoon ligh up in the nir. Having got rill of yjor itt back, and part of its borly, an queely capture.
Having killen a the sailors is to pie wa tont. Ther tin the whole of the bo int towing it to the prailles to that of t raion of Alensing
W) thoee of ti, fatt-lonat (or boat attacned to the whale),
after which it was lof hy the other boatmen, who apread nat for a second stroke. But in a short time distress nignala were made ly the fast-boat, and before aid could be afforded, the men were seen to throw themselvea into the sea. Immediately afterwarls the bow of the hoa aank n he water, the atern rose in the air, and the whole majesticolly disappeared. An accidental circumstance had prevented the cutting of the lines. The men were pickell up, and a search commenced for the whale. It war ere long seen, and no less than three harpoons, ench having a boat ond its lines attached to it, were buried in the animal's lody. Every one imagined that all was now secure beyond risk. Not so, howevor; the whale pushed impetuously forward, and aoon tho men of one boat found their lines run out, and were obliged to cut them. The harpoon of another hoat was drawn out from the body of the fish, and now one boat only remained in connection with the animal. The creature uill darted forward with the velocity of light, and not only pulled out the lines of the remaining boat, but made It fy along like an arrow. At length the line snapt, und the whalo went off free, with a beat and 6720 yards, or about 3 E English miles, of line behind it. The obstruction to its progress, caused by the sunken hont, and by the lines also, which weighed 35 cwt., must have been immense, yet the whale pushed on with unabated vigour. It was pursued, and alout ten mults from the spot where it was first slruck, it was again struck ty four harpoons, and yielded at length to its fate. Calculating the additional lines used at the death, this tish ran out nearly six nuiles of lines. The boat and 31,200 yards of line were lost. After all, the whale proved to be one but of the second or Hiid size. But the largest are by no means the moat difficult, in general, to kill.
The harpoon does not always produce a fatal loss of hood, even after the lapse of a considerable period. An Aberdeen whaler struck a tish, which got oll in consequence of a storm occurring, and rendering it necessary to cut the lines. Next day the same fish was struck, and again got off; and on the third day the identical whale was in third time harpoened, and captured. A Leith whaler, in 1817, pursued a fish which survived 6rty hours after being lisst harpooned, although in tho interval fonr other hitrpoons were launched into its boly. This animal continued, through the greater part of the long period mentioned, to fly at great speed, dragging six boass through the water. Finding that nothing done by the soatmen could arrest its course, the lines were taken an board the ship, which had followed the boats. Strange to say, the strength of the creature was se great, even ater its wounds, and its long and most exhausting ron, that it dragged the ship; in the teeth of a luisk wind for an hour and a half, at the rate of two knots an hour, though the sails were arranged so an to make every poossible resistance, and to the best advantage. 'I'ho whale proved to be of a size proportioned to the immense srength which it displayed.
Whates on being strurk are sometimes able to eject the harpoon, by a sudden swelling out or heaving of the tody. A curious ease is on record, where a whale disenaged the harpon in this manner, and caused it to spin ligh up in the nir. But the poor fish did not save itself. Having got rid of the weapon, it turned suddenly over ypor its hack, and the falline harpuon entered the under part of its body, and sank so derply into it as to cause its queely capture.
Having killen a fish, the first operation performed by the sailors is to pierce two holes in its tail and to lash it wa boat. The tine are also roped to the loxly, and then the whole of the lonts, joined in a line, unite their efforts in towing it to the rhip. Here it is placed with its side prallel to that of the vessel, and is a a anged for the operation of flerving In consequence of its enornoua wright,
it cannot be rased altogether out of the waler. Onty about one-fifth part of its body is hrought abova the anrface, and here it is firmly secured by ropes, witl. the abdomen uppermost. Men, armod with spurs on their feet to prevent slipping, then leap on the body, and begin to divide the fat and akin into separate pieces or compartmenta, by meana of blubher knives or apades. A hook called a spectackle, which hanga from a capstern or winth on deck, is attached to each piece of fat, and draws it upwarda as it is flayed off. Pieces weighing from half a ton to a ton are taken up at a time in this manner, and are cut on deck into smaller pieces, which are then east down into the main hatches and atowed away. On the blubber being removed from one part, the whale is turned partially round by the ropes and windlass, and this cutting and turning are repeated until the whalebone and hubber have all been removid. The stripped carcasa is then allowed to siuk. Sharka and filmars often help themselves to the refuse blubher, but they not unfrequently pay for their audacity with their lives. A British whaling-crew will usually flense a commen-sized whale in four or five hours. The operation is followed, when the flens-gut, or blubber-hox, under hatches ia filled with hlubber, by another process which is termed makingooff, from its being the finishing process. The blubber is brought on deck, separated from the skin and fibrous or musculas: structure, eut into pieces of a few inches in size, arad finally introduced into casks, through the bung-hole.
'The instinctive fear of heing enclosed in the ice during the cold seasons, and of finding no npertures for respiration, appears to be the reason for the descent of the whales into the open and more southerly seas. In the month of July, when the ice becomes broken, the cetaceous tribea again enter the Arctic waters, and are unassailalle ly fishers. The whalers, with a lesser or greater ameunt of cargo, or perhaps, if they have been very unlucky, with what is emphatically called a clean ship, are then oblliged to return home to their respective ports, where the blubber is separated from its refuse and converted into oil hy hoiling, and the whalebene seraped, cleansed, and dried for sale. These operationa require no specinl description, the namea of the processes authiently indicating their character. The greateat cargo ever borne to the shores of Britain by a whaling vessel, was that brought trom Spitzbergen by Captain Souter of the Resolution of Peterhead, in the ywar 1814. It consisted of 44 whales, which proluced 299 tons of oil, value, reckond at $£ 32$ per ton, the average price of that year, £9,568; and when to this aum is added the valuo of the whalehone, and the bounty, the freight would appear to have reached $£ 11,000$. Whet oil roso to $£ 60$ per ton, smaller cargoes, in several instances, amountel to sn equal value. In 1813, the Scoreslys, fither and son, respectively brought home cargoes which proluced the aun of $£ 11,000$. Captain Scoresly, senior, in the courso of 28 voyages, eaptured the immense number of 498 whalcs, the oil and whalebone of which amounted in value to above $£(50,000$ But few single cargoes produce sach mume, it must he allowed, as $£ 11,000$, and few individual men have such a career of activity to look back upon an Captain Nebresby.
present congition of the whale-fishery.
In the years 1814, 1815, 1816, and 1817, 392 vessels sailed from Eughaud, and 194 from Scotland, for the whate-fishory. Of these, the port of Hull, which has long taken the ;recedence in this trade, sent out not less than 229 vessels, while Lemdon, Aherdeen, Leith, and Whitly, the next in preportion, sent out respectively 77, 55, 40, and 39. The total number of whales killed by British slips in the same years, was 51130 . They yielded 54,508 tona of oil, and 2697 tons of whalelone. The average to each ship was 8.6 whales, 93 tons of oil and 4.6 tona of whalebone. By comparisou with the
Val. 1.- 11
following more recent years, the progressive condition of the trade will be seen. In 1820, 140 vessels were sent from Great Britain to the fishery. In 1821, when the number was greatoct, there were 142 ships, of 44.864 tons, and with 6074 men engaged in the service; in 1824,120 alipe, of 35,194 tons, and 4867 men. In I829, a great falling off had takon place, the ships numbering only 89 , of 28,812 tons. During the years consequent upon that period, a still greater decline took place in the number of employed whale-shipa. In 1832, there were only 81 engaged in the trade. In 1837, the number was reduced to 59. In 1838, Aberdeen, which, twenty years before, had sent out 55 ahips, sent only five or six from its port. The decline haa been similar within Le last two yeara in other quarters of the ialand. This unfortunate change-for every declension in commerce, generally apeaking, must be held a misfortune-merits zome attention.
The declino of the Britigh northern whate-fisheries appears to be owing to three principal causes. In the first place, the introduction of gas into universal use of late years in the Island, has materially lessened the demand for whale-oil, and the necessity for its aupply. In the second place, the former fishing-fields around Spitzbergen have been greatly exhausted, and whalers have been mader the necessity of venturing into more perilous latitudes for the objects of their pursuit. The third cause ts in a mensure a corollary of the preceding one. In consequence of entering the broken ice of Davis' Straits and other similar eeas, a loss of life and property has taken place of late years, so extensive and alarming, that mereantile men have become unwilling to risk their capital, and senmen their existence, in such ill-fated expeditiona. The great increase of danger is shown by the fate of the fishingvessels during the last few years, as compared with the results of former ones. Of 586 ships sent out in 1814, 15, 10, 17, only 8 wero lost. In 1819, out of 63 ships ment to Dovis' Siraits, 10 were lost; in 1821, out of 79, II were lost ; in 1822, aut of 60,7 were lost; and in 1830, not less than 18 out of 87 were lost. The mischief las progressively increased. In 1837, the Davis' Straits whale-fleet lost several of its number, and many veasela were locked up in the ice through the winter, to the loss of the greater part of their crewa, and at the cost of almost unparstleled sufferings to the petty remnank of them which escaped with life. And while the perils of the trade have thus largoly increased, the profits, owing to the greater difficulty of finding whales, have suffered a corresponding decrease. In 1830, 24 out of the 87 vessels sent out to Duvis' Straits, returned rlean. Not a fish was taken by them. In the most of the years that have followed, the majority of the whalers have returned with comparatively paltry freights, and many without a pound of llubber.
The declension, and apparent approaching extinction of the nerthern whale-fishing. which has so long teen an important pillar of our commercial greatness, could nut but excite uncasiness and regret in the minds of many persons who bave opportunitics of making observations on the sulyect. Accordingly, we find that various plans have bepn proposed for the revival of this brunch of the trade of Britain. Athough we conceive that the sulstitution of gas for oil is one importint cause of the decreased arlmar for whating rinterprises, and a cause, texides, netilier to te deplored nor capable of remely, anil althongh it also abye:rs to us that the exhanstion of the old whaling tielde is another source of the evils complained ot, ant one orly to be affected by time, yet there mizat, we toliewe, the plans alopted which would heli; at ollee to reatore the hacrative chanater of the whate-fishe'y. ant bu alleviate or cutirely prevent the mistortunes Ftich have attemed its promecution of late years. The: mont rational nelheme which we have yet chanced to mee
proposol, is contained in the following extract from tha Aberdeen Herald:-
"The plan is aimply to eatablish a settement of active and enterprising whale fishera on rome favourable apot in the vicinity of Davis' Straits, and to employ only mo many large vesels as may he necussary to carry out provisions to the colony, and fetch home the oil, blubler, whaletone, and other articlea which may be thought worth importing. From all the information that we al present possens, we ahould think that the most eligible position for the settlement would be at Pond's Bay, or somewhere between that and Lancaster Sound, on the west coast of Baffin's Bay. There are some situatiaps on the north-east ahure (Prince Regent's Bay, for er. nuple) thint might be found suitalle; but of lato years, the fishers assert that tho whales have been most plentiful towards the other sthore."

The practicability of carrying auch a plan into effect, and the advantagea likely to result from it, are the only two points that fall to be noticed here. The teatimony of recent travellers, as well as of seamen who have lien compelled to winter in the high latitudes, goea to pravo the practicability of establishing and maintuining an efticient colony, even as far north as the place we have pointed out. Captain Ross'a remark, that 'the temperature of sensation is more relative than is imagined, the body soon contriving to find a new and much lower scale of comfortalle or endurable heat,' has been completely verified by all who have visited the Polar regiona. Thie attention now paid to the quabity of slip provisions, and the improved methods of preserving them, have not only put a stop to the intoads of scurvy, hut have tended ma. terially to increase the comfort of those who choose to lengthen their stay in cold countries. In Last Greenland there are several Danish scttlements. Holsteinberg, withia the Aretic circle, is a small town, with a church and a clergyman; and still higher up, at Lievely, in Disea Island, the chief Danisla governor resides. With an ample store of food and clothing, and materials for constructing houses, there can be no doubt that a colony of bardy whalera would contrive to pass the winter agreea. bly and in coinfort. Nor would they be dependent altogether on the supplies carried with them, or procurd from the mother country. The musk ox, the reinder, the white bear, the hare, and a nuthber of other quairrpeds, would affard them at once sport and a valualde ath dition to their means of sustenance. Birds, too, and fresh fish of various kinds, would not be wanting to give variety to their repasts; while lobsters, musestes, and other shell-fish, could be had as abundantly as at home To avoid all risks of famine, it would be proper to hare always in the setelement primisions for two years ; althouzh it could hardly ever happen that the settlers would be:s completely shat up as to be inaccessible daring the white of the summer montha.
'I'he advantages of laving a monerous bouly of fishen on the sput, instrad of sendag them out numually, can masily be made spparent. Lat, There would he a sanin? of outlaid capital. For some time past, the shipe sent from Great Britain to Davis' Straits may have averaged 100 each year; und we believe we speak within hanis when we assert, that the oil nod whatebone which the: have brought home might cavily have been carried is one-fifith of the number. Suppose a permanent colony if foto thishers were entablished at Davis' Straits, und so of the 1160 vessels cmplayed in the carrying trade, the other so wessils misht at onee bre withirawn, mikins a maving of outhan capital to the extent of at lem 2320,000. In this cealidation, we taise merely me tus
 paratus, and the provisions inctudid in the ountit, when all wes wourel in the settemens. ©al, The ti hery wini have a teiter chance of beina succesaful. At piesean a
somatia fishing are und lag the of oper of ice a the La inside, the Bri

It is ceedings enterpris fishery. or appar tial point cachalot to сscape of the in give a w tum upo and effee Sea whal ticular cr chase. I tho ery bu stantly th exclamatio needed, for ing requla derate list and at eve sinultaneo the oriler o rush into ster, every proarlh, the going down one boat ne animated n: last for this expected to rapidly alon oars!' exclait in the air ; head of the unerring for of the lauge in his flesth the harpoon the seamen the ama mo lently, and can le hea I in the air, an cf another tho run out, and comewhere is tedly. By eo to him, and t vilals of the t same monilnt the side of the 1 shles at the egain Iriven irrerlar; ana turn were om intert.al thux o
Thisa is til: but arcilents folluwing what Mr. Beale :"On the me
stract from tha ement of active ourable spot in mploy only o earry out pro. he oil, blubler. lay be thought ation that we at te most eligible Pond's Bay, or Sound, on the some situstiops t's llay, for ex. ut of late yeark, een most plenti-
plan into offect, it , are the only The testimony a who have hen es, goes to provo intuining an etliplace we have jat ' the tempera. is imagined, the mueh lower scale been completely lar regions. Thie ip provisions, and m , have not only have tended mas. e who choose to n East Greenland olateinberg, within a clurch and Lievely, in Disco exidea. With an materials for conit that a colony of the winter agreeas be dependent alto them, or procured k ox, the reindect, rof other quadruand a valuable ab

Birds, too, ond re wanting to give ers, musieds, and autly as at home le proper to have ro years ; slthough tulers would be so during the while
us lonly of fishers out unnually, caa vould be a savina ast, the shijps sent ay have nverged cak within lmus Hone which thes heen carried !s manent colony of ' Straits, and a rryiug trade, the thurawn, miahsit. ctent of at lras ce therelly the twe bis, unt other ap the wutfit, wom 'he tiduty wrint At plesan |
cometimes happens that vessels cannot get into the proper fiabing station till the season ia so far advanced that they are under the necessity of returning home without lowerIng their boats, and this difficulty arises not from the want of open sea within the Straits, but from accumulations of ice orifted from the north extremity of Baffin's Bay to the Lalirador coast. A settlement of fishers wintering inside, would in most cases make a good fishing before the British ships had penetrated far up the straits."

SPERM-WHALE FISHERY.

It is now our purpose to devote some apsee to the proaredings in the sperm-whale fishery, a branch of maritime enterprise only inferior in importance to the northern Gishery. There is no occasion for describing the vessels or apparatus employed, these being similar in every essenLial point to those alresdy described. Timid as it is, the cachalot often causes such peril by its convulsive efforts to escape, as render its capture not less exciting than that of the mysticetus. Young bulls, in particular, frequently give a world of trouble to their pursuers, and sometimes tum upon them with unbounded fury, iutent on mischief, and effecting it both with teeth and tail. The South Sea whaters, liko their northern brethren, have their particular cries and watchwords in the prosecution of the chasc. When a whale is seen by the man at the look-out, the ery bursts from hia lips, "There she spouts!" Instantly the captain starts on deck, with the responsive exclamation, "Where awsy?" An answer is scarcely needed, for all on board soon perceive the huge animal, blowing reguliarly at intervals of ten seeonds, if within a moderate distance. For a half minute the men stand gazing, and at every spout the spirited ery breaks forth from them simultancously, "There again!" But idleness is not long the order of the day. The boats are lowered, the men rush ints them, and soon are pulling towards the monster, every hoat esger to reach him first. As they approach, they see him spouting more slowly. "Ah, he is going down!-he will be lost!"-is the exclamation. But one boat nears hivo. "One more apout (says Mr. Beale's animated narrative) is scen slowly curling forth-it is his last for this rising-his back is bent, his enornous tail is expected to appear every instant, but the boat shoots rapidly alongside of the gigantic creature. 'Peak your oars!' exclaims the mate, and directly they are flourished in the air; the glistening harpoon is seen above the head of the harpooner; in an instant it is darted with unerring foree and aim, nnd is buried deeply in the side of the lage animal. 'It is socket up;' that is, it is buried in his flesh up to the socket, which admits the handle of the harpoon. A cheer from those in the boats, and from the seamen on board, reverberstes along the still deep at the same moment." Now the pained whale plunges violently, and lashes the sea with his tail, so that the noise can be hea I for miles. Sudennly he throws up his tail in the air, and disappears. Out fly the lines, and those of another boat are attached. Eight hundred finthoms are run out, and at last the whale re-ajpears at the surface, somewhere in the vicinity, spouting hurriedly and sgitatedly. By coiling their finea, the loatmen run rapidly up to hiln, and then the headsman buries his lance in the vitals of the trembling monster. "Stern all!" is at the wame moment vocifirated, und the boat backs gway from ths side of the whale. He now heromea infuriated, and nshes at the boats, often upsetting them. The lance is arain drivell into his sides; his motions become wild and itrogitar; and atter what is called the mortal tharry, he farne wer on his side, sullicated most commonly by the inters.al thas of hood from his wounds.
This is tha genetal ratine of the sperm-whale eapture, but incidente oreur to vary the aspert of the alliar. 'Tho following whatechase adventures are from the work of Mr. Beale:--
"On the morning of the 18 th of Jme, 1832, while wo
were still fishing in the 'off-ahore grou:Id' of Japan, we fell in with an immense ayerm whale, which hss pened to be juat the sort of one we required to complete our esrgo. Three boats wore immediately lowered to give hinn chase; but the whale, from some cause or other, appesred wild in ita actiona long before it had seen any of our bosts, although it might have been chased the day before by some other ship. It was grestly different in its actiona to most other large whales, hecause it never went steadily upon one course. If he 'peaked his flukes,' or went down, going to the southward, we expected he would continue that course under water, but when loe again rose, perhaps he was two or three miles nway from the boats to the northward; in this sort of manner he dodged us about till near four \mathbf{P}, M, at which time the men were dreadfully exhausted from their exertions in the chase, which had been conducted under a broiling sun, with the thermometer standing in the shade at 93°. About half-past four, however, Captain Swain contrived, by the most subtle management and great physical exertions, to get near the monster, when he immeliately struck him with the harpoon with his own hands; and before he had time to recover from the blow, he managed, with his usual dexterity, to give him two fatal wounda with the lance, which csused the blood to flow from the blow-hole in obundance. The whale, nfter the last lance, immediately descended below the surface, and the captain felt certain that he was going to 'sound;' but in this he was much mistaken, for a few minutes after his descent, he again rose to the surface with great velocity, and, striking the boat with the front part of his head, threw it high into the air, with the men and every thing contained therein, fracturing it to atoms, and scattering its crew widely about. While the men were endeavouring to save themselves from drowning by clinging to their oars and piecen of the wreck of the boat, the enormous animal was senn awimming round and round them, sppearing as if meditating an sttack with his flukes, which, if he had thought proper to do, in return for the grievous wounds that he had himself received, a few strokes of his ponderous tail wonld soon have destroyed his enemies; but this was not attempted. They had now nothing to bope for but the arrival of the other boats to relieve them from their dangerous situation, rendered more so by the appearance of scversl large sharks, attracted by the blood which flowed from the whale, which were sometimes only a few fees from them; and also from the inability of one of the boat's crew to swim, by which three or four of his mates were much exhausted in their efforts to save him, which they succeeded in doing aller having lashed two or three oars across the stem of the boat, which happened to be not mueh fractured, on which they placed their helpless fellow-adventurer. After they had remained in the water about three quarters of an hour, assisting them selves by elinging to pieces of the wreek, one of the other boats arrived and took them in, no doubt greatly to their relief and satisfaction. But althongh these brave whalefishermen had been so defeated, they were not subdued: the moment they entered the boat which took them from the ocean, their immediate determination was for another attack upon the immense creature, which remained cloee by, while the other boat, which was pulling towards them with all the strength of its rowers, would still be a quarter of an hour before it could arrive.
"Cnptain Swain, with twelve men in one hoat, therefore made another attack upon the whale with the lance, which caused it to throw up bood from the hlow-hole in incroased quantities. We, who were on hosrd the ship, and had observed, from a great distance, by means of the telescope, the whole of the orcurrence, were em ployed in beating the ship towards them, but they were far to windward, and the wind loing rat or light, we had even our royalowails set. Soon after the arrival of the third boat, the whate went into its flurry and sosin died
whon ω the diamny of the boats' crewa, who had endured so much danger and hardahip in its capture, it sank, and never rose again-an occurrence which is not very unfrequent, owing of course to the greater specific gravity of the individual, perhapa from a greater development of bony and muscular structures. Such were the adventures of that day, in the evening of which the crewe returned to the ahip, worn out and dispirited, having loat a favourite boat with the whole of ber instruments, besidea the laat whale wanted to complete the cargo, and worth at least $t^{2} 500$.
"At daybreak, ono fino morning in August, aa our first mate was going aloft to look out for whales, he discovered no less than three ahlps within a mile of us; but they were situnted in various directions. We soon discovered them to be whalers, who like ourselves were cruising after the apermaceti whale, and therefore their appearanco only had the effect of redoubling our vigilance in the - look-out,' so that wo might, if possible, be the first to obtain the best chance if one of those creatures 'hove in sight.' And it was not long before a very large whale made his appearance right in among the ships. The wates was smooth at the time, for wo had but a light air of wind etirring, so that our boats wero inctantly lowered without the loss of time of bringing the 'ship to.' But although we managed matters as quietly and secretly as possible, we found, the inoment our boats cleared the ship's side, that all the others hat leen as vigilant as ourselves, and had alao lowered their boats after the whate. The whole of them immediately began tho chase-nine boats in all, being three from each ship. They all exerted themselves to their utmost, and, as we expected, in vain; for before any of the boats had got even near him, the enormous animal lifted his widely expanded flukes, and descended perpendicularly into the depths of the ocean to feed. Those in the boat, however, having noticed his course, proceeded onwarda, thinking the whale would continue to pursue the samo direction under water; but as he was going slowly at the time he waa up, they did not proceed more thon a mile from the place at which he descended, before they eparated about a hundred yards from each other, and then 'peaking' their onrs, all the men in each boat stood up, looking in different directions, so as to catch the first appearance of the spout when the whale again rose to breathe: when, an hour after his descent had expired, the excitement among us who were on board the ship became wound up to its highest pitch. The eaptain, who had remained on board, ascended to the fore-topgallant-yard to watch the manouvies of the boats, and for the purpose of the better ordering the signals to them, or working of the ship. All those who were down after the whale appeared as feverish with anxiety as ourselves, for every now and then they were to be seen shifting their positions a little, thinking to do so with advantage; then they would cease rowing, and stand upon the scots of the boats, and look all around over the smooth surface of the ocean with ardent gaze. But one hour and ven minutes expired before the monster of the deep thought proper to break cover; and when he did, then n rattling chase commenced with the whole of the boats, and thiry really flew along in fine style, some of them artually nppearing to oe lifted quite on the surface of the water, from the great power of the rowers; and we had the natisfaction of ohserving, that our boats were quite equal to the others in the rjeed with which they were propelled. But it was again a useless sask, as the old 'schoohnaster" had outwitted those in the twats, by having gone-while under water-much farther than any of his pursuers ha! naticipated, and they again had the inortification of witnessing the turning of his flukes as he once more decended into the depths of his vast domain. We now knew to a minute the time that he would pemain below, while the people in the boats continued to row slowly onwarde ithe whole time. A fine breeze now aprang up,

30 that we wero enabled to keep company witn the boath leeping a little to windward of them, as the whale wa going ' on a wind,' as a seaman would say, meaning that it was blowing acroas him.
"When tho hour and ten minutes had again nearly passed, the nine boats were neorly abreast of ench other, and not much separated, so that the success of first strik. Ing the whale depended very much upon tha swiftest boat, eapecially if tho whale came up ahead. We had now all the bosts on our 'lee-beam,' while the ships were all astern of us, the most distant not being more than half a mile, ao that we enjoyed an excellent view of this most exciting and animated scene. True to his time, the leviathan at length arose right ahead of the boats, and at not moro than a quarter of a milo distant from them. The excitement among the crows of the various boats when they saw his flrat apout was tremendous; they did not shout, but we could hear an agituted murmur from their united voices reverberating along the surface of the deep. They flew over the limpid waves at a rapid rate; the mates of the various boats cheered their respective crews by various urgent exclamations, 'Swing on your oars, my boys, for the honour of the Henrictta,' cried one; "Spring away, heartica,' shouted another, and yet scateelj able to breathe from anxiety and exertion. 'It'a our fish, vociferated a third, as he passed the reat of his opponente but a trifling distance. 'Lay on, my boys, cried younz Clark, our first mate, as he atcered the boat with one hand, and preased down the after oar with the other. "She'll be ours yet ; let'a have a strong pull, a long pull, and a pull altogether,' he excloimed, as he panted from his exertions at the after oar, which soon brought up his boat quite abreast of the foremost.
"But the giant of the ocenn, who was only a short distance before them, now appeared rather 'galliel,' or fright. ened, having probably seen or heard the boats; and as ho putfed up his spout to a great height, and reared his enormoua head, he increased his speed, and went alcing quite as fust as the boats, but for only two or thres minutes, when he appeared to get perfectly quiet again, while the boats gained rapidly upon him, and were soon close in his 'wake.' 'Stand up,' cried young Clark to the harpooner, who is also the how-oarsman, while the samo order was instantly given by his opponent, whose boat was alreast of our mate's, with the rest close to their sterns. The orders were instantly obeyed, for in a secend of time both boat-stecrers stood in the hows of their respective boats, with their harpoons held above their heads, ready for the dart; but thry both panted to be a few yarda nearer to the whate, to do ao with success. The monster ploughed throngh the main quickly, but the boata gained upon him every moment, when the agitation of all partics became intenke, and a general cry of c dart! dart!' broko from the nindmost boats, who each urged their friends, fearful of delay. The uprour became excessive ; and when the tumult of voices, and the work. ing and rplashing of the oars, rolled along the surface of the deep, hoth the harpooners darted their weapons in gether, which, if they had both atruck the whale, would have originated a contention between them regarding the'r claims. But, as it happened, neither of them had that good fortune; for at the moment of their darting the harpoons, the whule descended like a shot, and avoided their infliction, leaving nothing but a white-and-giens: looking vortex in the disturbed blue ocean, to mark the spot where his monstrous form so lately floated. I general huzza burst from the sternmost boats when they saw the issue of this chase, thinking now that mothit chance awaited them on the next rising of the whate, and they soon began to acparate themselies a littlo, mal th row onwards again in the course which they thought he had taketh. Our captain, feeling irritated at the ill sum cress of the mate, now orlered his own boat to be bowernd intending to nuke one in the chase himmell; but iust as boat drew which render bwy, even w part of his ' from these wo titices, and as boxts, he left last, becoming he became les an opportunity Drcadful was leviathun expe energies of his thick through his • flurry' wit slerned-off, whi sions wilh a for tion of the oees

concludin

Mr. Benle co

 " numberless at which, however of the real oce Jack,' is the he destruying ever until a contrival en. 1 of tho ha whilst his attet several boats, m wound."In the year 1 sith weral othe Sew Zealand, wl breakfast, and given up. Atter this whale was the various shipe out against hin whala was called warefully prese
"Accidents of
n the bosta whale wat eaning that ugain nearly feach other, of first atrikthe swiftest 1. We had e ships were ore than half of this most ais time, the boats, and at t from them. various boats jus; they did nurmur fron surface of the a rapid rate; eir respective xing on your ta,' cried one; rd yet searcely ' It's our fish, his opponcuts s, cricd youns with one hand, er. 'She'll be ull, and a pull n his exertions his boat quite
only a short dis. tlied,' or frigh. oats; and ashe and reared his and went aleng two or thres tly quiet again, and wete sonn oung Clark to man, while the pponent, whore ci close to their for in a secend ws of their re. we their heads, ed to be a lew suecess. Tha y, but the boata le agitation of ery of dart! to each urged at beeame ex. sad the workthe surfaco of ir weapons tr - whake, would hem regarding of them had eir darting the t, and avoided nite-and-grers: , to mark tic ly floated. I ats when they that authis the whale, and a little, and wh y thonglt he at the ill sur to be bowers If: but iust at
ne had parted from the ship, going down a little to leewald, a tremendous shout arose from the people in our own hoats, joined with a loud murmuring from the rest of the bosts' crewe; for the whalo, not having had all ita 'spoutings out,' had now risen again to finish them, and was coming to windward st a quick rate, right towards our ship. The captain saw his favourable situation in a moment, and, passing quickly to the bowa of the boat, he stood to waylay him as he came carecring along, turowing his enormous head completely out of the water, for bo was now quite 'gallied.' Hs moon came, and caught a sight of the boat just es he got within dart; the vast animal rolled itself over in an agony of fear, to alter its course ; but it was too late; the harpoon was hurled with excellent aim, and was plunged deeply into his side near the fin.
"As tho immense creature almost flow out of the water from the blow, throwing tons of spray high into the air, showing that he was 'fust,' a triumphant cheering orose from those in our own loats, as well aafrom those in the ship, accompanied by exclamations loud and deep, and not of the most favourable kind to ua, from all tho rest. But onwards they all came, and soon cheerfully rendered assistance to complete its destruction; but which was not done, however, without considerable difficesty, the whalo coatinuing to descend the moment cither of the boats got nearly within dart of him. But after an hour's exertion in this way, six out of the ten bosts whiel were now engaged, got fast to him by their herpoons, but not one of them could get near enough to givo hiniz a faral lanee; he towed them all in varibus directions for some time, taking care to descend below the surface the monent a boat Irew up over his flukes, or otherwise drew near, which rendered it alnost impossible to strike him in the boly, even when the lance was darted, although the after part of his a small' was perforated in a hundred places: from these wounds the blood gushed in conaiderable quantities, and as the poor animal moved along, towing the boits, he left a long ensanguined stain in the ocean. At last, becoming weak from his numerous and deep wounds, he became less capable of avoiding his foea, which gave an opportunity for one of them to pieree him to the life. Drcadful was that moment the acuto pain which the leviathun experienced, and which roused the dormant energies of his gigantic frame. As the life's blood gurgled thick through the nostrils, the immense creature went into his 'flurry' with excessive fury ; the boata were speedily sterued-oll, while he beat the weter in his dying convulsions with a force that appeared to ahake the firm foundation of the ocean!"

concluding anecdotes and ogservations.

Mr. Beale continues to remark, in his narrative, that "numberless stories are told of fighting whales, many of which, however, are probably much exaggerated accounts of the real occurrences. A large whale, called - Timor Jack,' is the hero of inany strange stories, such as of his destroying every boat which was sent out against him, untl a contrivance was made by lashing a barrel to the en! I of the harpoon with which he was struck, ond whilst his attention was directed and divided among several boats, means were found of giving him his deathwound.
"In the year 1804, the ship 'Adonis' being in company sith several others, struck a largo whale oll the coast of Sew Zealand, which 'atove' or destroyed nine boats before breakfast, and the chase consequently was necessarity given up. After destroying boats belonging to many ships, this whale was at last captured, and many harpoons of the various ships that had from time to time been sent out against him were found sticking in his body. This whale was called ، New Zesland 'Tom,' and the tradition is carafully preserved by whalers.
wAccidents of the most fearful uature have frequently
occurred in this hazardous pursuit, which to enumerate would fill the space of volumes ; for not only boats, but sometimes even ships, have been destroyed by these power ful creatures. It is a well authenticated fact, that an Ameriesn whale-ship called the 'Essex' was destroyed in the South Pacific Ocean by an enormous sperm whale. While the greater part of the crew were away in the boats pursuing whales, the few peoplo remaining on board saw sn immense sperm whale come up close to the ship, and when very near, he appeared to go down for the purpose of a voiding the vessel, and in doing so be struck hia body against some part of the keel, which was broken off hy the force of the blow, and floated to the surface; the whale was then observed to rise a short distance from the ship, and come with apparently great fury towards it, striking against one of the bows with his head, and completely 'staving' it in. 'The ship of course inmmediutely filled, and feil over on her side, in which dreadful position the poor fellows in the boata soon espied their only home, being distant from the nearest land many hundred miles; on returning to the wreck, they found the few who had been left on board hastily congregated in a remaining whale-boat, into which they had scarcely time to take refuge before the vessel capsized. They with much difficulty obtained a sca:ty supply of provisions from the wreck, their only support on the long and dreary passage before them to the coast of Peru, to which they endeavoured to make the best of their way. One boat wat fortunately found by a veasel not far from the coast ; in it were tho only survivors of the uniortunate crew, thee in number, the remainder having perished under unheardof suffering and privation. These three men were in a state of stupefaction, allowing their boat to drift about where the winds and waves listed; one of these survivors was the master; by kind and careful attention on the part of their deliverers, they were eventually rescued from the jaws of death to relate the melancholy tale."

Not being attended with the dangers to which a north crn climate oxposes the hunters of the mysticetus, the sperm-whalera of Britain have greatly increased in numbers of late years, and at this day the fishing is prosecuted with great success. As in the case of the Greenland fishery, bounties were given up to 1821 , when the trade waa fairly lef to private enterprise. In 1791, the sperm oil imported into 13ritain amoonted to 1258 tona; in 1827, 5552 tons were imported; and in 1836, ths amount was 7001 tons. One good whale will yield forty barrels of oil, and ten burrels of spermaceti are frequently taken from ono head. About ten !arge barrels make e ton. Both sperm-oil and spermaceti bear a high price in the market, and are of great utility in various respects There is little chance of a decline in the sperm-whale branch of our maritime traffic, not only breause the fishing latitudes are comparatively free from dangers, but because the invention of gus does not trench on the use of sperm-oil as it did on that of the Greenhand vil, and because spermaceti and sperm-oil are likely to he more and more employed as the country progresses in civiliza dioll.

FOREION WHALE-FIBHERIRS.

The whale-lisheries of other civilized nstions have undergone as great vicissitudes as those of Britain. Alsout the year 1680 , the Dutch sent out not less than 250 ships, manned by 14,000 men. to the northem fishery. In 1828, only one whale-ship sailed from Holland! France has never prosecuted this brandi of commerce with much activity or success, yot the littho that was onco done in this way has beconte still lexs In 1790,40 French ships wero employed in the Greenland seas. The revolution put a stap to the fishing, and though of late years the government has made an attemon to revive it, very little success has resulted.

The people of the United States have been more active and auccessful in whale-fishing than almost any other nution in recent days. While dependent colonists, they embarked in it with great spirit. From 1771 to 1775 , Massachusetts employed annually 183 vessels, of 13,820 tons, in the northern fishery ; and 121 vewsels, of 14,026 tous, in the fisheries of the south. They were the first to prosecuto the trade in the southern Atlantic, on the cuasta of Africa and Brazil; and they, too, led the way lito the Pacific weas:-cilook et the manner," asys Burke (${ }^{7774}$), "in which the New England people carry on the whale-fishery. While we follow them among the tumbling mountsina of ice, and behold them penetrating into the deepest frozen recessea of Hudson's Bey and Davis' Straits; while we are looking for them beneath the Arctic circle, we hear that they have pierced into the opposite region of polar cold; that they are at the antipodes, and engaged under the frozen serpent of the south. Fulkland Island, which seems too remote and too romantic an object for the grasp of nationsl anibition, is but a stage and resting-place for their victrious industry. Nor is the equinoctial heat more discouraging to them than the accumulated winter of buth the poles. We learn that, while some of them draw the line or strike the harpoon on the coast of Africa, othera run the longitude, and pursue their gigantic game along the coast of Brazil." These are the seas that are still vexed by the American fisberies, which have been pushed, however, into higher southern latitudes than had ever before been visited, ard ere carried on from the shores of Japan to the icy rociss of New South Shetland. They have been principally carried on from Nantucket and New Bedford, and have proved very lucrative. At present they are also prosecuted with great success from several other places. One class of ships is fitted out for the Pacific in pursuit of the spermaceti whale. These are from 300 to 500 tons burden, carrying from $\mathbf{2 5}$ to $\mathbf{3 0}$ men, and are absent about $\mathbf{3 0}$ to 36 months. Their number is about 170 , of about 62,000 tons, and carrying ncarly 5000 men. Another class sai! to the coasts of Africa and Brazil, in search of the common or right whale. They average about 325 tons each, carry about 25 men, and are absent 8 to 12 months. The whole amount of tonnage of this class is about 40,300 ; number of seamen engaged, 3000 . The quantity ar operm oil brought home in ISI5, was 3944 barrels; in 1820, 34,700; in 1825, 62,240; and, in 1830, 106,800 . The quantity of whalo or black oil brought in in 1830 , Nas about 115,000 barrels; of whalchone, about 120,000 vounds. The sperin oil is chicfly used at home; and 000,000 pounds of sperm candles are mado, employing thout 30 manufactorics. The whale oil and whalebono are chicfly exported to Europe. From the report of thin eecretary of the treasury, May 4, 1832, it appears that for the year ending September 30, 1831, there were exported whale and nther fish oil to the value of 554,440 dollars; spermaceti oil to the value of 53,526 dollars; whalebone to the value of 133,842 dollars; and spermaceti candles to the value of 217,830 dollars.

Of the extent of the sufferings sometines experieneed by the whalers, a single example may be given. The Dee, an Aberdeen whaler, sailed for Davis' Straits in April, 1836, and, after many difficulties, was ultimately fanl locked up in the ice, in Octoker of the same year, near the moth of Baffin's Bay. "From this date, the peculiar sutferinge of the crew of the Dee, which numocoud thirty-three persons, may be said w have commeoced. I'heir allownece remained the same, but, from the scarcity of fuel, their beds hecamo wreichedly damp. At first, to preserve the health of the men, and to keep heir shivering bodies in heat, the most praiseworthy srecautions were taken. A variety of exercise was sllitted to thrns. such as the unbending of the rails, us
shipping the rudder, and otner tids, of ns utlity now unhappily, to the shu But the crow of the Dee hea not long to resort to unprofitable labours to maintain the vital warmth of their frames. Notwithatanding the increasing hardneas of the frost, the lce still remuined in loose state, and a fatal crush on the stip became tho subject of continual alarm. On the 16 th, the latitude was $72^{\circ} 50^{\prime}$, wind strong, and large icebergs flonting past The ice hegan to press hard, and on the night of the 16 th, the vcasel was crushed up until it hung ly the quarter, the ice squeczing all along as high as the guard-boards At daylight, all handa were called up to get out the provisions. At 8 p. m., the wind fell off, but the ship still hung by the quarter. The ice, however, was at reat till 11 p. m., when there was another dreadful crush, which passed off with less harm than could bave been anticipated. On the 18 th, the ise gave way in several places, and opened up 60 far that a warp had to be got out to secure the Dee. The other vessils, meanwhile, lay comparatively undisturbed. On the 20th, the ire closed again, with some severe squeczes, around the Dec. To strengthen the ship, its easks were placed in a peculiar way, and ten strong beams put in aft. This was done most seasonahly, for shortly after two successive shocks took placo, within half an hour of each other, of such tremendous severity, that the crew fled to the ice with their bags, chests, and every thing that could be lifted, under the impression that all was over with the timbers of the Dee. The sufferings of the night that followed were awful. Without fire, or shelter from the biting elements, the crew lny on the ice, gazing on their reeling and groaning vessel, while around them were cxtended vast fields of ice, studded with icebergs towering to the clouds, and threatening destruction to nll that came in the way of their motions. Miscralle ne their position was, the crew could not go on board for two days, during which time the ship experienced crushes still more severe than formerly. On the $2 \mathscr{2} \mathrm{~d}$, the men went on bonrd to take out the renaining provisions, but had again to fly for their lives. The ice, however, tell quiet on the same night, and they again took back their provisions to the slip. On the 23d, a good many lanes operial up in the water-a most discouraging prospect, for this was alwaya the time of greatest peril. Once more the crew took to the ice, and, by cutting the nearest parts into smad pieces, cleared the vessel ofew fiect. The men them went for a few hours to rest, but were roused by ar ithe crush-the signal that their labours had been in vain On the 24th, the ice broke up to a considerahle extent, and the crew managed to heave the Dee backwards for a huodred yards, to a point where the ice seemed to ho thinner. Great difficulties wero experienced in conveying the chests and other articles left in the ship, but at length every thing wus again on loard."

Placed upon the most acanty allowance of foord, and kept in such a state of continual alam from the ice as compelled them to spend days and nights out of the ship, notwithstanding the dreadful severity of the weather, the crew of the Dee began to suffer greatly in their health before the end of the year. "Coughs, swelled limbs, and gencral debility, with small red discelotations on the skin, sharp pains nud stifness, were the common synptoms, and the cold and wet to which the si'amen were exposed, laid the seeds of a worse diserasa which now began to show its fatal power, I'his disease was scurvy, and it was marked chiefly ly an excruciating pain in the mouth, and swelled gums, rendering cating a tortare. On the 18th of December, twenty-one men were aflected with scurvy. To add to their distress, the ice agnin gave way, and threatened to crush the miserable vesucl." Before the lst of Fehruary, six dratns lad taken place, and among the victims was the lamented commander, Cuptain Gamblin. The filiowing puampe deacribes the deplorable condition of tho crew of the

Nep in Fcb wey in Fcb
toren in : "Though degrees fatt more severe while the the iriclen w :ance of six with oolid ise the hend lay, stiff with co began to swn their way thr And the mo sjekness, and selves! So s used for the a we wonder th the crew sank and 27th, six 7th of March matec. So m to enjoy full were able nt t great danger of which was loos
"Between th new died, and the ice, which the 16th, after days, the Dee e taken on board during the same of both vesaels But, alas! man their nutive sho breezre sttendec homewards, othe could ever have s) fearfully on and the $22 d$ of men had fallen v was hailed, and the Butt of Lew icfused to give an it is вupposed. Baruett master, the miserable wh and inquired if a informed of the hands of the De instantly sent four carrying with hin He then took the to enchor, on the ness. Every atten the crew ; and on ant effective band carried into the he of thirteen month serne took place o We relatives of t nildus, chillisen, 9:1 lroand the Dee, of Dindec. Forart "wn compliment." of the crew of one whers, in the sam ander may furm on hiokern Arcti: whul Wessing that the μ liLely soon to put as came tho Iatitude ting past ' the 10th, e quarter rd-boards the proship atill at rest till 1sh, which en anticiral places, got out to e, lay comise closed Dec. To a peculiar was done sive shocks er, of such he ice with Id be lifted, the timbers at followed the biting their reeling re extended ering to the came in the position was, days, during 1 more severe on bonrd to again to fly on the same isions to the red up in the s was alway crew took to s into emai te men them d by arthes been in vain rable extent, ck wards for a semed to to d in conveyship, but at
of food, and n the ice as It of the ship, weather, the their health velled limbs, olorations on the common the seamen isense which divease was excruciating ring cating a ity-one men distress, the alie miserable deatns had the lamented wing premage craw of the
.he in Pebruary, 1837, at which time the ship was still thien $\ln :-$
"Though the whalers were at this time three or four degrees farther south than at first, the frost was even more severe than ever. Eivery liquid was frozen; and while the snow was being melted to cook the victuals, the iciclen were hanging on the wnter-cask, at the diso tance of six feet from the fire. The beds were covered with solid lice- the pillows frozen in every part but where the hend lay, the very hairs of which were in some cases stiff with cold-and vermin of a more rapacious kind began to awnrm among the blankets: creatures that ate their way through the skin, and fed on the raw flesh. And the men all the while bowed down with mortal sickness, and incapable of tefending or cleaning themaclves! So scarce was fuel hesides, that it could only be used for the melting of lie and cooking of vietuals. Can we wonder that ere tho 12th of February, six others of the crew sank under their distresses ? Iletween the 23d and 27th, six additional deathe took place, and, by the 7th of March, other five had followed their departed mates. So many deaths as theae ollabled the remainder to enjoy full allowance of provisions. Six handa only were able at this time to do duty, and the ship was in great danger of a fatal squecze from the state of the ice, which was loose, and rapidly breaking up.
"Between tho 11 th and 15th, threo more of the Dee'a reww died, and they were the last that were buried below the iee, which was now broken up in all directions. On the 16th, after being locked un for five montha and cight days, the Dee entered into open water." The ahip had taken on board the erew of the Thomas, a whaler wrecked during the samo winter in the ice, and all the survivors of both vessels now turned their exger eyes homewarda. But, alas! many of them "were destined never to see their native shores. Fortunately, light and favourable breetrs attended, in general, the passage of the ship homewards, otherwise not one man of the Dee's crew could ever have reached his home. The scurvy raged \& fearfully on board, that, between tho 16th of March and the 22d of April, twenty more of the unfortunate men had fallen victims to it. On the 25th a fishing-bcat was hailed, and it was found that the Dee was then off the Butt of Lewis. The fishermen in the bout cruelly refused to give any aasistance, suspecting n case of plaguc, it is supposed. The barque Washington of Dundec, Buruct master, hound for New York, boro down upon the miscrable whaler on the evening of the aame day, and inquired if ony assiatance was wanted. On being informed of the atate of matters, and that only three hands of the Deo were ablo to go aloft, Mr. Barnett instantly sent four men on bourd, and followed in person, carrying with him wine, porter, and other provisions. IIe then took the Dee in tow, and enabled her to come to anchor, on the 27th of April, in the harbour of Stromnese. Every attention was here paid to the aurvivors of the crew; and on the 5 th of May, the owners having sent effective hands, tho Deo was agnin put to sea and carried into the harbour of Aberdeen, after an absence of thirten months and three days, A heart-rending scene took place on the quay, which was crowded with We relativas of the deceased seamen-with weeping wilows, chiliten, nnd parents. Forty-aix men had died na hoard the bee, nine of whom belonged to the Thomas f Duadec. Fourteen men only survived of the Dee's min compliment." From this picture of the sulferings if the crew of one vessel, who endured no mure than whers, in the same as well as freceding seasons, the rader may form an idea of the general hardships of the niodern Arcti: whale-fishing. It eannot but be felt ns a Weswing that the progress of lighting with coal-gas is liely soon to put an end to thia dangerous traffic.

[WORKS ON THE WHALEFHSILERY.

Sccreaby's "Ibyage to the Northern Whale Fizhery," and his "Aretic Regions," are considered the beat authority on this aubject. A book published anonymously aome years aince, entitled "Tales of an Aretio Voyager," contains exceedingly lively and graphic sketches of the acenes which present themselves to the whale fisher. \mathbf{A} work entitled "Incidents of a Whaling Voyago." to which are added observations on the scenery, mannera and customa, and Missionary Stations of the Sandwich and Society Islands, aecompanied by numerous lithogrnphic prints, by Francis Allyn Olmated iNew York, Appleton, 1841), is full of interesting detaila on thia sulject. In the Forcign Quarterly Roview, No. 14, is an article of valuo and authority, by J. R. M.Culloch. In the same writer's "Commercial Dietionary," is another. with full statistical detaila and tables. From the latter we extract the following account:--

state of the american whale-fishert.

Wo borrow from a Nantucket journal the following detaila with respect to this fiahery in 1834 :-

Spermaceti Whale-Fishery, -The whole number of shipa engaged in this valuablo branch of the fisherie id 273 , of which 257 are now absent, viz. : from

New Bedford - - 94	Falmonth
Nantucket - - - 63	Nowport
Fairhaven : - . . 14	Sagharhour
Bristol - . - . 13	Salem
New London - . - 10	Newburyport
Hudson - - 9	Poughkeepsie -
Warren - . . 7	Portamouth -
Edgarton - - - 6	Durtinouth -

And one from each of the following ports, viz.:-Boaton, Plymouth, Wareham, Rochester, Portland, Wiscasset, Fall River, Providence, Stonington, Newhury, New York, and Wilmington, Delaware. Sixteen ships only are in port, belonging as follows: to New Bedford, 7; Nantucket, 5 ; Fairhaven, Plymouth, Sagharbour, and Edgartown, each 1.

The aggregate tonnage of tho 257 absent ships is nearly 100,000 tons. Of these, only 61 had each, at last dates, obtnined 1000 brla. of oil and upwards; and about the snine number are not yet reported with any oil. The number of seamen and navigntors employed on board these vessels, is not far from 9000 . The cost of the entire fleet, ns fitted for these voynges of three years' duration, probably exceeds $6,000,000$ dollars.

A document before us firmishes a very careful cstimate of the spermaceti oil imported into the United Staten during the year 1834. Since Jan. 1, there have arrived from the Pacific Ocean 55 ships, viz. : into this port, 11 ; New Bedford, 25; Plymouth, 2; Fairhaven, 6; New London, 2; Edgartown, 2; Sagharbour, 2; Warren, 3; Falmouth, Bristol, and Hudson, 1 each. The cargoes of these ships, including that of the I, evant and Spartan (just arrived, and presumed to amount to 5000 brls.), average little more than 2000 brls, ench; being in the wholo 111,881 brls. Add to this quantity 16,000 brls. estimatel to have been hrought from the south Atlantic Ocenn, making about 128,000 brls., and we have the entire quantity of spermaceti oil imported in the course of the !ast year. Of this quantity, $70,577 \mathrm{brls}$. were received at if : it Bedford, and the residue at Nantucket and other ports.

We deduce from this valuablo docament one fact. which we repeat with some feeling of pride. It is, than more than half of the ships now engaged in the sperm whale-fishery aro commanded by Nantucket mann though less than one-fourth of the wholo fieet is owned in thie place Am. Ed. 7

CONVEYANCE-ROADS-CANALS-RAILWAYS.

PAIMITIEE MODES OF CONVEYANCE.

The means adopted in early times for the artificial tranaport of either person or property, wero, as may lwo supposed, of the rudest kind, as ia still the case in those countries which are little advanced in the useful urts. The most degrading speciea of artificial conveyance that seema to have heen practised, was the employment of human labour, in bearing littera or palanquinx, specimens of which, on a scale of barharous aplendour, are now seen in India, Burmah, and China.
The firat ard moat obvious improvoment in modes of tranaport was the aubatitution of brute for human labour; and it is reasonable to conclude, that the value of this practice could not have been long in being pressed on the attention of mankind. We find the terin "beasts of burlen" used in the mont ancient recorda, the animala menant being the asa, the horse, or the camel. No trace, however, exists of the progress from burden to draught, though it also must hnve been in very early timos. The ase and horse nee equally adapted for carrying or drawing, but the camel exprts its power only by carrying ; dranght is alone suitalio for the reindeer and ox, the backs of these nnimuls not being adapted by nature for bearing buriens.

The draught of the reindeer is employed in Lapland as the chief means of artificial locomution, and is always oxerted on a species of slelge, which, by its form, is suitable for gliding easily over the frozen ground or now. The shape of the slelge somewhat resembles a amall hoat, with a sharp prow, and flat in the rear, against which the inmate of the vehicle rests. The traveller in awathed in his carrisge like an infunt in a cradle, with a stick in his hand to stecr the vessel, and disengage it from pieres of rock or stumps of trees that it may chance to encounter in the route. Ho must also balance the sledge with his body, otherwise ha will be in danger of being overturned. The traces, by which this carriage is fastened to the reindecr, are fixed to a collar about the nuimal's neck, and run down over the breast, between the fore and hind legs, to be comected with the prow of the sledge; the reina, managed by the traveller, are tied to the horns; and the trappings are usually furnished with little bells, the sound of which is agreeable to the animal. With this dranght, the reindeer, if pressed, will travel fron sixty to eighty miles in a day; but more frequently he doea not travel more than forty or fifty, which is a good day's journey. Occasionally he halts to moisten his mouth with snow. Before tee sets out, the Laplander whispers in his ear the way he has to go, and the place at which he has to halt, firmly persuaded that the leest underatands his meaning. In the heginaing of winter, the Iaplanders mark the most frequented paths, hy strewing them with fir boughs; which, heing frequently covered with new snow, alternately pressed by the sleighs, harlens then into a kind of causeway, which is the nore sinooth, if the aurface has felt a partial thaw, and been crusted by - subsequent frost. It requires great caution to follow these tracks; for, if the carriage deviates to the right or lett, the traveller is plunged into an alyss of snow. In less frequented parts, where there is no such beaten soad, the Laplander directs his course by certain marks made on the trees.
In Russia, and also in Cannda, aleigha are used in winter for conveyance from place to place, the beast of draught being the horse. As the ronds in many parts of Canadm are very unsuitable for any species of travelling, it happens that sleighing over the hardened

12s
surface of the nnow in winier, is by fur the bent mode of communication in that country. It is almost unnecessary to suld, that the aledge or sleigh, which is the rudest kind of carriage for draught, has disnppeared in all countries which havo advanced considerably in improvement.

From the rude sledge, drawn with an incalculable degree of labour over the rough groand, the next importnnt atep in mechanical construction is to apply wheels, for tho purpose of lessening the friction of the moving body. The first application of wheels to car. riages is heyond the resch of record. Wagons are spoken of in the book of Cienesis, from which it may be inferred that a knowledge of wheela was common in a very early age. It is further known, that the making of wheels formed a distinct trude among the citizena of Thebes in oncient Egypt, three or four thousand yeara ago.

Ancient. Fgyption Carriuges.-The most elegant of the Egyptian carriages was a kind of gig, or light opea chariot, on two wheels, called the phustrum, which is thus described ly Mr; W'ilkinson, in his work on tha

Manners and Customs of the Ancient Eapytians:"The platstrum was very similar to the warechariot and the curricle, but the sides appear to have been elowed, and it was drawn by a puir ot oxen instead of horsea The harness was nuch the same, nul the wheels had six spokes. In a journey, it was occasionally furniched with a sort of umbrella, fixed upon a rol rising from the ccutre or back of the car; the reins were the same as those used for horses, nud apparently furnished with a bit; and besides the driver, a groom sometimes ub tended on foot, at the head of the animals, perhapa feeding them as they went. The muned wood for graving represents an Ethiopian princess, who is on her journey through Upper Egypt to 'I'bethes, whers the court then resided. The plaustra are called in (ienesis ungons they were commonly used in Ligyt for taveb ling. Besides the plaustrum, they had a sort ef palan quin, and a canopy or framework mowering the pir. pose of a sedan chair, in whith they sometines sat of stool, in their opers pleasure-hoats, or in situations where they wished to avoid the sun."

From the researthes of Mr. Wilkinson, we sre ar abled to form some estinute of the enormons trouble incurred by the ancient Egyptians in the transjort of the heavy stomes which they employed in building thei temples. Some of these stones weighed 5000 tons, and were usually conveyed from the quarrios from which they were cut, in that-bottomed bonts, on catals make for the purpose. Occasionally, however, when this mode of trensport was unsuitable, the stone was drawn on sledges, perhaps mome hundreds of miles, by oxen on by human labour. The following wodeut ripremenk
in, an abrie firures in which they seventy-two

represent onl ropes attache probally gron atanding on th litate its prog wes prohntily are not indieat muployed in th the others are tame of their vasen of the li workinen, and transport of the their wands of to include]. (who claps his h to mark tho time The heiglat of twenty-four feet to the sledge by of pegs, inscrte til completely friction of the T ther or other sul they touched th representation is perspective, whis Fgyptisn deline persona employe customary for a attend, perhaps f and compelling o degrading means impossible to rep
Conveyance by camel, in its two has been employ beast of burden; this reapect, these bahitable. In the tuces of the eamel port. The brethr pit, "they at dov their eyes and 10 maelites came fro apicery, and lalm, E.gypt." Thus the among the merehn fucts of India acr wealthy land of E

[^12]in, an abrliged form, the mode of convoying colosmal figurea in atone from the quarriea to the templea in which they were to be net up. "One hundred and meventy-two men, in four rowi of forty-three each [wa

The eamel in expreasly suited by nature for inhahit ing and traverising annily and parched deaerta, in whirn there are ן laces of reat and refreahment only at remote distancen. "It la the most temperate of all animaln, and can continue to travel geveral daya without drinkIng. In those vast deserts, where the earth in everywhere dry nnd anndy-where there are neither birde nor beants, neither insects nor vegetables-whore nothing is to be eeen but hills of sand and he of booes, there the camel travele, poating forward, wi. . refuirling either drink or pasture, and is often found six or neven dayn without nny sustenance whatsoever. Ita feet are formed for travelling upon sand, and utterly unfit for moist or markly places; the inhabitants, therofore, find a most useful assistunt in this amimal, whero no other could subsist, and by its means, crose thoee deserts with safety, which would be impansable by any other method of conveyance.
"An animal thus formed for a sandy and dewert rogion, cannot be propagated in one of a different nuture. Mnny vain efforts have heon tried to propagate the camel in Spain and America, but they have multiplied in neither of these countrics. It is true, indeed, that they may the brought into both countries, and may perhaps be found to produce there; but the care of keeping them is ao great, nad the accidents to which they are exposed from the changeablencss of the climate, are so many, that they do not reward the cara of keeping. In a few yeara, also, they ste seen to degenerate; their atrength and patience forsake them, and, instend of making the riclies, they become the burden of their keepers.
"The camel is easily instructed in the methods of taking up and supporting his burden; their legs, a fow dnys after they are produced, are bent under their belly; they are in this manner loaded, and tsught to rise; their burden is every day thus increased, by insensible dogrees, till the animal is capable of supporting a weight adequate to its force. The same care is taken in making them patient of hunger and thirst: while other animals receive their food at stated times, the camel is restrained for days together, and theso intervals of famine are increased in proportion as the animal seema capable of sustaining them. By this method of education, they live five or six days without food or water; and their stomach is formed most admirably by nature to fit them for long nhatinence. Besides the four stomachs which all animnla have that chew the cud (and the camel is of the number), it has a fifth stonach, which servea as a reservoir to hold a greater quantity of water than the nnimal has an immediate occasion for. It ia of a suffcient capacity to contain a large quantity of water. where the fluid remaina without corrupting, or without being adulterated by the other aliments: when the camel finda itself pressed with thirst, it has here an easy resource for quenching it ; it throwa up a quantity of this water, by a simple contraction of the musclea, into the other stemnchs, and this serves to macerate ite dry and simple food. In this manner, as it drinks but seldom, it takes in a large quantity at a time; and travellers, when straitened for water, have been often known to kill their camela for that which they expected to find within them.
"In Turkey, Persia. Arabia, Barbary, and Egypt, the whole commerce is carried on by menns of camela: and no carriage is more speedy or lesa expensive in these countries. Merchants and travellers unite themsolves into a body, furmished with camels, to securn themselves from the insults of the rohbera that infest the countries in which they live. This assemblage in called a caravan, in which the numbers are sometime known to amount to above ten thousand, and the numb ber of camela is often greater than that of the men. Each of these animals is losded according to his strength,
and he in ao menaible of it himself, that when his burden to too great, he remains atill upon his belly, the posture In which he is loaded, refuing to rise till his burden be loweened or taken away. In general, the large cameln are capable of carrying a thoumand pounds' weight, and cometimes twelva hundred; the dromedary from wiz to even. In these trading journeym, they travel but alowly; their stagns are generally regulated, and they seldom go alove thirty, or at meat about thirty-five miles a day, Yivery evening, when they arrive at a ntage, which in uaually some spot of verdure where water and shrube are in plenty, they are permitted to feed at liberty; they are then seen to ent as much in an hour as will supply thein for twenty-four ; they seem to prefer the coarsent weed to the sofleat pasture-the thistle, the nettle, the canaia, and other prickly vegetables, are their favourite food; but their drivern take rare to supply them with in kind of paste composition, which nerves an a more permament nourishnent. An these animala have ofton gene the mane traek, they are maid to knew their way precisely, and to puraue their pasange when their guidea are utterly autray. When they come within a fuw miles of their baiting place in the ovening, they angaciously ecent it at a distance, and, increaning their apeed, are often meen to trot with vivacity to their mage.

The patience of this animal in most extruordinary ; and it is probable that its suffering are great, for when it is loaded, it send forth mout lamentable crien, but never offers to reaiat the tyrant that oppresses it. At the slightest sign, it hends its kneen and lies upon its belly, suffering itself to be loaded in thin position; by this practice the burden is more easily laid upon it than if lifled up while atanding. At another sign it rises with its load, and the driver getting upon ita back, between the two panniers, whirh, like hsmpers, are placed apon each side, he encourages the cainel to proceed, with his voice and with a song. In this manner, the creature proceeds contentedly forward, with a slow uneasy walk of about four miles an hour, and when it comen to ite atage, liea down to be unloaded, an before."

From Msjor Skinner'm account of his "Journey to India," in the course of which he travelled twenty daym with a numerous caravan from Damascua to Bagdze, wo have the following lively picture of the mode of conweyance by camels:-
"I muat give deacription of our equipage, now that we are fairly launched on the great waste. I ride a white camel, with my saidle-bags under me, and a pair of water-skina, quite full, beneath them : over the sadd!e is my bed. A thick cherry-stick, with a croas at the end of it, serves to guide the nuimal; a gentle tap on the side of his neck nends him to the left, and one o: the opposite makes him turn back again to the right; - knock on the back of his head stops hinn, and a few blowa between the earm bring him to his knees, if accompanied by a guttural sound, resembling, as the Arabe may, the pronunciation of theis letter sche. To make him move quickly, it is necessary to prick him, with the point of the stick, on the shoulders.
"To the north there is a range of bare hills, and at their bases are patches of green; the rude tents of a tribe of Bedouins sre pitched, and their catte onliven the acene. We passed over a perfect level this mernir q, strewed with flowers, and thick with pasture for tlie camels, where we are now resting. It is not usus! heio, an in many parts of the rast, for the camels to wind in leng atrings, one after the other. Our nimblers, atiounting to fifteen hundred, are scattered over the misface in all directione, $u s$ far as the cye can trace.
" In travelling, the sheike or chiefs of the caravan, attended by the military part $c i$ their equipage, mounted un dromedaries, move in ad rapee, while the loaded

* Coldomilh'e Aminal d Maxe ve... iv
camels follow at mome diatnnce, in paralifl manmea opening out, or changing the form, as the grana renders it necenaary. They fall no naturally inte military figures, that it is difficult to conceive their doing it without direction.
"Wo have several tenta In tho carnvan. They are pitched so as to permit the camels belonging to each to lie in the intervala, where they are placed in sypurls for the night. They are by no mean agrevalile neigh boura : for, although they are not shle to move frotr their place, they make a most unpleanant gurgling noise, the belea of the merchants alwayn form the windward defence, for the tents have no siden to them, and lut thutter over the gooda to keep the aun from their ownert.

At the umal houra of prayer, a loud cnll is heard throughout the camp, and jarties llock to where the muezzin takes him atand. At sumset, as the cumels draw in from the pasture, all the Arabs are on their kneea, in a line of two or three hunired, in two ranks. The prient, like a fugleman, in front, given the tims for bowing their heada, and performing the rest of the enjoined ceremonies. As they rise on the wignal, they sink again to their knees, and press their foceheads to the earth with the utmost devotion : the acene is sin grolarly impressive.
"The rate at whicla a londed camel travels in estimated at two miles and a half an hour hy shmont every traveller. Our caravan han not, I think, exceeded this; but the variety of ita movementa has leen very tiresome. The Arab drivers, who walk in iront of the anumals never misa an opportumity of a piece of pasture buth however diatant it may be from the proper cotrin, lesd them towards it, and, with the short atick they carry, beat them into the thickest part of it. 'Ihe camelm are anxious enough for the matter thomselves, sn ! huddle so together that their riders' legs are in tolerable danga of being crushed in the contact.
" There ia motrong a reacmblance to a voyage at sea in a ranange acronn the desert, that I cannot divest myself of the belief that the moving mass is but a colleoion of mall vessels, carried into a heap by the tide. Every mnn is ready with him stick to fond of the suimal thit approaches him ; on" whish separates the camele as it would separate a couph of boats; and the camela move away, quite unconscious of the circumatance, till another movement swings them together again."

travetiling in past times in britain.

The modes of travelling, and conveyance generally, were of a comparatively rade and primitive kind in Britain till the letter part of the seventeenth century and any thing like comfortable and quick trevelling cannot les said to have been known till a century later, when mail-coaching was introdured. In old times. people of an humble rank travelled only on foot, und thoee of a higher station on horwelack. Noblemen and gentlemen, as much for ostentation as use, kopt running footmen-a clans of servante netive in limb, who ran lefore them on a journey, or weut upon errands of special import. The pedentrinn powers of these footuen were often nurprising. For instance, in the Duke of Lauderdale's house at Thirlstane, nenr Lander, on the table-cloth leing one morning laid for a large dintier party, it was discovered that there was a defficiency of silver spoons. Instumly the footman wns sent off tis the duke's other seat of Lethington, near Irthlington, fully seventeen miles off, and across hills and moors, for: a supply of the necessary article; live returned with a hundle of apoona, in time for dinncr. Again, ut Hume Castle, in Berwickshire, the Earl of Home had ane uight given his footnan a commission to proced to Edinhurgh (thirty-five miles off), in o der to deliver a message of high political consequence. Next morning

Nelly, wh in hin lorimhip entersed the hall, he saw the man aleeping on a bench, and conceiving that he had unglected bis duty, wan about to cominit some rauh act, when the poor fellow awoke, and informed Lord Home that hia comminaion had been executed, and that, having returned before hia lordahip was atirring, he hail only taken leave to rent himmelf a fittle. The eari, cqually antonimhed and gratified hy the activity of hin fithful vasanl, rewarded him with a little piece of ground, which to thia day bears the name of the Poost lig-a term equivalent to the pontman'm field, and an unjucationable proof, as all the villagera at Huuve ilevoutly believe, of the truth of the aneedoto. The cuntom of heeping a running footman did not cease amongst onble faniliea in Acothand till the middle of the last eentury. The Earl of March, futher to the late Duke of Quecubberry, and whe lived at Neidpath Cuatte, near Peebles, had one numed John Mann, who used to inn in front of the carringo, with a long stati: In the bead of the utaff thore was a recesa for a hard-boiled egg, auch being the only food taken by Mann during a lung journcy.
When the matter of communication was of particular inportance, or required to le despatched to a cousiderable distance, horsinen were employed; and thes, ly meaua of relays of fresh animals and great toil of boly, would prosed journeys of some hundreds of miles to accomplish what would now he much better done by a μ ost-ietter. Sunne journeys performed on horseback in ommer daya would the considered wonderful even in modern times with goad rouds. Queen Elizalketh died it wire o'clock of thu morning of Thursilay, the 24th ii Mareh, 1603. Between nine and ten, Sir Robert Carey left London (alter liaving been up ali night), for the purpase of conveying the intelligence to her sucressor James, at Edinburgh. That night he rode to lhoncaster, a hundred and filly-five milea. Next night lie reached Witherington, near Morpeth. Esrly on sinturday morning he proceeded by Norham across the Border; cnd that evening, at no late hour, kneeled bewile the king's bed at Holyrood, and saluted him na King of England, France, and Ireland. He had thus travelled four hurdred miles in three daya, resting during the two intermeliate nights. But it muat not be supproed that speed like this wan attained on all occasiona. At the commencenent of the religions troubles in the reign of Charles I., when matters of the utmost impertnuee were dehated hetween the king and his northern suljects, it uniformly appears that a communication from Edinhurgh to Lonion, however pressing might be the occusion, was not miswered in less than a fortuight. The crowds of nobles, ciergymen, gentlemen, and burghers, who at that time assembled in Edinhargh to concert measures for opposing the designs of the court, always dispersed back to their homes after deepnatching a message to King Charles, and assembled again a fortnight thrreafter, in order to receive the reply, and take such theasures ar it might eall for. And even till the last century was pretty far advanced, the ordinary ridiug post between Lomiton and Edinburgh regularly took a woek to the journey.
In consequence of the inattention of our ancestors to roals, and the wretcleed state in which these were uanally kept, it was long hefore coaching of any kind came tauch into fashion. Theugh whecled vehiclea of varinus kinds were in use among the ancients, the close earriage or coach is of modern invention. The word manh is Hungarian, and the vehicle itself is supposed to bave originsted in Hungury. Germany cerlainly afpeara to have taken the procedence of the nations of Western Europe in using coaches. I'hey were introJuced thence into England some time in the sixteenth senury, but were, atte- all, so little in vogue throughsut the whole ruign of Elixabeth, that there is uo trace
of her having ever uned once Lor "hay io Wilton, who died in 1503, introduced a come to i rland, first ever uned in that country. 0 owes introlur into Scotland-we rather think from rance-about : year 1571. It belonged to the famm Necretary Ma innd of Lethington, who, during the horrid elvil war between the allherents of Mary and those of her son Jumen, made a jouruey in that velicle from Edinburgh Casthe, which he was holding out for the queen, to Niddry in Wext Lothisn, for the purpone of holling a consultation with some others of her friende-the tirnt time, it is believed, that a close carringe was ever umed in Scotinnil. F'ynea Morison, who wrote in the year 1617, apeaks of cuachea as recently introluced, and atill roro in Scotland. For a long time, thewe conveniences were only used ly old people, who could not well hear riding. The young and active despised them, as tunding to effeminacy, and an not being no quick of movement an the horme. The Duke of Buckingham, in 1019, firnt used a cosch with six hormen-a piere of pomp which the Duke of Northumberland thought proper to ridicule by setting up one with eight. Charles I. wns the first IIritish moverelgn who had a atate carriage. Although IIrury IV. was killed in a coach-the only one, by the way, be possessed-hia ordinary way of appearing in the etreets of Paris was on loorselack, with a large cloak strapped on behind, to be used in case of rain. In Scottand, previous to the time of the civil war, eoachea were ouly used by persons high in the state. It is very curious to find that the same sort of complaints now made ly persons interested in coaching reapecting the introduction of stenm locomotives, were made when coachen were introducel. Taylor, the water-poet, complaina, in the reign of Charles I., that large retinuea of men were now given up by the great, nince they had begun to une coachen. 'T'en, twenty, thirty, fifty, yea, a hundred proper serving men, were transformed, he says, into two or three animala. The old-wifical thinkera of that day were ar much concerned about the fate of the discharged men-servants, as the twaddlere of the present are distressed about the necdless horses. It is further very amusing to find Taylor, in his antipathy to coaches, couplaining that their drivers were all of them hard drinkers.
In a pamphlet called the "Grand Concern of England Explained," pablished in 1673, the writer very gravely attempta to make out that the introduction of coachea was ruining the trade of England. The following in an example of his mode of reasoning:-" Before the coachew were set up, travellers rode on horscback, and men had hoots, spurs, saddles, bridles, saddle-cloths, and good riding-suits, coats and cloaks, atockings and hats, whereby the wool and leather of the kingdom were consumed. Besides, most gentlemen when they travelled on horsehack used to ride with swords. belts, pistols, holstera, portmantenus, and hat-casea, which in these coachea they have littie or no occasion for. For whgn they rode on horseback they rode in one suit, and carried another to wear when they came to their journey's end, or lay by the way; but in coaches they ride in a silk auit, with an Indinn gown, with a sash, silk stockings, and the licaver hats men ride in, and carry no other with them. This is because they escape the wet and dirt which on horselark they cannot avoid; whereas in two or three journcys on horselack, these clothes and hata were wont to he spoiled; which done, they were foreed to have new very often, and that increased the consumptim of manufucture. If they were women that travelled, they usel to hava safeguards and hoots, sidesaddles und pillions, with strappings, saddle or pillion clonks, which, for the most part, were laced and emIroidered; to the naking of which there went many severnl trades, now ruined." But the writer has other reasons to urge agaiust coach traveiling. "Those whe
truvel in this manner," he obervee, "" hecome weary and natlous when they rite afew miles, unwilling to get on horweback, and unat!n to endure froet, mow, or rain, or to loxige in the fiedar." Besides, hee ask " "what ailvantage it cans he to a man's health tu he called out of bed Into threse eoachen an hour or two before day in the morningw to to hurried in thein from place to place till nive, two, or three hours within nixht ! lineonurh that, after siluing ull day, in the sumuer time, stilled with hoat and clocked with dost-or in the winterotine, tarving or freexing with collt, or chancel with filthy fogn, they are ofen lrought into their imua ly torechlight, when it in too late to sit up to get supper, and next morning they are forced into the souds so parly that they ran get not lronk fanct What daddition in it to men'w health or luxineses to ride all day with strangers, ofientimes aick, ancient, diweused peraums, or young children crying: all whome humouna he is owliged to put up with, and ia onen poinoned with their nasty seents, and crippled with boxen and bunden? Ia it for a man'a hesth to be lind faut in the foul weys, and forred to weute up to the kares in mire; afferventld wit in the cold till teanm of horeses ran be nent to pull the coach eut? It it for their bealth to travel in rotten coacher, and to have their tackle, or perch, or axte-tece broken ; and thent to wait three or four hours (mometiuces half the day), and aflerwards to traved all night to make geowl their atagel"
Thewe, however, do not exhaust the patrintic clanmurs of the witer agninat the culious iminevation of ftuge-cractiing. He nayn that the practire "diseouragen fie hreed of horese," nin arguncut which, it in numsing to obmerve, has nloo lveen umed in opposition to the introdurtion of railwayn in recent times. In eertain very peculiar cireunstanices, lie allows, stagre-coaching might he tolerated, but in no other. "If some few atuge-roaches were continued, to wil, one to every slisre-town in Enghaul, to go once a week back ward and fow ward, and to go through with the naine horseen they met frorth with, and not travel above thiry milen a day in the summer, and twenty-five in the winter, und to aliif inns every journey, that so trade might be diffuesu-theme would be suiftrient to coury the sick and the lame, that they pretend cannot travel on horselack; and, being thas regulated, they woukd do little or no harin; eqpecially if all be suppresesed within fifty miles of London, where they are no way necessary, and yet so highly destructive."
We have thought fit to intruluce theeve extracte herr, not so much for tho purpose of aunusing our realers with their abourdity, an to alford a caltion to the general oft ponents of improvernent. Arguluenta of a siminiur illogical nature are now used in refference to nimoont every proposed molioration in our kocial condition, and will doubtess, in ocentury hence, le queud for their elhortdighted folly, thiough al present meeting with countenance from a large clase iu the community.
Notwithatanding the introluetion of stage-coarher in the mevententh century, they were placed only on the prineipal roath, and used almost "xilusively by fermons of refined taste and wealth. 'The poppular mode on' conveyance continued for at least a century anfervarda to te by stagowagons; these were sery large anuic cumlw raume machines, Jrawn by nix or eight hurrees, anci devoted chiefly to the carriage of goods to arid from the metropulin. The ouly pratt of the velhicle which affortexl arcommolation to pussengers, wes the ail of the wagon. ta it was culled, a reserved apace with a hoopect-up cover at the binder part of the machine; atul herr, sitting upon straw an they best rould, some half dozen panweugers were dowly convoyed on their journey. The chame nttacks of highwaymen, and other iuridents which vecurred to the occupante of the wegm, also their alverntures at the innw where they nlept for the night, are graphically decriked liy Emellett in his story of Rosltrick Raation, and will he in the cecollection al mumt of our rendern.
 rying hoth goold and patecingera, were, as we fhate raind conflued chiefly to the great lines of read in Englomd On all the lem iniportant routes, und particulaty in B_{c} ot land, the oully meanas of conivey ance for gmaxte wan hy pack horwes. Thine aninule were louded wilh sache throwo

werom the hack; and, if not too heavy, piled to a con nideralile height. A number topether were generally conducted in a hine along the narrow and liadly constructed pathe, that which wernt hefore carrying a bell, by the tink ling mound of which the cavalcale was kept from atraggling after sigheffill. This exceedingly rude mode of conveyance continued in opsration in sotne parts of the country till the year 1780, or thereabouth, whell ofe-hore carta came into unc.
The old-fashionel wagona atill remmin in upe in Eng. land, notwithatanding the numurous improvementa in modea of conveyance and loconotien. They are chielly employed for the earringe of goods hetween the metropolis and country towns which are at a distance from any line of canal or ra:lroal. A wagon of this kind ia jro vided with four lroad and huge whevln, and ia drawn th six large hores, the driver usually riding on a sepmrati

rmall pony. The wagonn employed in London to convey conl from the wharfs to the honsen of consumers, or beer from brewere, are of the name unwicldly form, and are drawn with a nerelless expenditure of power.
The length of time conaumed in journeys hy even the bent kind of rarriages of past timen, is now matter for surpris. The stnge-coach which went twtween London and Oxford in the reign of Charles II. required two daya, though the space in only fifyy-eight niles. That to Exeter (1684 miles) requiret four days. In 1703, when Prince ficorge of Denmark wint from Windsor to Pit worth to meet Charles III. of Spain, the distance being ahout forty miles, he required fourteen hours for the journey, the lant nine miles tuking six. The persma who records thin fast, anys, that the long time was the more surprising, as, ery opt uhen over urnef, or when sturk fast in the inire, his royal highnews made noo stop duting the journey ln 1742 , stage-courcher must have loven more nutierous in England than in Chates II.'s time ; but it tores nut aplurar that they moved any lister. The journcy from Loudon to Biraingham (116 miles) then ocrepirs, nearly three day s, as appenrs from the following advertim-ment:-a'The Jitchfield null Birmingham etagr-coach ert out thin morning (Moulny; April 12, 1742), from the Rowe lun, Holtom Bridge, iomdon, and will be at t.e Angel, and the Hen mad Chickens, in the High Town Birminghan, on Wedoeslay next, to dinner; and goes the name afternoon to litchtield It returna to Birming

hen or

 don en regralar the wh Iitchite not mo an aven of It learn so Mr. Ilan modis. is repult while ace spent or apparent there wal burgh; a preseat a to procee glad to h the expen 1754 the capiluts. advertived better aced new gente apringe, ox nummer, a day $\mathrm{I}_{11} \mathrm{Ma}$ the Couch and from . every other turlay nig ins, and ge winter, to other [alter, bridge on 8 Monday mo Saturdny nis if Gol perm oitr." Ho six days in thinty-three : century, the ! Glasgow (lo passengers sidered 14 gre started with six hours. 'l hours. It is, the mail-conel and a half miThe longth whether with portionally gro lections of pas obeerves, "that burgh, thirty-el maks out his jo returning, with fatigued horse, sir hundredwe originally was country; a con that distriet ca principal atream not flooded, was and casient to I, much up-and-do of this atventa way-going, turn aim a cafe retur

[^13]nem on 'Thucolay morning to treahfurt, and geta to I,ondon on Batiday night! anil mo will continue every week regularly, with a good cosch and able horwem." Thus the whole week waa accupied in a journey to and from Iftehfeld by lifmingham, an entire apace of probahty not more than two hundred and forty milen-that la, at an average of forty inilea a day.

Of the atage-couch journpy to Hath, about 1748, we learn aome juarticularm from simollett'a celebrated novel. Mr. Mandam entern the comeli hefure daylight. it proacoila, \mathbf{A} highwayman attacks it lofore breakfant, and fa reputsed by tie galiantry of the liero. Strap meanwhile accompanios the conch on hornebark. A night is mpent on the roal, and the journ'y in finiahed next day, apparentiy towarda evening $\rightarrow 108$ miles I At that time there wam no regular atage-conch from Iondon to Bitinburgh; and the newapujerm of the latter city ocrasionally prement advertimementa, atathos that an Individual about to proceed to the metropolin by a pont-chatac, would he glad to hear of a follow adventurer, or more, to luasen the expensen fol mutual conveluience. However, hefore 1751 there wai a kiageacoach between the two Mritinh cupitaia. In the F.dinhurgh Courant for that year, it is atvortised that-" 'The Eidinhurgh stageeonch, for the better accommoklation of passengers, will he altered to a new genterl two-end giasm coach machine, hung on atectaprings, exceorling light and easy, to go in ten days in nummer, nul twelve ln winter ; to set ont the first 'ruenday in March, and continue it, from Hoaen Eantgato's, the Coseli and Ilormen in Dean Eireet, Roho, I,ondon, and from Soln Somervilie's in the Canongate, Edinhurgh, every other 'lueaday, and meet nt Burrowbidge on Satunlay nighe, and set out from thence on Monday morning, and get to London and Edinburgh on E'riday. In winter, to set out from London and Edinhurgh every ather [alternate] Monduy morning, and to go to Durrow. bridge an Saturday night; nnd to set out from thenee on Monday morning, and get to Lomdon and Edlinlurgh on Baturdny night. Passongers to pay as usual. Performed, if God permita, by your ditifil mervant, Ihusea Eistra scr." Here the distance of two hundred mies requires six dayn in winter, heing at the rate of litto more than thinty-three miles a day. So lately an the end of the lant century, the journcy hy the stage hetween Edinhurgh and Glasgow (fortyotwo miles) orcupied a whole day, the passengers ntopping to dine on tho rond. It was conaidered a grent inprovement when, in 1799, a coach wan started with four horses, which performen the journey in sir hours. 'the usual timo now taken is four and a half' hours. It is not unworthy of being noticed, that, when the mail-conches were started by Mr. Patker, in 1788, six ond a half miles an hour was the utmost speed attained.

The length of time spent by carriers on the roads, whether with pack-horses or carts, was of course proportionally greater. An aged gentleman writing hia recoilections of past times (1770 to 1780) in Scotland, drolly oberves, "that the common carrier from Selkirk to Bilinhurgh, thurty-eight milea distant, required two weeks to make out his journey between the two towns, going and returning, with a suitable restingetime at each to his jonr fatigued horse, which had perhaps not leas than five or aix hundredweight of goxis to drag alons. 'The rond ariginally was among the most perilous in the whole country; a considerable extent of it lay in the bottom of that district called Gala Water, from the name of the principal stream. The chunrel of the water itself, when not flooded, was the track chosen, as being the most level, and easiest to he travellel on. 'Ihe rest of the way, very mach up-and-down-hill, was far worse. 'The townsmen of this alventurous individual, on the moming of his wayogoing, turned ont to take leavo of him, and to wish dim a safe return from his perilous undertaking."*

- Robed ros's Rural Recoltectiona

noans.

It will appear from the preceding noticea remperedng travelling and noden of earringe for goode, that little of no Improvempit could be expected In wither case, ill great change for the better was made on the atate of the roadu, If no branch of art do onir aneentope neein to linve been more deficient or heedican than in that of inakina roade and keeping them in comatant repair. In thla reapect, indeed, they were in a conslition of greater igro rance than the ancient Romana, whome roula were on the mowt extenaive and efficient weale, mitable to the neren witken of the period, and may here be shertly deseribed.

anctent moman moana.

It in, we believe, generaily allowed that the Ron ans galnal a certain degree of knowledge on the auliject, of mad-making from firoece and Carthage, and ulso berhaps from Eirypt; lint whatuver they lenrneal they greatly Iniproved upon, und thereform they are entitled to he calied the firnt and best roulnakern of whom hintory has prenerved any acoount. One great frading princlple actuated the Roman authorition in establishing roadut it was that of maintaining their military conquesta. On vanquinhing a liarharous country, their firat efforts conainted in penetrating it with goonl ronds, which were maintalas. ${ }^{\text {d }}$ whth jealoua care, and were connected an far as posmillo in umbruken lines with the aeat of government at Rome. this, indred, formed one of their grandest englnem of aubjugation, and athorils un a atriking proof of their angacioun and active claracter.
Syeaking of tho mubordinate Roman capitala in Asta Minor, Syria, and Fgypt, Gibhon dencriben as followa the manier in which they were connected by roads:"All these citien were connected with each other and with the capitat by the puhlic highwaya, which, insuing from the Forum at Rome, traveraed Italy, pervaded the provinces, and wero terminated only by the frontiera of the empire. If we curefuily trace the diatance fiom the wall of Antoninus [in Scotland] to Rome, and from thence to Jeruvalem, it will he found that the great chain of communication, from the imrth-west to the south-east point of the empire, was drawn out to the length of 4080 Roman [or 37.11 English] miles. The pullic roads were accurately divided liy mile-stones, and ran in a direct line from one city to another, with very little respect for the obitarles either of nature or privete froperty. Mountaine wree profirated, and bold arches thrown over the brondeat and most rapid streams. 'The mithllo part of the road was raimed into a terrace which comannded the adjacent country, cmasiating of reveral strata of sand, gravel, and cement, and was paved with largo erones, or in some phers near the capital, with granite. Such was tho solid construction of the lloman highways, whose firmness has not entirely yielded to the effect of fifteen centurien. They united the subjeets of the most diatant provinecs by an ensy and familiar intercourse; but their primary objuct had been to facilitate the marches of the legiona; nor was any country considered as completely subdued, till it had been rendered in all its parts pervious to tho arma and authority of the conyucror. The advantage of recciving the earliest intelligenco, and of conveying their orders with celerity, induced the emperors to estahish, throughout their extensive dominions, the regular institutions of posts. Houses were everywhere erected, at the distance of only five or six miles; each of them was constantly provided with forty horses; and, by the help of these relays, it was eacy to travel a hundred miles in a day along the Roman roads. I'se use of the posts was allowed to those who claimed it by an imperia. mandate; but though originally intended for the publit service, it was sometimes indulged to the business or convenioncy of private citizens."

From other accounts, we learn that tho Roman road. varied in importance and uses. The great liney warn
ealled proton ne teys, na being under the direction of the pretors; an:l these formed the ronds for military intercourse. Other lines were exclusively adapted for commeree, el civil interceurse, and were under the direction of censulas Both kinds were formed in a similar manner. The plinn on which they were made was more calculated fer durubility than ease to the traveller; and for our modern wheel carriages they would be found particularly objectionable. Whatever was their entiro oreadth, the centre constituted the leaten traek, and was made of large ill-dressed atones, laid side by side to form a compaet mass. of fron twelve to twenty feet hrend; and, therefore, in their cxternal aspect, they ressimblet the coarse stonc causeways which are still in uso in towns and in the highwnys of France. Some of the reads had double lines of this solid pavement, of this nature, with a smooth brick path for foot passengers; nod at intervals along the sides, there were elernted stones on which travellers could rest, er from which cavalry could easily mount their horses. One impertunt feature in the conatructien of all the Roman roads, was the bettoming of them with solid materials. Their first operation seems to have been the removal of all loose earth or sof matter which might work upwards to the surfiee, and then they laid courses of small stones, or broken tills and earthenware, with a course of cement above, and upon that were placed the heavy stoncs for the causeway. Thus, a most substantinl and durahle pnuement was formed, the expense beine deftayed from the pullic treasury. Varioun remains of R mban roada of his kind still exist in France, and alao in different farts of Hritain. One of the chief Roman thoroushfires, in an oblique direction across the country from landon to the western part of Scotland, was long known by the name of Watling Street, which has been perpetuated in the appsilation of ene of the atreeta in the metropolis.

modelis macadamizen roads.

We now proceed to offer some account of the introduction of a proper kind of reads in molern timea. Attempts to improwe the reals forming the leading thoroughfires in England, were made nt the beginuing of the - Ghteenth century; and for that parpoome turupike acts Sor various dssiricts were passed by parliument. It is a very remarkinle fact, that some of the counties in the neighbourhool of London petitioned Parlinment ngainst the extension of turnpike roads into the remoter parts of the country. 'Ihose remater counties, it was pritended, from the cheapuese of babour, would be ahle to sell their corn at a lower rate in the London market thall themselves, and would therchy reduce their rents and ruin their cultivation. In spite of theme remonstrances, turnpike roads were extended into the remater comitiog, and, na ought to have theen expected, so far from injuring the neighlourhool of the metropolis, they greatly inerensed its value-fior a free and casy interchange of commodities is always miversally bel efficial.
It is of little noment to ascertain the exact periond when these improvenents were effected on the ruads of England; for, upon the whole, they were only partial, and as yet the proper moxle of roal-masking was hot understood. The plan consisted in making the paths smemewhat more level than formerly, and of filling up the ruts and holes with stones gathered from the adjacent bields. By this menus the holes, ruts, and slonghs were conside. ably limited in both breadth end depth; but as juntect tevelness was not attained, carriages were dreadliully jolted over the rougher parts, and the wheela sunk jarringly into the softer ground heyond. As also no painn aere taken to lay down stones of equal hulk, but small und large mixen, it happened that the larger ones in time prought to the surface, and so created additional jotting in vehiclon and damage to the roads. The defects in this speries of imoroved ruada were so conspicuous, that vari-
eus engineers of aminence, and other individusla, turned their attention to the subject; and among these ta to he numbered Mr. M•Adnm, whose plans surpassed all othern, and, as is well known, are now generally ndopted. Thie name of this gentleman bas becono ao completely amsocinted with the idea of geod ronda, that a alight aketch of his history may here be aeceptable.

John Louleun M•Adam wae the representntive of an elld und respectable landed fanily-the M•Adams of Waterhead, in the Stewartry of Kirkeudlright, and was born. September 21, 1756, in the tewn of Ayr. By the death of his elder brother, ho becnme, in infuncy, the only sen of his father, nud entitled to inherit the distinction-considered in Scothand, in such ensen, a matter of seme con-sequence-of being the representative of the fimily, and chief man of his name. In consequence of tho destruction, by fire, of a house which he had built for hia reei denee at Lagwyne, in the moorland parish of Carsphairn, his futher removed, about this time, to Blairquhan, in Ayrshire, which he rented from Sir Jolm Whitefoord The family estate was new woll! to the Earl of Stair, from whom it was afterwards purchused hy a jumint branch of the M•Adam family, who still posseesses it. Mr. Mrddan received his education at the erihool of Maybole, under a teacher named Doick, who possessed considerabla local reputation. On the death of hia lither iut 1770, when he was only fourtien ycurs of age, he was sent to New Yoik, where his uncle William, in younger brother of his father, had been settled for some years as a merehant. Here he remained founteen years, during which the war of Iulependence trok place. Under the protection of the British forces, who posesesed the city, he reslized a considerable fortune, as an agent for the sale of prizes. At the conclusion of the war, he returned, with the loss of nearly the poliole of his property, to his native country, and resided for seme time at Dumerieff, a beautiful place in the neightourhood of Moffat, sulsequently the seat of Dr. Currie, the biographer of Bums. He afterwards lived for thirteen yenrs at Sunchrie in Ayrshlire, where he was in the cemmission of the peace and a deputy lientenant. During this periokl, he enjoyed the saciety of his first wife-a lady named Nielol, whon he had married at New York, and who brought him three sons and three daughters, most of whom survive tim. He married, secoudly, in 1827, Miss de Lancey, who survives him, hut has no family.
In the year 1798, Mr. M-Adan received the government appointment of agent for victualling the navy in the western parts of Grent Britain, and necordingly removed to Fulmourll. He subsequently resided for many yeara at Bristol, and latterly at Hoddeston in Hertfodshire. It was while arting as one of the trustees upon certain roads in Ayrnhire, that he first turneyl his attention seriously to the mechanical principles involved in that branch of national ceonomy. While enyaged in England in duties of an entirely different kind, he contimed silently to study the process of romb-making in all its details, keeping particularly in virw the great deeiderata of a compart and durable sobstance nad a moooth purface. By the exertio:s of various able rugineers, who had turned their attention to roud-making, the highways of Great Britain were uleraly in the course of a rapil improvenent ; but Mr. M.Adam was the first to point out and prove, in practical omeration, that a bell, of a few iuches in depth, formed of fragmente of primitive rockgramite, greemstone, or thasal(-mmall enough to prass through a ring not larger than two inclues and a half in dinmeter, was the lest material fior ordinary roudk. Hia syntem. in its leading features, is so comspicuously dis phayed in the pablie eye, that any ninute account of 11 would be superflumus. It was not till 1815, whell on the horders of sixty, that he began to durvote his uhole mind to the business of road-makng. Bring then appointes surveyor-general of the Bristol roads, he had at lengb
full appor fortl with general at throughou wus exami mona rcsp. gratite cat sniooth pav formed on as decided! made: "I the material the surface the leading put upon th infinitely lea of read-mak don, Edinbu of street, w solidity of pa ment had cor every ear- \boldsymbol{H}
In introdu Mr. M.Adare. his own rescu hefare a comn equivalent su trilute of two public benefits quacy of this impossible to a apirit, with the bencficial kinds tenant, in bein display of perse a reward as tha ing into opernti quences of whi commercinl inte quiet, and pleas the remuneratio been informed, f the last to com, wiject, but, on ti of Portunities ot suprrinteadent of ity no mrans wotd havo tak priz, but, ss he a: fionest man. Navember 26, 18 of his age.
According to down and consist ought to be an a level and dry sur we must in the fir If the ground be of turf sud enerthy off, and as muct base. In some it vate, and fill up materials; but aho must on no accoun wise unequal in the road should lee that - Roarls can ne the following prine acted upon: mame really supports the served ill a dry st sinking, and it doe alko; that this nativ
full opportunities of exemplifying his system, which he fortl with proceeded to do in a manner that attracted general attention, and caused it to be quickly followed throughout the whole kingdom. In 1823, Mr. M‘Adam wat examined before a connmittee of the Hguse of Commons respecting the propricty of converting the ruble grauite causeway of the principal thoroughfarea into a smooth pavement, resembling those which he had already formed on the principal roads. He expressed himself as decidedly of opinion that such a ehange should be made: "I consider," said he, "that the expenses would le materially reduced; the convenience of passing over the surface would be generally facilitated, particularly in the leading streets; and the same weight of stone, now put upon those atrects as pavement, would be obtained at infinitely less expense, in a different form, for the purpose of road-making." The consequence was, that, in London, Elimburgh, and Dullin, sine of the principal lines of street, which had previously been remarkable for solidity of pavement, as well as the large sums that pavement had cost, were-to use a phrase already familiar to every ear-Macadamized.

In introducing this improvement into British roads, Mr. M-Adars. had spent several thousand pounds from his own rescurces. In 1825, he proved this expenditure before a committee of the Houso of Commons, when an equivalent aum was voted to him, besidea an honorary tribute of two thousand pounds, in consideration of the public benefits resulting from his labours. The inadequacy of this remuncration is very striking; and it is impossible to avoid contrasting it, in some bitterness of spirit, with the ratio in which services of other and less beacficial kinds are usually neknowledged. Many a lieutenant, in being promoted to a captaincy for some little display of personal bravery, has reaped nearly as valuable a reward as that bestowed upon Mr. M•Adam for bringing into operation a mechanical improvement, the consequences of which, in saving animal labour, facilitating commercial intercourse, and rendering travelling easy, quiet, and pleasant, are beyond all calculation. Though the remuneration was thus small, and never, as wo have been informed, fully paid, Mr. M•Adam would have been the last to complain of it. Ho never made money an vijcet, but, on the contrary, rejected on principle many oferoltunities of gathering wealth, which his office as a ouporinteadent opened up to him, and which many men of ty no mrans blunt feelings as to professional propricty soteld havos taken advantage of. He therefore died a pro., but, as he frequently expreszed himself, "at least a: honest man." Mr. M Adam'a decease took place, Navember 26, 1836, at Moffat. He was in the 8Ist year of his oge.
According to the principlea of road-making, as laid down and consistently acted upon by Mr. M•Adam, a road ought to be an artificial and hard flooring, plared on a level and dry surfaco. To make a good road, :herefore, we must in the first place level and prepare the ground. If the ground be soft, us, for instance, have a covering of turf snd earthy matter beneath, the top must be pared off, and as muct. carth removed as will produce a hardish hase. In some instatces, it may be necessary to excavate, and fill up the yop with compact and substantial moterials; but should this be the ease, the materials used must on no account include nuy large stones, or be otherwise unequal in their nature: 'The principhes on which the mad should he made are thus alluded to by Mr. MeAdam: -" Kouls ran never be rendered perfectly secure, outil the following principles be fully understood, admitted, and acted upon: namely, that it is the natural soil which really supports the weight of travel; that while it is preserved in a dry state, it will carry uny weight without sinking, and it dones, in fart, carry the road nund carriages aloo; that this native soil must previously be made quite dry, and a covering, as much inpenetrablo to rain ar pos-
sible, must then be placed sver it, to preserve it in thet dry state; that the thickness of a road should only lus regulated by the quantity of material necessary to form such impervious covering, and never by any reference is. ita own power of carrying weight."

To put these principles in practice-after the base of the road has been prepared, it should be laid with a lay ct of small stones, made by breaking larger stones into pieces weighing about three ounces. No round pebbla or channel stones must be emp. red; all muat le angular or irregularly shaped pieces. The covering of this kind of material, technically called road metal, should le spread to a depth of from six to ten inchea, as may l.e found necessary, and raked level on the surface. The sides of the road must possess wet ditehes or guttera, into which all water may be readily convcyed and run off For this purpose, culverts, drains, and gratinga may lue necessary.

In eertain casea it may be expedient to carry a line of road across a bog or peat morass; and this may be done with perfect secuity by laying a bettom of shrubs, furze, or small branches of trees, on the soft understratum, and covering it over with gravel, and the ordinary stone material above. The road so formed may perhaps yield ir bend a little when travelled by a heavily loaded vehicle, but will sustnin as much tear and wear as any other fortion of the highway.

The width of the road $i=$ a matter of taste and convenience, but it should not be less than thirty-three feet, io allow a free passage of vehiclea in different directions. On all the good roads in Britain, near towns, a side tootpath, protected by a curb-stone, is added to the ordinary breadth. "With respect to the shape of the surface if the road, when completed, there is slso some difference of opinion; but all agrec that it should be convex, tha only difference being in the quantity. The degree of convexity should be governed in a great degree ly the locality. A road formed of soft materiala should have a greater convexity than one formed of hard materialk; f. the obvious reason that water will injure a soft road quicker than a hard one. A road upon wheven ground should have a greater convexity tban one upon levid ground, to prevent the descent of rain-water along the face of the road, which is there caught by the slightest impressions of wheels; and thus wear channels, as may too often be seen, from the top to the bottom of the hill A wide road also requires to be more crowning than a narrower one; which more readily frees itself from rainwater, inasmuch as the distance the water has to run is less. But it must be borne in mind, that the frecing of a road from rain-water is not the only object to be kept in view in making a road crowning. The case and safety of earriages, and particularly those with heavy burdena ${ }^{\prime \prime}$ with high loads, must be consulted. A carriage moves most freely, or with tho least resistance, when the load lies evenly upon the wheels. Just in proportion as the weight or load is thrown on one side or the other, the resistance is increased. Hence the inconvenicncy of a vely crowning road on a steep; and hence the utility of bars or breaks in long ascents. It is plain that a road should be equally and duly convex in every part of it; otherwise it becomes more partially worn ; the moro level parts being most used.

When a road is carried round a hill instead of goles directly over it, or when a road is made on a side-hilh, it should not be made convex from the inildle, but if should be formed like half of a common road, with the higherst part on the upper side, thus giving the water a tudency to run ofl on the lower side. Mr.0 Walker recommends the least possible convexity consistent with a proper Irninage of the road. In most localitics this will rarely exceed four inches; that is, the middle should be four inches higher than the sides. An idea of a perfeet road may bo formed from a frozen cai.al, where that-
ness, anoothness, and hardness are combined; in imitation of such a aurface, railways were invented, and fully llustrate the principles assumed. Roade cannot be made with all of these perfections, but they should alwaya be hept in view; for the nearer we approach to this atandard, the greater will be the draught. M•Adam says, roads should be made as flat as possible. "Where a road is maile flat,' he says, 'people will not follow the middle of it, as they do when it is made quita convex, which is the only place where carriages can run upright, by which means three furrows are made by the horses and the wheels, and the water continually standa there; and I think that more water actually stande upon a very convex road, than on one which is reasonably flat.'
"In laying out anew road, it is of some importance that the riwes and falla be not too great. The most approved angles of ascents and descents in England are about one inch in a foot-from this to one inch in a yard. In order to obtain ascents not exceeding these, it is necessary in our uneven country to wind up a hill instead of going directly over it. In such cases the road is to be built upon the aide of a hill, and this is considered the most advantageous ground upon which a road can be built, provided the hill has not too great an ascent; because what is taken from the upper side serves to form the embankment on the lower side. While we are speaking of embankments, we may mention the English method of forming them, which is'so manifestly superior to our own, that it deserves to be imitated. "The natural sod, which would be covered by the base of the embankment, having been cut off and eet aside, the earth is then wheeled or carted on to form the two outsides, which are raised to the required heigh', leaving the middle open. The sods are then placed on one another, tha grasisy surfice at right anglea to the face of the outer slopes, forming as it were a battering wall of sods against the embanknient.' This method is found effectual in preventing the banks from washing away and gultying. While the outsides are forming, the lumps of earth, stone, \&c, run downward to the middle; and in this way the whole is finished. When the work settles, it is found to tend towards the centre, thus preventing the outside slopes from giving way."*

The following judicious observations are made by the came authority on the sulject of fences, and junctiona of different roads:-". Fences are necessary along the wides of a road in all enclosed countries; but they ahould never be allowed to rise higher than four feet on common roads. It is absolutely necessary that the air and sun have free admission to a road; besides, where the fences are high, it gives a aweeping power to the wind, which is not bencficial. Mr. Telford thinka that fences should never be more than four feet high, and that all trees within twenty feet of the sides of the road should be removed. He also-thinks that twenty per cent. of the expence of repairing or improving roads is incurred by the improper state of the fences and trees along the aides, particularly on the sunny side; this will be manifest to my person who will take the trouble to examine the condition of that part of a road which is much ahaded, compared to the other parts which are oxponed to the san and nir.

* "The junction of one roal with another requires a sittle attention: it should slways be made at right angles, and on the zame level, if possible. All engineers agree that plantstions of trees shoull not be made close to rouds ; but what the distance should be depends on the elevation of the country, the soil, the breaith of the nuad, ns "well as its direction, \&c., \&e. An elevated situation is always more exposed to winds than a level or hollow. A broal winding road has chances of the di:ect influence of the sun and wind, according to the
obliquity of its angles; a road running north and south, though planted closely on hoth sides, will enjoy the sun during a part of cevery dny in the year; one running east and weat, planted on the south sido with treen forty feet high, or more, will enjoy no sun during the winter montha. The least injurious trees are aingla rowi truined to high stema, properly pruned."

For some time sfter a road has been laid with fresh materiala, it presents a rought surface, unpleasant to the feelings of those who are conveyed over it: hut this roughness is gradually abated, tho amall atones are crushed into a compact mass, and finully, the read it amooth, hard, and level. 'I'he length of time tha nuy elapse before any new repair is required, depends ol. the amount and kind of traffic, os well as the weather Rain is a great enemy to macadanized ronds, and par. ticularly so when accompanied with much traffic. The water lies on the aurface, and softening the material, the action of the horses' feet and of tho wheels causes a certain depth of thin liquid mud. This mul should, by all means, be scraped off to a side, for the longer it lies, the stratum beneath is the more liable to be cut up and damaged. The scraping of the roads, therefore, be comes an essential duty of all who are interested in preserving the higltways economically in repair. When the mud which ia scraped aside thickens by exposure, it should be carted off, and may be enpployed on many aoils as a useful manure. Beaidea containing a proportion of refuse from horses, it is loaded with particlea of iron frosiz whecls and horse ahoes; and being substantially silica or ground stone, it may be administered with special advantage to heavy clay grounds.

Rouds exposed to much traftic require to be renewed in surface at least once a year. The first indications of decay are ohservale in the form of slight hollows, and ruta next make their appearance. In aome cases. where the decay is only partial, a amall quantity of inetal may be scattered in the hollows, bringing them up to a level with all around. However, thia is not usually done on well-kept roada near large towns There the road undergoes a thorough repair once a year, which is preferable to partial mendings. The hest tima for repairing roath ia about November, or before the winter frost and snow set in. In commencing the re. pair the road should be picked across, at intervals of twelve or fifteen inches. This is done by men, each having a pick by which he indents the hard bottom, or forms scores an inch deep in the road. The use of auch a preliminary process, is to cause a ready union between the new and old materizla. If the fresh meta, were scattered over the old road, withont any prepara. tion, it would with difficulty unite to the substratum, and at best form an upper crust, which would be two casily damaged.

With respect to the kecping of roads in efficient repair, the most advantageous plan consists in assigning the entire duty to a contractor. This person, by undertaking to keep all the roala in a county or district in constsnt or uniform repair, is able to execute his functions much more economically than the private genilomen who act as trusteca of the highways and turnpikes The trustecs appointed by local acts of parliament to superintend highways, now generally employ contractora to keep the roads in repair at a apecified price par mile, the payment heing made from funds collected from the lesmers of the toll-hars.

The aggregate length of the turnpike roads of cirn at Britain ${ }^{3}$ now calculated to he 25,000 m:les, at a ral brealth of from fifty to sixty feet:* The cost of

[^14]keeping them ferent counti annual cost i ± 60, and in Nearly all th moncy. It : of $£ 320$ per n
Latw of th safety, drivera a road, are ex practice is no proper, as to 1 The law of th different direct wall or footpat another, and w hand to the v either meeting half of the roa these regulatio the laiv is alwe own proper sid wr. The trust damages for any the carelessness the road grossly According to pavements or sic right hand to the w those whom custom preventa but is not a matt

A canal is ar usually construct laral rivers can be they are preferabl be required to sui be easily kept ir peaking, are ouff nit of being profi fre artificial chan temely suitable is brooks which can China, from a very frused natural car ty from west to ea male to proceed in bus effecting a uni out the empire. connection with the preails in China. bown to have exi ast, it was long be en Europe. In m the inhabitants of the evtreme flatness dannela of water in connection with and other rivers. canals in a great me to the general arrant Wint of fact, so mar br superfluotis wate In countries diffe cucted only with re pamerri,sl speculati Fry, in forming the micipate a annount o mpensate the outli YuI, I,-18 encing the reat intervals of by men, each ard bottom, or

The use of ready union he fresh meta. t any prepara e substratum would be two
in effreient :09 in assigning mon, by underor district in wite his funcrivate gentoand turnpiker parliament to oy contractori rice per mile, eted from the
onds of liriat
les, nt a me
The cost of
15. swiung on a red eiltier was tured far these stitt ured. on o permi sfor
kecping these roads in repair differe considerably in different counties. In the neighbourbood of London, the snnual cost is about $\mathbf{£ 5 5 0}$ per mile, in Yorkshire it is $\mathbf{£ 6 0}$, and in \mathbf{W} ales $£ 20$. The average is about $£ 50$. Niesrly all the road truats are in debt for borrowed money. It 's supposed that the debt is on an average of $£ 320$ per mile, or probably $£ 6,000,000$ for the wholo.
J.ate of the Road.-For general convenience and afety, drivers of vehicles and riders, in travelling along a road, are expected to take a particular side; and this practice is now ao well understood, and ia in itself so proper, as to have become a part of the common law. The law of the road is, that when drivers meet from differeot directions, each shall keep his left hand to the wall or footpath. Secondly, when one driver overtakes nother, and wishes to pass him, he must keep hia left hand to the vehicle which he passes. In the case of either meeting or passing, eaç party is entitled to the half of tho road. The samo rules apply to riders. If these regulations be neglected, and an accident occur, tho laiv is always in favour of the party who kept his oriu proper side, and no excuse can shelter the aggrespor. The trusteea of the road ara liable in an action of damages for any injury that may be sustained through the carelcssncss of themselves or servants, in leaving the road grossly out of rapair.
According to a well-known rulo, foot-passengera on pavenents or sido-pathe are expected to walk with their bight hand to the wall-that is, they keep their lef hand w those whom they are meeting and passing. This castom prevents confusion in the streets of large towna, lut is not a matter of law.

CANALS.

A canal is an artificial chnnnel of water, and is usailly constructed for inland navigation. Where natural rivers can be resorted to for purposes of thia kind, they are preferable to canals, because little expense may berequired to suit them for navigation, and they may te easily kept in repnir. But few rivers, generally meaking, are sufficiently level, straight, or deep, to adait of leing profitably naviguted by barges, and therefre stificial channels require to be cut. Canals aro catremely suitable in level countriea, possessing rivers or brooks which can afford a due supply of watar. In China, from a very early age, certain large rivers have formed natural canala longitudinally through the counor from west to east, while artificial canala have been made to proceed in a cross direction from north to south, thus effecting a universal water communiention throughout the empire. Canals existed in ancient Egypt in conection with the Nile, on a similar plan to what now prevails in China. Notwithstanding that canala were bown to have existed from a remote amiquity in the wast, it was long before they were introduced into westen Europe. In modern times, they were firat used by the inhabitants of the Netherlands, in consequence of the extreme flatness of their country, nid the numerous diannels of water which intersect it in nll directions, m connection with the lower branches of the Rhine, ond other rivers. In Holland and Belgium, therefire, fanals in n great measure exist as an essential requisite fa the general arrangements"of the country, and aro, in pint of fact, so many wet ditches or drains to receive be superfluois waters.
In rountries differently constituted, canals are consucted only with reference tu the profit, in the form of snumercial speculation. The great question, necordmaly, in forming the project of a canal, is, whether the animipalel allount of traffic will raise tolls sufficient to mompensate the outlay of the undertaking and rubse$r_{v 1}$ I. -18
quent charges for repair and superintendence. It asmplifies such an inquiry to know the following truth in reference to cost of conveyance. . The cheapest mode of conveyance is by sloops, smacks, brigs, packets, nteamboats, \&c., and theso will at all times be employed for heavy and bulky goods, such as coal, barrels of liquids, iron, and other cumbrous materials proceeding coastwise. The next cheapest mode of conveyance in by barges on rivera; and tho next is by means of canals. After this are ranked, in point of cconomy, conveyance by land, on railways and roads, the last being the dearest, though often the only means of transport which can be obtained. According to this view, canals can never answer as profitable sjuceulations, when they have to compete with cossting vessels of uny description, or with any species of conveyance by rivers. They cannot even in certain circumstances compete guccesfully with railways, on account of the slownees of specd at which barges or boats are drawn along them; and as speed is becoming dnily a matter of greater moment in traffic, canals are gradually losing the conveyance of every kind of goods for which quickness of transit is desirable. For tho sake of economy in national resources, it is very desirable that these trutha in statistics should be generally understood and remembered.

When the undertaking appeurs warrantable, from e careful consideration of circumstances, tha next thing to be taken into account is the obtaining of on adequata supply of water, and the fixing on the best-that is, the most level and unexpensive-line of route. In aome parts of Eugland, where an enormous traffic could be reckoned upon, canals have been projected and oxecuted on a stupendous scale; mountains have been perforated to admit channels of water through them, valleya raised by embankments, and bridges built in the form of aqueducts across rivers; in short, no expense has been spared to render the inland navigation complete.
The aupply of water necessary for a canal which 'a level throughout its course, is small in comparison with that of one pursuing an uneven lise. When there is a common level of surface, the only expenditure of water is by evaporation; but when the level is various, a large loss is incurred at the locks in ruising or lowering vessels. A lock is a portion of the canal enclosed by folding doors, and must at least measure the length of a vessel. If a vessel is to be raised froms one level to another, it ia drawn up to tho doors of the lock, and these are opened to admit it. Having sailed into the lock, the doors are closed behind it , and it is now in a kind of prison from which there is no npparent escape. While in this situation, the doors nt the opposite end of the lock, which retain the water at a higher level, are slowly opened, and admit a rush of the liquid mass, which speedily bnoya up the vessel, and allowa it to sail off along the higher level. The lock js not immediately emptied, but remains full of water, and ia therefore renaly to be employed in letting a vessel down. When the vessel approaches, and ia fairly within the lork, the upper doors are shut, and then the lower doon are opened; by this menns the vessel is carried into the lower level slong with the rush of liquid, and is drawn III ins course. A lockful of water hus now evidently bean shot from a higher to a lower level on the canal. and is lost, unless required for lower locks. 'l'o prevent inumation of the bnnks from the issuing of water from the locks, waste outlets require to be provided at certain distinues, particularly at the lower termunation of the line of canal. The provision of water to supply the locks is ordinarily from an artificinl lake, which ia ester blished near the bighest ground in the line.

The brealth of most canals varies from twenty te thirty foet, and the depth from four to six feet. If the depth of water be sufficient to keep the vessela froms depth of water be sumient
toucning the bottom, no greater volume is neceasary, for lese power is required to pull a boat upon a shallow than a deep water, there being less liquid agitated or displaced. A one side of the canal a narrow road, called the towing-path, is constructed, and upon this the horses, which drag the vessel, proceed. 'There is a difference in the manner in which the dragging rope is attached to the veasel. In Holland it is the practice to attach the rope to near the bow of the hoat, and to eaume it to proceed over the outer extremity of a pole or species of mast, so as to keep it conaiderably above the water, snd prevent its friction on the hanka. This la not stended to in England, where the ropo procecila firect from the bow to the horse, and, except when in a etate of great tension, it trails along the hank and surface of the water. In either case, the draught of the hurse 18 exerted with a loss of power, for instead of being a fair dra ?ght behind, it is oblique, or in the direction of the rope slanting to the veasel. The tendency of the draught is to bring the boat to the shore, which ia counterncted by the helm, and this again assiets in diminishing the general amount of available power.

Throughout the canala of England and Scotland, only ono horse is employed to drag a boat, lonied to the extent of from fifty to seventy tons; and with thie weight dragging after it in a munner most disadvantageous, it will travel at the rate of two miles and a half or three miles an hour. That one horse should be capsble of drawing fifty tons of goods in this unexpenaive manner gives an apparently favourable view of canal conveyance; but laying all chargee out of the queation, the alowness of the motion, and consequently the detention of goods by the way, is a drawback of the most serious nature, and in reality renders canals almost useless for the transport of any but heavy and raw materials. Latterly, on a few canala, attempts have been successfully made to run "awift boats" for passengera, drawn by two horses, at a rate of seven or eight miles per hour ; but as these veasels are run at a great expense for horse power, and at the utmost apeed are not quicker in their transit than stage-coaches, it may be expected that they will utterly faii in competing with railways.
It may not be generally known that the principal obatacle to the use of steam-engines on board canal-koats, is the injury done to the banks by the action of the water from the paddles. How far this olstacle might be overcome by the uso of the Archimedian screw propeller, it would be premature to say. Meanwhile, an attempt has lately beell made in Scotland to introduce the use of steam-power for iuland navigation, by means of a railway and locomotive tug, along the line of the Forth and Clyde Canal. The following account of an experiment is from the Edinburgh newspapers of November, $1839:-$
"The experiment, which was of a novel nature, wae conducted by Mr. John Macneil, civil engincer, and conoulting engineer to the Canal Cumpany. It is well known that the haulage of boats on this canal has hitherto been performed by horses; the rates of speed being, for the heavy mloops, brigs. \& c_{m} in the London, Dundee, and other tradea, about $1 \frac{1}{2}$ to 2 miles per hour, when drawn by two or five horses, according to the state of the weather; and firt the swif or passenger boata between 8 and 9 miles per hour, on an average, when drawn by two horses. The object of the experiment was to ascertain the possisilty of using locomotive steam power to drsw the hoats, instead of horses. Accordingly, a single line of rails, non blocks, like an ordinary railway, was laid down for a considerable space along the canal banka, near Lock 10 ; and a locomotive engine and tender, built by Mr . William Dodda, having been brought down the cansl and met on the raile on the morning of the 21st, Mr. Macneil, Mr. Jotanston, the canal director, and several engineers
and gentlemen, being present, the ex periment commaneal by attaching to the engine the towing-line of the Ant passenger-boat that made its appearance, and which contained upwards of ninety passengers, with their luggaga There was a trifling delay in disengaging the horses and tying the line to the angine; but this was amply coirpensated when the 'Vletoria' briskly set off, and almost immediately gained a speed of 17 j miles per hour, which she kept up round two curves, and until the termination of the rails made lt necessary to atop, amid the cheers of the delighted passengers. This experiment was repeated, during the course of the day, with each passenger-wost an it came on the railed space, and with equal succeas each time. On one occasion a towing-rope, which was much decayed, got foul of a curb-stone and broke, but without causing the slightest inconvenience, except about one mi. nuts's delay. The engine employed being intended only for a slow trade, was not calculated to go at greater speed than 18 milea per hour; but it was the opinion of all present, that, with proper passenger locomotiven, a speed might be obtained equal to that upen the best rail. ways, few of the latter possessing the advantage secured by tha canal bank of a perfect level throughout. The nature of the motion was highly gratifying to all the passengers, being more uniform, steady, and smooth, than when the boats were drawn by horses. Several of the heavy (masted) vessels were alao taken in tow during the two days of trial, at the rates of $3,3 \frac{1}{2}, 4$, and 8 miles per hour ; and on one occasion, two loaded sloopa, and a large wagon-boat, were together attached to the engine, and hauled with ease at the rate of $2 \frac{3}{2}$ miles per hour, whilst only one-fourth of the atcam was allowed to pass the throttle valve. The foregoing statementa render palpably apparent the immense advantages which might be gained by this new adaptation of ateam power-a great cconomy of haulage expenses, as one engine migth draw at least six sloops, which now would require from eighteen to twenty-four hurses, and, if necessary, at double the present speed ; and a proportional increase of the present traffic on the canal, which might be reasonably expected. Passengers would increase in a great propor tion, when attracted by ceomomy and speed of transport The Union Canal from Edinburgh to Falkirk mighthe traversed in 2 hourn, and the Forth and Clyde Canal from Falkirk to Glaggow in $1 \frac{1}{2}$ inatead of 4 hours and 31, as at present, and this by only aasuming 16 milcs pet hour, though more might casily be performed, as the etperiments have shown."

Fully more satisfactory results enaued from subsequeat experiments, but as the mode of draught has not come practically in operation, it is unnecessury to narrate them here.

One of the largeet canals in Europe is that which es. tends from the German Ocean to the river $A \mathrm{i}$, at Amsten dam, by which vessels are enabled to reach that city hy a direct channel, instead of sailing round by the Zuydon Zee. This skip canal was hegup in 1819, and finisted in 1825, at an expense of $£ 850,000$. Its length is neally 52 English miles; its breadth 125 feet at the aurfare, wnd 38 feet at the bottom; and ite depth 20 fect 9 inches Traversing a perfectly flat country, it has no tocks exep ${ }^{\text {a }}$ at its extremities, and is of such magniturie, that tro frigatea or the largest merchant vessels can pass enth other. There is a towing-path for horses on each side and about cighteen hours are required to perform te voyage from Amsterdam to the ocean. As a commer cial speculation the canal yields no profit, but its errie to the shipping of Amsterdam is incalculable, and mib. ou' it the town must have sunk into comparative ingis nificance.

France possesses aboun fify different canals, some o which are of great importance for general trallic. Tix chief canal is allowed to be that of Briare, called dax that of the Loirc and Scine. It was completred in 164 .
wascrese $34 \frac{1}{2}$
Ifo width' is 25
cives large sup
rivit, or langue meen tha Medite muic 0 cean at th ne province of miles of canals in The United S , 2500 miles of mostructed withi modertaking of th be river Hudson distance of 363 snnati to Lake E real undertskin mala scarcely les country. The R yidance of 160 m be St Lawrence) ondertaking, and
the trado of Britis
The csnals of \mathbf{G} nn aggregate leng re in the midlan Fabire, and have inge seats of man be island nod with Trunk Cunal, conn Yumber, extends Worester connec *eren. The Gran th the Thames.
Eisglom, London, nted by canals. mals spreed over xa place south on water commun tex of canal, aine ponk in an extraor eproprictors. Ir
poally goverument eves little trade.
sootand has a nu Faniued to the werte 7. Thnt which po a Clyde Canal, re Fore Dumbarton, to
pal, which was op mmunication for ost coast, extenils 3 160 feet, with 20 Ion the weatern. Fr by a side çut; anal, which extends Jinturgh. This \ln rial speculation, Saburgh, by introd zand aflording an e pance for grools to as mal ia formed in a mehing neross the Loch Eil on the w canal part is 20 4110 fect at top, 32 guns, or mercha
m conal was under m; and after a labo 1822, having then it on the east anc hest level being 94 munding the northe ratiund Firth, may be
ent commenced ine of the then and which cora their luggaga the hormes and was amply conoff, and alment per hour, which the termination id the checra of nt was repeated, assenger-soat as ual sueceas each which was murb oke, but without pt about one miig intended only to go at greatet is tho opinion of ar locomotives, pon the best raildvantage secured aroughout. The tifying to all the and sinooth, then Several of the n in tow during $3 \frac{1}{2}, 4$, and 5 miles aded sloops, and ed to the engine, 3 milea per hour, a allowed to pass tatements rendet ages which might steam power-d one engine might ould require from , if necessary, ot rtional increase of aight be reasonably in a great propor. speed of transport Falkirk might th and Clyde Canal ad of 4 hours and ming 16 miles pe formed, as the er
d from subsequent ght has not come ry to narrate them
ts that which er ver $\mathbf{A i}$, at Amstes reach that city b and by the Zuyder 1819, and finished Ita length is nealy at the surface, ad 20 fect 9 inebos as no tocks except gnituce, that tha ela can pass each ses on cach sive ed to perform the h. Aa a commero ofit, but its serine leculable, and nith comparative ins,
it cansla, some of neral tratlic. The Briare, called alw completed in 1641
geacres $34 \frac{2}{2}$ miles in length and has 10 or 42 locks. It width is 25 feet at bottom. By this canal Paris reeves large auppliea of inland produce. The Canal du Nidi, or Languedoc Canal, makes a communication beWeen tha Mediterranean at the city of Cette and the Atuntic Occan at the mouth of the Garonne, pasaing through me provines of Languedoc. Alogether, there are 900 miles of canals in France.
The United Statea of North America possess upwarda If 3500 miles of canals, tho whole of which have been monstructed within the last thirty years. The principal ondertaking of this kind is tho Erie Canal, which unitea the river Hudson at Albany with Iake Erie at Buffalo, distance of 363 miles. The Miami Canal, from Cininnati to Lake Erie, which extends 265 miles, is another orent undertaking; and there are a number of other mala scarcely less important for the general trafic of the ountry. The Rideau Canal in Canada, extendiog a wistance of 160 milea , from the Ottawa (a tributary of the St Lawrence) to Lake Superior, is a atupendous andertaking, and will ultimately be of great service to be trude of British America.
The canals of Great Britain are believed to extend to on aggregate length of 2400 miles. The greater part ant ia the midland districts of England, including Lanankire, and havo for their object the connection of the lange seats of manufacture with the aea on both sides of he island nnd with the Thames at London. The Grand Truak Canal, connecting the Mersey with the Trent and Humber, extends $93 \ddagger$ miles. The Birmingham and Worcester connects the Grand Trunk Canal with the kren. The Grais Junction conncets the Grand Trunk Fith the Thames. Thua, the four great ports of the firglom, Loudon, Bristol, Iiverpool, and Hull, are conketed by camals. So generally aro these and other anals sprend over England, that it is supposed there is
fot a place south of Durham more than fifteen miles $5 \times \mathrm{w}$ water communication. The trade on some of the -nes of canal, since the introduction of railways, has oak in an extraordinary degree, greatly to the loss of be proprictors. Ireland has nbout 300 miles of canala,
posly goverument undertukings, and in general they ussess little trade.
Scotland hus a number of cannls, but they are chicfly cotined to the western and middle distriet of the coun7. Thnt which possesses the largest traffic is the Forth Clyde Canal, reaching from the Clyde, a short way fore Dumbarton, to the Forth, at Giangemouth. This mal, which was opened in 1790 , and affords a ready mmunication for amall vessels between the east and ent coast, extends 39 miles in length; its highest level 160 feet, with 20 locks on tho eastern acclivity and Son the weatern. The canal is connected with Glue on by a side cut ; and it is now joined by the Union hall, which extends from near its eastern extremity to Kinburgh. This litter canal has proved a per.r comactial sjeculation, but has been of great serviee to jiaburgh, by introducing coal at a cheap rate to the th, and affording an excecdingly convenient ineana of confance for goods to and from Glasgow. The Caledonian nal is formed in a great measure by a chain of lakes, prthing across the country from Inverness on the east Loch Eil on the west coast, n distance of $59 \ddagger$ miles. be canal part is 20 feet deep, 50 feet wide at thottom, $\$ 110$ feet at iop, which affords a passage to frigates (32 guns, or merchant vessels of a aimilar aize. 'Ilhis mat canal was undertaken as a public work by governkat; and after a labour of cighteen years was opened 1822, having then cost $£ 800,000$. It possessen 13 ds on the east and 12 locks on the weat const, the ghest level being 94 feet. By this canal the dangers rounding the northern extremity of the ialand, by the zatland Firth, may be avoided; but from the prejudicen mamen it has never been much used, and is now
abnndoned by government to a private corrpany. As a meana of allowing ateam-boats to run between the Clyda and Inverness, the canal has keen of great public service.

CONVEYANCE BY STEAM POWER.

steam-Boats.

Until the year 1807, the only meana of commumication by sea waa by aailing veasela affected by the winda and on the land hy the power of draught in unimals, both of which were exceedingly defective. In 1807, Fulton introluced the use of steam-propelled vesscla on the Hudson, between New York and Albany. In 1812, Bell introduced a similar mode of ateam navigation on the Clyde st Glasgow; and in two or three years afterwarda, steam-boats were common on British rivers and on the aca around the coasts. We do not consider it of the least moment to mention how or by whom ateam propulsion was first discovered; the merit of this and every other great invention is alone duc to the person who brought it into practical uee. and in the present instance it is clear that that person was Fulton.
leaving all account of the mechanigue of steam power, aa applicable to propulaion, to be given in our article on the Steam-Engine, we need here only allude to the extraordinary changea which have been effected upon can veyance by sea and land by thia newly applied motive force.

Eteam navigation has hitherto been ehjefly applied to coasting and voyaging on rivera and estuariea, and in thrse reagects it has greatly altered tho aystem of transit. In 1810 there were in tho United Kingdom and colonies 630 steam-vessels, possessing an aggregate burden of 71,000 tons. The rivers on which they principally plied were the 'Thames, the Mersey, the Clyde, the Forth, the Tync, and the Severn. The Clyde alone owned 76 steamera, having nearly 8000 tons. Besidea those which were devoted to making trips up and down these rivers, a large proportion plied regularly belween different coasts in Britain and Ireland, and hetweel different porta and the Thamea. From the Thames, also, atcamers proceeded to many different ports on the continent. In short, ateamers are now found traversing the whole line of coast, steering up and down rivera, and holding communication with ports in diatant parts of the globe.

One of the finest lines of large steamers now in operation in Britain is that between Edinburgh and London. it has for several years consisted of from six to eight vessela of about 800 tons each, and theso anil regularly twice a week. Formerly, the passage by aailing amacks occupied, on an average, six or seven days, but nometimes it was three weeks; now the voyuge by ateam ia performed with remarkalle precision in from 48 to 54 hours, the distnnce being 400 nilea. The lines of ateampacketa between Glaggow and liverpoul, Glasgow and Belfast, Iiverpool and Dublin, Bristol and Cork, Aberdeen and London, Dundee and London, London and Rotterdam, London and Hull, London and Neweastle, Southampton and Havre, Dover and Calais, are all upon a great scale, and effect an amount of communication iot paseengers and tranait for goods, of which no descriotion of ours could convey anv juat idea.

INFORMATION FOh THE PEOPLE.

Ths alove may, however, be considered only to inAlale those vessela which proceed on voyages of not more than two days' duration. Latterly there have heen added teamera which proceed hetween England and Liabon, and thence to Maileira; also steamers to India by the Cape of Good Hope; and more lately still, steamers which make the voyage acrosa the Atlantic, and form a meana of regular conmmunieation between Britain and North America. The Great Western, a steumer of 1340 tona burden, was the first large vesse; which plied regularly on this station. This veseel departed from Bristol on the 7 th of April, 1838, and reached New York on the 23d of the same mosth; but the clear days occupied on the passage were only 14. This voyage established the practicability of atoam-vessels crossing the Atlantic, and now thero are several which Bnil at regular intervals. Bowides crossing from London, Bristol, and Liverpool, to New York, and returning, thero is also a line of large steamers which sail between Liverpool and IIalifax in Nova Seotia. The largest of the Allantic steamhoats is the British Queen, which measures in entirt length 275 feet. Her two engines are of $\$ 50$ horse power each, and ahe is calculated to carry 1862 tons. The outward voyage of 18 daya of this magnificent atcam-vessel requirea a consumption of 540 tons of coal, and her homevard voyage of 12 days 360 ions. Larger and nore powerful vessels are now in preparation.

On the coasts and rivens of North America, steam navigution has been carried on to a much greater extent than in Great Britain or any other country. In 1834, there were 234 steam-vessels on the Ohio, Missiasippi, and other western waters ; but now the number ia alove 500. Some of the Ameriean stcain-vessels are Inrger than any in Britain, and alsq more splendid in decuration ; but they are much more liable to accidents, from the employment of steam at a very high pressure, and a general carelessness in the mode of management.

The Rhine, the Scine, the Danube, and other large rivers on the continent of Europe, are now navigated by steam-vessels, chicfly for conveying passengera. The engines used are mosily made in England.

Ratlways.

Before the practice of uteam navigation had attained that degree of improvement which it now possessea, a not less wonderful mode of travelling by steam power on land had come into use; wherefore, during the first thirty yeara of the rineteenth century, infinitely grenter insprovements in the means of locomotion have been diacovered and brought into practical operation for the benefit of mankind, than had ever previously been known. To understand and value the application of steam-power to land-travelling, we must advert to the sulject of draugit on common roads.

There exist three obstacles to the rapid motion of car-rieges-terrestrial attraction, the atmosphere, and friction. By no human power can the two former be removed: but the latter can be so far modified as to form little or no opposition. On all common roads, no matter how well they may be constructud, there is a certain degree of roughness which it is impossible to remove, and this causes so great a friction, that to overcome it much of the drawing power is consumed without advancing the carringe. On some roada, the plan of laying down concinuous linea or tramentys of anooth jovement for the wheela to roll over, has been resorted to, bu: has never been found grnerally answarable, not only in consequence of the great expense of constraction, but because drivers will not take the trouble to keep their vehiclen upon it.

The draught of a horme upon a macadamized road may the eatisunted at fitteen lundredweight, walking at an ordinary pace and for several hours continuously. ParHeulsrly mtrong hormen may habitually draw twenty or iwenty-two I rodradereight but to ravias them to pull to
that amount ia not economics. Allowing, however, that all horses can draw a ton weight, that is a small amumbl of draught in relo. 0 ,n to great parpose of commerce; ond the speer' at which the fleetest horse can travel, where; drawing a weight after it, though periaps ten milea an hour, is unsuitable for the rapid transit of passengera on long journeya To drag a mailecouch from London to Edinburgh, a distance of about 400 milen, in 43 houn which was reckoned a good bpeced, it was necessary io employ four horses, and to change these overy eight miks oln an average; thus 200 horses were vequired for the performance of the whole journcy. Ilaving nituined thite rate of locomotion by improvemients on roads, cartiages and in tho breed of horses, nothing more could be done Something new required to be devised.

The idea of employing steam-power to drag carriage over cominon roads, and thua save a large outlay for horses, hesides accomplishing a greater apeed, was sug gested by various enterprising minds, but to its practin application there were and are many serious oljections Independently of the ordinary and unavoidable roughm of common roads, all highways are less or more unesen because to construct them upon a perfect level throughos would he attended with an expenso which the tolla frout no traffic could sustain. The general unevenness of ruads, therefore, causes a great loss of drawing powe In these circumatancea, it in evident that, for the avois ance of friction and economizing of forces, an entire new apecies of road required to be contrived. This in portant desideratum is found in the invention of raileoys The design of a railway is to furnish a hard, smoot and unchanging surface for wheels to roll upon. provision, as respects smootiness, is requiral for a part of the path, except the narrow lines which are in mediately to come under the rim of the whecls. Accel ingly, it is sufficient to provide two rows or lines atrong and straight iron raila, that is, long alips of ind about an inch in thickness, and four or six inches $d x$ These rails, laid in two parallel lines, to suit the wid of a carriage, are raised a little above the general ley of the ground, being placed neatly end to end, a secured by fastenings to hlock of wood or atone at bac intervals. Such is the very simple contrivnnce of a on way, or chemin de fer (road of iron), as it is called our French neighbours. By the estal)ishment of ni waya, a way was opened foi the adaptation of stea power to locomotion, and now, as is well known, has come generally into use.
The earliest railway of which there is any acco was one constructed near Neweastle-upon-T'yne. Roger North's Life of Lord Kieper Nortli, he says at this place, in 1676, the cuala were conveyd fromil mines to the banks of the river, "lyy laying rails of tind exactly straight and purallel; and balky carts were me with four rollers fitting those rails, wherely the ram was made so easy, that one honse could draw four or chaldrons of coal." One hundred years aftorway ahout 1776, Mr. Curr constructed an iron railroad al Sheifield colliery. 'The rails were supported by wal sleepers, to which they werr nailed. In 1797, Mr. Bef adopted stone supports in a railroad lealing from the L^{2} son main rolliery to the 'I'yne, near Newcastle; and' 1800, Mr. Ontram made use of them in a railroad at L i Eaton in Derhysilire. I'wenty five years nfterwand, npecies of road was successfully adopited on a pul thoroughfare for the transportation of mercliandise w, passengers, namaly, the Storkton and Darlington raiky which wan completed in 1825, and was the first on w thin experiment was made wiht sureress. From time, accordingly, a new era conmenced in the hith of inland conveyance.

It in a remarkable circumatanco, that the carly tisers of railany conveyance could not imagina the carriage, moved by stem-power, could procced alos 8
nils without the wavercome this merne and labou wa 1815, Mr. I dectually proved, asive power of th naficient to cause rith a truin of lo krel or with $n \mathrm{sm}$ devery, fifteen y wer established. annection with the dester railw ay, on which period iailwa the country.
Simple as ia the it necessarily incurre 6. All inequmbitis proved, low pars ph parts must le -impolitic to let al, tole routo being bn
sides, the Innd ow
ochased, frequently
Einary expense of
puring an act of pa
ow amounts to as m
lyse of $£ 30,000$ p
hy in the construet Si long line of rai fhecly level throug we than one foot pe Trandation, which druate by an excera carred, or bent from es in its course; an rosery to tolerate 2 by ineconmmica! ad nearly all railw perfectly lovel; and loss of power in ilra be most disadvanta ryg are so compar with that they allow aie of friction. It mee of friction in rai de aving of power, th tho traveller. T 2ny modes of land-e from friction. F_{r} ame. Were friction no mensation in mo we no sensation of the earth in its ce at an inconceivab these premises, that If any rate of spee -pevided the motio fiection, and that th pere. Practically, degree of friction is enils, to canse adh ordinary roughness 3.-The experience provement in tho c of railroad. At fi N to be preferahile to Nerstood that cast ra If the tear and wear To be of the st al rail ahould be at ω in depth at the $\mathbf{t w}$ if ben wath in the 6
anem whorild to fus
, however, the sinall amumu of commerce; in travel, when a ten milea an - passengers on rom I.ondont k , in $\mathbf{4 3}$ houm na necessary to very eight mikn equired for the ing lattuined this roads, carriages, e could be dase
to drag carriagor large oullay for speed, was sug ut to its practiea crious objection oidatle roughnes or more anesen t levil throughon ich the tolls from al uneverness o f drawing powerl ut, for the avoint orces, an entiret utrived. This in ention of railury It a hard, smooth to roll upon. required for nes which are in e wheels. Accort , rows or lines d , long stips of ind or six inches dem A, to suit the with e the genersl lem y end to end, an od or stone at shor potrivance of a ni , ns it is called tablisliment of ni laptation of stean is well knowa, th
re is nny sccoun (tr-upon-Tyne. North, he says th convi'yed from bying rails of tima ky carts were ma herely the ram ld draw four of if years afterwur iron railroad at biported by wal In 1797, Mr. Bu dinge from the L_{a} Newcastle; and n a railroad st it vars ulturwanda it opted on a pulh f merchandise Darliugton taine * the first on wh cecess. From cod in the hild

liat the early

 oot imagme itails withont the nid of tonthed wheela and a rack; and wnercome thia Imaginary difficulty, no amall degree of wense and Inhour was fruitlessly incurred. About the me. 1815 , Mr. Blackett, of Wylam, near Neweastle, Wictually proved, by repeated experiments, that the adasive power of the wheels on the raile was at all times ufficient to cause a progressive motion in an engine, rith a truin of londed earriages, upon a railway either krel or with a small acclivity. Important as was this bruvery, fifteen years elapsed hefore steam locomotives were estullished. This great triumph of art occurred in orenpection with the operiling of the Iiverpool and Mandinster railway, on the 15 th of Septemher, 1830, since rhich period idilways have sprend to all populons parts whe country.
Simple as is ine idea of a railway, a prodigious expense ancessarily incarred in bringing it into practical opera3n. All inequabities of surface in the ground mast be moved, low paris must be filled up by embankments, ach parts must te reduced, eminences, which it would Cimpolitic to lei el, must be perforated by tunnels-the frole routo being brought as nearly as possible to a level. nedes, the land over which it is to proceed must be wrhased, frequeutly at an exorbitant cost ; and the preEinary expenso of overcoming petty oppoaition and founing an net of parliument to establish the line, somepes amounts to as mich as C 2000 per mile. An entire arge of $£ 30,000$ per mile is considered a moderate way in the construction of railwaya in Britain.
Na long line of railway that has yet treen tormed is fiectly level throughout, but the acelivity ia seldom met than one foot per mile, and this docs not produce yrlardation, which it would bo absolutely necessary briate by an excess of expenditure. Every line, also, rared, or bent from a truly straight direction, at various xs in its conrse; and this is another evil which it is msary to tolerate to a certain extent, rather than ad by ineconomica! outlay. For the reasona now wed nearly all railways are neither perfectly straight perfectly lovel; and so far as such is the case, there bes of power in drawing vehiclea along thom. Yet, be most ilisadvantageous known circumatances, the wrys are so comparatively smooth and suitable for sit that they allow the nearest approach to a total nae of friction. It is deserving of notice, that the axe of friction in railroads is allvantageous not only be axing of power, thut the aaving of painful aensaw the traveller. The suffering uaually endured in ary modes of land-conveyance is that which chiefly from friction. Friction is the grand evil to be rome. Were friction altogether removed, we should no sensation in moving; as, for example, we exmat no sensation of motion in being carrisd along the earth in its ceuseless rotations, although promat an inconceivable velocity. It may be argued these premises, that no one need fear to be carried tu any rate of speed-even a hundred miles an -provided the motion be perfectly amooth or free fretion, and that there is a protection from the phere. Practically, in locomotion upon railways, a degree of friction is required betw een the wherls se nils, to cause adhasion, and this is accomplished ardinary roughness of the iron.
4.- The experience of ten years has introduced a prosements in the conatruction and management 4 of railroad. At first, malleable iron rails were Wht to be prefernhle to those of cast-metal; but now Werdood that cast rails, if properly nuade, will enWl the twar and wear to which they can be fairly Th. To lie of the stronceat and best form, each hul rail ahould be at least twelve feet in length, the in depth at the two ends, and thence gradually ag ben ath in the fish-belly form to the centre.
sorface, on which the wheel is to run, ahould be an irich and three-quarters or two Inches, so as to project laterally like the cross top of the letter T. The rails are to be supported at their joint extremities, where they ure pinned together, and also at intervals of every three feet. The supporters should consist of transverso bars of wnod, sunk in the ground; by being thas crossing from the one track to the other, both linea of rail aro kept from ${ }^{4}$ seperating or shifting, and if there is any tendency to subsides. both are equally lovered. On many linea of railroad stone slecpers are preferred to wood, but, as it seema with no adrquate advnntage. Stone sleepers present tor unyiedirig a hase to the rolling of the wheela, and caus a jolting most injurious to the mechnoism of the car ringes. In several instances, lines with stone aleepen have heen taken up, and wood sulstituted. The rail wnys in Belgium are laid on wool. To attain the high est perfection in the mode of laying raila, a plan has been followed on the Newcastlo and Shielda line, and also on that of the Great Western between London and BristoL, of placing raila having an even under aide upon longitudinal beama of timber, which are united at certain intervals by transverse bars; thus the whole sulistructure is a handsome framework laid on the ground, and presenta the best species of support. In general, thia will be found oo expensive a kind of railway ; anll it may be anticipated . Int the method of fixing raila upun cross-bare of wood, at intervala of three feet, will ultintately come into universal use.

Trun-outs.-If all the wagona upon a roilroad, whether for the transportation of passengera or merchandiae, wera to travel at the same time, and at the snme speed, two seta of tracks would be sufficient to accommodate the whole, as there would be no necessity of their turning out to pasa each other. But in the transportation of passengers, greater speed is desirable than in the transportation of merchandise; for the transportation of mer chandise, whether by horss-power or steam-power, can be done more ceonomically, and with less injury to the road, at a low than a very high rate of speed. It is, therefore, a very considerable object, in railroads upon lines of public travel, to allow wagons to pass others travelling in the samo direction. Provision must be made, accordingly, for turning out. 'This provision ia particularly necessary in case of a road with a single set of tracks, on which the carringea must meet. These turn-outs are made by means of a movable or switch-rail at the angle where the turn-out track branches from the main one. This rail is two or three feet, more or less, in length, and one end may be moved over that angle, and laid so as to form a part of the main track, or the turn-out track. The awitch-rail is usually moved by the hand, so as to form a part of that track on which the wagon is to move.

Carriages-Wheels.-The prineipal consideration, in regard to the construction of carriages, relates to their bearings on the uxle and the rim of the wheel. The rule given by Mr. Wood, as to the bearing on the axle, is, that in order to produce the least friction, the breadth of the hearing should be equal to the diameter of the axle at the place of bearing. This diameter muat be determined by the weight to he carried; and the breadth of the bearing will necordingly vary with it. In order to keep the wheels fnirly on tho rails, they are furnished with thin edges which dip on the outside; these finnges are about an inch and a half in depth. The mid-wheels of locomotiven are now made without flanges, hut the fore and hind pair require flanges of rather more than usual depth. Wheele of large dinmeter move with greater eusc over the rala than those which are amall, because the targe ones, in this aa in all similar cases, have more power in overcom ing obatacles. Yet there is a proper medium in the dimensions of wheels. Large wheels nre inconveni-ut in point of height, and are apt in produce 9 rocking $3: \%$
tion. - It would appear that the moat aultablo diameter fur the wagon or carriage wheels is from two and a half to three feet, which in the usual size. The wheela of the locomotive have a diameter of about four feet; to make them broaler is considered injudicious,
Curvatures in the Road.-The curvatures of the rail--oid present some obstructiona, since the axles of the ear and wezone being usually fixed firmly to the franies, every bend of the tracks muat evidently cause mome eteral rubbing, or pressure of the wheels upon tho rails, which will orcaion an increased friction. If tho wherla are fixod to the axles, so that beth must rovolve together, according to the mode of construction hitherto inost usually adopted in passing a curve, the wheel that moves on the outside or lougest rail must be slided over whatever distance it exceeds the length of the other rail, in case both wheela roll on rims of the bume diameter. This is an obetruction presented by almost every railroad, since It is rarely practicable to make nuch a road atraight. 'Tho amalleat curvature that ia allowable ahould not be lens Chan a radiue of $\mathbf{3 0 0}$ feet. In going round a height, the radiue shoald on no account be so small as this, in crder that the engine drivers may have a clear look-out ahead, and so prevent collisiona and overtakinga on the rosd.

Inclined Planes.- Where tho inclination of the road is greater than that for which the ordinary power is calculated, the ascent must be effected by means of an edditional power, the amount of which can be readily computed, sinee in those paris no additional friction of the cars or wheels is to be provided for, and only the additional revistance arising from gravity is to be overcome. If, for instance, tho additional inclination is one in ninetysix, or fify-five feot in a mile, the additional power muat be to the weight as one to ninety-six, or as fifty-five to the number of feet in a mile, namely, 5280. In desceading planes, so much inclined that the gravity would movo the carriages too rapidly for safity, the velocity is checked by means of a break, which consists of a piece of wood of the samis curvature as the rin of a set of the whecla, upon which the break is pressed by means of a lever, so adjusted as to be within reach of the conductor, in his position on the carriage.
Locomotive Engincs.-Within the lat fow years, very onsaiderable improvements have been made in the conetruction of tho locor otives by which the drauglat of the trains of carriages is effected. Originally the locomotive was placed upon four wheels, the two front oncs leing amaler than those behind. Now, aix wheels are employed, the fro't and hind pair being sualler than those in the middle, these middle ones being the wheels upon which, ly the action of cranka from the engino, the Wholo mass is propelled. As may be seen by the amull annexed engraving, which represents a railway train, tho
locomotive consinta of a long Iron barrel or cylinder app portect by six wheels, with a chimnoy rising in front, and affording atanding apace behind for the engineer who conducts und regulates the machine. It lo unneceman to eonfuse the mind of the unscientific realer with 1 min nute account of thin wonderful apparatus ; it will suffice to may, that the end of the barrol-like olject next ue engincer, consists of a furnace or fire-box, and the hew generated in it by the consumption of coke, is conduced thence through a great number of tubes in the cylinder and finslly eacapea at the chimney. The cylinder in which tho water is boiled and atenin generated, is sheltened from the external air by a came; and by receiving be nction of heat from so many tubea passiug through it the steam is rapidly gencrated for tho use of the eagim Tho engine liea horizoutally henesth the chimney, and in such a position as to permit the working of the pision upon the crauk of the axle of the middlo net of wheel By ineana of lever handles afficting the mechaniam, the engiueer can at pleasure produce or stop the motion, u effectually and much more readily than a coselh-dinea could set off or arrest the progress of his horsea, lap mediately behind the locomotivo is a carriage called the tender, which is loaded with a supply of fuel and a tank round its sides contoining water. The wight of a haos muntive, supplicd with its proper quantity of water and fuel, is alout twelve tons. The tender, when filled wite water and fuel, weighs sevell tons: it con carry 700 gL lons of water, and cight hundredweight of coke forma sutlicient supply for o trip of from thirty to forty mik with an ordinary lond. The cost of a locomotive i about £1700, and it seldom weara longer than two yam without andergoing a very extensive repair. On ti Great Western Railway, which is of unusual breadtha track, the locomotives are nuch larger and nore pome ful. Ordinary locomotives evaporate seventy-seven elif feet of water per hour, but those oll the Great Wowe ovoporate about 200 cubic fect. It in calculated thatis evaporation of one cubic foot per hour, produces agm meclanical forco of neurly two horse power; com quently, to ascertain the power of a loconatire, we multiply by two the number of cubic feet which it cep rates per hour. In comamon circumstances, an orline sized locomutive exerts a power of 150 horses, and larger ono exerta a power of 400 horsea. To esting thia degree of force, it is necessary to recollect that horse upon a common road camnot draw for any lies of time more than fifteen hundredweight, whilo on an way it will pull with equal ease ten tons, being tinter timea the amount. We may now, therefors, confe that the power of a locomotive, such as is usually ployed, is equal to a ocraught of 1500 tons. Wibh weight to drag, how ver, only a slow motion is det

able; and to procure the necessary upecd of from twenty to twenty-five mies per hour, the load must be proportunally diminiahed. Bomething must also be allowed Lut the difficulty of ascendiug inclined planes, A weight of from 100 to 150 tous is considered a fair load for locismotive to draw; but it is seldom more than sixty to eventy tons. The following experiments on the power draught were made by Dr. Lardner on the Liverpool and Manchester Ruilway ir. 1832 :-

On Baturday, the 5th of May, the engine called the Vretory took 20 wagens of merchandise, weighing grosa $\geqslant 8$ tons, 19 cwt ., 1 qs, together with the tender containing fuel and water, of the weight of which I have no arrount, from liverpool to Manchestor (30 miles), in 1
I mur. 24 minutes 45 seconds. The train stopped to

Corm

take in water half-way for 10 minutes, not included the above-mentioned time. On the inelined planeris 1 in 06, and extending $1 \frac{1}{2}$ milea, the engine was asic loy another engine called tho Saman, and the a was perfonper in 9 minutes. At starting, the place was welled with coks, and the coke aupplided the tinder accurately weighed. On arriving at II chester, tho fire-place was sain filled, and the remaining in the tander veighed. 'The consurf was fuund to arrount to 929 pourds net weight le at the rate of one-thira of a pound per ton pers Speed on the level was eighteen miles an hour; ${ }^{6}$ fall of 4 feet in a mile, $21 \frac{1}{3}$ miles an hour ; fall of 6 in a mile, $25 \frac{1}{2}$ miles an hour; ont the rise oves? move, 8 feet in a mile, 17 miles an lur ur; on
fround shelt wind was m whoels slijpe was retarded on this occasi journey, but
*On the 28 (welghing 10 ! 6 inch strok puis being w uire, 130 tube merchandiao ; inslualing wag 7 wns, making 240 tons 3 cw from Liverpool end 40 minute watering, \&c. : hour. The spe of the road. U upon a descent bour; upon a miles an hour. wet; but the wh speed, except at soiled and greasy are always expom in thia journey, e op the steam, w quarter of a poun General Appia mod Delgium, mo Great Britain all going in opposite turn-offs at which tower motion. A tion there are atatic the up and set do toge at any other Wow trains, taking por kind of carria od recond-class ce wing, which prete thing ouly first-cla be way. The fir wable three coac podious dimensions
se aidea, and not li
vriages are entire
Meks, on which th
freka for cattle ar
des. All the carr e other by strong wer stocks against provided with pro
the ruter extremit
transmission are
w charge is at the
ager in a first-class
Per rates would c munt of traffic.
There are certain e
the railways which
2 being the proper
ded from one end
putlic; and theref
c, either upon el
c rails of one line,
ch means carriages
changing passeng
ch passengera take
w Preaton-that in,
The extraordina
ahiga has enabled
or cylinder sup ug in fiont, and engineer who t is unneceman
eader with a min a ; it will meffice olject next the ox, and the hew oke, is conducted in the cylinder, 'The cylinder in rated, is sheltered hy receiving the saing through is the of the eagina the chimney, and king of tho piston Jdle set of wheelin he mechaniem, the op the motion, a lan a coach-dinee f his horses. Im carringe called the of fuel and a tant se weight of a locos antity of water and er, when filled witb t can carry 700 gi ght of coke formis thirty to forty mila of a locomotive onger than two yea ive repair. On f unusual breadth yer und nrore powe e seventy-seven culio in the Gireat Wetan is calculated that tix nour, produces a grag rotse puwer; chim 2 loconotive, we mun ce feet which it crum instances, on ordinuy of 150 horses, and hotses, 'To eatims y to recollect that t draw for any leng ceight, while on s mim in tonle, being thite w, therefore, comped ach as is usually en 500 tons. With low motion is oles

utes, not iacluded inclined plane isidy a engine was suix manos, and the are At starting, the fis the coke suppliad On arriving st H filled, and the a

The consump heds net weighbth and per ton pel miles on hout; on hour ; fall of put tho rine ovet? es an luar; on

Fround alectered from the wind, 20 miles an hour. The wind was modernte; but direct ahead. The working Whaela slip ped three times on Chntinoss, and the train was retarded from two to three minutes. The engine, on this uccasion, was not examined before or after the journey, but was presumed to be in good warking order.
"On the 29th of May, the engine called the Bamson (weighing 10 tons 2 cwt , with 14 inch cylinders, and 6 inch attoke; whaels 4 feet 6 inches diamater, both pirs being worked by the engine; ateam 50 lbs. preaaure, 130 tubes) was attached to 50 wagons laden with merchandiae ; not weight about 150 tons ; gross weight, induding wagona, 823 tons 6 cwt . The tender weighed i wns, making a gross load (inchuding the ongine) of 840 tons 3 cw . The engine with this load travelled from Liverpool to Mancheater (30 milea) in 2 hours end 40 minutea, exclusive of delays upon the road for watering, \&cc.: being at the rate of nearly 12 miles an hour. The speed varied according to the inclinations of the road. Upon a lovel, it was 12 miles an hour; apon a descent ef 6 feet in a mile, it was 16 miles an hour; upon a riso of 8 fuet in a mile, it was about 9 miles an hour. 'The woather was calm, the rails very wet; bit the wheels did not slip, even in the slowest speed, except at atarting, the raila being at that place wiled and greasy with tho alime and dirt to which they ure alwaya exposed at the atations. The coke conaumed to this journey, exclusive of what was raised in getting up the steam, was 1762 iba., being at the rate of a guarter of a pound per ton per mile."
General Appearance and Management.-In America and Belgium, moat linea conaist of but one track; in Great Britsin all possess two tracks, auitable for traine going in opposite directions, beaides which thare are turn-offs at which quick-going trains may pass those of dower motion. At certain convenient points along the tise there are atation-housea, at which the traina stop to aks up and aet down passengers, and there is no atopnge at any other place. On most of the lines there are Cow trains, teking goods and second-class, or an infefior kind of carriages, and fast trains, taking only first und second-clase carriages; some lines also have mail raing, which preteed at more than usual speed, and king only first-class carriages, stop at fewer places by he way. The first-class carriagea are covered, and wemble three coach bodies united, but of more comhodious dimensions ; second-class carriages are open at se sides, and not lined with any stuffing ; third-clasa eriages are entirely open; goods carriages are open Fulks, on which the articlea are piled and fastened; fuck for cattle are open with a railing round the des. All the carriages in a train are linked one to he other by strong iron hooks; and to prevent them pon atocks againat each other, the various carriages se provided with projecting rods on aprings, cushioned the ruter extremitiea. Generally, the farea charged transmission are higher than they need be; a comn charge is at the rate of 3 d . per mile for each pasanget in a firat-class cerriage; and it is understoon that wer rates would create more than a compensatory bount of traffic.
There are certain exceliencea in the arrangements of the rallways which disserve to be mentioned. Ench ke being the property of a private association, is sewed from one end to the other from the intrusion of - putlic; and therefore no jostling or confusion takes we, either upon entering or leaving the carriages. ie rails of one line, likewiae, join those of another, hy tich meana carriages generally proceed onwards withthanging passengers or luggage. A carriage in ich passengers take their seats at L.ondon goes atraight to Preaton-that is, along the lines of three compa-- The extraordinary magnitude of the railway unthangs has enabled the directors to organize rulca
which could never be enforced in the irregular seramb of stage-coaching. It is customary to dreas the subor dinate functionarios on all the linea in a uniform resem bling that of the London police-each man havfig his number inscribed in figures on some part of hia dress; mo that, if any one be guilty of incivility or inattention, he cun be easily reported to his anperior. There is one pleaaing peculiarity in the arrangemouts, which is entitled to the highest commendation: it is the rule that no offien shali on any account take a fee from pansengers, $0^{\text {n }}$. A of inutant dianiasal. Those who imagine that fees to guards, coachmen, or waiters, are requinite to enaure civility, will be aurprised to find that railway attencents are infinitely more polite and attentive than their brethren of the coach conveyances. 'I'lis, in itself, givea traveliing by railway a great auporiority over all other modes of public conveyance.

The London and Birmingham line, which wan the first completed after that of Manchester and Liverpool, has always appeared to us to bo minong the best managed of the various railwaya, ns well as the most complete in all its arrangements. There aro accommodations on this line which are to be scen on no other. On all the linea there are waiting-rooma both for ladies and gentlemen at the different stations; but exclusively of those on this line, there ia a large and commodious house of entertainment at the Birmingham terminue, where meals atand ready prepared for the passengersh At Wolverton, a place half way from the metropolis, and where the train etops ten minutes, there is likewise a large eatablishment in the form of an open booth or shop where tea, coffee, or viands of a mora aubstantial kind, with different liquors, are sold on the instant to thosn who require refreshinent.

Passengera who make the journey for the firat time by the mail-train, will be amused by observing a travelling post-office in the string of carriages. This " Grand Northern Railway Post-Office," at the inscription on its aide denotes, is a carriage consisting of two anall apartinents, one of which is approprinted to the guard, whose duty is to exchange the baga, and the other is fitted up with a table for sorting letters, and holea round the walla for their reception. The manner in which the duties of the clerk and guard are per. formed in this flying-office, is strikingly aignificant of the new order of thinge introauced by the railway ayetem. Outside the vehicle a apecies of net is extended by a hoop, and into thia the letter-baga are dropped an the train sweeps onward in ita course, the bnga which are to be left being at the same time tossed from tha window by the guard. The freah bag of letters being received, it is speedily opened, its contents re-arranged, and a new bag for next town being made up, it ia projected as before at the place of its destination. By this means a letter may be written, sent through the posh office, and delivered at the diatance of twenty miles, in the space of a single hour.

The number of railway companies incorporated by act of parliament up till January 1839, in Great Britain and Ireland, was 107 , and the eapital which they were allowed to raise by shares was $£ 41,610,814$; they were besides allowed to raise ly loan $£(6,177,630$. A conaiderable number of these railways being johbing, or at lenst crude speculationa, lave never conmenced, and the number of railways actually begun to be prepared or finishad at the leginning of 1840 , in the united kingdom, was only about fifty. The principal lines arethe Liverpool and Manchester Railway, nlout thirty two miles long, and uniting these populous towns; the London and Birmingham Raileay, ahout one hundred and twelve milea long, connecting ine metropolis with the centre of England; the Grand Junction Railway, continuing the London and Birmingham tine to that of Liverpool and Manchester. and also in n

Enirance to the Railway Tumad, Liverpool.
mailwny proceeding northward to Lancaster, and thus forming a most important thoroughfare obliquely acroan the country ; the Midland Countien, North Midland, and (ireat North of England railways, connecting the great meate of trade in Northumberland, Durham, Yorkshire, and Derhyshire, with the London and Birmingharn line ; the New Castle and Carlisle Railway, connecting these towns; the Great Wentern Railway, about one hundred and seventeen miles long, connecting London with Bristol, and with smaller tributary linen opening up the west of England; the South-Western Railway, about seventy-seven miles long, connecting London with Southampton; the Manchester and Leede Railway, connecting these populoue towne. In Scotland, the Edinburgh and Glasgow Railway, and the Glangow and Ayr Railway, are the principal lines. The greatest of the whole of these undertakings is the Grand Weetern. This line has two tracke, each of seven feet wide, while on all other railvays in this country the width is hetween four and five feet; the carriagen, therefore, which run on the Grand Western, must be necesearily confined to itsolf. The most prosperous of all the lines is that of the London and Birmingham, the weekly revenue of which is upwards of $£ 16,000$: the weekly revenue of the Grand Junction, which joins it, in £9r 10.
The apped at which railway traina usually proceed is from twenty to twenty-five milea per hour, though ronetimes it is much more. At the ordinary rate of 'peed, a journey from I,ondon to Liverpool by the mail Imain in performed in about nine hours; and when railwayn are extended north to Edinburgh, the journey from London to that city will be performed in eighteen hourn, or perhape lena, Travelling by railway at any of the common rates of speed is attended with lens perconal danger than stago-coaching, because the locomotiven are perfectly under control. Any deathn or perenal injuries which have occurred on railwayn, are, with ecarcely an exception, attributable to the carelessnese of the ongine-diverh, and by the employment of a
auperior clnse of men to direct the motions of the trame thin fruitful caune of mischief is in the course of bela, obviated. With thin improvement, conveyance by nif ways will be ranhed among the moot uneful and not pendoun inventions of art.

IRECENT OPERATIONS IN RALIWAYs.

Since the firat publication of the preceding attich, the aubject of transportation and travelling by railwayy has recoived Increaned attention in Great Brithin and on the continent of Europe, especially In France. Liks all other subjects which are discussed In countries poom measing an active and widely diffused syatem of neas. papera, it attracted the univerual attention of the traliong and businean community ; and speedily led to an extensive syatem of speculations. An immense number of companien were formed and routen were surveyed and laid out for railwayn in every part of the United King. dom. Parliament was beset with innumerable applit cationn for charters; and the whole trading conmunity became infected with the rage for apeculation in nilway sharea. The same acene was exhibited in Fritue and Belgium on a smaller scale. At length certuin ata tistical calculations were made and published, by which it became apparent that more capital would be repuired to complete all these railways within the time proposed then could possibly be rained for the purpose ; and that the amount of travelling required to enable the com panies to pay thcir current expenses and the intrrest on the capitol invested, was much greater than could eves become recessary;-in short, that the greatre mumber of the projected railways would ultimatoly turn out dead lose. The consequence was, as usual in such casea, a gencral explosion of these achemes, and the ruin of the large holders of atock. Nevertheless, a con siderable number of railwaya, which had been jubi ciouely planned and were sustained by henvy enpitalists are either completed or in a course of completion.
In the United Btatea, many extended and useful nit wayn have been completed within a few yeara, The most important and profitable of theac is the Greal Western Railroad from lioston to Albany, which by opening a direct commu'sication hetween New Eny. land and tho Westorn States, has wonderfully beneficed the manufactures and trade of New England, and et pecially of its capital, Hoaton. A aimilar unilerakion with reference to Philadelphin is now proposed, the Central Railroad from Philadelphis to Pittsburg; wa its completion is expected to prove of immense imporance to the induatry and trade of Philadelphis.
In every part of the United Btates the railway syte in making steady and rapid progreas, therehy increain the facilitien for internal commerce and national io sucan-Am. Ed]

Natual

 nas a referei which treat mutual conn the enlarigec antronomy, \mathbf{n} chemistry, op tnowledgo, n divided into limited and inorganic sub connection \mathbf{w} churacter; an indge, which is al now propo esplicit definiti or matter, it be mood.Ma
Matter-or whone existence wnee or by the wewed of variou to its exinterice, tingent. The es tatility, Exten Ittraction.
Impenctrability which ench occu cluders other bodie wine instant. In auch os a wtone, our efforts to piet wophically (althou) ilag greater numbe trible, because th ruding other sul orcupy. This, in thinge camnot be wifevident truth, of matter or a lur
Every body, or a certain extensio form a conception article, without co rertain bulk, and arminon phraseolo b) the word size or

The next prope figury of bodies. ion, for we calinot length and breadth buyre, however irre reation to its figure. tuy possers very Luve the same volun Thus, two masses o Whlough the one he Matter in divisible be aublivided into o why or kepurability Gutter threse sorems
the instances of it
a investigations nlt
x part of a noup-b
on the matter of sos
200,000 part of an
why striking examp
tuo. 1.- 19
of the trame irse of belae ance by rail oful and ator

NAYS.
reding atticle, ag by railway at Britain an! Franee. Jikn countrice poo intem of new of the trading ed to an extennse number of e surveyed and te United King. umeratile applip ling community culation in rail ibited in France ngeth eertain sta. dimlied, by which vould be required he time proposed urpose; and that enable the com ad the intereat on t than could evet co greater number mately turn out a as usual m such schemes, and the evertheless, a con ch had licen jutiy henvy capitalista, f completion led and useful nir a fow years. The hese is the Gieal Albany, which in etween New Eng: onderfilly benefite England, and to imilar undertaking now proposed, the a to Pittsburg; and of immense import iladelphia.
the railway systea
, thercby increasin
and national do

NATURALPHILOSOPHY.

Natumal Puisnauphy is a term of wide import, and mas a reference to all thom branches of phyaical escience which treat of existing enhestances, their motiona, their mutuil connection, and their miluence on each other. In this enlarged aene it may be considered an embracing autronomy, mathematice, dynamica, hydroatatien, geology, chemistry, optics, botany, in ahort, a vast range of human nnawledge, which for the sake of convenience is ununlly divided into dintinct branchea of science. In its more limited and ordinary meaning, the term applica only to inorganic subutances, and the lawe which regulate their conneation with each other, hut without alteration of character; and it ia this most important branch of knowledge, which in reality is the hasis of all others, of which na now propose treatiag. We shall commence with an esplicit deflinition of the meaning of the term andatanera of mitter, it being necessary that this be clearly understood.

MATTER AND ITS PROPRATIRE.

Matter-or that of which all botiea are componed ahose existence is made known to ua by means of the wnsee or by the test of philosophic experiment-is poasued of various properties, some of which are eseential to ita existente, while others are only aceidental or contingent. The essential propertion of matter are Immeneubility, Extension, Figure, Divisibility, Inertia, and Itrrection.

Inpenetrability is that quality of bodies, in virtue of which euch occupies a certain portion of space, sud exdudes other bodicn from existing in the same place at the mane inatant. In the usual scuse, we call any hard lody, wach as a stone, impenetrable, because it firmly resints our efforts to pierce it. But as it is understood philowphically (although we can conuc nse, pierce, and remove the greater number of them), all bodice are alike impenctrable, because they equally posess the property of exruding other aubstances from the spaces which they accupy. This, in fact, ja saying no more than that two things cannot be in the same place at once, which ia a wifevident truth, whether wo apply it to a singlo particle of matter or a large mass.
Every body, or portion or particlo of matter, possemsen a certain extension or magnitude. It ia impossible to form a conception of matter, however minute may be the article, without connecting with it the jdea of its having certain bulk, and filling a certain extent of space. In wmon phrascology, we express this property of bodies b) the word size or volume.

The nest property demanding our attention ia the figure of bodies. Figure or form is the result of extendiva, for we connot have the idea of a body possessing length and breadth, without its having some kind of Ggure, however irregular. The volume of a body han no relation to ita figure. Borliea which have the same figure why powsess very difierent volumes; and hodien may bere the same volume, but possess very different figures. Thus, two masses of matter may have the aame volume, Whough the one the round and the other be mquare.
Matter in divisible inte parts, ond thene parts may again seablivided into other parts. Dy thia is meant drisithiy or sepurability. 'To the practical subtivision of auther there svems to be no assignable limit; and many x the instances of it which may le: found in philosophial investigatione nimost excerd rredibility. 'The thinard part of a soap-bulble, which is a thin sheli of water sod the matter of soap, duce not exceed in thickness the 2500,000 part of an inch. 'The useful arts, alno, furnish many striking examples; but it is in the organized world lut. 1.- 19
that the most astonishing proofs of the extrems divial bility of globulem, or particles of matter, are to he found. Animalculen-that ia, animala which are mo amall an to te invivible to the naked eye, and whicit, by means of mieroscopea, are sen floating in wator-aro in some egsen so minute, that it would require a sillion of them to form the bulk of a grain of and. Aa these animat culen posmesa, in every case, a perfert organization to enuble them to perform all the funetions of life, the smallness of their different parts, and the extreme minutenens of the purticles of mitter which compose them, are ton exquisite to be made the subject of culculation : the imagination in loat in the contemplation of their wonderful economy. The eflluvium or odour which exciten the senation of smell, consists of an incolculable numbe: of purticlea of matter floating in the ntmospliere, and so mi , bute as to be altogether invisible to the eye. These particles are not more remarkable for their inconceivably amall size than for the length of tine which they will remain in maxpenaxion in the atmosphere, or in counection with some particular place. The effluvium given forth by a single grain of musk hat been known to perfume a large npartment for twenty years, and set at the expiry of that period there wan no sensible diminution of the little imans of matter from which the amell bad proceeded.

The diflusion of particles of matter invisible to the naked eye, is almo obvioua in the case of the melting of a piece of augar in our tea; the eolid mass of the sugar disappears, and the particles of which it was composed are difliused in the liquid. There is a similar diffusion of particles of salt in the ocean. When we look througis n glage full of aca water, we perceive that it is pure and limpid; but if we pour the water into n vessel on the firc, and buil it, we shall at length diacover that, while the liquid has escaped in the form of vapour, the particles of salt it held in molution remain incrusted on the vessel.

Particles of matter are never destroyed or lost, although they may disappear from our immediato observation Under certain circumatances, the particlea may again be collected into a body without change of form. Mercury, water, and many other substances, may be converted into vapour, or diatilled in close vessels, without any of their particles being loat. In auch cases, there is no decompoaition of the substances, but only a change of form by the heat; and hence the mercury and water asaume their original state again on cooling. When bodice auf fer decomposition or decay, their elementary particles, is like manner, are neither destroyed nor lost, but only enter into new arrangementa or combinationa with other bodies. When a piece of wood is heated in a clone veasel, auch as a retort, we obtain water, an acid, several kinds of gas, and there remaine a black, porous aubatance, called charcoal. The wood is thus decomposed, or deatroyed, and ita particles take a new arrangement, and assume new forms; but that nothing is loat is proved by the fact, that if the water, acid, gases, and charconl, be collected and weighed, they will be found exactly as heavy as the wood was, before distillation. In the same manner, the subatance of the conl burnt in our fires is not numilijnted; it is only dispersed in the form of smoke, or particles of culm, gas, and askes or dust. Bones, flesh, or any animal substance, may in the same manner fec mate to as sume new forms, without losing a particle of the matter which they originally contained. The tlecay of animal or vegetuble lwodita in the open nir, or in the ground, is ontv a process by which the particles of which they were conposed change their places and assume new tums.

The decay and decomposition of animals and vegeta$\square \mathbf{N}$

N
145

Hes beneath the aurface of the earth, fertilize the soll, which nouriahee the growth of plants and other vegeta. hen: and these, in their tum, form the nutriment of animaln. Thus in there a perpetual change from death to life, and from life to death, and ae constant a succesalon in the forma and places which the particles of matter ansume Nothing lin loet, and not a particle of matter la atruek sut of existence. The same matter of which every living animal and every vegetahle was formed in the earlicat egea, is atill in existence. Aa nothing ia lowt or annihilated, oo It in probablo that nothing ham leeen added, and thint we ournelven are compomel of particlen of matter an old an the creation. In time, we bust in our turn suffer decomposition, an all forma have done hefore ua, and thua realgn the matter of which we are composed, to form new existences.

Ineria meann passivences of inactivity. Thun, matter * perfectly pasaive in uubmitting to any condition in which it te placed, whether of reat or motion. When at reat, lt showa an Inalility of reluctancy to move; and when \ln motion, it ahowa an equal inability or relurtancy to come to a state of rest. It in obvious that a rock on the surface of the earth never changes its position in res spect to other thinge on the earth. If hns of itelf no power to move, and would therefore for ever lie atill, unlena moved by some external force. Now it is just ne true that inert matter ham no power to liring itmelf to rest when oace put in motion, aa that lt cannot put itself in motion when at reat; for having no life, it ia purfectly passive both to motion and reat, and therefore cither atate dependa ontirely upon exterial circumitancen.

Many iustancen might be given of the tendency which amatter has to rcmain in the condition in which it happena to have becu already placal. The following arc among the most instructive:-When the auila of a ship are lomened to the breeze, slowly and heavily at first the wesel gets into motion, but grailually its spued increasea, es the force by which it is impelled overcomes the inertia of ita mana A great force ia necessary at first to set a vehicle in motion; but when once this is effected, it goea onward with compmative ease, so that, in fact, a strong effort im necesmary before it can he stopped. If a porson be standing in it when it is suldenly aet a going, his feet are pulled forward, whilst his hody, obeying the law of inertia, remains where it was, and he accordingly falla barkwarda. On the other hand, if the vehicle the auddenly stopped, and the individual be standing in the same position us formerly, the tendency which his body han to Eove forward-for it acquired the same motion as the carriage by which it was borne along-will cause him to fall in the oppssite direction.

The following is a familiar example of the inertin of matter:-Upon the tip of the finger let a card be balanced, and a piece of money-say a shilling-laid upon it. Let the cand then be amartly atruck, and it will fly from lemoath the coin, leaving it aupported upon the finger. This srises from the inertia of the metal heing greater than the friction of the card which passes from lieneath it.

Coursing, or hare-hunting, afforde a striking illustration
 en inatinctive connciousness of the exintence of thin law of matter. When pursued liy the greyhoumd, it Jues aot run in a gtraight line to the cover, hut in a xigzag one. It dondfes, that in, suldenly changen the slimetion of itn course, and turn back at an acoub angle witlo the direction in which it had been rumbing. The: greyhound, seing unprepared to make the torn, and therefore unable o resint the tendency to persevere in the rapid motion -hich it has acquired, is unpelled a conmiderable dintinuce forward before it can check ith unced and roturn to the purauit. Buc, in the mean time, the hare ham heen enabled to moot far ahead in the other direction; and uthough a hare ia much lesa fleét than a greyhound, by dis wientific manmuvrinf: it often encajne its purvuer.

Those who have withesaed horacopacing, may have in eurved that the hormes ahoot liar phant the withinge, ow hefore their apeed can the arrested. "Ihin in alas owing io the inertin of their hodies.

We have now arrived at a most important property, attruction, which it ia demirable shoudd be carefully atudied, It ia a fundamental law of nature, ancertained by Bi_{i} Inaac Newton, that every atom or particle of inatter has: tesilency to approach or to lom attracted towarda anothen atom or particle. Thia forms one of the learling prinet. plea in modern natural philomophy. Exporionce and ohwervation demonatrate thint thin power of mutual attrac. tion pervades all material thinga, and, though unseen except in ite resulta, ia ever prement with un-is the caume of particte of mutter adliering to ench other, and forming solid masmen-of theso mamen ansuming in many in stancea a round or globular forn of the fulling of hoties to, and their atability un, the earth-and la one of the caunen of the whole of the planetary bodiea moving in their patha in the heavens.

Attractlon is of different kinda, nithough some of them Inay be merely molificationa of others, and han recrived different namea according to the circumatancen under which it acts. The force which keep tho particles of matter together, to form homiea, or massea, is called atirio tion of cohesion. 'Ilant which inclinem diffirent masses towards each other, la called grovitotion, or attraction of gracifntion. That which canmes liquids to rimn in tuben or In very confined situatious, is called ripillary attrartion. That which forcea the particlem of dillerent kinda of mak tur to unite, ia called chrmirul uftruction. 'Iloat which causea the inagnetic needle to peint colsatantly towards the poles of the earth, is magnofic aftrastion. And that which in excited by friction la cortain aubatances, in known by the name of elertricul ntlrartion.

Attraction of coherion acts only at iumenxible distancen as when the particlea of bodies apparently touch each other. This kind of attraction may be deseribed as the quality in nature which causen inatter to cohere or atick together. It la much stronger lis some boties than in others. It is atronger in the metala than in noost other aubstances, and in mome of the roetals it is uitronger than in othera. In general, it is most powerful aunong the particlen of solid bodies, weaker amoug thom of flinda, and least of all, of almost ontirely wanting, among elastie fluids, puch ans air and the gasen. [Thus, a umall irve wire will hold a auspended weight of many pounda, without having ite particlen reparated ; the partictes of watet are divided by a very mall force, while those of air ant wtill more eanily moved among earh othur. These dik ferent properties depend on the force of cuhexion with which the meveral particles of these hoalies are united.

When tho particles of a boly can be suspunded ia the air in a fluid state, they will, if not under the attroc tive influenco of aomo other body, artunge themselveg by virtue of the same law, around a celitre, and take a apherical or roumd form. Thus, a sumall quantity of dew auspended on the point of a thoris or leaf, hecomes a globule, because in that case the atriution of the particlea towards their own rentre in greater than the altraction of any neighbouring body. 'lears running down the chreks, drops of rain, and hail are all ctamples of this tendency in insulated Buid bolies to as nume the globular form. When two perfect glohala of mercury are brought into contate, they instant unite together, and form one mplurical drop. The nia nofacture of shot is alno a astriking illuntratom. The lend is meltuel and poured into a sieve, at the heighe of about two hundred feet from the ground. Lach streme of lemal, immediutely after leaviss the sieve, sparat itthe little glohules, which, hefore they reurh the gruvad are cooled and become aolid: thus is formed the sha used by sportsmen. 'To account for the glohular form in all these cases, we havo only to consider that th
particien of
pommon centr arrange them this law of n planetary boilli (fluid statenume a spheri their prewent The force by rulue liquida ab dion, from rapil) rererup, or othe mive the liqule hat of the ot? Ar attraction.
twh other, no
in almont matus dipped into a va treen the plater be greater the nt water rinea very thas attraction in dounaces. If a if capillary hore in the interior of the higher does at

A grent variety this kind of attrat of augar be plact tie water, the flult In the same thant the oil to mupply naches above the tipperss to be left buin of lita conten - dry wedge of sock, and afterwar ain falla upon it, wetimes split the
It in this kind one of the caunes o suter creeps up by teds of ennd, small in this manner rene The lower parts of of enttages, aro in damp, by the attra the ground. Hence wet earthy inatter f Besides thene vr alrealy said, chemi tinn, but as these ar heads Chemistry an of treatises, they do ind we proceed to e. mems to unite all or let. Reference is he tation.
do the attraction master into masses o tation tends to force from others of still g traction increases in other, and by the snn tion su they recede fre tical languner, is in area betweea the ty ine square of the di mition attraction dec ? at the distance of viruls, at the distanc T the equare of 2 hirh is 4 times the attraction: at the
y have 中 itrintre, w owing to
it property, ully atudied. ued by 8 a matter hase i uds anothee wling princhwrience and utual attruc sugh unseen tis the caume , and forming in many is ling of bodies a one of the moving in atutieen under 10 particlen of a culted attrne fierent masmea oltraction of os rim in tuhea tury attraction hinds of mat
'That which atantly toviardo ion. And the subatuncea, is
wible distancen itly touch each lemeriled as the cuhere or stick boclies than in un in mowt other is atronger thao rful sanong the those of flisids 4g, nomoug elastic ns, in simall itve iy poundh, with articley of water thowe of air are her. These dif. If colcesion with 4s are united.
w muspended is under the attrico nge themselver utre, and take a ball quantity of or leaf, lyecomes attruetion of the reater than the 'T'ears running lail are sll ar uid bodies to 34 perfeet glolata they inatant? drop. The raia lustration. The at the height of d. Lach stretas sieve, meparatar pach the ground formed the shot lic giohular font onsider that tha
pathice of matter are mutually nttracted towarda a pommon centre, and in llquids, helug frea to move, they arrangen themmelvew accortingly. In conmequence of this law of nature, it in conmidered probnhla that the planetury bolliea, fuciuling our earth, were originally in fluid mate-that, in that mate, they unavoldalily as anme apherieal form, and were then hardened into their present consisteney.
The force by which mmall tuhea, or porous mulatances, the liguida above their levela, in ealled capillary attracfion, frem cupilh, the latin word for a hair, In a wet lescup, or other vessel containing liquill, you may perrive the liguid at the sidem riving alove the level of that of the other parta of the aurface; this la caused ar attraction. If two glam platen lie breught very near pach other, ao as to atand parallel with their flat ajden in almont mutual contact, and then their lower end be dipped into n vensel of water, the fluid will rise up be-tween-the plates, and the height to which it risen will be greater the nenrer the platen are to each other. The water rises very little on tha outalden of the plates, for this attraction is inacnuible nt even moderatoly amnil datancen. If a glam tube, with an exceedingly amall er capillary bore, he dipped in water, the fluid will rise in the interior of the tube; and the analler the loope, the higher does the wate' ascend.
A great variety of porous mulatancen are cripablo of thin kiml of attraction. If a piece of aponge or a lump of augar le placed, no that its lowent corner touchea the water, the fluid will rise up and wet the whole mann. In the nama inanner, the wick of a lamp will carry up the ail to mipply the finme, though the flame In aeveral whes above the level of the oil. If the end of a towel kuppens to be left in a basin of water, it will empty the besin of ith contenta; and, on the anme principle, when a dry wedge of wood ts driven into the erevice of n rek, and aflerwards inointened with water, na when the sin falle upon it, it will absorb the water, awell, and smetimes split the rock.
It is this kind of attraction which is muposed to be ore of the causes of springs of water in the earth. The wuter crepps up by capillary attraction through porous treds of annd, smnil atones, and crevices of rocks, and in this imnner renches the sarface even at great heighta. The lower parts of the walls, and also the carthen floors of cottages, aro in tho anmo mnnner apt to become damp, ly the attraction of the moisture upwarila n the ground. Hence the neccasity for clenring away all wet earthy inntter from the foundations of houses
Beaides these varieties of attraction, there ares, as ampaly maid, chemical, mapnetic, and clectric sitractin, but as these are respectively allinded to under the beals Chemiatry and Electricity in the peesent aorics of treatisea, they do not require particular notice here, and we proceed to consider the kind of attraction which mems to unite all ordinary masses and particles of matver. Reference io here made to the attraction of grovita'ion.
As the attraction of cohesion uniten the particlem of matter into mnames or hodies, so the attraction of graviation tends to foree those masies towarils each other to firm others of atill greater dimensions. The forco of attartion increases in proportion as bodies approach each other, and by the snme law it mnst diminiah in proportion sa thry recede from each other. Attraction, in techrical langnape, is inversely as the aquarea of the disances betweea the two badies; that is, in proportion as in sfuare of the distance increases, in the same proMrion atteaction decreases, and so the contrary. Thus. If ne the tistance of 2 fiet, tho attrnction be equal to 4 perats, at the distance of 4 feet it will be only 1 pound; If the equare of 2 is 4 , and the square of 4 in 16 , thilt is 4 tirres the aquare of 2 . On the contrary, if be attraction at the distance of 6 fee be 3 pounds, at
the dintance of 2 foet it will be 9 timen an much, or 2^{*} pounds, beentue 38, the square of 6 , is equal in 9 times 4, the mpuare of 2. The intennity of light is found to increase and dimininh in the anne proportion. 'I'hue If a board a foot agunce be piaces at the diunance of onn funt fiem a candle, it will he found to hide the light from nnother bond of two feet aquare, at the diatance of two feet from the candic. Now, a lmard of two feet aguare in junt four timen an large ns one of one foot muare, and therefore the light at double the illatunce being spread over four times the surface, has only one fourth the intenaiky,

I'he gradual diminution of attraction as the dintance Increases, is excmpififed in the following table. In the upper line, the diatence in expreased hy progrewaive numbers ; in the lowar correaponding aquaren the dimimution of attraction in indicated by the common arithmetical fractions.

Disancs	1	2	3	4	6	0	7	8	and
Altraction	1	1	$\frac{1}{1}$	15	${ }_{3}{ }^{1}$	\% 18	T	8	conct

It in here meen, that at the diatance of 8 , the attractire force in diminished to a 64th part of what it wee at 1.

The attractive force of matter in also in proportion to the numbers of the stom of matter which a holy contrins : the attraction, therefore, doen not proseed from the mere surface of n body, but from all the particlen which individuslly compose it. Some bodien of the name bulk contain a much greater quantity of matter than othern: thua, a piece of load contains about tweive tines an much matter as a piece of cork of the anme dimensiona; and therefore a pioce of lead of any given size, nnd a piece of eork twelve times an large, will attract ench other equally. The attractive power of any muss acta from the centre. At all equal diatances from the centre, the attractive power is equal; for instance, in a body perfectly spherical, the attraction to the centre would be the anme at all parte of the eurface. The diature of the contre of a sphere from its nurface is called the nemieliameter of that sphere-that is, the half of its thickness. At a point as far from the aurface of a sphere as its semi-diameter, its attractive power in illminialhed to a fourth. At three distances, the attraction is n ninth; at four distances, a aixternth; and so on. When we wish, therefore, to ascertain the relative amount of the attraction which any mass of matter exereiser over another, the rule is, to inquire how many semi-rinmetern of the one the other is distant from it, ar.d then to multiply that number hy itself. The reault showa how many times the attraction at this diatance is less thar at the surface of the former. The moon, for inetance, is distant $\mathbf{2 4 0 , 0 0 0}$ miles from the earth, or as much an sixty semi-diameters of the earth; 60 multipliad by 60 gives $3 P, 00$; consequently, the attraction oxcrcised by the earth upon the moon is a 3000 h part of what it would cxercise upon the anme man at ita own aurface. If the earth were a perfectly spherical body, its attraction would be equal cverywhere ct the level of the see. As the surface at the pole is thirseen miles nearer the ceutre than the surfnce at the equator, the attraction ie atronger at the former than at the latter place: it gete proportionully weaker an we advance towards the equa tor, of necount of the incrense of distance from the cen tre. Hence, n mass of iron which in considered a pound weicht in Britain, would be less than a pound on the coant of Guium, and more than a pound in Grem Innd, for weight is only a reault of attraction. If wo nscend a mountain, the effect is the same no if we procecd towarils the pluator: wo ore alwnys getting farther from the centre of aftraction, ard consequentiy weights becouse lighter. O. the tol of s hill fout
miles high, a ball of four thousand pounds' welght would be found to be two pounds lighter.

Pressure downwards, or weight, is in philosophical language termed oravitx, and under that head it ia hereafter treated, in connection with the phenomene of falling bodies.

The attraction of bodies is mutual, and in proportion to the quantity of matter they contain. Therefore, any body, however small, exerts some degree of attraction upon the mass of the earth. Any body which comes immediately under our ebservation, is so small in comparison to the earth, that its attractive force is altogether unappreciable ; but if the body were of great density, and of dimensions approaching to those of the esth, tben we should see the earth rise to meet the body, or fall towarda the body. Tho heavenly bodies, when they approach each other, are drawn out of the line of their pathe or orbits, by mutual attraction. It is found by experiment, that a plumb-line auspended in the neighbourhood of a mountain, is sensibly sttracted towards the mountain from the true vertical line. The mutual attraction of matter is exemplified by the diminution of the weight of bodies as we penetrate into the earth. At the depth of a mile, a body weighing a pound would be found to be lighter than at the surface. This is in censequence of the attraction of the matter of the shell of the earth, which is extecior to the point, being nothing, in consequence of the attractions of its particles on this point counteracting each other ; and hence the only efficient attraction on it arisea merely from the smaller sphere below the point ; and, thercfore, the nearer the pwint is to the centre, the less is this internal sphere, and the less therefore is its attraction on the point. Were wo to proceed to the centre of the earth, wo should there find that weight altogether ceased, becauso the attractive power would be equal on all aides. Were there cavity at the earth's centre, the boily would hang suspended in spacc.

Tho attraction of the earth'a mass performs an important function, in binding the atmosphere, which is an elastic fluid, around the surface of our planet, and in causing the air to perforate every open crevice and pore in the superficial substances of the globe. The attractive force, in this respect, produces what is called atmowherre pressure, the air being pulled or preased down by a force equivalent to about 15 He. on the square inch, at the level of the ses, and diminishes in proportion to the distance above that common level.

the repulsive quality in matteb-heat.

While attraction tends to unite and compress the parucles of matter, there in another and equally universal principle known in familiar language by the appellation of hent, the tendency of which is to keep the particles of matier at a certain degree of expanaion. Heat in often, in acientific works, named calorir, from the Iatin word for heat. Heat pervades all things, but some in grater degrees than others. Even ice has been found ω contain a certain portion of heat. In fact, there is us such thing in nature as positive cold. The things which eeem cold to us, are only under a low degree of heat.

The absolute nature of this universal principle is unknown. We only know it by ite effects, and the sensatons it produces. Some have conjectured that it is a sein; others think it is a quality or affection of natier, resulting from electrical action. From its groducing no musible difference in the weight of any aubstance, it has Irinl called sn imponderable body. When the heat of ary particular substance, an ice, stone, or wood, is not mensible to us, it is called latent (that is concealed) heat. We may very readily detect its presence in a pieco of wood or metal by rubbing or friction. If a button, for sutance, be rubbed on a tole, it will soon become too
hot to he held thy the fingers. In like manner, ihe axto of any carriage-wheel soon tecomes hot, unlese the fric. tion is provented by greaso.

Hest, in its extremo form, becomes fire. Thus, if an ungreased wheol be rapidly turned for a loug time on ite axle, so much heat will be excited that both wheel and axle will burst into a flame. The effects of poweriul friction are known to savege nations, among whom it in common to produce fire by rubbing two aticks together. Two pieces of fint struck together, or a fiint struck hard upon a piece of iron, evolve sparks of fire. By such mesns, many important purposes aro served; for inatance the discharge of fire-arms. Fire can also be evolved from the common atmosphere, by compressing a quantity of it suddenly in a tube, at the bottom of which a piece of tin. der hus been placed. The evolution of heat by these means, and other circumatances, lead to the conclesion thst hest is an clement mixed up with the atems of matter, which it servea to keep ut a lesser or greater distance from each other. Thus, as we squeeze the porea of a sponge together, and disengage the liquid which they held in cohesion, so, when squeezing or rubbing a portion of matter, do wa disengage the heat which it retained amonget ita compol:ant atoms. In all cases of the development of be it ty pressure, hammering, and friction, the cause is the squerzing together of atoms which had been kept asunder by the latent fiuid, and which fluid must, as a matter of necessity, coms forth and make iteelf sensibly felt or seen.

Heat, then, is a principle of repulsion in nature, and in this capacity its uses are as obvious as those of terrestrial gravitation, to which it apparently acts as a counterpoise. The force of attraction is so powerful, that, unless for counterscting principle of repulsion, all bodies would hasten into close contact; there would be no air, no water, no vegetable or animal life; sll would be a uniform dead solid mass, and the earth itself might perhaps be reduced to a amall portion of its present bulk.

Heat, by pervading all things, modifies attraction, and, according to circumstanicen, regulates the density or solidity of bodies. Hence we possess in nature a beautiful variety of substances, some solid and hard, like stone and marble; others soft, or of the jelly form; a third class liquid, like water; snd a fourth kind aëriform, or gaseous, Heat expands most bodies in proportion as it is increased in quantity, and they become solid in proportion as it is withdrawn. Water may thus be either expanded into the form of vapour or ateam, or hardened into ice. When withdrawn, the process of rooling is said to take place; cold being simply a state of abstraction or comparative absence of heat.

Heat is diffused or communicated by monlurtion and radiation. When it passes alowly from one portion of matter to another in contact with it. it is said to be corducted; and the process, in acientific language, is termes the conduction of caloric. Metals are the best conducters, then liquids, and lastly, gases. Gold, silver, and copper, are the bewt conductors among solids; glass, bricks, and many stony subutances,, are very bad conductors; ond porous spongy substasces, as charcoal, hioir, and fur, are the worst. Clothing is geverally mude of bad conductors, that the hent of the body inay not be conducted quickly to the surrounding sir. Furnaces, where pros heat la required, are built with porous bricks, which are very effectual in preventing the escape of heat, and io not readily communicate the fire to adjarent boxliet.

Heat is said to radiate when it is cmitted fromafa or from the rays of the sun, and alfects the atuosplere or gubstances at a distance from its source. Radiand heat is absorled when it falls upon bodies having paint or rough surfaces, such are presented hy bricha aud other porous solids, hy many kinds of stony aratter, and numerous animsl and vegetable aubatances, and make
them warm matilio surf back again. into action bing. It is inflammable manner its effected. B vun; though throwing off or produces operation, is duced by the bustion of ina action, a famil mentation. I in connection is resident an toppage of th knows, leads considerable de circulation of t well as rubbing and rubbing, th erolved by the
Heat is uneq near the equato the greatest deg vile. In the and south poles, bave little power of a genial mild the colder it becon we always cover body of the earth becomes greater tenior of the glob devated degree On the surface, and temper the d bourbood, and gre The degrees o phere are called i twining this correct a sery ingenious This is called the ing beat-measurer bulb at the botto quicksilver is put, the tube to mark This instrument d as much as the q foom the air. -The Wifets the metallic worling to its warm ine in the tube. aindicated by the Our common the fom No. 1, near th dibeat of boiling wa Inis marked as th ay, when the merc wicr freezes; and Ment, the more in mekoned moderate Great Britain: 98 be average of living
The rising of there: Eres a fanuiliar exam Serpatding or clilia Sind many such e thicker when ho
of a wheel slips of a wheel slips
nipes or binda fast wly
ner, the arve lese the finc-

Thus, if an g time on ith h wheel and of powertiul ig whom it in icks together. at atruck hard re. By such ; for instance 3 evolved from quantity of it a piece of tinheat by thene the conclesion atems of mat greater distance the pores of s id which they bbing a partion ich it retained cases of the deig, and friction, oms which had and which fluid and make itself
in nature, and as those of ter. ently acts as is so powerful, ple of repulision, act; thers would animal life; all ad the earth itelf rion of its preeent
es attraction, and, the density or soneture a beautiful rd, like atone and m ; a third clas iform, or gaseous as it is increased proportion as it is expended into the into icc. Whea aid to take place; in or comparatire
by rondurtion and in one portion of is said to becors angange, is termaf be best conductors, silver, and coiper, glass, bricke, ard conductors; and hirir, and fur, are le of bad conducnot be conducted races, where gros bujeks, which ate e of heat, ard to went boliesis mitted trom a fro is the atmosphere source. Radiant iee having paintw ted by brick and stony watter, wid ances, and malue
them warmer as it ia taken up. But brilliant and polished matallio surfaces absorb litte heat; they reflect or turn it back again. Heat, as already mentioned, can be brought into action in moet aubstances, by percussion and rubbing. It is also produced by the burning of certain infammable substancea, as coal and wood; and in this manner its chief purposes in domestle economy are effected. But the most remarkable source of heat is the oun; though whether this luminary is a burning mass, throwing off warmth like a common fire or red-hot ball, or producea the effect by some peculiar and unknown operation, ia as yet uncertain. Heat, besides being produced by the sun's rays, and by the friction and combustion of inanimate substances, is evolved by chemical artion, a familinr example of which is observable in fermentation. It is by means of a natural chemical action in connection with the circulation of the bloed, that heat is resident and suatsined in most living animals. A stoppage of the circulation of the blood, as every one knows, leada to an absence of animal heat, or a very coaniderable degree of coldness. On the contrary, quick circulation of the blood, and active muscular motion, as well as rubbing, produce heat. In these cases of motion and rubbing, the heat seems to be in a great measure erolved by the momentary compression of the parts.
Heat is unequally distributed over the globe. At and near the equator, where the raya of the aun are sent in the greateat degree of directness, the greatest heat prevails. In the parts of tha earth adjacent to the north and south poles, he transmits his rays so slantingly as to have litlle power; and there, accordingly, the air is seldom of a genital mildness. The higher wo ascend in the air, the colder it becomea; the summita of very high mountains wre always covered with snow. In penetrating into the body of the earth, after gaining a certain depth, the heat becomes greater in proportion as we descend. The inwior of the globe is by many believed to be at a very derated degree of heat, if not in a atate of ignition. On the surface, great axpansea of sea tend to equalize and temper the degrees of heat and cold in their neighbourbooi, and great continents have the contrary effect.
The degrees of heat and cold in the atmooptere are called its temperature ; and for ascertining this correctly, with reference to a atandard, a rery ingenious instrument has been invented. This is called the thermometer (a word aignifying heat-measurer). It is a glass tube with a bulb at the bottom, into which mercury or quicksilver is put, with a scale of figures along the tube to mark the rising of the quicksilver. This instrument differs from the barometer, in wanch as the quicksilver is sealed up close from the air. The atmospheric heat, however, wifets the metallic fluid in the bulb, and, acording to its warmth, causea it to expand and ine in the tube. The degree of temperature windicated by the figures to which it ascends. Our common thermomvter has a graduation trom No. 1, near the bulb, to 212, the degree dheat of boiling water. In the scale of figures, Nis in marked as the freezing-point-that is to ay, when the mercury is at the height of 32, wir freezes; and the more it is below that pint, the more intense is the frost: 55 is rekoned modernte heat, and 76 summer heat, Gitrat Britain: 98 is the heat of the blood in te average of living men.
The rising of mereury in the table of the thermometer ters a familiar example of the repulsive power of heot e eppaiding or tilating bodies. Common experience doude many such examples. A bar of iron is longer whicker when hot than when it is cold. I'loe iron in of a wheel slips easily into itn place wheri hot, and pipes x binda fast when it becones cool. When heated
from 32 to 212, air expande 3-8tha of ite volume, ele shol 1-9th, water 1-22d, and hammered iron 1-273d. In these, and all aimilar inatances, the expanalon arises from the fluid of heat lodged among the atoma of matter pressing outwards on all sidos, according as it is excited.

When the temperature of tho atmosphere falls below the freezing-point (32), which it does principally from the weakness of the-aun's rays in winter, the phenomenon of frost, or freezing, ensues. Freezing is a proccss of congelation, or properly cryatallization, producid by the withdrawal of heat, and by which water assume: the form of ice. When the temperature of the atmo aphere rises alove the freezing-point, the ice melts, and is resolved into its original elements. When the temperature of the atmosphere is below the freezing-point, the particles of water which are upheld in the clouda are frozen in their descent, and reach the earth in the form of flakes of snow. If this freezing take place after the particles have become united into rain-drops, wo have hail instead of snow. When the descending flakes of anow come into a temperature above the freezing-point as they approach the earth, they are apt to melt, and in such a case fall in the shape of sleet, which is half-melted anow or hail.

Heat has a constant tendency to preserve on equilibrium in all situations; and hence ita diffusion through nature, and many of the ordinary phenomena in relation to temperature. When we touch a cold substance wilh our hand, a portion of the heat of the hand rushea into the aubstance, and leavea the hand so much deficient of its former heat. On the same principle, when we touch a substance which is warmer than the hand, erme of the heat rushes into the hand, and rendera it hot. When we pour a quantity of hot water into that which is coll, an equalization of the two temperatures immediately enaues. When the air at any particular place beconies heated or rarefied, it ascends by virtue of its greater lightncss, leaving a vacancy which the neightouring air rushea in to supply. This is one of the chief causes of winds. The same principle is observable in the case of heated apartments. If the door of a heated ro m be thrown open, a current of ccld air immediately rushes in to supply the deficiency in the rarefied atmosphere.

Evaporation is always accompanied hy the withdrawal of heat, or production of cold, when no heat is directly applied; the heat necessary for the production of tho vapour is then derived or radiated from surrounding oljects, as is mentioned above in the case of dew forming on plants.

In the great operations of nature, the withdrawal of heat to produce intense cold, and the application of heat to produce great warmth, ordinarily take place gradually. Thus, although water freezea at a temperature of 32, it is some time before frost is completely effectual in changing the arf $\mathbf{t}^{\prime c}$ and condition of liquid bodies; and when the temperature rises a few degrees above 32, after a frost, the ice and snow which have been formed do not vanish immediately; indeed, ice will remain unthawed for several daya after the temperature has risen some degrees above the freezing-point. By this slow process, either in the absorption or evolution of heat, the animal and vegetable worlds are not liable to the injury which would ensue from instantaneous changes in the condition of their elementary fluids.

Water is increased in volume by freezing, which cre cumstance explains the ordinary phenonena of the bureting of water-pipes, and other similar occurrences, during frost. When a vessel ef moderate strength is filled with water, its expunsion, when it is converted into ice, by exposure to a freezing temperature, causes the vessel it burst. If the vessel is not hrittle, but posseased of corn siderahle tenacity, an a leaden wuter-pipe. the ruptu:e will seldom be observed during the cuitinuance of tho frost while the wuter remaina in a molid state, but it

N 2
eadily appears when thaw takea place, ns the trater is ben forced out with a velocity corresponding to the rerjical height of tha column of water in the pipe. The tesurea of rocks, too, are widened by the freezing of the water which may happen to lodge in them before frost; and this process, therefore, is a powerful agent in the dinintegration of rocks. Portions of steep banks, nlso, fmm enimilar cause, tumble down after thaw ; for the moisture in them expands when frozen, and thus rends them to pieces, which, however, during the front, sre hound together as by cement, and fall down whenever thaw dissolve the moiature.
Heat has a powerful effect in causing certain bodics to ahrink and diminish in volume. This happens with those aubelancea which do not liquefy, anch as wood and clay. The contraction arises from the heat carrying off the watery particles from the bodies, and thus ailowing the conatituent atoms to come more closely together. As wood becomes driat, iss fibrea are sometimes split asunder, $s 0$ as to emit loud cracking noises, which, in the esse of household furniture, are ascribed by the ignorant to supernatural causes.
Heat is further treated of under the articles Chemistry, Pneumatics, and Meteorolugy.

ACCIDENTAL PROPERTIES OF MATTER.

Having shown how the beautiful and extensive variety of form in bodies-solid, liquid, gaseous, and the different modifications of them-are to be traced to the operation of chiefly two great leading prineiples in nsture, attraction and repulsion, we have now to mention the peculiar forms or charactere which bodies assume from the infuence of these and other causes, snd which are usually classed under the term accidental properties of matler. The following are these properties:-Density, Porosity or Rarity, Compressibility, Elasticity, Dilatation, Hsrdness, Brittleness, Malleability, Ductility, and Tenacity.
Density aigrifies eloseness of texture, or compzctness. Bodies are most dense when in the solid atate, less dense when in the condition of liquids, and least dense of all when gaseous or aëriform. In this manner the degree of density is in agreement with the closeness of the atoms to each other. The density of kedies may generally be altered by artificial meana, ns is atterwards mentioned. The metals, in particular, may have the quality of dencity increased by hammering, by which their pores are made smaller, and their constituent particles are brought nearer to each other.
The more dense in substarse that a body in, it is the more heavy or weighty. In speaking of the density of different solid and liquid boalies, the tern sperific gravicy is used tu denote the comparison which is mede. Thus, the specific gravity of a lump of lead in greater than an equal bulk of cork; or the apecific gravity of water is greater than that of an equal quantity of apirituous fluid. For the sake of convenience, pure distilled water, at a tomperature of 62°, has been established as a standard of which to compare the apecific gravity or relative moights of bodies. Water, as the standard, is thus said ω we 1. When, therefore, any body, boik for bulk, is double the specinic gravity of water, it is called 2, and so on to 3 and 4 times, up to 22 times, which is the specific gravity of platinum, the heaviest known substance. In ainost every case of comparison there are fractional parts, and these are ussally written in figures, according to the following arrangement: Fractional patts are divided into tens, humlrede, thousands, and so on. If, in cublition to the figure e.pressiug the main part of the apecific gravity, there be one other figure, with a dot or point between thrm-thus 2.5-the adlitional figure aignifiea tenths, and the body is two timen and five-ienth prarts of a time more denme or heavy than water. If two berures ocrur-tium, 10.40 -hundredths are signified, and dar thoily is tent these alud forty-huidredth partw of a
time heavier than water. If theie be thrue figuise thousandthe of parts of a time are mesint; if four figuren ten thoussndth parts; and so on. Common air 18 some times tuken as a standard with which to compare gasen, being a more eimple mode of comparing the relatuve weights of aërial substances. But all the solids ans liquids are estimated with reference to water as the standard.
Any body of greater apecific gravity than water, will sink on being thrown into water; but it will flost on the surfuce, if its specific gravity be less than that of water. A body, auch as a piece of wood, after floating a certrin length of time on water, will imbile ouch a quantity of liquid that its specific gravity will be gradually increased, and in the course of time it may eink to the bettom.
Porusidy is the quality opponite to density, end means that the substance to wh.ch it is applied is poroua; that is, full of small pores or enupty apaces between the pst. ticles, and that the body is comparatively light The instanecs of porosity sro numerous in every department of the material world, but those which are connected with animal and vegetabls bodics are the most remark. able. Bone is a tissuc of pores or cells, snd, when seen through a microscope, may be said to resemble a honey. comb. Wood is also a tissue of cells or tules. If the end of a cylinder of atraight wood be immersed in water, whilst the other is forcibly blown into, the air will be found to psse through the jores of the wood, and rise in hubbles through the water. When a gas is comparan (ively light, it is said to be rure, or to possess rarity.

By compressibility is meant that quality in virtue of whieh a body sllows its volume to be diminished, with. out the quantity or mass of matter being diminished. \& arises, of course, from the conatituent particles being brought nearer to each other, and is effected in various ways. All bodies are less or more capable of being diminished in bulk, which is a conclusive proof of their porosity. Liquids are less easily compreesed than solid bodies ; nevertheless they, to a small extent, yield, snd go into amaller bulk by great pressure. The water at the bottom of the sea, by being pressed down by the supenincumbent water, is more dense or compact than it would be at the surface. Atmospheric air and gases are much more easily compressed than liquida, or even than many solids. Air may be compressed into a hundredth part of its ordinary volume. When at this state of coms. pression, it has s great tendency to expand and bust the vessel in which it is confined.
Sone bodies have the power of resuming their former volume or shape when the force which diuninished it is withdrawn. This quality is termed ciasticity. Steel i one of the nost elaatic of metallic bodies, but its cissticity is not nearly so great as that of India-rubber, which though twisted drawn out, or compressed in differen ways, alwsys resumes its original form. The aefifonm fluids, such as atmespheric air, and the gases, are silh f1. ceedingly elastie; and so are liquids, such as water, ter to a sinaller extent.

Dilatubility is that quality of bodies by which they an crabled to be expraded or enlarged in their dimensions without any addition being made to their sulbstance. Hurdiness in the quality which is the opposite of emthem and does not dopend ko much on the density of the ubbstance, as the force with which the particles of a bait cohere, or keep their places. For instance, glass is feit dense than most of the metals, but it is so hard thatit: capuable of seratching them. Some of the metaks ar eapuble of being made either hard or soft. Stecl, wle heated to a white lieat, and then soddenly cooled, as by immernion in water, lecomes harder than glass, w when cooled nlowly, it lecomes soft and flexible. brtik urss in that quality by which bodies are capable of beem easily broken into iregolar fragnuenta, and it beloup chiefly to hard bodive Iron, ateel, brass, and roppa
when heat leability is saing exte metale are of boiling tha metals Gold is the hammered light. By metala may tals are not into thin most ductil wire as nite quality by Steel is the this metal, support a w of platina oaly 2 lhs .

MOTION A
 Motion is

rest

Matter, ace given of its volition, and has been des and in this re or reluctance rative, and a farcible idea also, in conse aiveness to su jected, that a to move cont same directio cause.
Any instanc vation, is only that ia, it is re relates to the to the ground t in motion, and thin the insec rest. Hence, to a state of r only relative, 1 posed that the creation. All t and the sun its also believed by onward or progs tory movement distant centre, w
Common exp reot is more na conviction is fo cumstances. T bodies coming t ping after having ping after rolliug the earth after lo wooner or later a atraction or the ling sgainst som moted to them urree prevailing buliea sei in mo Taking this expa arroneous impres to our limited ex moie remarkablo mol.

threc figu:m

 f four figures in air ts some ompare gasen, g the relature the solida and water as thean water, will vill float on the , that of wstet. zating a certsin h a quantity of ually increased, the bottom. sity, ond meana is porous; that etween the pately light. Tho very department 1 are connected e most remsik. and, when seen semble a honey. or tules. If the mersed in water, , the oir will be wood, and rise in gas is compara ossess rarity. ality in virtue of diminished, with. ig diminished. k at particles being eflected in various capulle of being aive proof of their apressed than solid tent, yield, sand go 'I'he water st the wn by the supenin. pact than it would od gases are much or even than many a hundredth part his state of comm pand and burst the
uming their formet ch diminished it is lasaicity. Steely cs, but its elasticity dia-rubber, which ressed in different m. The aeriform - games, are all es. such as water, but
by which they $9 x$
their diaiensiona o their sulvtame. pposite of eofthes lensity of the ubb particles of a bat Hance, glass is ise s so hard that it: of the metals an solt. Stect, wlea euly cooled, as b? than glass, an d Rexible. bruth e capable of bew is, and it belory brases, and roppa
when heated and suddenly cooled, become brittle. Malbeability is the quelity by which bodiea are capable of saing extended by hammering. Some of the malleable metala are gold, silver, copper, zinc at the temperature of boiling water, lead, iron, and some others. Some of the metals possess the opposite quality of brittlencss. Gold is the most mallcable of all metala, and it may be hammered so thin as to be translucent, or permosble to light. By ductility is understood that property by which metals may be drawn to wire. Tho most malleable metals are not the most ductile. Tin and lead may be rolled into thin leaves, but cannot be drawn into wire. The most ductile metal is platina, which can be drawn into wire as inde at the threads of a cobweb. Tenacity is the quality by witheh bodica are not easily torn asunder. Steel is the most tenacious of ull substances; a wire of this metal, the hundredth of an inch in diameter, will support a weight of 134 lbs.; while one of the same size of platina will sustain only 16 lbs , and one of lead only 2 libs.
motion and forceg-oEnkral explanations.
Motion is the changing of place, or the $\operatorname{spposite~of~}$ rest
Matter, according to the definitions which have been given of its properties, is substance devoid of life and volition, and which is perfectly passive, or inert. It has been described as possessing tho property of inertia, and in this respect it is said to possess an unwillingness or reluctance to move, out these phrases are only figurative, and are used for the purpose of conveying a forcible idea of the passiveness of its character. It is also, in consequence of this promerty of inertia, or pasmiveness to submit to $\because 7 y$ condituon to which it is subjected, that a body, when once in motion, will continue to move continually with the same velocity and in the same direction, ti, it $\dot{\operatorname{sit}}$, cause.
Any instance of : $\because \because$ ' ${ }^{\prime}$ ' comes under our obserration, is only rest is. a stative, not an absolu/e, sense; that ia, it is rest as relates to the earth, but not rest as relates to the universe; for though the stone which falls to the ground lies et rest on the earth, the earth is always in motion, and therefore the stone is no more at rest then the insect which sits upon a moving wheel is at rest. IIence, in apenking of bodies coming npparently to a state of rent, we must always recollect, that it is only relativo, not positive or sbsolute rest. It is supposed that there is no sucl thing as alsolnte rest in creation. All the plancts are in motion round the sun; and the sun itself has a mation on its own axis; it is also believed by many astronomers that the sun has an onward or progressive motion in space, besides its rotatory movement ; and thus, perhaps, revolves round some distant centre, with all its planets in ita train.

Common experience would lead to the conviction that reet ia more natural for matter than motion; but this conviction is founded on a limited consideration of circumstances. The reason why we see ordinnry moving bodies coming to a state of rest-such as a wheel stopping after having been whirled on its exle, a bnll stopping atter rolling on the ground, or an object falling to the earth after heing thrown upwards-is, that they aro sooner or later arrested in their progress lyy the carth's atraction or their own gravity, by the friction or rubling against some other body, or by the opposition prewoted to them by the atmosphere. Fixcept for these three prevailing causes of impediment and stopponge, nll bulics sei in motion would go on moving for ever. Taking this expmided vigw of things, and dismissing the eroneous impressions arising from what is obvious only wour limited experience, we find that there is nothing mose remarkable in perpetual motion than in perpetual

It is only, however, in the sreat worka if creation, os the heavenly bodies, that perpes. al motion is obscrvabla The planetary bodies are under the ever-acting impuls:\% of centrifugal and centripetal forces, and are not inrpeded by friction, or by the atmosphere. for they move in space, or in a comprative vacuum. Many ingenioua attempts hnve been made to produce perpetual motion on mechanical principles in terrestrial oljects, but they hnve all necessarily failed, as no human ettort can dc. stroy gravity in bodies, or altogether prevent friction in movement.

In regaril to bodics on the earth, of which a state of rest is the ordinary condition, motion is produced by certain agencics, or impelling causes, cither belonging to the phenomena of nature or to art. The property of capillary ottraction causes a motion in liquids under ccrtain circumstances; the winds blow, and cause motion; rivers, in flowing down their channels, and the action of the tides, likewise produco motion; thus, there exist many natural causes of motion, which are taken advantage of by man in the economy of arts and manufactures. Motion in the animal economy is produced by a principle of life; but of the nature of this kind of motion mankind are ignorant, and nothing here required to ho said regarding it. The causes of motion which have to engage our attention are those which consist of forres, whether natural or artificial, and which forces have the property of impelling inanimate objects fron a state of rest to a state of motion, of atopping them when in motion, or of altering the character of their motion. These for ses are also called powers.

Motion, accordiny to the mode in which the force acts, is susceptible of innumerable variations. According as the moving body is affected, it may move rapidly or slowly ; proceed in a straight line, turn in a circle, or curve ; it may move with uniform or irregular speed, or he retarded or accelerate.c. The body mny also move upon or in respect of ocother body which is also moving. Some of these peculiárities in motion will immediately engage orr sttention; meanwhile, it has to be explained, that, fo the sake of convenience in language, and accurncy in the application of terms, certain words are nsed to define the nature of notion in bodies, and the forees affecting them.

Notion is said to be common to two or more bodies when they move in contact or together; or when, though not in contact, they are carried along in a eimilar manner, und with the sane velocity ; that is, when they have a motion in common, or participate in the same motion. Motion is said to be ubsclute, when a body actually moves from ons point of space to another, or when it moves towards, or when it passes, another which is at rest. Therefore, setting aside the idea of the earth moving, we should say that a vessel moving on the sea has an absolute motion, while the land is fixed or stationary. Motion is said to be relative, when the motion of one moving body is considered in reference to thet of another moving body. Thus, if two bodies move in the same direction, their relative motion is the difference of their motions; if they move in opposite directions, it is the suin of their separate motions.

When a force, applied to any material object, is resisted or coniteracted, so thet no motion ensues, it in called a μ ressure : and forcea so counteracted are said to hulare each other, or to be in equabrivm.

The degree of speed in the motion of bolies is called releri'y. Velocity is measured by the space or distance passed over, with an invariable motion, and in a giver time, as one second. Thus, if a body, in one second. with an invariable motion, pass over twenty feet, it: velocity is sail to he twenty feet per second.

When a motion is invariable, it is said to he aniform if it be gradually increasing, it is said to be necelerated and if it gradually decrease, it is aaid to le relurded

A force is said to be an ocrelerating or retarding force, accor ling as it prorlucea an accelerated or retarded motion.

Forces are cither instantancous or continued. The former is an impulse, like a stroke; the latter acts without intermission. When continuod foreo remains always of the same intensity, it is called a constant force. Other continued forces are said to be variable.

A body, in moving, possesses a force which is called ita momentum, or motal force. Monentum is very different from velocity. A light body and a heavy body may move at the same velocity, but the momentury of the light body will be small in comperison with that of the heavy one. 'The light one, on coming to a state of reat, will perhaps fall harmlossly on the ground, while the other, by its momentum, will strike forcibly on the earth, or destruy any oljeet which opposes it. Momentum is proportionate to the 1,8 and velocity of bodies, and, by multiplying the wei, ... by the number of feet moved over per second, we tind that the momentum is the proluct. Thus, if a body of twelve ounces move with a velocity of twenty feet per second, its momentum is (twelve times twenty) two hundred and forty. In ordinary langunge, the term tmpetus is used to signify the violent tendency of a moving lody to any point.

Before cutering upon a consideration of motion as produced by ordinary forces, it will be appropriate to describe the etfects produced upon bolies when simply falling-that is, moving downwards towards the eazth, when tho supports which upheld them are withdiawn.

the phengaena of fallino bodirg-wieight.

Attraction, ss already explained, is a force inherent in nature, by which particles and masses of matter are drewn towards each other. This force, it has also been steted, increases in proportion to the quantity of motter which tho attracting bolly contains, and it also irceresses as the bodies approach cach other. Further. it has been mentioned that this powerful and w..btile qualiy in mattor is the cause of the falling or drswing of boties downwards towards the earth, and thus produces what is termed wright or grauty. Gravity, then, is simply the tendency which any substance has to press downwards in olvedicuce to the law of attraction, as exemplified in the phenomena of bodies falling frol : heights to the ground, when the rapports which upiacld them are removed.

All falling hodies tend directly towards the centre of the earth, in astraight line from the poist where they are let fall. If, then, a body he let fall in any part of the world, the line of its direction will he perpiendirular to the earth's centre. Conpequintly, two bolier falling on opposite sides of the earth, fall towards exch ather. Nuppose any body to be disengaged from a height opposite to us, on the other side of the earth, its motion in respect to us would be upward, while the downward motion from where we stand, would be upward in reepect to those who stand opposite to us, on the other side of the earth. In litie nanner, if the falling body the a quarter, instead of hatf the distance round the earth from us, its line of direction would be directly serosa or sidevise, that is, at right angles with the lines already sujposed.

It will he ohvious, thrrefore, that what we call $1 p$ and down are merely relative terms, and that what is down in respect to us, is up in respect to those who live on the opposite side of the glotse. Conserpuently, tmen everywhere mesna towards the centre of the carth, and $u p$ signifes from *se centre of the earth. The velocity 4. repidity of every falling body is uniformly accelerated, or increased, in its approarh towards the earth. from whatever heioht it falla, if the resiatance of the atmoaphere !m nol reckonal If a rock be rolled from the
summit of a sleep mountain, its motion is at first sh. and gentle, but as it proceeds downwards, it moves whith perpetually increased velocity, seeruing to gather fresh speed every moment, until its force is suck. that overy oistacle is overcone; trees and rocks are danhed from its path, and its motion does not cease until it has rolled to a great distance on the plain.

The same princlple of increased velocity in bodies sa they deacend from a height, is illustrated by pouring treacle, honey, or any thick ayrup, from an elevsted vea sel. The bulky stream, which is perhaps two inches in diameter where it leavea the vessel, is reduced to the size of a strav or thrend on reaching its destination; but what it wants in bulk is made up in velocity, fot the snall thread-like stream at the bottom will fill vessel just as soon as the large and slow moving stream at the outlet; the velocity is indeed so great, thes the stream has not time to sink at once into the mass below, but falls in overlaying folds.

From the same principle, a.person may leap from a chair vithout danger; but if he jump from the housetol, his velocity becomes so much increased, before he reachen the ground, ns to endanger his life by the falt.

It is found by experiment, that the motion of a falling body is incressed, or accelerated, in regulsr urithmetical progression. In other words, in every ne.ond of time during its descent, it acquires an additiona! rate of speed, the rate regularly increasing by the accamiulation of the preceding additions.

It is ascertained that a dense or compact hody, when falling freely, passes through a apace of 16 feet 1 iuch during the first second of time. Leaving out the odd inch for the sake of even numbers, we find that the space fallen through in a given cime is determined ly the following arithnsetical computation.

Ascertain the number of secerils which a lredy ocut pies whe a falling. Take the equare of that numbel (that is, the number maltiplied by itself), und multiply the square by 16 , which is the number of feet fallen during the first second, and the result is the amount of feet which the bedy altogether falls. For example, if a ball occupy 3 seconds in falling, we take the squsre of 3, wheth is 9 ; then we multiply 2 by 16 , which gives 144 a: the result, and that is the number of feet fallen. Again, if we find that the ball occupies 4 seconds in falling, we take the square of 4 , which is 16 , and multiplying 16 ly 16 , the result is 256 , which is the number of feet fallen. And so on, always following the same rule of computation.

It is not always casy, by the above mode of ralculation, to arrive at a correct result as to the height fallen hy hodies, and all that can be expected is an approximation to a true result. This arises from bodies teing of different lulks, and receiving different degrees of opposition from the atmosphere in their descent. It is a common supposition that large and heay y bodics fall more quick!y than small and light ones. This opinior:, which was maintained even by philosophors, until (ialileo rectified the mistake, perhups originates in the error of confounding "Hentum with relocily. Be this as it may, it is now an crtained truth in science, that all bodies, of whaterer ueusity, fall with the same velocity. I'hus, s hall containing a poumd of lead falle with the same velocity as a hall containing on ouncs This equality in the rate of falling is, however, disturlea lyy the quality of figure and bulk of bodies. A solid bal. of gohl will fall more quickly than the same quantity of gold heat out into a thin leaf, hecause in the case of the leaf the resistance from the atmosphree on a large eurfuce impedes the descent. 'I'hus the atmonphere prevents hulky and porous sulnstances from falling with the same velocity as those which are compact.

If the atmosphere were removid, all bodio., whethes light or heavy, large or small, would deacund with the
sme veloct porformed When a feather, are hook which receiver of equa. rato, a Hence it is ance of the of coina, wo velocity, and
It has bee Increases in the sttractin planet, the ea duces the phe with a certair In conseqt the, sun an stronger in so the weight of the gun, our pounds, and a sceond. On weigh about of the moon, of s pound.
As a body ing eccessions second, so whe suiface of the proportion, till when it iustent cressing velocit equal to its veld In this calculati atmosphere, whi descent to be le: the body was pr

Terrestrial gr set on the mere bulk, but is exe atoms individual As the earth is n the same uearly On accours of th that of any ordi force acts in str from the earth's, the atoms slightly hemselves over i for repose. In II ohservable. In dosely together, law of gravitatic round a common tion may be con This centre is cal ineria, or the ren
Every solid to sravity, which is lalances itself, at librium, in any \mathbf{p} described as a pois level, in the name for by water ; for the centro of grin ame mode of act quare, of other ct in all their parts, body is shaped i Vor. I.-LIC
first slew moves whith ather fresu that every Inahud from it hes rolled
in bodies an by pouring slevated rea vo inches in ueed to the deatination; velocity, for m will fill a oving atream reat, that the mass below,
leap from the housetop, re he reachen alt.
n of a falling lar urithmetity se. ond of dditiona! tate the aceanis-
th body, when 16 feet 1 inch g out the odd find that the letermined by
a bedy occir that numbet , nd multiply of feet fallen he ainount of example, if a the square of b, which gives of feet fallen. 4 seconds in 16, and mulh is the numfollowing the
hode of calcuheight fallen s an approxi. a bodies teing it degrees of escent. It is I y hodies fall This opinior, ophers, until ginates in the ity. Be this acience, that
te naine velo-
of lend falle
ig nn ounce ver, disturleo
A solid bali
ame quautity
I the case of
re on a large
atmosphere
1 falling widh paet. lie., whe then find with th:
sue velocity. This fact is ascertained by oxperiments performed with the air-pump.
When a piece of coin, for instance a guinea, and a foather, are let fall at the aame instant of time, from a hook which has held them at the top of the exhausted recsiver of an air-pump, they aro observed to fall at an equa. rato, and to strike the bottom at the same moment. Hence it is demonstrated, that were it not for the resistance of the atinosphire, a beg full of ferthers, and one of coins, would f . frem a given height with the asme velocity, and in the same space of time.

It has been stated that the attraction of gravitation increases in proportion to the quantity of matter which the sttracting hody contains. Thus, the mass of our planet, the carth, excrts a I oree of attraction which prodaces the phenomena of weight, and the falling of bodica with a certain velocity.
In consequence of the different size and density of the sun and planctary boliee, attraction is much stronger in some of them than others, and consequently the weight of bodics differs in each. On the surface of the aun, our pound weight would weigh upwards of 27 pounds, and a body would tall upon it 434 feet the first second. On the surface of Jupiter, our pound would weigh about 2 pounds 4 onnces. And on the surface of the moon, our pound would weigh only the fifth part of a pound.

As a body in deseending to the earth reccives inereasing acceasions to its velocity during every suecessivo second, so when a body is projected upwards from the suifuce of the earth, its velocity decreuses in the same proportion, till it comes to a state of momentary rest, when it instently begins to descend with a gradually increaning velocity, which at any point in the descent is equal to its velocity at the same point when ascendiag. In this calculation, however, we onit the influenee of the atnosphere, which would caluse the final velocity in the descent to be less than the original velocity with which the body was projeeted upwards.

THE CENTRE OF GRAVITY.

Terrestrial gravitation, as already explained, does not act on the mere surface of bodies, or according to their bulk, but is exerted in reference to all the particles or aloms individaally which compese the mass of a body. As the earth is nearly of a spherical form, its attraction is tho same nearly as if it proceeded entirely from the centre. On accourd of the great aize of the earth, compared with that of any ordinary body at its surface, its attructive force acts in straight lunes, sentibly parallel, proceeding from the earth's centre. In the case of liquids, in which the atoms slightly colicre, the atoms have tiberty to apread themselves over the earth, and to seek the lowest situation hon repose. In the cnee of solids, a different operation is abservable. In then, the particles of matter stick so dosely together, that they are not at liberty to obey the law of gravitation individually, but rally, us it were, tound a common centre, upon which the force of attraction may be considered to act for tho gencral baltoof. This centre is called the centre of gravity, the centre of incria, or the cenire of perallel forces.
Every solid lonly or dense mass possesses a centre of gravity, which is thre point upon or about which the body lolances itself, and remains in a state of rest, or equilibrium, in any position. The centre of gravity may be described as a point in solids which always seeks its lowest level, in the same manner that the lowest level is sought for by water; fur it is only by propping up the body, that the centre of gravity is prevented from displaying the ame mode of action. The centre of gravity in round, ajuare, or other regular shaped bodies, of unifurm deneity is all their parts, is the centre of these bodies. When a body is ahaped irregularly, or when there are two or
mor bodies connected, the centre of gravity is the point about which they will balance each other.

Any square or angular body which we may plete or the ground, will remain stationary, or aafely at rest, provided an ideal line, drawn from its cenc.e of gravity, and pasaing to the ground in a direction perpendieular to the earth's surfice, fall within its base, as in fig. 2. A point below A is the centre of gravity; and from that point the line of direction goen downward to B, which is within

Fig. 2. the edges of t^{2},e base. An object of this form, and ac placed, will stand.

If the line of direction from the centre of gravity falı
without the outer edge of the base, as in fig. 3, from A to ?, then the object will not remoin balanced on its base; it will fall over, and attain some position in which the line of direction falls within the boundary of the base on which it stands. By keeping this simple principle in view, etability and safety will gencrally be secured in the crection of ob-

Fig. 3. jects of art, such as houses, monumental edifices, spires, and ohelisks, as weli as in the lading of coaches, carts, and other vehieles, and the piling of timber or any lind of goods in heaps. In ewery instance, the base ought to be sufficiently broad to admit of the line of direction from the centre of gravity falling within it.

A small degree of experience seems to point out the propricty of erecting all kinds of structures with a base wide enough to secure stability; nevertheless, in opposition both to experience and the simple principles of science, we often find that stage-coaches sre laden in sucb a manner that their centre of gravity is liable to too great a change of position, and that they are overturned, to the personal injury, and even loss of life, of the passengers. The error in these instanees consists in raising the centre of gravity too high. At first, perhaps, tite centie of gravity is so comparatively low, that, in the case of swaying to a side, the line of direction would fall within the edge of the wheel, end no danger would ensue; but it is common to go on piling masses of goods or luggage, or placing a number of passengers on the roof of the vehicle, so that the centre of gravity becomes considerably rlevated; so high, indeed, that when the carriage is swayed, or jolts to one side, the line of direction is thrown beyond the wheel, and the vehicle will consequently fall over. In the an. nexed cut, fig. 4, a londed vehicle is represenied crossing an ineliued plane, or we may suppuse that its wheel
 on one side has como in contart with a etone S, which has raised it ahove the level of the other wheel, so ns to incline the body of the vehicle very considerably from the horizontal. The centre of gravity is represented in two different positiens. a lower with the line of direction I, C, and a higher with the line of direction U C. Had the vehiele not weer: liggh laden, the line of direction would lave remained as L. C, and as it falls within the whel or base, the vehicle would have maintained its halance; lut leeng now laden to a considerable height, the line hao risen to al out the

Vou. I-26
place where it is marked ilescending from \mathbf{C} to U , beyond the base; consequently the vehicle must overturn.
There are instances in which bodiea will not be overturned, although the line of direction falla conaiderably beyond the base. These exceptiona to a common rule are observable in the case of rapidly and amoothly moving bodies, In which centrnfugal force acts as a counterpoise to the wright of the boly. A familiar exsmple of this kind occurs in the case of akaters, in moking their circular turns on the ice, in which they bend or lean greatly beyond the perpendicular position without falling. A notice of thia peculiarity in moving loodios will engage our attention, under the head Centrifugal Force.
The tendency which leaning bodies have to fall, may almo de counteracted in some meaaure by the cohesion of parts. Thus, there are many instances of valls, steeplea, and tuwers, inclining sensibly from the vertical line, and yet, by the strength of the cement which binds them, they have atood for ages.

Whatever raises the centre of gravity, or narrowa the bace, allows the line of direction to puss more easily without it, and diminishes the atability. Hence the imprudence of rising up in carriagee or boats, when in danger of being upset; and hence, aa we have just mentioned, the danger of high-loading of vehicles. Lately an improvement thas ieen effected in stage-cosch building, by which a chief part of the load ia placed as low as the axle of the whecls; and by this means the danger of overturning is almost entirely averted.

The centre of gravity of a body is not alwaya in the aubstance of the body. Thus, the centre of gravity of a circular ring is in the centre of the circle; of an elliptic or oval ring, in the centre of the ellipse; and of a hollow cylindric tube, it is in the imaginary axis of the tule. In a drum, for instance, the centre of gravity is a point in the centre of the drum, where there is nothing but sir.

When a circular object is placed on level ground, or a horizontal plane, it renaina at reat on a point of its aurface, because the line of direction from its centre, which is its centre of gravity, falla perpendicularly downwards to the point on which it is in contact with the earth and at rest; ind because it could not possibly get its centre of gravity nearer the eurth ly changing ita poaition. When a similar circular object is placed on an inclined plane, it will net remain at rest, but roll over, because the line of direction from its centre of gravity falls perpendicularly downwards in front of the point on ita surfaco which touches the plane. On this account it rolis over, of it were seeking s apot on which it might have the line of direction from its centre of gravity pussing through its point of contact with the earth. Hence a circular body continues rolling down an inclined plane till it find a level spot on which the line of direction panses through its point of rest.

In a bar of iron, six feet long and of equal breadth and thickness, the centre of gravity is just three feet from each end, or exactly in the middle. If the bar be aupported at this point, it will balance itself, because there are equal weights on both ends. This point, thereforo, is the centre of gravity. If a har of iron be loaded at one end with a ball of a certain weight, then the centre of gravity will not be at the midelle, but situater' near the beavy end of the bar. But if we atuch a ball of the aane weight to both enda, the ceutre of gravity is again on the middle of the bar.

A remarkable illustation of the principles now detailed, in exhibited in the case of the earth and moon. The earth revilves round the sun, in consequence of a cause already explained, namely, the sun's attraction; but instead of the centre of the earth describing the oval or elliptic orbit round the sun, it is the centre of gravity of whe earth and moon that deacribes it. We shall briefly exp'ain the reason for this. 'The earth, in its course, is earmibered with the mosa a budy of about the seventieth
of ite mass; in other worda, the moon is like a smali cani atuck at one end of a bur, having the ca:th or a larget bnll at the other end-the bar hetween being the mutuul attraction ci the earth and moon. On thia account, the centre of gravity of tho earth and moon is ot a point nomewhere between the centren of the earth and moins Thia point lies not far below the earth's aurface, Therefore, if the earth were to fall towarda the aun, it would be this point which wouli proceed most directly towards it

In suspending an irregularly shajed howly from differ. ent points successively, we may learn where the centre of gravity of the body is placed, by observing that the line of direction in each case pusses through the sums point, which point is the centre of grnvity. For example, let a painter's palette, whicli is an irregulariy slaped body, be suspended from the thumbhole, as in the annexed cut, fig. 5 , and the line of direction will necessarity be from A to B. Next auspend it from a point at D, and a new line of direction will be ohcained, crossing the line A B. The place where the two linea intersect, ia thus the centre of
 gravity. The foint of sumpension, on being removed w C, will give the same place of intersection in the origina! line of direction; and a sinilar result will follow any other change of the suspension point.
In the various nutural structurea displayed in the animal and vegetnllo kingdoms, the centre of gravity is slways so situated, es to produce a just equilibrium anil harmony of parts. Every animal is properly halaned on its limbs, and every tree has a tendency to grow in a direction perpendicular to its base, whether it grow from a level or an inclined plane. Some animals are enshled to move in opposition to the law of gravity, as, for instanco, flies creeping on tho ceiling of an spartment; but in such cases, other powers in nature are exerted to preserve the secure footing of the animals.

the pennulum.

Gravity, which causes bodies to fall, also causes them to swing backwards and forwards, when auspended freely by string or rod from a point, sul when once movel to a aile, to give them an oceasion of falling. A body sust pended in thia manner is called a Pundulum.

Pendulums usually cousist of a rod or wiro of metah, at the lower end of which a heovy piecen or ball of bras or other metal is attached. When a pendilum swinge, it is said to oscillate or vibrate; and the path white iw ball pursues in swinging, from its resemblance inf figue to an inverted arch or bow, is called its arc. In the accompanying cut, fig. 6, a pendulum of the most common construction is represented. A is the axia or point of auspension. B is the rod. (; is the ball, or a roun flattish piece of metal, which is D fastened to the rod by a acrew behind, and by which serew it can le raised or lowered on the roll. D I ia the path or are which the
 bsil traversea in swingit... When the pendulum is p. rest, it hange perpeudicularly, is here represented atudie place which the ball is seculs occupy is colled the poon of pest.

The pendulum remains at rest till its ball is imana asich to allow it an opportunity of awinging on its awis Being raised to any height on one side, hud set at likrity, the ball, by the force of gravity, has a tendency to ill ta the ground; but being contined by the sumpeinting ral

It in comp was forme puint of cequired a acending dide an tha cord, it nga ω near th continues length of t canes to a under the p At every with, or ass path or are diminished. tion offerel or point of r. later, bria external for urge it to as The ball mentioned, d certain porti depends on t motion, or in ung divided ' the ball may any other nu circle. The cicomstances
A pendalu with a short hawever, in o, vilrution, it n the falling of bady in 1,2 , 2, 3, 4, and sa 25 , nud so or falling. In th lengtha are a Thus, if the pendulums be of the pendulu one vitiration o enghth aro as
The vilvatio terestrial gravi if the force of ency of the: bal weakened. $\mathrm{\Gamma} / \mathrm{h}$ parts of the eal mentioned, bulp diameter, or 13 and as the att, antre, the force at the surface a the pooes. At equator an. 1 gravity. Be, tance of the surf fugal force, wlid weakening the a
In conse fuern d a given lengt at the pules. In of the earth tron the produkin an therefore, to pre at dilderent parts may all vilorit latel accori,...g equator. i'hus al per, di m .

e a amali coni

 th or a largel ig the mutual account, the is at a point h and moilis. face. There sun, it would ctly towards it dy from differere the contre rving that the ugh the same n in the origina will follow any
lisplayed in the itre of gravity is quilibrium and a roperly balanced ney to grow in a her it grow from mals are cnabled gravity, as, for in1 apartment; but e cxerted to pre-
also causes them suspended freely en once moved to ig. A body sum Ilum. or wire of metala, e or lall of bras endulum swings, o path whith th mblance in tague its arc. In the

Fig. 6.
e pendulum is . resented. and i.se anlled the poin
its ball is imaxa cing on its aris and sot at filutis, -ndency of all x suapremating ral

I in compelled to make a aweep to that point where it wan formerly hanging at reat, immediately beneath the point of suspenaion. But it does not atop here; it han equired a velocity aufficient to carry it onward in an acending courve to nearly an high a point on the oppraite ede an that from which it was let fall. Of its 0° acsord, it again falls downwards in the aame arc, a rises to near tho point where it set off; and thus, 1 tself, continues to swing to and fro, of vibrate, for certuin length of time, till its force is expended, and it finally comes to a stute of rest in its original dependent nituation onder the point of suspension.

At every sweep of the pendulum (when not meddled with, or assisted by any extemal force), the length of tho path or are traversed by the ball is in a small degrev diminished. This arises from two causes-the obstruction offered by the atmosphere, and the friction on its axia or point of suapention. These causes, therefore, sooner or later, bring the nendulum to a state of rest, unleas external force of soms kind continues to be applied to urge it to sustain its action.

The ball of a pendulum in awinging, as has been mentioned, describes the figure of an arc. This arc is a cortain portion of a circle, T:e extent of this portion depends on the force exerted in aetting the pendulum in motion, or in drawing it aside to let it fall. A carcle beung dividal '•י mathernaticians into 360 degrees or parts, the ball may be made to siving over five, ien, twenty, or any ather number of degrees undar 1R0, which is half a ciscle. The extent of the are traversed uniler ordinary arcamstances, is from ten to twenty ücgrees.

A pendulum with a long rod visrates alower than one with a short rod. The time does not become louger, however, in exact proportion at vo extend the rod. The vibration, it must alwaya he n nollected, is analogous to the fulling of luoliea. The spaces failen through by a bady in 1, 2, 3, or 4 seconds, are not in proportion to 1 , $2,3,4$, and so on, but in the proportion of $1,4,9,16$, 25 , and so on, or the squares of the time occupied in falling. In the case of pendulums, it is found that their lengths are as the squares of the times of vibration. Thus, if the times ocenpied ly one vibration of two pendulums be 1 and 2 seconds respectively, the lengths of the pendulums will be as 1 and 4 ; so if the time of one vibration of several pendulums be as $1,2,3,4$, their engths are as $1,4,9$, and 16 .
The vilrations of the pendulum being produced by terrestrial gravitation, it follows, as a natural result, that, if the furce of gravitation be wcakened, so will tho tendency of the batl of the pendulum to fall or swing be weakened. 'This result is distinctly observable in ditferent parts of the earth. At the equator, the caith, as alreody mentioned, bulges out to a thickness of 26 miles on the diameter, or 13 miles from the surface to the centre; and as the attraction of gravitation proceeds from the antre, the force of thia attraction is consequently weaker at the surface at the equator than it is at the sorface at the poies. At every part of the sulface between the equator ans $\quad 1 \mathrm{~B}$, there is a proportionate increase of gravity. He, 3 the effect proluced by the greater distance of the surface from the centre at the equator, centrifugal force, which is strongest at the equator, assists in weakening the attractive force at thut plare.

In conse puence of these combined causes, a pendulum d a given length vibrates more slowly at the equator than at the poles. In proportion as we advance on the surface of the enth from the equator towards the poles, so does the pendukun swing or vibrate more quickly. In order, therefore, to preserve uniformity of speed in pentulums at different parts of the gloler, that is, in order that they may all vibrat, il one second, their length must be regulated accoriang to the distance of the places from the squalor. I'hus each degree of latitude has its awn length of per aism.

From a knowledge of thece lnws we are atabled, by this inatrument, not only to detect certain vuriations in that attraction in various parts of the carth, but also to discover the actual amount of the attraction at any given place.

To compare the force of gravity in dilferent parts of the enrth, it is only neccssary to swing the same pendulum in the places under consideration, and to observe the rapidity of its vibrations. The proportion of the force of gravity in the several places, will be that of the squares of the velocity of the vibration. Olesen vations to this ef feet have been mada at "soveral places, by Biot, Kater, Sabinc, and others.

I'he uniform vibration of the perslulum han rendered it uscful in regulating the motion of clocks for measuring time. In the common clock, a pendulum, connected with the whee'-work, and impelled by weights, or a apring, regulatea the motions of the iminute and hour handa on the dial-piate, by which the time of day is pointed out If no pendulum were employed, the wheels would go very irregularly. The pendulum is regulated in length, 80 as is vibrate sixty times, each time being a second, in the space of a minute. At euch vibration, it acts upon the tooth of a wheel, which turns the rest of the machinery. In order that the pendulum may vibrato neither quicker nor slower than sixty times in a minute, in the latitude of London it must measure 39 inclics and aliout the 7 th of an inch from the point of suspension to the centre of oscillation. A pendulum at Edinburgh would require to be a small degree longer. The greatest possible nicety is required in the adjustment of the length, for a difiereace in extent amounting to the 1000th part of an inch, would cause an crror of about one second in e day. Therefore, to make a penduluin go slower by one second a clay, it must be lengthoned by the 1000 th part of an inch ; and to make it go quicker, it must be shortened in the same proportion.

It is possible to cause short pendulums to regulate the movement of clocks the same as long pendulume; and this is done in cases where long pendulums would be inconvenient, or inelegant in appearyuce. This is accomplished ty shortening the pendulum to a fourth of its ordinary length, by which it bents or vibrates twice instead of once in a second. The wheel-work is constructed to suit this arrangement.

THE LAWS of motion.

Motion, as $a^{1} \quad y$ mentioned, is the chungong of place, or the opposite of rest. According to the general explasations which have been given, it appears that motion in bodies is as natural as rest, nud that matter passively submits to remain in either of these states in which it may te placed, provided no external force or obstacle interfere th cause an alteration of contition. These and other fundamental laws of nature, in relation to rest and motion of matter, are laid down by Sir Isaac Newton : it the following three propositions :-
lst. Every body must persevere in its state of rest, or of uniform motion in a struight line, unleas it be compelled to change that state by forces impressed upon it.

2d. Fivery change of motion unst be proportional to the impressed force, and must be in the direction of that straight line in which the force is impressed.

3d. Action must always be equal and contrary to renction; or the actions of two borli's upon each other muat be equal, and their directions must be opposite.
'These propositions we shall treat separately. In the first of the series thero ere three points reguiring eonside' ation, ramely, the permanency, the niformity, and the straight line of direction of motion in bolies.

As was formerly observed, it is impossible to whow eithur permanency or uniformity of notion in bodiea ujnz. or near the earth; for all moving bodies are aooner a | later brouglit to a atate of rest by the fice of atrartion

Ariction, and the opposition of the atmosphere. It in only, therefore, in the case of the great work: of nature, or planetary bodies, that the lawa of motion are moat clearly and fully illustrated.

The tendency of a body to move in a atraight line from the point whence it set out, in \mathbf{a} much a property of matter as the uniformity of motion. If we conceive the iciea of a body impelled intn a ntate of motion by any given force, and at the ame time conceive the idea that there in no obstacle to interrupt it, no attractive force to bend it aside, we shall thon fully underatand that a moving body must, as a matter of necessity, from its property of inertia, proceed in onaraght line of direction-it must go on in as even path for ever.

centripuial forct and circular motion.

Ridies in flying round a centre has a tendency to procsed in a straight line, and this principle of motion, as already mentioned, is termed centrifugal force. Examplen of thia tendency are very familiar to our obaervation. When we whirl rapidly a sling with a stone in it, and auddenly allow the stone to fly off, it proceed at first sensioly in a straight line, but is graduslly pulled to the earth by attraction. In turning a circular grindstone rapidly with water in contact with it, we perceive a rim of water first rising on the atone and next flying off; and the more rapidly we turn the atone, so does the water Ay off with the grenter force. In grinding corn by two rapidly turning stones playing on each other, the grain poured in at an opening of tho centre is quickly shuffled towarda the edges of the atones, and expelled in the condition of meal or flower. If we put some water in a vessel, and ranidly turn it in one dircetion, we ahall find that the water endeavours to cacape, and rises up to the edgea of the vessel, leaving a deep hollow in the middle. The lendency to fly off frem a centre is made use of in the manufacture of pottery: Sof clay being placed on a revolving wheel, it quickly spreads towards the circumfex zee of the machine, and is guided or moulded by the hand of the potter into the required form. In forming commen crown or window-glass, adventage is also taken of the principle of centrifuggl force. A thick round masa of glass, sontened by heat and fixed at the middle on ant fron rod, being made to turn rapidly round, first in o_{i} a direction, and then in the opposite, and continuing this elternating rotary motion till the glass becomes cool, is found to spread out into a large, thin, circular plate. From this plate, square panes of glass are afterwards cut.

In the same manner as solid bodies laid on a whirling table are thrown off, so water in a vessel which is cansed to apin round in any way, sa on the centre of a horizontal wheel, inetead of lying at the bottom, is raised all round againat the aides of the vessel.

Equestrians, in performing their feats of hersemanship, alway incline their bodies inwards when standing on a borse which is running round a circle. Centrifugal force having a tendency to impel them outwards, is the:s counteracted hy the inward leaning, and forms a species of aupport to their overhanging bodies. A herse running in a circle, or quickly turning a corner, naturally adopts the same counteracting porture, and leana inwards. A okater, in moving in a circular or curvilinear path on mooth ice, also leans inwards, so much so, that if he were to stand atill in this posture, he would inevitably fall on his side; but centrifugal force, which has a tendency to impel his body outwards from the curve, or in a straight line of motion, sustains him, as it does the equegtrian, and he therefore moves gracefully and safely in the circular path which his fancy directs. In this and other instances, we find the force of gravity overcome ly centrifugal force. It is in obedience to this principle, that the earth bulges uut to the thickness of 26 miles upon the circumference at the equator, where the whirling motion is mow rapid

Thus, centrifugal force in the tendency u fyy off in strm: s at line, or at a tangent, from motion rouitid a cesu. de; and the power which prevents bodies from flying ofit and drews them towarda the centre, in, as already mentioned, called cencripetal, or centrc-teeking force. All bodies moving in circlea are constantly acted upon bv theme opposite forces, as may be exemplified by the annexed cut, Fig. 7. A is a point to which a string with a ball st the end of it, B, la attached. On forcing the iuaii B into motion, it will describe a circle round the point A, in which case the string is the centripetal force. The ball in whirling, however, having a continual ten-
 dency to fly off, if it be disengaged from the atring at C, will go in a straight line, $\mathbf{C D}$; if at E, it will go in the line $\mathbf{E} F$; if at \mathbf{G}, in the line $\mathbf{G H}$; end so on, at every point in the circle.

The mutual action of centrifugal and centripetal forces, in the case of circular motion, proceeds according to a certain ratio. If the mass of the revelving body be increased, its distance from the centre and velocity remairing the same, its centrifugal force will be increased in the same proportion. If the diatance from the centre be increased, while the mass and the time of revolution remain the same, the centrifugal force will almo be increased in the same proportion. If the number of revolutionk performed in a given time be twice as many, the distance and mass being unchanged, the centrifugal force will the four times as great ; if three times as many, the force will be nine times as great; if four times as many, it will be aixteen times as great; and so on in the same proportion. The mases of the plancts, and their distances from the sun, being various, the forces which affect theas aro slao similarly varied.
The line reund which a body performs a motion of otation, is called an axis. This axis may be only ima ginary, like that of the earth; or real, as the axle of a wheel. The body may revolve about two projecting pins or pivets resting in sockets, in which case its axir is a straight line joining the pivots; or it may tum on a cylindrical rod of amall diameter, passing through the body, like a wheel on its axle. It is evident that every point of the boly, during its revolution, will describe s circle, the centre of which ie a goint in the axis of the body.

In the turning of a wheel on ita exia, that part which is at the grestest distance from the centre, has the greatost velocity ; and at this extremity of the circumference the centrifugal force is greateat. For example, in the representation of a wheel with arms radiating from a centre, Fig. 8, the velocity is greater at the extremity of the arm, at A, than it is at B, half the distance from the cen-
 tre. But the point 13 goes round as often as the pointa, having a smaller circle to traverse.

In this manner, the velqeity of revolving bodies must always, an a matter of neces ity, increase in proportis to the distance from the centze of motion. Hence a comparatively amall centrifugal force near the centre is prodigiously increased towards the circumferenco. By inereasing the force, rad adaling to the velocity of a revolving bolly, the centrifugal force becomes so greal that it will in sone cases overcome the cuhesiveness in the inaterial in the boly, and causes it to liresk and fir off in pieces. When grinding-stones are thus whirled
with great
ta piecen, to them.
Bodiea m to different tingliskud taneous and an action of will move in witl unifor upon it be receives e ah A continued body be free continual inc atrained that the effect is a which sustain
A solid bo susceptible of axis. If it be forces, one or 1. The axis motis. 2. I oustaining a ec ceiving a mot may be such a axis even were neceive a motio percuasion.
What has bu taneous forces, 1. The axis m in which case i mated by the ri may modify the it must alao su ceive a motion vaisation. owing 3. The forces m body the same r In this case the axis.
The power bodies, may be force of gravity. the atone does nc following is a mo water on the insi diameter ; then, rapid motion, and its place, whirlio and that even gravity, or the te by centrifugal forc in the wheel, near rifugal force is \mathbf{w}

Bodies, on beiu called prijectiles, a or hent line of dir ffom the straight wid "the change i 1 ball projected f tand, and water as fundiar "xamples o
It is a remarkal free which project if $上$ ewn horizonta frinn the same haig culuning resistance are fred from the a s horizontal direstio

the point A,
borlies must propertion

Hence a
the contre cumference e velocity ol mes so greal resiveness in break and il thus whirted
witi great rapidity, they are apt to be dentroyed, flying in piecee, to the extreme danger of thow who are using them.

Bodies movable on an axis of rotation are aubmitted to different kindn of forcee. They are generally dittinglinhad by the duration of their action into inatantaneous and continued forces. If the body whlch suatains an action of the former kind bo quiescont and free, it will move in the direction in which the impulee is given witl uniform motion. It, however, the force impremed upon it be incapable of retting it in motion, then it receives a shock, the offect of which in called percussion. A continued force produces a continued effect. If the body be free and previously quiescent, this effoct in a continual increase of velocity. If the body be no reatrained that the applied force cannot put it in motion, the effect is a continued pressure on the pointe or linen which austain it.

A solid body which is movable upon a fixed axis, is susceptible of no motion, except one of rotation upon the axis. If it be submitted to the action of instantaneous forces, one or other of the following effecta must enaue:1. The axis may resint the forcen, and prevent any motion. 2. The axis may modify the effect of the forcen, austaining a corresponding perciussion, and the body receiving a motion of rutation. \boldsymbol{J}. The forcea applied may be such as would cause the bolly to spin round the axis even were it net fixed, in which case the body will receive a motion of rotation, but tho axis will nuffer no pereussion.

What has been juat observed of the effect of i:astantaneous forcen, is likewise applicable to continued ines. 1. The axis may entirely resist the cffect of pech forces, in which case it will auffer a preescre which nay be estimated by the rules for the composition of force. 2. It may modify the effect of the appliod forees, in which case it must also sustain a pressure, and tho body must receive a motion of rotation which is subjeet to constant vaistion, owing to the incessant action of the forces. 3. The forces may be nuch as would communicate to the body the same rotutory motion if the axis were not fixed. In this case the forces will produce no pressate on the axis.
The power of centrifugal force in rapidly whirling bodies, may be rendered so great an to ovorcome the force of gravity. In whirling a aling with a atone in it, the atone does not fall out of its place in the sling. The following is a more striking exsuple:-Place a jug of water on the inside of tho rim of a wheel a few feet in diameter ; then, beginning gradually, set the wheel in ropid motion, and it will be olsserved that the jug retaina its place, whirling round in a perfeetly stable manner, and that even the water in it is not spilled. Thus, gravity, or the tendency to fall downwards, is overcome by centrifugal force. If tho jug wero placed in a situation in the wheel, near the centre of motion, where the centifugal force is weak, it would at onco fall to the gronsid.

LAWS OF PROJECTILES.

Bodies, on being prejected by any impulaive forces, are called projectiles, and ure observed to pursue a eurvilinear or hent line of direction in their motion. 'I'he bending from the atraight line is produced by the force of gravity, und "the change is proportional to the impressed force." A ball projected fium a cannon, a atone thrown by the and, and water spouted from a confined vessel, furnish fanilisr "xamples of eurvilinear motion.
It is a remarkable law of motion, that whether the free wlich projecta a body lie great or small, the body, if thown horizontally, will rearh the nurface of the earth from the same height, in the same space of time, not caleulating reaistance of the air. For example, if two gunn we fired from the same apot, at the same instant, and in a horizontal direction, one of tho balls falling half a mile,
and the other a mile diatant, it will be found atat the ball which proceeda the greatest distance takea precisely the name time to reach the ground which the other doea The time of Alight, an it is called, of two balla will be the eame in whatever directione and with whatever velocitiga they are fired, provided they reach the same height. Tha reason for the mame length of time being occupied in falling by both balla, is, that they are both earried downward at the same rate by gravity. Hence, a ball d opped perpendieularly from the top of a high tower, doen not reach the ground nooner than a ball shot from the same height to the diatance of one or more miles in a horizontal direction.

In projecting bodies th. ough the atmoaphere, great add vantage, in point of distance, is gained by impelling them from heights, because a ball thrown from a high aituation to s lower, reckoning its whole course, is more aided than retarded ly gravity. When the ball in projected from a lower wituation to a higher, it is in the first place retarded by gravity in ita ascone, and the ueceleration afterwarda by gravity being less tuan this previous retardation, is consequently does not go so far, or has not auch a wide range, as if projected from n height. Skilful generala, in lombarding towna at a sale distance, take advantage of this linw of projectiles.

We ore now prepared for the considerntion of one of the most important principles in dynumics, namely, the law of motion which governs a body ater receiving a projuetilo impulse.

A projectile exhibits a composition of motion, namely, a horizontal motion forward, when thrown in that direction, produced by tho impressed force; and a descending motion, produced by gravity, or the earth's attraction. These two motions ary unequal; they are not at the same velocity. The horizontal motion is uniform, while the descending motion, according to the law of gravitation in relation to falling bodies, is accelerated. The consequence is, that the projectile, as already mentioned, pursues a curved line of direction, the convex side of the curve being uppermost.

The degree of curvature of the line of motion depends on the amount of the original projertile force. The law is, the greater the projectile foree, or the greater the origi-. nul velocity of the object, so is the sweep of the curve proportionally greater.
Lret us suppose that the projectile force is aufficient to earry a cannon ball ten miles; this will give a very wide curve, allowing that the bail is shot from a lofty situation But let us add to the projectile force, and scind the ball double the distanco, and the curve is now exceedingly wide. If we in this manner go on adding to the projectile force, we at length give the bull such a motal force, that it will go quite round the world ; instead of describing portions of eurves, it will describe n whole circle.

This conducts us to a most extensive result. We have at once placed before ua a reason why the planetary bodies should have assumed curvilinenr patha in relation to the sun. The original prujectile foree which they received in connection with the force of gravitation, has obliged them to pursue eurved lines in their motion; and once being disengaged, they have, by a balance of centrifugal and centripetal forces, continued to travel in circular, or, properly speaking, elliptical orbits-the ellipticity being caused by n waut of oxact uniformity between tho forees which affeet them.

action and reaction.

We proceed to a cousideration of the first clause n the third proposition of Newton-" Aetion nust always be equal and contrury to reaction."

Action in the impression of force. A blow is action; pressure is action. Keaction is resistance; but the word resistance does not fully convey the meaning of reaction which properly significs the action of atriking or preraind
bick, even although the body atruck or preseed upon do not move. When a man atrikes a hammer upon in fixed done, the stone atrikes the hammer at the moment of contact as much an the hammer atrikes it. But if the atone be not fixed, and be liable to be easily upeet, then its reaction in less, and it acquires a momentum. When a bey throw hia ball againat the wall of a house, the wall ruacta on the ball, and causes it th rebound; but if the buy throw his ball at a pane if glase with the mame force, the glase, heving the power to reaint only a portion of the furce, gives way before it. In this case, if we suppose the ball to posmens the artion or force of 4 , and the glases to ponsean the reaction of 2 , the hall passing through the glass lowes 2 in lite force, and retainu the remaining 2. If it then ceme against anothre pane posseming a reartive power of 2, it would not break the glase, and, its force being now sjeent, it would fall to the ground. Thus, "action and reaction are equal."

A etory iv told of a person who, from hia knowledge of the law of action and reaction, betted that be would lie down on the ground and allow an anvil to be placed upon hil breant, and that any one might atrike the anvil with as much force as he was plessed to exert. In this ense, the person who made the offer was quite anfe, prorided he could support the weight of the anvil; for'if a how wore given with the utmont force by a comparatively light body, as a hammer, though it would communicato nearly double its momentum to the anvil, yet the anvil, being no heavy, would acquire so small a velicity that the shock given to the permon would be insensible. Were a freestons of the same weight as the anvil used, it would givo a still less shock, for the action and remetion of perfectly clantic bodies in twice as great as that of inelastic bodies. Iron has more elasticity then atone.

It is by reaction acting contrary or in opposition to uetion, that the movements of living objects are rendered effectual. When we wolk on the ground, the ground reaists the pressure, and we feel ourselven steadied. A bird in flying pushes itself onward by the flapping of ita wings againat the partially reaisting medium of the atmosphere. The partially resisting force of water, in the asme manner, allown a fish to propel itself by ita tail and fing. A sailor in rowing a boat causen the oare to jush againat the water, and, the water partially resiating the torce, motion is communicated to the bont. In puahing a boet from the shore, the firm ground has such a power of reaction, that we are able to give the boat mach greater momentum than if we pushed only against water. If wo go into the boat and try to move it, by merely presaing egainst some part of its fabric, no motion whatever is produced, for the action and reaction are equel. The whole force employed mant be rendered greater than the reaction, otherwiss no motion can be communicated to the body.

When two bodies come into collision with each other, as in the case of two bodies moving in a straight line, but opponito course, to each other, the law of action and reaction being equal, will not be clearly illuatrated, unieea the collision be in the direction of the centre of gravity or inertia of the two-in common language, unlese the blow bo fair. The centre of gravity in casee of this kind, is called the rentre of action, or perrussion. For exannjle, when we strike a ball with a club, fairly againt its side opposite to its centre of granty, it in impelled to comsiderable distance; but if wo strike it above this central point, a part of the force is expended in vain, or lost, and the ball moves but a comparatively short distance. Experience has demonstrated that the centre of action in hammers ahould be in the head or atriking part; and, therefore, in striking with these instrumenta, the blow may be given with every advantage. But when an at tempt in made to strike with an otject in which the centre of action is at a place short of its extreme point, for unstance, o common iror. poker, a part of tho action is
expended towards the hand of the permon who etrikean and he frels a disagreeable jarring mensation In his arm

This definition of the centre of action applies only to the motion of bodies in a straight line. In the case of revolving hodiea, the cenire of action or pereusmion is a point in it, to which if an immovable obracls be applied, the body will remain at rent without any tendency to move in any direction, and the axia will receive no athock In atraight rode, or hodies of any form, suspended as penduluma, the centre of osciliation in the same ar the centre of action in revoiving bodies.

MOTION IN ELAETIO BODIEE.

In reference to the effecte of collision, indies are alis vided into three clanses-hard, sof, and clastic. A hand body is one that suffers no change of form by the action of any force. A soft body in one that undergoen a change of form by this meanas An elastic body auffer a momentary change of form by the action of any force impresed upon it, and immediately aprings back, or recovern its original form. The frut two classea are "yled inclastic bodies.

If two equal inelastic bodien be moving with equal velocitien in opposite directions, and come in collision, each will destroy the onward motion of the other, and, conequently, both will be reduced to a efnte of rext. If thern be any clanticity in the bodies, they will, according to their degree of elasticity, rebound from cach other, and a positiva procese of reaction will be extilited. By thin meana there will be at once a counteraction and tranamission of force. As above ntated, when the loolies are perfectily elaatic, the artion and reaction are double that of inclastic bodics.

An example of the transmiasion of force or motion from one body to another, while the transmitting liedics remain at reat from their mutual counteraction of the force communicatel, may be seen in the case of a row of billiard halls, which ponseas a certain elanticity. Place mix billiard balls in a row on a smooth plane, and let them all bo pretty close to each other, or even in contact Then give a amart blow to the first ball, or, an we maj call it, No. 1; it will inutantly atrike against No. 2, which will communicate the force to No. 3, and from 3 it will be given to 4 , anll from 4 to 5 , and from 5 to 6 . None of the balla, however, will sensibly move from the nyont in which it reste, except the last of the row, which, having no ball to impinge upon, will roll away, and thus expend the force communicated by tho blow upon No. 1. An experiment of this kind is generally per-
 formed upon a number of clantic balls of a emall size, suapended in a row by threads, as in fig. 9 , in which case there is no friction to interrupt the procees of action and reaction.

REPLECTED MOTION.

A body projected by a singlo force procectly in a straight tine till a new force act upon it, and send it on a now line of direction. When a moving body is thus itr pelled into a new line ty atriking against some body, its motion is auid to be reffected.

Examples of refiected motion are viry eommon-as, for instance, whe:. e rolling hall eneounterm an opposing stone in its path, in which case it flies off ohliguely in s new direction; when we throw a thin piece of slate along tho suridce of a river, and make it skip from point to point; or when an apple, in falting from a tree, touches a lower branch in its descent, and rebounds in a alanting direction to the ground.

It ia found by experimenta, that moving bodies olverese certain laws in respect to the line of direction they pursue in rebounding or being reflected from any imped inrnt with which they happen to come in cot tirt. It mo

Menmpanyia
mab. (is a which bing nands the direction of Hected in th : D. Thu angles F an actly rqual ; ball utriking in leaving th prowehing it.
Whatever amooth fixed be followed. be dropped per larly from LL will rebound turn to l. If the tine $\mathbf{H K}$, rebound or be r 10 I . The angle a ball makes w perpendicular soing from H called the angle in rebounding fr of reflection. 'I A calculation cessary in the c to ward off n n anglo be too acu the abielding of nroyed; while \mathbf{i} give the blow w
If a billiard-pl the curhion, it wi erer, he atrike the talle, it will rehon pose a ball to be table, and to recei would make it the ball will fly o of the table oppo motion. By a kno Jten makea a hall of the table, and
which it was strue
thy those who hunc
compositit
Hitherto we hav sproduced by a si ar reflected by anot to cenaider the nubj notion and force pr on a hody in differe
If two or more f ut certain angles, rould produce the techaically calied Hace, a wind blow rut metting from tl whl tending to corry diections, the ship dinte direction, ns if Wite a breeve, from d
It is usual, in trea freep, to rupresent of which are signific the forces, of the dire ellectes proluced by
Husfating the action
In fig 12 , we have

Fig. 0.
, an in fig. 9 , in the proces of
proceeds in a nd send it on a ody is thua im. some body, its
common-ss,
Tw an oflwing ohliquely in cof slate along from point to a tree, touche da in a alanting

- bodica oheerse ection they pur. any imped inent al tiet. If ms
mennpmonying eut, fig iv, the line A B is a level marble mab. (I In an ivery bell, which being thrown towarda the mlab in the direction of $\mathbf{C} \mathrm{R}$, in refiected in the direction f D. Thus the two anglen F and (i are ex-

Fig. 10 actly equal; and it in demmatrnted, that a perfectly elaatie ball utriking a mooth wall or floor maken the anme angle in leaving the point where it atrike that it doen in approaching it.
Whatever be the angle at which the ball atrikes the mooth fixed surfuce, the mame rule will be obwervel to be followed. Thia ia exemplified in fig. It. If the ball be dropped perpendicularly from It to K, it will robound and retum to It. If aent in the line H K, it will rebound or be reflected to I. The angle which a ball mukes with the perpendicular line in
 poing from H to K , is called the angle of incilenre ; and the anglo which it makes in rebounding from the point at \mathbf{K} to \boldsymbol{I}, is called the anyle of refection. These anglea are alwayn equal.
A calculation of the nngles of reflected motion la necessary in the case of presenting a shield or other oljject $t 0$ ward off a nisuile or hlow from the person. If the angle be too acute, that ig, if the blow be too point-hlank, the mhielding ohject may be damaged, or perhapa destroyed; while if the angle be ohtuse, the object which gives the blow will slide of harmleasly.
If a hilliard-player striko ball perpendicularly againat the euahion, it will return in the name dircetion. If, howerer, he atrike the bull at an angle agninat the side of the tatle, it will rehound on fly off at an opposite angle. Suppwe a ball to be pulaced half way up the aide of an oblong witle, and to receive suflicient force in such a direction as would make it strike the eentre of the end of the table, the ball will fly off at on angle, and approach the side of the table opposite to that from which it was put in mution. By a knowlenge of these laws, the hilliard-player sten makes a hall fly from one corner, strike the centre of the tahle, and reach the corucr parallel to that from which it was struck. A sinilar kind of skill is required to those who bandle the bat at the game of cricket.
composition of motion and fgrces.
Hitherto we have ajoken onlyof the motion of a hody as produced by a single impulsive foree, and turned asido w reflected by another foree acting upon it; we hnve now to conaider the subject of compound motion and force, or notion and force produced by two or more forces acting on a body in different directions at the same time.
If two or more forcen act on agiven point of a boly, u certain angles, a aingle force may be found which rould produce the same effect. This single force is wehnically called the resultant or cquibalent. For insance, a wind lifowing from the north-west, and a curmat eetting from the north-east, both aeting on a ship and tending to earry it with equal velocities in their owis drectiona, the ship will le found to move in an intermedute direction, no if it were acted on by a single furce, like a breezs, from luse north.
It is unnal, in treating of combinations of merhanical Gnes, to reprewelt them by diagrama, the various lines at which are signifiennt of the quantity or intensity of the forces, of the directions in which they act, and of the ellests proluced by them. This explains the reason for llastrating the action of forcen hy the following figures:Lu fig 12, we have an oxample of motion produced hy
two forcen acting on a body from different directions !
is a bail, which, heving received a blow at B, in proceeding onward to C. At the point A, while on ite D courne, it receives a blow equal to the former, which mecond blow would have been alone capable of carrying it to E in the aame time that the frat blow would have carried it to \mathbf{C}. Thin new force, by chang-

Fig. 12. ing the direction of the original motion, causes the bal to move in a line wwards F, and the effect in the same as if the ball had been at first sent in the directior of A \mathbf{F} by a aingle force. Practieally, it would be difincult to regulate blown with much nicety an to produce thin line of motion, but in the theory of foreen the law is as it has been stated. The line A \mathbf{r}^{\prime} in the figure here drawn in termed the diagonal of the square.

Bhould the constituent forces be of different magnituden, then the figure described may be parallelogram, or oblong, as in the annexed cut, fig. 13. The force here, in the dircction A B, is double that of the crom force \mathbf{U} D, by which meana the ball describea a diagonal line to F, and so forms a parailelogram, when we draw all the lines conneeted with the experiment. The parallelogram thus formed is called the parallelogram of forres. The two given forcee nct-

Fig. 13. ing in the directiona E B,
E. D, are called componenif, and the aingle force in the direction E F is the resultant. The procens of finding a single force equivalent to two or more forcea, is called the composition of fcretr.

The proeess of finding forees which will proluce a motion equal to that of a single force, is called the resolstion of forres. The following are examples:-
If a boat $\mathrm{D} E \mathrm{M}$ floating oll a river be pressed down wards in the line M C by a current, two forces, P and Q_{0}

acting in the directions M P, M Q, may bo found that will counteract the influence of the current, and keep the boat stationary. For, make MC to represent R , the force of the current, and make M^{\prime} equal to M C , and find M A and M B as before, they will reapectively represent \mathbf{P} and Q. If two men, therefore, pull two ropes in the directions M P, M Q, with forces denoted by M $\mathbf{A}, \mathrm{M}_{1}$ they would kerp the boat at rest. If the ropes be tied tc two posts at \mathbf{P} and \mathbf{Q}, the forcea M A, M B, will represent their reactions.

Let HI M be a canal hoat, M P the rope ty which is is drawn by a horse attuched to it at P. The force of?

the draught being denoted by MP, it may be remolved into M A and M B, of which only M A is eflicetive in

Irawing the boat forward ; tha ather force M B tenin to airn the nemi of the boat in the direction M B. 'I'hls last force muit therefore be counterseted, which le effected by means of the helm II Fiturnod to an oblique ponition. When the hoat ie in motion, the water, being at reat, produces a resiatance or premure againnt the helm. If (C D denote the reaintance, it may be remolved into II I) and II C, of which HID produces no effect on the helm therefore C II le the only effictive premare. Again, C H may be renolved into C F' and F II, the latter of which tende to turn the stern of the boat in the direction F H., and thus counteracta the force M B, by tending to turn the hoat round in an opposite direction ; and the part $\mathcal{C} \mathbf{F}$ tenda to move the boat backwarda, and thus, counteracteng a part of the force M A, it returle the progreme of the veseei. The two forces F H, M B, would inove the boat didewaye, or laterally, to the aide of the canal; hut thil can be prevented by giving the helm a little more ohliguity, for, from the length and shape of the vemel, it is much more eanily moved in the direction of ite length than of Itw breadth.
Lat T P be ahip, 8 I. ite sail, W A the direction of the wind and its premenre on the ail. W A can be remolved into $\mathbf{A} \mathbf{B}$ perpendicular to the suil, and $\mathbf{B} \mathbf{W}$ parallel to it, the latter of which han no effect in preseing on the anil; therefore A \mathbf{B} is the effective pressure on the auil. Were the veamel round, it would move in the
direction 11 A. Let $\mathbf{B} \mathbf{A}$ be resolved into $C A$ and B \mathbf{C}, the former $\mathbf{C} \mathbf{A}$ arting in the direction of the keel cr length of the vessel, or in the direction $C A$, and the latter perpendicular to
 it. or in the direction of the breadth. The former preseure $\mathbf{C} \mathbf{A}$ is the only premsure that moves the vessel forward, the other B (; makes it move sidewaya. From the form of the vemel, however, thim latter force B C produces comparatively little lateral motion; any that it doen oceasion is called lecorray. By turaing the lielm, the vessel may be male to tum round in any direction by the preasure of the water upon it, if the vessel has aleo at the name time progrensive motion.

COMMON MOTION.

Motion, as has been atated, is called mmmon, when participated in by two or more bodice. Thus, all things on the earth, including the atmosphere, have a motion in emmon with the earth; a permon riding in a chaise has a motion in common with the chaise; a person in a moving vessel at sea has a motion in common with the - -asel.

For convenience, we shall, in treating of this brouch of our subject, us" the terms larger and smaller lodythe larger lwing undermood to be the body on which the force to preduce motion in immediately impreased, and the amalier being the body which is carrind along by the bxiy which has reccived this impreasion of forve.
A large body is in motion; it is moving in a certain direction, at a certain velocity; every thing on it, or anall body connected with it, partakes in its motion, and has a tendency to proceed in the marne direction, and at the same velocity.

It appears strange that there ahould be communication of motion from the larger body to the amaller, without the immediate intervention of impreswed force on the maller, but a little examination shows that such nust necesarily be the case. The larger body has received the impulse to move, and this impulse is transmitted through the whole mans of the body, including oll tha mall objects on tis surface, and thone which ore any way connected with it in ite propulsion. When a man If walking on the deck of a whip which is moving at the rate of ten miles an hour, he perbaps imagincs that he
hos no more mntion than if he were walkieg in the eolh ground. Int it would lo ineorrect for him to think wo His borly, ant bvery thing about his jerson, have recelvel an limpules from the vewel; he promesses a velocity of ten miles an hour as much as the planks of the veesel do, and disis onward motion he camot divest himeetf of, an long as the shif continnes to move at this rate of apeed, or as long an he continuea in combections with it.

On account of this participation of mution in all bodien moviug in connected masmes, it in obsarved that all objectis whatever keep their proper places in or about the largo moving lodiea with which they are in contact, and beno no confusion take place in the relative situution of ob jects on the earth by its motion. For example, when we leap from the ground, the earth does not slip away from below us; If we amcend in a matraight line of direction, we fall down exactly upon the ame sjot whence we aromes. When a man falla from the lop of a mast of a moving vesael, he falls upon the deck upon a spot dircetly undes the point whence he fell। the vearel does not leave him When we are sitting on the cabin of moving veaseh and let a amall object drop from our hand to the floor, it falls on a point on the floor Immediately below, the same as if it hat leen dropped in a house on solid ground: the floor doee not leave it beliind. When we are aitting in a rapidly moving coach, and in a similar manner let an object fall, it desceuls in the namo manuer to the hotlom of the coach. The reason tior themo phenomena is that alrealy mentioned-lhe small oljecth joseess a motion derived from the larger; this comumon motion, or motal inertin, no some nuthore call it , in retalned by the amali oljects during their domeent, so that, wh! they are alno going forward; in other worth, they display a conmoxition of motion-a horizontal motion and a deacending perpendicular motion.

One of the mom lieautiful examples of commen mos tion, is thot which is exhibited by an equentrian mtanding on a horse which is running round a circle, while lie as the same time throws orangex from his hand and catches them in their descent. Nintwithatauding his rapid motion the oranges which are thrown into the air do not fall he hind; they return regularly to him hand. To countenct cenrrifugal force, he leans greatly inward; hut thix does not alter the law of motal inertia, which couses the wanges to return. He throws them alonowt sidewise is an inward slanting direction, and yet they rome readily back to him. The renaon for thewe plicnomena ia, that the orenges perticipate in the forces liy which he hiansly is inpelled and sustained.
Small hoolies which hove derived a motal inertia from a larger, continue to possegs this motal inertia aftor learinp the larger, until they mect with mone new impresaion of force sulficient to alter their condition. If thry wow not pulled to the earth by attraction, and wire not op. posed by the atmosphere, they would go on moving in a straight line for ever. Whell we drop a tall from the window of a moving coach, it continucs to go forwart as if it were atill is the conch, till js neet the grevid when it is atopped; thus, its notal inertia in dentroyed If we attempt to leap from a moving body, kuch is : conch or a boat, we continue to punsess the motion which we previously had, until we touch the curlh, when ne receive a shock by the destruction of our motal inertia But if we leap from one moving tuxdy to another moving body which is going near it, on tho sane level, in the same direction, and at the same velocity, wo nastain no shock, becaume the busly upon which we irap pumeswa the same condition of motion an that which we prosme

When a man, standing on the ground, showts at a lan on the wing, he requires to follow ite motion ly kerpang his gun moving when preseuted at it; but if he be stand ing on the deck of a ship sailing at the rate of ten mile an hour, and point his gun at u bird flying ins the mant direction and at the same velocity as the ship, then heo

Macd in th mequire te coting alm it requiren procereling entirely dow it be previon - gun which In the arme the bird, beca whe the gen direction of the nuotion of on If the whot a Pred point the bullet be instance a shif then a certain inertia of the add the motal
Ohjectu falli tion to thome w law that gover merly mentione horizontal and When thewe n acribes a curve being uppermo prodused by pro bence, powerful disengage a por - projectile impi

In consequenc motion in all thi can be no cons carried about by mooth, and ther are at reat. Th tion in common moothneas, we c We, howevor, ee motion int refere meane, we know of the earth's diu or planetary moti ser, a person sitti and not looking o menations, tell the t the shore, whic \checkmark the progremaive
n the coll 0 think wo ve receivel velocity of vesuel do, nseelf of, me te of apeed, ith. in all bodion it all oljects the large t, and hence iation of obde, when we ρ awas from direction, we we we aruene of a moving tireetly under ot lreve him. noving vesseh, o the floor, it low, the amme solid groand; we are aitting wanner let in to the hottom umena is that seess a motion otion, or motal d by the mali :o lencendinu den, they display motion and

If commen mor extrian standing role, while he at und and catches his rupid motion Ir do not fall le
To countenct 1; lut this doer bich causes the thowt sidewise is cy tome realily nomena in, that hich ho hamall
otal inertia from restin alter lessnew impressive If they wen ad wire not op on nooving in a a bull from the - to go forward wet the greand rim is destoyed body, nuch si a he notion which
rarlh, when we matel inetia anulher moving me level, in the , we whatain no drajp !inmema ich we prawion shoots at a but otion by kiepulis ut if lee be stando rate of tell mila ing in the anm blip, then be *

Aacd in the samn condition an the bird, he does not require to move his gun, as if following the bird in ching aim at a bind on the wing from the molid ground, it requires considerable will to prevent the shot from proceeding to a point behind the bird, herause the shot is entirely destitute of motal inertia on being fired, uniees It be proviounly put in motion. But a bullet on lesving a pun which bin moving at the aame rate an the bird, und In the aame direction, keepa going on in the direction of the bird, becaume it retains the motion it had in common with the gun. The bullet in this case does not go in the direction of the gun, but ohliquely, so as to keep up with the motion of the bird, wo that the wame effect is produced an if the ghot had been fired from a fixed gun on land to A fred point in the alr in advance of the bird. Should the hullet be fired from in gun in a moving vemael, for instance a ship mailing wewtward to a fixed point on land, then a certain allowance muat be maile for the motal Inertia of the bullet; it muat be fired a little castward, gad the motal inertia will carry it westward to the obyect.
Objects falling from bodien moving in an onward diree tion to thowe which are at reut, are regulated by the sama law that governs projectilem. The falling obljecte, an formerly mentioned, are affected by two motiong-one in a horizontal and the other in a deacending direction. When these motions are unequal, the falling body deseribes a curve in itw ilescent, the canvex side of the curve being uppermost. Thus motal inertia and the motion produced by projectile impule are the anme thing; and bence, powerful centrifugal force in the mun, sulficient to disengage a portion of its masa, would bo equivalent to a projectile impuine from it as a fixed borly.
In consequence of the general participution of common mation in all thingn connected with a moving body, there can bo no conmciousnews of motion in the living beinga carried about hy it, provided the motion be perfectly mooth, and there be no means of observing bodien which are at reat. 'I'hus, on account of our possessing a motion in common with the earth, which moven with perfect moothnesa, we can neither aee nor feel the earth moving. We, howevor, see the sun, which acems to us to be in motion in reference to the earth, hut which, by various means, we know to be at reat; and hence wo are assured of the earth's diurnal rotation on its axis, and its annual or planetary motion round the sun. In the same nianuer, a person sitting in the cabin of a smooth-sailing ship, and not looking out at the window, cannot, by hia mere manations, tell that the vessel is moving ; but if ne look it the shore, which is at reat, he is immediately senaible N the progremive motion of the vemeoh.

In looking from a moving body, ay from the earth to the aun, from ship to the shore, or from a coach to obs. jecte on the wayside, a delumive feeling prevalia that it in not the bonly you are upon, but the body which lis at rem, that in really moving-going in a direction contrary to that of the hody you are connected with. This is in consequence of our pownemion of motion in comimon with the moving body. We are under an influence, or in a condition, that render: ua incapable of meeing nur own motion; and hence the orror which the sense of vision loads us to commit, in left to be rectified by an ozertion of the understanding.

[WORKS ON NATURAL PHILOSOPIY

One of the best general viowa of thim subject is Herachell's admirable "Discource on the Ohjrets, Advantages, and Pleosures of the Study of Nutural Philosophy," orighnally publishet as a part of Lardner's Cabinet Cyclopesiliai and reprinted in a cheap form by the Harrerm Among tha lest work on tha history of Natural Philomophy are, Fischer's "History of ?hytirs since the Revival of Letters" (in German, Gottin iun, 1801, 6 vols.), and Playfair'a "Disseriation on the Progress of Mathem tirnl nud 1'hysical Science since the Revival of Letters," prefixed to the Encyclopadia Britannica, and continued by laslie. Amott's "Elemente of Physica" (Ar, ud. with additiona by Di. Hays, Philadelphia, 1829), it a well wi..ion and exceilent popular treatiso. "The Scientific Class Book," edited by Walter R. Johnson, Esq., is an excellent compendium. Dr. Reynell Coates's "Firat Lines of Naturnd Philosophy" (Philadeljhia, 1846) is a very abiv written popular treatise, illustrated by 264 well engr ${ }^{\prime} \ldots$, , raber lishments. This book has the advantage of t 'higur the scieuce down to its preeent state, and giving 4.0 reauit of all ita recent improvements and diacovorics Daniell's "Illustrations of Nutural Philosophy," and Euler's v Letters on Nuturill Philosophy," edited hy Brewster, are highly interesting and delightfui works, uniting the attractions of elegant atyle and great felicity of illustration with thorough ncientific knowledge.

In prosecuting the atudy of Natural Phitosophy, the learner will find his progress greatly facilitated thy the use of Iframu's "Enryclopadia of Srience and Art," latoly reprinted by the Harpers, in which the termia of acience are accurateiy explained and illustrated_-.Am. EQ]

MECHANICS-MACHINERY.

oENERAL definitions.

The a, plication of the lawe of motion and forces to objects in nature or contrivances in the arts, forms the hranch of Natural Philosophy ususlly treated under the head Mechanics, Mecifanical Poweras, or Elements uf Machinetr.*

Machines are, under ell denominations or circumsstances, enly instruments through which power may be made to act. 'They only convey, regu'ate, or distribute, the force or pewer which is communicated to them from some source of motion, and never rrente or generate power. But although a mat line does not creaie power, or give nore power than it has received, it practically applies the power which has been communiented to it, in $\boldsymbol{\theta}$ convenient and easy n manner, that a result ensues almost as surprising es if it bad actially generated the whole ar a portion of the power it exhibits.

The main purpose required in mechsnical operstions is to overcome, oppose, or sustain, a certiin rasistance or force. This purpose is ohtained by applying atother species of force. According to the usual phraseology, the resistance or force to be overcome is called the treight, and the force which is applied is called the pourer.

The shilny of applying force by the human hands, without the nid of instruments or machines, is very limited. In slmost all our operations of art, it is found necessary to call in the nid of instruments or machines of some kind. All the instruments which nankind have adopted for their use-from the piece of stick with which the savage serntehes the ground as a plough, to the most elegantly finished piece of mechanism-nct upon certnin fixed principles in nature, which a long course of esperience and scientific investigation has developed.

The mechanical powers which exhibit the working of these principles, sre strictly only three in number, namely,-1. the Ierre; 2. the Pulify, or Corif: 3. the Inclined Plane. These may be called the Primary Mechanical Powers; and from two of them, the Lever and Inclined Plane, other three are formed, as follow1. Wheel rand Axle, frem the I.erer: a. Itedle, from the Inclined Jiane; 3. Sircte, from the Inclined Pline. These may be colled the Secondary Mechanical Powers. The six altogether form the elements of every species of machinery, however complex.

of levers.

The lever is one of the most important and extenpively uncil oi all the merhanical powers, und its operation exlibits some of the leading prificiples in mre chanics.

A lever in a rod, or har of iron, wood. or any other material, which is movalle upon or about a prop or fulcrum, or about a fixed axis. It is called a leter, from a French word, sienifying to raise, and has timen apllied to instruments for ruising or litting wejphts.

Three elements contribute to the iperation of the lever-the porrer, the ful, um, and the wachi. The fower is the force applied. the fulcrum in the prop or bupport, and the weight is the resistance or hurab:s to lie lifiad. The terme power sud wetght have merels a referunce to the manner in which the machine is used;

[^15]strictly, both the power and weight are forces the mame in character and action.

There are three kinda of levers, differing according to the relative situstion of the power, fulcrum, and weight. Ench of these kinds rensists of a straight bar, and in theoretical calculations is supposed to be in itself destitute of any gravity or degree of haviness. In theory, also, the ferces which are applied are supposed to aet at right angles to the fulcrum.

In the first or most simple kind of Iever, "the fulcrum s disposed between the power and the weight." In the second kind, "the weight is disposed between the ,ower and the fulerum." In the third kind, "the power is disposed between the weight and the futcrum."

In the first kind of lever, "the fulcrum is disposed between the power and the weight." Figure lis an
example. A to B is a straight bar, reating on a prop or fulcrimm F. From A to

Fig. 1. F is the long arm of the lever, and from F to B is the abort nrm. P is the power, or a certain force drawing down the extremity of the long sim at A. W is the weight suspended from the extremity of the short arm at $1 \mathbf{3}$. The oljeat is io cause P, which is supposed to be a small weight, to balasce or overconse W, which is supposed to le a weight much heavier. Fracticully, the force of a man pressing upon the extremity of the handle of the lever nt A, will etlect with ense, in lifting the heavy weight W, what it would require a much grester force to accomplish by pressing upon the long arm at a point half way letwixt A and the fulerum.

This is more clearly exemplified in fig. 2, which represents a lever placed conveniently for raising a square block W, which is the weight. On pressin; down the extremity of the long arm of the lever at A, the point of the short
 Fig. 2. arm 3 raises the hock. F is an olject lying on the ground to press against as the fulcrum. As in the case of lig. 1 , "the force of a man pressing upen the extre mity of the handle at A, will effert with ease, in lifting the weight W, what it would require a much greate: force to sccomplish by pressing 1 pon the long arm at s joint half way hetwixt A and the fulcrum."

The principle in merhenics which produces this phenomenon is very simple, and is explaned by what is called the Law of Virtual Vilocities, or, from its genersl application, the Golden Rule of Mechanies.

This law or rule is, That a small wrisht, derornding " long uray in any giten lengeh of time, is equal in effert to a ghat wiaht discemding " proportitundly shorter way in the stmue epuce of time. In other words, what is gained it velocity or time, is lost in expenditare of power.

Another way of ntating this important law is as fol-lows:-In the rase of cymbthrium, if a motion be given to the marhunmal purer, then the poucr mulliplict by the spuce through whilh it meves in a birticul directun, mill to "ual to the terigh nultuplicel by the xpace through whirh in mores in a vortual direction.
'Jhis primeiple, which applies to every mochanucs movement in the ense of equilibrimm, has been illum trated by a reference to the property of attruction of grevitation. What is called weight is ond"en efixa*
gravity on every aton ine or cor falls ten in out from, 0 to rise or f
Thus, by mny cause spuce of ter moving thr a weight of foot, we ms epace of te powers sha pounds thro eleven feet; ipace of nin len pounds Neither b any, other of alisolute inct other worda, great and ins the power wh that we can accommodate applied powe vicw.
'lo apply 1 a mmall force , at a point hs both cases, the expended. A continued for the force st ap tirued for the: fore, cun be ext long arm of thi arm long enoug
It may possil
tiots to push
ths lever, ss to
tha fulcrum.
the case ; but w
to he usel, and are necessary, it in warking with the sweep of th son using it has over a larger spa reason, although as great a weigh raising weights woner fatigued.
It ia a general creases in propor the fulcrum iner the distance of the la making calcul be observed betwi must be praid to t short anms of the te the units of we same on both end flength of the s length of the lon ounces e made minces must be antu.
Rule,-Multiply fulcram; thern mu the saine proint; reight anc the por Exumple First.
gravity on the stoms of matter. In figurative language, esery atom is drawn towards the earth by an invisible line or cord of attraction; and when one atom rises or falls ten inches, the same quantity of sttraction is drawn out from, or sent back to the earth, as if ten stoms were 10 rise or fall only one inch.

Thus, by a proper mode of spplying the power, we may cause a weight of one pound, by moving through a sprice of ten feet, to raise snother weight of ten pounds, moving through a space of one foot; or (the reverse) by a weight of ten puinds moving through the space of one toot, we may make a single pound move through the epace of ten feet. But by none of the mechanical powere shall we be able, by moving a weight of ten pounds through one foot, to move a single pound through eleven fect; nor, by a single pound moving through a space of nine feet, shall we be able to raise a weight of len pounds through one foot.
Neither by the power of the lever, therefore, nor by eny.other of the mechanical powers, can we make any absolute increase of the power which is applied. In other words, the quantity of power expended in any great and instantancous effort, is exactly the amount of the power which has been previously accumulated. All that we can do to procure mechanical advantage, is to accommodate the velocity, force, or direction of the spplied power, to the purposes which we may have in hew.
'I'o apply thas principle to the lever: in figs. 1 or 2, a small force at \mathbf{A} is equal to double the force exerted at a point halfway betwixt A and the fulcrum, yet, in beth cases, the same amount of mechanical power is expended. A slight push downwards at \mathbf{A}, by being continued for one minute, is equal to a push of donble the force at a point halfwsy towards the fulcrum, contibued for the same time. Any amount of force, therce fole, ctin be exerted with ease at the extremity of the long arm of the lever, provided we choose to make the arm long enough and strong enough.
It may possibly be said that it would be as expeditious to push down the extremity of the long arm of the lever, as to push down the arm at the point nearer the fulcrum. Practically, in small levers this may be the case ; but when levers of considerable length have the useal, and a succession of depressions and raisings are necessary, it will be foun- 1 that more time is spent in working with a long than a short lever. For when the sweep of the lever is inconveniently long, the person using it has to move his body quickly up and down over a larger space, and is sooner fatigued. For this reason, although a boy with a long lever may balance as great a weight as a man with a shorter one, yet, in raising weights successively by $i t$, the boy would be woner fatigued.
It is a general rulo that "the force of the lever increases in proportion as the distance of the power from the fulcrum increases, and diminishes in proportion as the distance of the weight from the fulcrum diminishes." In making calculations to ascertain the proportions to be observed betwixt the power and the weight, regard must be paid to the respective lengiths of the long and short arms of the lever. We must also fix what are to the the units of weight and distance, and let them be the tane on loth cnds. If we state inches to be the unit of length of the short arm, inches must he the unit of lingth of the long arm; and in the same manner, if waces se made the unit of weight of the short srm, sunces thust be made the unit of power of the long ann.

Rule-Multiply the weight by its distance from the fulcrum; then multuply the power ly its disknce from the saina point; and if the products are equal, the reight ani the power will babase each other.
Exunule F'irst.-Suppose a weight of 100 pounds on
the short arm of a lever, at the distance of 8 int.firy from the fulcrum, then another weight or power of 4 pounds would be equal to this, st the distance of pro inches from the fulcrum. Because 8 multiplied by 160 produces 800 , and 100 multiplied by 8 produces $800-$ and thus the weight and the power would mutually counteract esch other.

Example Second.-Suppose we wish to calculate what power chould be employed at the end of the long arm of the lever to balance a given weight at the erd of the short arm. We multiply the weight by the length of its arm. This gives us a product; then divide that product by the number of inches in the leng arm, and the result or quotient is the power. Thus, a weight of 10 pounds, multiplied by 10 inches as the length of the short arm, gives a product of 100 . If the length of the long arm be 20, we find how many twenties are in 100 , and there being 5 , consequently 5 pounds is the power. In this instance, the mechanical advantage is two to onc-that is, the power is twice as small as the weight.

The common spade used in delving in gardens offers a similar sxample of simple lever power, when employed in raising the earth from its place to turn 't over. Fig. 3 represents an equally fsmiliar example, namely, a wood-bawyer ot carpenter moving a log of

Fig. 3.
timber from its place, by mesns of a long pole or beam of wood. Stone masons use a lever of iron of this description, called a crow-bar.

The power of the first kind of lever is frequently scen to operate in machines or instruments Laving two arms. The most common examples of this nature sre pincers, scissors, and similar instruments. In the pair of scissors here represented, the two
 finbs are secu to be

Fig. 4.

joined together with a rivet at the centre, which is the fulcrum of both.

A common scale beam for weighing, used by shof keppers, is an example of the first kind of lever, formed with two arms of equal length, and suspended over the centre of gruvity, so that the two extremitice balance cach other. See tig. $5 . \quad \mathrm{S}$ is a string or line suspending the beam A 13 at a central point F, which is the fulcrum. 'I'he point of suspension, or pivot, is sharpened to a thin edge,so as to allow the arms to rise or fall with as lit le friction as possible when any thing is put in the scales.
There is mother kind of balunce called a steclyurd,
 which consists of Fig. 6. a lever with nrus
ry mechanics ras bicen illus fi attraction of Hey atior 4
principhe of distance from the fulcrum on the long arm corrpensiting for weight on the short arm, as already defined. Fig. 6 is a representation of the atcelyard balance. C is the fulcrum or pivot by which the beam ia suspended, and freely plays as on an axis, A is the short

arr, and the opposite end ia the long arm. W is the acal3 for the reception of the article to be weighed. The long arm ia graduated into divisiona by marks, each mark denoting by a figure a certain number of pounda or ounces. P is a weight of a certain heavinesa, and reing movable by a ring, it can be alipped along the bar to any required point. The same weight is always used, and thus constitutes one of the principal conveniences of this kind of balance. In proportion as the article to be weighed in the scale W is heavy, so is the weight P alipped along to a greater distance from the fulcrunn ; and when it is brought to a point where it balances the article, the figure on the har at that point indicates the amount of the weight. If P be one pound, and if, when auspended from the division at 6 , it balance the weight at W, $i t$ is evident that the weight will be aix times P, or 6 ponnds. And so on with all the other divisions.

The steelyard, though not so ancient as the common balance, is of conaiderable antiquity. It was used by the Romana, and has lorg been in use among the Chinese. Naither the common balance nor the atcelyard are suitable for showing the varying weight or heaviness of an article at different latitudes of the earth's aurface, because the weights employed are equally affected with the attraction of gravitation and centrifugal force, as the erticle to be weighed. For this reason, the difference of weight resulting from the causes mentioned, can only be demonstrated by a balance formed of a spring of elastic metal. By muspending the article from the apring, it pulls it out to a certain extent, snd so indicates the weight on graduated scale on the instrument. As the spring acts the same in all latitudes, it aerven as a fixed and unalterable power, while the article to be weighed is liable to an alteration in its weight or heavinena according at it is brought near or carried from the equator.

In the lever of the second kind, the weight is placed between the power and the fulcrum, as in fig. 7. The line from A to B is the long arm, B to P is the whort arm. W is the weight, and P is the power. The object re-dP quired by this lever is to lift the weight W by rais-
 ing the extremity of the lever at A. In this, an in the case of the first kind of lever, the power is increased in propertion to its distance from the fulcrum.

Exampler of this kind of lever power are common. the of the most fanihar is that of a man purhing or lifting forward a bate of gerds, ts represented in fig. 5, in which the bale or weight W' prewos

againat the lever betweon the power P and the fir crum \mathbf{F}.

Another example of the sccond kind of leve- is that of a man using a wheelbarrow, as represented in fig 8 A point in the wheel of the barrow where it pressea on the ground, is the fulcrum. The body of the barrow, with its load, is the weight. And the two handles, lifted or held up by the
 man, form the power. $\begin{aligned} & \text { In proportion as the man ahortena or lengthens the }\end{aligned}$ handles in holding them, so docs he increase or diminish the weight he has to suatain.

Two men carrying a load between them on a pole, is also an example of the secend kind of lever. The load may either rest upon or be dependent from the pole. In the case of tivo porters carrying a sedan chair by means of two poles, the load or weight is partly above and partly below the line of the lever. In the case of porters carrying a barrel slung from a pole, as in fig. 10, the weight is altogether below the lever. In both instances the principle is the same. Each inan acts as the power in moving the weight, and at the
 game time each man becomes a fulcrum in respect to the other. If the weight hang fairly from the centre of the pole, each man will hear just a half of the burden; but if the weight be slipped along to be nearer one end of the lever than the other, then the man who bears the shorter end of the pole supports a greater lond than the man who is at the long end. The wejght increasea precisely in proportion as it advances towards him. Sometimes, when a man and a boy are carry. ing a handbarrow between tham, the man, in order to ease the weight aa much as possible to the boy, holds by the arms of the barrow near to where they join the loaded part.

In yoking horsea to the arirenities of cross bars in ploughs, coaches, or other wibinca, care requires to be taken to hook the cross bar to the load at its centre, otherwise one horso will have to pull more than the other.

An inflexible beam reating on supports or fulcra at its two extremitiea, acts similarly as a lever of the second kind. Should no weight be appended to its centre, the weight of the material itself, when the extension is conaiderable, will be enough to bend it down, and even to break it. Extended flexible cords or chains are from this cause alway bent down in the middle, no power of extenaion being able to overcome the gravity of the materials, which will give way before they can bo rendered perfectly straight. The bended atring of a boy's paper kite is an exomple of this powerful infu cuce of gravity of materiala.
The instrument used for cracking nuta (fig. It) is an example of the second kind of lever with two arms or limbs. The ful-
 crum is the joint which connecta the two limbs; the nut between them is the weight or resistance; and the hand which μ resses the limbs together, in order to break the nut, is the power. As earh limb is a lever, a double lever action takes place in the operation.

The oar of a boat in rowing is a lever of the second kind. 'The hands of the suilor who pulls constitute the nower: the boat is the weight to be mored: and lie

water age

 fulcruin.The ser an inatrun is. for exa wall, the f extremity In this rud in soma pa
In the betiveen th, fulcrum (fit crum is at of the short weight W is the extremi am at A; power.

In this ki shle disadivas vantage is co is frequently both nature velocity with treme point - creat space. or art, is used versed quick! power must al An example board of the workinan pro on the board o the end which ground, or fu causen the opp mity of the boa in a downwa over a conside A spring over crank, pulls the ayain by means s; the workma constant action
lathe is ensily p
A man wicldi instances of usir third kind of lev able when we tingers near the which are two l able space.
Before the pe hecame known, losing lever.
The movement produced by the a

When several nected tagether, a other, if, In this machioe, a to the pressure on the power, the ford ing to the number
Fig. 14 reprose thric simple fever and each working ohject of the mach P, to move or balin? rule appliem, in cal lever, which has lever-namsly, ". M 'to diz'anc ifrom th y ith distan ce froms
water againat which the blade on the oar pushes, is the fulcrum.
The second kind of lever is sometimes employed as an instrument of pressure. The point of the short arm is, for example, pushed into a crevice or hole in the wall, tuo fulcrum is the object to be pressed, and at the extremity of the long arm a heavy weight is applied. In this rude but efficacious manner are cheeses pressed in some parts of the country.
In the lever of the third kind, the power is placed between the weight and the fulcrum (fig. 12). The fulcrum is at the extremity of the short arm at F ; the weight W isdependent from the extremity of the long arm at A; and P is the

Fig. 12. power.

In this kind of lever, the power acts with considershle disadvantage, or with small effect; but this disadvintage is compeneated by an opposite advantage, which is frequently of grest importance in the operations of both nature and art. The advantage consists in the velocity with which a small power will cause the extreme point of the long arm of the lever to move over a grest space. This lever, therefore, whether in nature or art, is used only when a great space has to be traversed quickly by the long arm; but in this case the power muet always be greater than the weight.

An example of this kind of lever is found in the footboard of the turning-lathe (fig. 13). The foot of the workinan presses lightly
on the board or plank near the end which rests on the ground, or fulcrum, and causes the opposite extremity of the board to move in a downward direction over a considerable space. A spring over head, or a crank, pulle the board up

Fig. 13. a jain by means of a string S; the warkman ngain presses it downward, and so a
constant action of the string or cord which works the luthe is casily produced.

A man wielding a flail with two hands, and similar instances of using weapons, are also examples of the third kind of lever action. A similar action was observable when we use firetongs; a small motion of the fingers near the joint of the instrument causes the legs, which are two levers, to open or ahut over a considerable space.
Before the peculiar advantages of this kind of lever hecams known, or were sppreciated, it was called the losing lever.
The movements in the limbe of animals are generally produced by the action of this kind of lever power.
When several levers of the simple kinds are connected together, and are made to oporato one upon the other, th. chine so formed is called a compound lever. In this mathine, as each lever acts with a power equal to the pressure on it of the next lever between it and the power, the force is increased or diminished according to the number or kind of levers employed.
Fig. 14 represents a compound lever, consisting of threc simple levers of the first kind, placed in a line, and each working on its own fulcrum. The desired ahject of the machine is for s small Cres or power at P , to move or halance n large weight at W . The same rule applien, is calculating the action of this combined lever, which has already been given for the simple lever-namsly, "Multiply the weight on any lever by 'to die'sne I from the fulcrum; then multiply the power Y its distas ce from the same point, and if the pooducte

are equal, the welght and the power will balance cara other." Or, for the form of lever in the figure, "Mul tiply the length of the long arm by moving the power, and multiply that of the short one by the weight, or resistance."

It is supposed that the three levers in the figure are of the ssme length, the long arms being six inches each. and the short ones two inches each; required-the weight which a moving power of 1 pound at P will balance at W. In the first flace, 1 pound at P would bslance 3 pounds at E; we say 3 , because the long arm being six inches, and the power 1 pound, 6 multiplied by 1 is 6 ; and the short one being 2 inchcs, we find that there are 3 twos in 6 , therefore 3 is the weight. The long arm of the second lever being also 6 inchcs, and moved with a power of 3 poundr, multiply the 3 by 6 , which gives 18 ; and multiply the short arm, being 2 inches, by a number which will give 18; we find that 9 will do so (9 twos are 18) ; therefore 9 is the weight borne at the extremity of the short arm of the second lever at D. The long arm of the third lever being also 6 inches, and moved with a power of 9 pounds, multiply the 9 by 6 , and we have 54 ; and muttiply the short arm, leing 2 inches, by a number which will give 54 ; we find that 27 will do so (twice 27 is 54) ; therefore 27 is the weight borne at the extremity of the short arm of the third lever. Thus 1 pound at P will balance 27 pounds at W; or 1 ounce at P will bslance 27 ounces at W-the proportions being always alike, whatever denomination of weight we employ.

In this instance, the increase of power is comparatively small, because the proportion betwren the long and short arms is only as 2 to 6 , or 1 to 3 . If we make the proportions more dissimilar, as 1 to 10 , or 1 to 20 , the increase of force becomes very great. For example, let the long arms be 18 inches each, and the short ones 1 inch each, and 1 pound at P will balance 18 pounds at A, and the second lever would be pushed up with a power of 18 pounds. This 18 being multiplied iny the length of the lever 18 , gives 324 pounds as the power which would press down the third lever. Lastly, multiply this 324 by the length of the lever 18 , and the product is 5832 pounds, which would be the final weight at W which 1 pound at P would raise.

The following is n general rule for calculating the advantages of a compound lever consisting of any number of levers, whether equal or not:-Call the arms of the different levers next the power the arms of power, and the other arms the arms of weight; then, if the lengthe of the arms of power and the power iteelf be succensively multiplied together, the product will be equal to the continued product of the arms of weight and the weight, when the power and weight are in equilibrium.

A similar result to that of a combination bf levers might be produced by only one lever, provided it werr long enongh, but the operation would be both clumsy und inconvenient. By combining levers, and making them act one upon another, great weights may be limInnced within a small compass, and with an exceedingly small power. On this account, machines are constructed with combinations of levers, for weighing leadeo carta and other heavy burdens. The cart is wheeleu upon a sort of table placed level with the ground. leeneath which the levers are arranged; nud a small weight
placed on a scale altached to the extreme point of the firat lover, balances the load, which rests on the table above the last lever. This sper, jes of weighing-machine Is often to be seen at toll-bars.
In the foregoing examples of levor powers, the levera or bars are aupposed to be straight, and the powers and waights, or forces, are aupposed to act at right angles with them.
levers are frequently bent in their form, for purposes of convenience, and the powers and woights often act oblicuely, or not at right angles.

In calculating the mechanical advantage of bent levers, the chief matter of consideration is obliquity in the direction of the applied power and weight. Obliquity in the action of the forces generally diminishea the mechanical udvantage.

Whatever be the form of tho lever, or the direction of the power and the weight, the mechanical advantage of the power or the weight is always represented by a line draus frow the fulcrum, at right angles to the direction in tchich the forces are respectively exerted.

Fig. 15 is a bent lever, with the power of \mathbf{P} hanging from A, end the weight W banging from B. In this case, both the power and the weight wet at right angles to an ideal line, drawn as from \mathbf{E} to \mathbf{G} across the fulcrum, which strikes

the lines of direction of the forces at right angles.

OF THR WHEEL AND AXLE

A lever has been defined to be "a rod or bar of iron, wood, or any other material which is movable upon or about a prop or fulcrum, or about e fixed axis." The illustrations which have been given, ahow the lever only in its character of simple bar, which is movable in some part "upon or about a prop or fulcrum." It is now to be shown how it acte when movable upon or obout a fixed axis. When a lever in movable upon an axis, and is susceptible of being turned completely round, it assumes the character of the diameter of a wheel.

In fig. IG, the aimple rudiments of 2 wheel are repremented. A and B are the two arma of a bar or lezer playing upon a fixed axis at F, and which exis is the fulcrum. \qquad If we push down \mathbf{A}, we raise \mathbf{B},

Fig. 18.

A. In this manner the situation of the power and the weight is tranaferable from one end to the other, as in tha beam of a common balance, without altering the eccuilibrium.

Fig. 17 ia a representation of a whed in a state more alvanced to completion. Here the arms $\mathbf{A} \mathbf{B}$ are consnected with the arms D C, both at the centre F, and by s.eans of the cincumference or rim of -roc keol. By reason of thin inn of parts, the central axis uf F becomes the coinmon ful. crum for every portion of the shosel; therefore, from the centic to any point of the circumlirence is an arm of a lever, although the line of that lever lne not marked or seen, as in the

Fig. 17. case of a distinct apoke.

A line through the centre from one side of the circum. frrence of a wheel to the opposite sile, ia a diameter: from the centre to any part of the circumference, is the armi-dianeter or radius. The arms or spokes are anid to
radiate from a centre. The circumference is comermas called the periphery.
Besidea wheels with axes in the centre, there are wheels with exea not in the centre, called eceentric wheels. At prement, however, we are trentir. 3 only of wheels having their axes in the centre.

Wheels with a central axis may be rendered available as levers in various ways, according to the placing of the weight or resistance. The plan commonly pursued consiata in giving to the wheel an axle which is fixed to ita erms, and placing a weight near the axle or fulerum, to work againit another weight at the circumference.

Thus a machine is formed called the Wheel als! Axle, which constitutes one of the simple mechanical powers founded on the lever.

The machine termed the wheel and axle consiats of a whel fixed upon an axls or spindle, which axle turn horizontally on its iwo ends in upright supports. Sce fig. '8. The fulcrum of the msehine is common to both the wheel and the axle, nnd is the centre of the axie, A in the wheel, B is the axle, and Hisa handle with which the machine may be turned. By turning the whel, the axle is also turned, and a rope being fixed to the exle, with the weight W hanging at
 its extrenity, the turning of the wheel canses the axle to wind up the rope, and no lift the weight. If, instead of turning the wheel with the hand, we wind a rope round the circumference of the whed, in a contrary directicn from that in which the axle rope is wound, and also hang a weight of a certain heavigess, P, to its extremity, then the draught or pulling of the wheel rope in unwinding, will turn the axle, aad so wind up the axle rope with it weight. In this manner, one power works against another, exactly as in the ense of the lever. By properly spportioning the two powers in correspondence with the diameters of the wheel and the axle, tha one power or weight may be made to balance the other pewer at weight, so a to produco an equilibrium of the mat chine.

The wheel and axlo form what is called a perpetua: lever. Common aimple levers act only for a short apacs, or by reiterated efforis, no as to be adapted for lifling an object from one place to another on the gromud. The perpetual levis, formed by the whee! and axle, tums round without intermission, and is therefore suitable for lifting weights att ached to a repe, throug! a considerable space upward fom the ground without stoppisg.

Hig. 19 is a representation of the machine enderise, and ahown how the lever operates. The line guins
across the machine from \mathbf{A} to \mathbf{B} represents the line of the lever. A in the situation of the power, F is the centre or fulcrum, and B is the situation of the weight; therefore, from A to F is the long arm, and from F to B is the short arm of the lever. In other words, the long orm is half the diameter of the wheel, and the ahort arm in half the thickness or dismete, of the axle.

By wideniug the wheel, and oo lengthening the long arm of

Fig ${ }^{9}$ the lever, the smaller will be tho power necessary to ovip corve the weight on the axles or short arm; but vhat a gained by this mechanical advontage is lont by the ar cumatance that the power must dewcend tin igh a poo
protio throug TJ same r simple the ful axle) ; name po if the p halance dejendir inchea pounds arle one -Note. the overt lingth of a natter The pri is introdu are of gro life. One principle, rope and b in which horse or ste
I'he eap ing or drav "rimple of and axle, in an uprigh ral, instead zontal, posi ing. 20, one capstans is ev. The axle uprisht, with winding abo having a head with holes fo or levers, wh to turn. Th shipboard; w tivid aside.
Ae illustra
form, is aftern

Tho pulley, pewers A p lerence, and pulliys, a flex bung from the tremity a cert: extremity a po
There are ti
The annexe is the wheel, B is suspended. ing at one end is the weight o kind of pulley ley, becaume it its position,
Tlue fixed put chanical ndvan metely a lever Lherefore the ". Chese anus gan tise n parmil of the corl, the the uthor.
The oiject o
power, bat to gi
pretually greater apaco in order to raise the same weight through the asme apace in the aame time.

Ty find what forces will balence each other, let the same rulea be followed as those formerly given for the simple lever. Multiply the welght by its distance from He fulcrum (that distance is half the diameter of the axle) ; then multiply the power by its distance from the ame point (that is, hadf the diameter of the wheel), and if tho producte be equal, the welght and the power will halance ench other. Thus, a pever of one pound at or depending from the circumference of a whed of twelvo iuches in diameter, will balance a weight of twelve pounds at or dependivig from the circumference of an usle one inch in diameter.

- Note-No ellowance is inade in these calculations for the overlaying of the rope in winding, which affects tho lingth of both the long and the ahort arm; but this is a natter of practical, not of theoretic import.
The principlo of the wheel and axle, or perpetual lover, is introduced into various mechanical contrivances which are of great use in many of the ordinery occupations of lif. Oae of the simplest machines constructed on this principle, is the common windlass for drawing water by a rope and bucket from wells. Coal is lifted from the pits in which it is dug, by a aimilar contrivance, wrought by horse or steam power.
The capstan in gencral use on board of ships for hauling or drawing up anchors, and for other operations, is an "rimple of the wheel and oxle, constructed in an upright or vertiryl, instead of a horizontal, position. In fig. 20 , one of these capstars is represente6. The axle is placed turight, with the rope winding about it, and having a head pierced with holes for spukes

Fig. 20.
or levers, which the men push against to cause the axle to turn. This ia a powerful and convenient machine on shipboard; when not in use, the apokes aro taken out and Ciid aside.

Ac illustration of the wheel and axle, in a combined form, is afterwards given in the case of the crane.

of cords and puldeys.

The pulley, or cord, is one of the primary mechanical pewers. A pulley is a wheel, with a groove is its circumfirence, and is suspended by a central oxis. In fixed phalluys, a flexible cord, which io made to pass over and hing from the upper part of the groove, has at one extremity a certain weight to be raised, and at the other extrenity a prower is attached for the purpose of pulling.
There are two kinds of pullcys, tho fixed and movalle.
The annexed cut, tig. 21, reprementa a fixed pulley. A is the wheel, B is the beam or roof from which the whecl is suspended. P is the power hangtag at one end of the rope, and W is the weight at the other end. This kind of pulley is called a fixed pulley, because it does not shift from its position.
The fixed pulloy possesses no merhanical advathase. The wheel is merely a lever with cqual arms, and therefore the cord whith paswes over bese arms gans no ulvantage. 'T'o

Fig. 24. nive n punad weisht from the ground at the one mal of the conl, the power of one pound inust be exerted at the other.
The oiject of the single fixed pulley is not to save power, bat to aive convenience in pulling. For instance,
by pulling downwarda, a welght may be raised upwarle, or ly pulling in one direction, a load may be made to procerd in enother. The aame olject might be gained by drawing a cord over a fixed post or pivot, but in thu case the friction of the corn Nould chnfe or injure it ; the wheel or pulley is therefore a simple contrivance to prevent friction, for it turns round along with the cond.
The movable pulley is in form the same as the fixed pulley, but instead of being placed in a fixed position from a beam or roof, it loangs in the cord which passes under it, and from it the weight is suspended. In fig. 22, n. movalle pulley is represented. A is a hook in a beam to which one end of a cord is fixed. B is the movable pullcy, under which the cord passea and proceeds upwards to C, a fixed pulley, irom which it depends to ? the power or the hand pulling. The fixed pulley \mathbf{C} is of no further use than to change tho direction of tho power. \mathbf{W} is the weight hanging from \mathbf{B}.

The movable pulley possesses a mechanical advantage. The first point to be observed is, that the weight hangw in the cord; second, that the weight presses down each side of the cord equally-that is, it draws as herd at \mathbf{A} se at \mathbf{C} or P ; third, that the consequence of this equal pres sure is the halving of the weight between the two ende of the cord. The halving of the weight is therefore the mechanical advantage given by the movable pulley.
E.ample.-If the weight \mathbf{W} be ten pounds, five pound is borne by A, and five poundeby P. The case is precisely the same as that of two boys carrying a basket between thein. 'The basket is tho weight, and each boy, with hit hand upholding the handle, beara onily half the load, whatever it may be. If, instead of holding by the handle, the boys slip a cord leneath it, and each take pr end of the cord, the case is the same.

In order to save expenditure of power in lifting weighte by pulleys, it is alwaye contrived to cause some inanimato object, as for instance a beam or roof, to take a share of the weight, leaving only a portion to be borne ing the person who pulls. But in this, as in all casea of me chanical advantage, the saving of power is effected only by a certain loss of time, or a longer continuation of labour. To lift a weight one foot from the ground, by the novable pulley, a man muat pull up the cord two feet; therefore, to lift a weight, it will take double the exertion to draw it up a given height in a given time without the pulley, than it would require with the inter vention of the pullcy.

As the power which a man can exert by hia handa, in able to overcome a weight greater than the weight of his own person, this circumstance may he taken advantage of in a very peculiar inanner, through the agency of the fixed pulley. As represented in fig. 23, a man may seat himself in a loop or seat attached to one end of a cord, and passing the cord over a fixed pr!ley above, may pull himself tupurds by drawiug et the other end of the cord. Br wdding a movable pulley and entither fixed pulley to the apparatus, the exurtion of pulling would be diminished ver half. An apparatus of this nature, having two fixed pulleys and one movable pulloy, is used by house masons und other artis, ha, in making

Fig. 23. repaire on the frunta of buildings.

The principle upon which pulleys act, is the distribs
fion of weight throughout the different portions of the cons, co as to losuen the power incessary to be exerted hy the perator. And along with tus principle is the changing of the direction of the power for tho sake of convenience in pulliny:-

Acearding to ordinary language, the mechanical powar of which we are treating is called the power of the gul ley; hut, in reality, an has been just shown, the puliay has no power in itself. The purer of the machine is in the cord. It is in the cqual tenvion of the cord through its whole length, by which the weight is distributed upon interrening points, that the machine offers any mechanical advantoge.

In all cases in which cords aro Jrawn tightly, on us to hold objects in close contact, the sams species of power or unechanical advantage is exemplified. Fin inatance, in drawing a cord in lacing, or a threed in mowing, this distribution of power is obser vable. If all the power which is dissributed throughout the newirs of a single pair of atrong shoes, were released and concentruted in one main draught, it would, in all likelihoorl, be a power sufficient th lift one or two tons an weight.

Technically, the wheel of a pulley is called a abeave; for protectiun zard convesience this sheavo is ordinasily fixed with pireos in a mass of wond called a blork; and tho ropes \& a romis aye called a tarilc. The whole machine, fully mousted er working, is termed a blork ami tackile. By caoning a whet and axhe to wind up the cord of a
 that of the pulley in the of wr cora.

There is no askignalde liniz it the yawer which may
 conetructed to mise with tase any wertit: which the strength of materials will beter, provin, itin cutnbirstion is not so complex an wo exbaust the foxer by the triction proluced.

The proner of paliey sa increared by a combination of wheele or straves if one tackle. Jhere are different kinds of combinations ar systems of pulleys. In some there is only one fixed pulley, and in others there are yaveral.

The fellowing are examples of difierent combinations Lipulleys:-
i'sure 24 represents a compound system of pulleye, 3y which the weight is distributed thriogit fous folds of the same cord, +o as to liesey only a fourth of the - eight, wheti.ver it may le, to be r ised by the operator. In thia il$1 \cdot$ alration, the cord number 1 hears ove-fourth of the weight ; the cord v mber 2 lueare a second fourth; the ceri number 3 bears a third fourth; ar ' 2 :ecord number 4 bears a fourth fiv th. Here the meehanical auivantagn ceases. For although the cord number 4 pasen ever the topmost Exed puliey down to the hand of the sperator, no more distribution of power takes place ; this topmost pulky being of we only to clange the dinecus: of the power. The person who $\mathrm{Ft}^{\prime \prime}$ i has thus only a quarter of
 the weight to draw. If the weight be one hundred pounda, he has the labour of pulling oniy twenty-tive jounds.

Thus it ia olmervable that the diminution of weight is 'n propation to the number of movable nulleys. T', "alculate the expenditure of power or weipht, therefore, we have only to mult: if movable pulleys two, and the p. rution of .W. hows the tawer fo twe ererted. Two movable pulleys multiplied byo, giver 4 ; therefore a fourth of the weight is the
power required, and so on. THe malition of a mighe movable pulley to any aystem of pulloya, at once !esavim the apparent weight one-half, or, in other words, double* the effect of the power; but every such addition caneey more time to be spent in the operation, there being at overy additional fold of the cord noors cord to draw cuth and alao more fivietion to overcome.

In the annexed system of pulleys, Fig. 25, a meries of
movable pulleys, with different conls, are made to act nuecessively on one another, and the effect is doubled by each pulley. A: the extrenity of the first cord, a nower of one pound depends. This cord, marked 1, by being drawn helow a movable pulley, aupports two pounds-that !s, 1 pound on zach side. The next corl, markel 2, in tha same manner sumports four poushils, or 2 pounds on ecch eide. The next cord, riarked 4, eupputes 8 priunds, or 4 phonds on easb

Fig. 25. side. Thus, : inurd at Papports 9 puands at W, If another movalite pulley were added, tho 1 pound at? would support 16 prunide, and so on.

In working pulane, the ponst must be applied in a line perpeodicular to, or mitallel with, the weight; that is, straight above the weigist, in. order to pualuce 's inll elthency of direct force. It the pover be aspliced other dy - do not draw fair u_{j}--l!ere will be a low of power in proportion ee the line of draught departs fron the perpen. dicular.

1'ulleya are used chiefly on board of ships, where block and taekle cre in constant requisition for raising ard lowering the sails, masts, and yards. They are likewise in conejlerable use by house-buildars and others, in connection with the wheel and axte, for raising or lowering heavy masses of stone and other articlea.

Fig. 26 is a representation of a 4yatein of pulleya, commonly used in practical operations. Three inovalile pulleys are enclossi ill the block A, and three fixed julleys are enclosed in the bluck 1 . Suppoee, therefore, that the weight \mathbf{W}, in this case, is six hundred pounds, the hand P pulls it upwarla by exerting a force of ono liundrad pounds. A combination of pulleys resembling this in used in tuming kitchen jacks. The weight in sinking draws off the cord front a spindle, by which motion the jack is turned. In order tha: a considerable weight falling slowly through a comparatively small height may keep tive jack in motion for a long
 time, as many as ten or twelve movable and fixed pulley are used.

OF THE INCLINED PLANE.

A horizontal plane is a plane coinciding with that of the horizun, or parallel to it ; when the plane is nut le el or horizontal, but lies in a aicping direction, with one end higher than the other, it is said to iacline, or ia callod an inclined plane. F'ig. 27 is an exanple.
'I'he inclined plane.
mechanical power. 'I \qquad

Fig 9

\qquad it is the rainiog of wa $\mathrm{o}_{\mathrm{g}} \mathrm{t}$. the overcouing of sonsiderable elevations, a the overcoming of revint as tee be the application of lman
veightn and onise a grea To raise of fity feet wut uaing an muat be a hi in overcome upwards, we plane, the po and the dimi rise in the in in ell other in plashed only t In drawing slaig a horizo is chiefly the titue were no whace, and if ら u : moving pon t. in drawing bin has to be which gravity lowest level. not at liberty to salt: 3 freely f muth less apec the less by fricti greater than its shout 16 feet in an inclined plan as the number 0 the inclination are foot, and so Any lody in power parallel with the plane. raction of the to the plane. \mathbf{W} tull, rests upon its pressure is at the plane; or, wha the reaction or re is at right angles which a ball is r the line of preses at right augles w pase, then, that th C' is slsvated to D w form a slope; in pressure of the bal moved, wo as still with the inclinutio The power whi purpuse of overcon on level planes, is f or over the inequal The amount of relghts and incline wertained, and tho int:-
First.--The qua to the inclination o dificulty of raising tution siower.
Arond.-To ove
be slowners of in piwer munt be giver Ifrand The sma Xhle weight on the
Fiourth, os Specrial or uait of inclinatio nitar weilh: that obe oxerted. YoL. I_-2:
ig. $2 x$.
and fixed pulleri
ing with that of
he plane is nut

melghta anl resistancea; or, making a amall power overonne a greator.
To ralse a loal of a hundred pounde to an elevation of fity feet by a direct perpendicular ascent, and withwut ualng, any mechanical advantage, the power excrted muat be a hundred pounds, or equal to the weights to in overcome. If, instead of reising the load directly upwarda, we raise it by the gradual ascent of an inclined plane, the power required is less than a hundred pounds, and the diminution is in propertion to the smallness of nise in the inclined plane. But this saving of power, as in all other inatances of mechanical advantage, is accomplashed only by a corrcaponding lose of time.
In drawing a load, as, for inatance, a loaded carriage, slong a horizontal plane, the resiatance to be overcoma chiefly the friction of the load upon the plane. If to wa were no friction or inpedimert from inequalities of swifes, and if the lond were once put in metion, it would S. 5 : moving with the smallest possible expenditure of pan \quad.
in drawing a load up an inclined plane, ordinary fricDisn has to be overcome, and also the gravity of the body, which gravity gives it a tendency to roll down to the lowest lovel. In this constant impulse to descend, it is not at liberty to pursue the aame line of descent as bodies falri. 3 freely from heights. It falla or rolls down as much less speedily than a frea falling body (omitting the loss hy friction) as the length of the inclined plane is siester than its height. A frecly descending body falis shout 16 feet in the first second; and a body rolling down an inclined plane, rolls just as many feet the firat second as the number of feet of inclination is in sixteen feet. If the inclination be one foot in sixteen, the body rolls down ane foot, and so on.
Any hody in being drawn up an inclined plane, by a power parallel with tha plane, presses at right anglea with the plane. The common expresaion is, that the reaction of the plane upon the object is perpendicular to the plane. When an object, as a tall, rests upon a horizontal plane, its pressure is at right angles with the plane; of, what is the snme thing, the reaction or resistance of the plane
 is at right angles with it. This is seen in Fig. 28, in which a ball is represented lying on a !evel plane, with the line of pressure \mathbf{A} passing down to \mathbf{B}, which line is at tight angles with the plane. Suppove, then, that the end of the plane at C' is dsvated to D, as in Fig. 29, so as wform a slope; in this case the line of pressure of the ball on the plane is also moved, so as still to be at right angles

Fig. 29. with the inclinution.
The power which is required to be sustained for the purpuse of overcoming friction or inequalities of surface w level planes, is for tne purpose of drawing the load up or cever the inequalities.
The amount of the power corresponding to different yerghts and inclinations of the plane has hern correctly svertained, and tha following are the rules upon the sub-hec:-
First.--The quantity of weight is great in proportion to the inclination of the plane; consequently, es : , the dificulty of raising greater, and en rats ef elevatic. or
wition siower. wition siower.
Mrond.-To overcome $1^{\text {B. }}$ Eveght or resistinnee ant the slowners "r moven , corcesponding inerease f piwer must le given.
Third-The smallc: the inclination, so is the preseuro If the weight on the plane the greater.
Fowth, or Specinl Kule of Calcthlation.-Whatever is or uait of inclination in a given length, th: samas is the nit of weish: th:at can he lifted, and the unit of power obe exerted.
Yol. Im-2s.

If tha inclination of a road be one foot in ten, one-tentf la called the unit of inclination; hence, one-tenth part of the nominal weight of the load has to be lifted; and a power to draw this one-tenth part of the load has to be excrted. Or, to put the case in other worda :-II the road rise one foot \ln ten, there is in the tell only one foot of perpendicular height to be lifted through; and the weight at any point of the ten feet is only a tenth of what it would be if it were to be lifted through a perfect perpendicular ascent of ten feet.

The renson is now perceived why a small power overcones a greater in the case of drnaghts upon inclined planes. The load is, as it wero, lifted by inatalmenta. Partly supported aa it udvances, and always aupportod more completely the amaller the inclination, the weight of the burden is apparently leasened by merely taking the rise gradually and slowly.

If we suppose a case of two roads, the first rising one foot in twenty, and the second rising one foot in fifty, a loaded carriags will be found to go over the fifty feet of the one with precisely the same expenditure of power that would be required to make it go over the twenty feet of the other-that is, alwaye providing that friction and other circumstances are alike.

Figure 30 represents a supposed case of two inclined planes of the same height, but difforent slopes, meeting together at the top, with a weight resting on each, $\stackrel{P}{P}$ and Q, hanging by a string, which passes over the pulley M. If the length of the longest plane from A to M be two feet, and that of the shorter from \mathbf{B} to M be one foet, then two pounda at Q,

Fig. 30. on the ahort side, will bulance four pounds at \mathbf{P}, on the long side, end so on in this proportion, whether the planes he longer or shorter.
In this manner, weights moving on two adjoining inclined planes may be adjusted so na to balance eack other, althoogh the inclinations be different; and they are so made to act on various aloping railways connected with public works, where one wagon deacending on one plane is made to draw up another wagon on another plane.

An inattention on the part of our forefathers to these exceedingly simple principles of mechanical acience, led them to form roads over ateep hills, pursuing, as it was imagined, the best routes, because they were the straightest in a forward direction. In modern times, this error has been avoided by enlightened engineers, and roada are now constructed with as few risings and fallinga as possible. When roada have necessarily to be carried to the summits of heights, they are very properly made either to wind round the ascent, or to describe a zig-zag line of direction.

The drivers of carts are aware of the aaving of labour to their horses by causing them to wind or zig-zng up ateep roada instead of leading them directly forward.

The inclined plane is resorted to for a saving of labour in many of the ordinary occupationa of life. By it luaded wheelloarrows are with comparative case whecled to considerable elevations in house building and other works of art; hogshends are rolled out of or into wazons, and shipa are launclsed into or drawn from the water, the inclined plane being na useful in giving fucilities for letting down louds as in drawing thein up.

It is alas oy inclined planes that we reach the lignes, floors of a house from the ground, or attain other eleva tions. For all such purposes, the inclined plan! is formed with steps to ensure our safe footing. All stairs or flighte of steps are iuclined planes. A ladder torms a steep in clined plana.

OF THE W WDOE

The lnclined plane has heen described as being fixed or utationary, mos, for inatance, n common ascending road, ar a aloping plank, upon whlch the weighte are moved. It has now to he viewed an a movatle plane, In which form it muits many useful purposes.

When an fnclined plane in movable, and the luad or weight which it affects is at rest, it receives the nume of a wedge. The welge la, therefore, a meciu iscal power, founded on the principle of the inclined plazer.
The wedge is an ingtrument or simple machine, consiating of a solid boly of wood, iron, or some other hard materal, and is triangular in form. See Fig. 31. Here the wedge in seen to taper from a thick end or heed at \bar{B} to a thin edge or point at A. This, however, is only the more common form of the welge. It is made with aidea of varioua angularitien or degreen of alope, and, in some cases, it possersea a fat and a aloping side. When it slopes on
 ath eider it encure of mo inclined planes joined to 3 . and when one of its sides is fast, it acts as only one inclined plane. The wedge is employed as an insirument for cleaving solid masses asunder, to compress bodiea more closely together, and to move great weights through small spaces, Fig. 32 is a front view of a wedge in the art of aplitting asunder a piece of timber. T'he power employed to force the wedge forward, is either repeated blows with a mallet or hammer, or the gradual pressure of a weight. In general, the power is applied by rnpid strokes, or quick applications of some kind of external preseure.

The rules for calculating the power of the walge are similar to those for the inclined plane. In proportion as the inclination or angularity is great, so is the resistance greater, and the power must be greater to overcome it. Thus, if the wedge b of short dimensions and thick at its head, it will require a greater power to move it than if it be long and thin in its form.
The resistance. -ffered to the wedge of equal sides, when the pressure is equally applied, is, as in the case of the inclined plane, at right angles with the sides. See fig. 33, in which the oblique cross lines represent the directoon of the pressure passing at right angles through the sides, and meeting

Fig. 33. at the centre.
It is difficule to calculate the precise power of the welge, for rnuch depends on the force or the number of hows which may be given to it, together with the oilliquity of the sides, and the power of resiatance in the object to be aplit. In tho splitting of timlur, for instance, the divided parts act as lev rrs, and assist in opening a passage for the wedge.
The wedge is the least usel of the simple machines, tut the principle upon which it acts is in extensive appllication. Needles, awle, hotkina, and driving nailn, are the most common examples. Knivee, sworils, razora, the axe, chisel, and other cutting insiruments, also act on the principle of the wedge; so likewise duen the asw, the teeth of which are small wedgen, and act by being drawn along while pressed against the olject operatod upon.

The principle of the inclined plane, which is the bacis of that of the wedge, is particularly observable in the action of the razor and the scythe, both of which eut best by heing drawn along the materialn against which they are applied. When the odge of a scythe or razor is examined with a microscope, it seen to be a aeries of minall sharp angularities of the unture of the urth of a a m.

The principle of the wedge operaten in the euse of two glasa tumhlers, one placed within the other, an in fig. 34. A very gentle presaure applied to the uppermont tumHier would be sufficient to hurst the lower. At every little advance of the uppermiont tuinbler, it acts more and inore as a lever power on the :im of the lover, and at last overcomes the resistance, and fracturen

Fig. $\mathbf{3}$. the vessel.

of the beriw.

The serew is the fith, and usually the last mentisned mechanical power. Like the wedge, it is founded on the pricipiple of the inclined plane.
The actew consists of a projecting ridge windiny in the form of an inclined plane, and in a spiral direction, round a central cylinder or apindle, sinuilar to a apiral roml winding round a precipitous mountain. Fig. 35 is a representation of a common strong acrew used in various merla. nical oferationa. The projecting ridge on the spindle is technically calledt tho thrcud. The thread is not always ande in this square poojecting form; it is frequently sharpened to a single thin cdge, ns in fig. 38, hut does not affeet the princijle of the machine.
One circumpolution or turn of a threal of a screm is, in srientific language, terned a hetix (plural helices) from a Greck word aignifying winding or wreathing, The spiral winding of the thisead is called the helicai live.
The helires of a screw do not necessarily require to have a "ntral spindle. They may form a screw of thenselves, and do so in the case of the common corkscrew (fig. 36). A screw of this pointed or tupering form, in penetrating a subatance. porsesses the advantage of the inelined plane in three way-first, by the gradual thickening of the substance of the thread from a wharp point ; sceond, the gradual widening; and, third, the gradaal arcending, of the threal.

The screw acts on the principle of the inclined plam aud this in obvious from the consideration of the natur of the threads. If we were to cut through the turns of the threails straight from top to hottom, and draw them out to their full extent, each separate and reatining ite own incla, ho tion, we should find that they were so many inclined planes. In the on-
 nexpd cut, fig. 37, one pntire turn of the thread is thas drawn out, reachng fron 4 to 0,2 . is scen to form an inclined playe. If aot drawn of it would wind down to r; therefore, while a weight raised liy one turn of the acrew over the liaits of of thread, or from c to b, it has actunlly bren carted the incliued plane from a to b.
The screw has no power by itself. It can opers only hy mneans of presusure againat the threads of anot screw whelh overlaps it and holds it. This exterior serew, which is technically colled a bor. or a aut, connista of a hiock with a central tube cut out in apiral grooves so an to fit with perfect exactriess to the screw wheh han to work in it. Fig. 38 eeprenents ${ }^{2}$ is screwa in combination. M is the box or nut through which the arrew passes. I, is a lever insc:".: the screw, for the purpose of turnm.

The olje:t :eq apply fure or P mect, either the the nut or the ner fixed at one extre the nut may be tu bothom to the top; nome solid body, th tumed round till i the point of the ruch a way as to not w thean.
Practicall:, the ehine; the power lerer, passing eithe trough the nut. combined power. nad, in investigating count both these sim crew now becomes In the inclined p inrlined, the more en is the process of risi plying the same pr Wat the grenter the grater or more rap quently, the greater; agiven weight. On downwards hut stigh ker of revolutions in be distance betwixt b the power requir girna weight. There mesere the threals to myuire to be for a giv Sappose a case of th me inch apart, and th beforee which the fit power at the lever, wi kond. The aecond miny times round as prece. At the lever o a weight to a given he phile an the lever of t ti sur.e weight to the Fulutuns.
It is apparent, that op which a body mov zumference of the acr ywren the threads. wold therefore be-. - 0 the distance betwe w the power:" By th pold alone be found, dinc was not offected that is the care, the otee end of the lever e dirumference of the sce The rule by which th aulated, is, hy multiply i, fere descrihea hy the pr peed by the circumferen havight or resistance tu iwo rontiguous shrral new may he increasel, her by which it is tur brec between the thr knth of the lever, the nir the weight to be r de power; or, the powe
d che threalk, and the * che threark, and the
an ea ene: weight Suppose is: length

The olje:t iequired lig the une of the serew in to apply force or pressure. To produce the intended appect, either the outer or innor serew, that is, either the nut or the screw, mist be fixed. If the screw be fied at one extremity, eay at the top, to a solid body, the nut may be turned round it so as to move from the bottom to the top; and if the nut be fixed, held fast by nome solid body, the screw in the eame munner may be wrnel round till it reach ita extremity. Thus, either the point of the screw, or the nut, may be forcad in puch a way as to squeeze or prase any object presented w thes.
Practicnlio, the -crew is nover used as a simpla mathine; the power being always applied by means of a lever, pnasing either through the head of the screw, or through the nut. The screw, therefore, ects with the combined power of the lever and inclined plane; ind, in inventigating the effects, we must take into account both these simple mechanical powera, so that the ncew now becomes really a compound machine.
In the inclined plane, as has been seen, the less it is inclined, the more easy is the ascent, though the slowor is the procese of rising to a certain elevation. In applying the same principle to the screw, it is obvious that the grenter the distnnce is betwixt the threada, the greater or more rapid is the inclination, and consequently, the greater must be the power to turn it under igiven weight. On the contrary, if the thread inclines downwards hut slightly, it will describe a greater numhe of revolutions in a given space, so ns to diminish be distance betwixt the thrends, and the smaller will b the power required to turn the machine under a gren weight. Therefore, the finer the acrew, or the paser the threads to each other, the lena the power will apuire to he for a given resiatance.
Suppose a case of two screws, one having the threaisa me inch apart, and the other half an inch apart ; then, the foree which the first acrew will givo with the same purer at the lever, will be only half that given by the econd. 'The second serew must the turned twice as many fimes round as the first, to go through the same puce. At the lever of the first, two men would raise I weight to a given height, by making one revolution; while at the lever of the second, one man would raise d. sal.e weight to the same height, by making two revolutisns.
It is apparent, that the length of the inclined plane op which n body moves in one rovolution, is the ciramference of the screw, and its height the interval xween the threads. The proportion of the power wuld therefore le-mas the circumference of the screw sto the distance between the threads, so is the weight W the power." By this rule, the power of the screw wuld alone be found, provided the action of the madine was not affected ty the lever which works it. As that is the case, the circumforence described by the ooter end of the lever employed is taken instead of the dirumference of the screw itself.
The rule by which the true foree of the serew is cnlaulated, is, liy multiplying the cirenmference which the kred describes by the power. Thum-The pover multiflad by the circumfercnce which it describes, is eyaal to the uright or resistance mulliplied by the distonce bettreen th itw roniguous thrcads. Hence, the efficacy of the rrew may be increased, by inicreusing the length of the Wers by which it is turned, or by diminishing the disonce between the thrends. If, thin, we know the knoth of the lever, the distance k." : the threads, $b_{i n}$ the weight to be raised, w_{i}. an inatily enlculnte
 of the threata, and the lengtio of liw lever hnown, we wner weight which the screw will raise.
Suppose it, length of the lever to le forty inches, the distance of the threads one inch, and the weight

8000; required-the powsr, at the end o the Vver, to raise the weight. The lever beling 40 inchea, 'se diameter of the circle which the lever describes 1 i , double that, or 80 Inchea. Reckoning the circumference $n t$ thrice the diameter (though it is a little more), we multiply 80 by 3 , which gives 240 inches for the circumforence of the circle. The distance of the thrends 15 ons inch, and the weight 8000 pounde. To find the powe r, multiply the weight by the distance of the threads, and divide by the circumference of the circle.

8000 weight
1 distance
210)8000

33)

Thirty-three and o third ia the product, and it would require that power or number of pounds to raise the weight. 'This, however, is only in theory. In practice a third of tha amount of power would require to be adled to overcome the friction of the machune.

In the ordinary working of the screw, velocity is incompatible with great power. This is a truth, how ever, which applies only to a scrow with one thread. Thers is a way of innking a screv, by which great velocity and power may be combined. I'his is done by forming the acrew with two, three, or more threads To understend how this is accomplished, wo have or.'g to conceive the idee $z=$ zareu with one thread, very wide hetwixt it turna, and then imagine one or two other threade paced so as to fill up the intervals ; thua composing a fine close scrow. And as by this means all the threads clescend with equal rapidity, wo have a screw which will not only deacend with great velocity but which will apply a very great degree of pressure A serew of this nature is used in the printing press, by which a pressure of a ton weight is applied instantaneosaly by a single pull of a lever.

The most common purpose for which the acrew la applied in mechanical oprerations, is to produce great pressure aecompanied with col iancy of action, or 13 tention of the pressure ; and this quality of coustanc. is always procurnble ton the great friction which takes place in the pressure of the threade on the nut, or on any aubstance, such as wood, through whith the screw penetrates.
'The common utandiog-press used by bookbindera for pressing their books, affords one of the beat examplen of the application of the acrew to produce grest freseure (fig. 39). The serew A has a thick round lower extremity B, into holes in which the lever is inserted. This extremity B is attached by a sorket joint, to the pressing-table \mathbf{C}, so that when the screw is turned in one direction, the table sinks, and when turned in nnother, the table rises,

Fig. 39. The books D lie upon a fixed sole S , and are thus between the talle and the sole. H is a cross benm nhove, in which is the lox or overlapping serew to give the necesenry resistance.

mechanical commination and structure.

Mr hemieal netion is applied to the netion of forces that produce no change in the constitution of bodies, and is therefore distinguished from chemical or any other weciea of action, in which change of conatitution is less or more ciliected.

Great changer ate continually taking place in nature and ari by mechanical action. Mechanical action geverally inplies movement or change of place, r nd in
mont casas alteration of external featuren and circumprances. The whole of the pianetary movements are mechanical; the motiona of water and winds are meenanical ; and the new appearances produced in art by pracing different objeets together, are mechanical.

The action of forces upon solidd, or mechanical ac. tion, is taken advantage of by inankind for the prosduction of numerous uneful resulta in the arta, And ouccess in attaining themo reaulta depende in a great measure upon the k nowiedge we have of tho principten of mechanics, and the skill and care we use in applying ther.
When skill, care, and Ingenuity, are brought fully into operation for these reauita, very great wn.w. wo aro in many instances achieved. But where manse or negligence, the object in vied urny t:ut be defented, but very mischievous sonsequnee n iy take place.

Exumple flret--If a tall mast or hram break through at two-thirde of ita height, and the two fractured ends he simply placed rogether and tied with a rope, the upper piece will, by the nction of a amall force, again fill. It will act like the arm of power of a lever ageinat the rope, which in the "reight; and as this weight is inconsiderable, the arn of powet will preponderate. But if we take the two preceo aud saw each of them lengthwise, so as to make four piecen, and then, as represented in fig. 40, lay a short piers alongside of a long piece, and anotber long on the top of the firat nhort piece, with the merond short piece opposito to this necond long piece, the whole will be effectually apliceil tugether; in such a case, with the sid of an uverlapping rope, the beam will in all likelihool be atrenger than it waa before it was fracturnd. The cause of its being stronger, Fig. 40. at lenst of its remaining firm, is, that the weaker part at one side is supported by a atronger part on the other mido. Thus by akilfully taking advantage of certain forces aeting in connection whlh molida, we are able to rear a atructure of the utmost possible atrength.
Example armid.-If in man, in making repaira upon the outaide of a huilding, project a plank from a window for the purpose of standing upon it, and if he proceed to place himself near the outer extremity of the plank, without having placed e sufficient counterhalaneing weight at ita inner extremity, he will asauredly be precipitated to the ground, and perhape killed; because the gravity of his body acted like a poner on the ana of a lever, while the lover was without a aufficient rreight in premerve the apparatus in equilibrium. From nuch neglects of the operation of forces in nature, dreadfui consequences frequently ensue.
The study of the operation of mechunical forces, along with experience, teacbes that there are certain bulks, positiona, and forms of bolies, which produce the greateat strength for purposen of art.
The stringth of beams or masses of the pame kind and bulk, and fixed in the same manner, in resinting a transverne force which tends to break them, is simply as their lireadth, an the square of their depth, and inversely as their length—that is, ths thicker and shorter they aro, they are the stronger. Thua, if a beam be twice as broad as another, it will also le twire as atrong; for the increas of lireadit doubles the number of the resisting particie. By making the heam double the depth. the strength is four times as great; hecauke the number of fibres is d uble' ' and the lever by which they act is also increased.

But thu increase of strength, by increasing bulk, has - proctical limit. It is found that in increaxiog the dimensions of a body, or combination ef bodies, preserving all proportions the same, the weight increasen more ropidly than the inceerse of atrength, or porte of endurance.

This in one of the mont impotert principles in mechentral acience, and ought to pravent undue extension in atruc turna arrangementa.
Take a block of ntone, and $n x$ one end of It into a wall, leaving its other and projecting. By this armange ment of ponition, each partieie of matter in the bloct arts as a weight pulling downwards as with a iever, the finicrum of the lever beling at the point of support, and the prarticles of matter in the mans forming at onee the arm of powar and the weight. Hence, cvery particle we add to the length of the block beyond a certain length (whatever may the in constitutionni strength), we ohall certainly cause the mana to brosk, and fall, from the effeet of gravity, upon the outer extrenity.

A mimilnr lever action takes effect in the case of boch, or heams eupported an hoth ende, the only difference be ing, that, in extesuding them to an undue leugth, they will break in the middie, or at the weakest point between the two supports.

The atrength of a beam aupported at both endo is twier as great as that of a heum of hiff the kength, whinh is fixed only at one end; und the strength of the whole houm is again inereaved is both enda or fulcra be firmly fixed, os in
at die case of Chrous "r grained teateriala, an, bo inctance, wood, tho body austuins the greatest presenre when the weight is applified to the grain endwise, or to the lean longitudinally. The nearer that the pressure can be applied to any beam endwise the better. Thua, beam supports most weight on its upper end, the other end being fixed to the ground, and ith atrongth in nent greatest when the pressure is applied to it lenning at top against another beam. This is exemplified in the an gular roofn of houses, in which two beame lean againt each other fike the two siders of the letter \mathbf{A}. In arrang. ing beams to support great weights, as in huilding lridges, each bean is made to puah olliquely upwand with one end, while it pustes olliquely downward with the other, and thus an extensive combination of heams is firmy nupported.

In rearing structures consisting of heams, it in an ind portant point to convert, as far an possith, ly mode do crection, cross or tranavense atrains intu longitudina straina, or into forces acting on the ends of beama, in the direction of their length.

Nature appeara to have designed that atrength of atructure should bo accomplished with the least expes diture of material. It is obvious, that, if trees and afif mala were mallo many times larger than we now fint them, and of the name kinds of subatance, they would is lorne down by their own wesght. Smull animals endy greater comparative violence, and jerform greater fing of atrength, in proportion to their size, that large one The largest bulk which a human theing can phswen in be person, at the same time retaining activity of motion is not moro than in usually seen in wellogrown me Thua, from a simple natural couse, men of very sante agure never could have existed on our carth. Men Ded alwaja bave been about the size which thry are at p sent; or, if they were considerably larger, they m have heen constituted of much stronger mutriais, out a ceresponding increase of weight.
The sume principlen relative to merlhanical stenaf rply to contrivances in the arts. As already sated, 4
ongth or power of endurance in a ineterial des a increase a proportion as the weight increases. Hem there in a practical limitation of the magnitude of madizs and other structures. For example, a liridge or rool beanim may be vefy strong when of ainull or modera size, but if the dimenaions lee extended isyond a ceta linit, the utructure will fall, by not being alse to supp its own weight.
The strength or power of endurance of presure पp:
, Areed bo ly, in gn morain form. The that of an areh.
As arch is as as sonvex atud concave which the preasure nme firun arcus, a gither a portion of a in form. Whether ar the mbell of an purer of endidinnce The prineiple of of the arched booly be a realgen, thua causi meneve sille of the ci n enornous pressuro geter the preasuro i arto the convexity, dreistance become

Practi

Machines are usuall : olher durable mute andugy as part of the decery muchine, four - Len Sireugth or durn a arangement of pa ar part to another ; a d motion. It is a gene anechanics, that tho wil the nome simple itas Machines act from th affrece comnnunimated to d power they receive, th clim. They eamnot in pans. Thuy ean only ofuantity of power w

The puwer comunanie Whes sourcie: as, hinn cother anim? the for or other acti- sent mures of power are tec

Wemerg.

of the origimal impres. tmabine usea a certai wich enters as marchise wa, Lhis large quantity whities through the in Hups 10 parts, others Trha fractional part, fo Pdie whole 1000 parts cing fax, or silk spir Er.hheel or steanteng eves ; each spiodlo, co Whan of the originally i Whatever be the natu whliy sufficient for all firt inutance rotiry or bnnontal or vertical di asle that the power be weach part of the mac in power be too amal ve ladgridly and inefti teiber cause the ruacl a poven will be e rpend of fanving forces, it is renulate the power to mary.
The eircular motion com

3 bred ba iy, in greatly inereased by giving the boily a smain form. The mirongent form in nature or art in cose of an arch.
Aa arith la a akilfith iliaposition of parta, forming a noper and concave nide, the convex aide being that upon rhich the preasure in applied. The arch, which tukea ita name from arcus, a Latin wonl, algnlfying a bow, nay be nither a portion of a circlo or ellipme, or entirely rounded in form. Whether shaped like a hridge, or roond tube, at the shell of all egg, the priuciple which causes the puere of cudurance of premesure in the mune.
The priuciple of malorance consiots in the particles क the areched body hearing upon euch other like a merien - wedgen, thus causing a compression of particles on the mencave nilde of the circle, which enablen the muss to bear nenoranous presmure on the convex silile. Indeel, the geater the preasure is (to a certain extent), perpenilicuIn to the ennvexity, no also the compresaion and power dreistance beenmo the greater.

practical mactinery.

Machines are uaually formed of woud, iron, steel, hrase, nother ducable muterisla, with sometimes lenther and axdige as part of the apparatus. In the conatruction dery machine, fo:r objects are particularly desirable -lan Sus agth or duralility of nateriala ; 2d, Simplicity " arpugement of parta; 3d, Exactuess of fitting of me part to another; and, 4th, Eaxiness nnd correctuess dimotion. It is a goneral and wellorecognisel principle annechanies, that the fetcer the parta are in a machino, Whe the more simple its construction, the better.
Nathines act from the impression of a certuin power yfore commonniated to them. Whatever he the amount d powe they receive, that amount they expend in their dion. They cannot in the amallent degree increaso the pmis. They can ouly convey, regulate, and distribute, bquatily of power which has bech communicated to Dem.
The power enmmuniented to machinea is derived from whus sourcue; aa, himan labour, the 1 wer of horsea yother nnimal the firce of wint, water, or oteam, or Pry other acti-sent which may be found nuitable. swres of power aro trechnicully called noving forces, or in mexers.
Of the origimal impressel power, each moving part of be mathene usen a cetaia portion. If the whole power fich enters a marhine be supposerd to consist of 1000 Cta, this large guantity is diejursed in various amul! antites through the mechanisil); some wheels taking rhape 10 parte, othera 5 parta, a third kind 1 part, a Wha a fractional part, friction another part, and so on, The whole 1000 parts are expended. In some large tun, flax, or silk spunning estathishments, a single whewheel or atcan-engine turus several thousanda of Falles; each apinille, consequently, consumos a minute xtion of the originally impressed power.
Whatever be the nature of the moving forcen, it is enally sulficieut for all purposes that they produce in first inatance rotary or circular motion, and either in bruontal or vertical direction. It is, however, indispable that the power be of that magnitule which will ex each part of the machine to fulfil its designed office. the power the tuo stinall or wrak, the machine will re languilly and inetleetlually; and if too great, it Pethee cuuse the machine to muve too rapidy, or at spaven will he expended uselensly. In the applicanof moving forces, it is always a matter of importance realde the power to the precise wants of the mabary.
Thecrular motions comonenicoted in the first instance 1 dachine, is, hv menus of certain contrivances, dif-
funed through the whole orgnilzalion, and il ar.Red inte query coreelivable direction: wolue parts heins cauned to revolve, others to rise and fall, a third kind to move horizontally to and fm, and so forth, in all pomilitio waya The variotis parts may alao be made to nove with any ilegree of locity; there being methodn of trunsforming quick int minute and cornplex operations are thus performed by machinea with a precision whish often exceela the akill of the most expert artisan ; hut these operationa are all neceavarily marked by the quality of unifirmity of action As machines cannot reason, or act arhitraily in atopping, moving, or altering their procem, accoriling to checumatances, they proceed in a lifind rootine, whether right or wrong, mechunically as it ia called, and in every cave lese or more require the nuperintendence of reasoning beinga This apparent defect, however, in really aulvantageoua A machine, by being composed of inunimate matter, destitute of fecling and unasusceptible of fatigue, proceeda unswervingly in to asaigned duty, and may le forced to accompliah taske which it would be both lihumane and impolitic to demand from living creatures.
The purpose of machincry, therefore, is to leszen and nil human labour. At an inconsiderable expenme, and with a smull degree of trouble in supervision, a machine may be made to do the work of ten, fifty, or perhaps an many an five hundred men; and the work to nimply effected by inanimute mechunism, serves to cheapen and extend the conforts and luxuriee of life to the great body of the people.

The following are the chief elemntary parts of machinery :-

Wherls.

A wheel moving on a central axis is a lever with equal arma radiating from the fulcrum at the centre, and is thus called a perpetual lever.

Whecla may be used in machines simuly to tranemit power from one point to another. Thia is done hy means of toothed wheels. Projecting teeth or coga are placed all round the circumference of a wheel, and when the wheel is zurnell, these teeth work upon or press against the teeth of another wheel, and so cause it to turn also, but in all oppoaite direction. Fig. 42 represents two wheels so working upon each other. As bith of these wheele are of the amo size, and consequently are levers with equal arms, they do not alter tho etiect of tho power communicated to them.

Fig. 42.

The motion of tho axle in the wheel \mathbf{B} is the name as the motion of the first axle in the wheel A. Thua, power may be trinamitted from one point to another.

A long and large axle, in wheel-work, is coluis a shaft. and shafa of small dimensions are terned spinullas, 'rho terminating point of axles, shaft, and apindles, where they rent and turn upon aupports, are calld d their pivota or gulgeons. The sockets upon which the gudgeons beur in turning, are sometimea termed bushcs

WhEELS AND PINIONS.

When power has to be accumulated or increased in its effect in the conrse of its transmission, a large wheel is ruade to play upon a amall wheel, by which means there is a diversity in the lengtha of the levera. Fis. 43 is a representation of a large wheel W, working on a small wheel or pinion P. The wheel is turned by the liandle C. In all arrangenicuts in which arge wheels aro

Fig. 43
moned by nall wheelt, ot amall wheela by largo, the manall wheela are celled ywions; and when thoe pinlona ure broed in their dimenanons, they are cormed trunilies.

In this combination of a wheol and pinion, a long gero petual lever worke againat a whort perpetual lever, by which a conaiderable mechanical advantage is gained. The wheel may be supposed to poseess 48 teeth and the pinion 6 teeth; hence, by one revolution of the wheel, the pinion turns 8 times, which gives the axle of the pinion eight times the velocity of the axle of the wheel and If we suppone that the diameter of the wheel ba tera timew the dinuritur of the pinion, the power in lincreamel in effeet tent times.

Any degne of velocity greater than that of the firnt rotary motion, may be imparted to the parts of a machine, by making those partn so mueli ausaller than the prinary moving parts. Thus, if a large wheel, having a thouand teech in ita eircumference, work upon and turn a unall wheel having only ten teeth in lis circuinference, the amall wheel will go round one time for every ton teeth of the large wheel which it touchesy or in other words, it will go round one hundred times for one time of the large wheel. The rempective velocitien of whecla in a machine are, in thia manner, always proportiunate to their diameters, or size, unleas when apecially arranged to be otherwise.

A combination of wheela acting an perpetual levers, ia represented in lig. 44. Tlaree wheels are placed in a row clow to each other, and it is uupposed they are fixed by three axlen to nome upright object. On the side of tire first wheel A, there is attached a mall toothed pinion or wheel F, which, by the prensure of its leeth on the
 teeth of the second wheel P, causes this second wheel to turn round. The power applied to proluce this motion is at the circumference of the first wheel at D. From D then, to the centre of the pinion F, is the long arm of a lever, of which the centre of the pinion is the fulcrum; and from the centre to the ends of the tecth of the pinion is the short arm. The second wheel \mathbf{B} having received its motion, the toothed pinion G, which is similarly attuched to its side, pressem againat the teeth of the thirl wheel C , and so causes it also to turn. In this way a wecond lever is put in uction. And the third wheel, from its circumference to the point from which the weight W depends, is a taird lever. As the power or amall weight P falls, therefore, from the circumference of the first wheel, the reaintance W is raimed, with the accumulated force of three levers acting on each other. 'I'he line across the figure represents the three levers in action.
To calculate the power or mechanical sdvantage to be gained by such a machine, ouppowe the number of teeth on the first wheel to be nix times lews than the number of those on the circumfirence of the mecond wherl, then the aecond wheel would turn round only once, while the tisut wheel turned six times. Arnd, in like manner, if the number of texth on the circunterence of the third wherl be six times greater than those on the axle of the mecond wheel, then the third wheel would turn once, while the second wheel turned wix tines. 'I'hus, the first wheel will make 36 revolutions, while the third wheel makes only one. The diameter of the first wheel being three timen the diameter of the axle of the thind wheel, and its relocity of motion being 36 to 1 , three tunew 36 will give

We weight which apower of 1 pound at \mathbf{P} will raise W Three timen 36 lwing 10 A , one pound at P . balance 108 pounde at W

WOREINE OF TOOTMED WHEEYP.

In the working of toothed wheelin one upin, another, or of wheela working on piniona, it is enuentunl to oet them in oppoaition with much oxact adjatirnevit, It:w "h tocth of one will fall into the hollows bi writ th. teeth of the other. When the teeth of each de atd work with this nicety, thry are apt to jar upoti and break each othe", and no damagn the machine. In sone cames teeth yo made of a round or poluted form at their extremities, by which a very small degree of grinding or preming ons each other takee place. Fig. 45 In an example of a wheel and piaion with rounded and pointed teeth. From the centre of the axis of the pinion L_{1} to the centre of the wheel U, a dotted line In marked, called by mechanics the line of ceneres. The dottei eircle 00 round the pinion, and the dottexl

Fig. 45. circle P1' round the wheel, Indicate the true point of working or contact of the teeth upon each other. Them two curcles are seen wo join with exactness at A.

ALTERENG THE DIREOTION OF MOTION.

Motion often rejuires to be al'ered in i/s elirection in the course of ita transmisaion. For example, rolary horixontal motion requirea to impart rotary vertical mo tion, or rotary vertical motion to impart horizontal motion By meana of a peculiar mole of wetting the wheela, and a corresponding peculiarity in the shape of their tecth any slecration may be oflected in the direction of the motion.

Fig. 46 reprements a plan of changing the direction of motion. A is a pinion or trundle working with its shat horizontally on a wheel B, who shaft in turning vertieally. An the case may happen to be, the horixontal movement is causing the vertical movement, or the vertical movement is cauaing the horizontal movement.

Fig. 47 representa more cornmon plan of changine the direction of motion. The wheels in thin cane are bevelled. A bevel wheel is a wheel with tecth placed in a aloping or oblique direction on its circumference. When two bevel wheela are placed at right angles to each other, their reapective teeth work sgainat each other, Bnd wo a harmonioum joint motion enmues. This is exemplified in the figure, in which a horizontal shaft with a bevel wheel is seen turning a sinuller hevel wheel above it, placed on a vertical shaft.

Fig. 47.
tilansmisston of power ay beltg.
A common plan of tranmittiog power from one pas to another, when the interval in considerable, is by if leather band, strap, or telt, communicating from a. at the nource of power to a wheel comr teted with nachine.

The wheels upon wh pulloys. They have fis have aunctimew narrow dipping off. The rimí civir surfice, mo as to al power of pulling in Juerfi Pig. 48 reprements the A is the flrat pulley, whie beceived the powe fiva its mource, and \mathbf{C} i the econd pulley, mover by a belt, which pamaen our both pulleys. In thin as, the motion of A is vamaitted hy the inelt to te sume direction as \mathbf{A}. pedrely the manne diamet dip, the seconad pulley wo whatly as the firnt, lrece property of a toothed wh pwer it has acyuires. waller than \mathbf{A}, it woulil poently than \boldsymbol{A}_{i} therefore, we mode of increasing th power,
shafts as
When power reguires rond that which beltas cas unamimion in effected by meemary to change and re sotim, bevel wheels are wy take place by a long wot aused to travel over an mat the chain hanging dou d thain of this nature is cal Notion is oftens requirell t shent machines, at defferel pare. This is effected by Prom the pulley which rece iceal to a pulley fixed un merally hung horizontally thines As the shaft turns 3 whe to turn pulleys fixed fran theee pulleys, belcs are mpective machinem.
Fig. 49 reprewents an appa
is the pulley Sis the pulley viring motion on the source 1 power, and, y seans of the d Lh, turns the sley B on the dof the shaft Al the same s, the pulley
u the opposito te the oppowito end of the Ery on the shaft situated clo
in C , and from I Sus, and from I another Pus, an extended axle or
whine, and an extanded axld ther machine. 'IThe appara Shatts with pulleys, workin Whase secu at almost every which machinery is empld
nos of bevel wheels and up rind apwards from atory to Ton to hundreds of wheele, the mechanimin.

Chanoing ve
It is eometimes neceswary thr
whine, ahoith be propolled wi

The whenele upon wheh strape work are untually ealled pulleys. Thoy have fat and broad rima, and thewe rima bave wimetiuem narrow ledges, to provent the bele from djpping off. The rins muut slino be rather rough on whir surfice, mo an to give the belt a sumbient frietion or powe of pulling in perforining its revolutiona.
Pig. 48 reprementa the tranamisuion of power by a belt. Ais the first pulley, which hes reseived the power (wno ito source, and \mathbf{C} is wh meond pulley, meved y bell, which pasace war both pulleys. In thin (we, the mution of \mathbf{A} jo

Fig. 48 manamitted hy the bett to \mathbf{U}, which It causes to turn in to same direction as A. If thene two pulleys were of maiely the aume diumeter, and the belt did not relax or ific the second pulley woukd unavoldably go at the same whaity as the first, brecsumes the beit has exactly the ruperty of a toothed wheel, and nimply tranmmite the preer it has acquired. Aa C appesss to be nomewhat maller than \mathbf{A}, it would consequently turn more frepondy than A; therefore, we have here an example of be mole of increaning the velocity while transmitting pwer.

ghafts and pulheys.

When power requirea to be curried to a distance beond thut which belter can conveniently manage, the mamiesiun in efferted by a long shaft; and, if it leo meseary to change and re-change the direction of the extion, bevel wherla are alded. Or the traumission wy tate place by a long flat chain ucting like a leilt, wit aused to travel over mall wheels or pulleys, to premon the chain hanging down in any purt of its course. 1 chain of this nature is called an enilless chrin.
Motion in aftell required to be communicuted to many Sheral maclinines, ut different poimis, from one murce of were. This in elfected by means of a shat and pulleys. Pma the pulley which receivea the first motion, a belt in wat to a pulley fixed upon a shath, which shaft is merally hung horizontally from the roof over the madimes As the ahaft turns through its whole extent, it able to turn pulleys fixed at any point upon it, and twa theec pulleys, belta are sent down to pulleys at the mpective machines.
fige 49 represents an apparatun of a shaft and pulleys. dis the pulley maving notion Won the mource 1 power, and, y meane of the It 1, turna the Ney B on the olof the shat
 At the same me, the pulley

Fig. 49.
Dut the opporito end of the shaft ia turned. From a viley on the ohan aituated close to B , a belt descends to ${ }^{5} \mathrm{E} C$, and from D another belt descenda to turn E. fous, an extended axle or whaf from C will turn a exhine, and an extended axle or shatt foun E will turn wher machine. 'The apparatua can turn two machines. Stafts with pulleys, werking on the plan now stated, ra be seen at almost every considerable manufactory which machinery is employed; and the power, by rana of bevel wheels and upright connecting shafts, is rind apwards from atory to story in a building, giving xoin to hundreds of wheels, spindles, and other purts the mechaniarn.

chanoing velocity.

Itis rometimes neceseary that a machine, or part of a whiee, shoild be propelled with a velocity which is not pible, and is continually changing from faat to olow
and slow to fact. This happene in cotton-mitis, where it in necessary that the apeed of certain parta of the machinery should continually decreame from the beginning to the and of an operation. To effect this, on spparatus is ased, am repremented in fig. 60 . Two conea, or conlcally shaped drums, arn used, having their larger diametera in contrary directions. They are conneeted by a belt, which ia so governed by proper meehaniam, that it in gradually

Fig. 80. alilied along from one extremity of the cones to the other, thus acting upon eirclea of dittierent diametur, enuning a continual change of volocity in the driven cone with relation to that which drives if. The alisting of buida from largo to amall wheels, and from small to large, has vimilar effecta

pheserving meoulartty of motion by a fartable FORCE.

In some mechanical contrivances, the force which is applied varies in itn intennity, white the whems of the machinery require to be kept at a uniform apeed. This is generally the case when the force is communicated from a ateol apring, which, after being wound up, is nuffered to relax. Fig. 51 Is a apring suitel for operatione of this kind. It is represented in a state of relaxation, and in wound up into a compact form

Fig. $5 t$ by means of a apindle fixed to lta inner extremity. The coiling of a strip of paper round the finger, and allowing it to unwind luself, is a familiar illuatration of the action of a spring of this description.

The force communicated by the relaxing of the epring varies in its intensity. The force is greateat when it begins to relax, and it gradually weakens till its expansive energy is exhausted. To compensate thla defect, a very ingenioua plan is adopted, and which in put in operation in the apparatue of the conmmon watch.

Fig. 52 representa the apparatus of motion of a watch, somewhat magnified. The apring is confined in a brass

Fig. 62.
cylinder or barrel B. To this barrel the apring is attached by a slit at its outer extremity, The inner extremity of the spring is fixed by a similar slit to the central axis or spindle. F is a brasa cone, bread at bottom and narrow at top, with a path winding spirally round it as an inelined plane. This cone ia called the fusee, and has aloo a central axis or spiudle K, to whirh it in fixed. To a point on the lower inclined path of the fusee, a smalt ateel chain \mathbb{C} is attached, and the other extrenity of thiw chain is attached to the top part of tho barrel. When the apring is relaned, the chain is almost alegether round the barrel. To set the apparatus in motion, the watcikey is mude to turn the spindle K , by which the chain is drawn from the barrel to the fusee, filling up the inclined path to the summit. The chain in leaving the barrel causes it to turn, and consequently ω wind up the apring inside. The process of unwinding or relaxing ensues, and now the ingenioua plan for regulating the motion is to be remarked. At first, when the force of the spring is greateat, the chain acta upon a small roursh of
the fusee ; in other words, it pulls with a sinall leverfor, as already explained under the head Wheel and Axle, a wheel or round object on an axis ia aimply a perpetual lever. In proportion as the intensity of the force weakens, and the barrel takes off the chain from the fusee, and winds it about itself, so does the chain act upon a longer lever, or so does it gain a greater lever advantage, by drawing at a wider part of a cone. Thua, the gradual loss of force is counterbalanced by a gradual increase of lever advantsge. (Tha case resembles that of a strong man working with a ahort lever, and a weak man working with a long lever; both are equal in effect in balancing any resistance.) The wheelwork of the watch is zaved by teeth on the lower circumference of the cons.

LTERNATE OR RECIPROCATING MOTION-ECCENTRIC WHEELS.

Alternate or reciprocating motion is applied to movements which take place continuaily backwarda and forwards in the same path. In most complex machines, both rotary and reciprocating motion occur, and these motions may be converted into each other by various contrivances.

A common contrivance for gradually raising and dopressing an object by machinery, is that of an eccentric wheel.

An eccentric wheel is a wheel with an axis not in its centre, but at a point nearer one side than the other. Fig. 53 represents the action of a wheel of this kind. W is the wheel, and A the axis upon which it is fixed. When the axis turns, the wheel turns with it. As the axis never moves out of its place, the whoel necessarily describes a path
 of gradual rising and faliing in its revo-

Fig. 53.
lutions. Suppose an olject, as T, pressing upon the upper edge of the wheel, so as to accommodate itself to the motion, it is obvious that, by the action of the wheel, thia object will be alternately raised and allowed to fall. Or auppose that a rod is hung from a point of the wheel oear where T rests, it is similarly obvious that the rod would be raised or depressed, according as the wheel turned. Thus a rising and falling motion may be effected by an eccentric wheel.

Eccentric wheels are made of different forms. According as they may be required to ach, they are circular, oval, heart-shaped, or pointed at one end, and so forththe ohject in each rase being to produce alternate motion, by continuslly altering the distance of some movable part of the machine, from the aria about which they revolve. Technically, the projecting parts of eccentric wheels are called cambs.

In some casen, cccentric wheels are not required to perform entire revolutions in their axis. It is perhaps sufficient for the purpose of the mechanism, if they gradually tise to the hright of their power, and then, without turning round, gradually descend by retracing their course.

When alternste rising and falling is required thrice, hy only one revolution of an axlo, an eccentric wheel is used having three projecting esmbe on its circumference, and es each eamb comes round, it lift and lets fall any object preaented to it. An ex. emple of this apparstus is given in fig. $\mathbf{6} 4$. The obgeet rejuired is to work a Leavy hanmor lipen an sinst fur heating irm. W a the whed with the three cambs, wil it turns by an axte it uprigh: supports. In tuming, each canb, with the rounded of convex sitle,

Fig. 34
as to raise the heavy head H at the opposite enil. Affel pressing down the handle and escaping, the head of the hammer fulla with a heavy blow on the anvil A. There it remains till raised up and let fall by the next camb and so on.

oblique action.

A mechanical advantage, which is frequently ot a ver serviceable nature, is obtained ly causing the pointa of two straight bars to meet each other, but fixed loosely, no as to be free to move from an oblique to a atraight direc. tion, and the revorse. The power consists in bringing the bars to the straight, by which they force asunder $0_{\text {a }}$ press hard upon any oljoet presented to their outer ex tromitica. In the adjoining figure, the bars are seen first in their oblique position, and next when brought towarda a straight. Betwixt the two points a amall hollowed piece of metal is inserted, in which the points work, and against which the power is exerted to produce the action. The atruightening and bending of the apparatus ruembles the action of the knee-joint in animals. The pressure produced by the forcing duwnwards of
 the outer extremity of the lower bar (the upper working against a fixed beam), is very casily and rapidly accomplished, and ia almost unlimited; and these advantages, as well as the extreme simpiicity of the mechanism, have led to the application of the power to the pinting-press wrought by the hand, instead of serew preasure.

CRANKS.

The crank affords one of the simplest and most use ful methods of chansing an alternate rising and falling motion into rotary motion.

A crank resembles a cominon handle or winch fo: turning a machine by the hand; the chief difference being, that a rod or shalt jointed to the handle, and going up and down, works the machise. If the crank be made douhle, it will turn two wheela or machines.

Fig. $\mathbf{5 6}$ represents a double crank in action. \mathbf{S} is the rod or shaft ascending and , lescending, and attached by a joint to the lower part of the crank C , which it alternately pulla up and purshes down, so as to cause the axlea W W to turn a whoel at each side. Take away one of the gides of the crank and its support, and the apparatus becomea

Fig. 56. a single crank.

Turning-lathes, krife-grinders' machines, and simula apparatus, are usually turned by cranks wrought by an alternate pressing and raising of the frot of the operator; a rod going upwards siom the foot-loard to the crunk, causing the wheel or spindle to go round. The crank has been hitherto indispensable in the action of the steam-engine.

accumutation.

Power is susceptible of accumulation-that is, of in creaning little by little-and of being experaded eithe gradually or in one or more violent elforts; the efforth being cutirely the concentrated anount of the jremion acromulation. The apparently wonderfal powers playd through the ageney of levers and other mapis machines, sre all a natural consequelofe of an accura lation of any degree of torce into a shall space;
which effects te wmpliahed by In conacquer power in mach blishing reservon anneation with
A well-known m suspending a of considerable persons, a sumg. a very small deg ing motion like o the body retu and greater force coming continual to overcome almo tae battering-ram difications of tow and the force of cannon ball; ne never could exce pulses given to thi

The forcible ex the swing apparat in the cave of a bearling a springaliowing the sprin fut, whieh effort of the accumulated A boy taking a tap, is another fam ad expending it ir ig up power at eve leap corresponds ext be has acquired.
Is the same mat $*$ nther instrument ar, reach, in order t nethod we naturally puher.
la contrivancea in sulated in order to and effective blow. hurizontal lrar or le keled at each ond Ater communicating a rotationt, it will pr had energy and mo ather by friction in tu presented to it.

Equaliza

In most machines, mistance to be overs intensity at different morking. For instan bendile of a piece of m efforts for an instant inatility to kcep his fad to the labour he dopn rause an irreguk which are detrimental puformed. Other mo rezulanties.
The irregularities in hhatever cause they a wh machine a reservoi agiven st all times to 11 may be rejuired. wally in the forin o? A flyowheel is ga, era Wa heary rim o circ hiady cross iar or sje" to fown contre tion wi
fol
and most nse ing and fallin:
which effects take place that could never have been acwomplished by the original force.
In conacquence of this convenient accumulation of power in machines, plans have been devised for astablishing reservoirs of poncer, as they may be called, in maneation with moving machinery.
A well-known method of accumulating power consists m suspending a heavy body by a chain or strong rope of considerable length-forming, what is called by young persons, a sutug. 'This body may be put in motion by A very small degree of power, and will acquire a vibrating motion like a pendulum. By continuing the impulse the body returns, it will continually acyuire greater and greater force, the arcs through which it moves beconing continually larger, until at last it might lee mate to overcome almust any obstacle. Upon this principle, tae battering-rams, or engines for beating down the forufications of towns in ancient tiness, were constructed, and the force of their blows was as great sa that of a cannon ball; nevertheless, the power of their blows never could exceed the accumulated power ol the impulses given to them in order to produce these blows.
The forcible expenditure of accumulated power in the swing apparnius, resembles that which is ohservable in the case of a person occupying several minutes in bealing a spring-that is, accumulating power-and aHowing the spring to unbend itself hy one violent effot, which effort is nothing more than the giving out of the accumulated power.
A boy taking a race to gain force before making a !eap, is another familiar example of accumulating power nd expending it instantancously. The boy in gatherig up power at every step he runs, and the force of his leep corresponds exactly with the quantity of the power be has acquired.
Ia the samo manner, the lifting of a hammer, axe, \# other instrument, to an elevation as far as our arm ar reach, in order to give a blow with good effect, is a sethod we nuturally pursue to gnin accumulation of purer.
la contrivances in the arts, power is sometimes accumulated in order to be griven out in the form of a rapid and effertive blow. This may he done by means of a horizontal bar or lever, poised on a central axis, and lueded at each end with a heavy bull of lead or iron. ther communicating to the machine a sufficient power d potation, it will pioceed with an enormous accumulwed encrgy and momentum, till it expend its force athes by friction in turning, or upon some fixed obstinle presented to it.

equalization-Fly-wheels.

In most machines, both the lioving force and the reistance to be overcome are liable to fluctuations of nensity at different times, during the operation of working. For instance, when a man turus a winch or sendle of a piece of machinery, he is apt to relax in his difirts for an instant from loss of atrength, or from an iastility to keep his attention closely and unifornaly foed to the labour he has to perform. 'Ihese relaxations cause an irregularity of motion in the machinery, which nre detrimental to the machine and to the work paformed. Other moving forces are liable to sinilar mexularities.
The irregularities in the motion of maehinery, from whatever cause they arise, are remedied by giving to wh machine a rescrwoir of power, from which force mny * given at all times to equalize the motion accorling as It may be required. 'fliese reservoirs of power are wally in the form or fly-u/heels.
A flyowhocl in goterally made of iron, and consists a heavy rim o circumfirence, joined to n central his by cross bar or sjokes. In most cases it is placed th clow ronme tion with the first moving force, the finu $4:$
effict of which it equalizes in its passage to the ma chine.

rriction.

Moving bodies, as machinea and wheel carriagea, as lesa or more retarded in their velocity by friction, at.l the resistance of the atmosphere, while veseela moving on water are retarded by the resistance botn of the ar mosphere and of the liquid in which they are bnoyant.

Friction is an effect of the action of rubbing of bodien one upon another.

This efficet is produced by inequaticiea of surface. No auch thing is found as perfect mmoothneas of aurface in bodies. In every case there is, to a lesser or greater extent, a roughnesa or unevenness of the parts of the surface, arising from peculiar texture, porosity, and other cances; and, therefore, when two surfacea come together, the prominent parts of the one fall into the hollow parts of the other. This tenda to prevont or rotnrd motion. In dragging the one body over the other, an exertion must be used to lift the prominences over the parts which oppose then, and this exertion is similar to that of lifting or drawing of bodics up inclined planea or over upright protuberances.

Friction acts as a retarding influence in the action of all mechanical contrivances, and a duo allowance must in every case be made for it. In many instances it deatroys more than hulf of tho power employed, and seldora destroys less than a third. However small it may be, it aooncr or later causer the wearing down and dentruction of mechnnism, and therefore forms an insurmountable obstacle to the lasting duration of bodiea and the perpetuity of motion.

Friction is found to depend on the following circum-stances:-1st, The degres of roughneas of the surfaces. 2d, The weight of the body to be moved. 3d, The extent of aurfaces in certain bodies presented to the action of rubbing, 4 th, Tho nature of the bodies. 5 th, The degrec of velocity of the motion. 6th, The manner of the motion.

Roughness.-It is of the utmost importance to smooth the surfaces. An apparently insignificant piece of matter, or even particles of dust, will greatly retard the motion of a body. But there is a limit beyond which it would be imprudent to smooth the aurfaces of bodiea having a close texture. If the surfaces be highly polished and levelled, the bodies will adhere by the effect of aliraction of cohesion, even when the atmospheric air is not entirely expelled from between them, and more forcibly when the air is completely expellod. Practically, roaile, railways, and aimila: bodies, cannot be made too amonth.

Weight.-Fristion from weight diffors in different bodiea, and defpuis on concurring circumetances, as nature of aurfacn, and so forth. Friction always increasea in exact proportion as the weight increasea, when all other circumstances remain the same. The parts of machinery, therefore, should be made as light as pessible, conaistent with strength and durahility.

Extent of surfuccs,-Rough boties are more easily drawn along when their surfice of contact is narrow than when thev are broad. Fur example, it is easier to draw two narrow brushes across each other, than two broad ones of the same weight. Friction may, thersfore be diminished in rough bodies by lessening the ertent of aurfaces in contact. But there is a limit to this diminution. If the moving surfnce be very thin, and the other sof, the thin surface will plough a groove in the soft one, and thus the frietion will be inicreased, and the machine injured.

Noture nf lodics.--It is a remurknble truth that revn bolies which are of the same nature, or homogeneone rroluce greater friction in movement than bolies which are different in their nature, or heterogeneous. Thil
iran working agairst iron, steel againat nteel, or brass scainst brass, causes in each casc greater friction and wearing of parts, than when iron or steel is made to work against brass. 'I'his circumstance is always sttended to in the collatruction of machinery. Frequently, a small piece of leather is adjusted round an sxle, to provent the metals from cominy in contact.

Degree of I'elocity.-Friction is a uniformly retarding force, oxcept in the case of small velocities, when it is greater in proportion. The reason for it being greater in small velocities is, that in these cnses timo is allowed for the prominences of the moving body to sink deeply into the hollows of the surface on which it is moving, which has a rotarding effect.

Manner of the Motion.-The least advantageous manner in which one body can be moved upon another, is to cause it to slide or drag. The most advantageous manner is to esuse it to roll or turn. The cansing of a body to roll instead of to slide, is one of the chief mesna of diminishing friction. The opposition presented by inequalities of aurface to a rolling wheel, is overcome with ease, in proportion to the extent of diameter of the wheel. On a perfectly horizontal plane, the friction of whecls on the plane is very inconsiderable; the chief seat of friction in such cases being in the exles working in their sockets.

Friction is greatly timinished by luhricating the rubling surfares with an oily or greasy substance, which substance forms a incliuin of amall soft particies betwixt the bodies, snd so prevents the tendency to grind or wear down the surfaces. Water or any similar fluid will also act as a medium to prevent friction, but the effects are only temporary, and would frequently be ininrious, as the substance speedily evaporates, and would corrode metals. Practically, fine pure oil is found to the the bent unguent for machinery.

One of the first considerations on the part of contrivers of mechanism, should he how to provide for and diminish the effects of friction in their machines. For want of forethought on this important point, thousnn la of ingenious schemes, which seemed perfect in the form of raodels and drawings on paper, have heen completely frustrated when attempted to be brought into use.

Whatever may be the retarding and frequently inconvenient effects of friction, in reference to the action of mechanism, it is certain that friction is indispensablo in the cconomy of both nature and art, and serves an an eamential auxiliary to gravitation. It is a property which is frequently necessary, in order to allow one kind of matter to posessa a hold upen another, without actual cohesion. We walk and maintain our erect posture by means of gravitation and action and reactionin other worda, we are held to the earth liv gravitation, and our pressure with our feet exemplifies action and seaction; but if there wan no such property as friction, we should either stick to the earth hy attrnction of cohesion, or slide along it as upon the smoothest ice. In order to keep our feet from sliding when on ice, if we received any inspulse, we cither tis rough suhstances on sur shoes. or scatter ashes in our path; snd thus we receive the benefit of friction. It is hy friction that raing wear down hills, and that rivers wear away their lanke, by which ceaseless procem the external configiteation of the globe is constantly undergning a change. The operationg in art, of washing, cleaning, scouring, harpening, poliahing, cutting, limising, beating, and so furth, are all effected less or more :y friction. The aold which one fibrous subatance has on another, or
mutual friction, permits the operationa of weaving cloth, twisting ropees and threads, and the tying of one hody to another. Thus, friction is of universal service; and the only known inatance in nature in which it i, not required, and therefore not present, are the mone ments of the beavenly bodies, which revolve in arecuum, and are consequently not impeded in their mn tions.

RESISTANCZ OF AIR AND WATER.

Atmospheric air and water are fluids of different den. sities, and both present -sn ohstacle to the moticn of solid hodies through them.

There in a rule in respect to the resistance presented in moderate velocities, which spplies both to air and water. It is, that the resistance is proportional to the square of the velority. For oxample, a velocity of tweuty miles an hour causes a resistance four times greater than a velocity of ten miles an hour, for the square of twenty (which is 20 times 20, or 400) in four timea the square of ten (which is 10 times 10, or 100). Thus, by increasing the velocity of bodies through the ain or water, we inust increase the power in a greater proportion, in order to compenpate the loss caused by resistance.

Although the above rule is nearly correct for mode. rato velocities, it deviates considerably from what is observable in tho ense of great velocities, such as that of a eannon-ball. When the velocity is upwarda of 1000 feet per second through the sir, the quick passagy of the body is belicved to cause a partial vacuum behind it, which causea a retardation of its motion.

Resistance to motion in fluids is greatiy modified, nlso, by the form of the moving body. The form that gives least resistance is nearly that of a parahola, of a form somewhat resembling tho breast of a duck, the head of a fish, or the rounded how of a vessel, sharp. ened to clenve the fluid through which the body pases

[BOOKS ON MECIIANICA, MACUINRRY, de

One of the most comprehensive works on this subjet in Hebert's " Engineer's and Mechnac's Encyclopedia, 2 vols. 8 vo, London, with numerous engravinms. Ha well's "Einginarr's and Mechanic's Porkplationk," is : cheap nal useful compendium. Mosley's "Illustration of Mirhanics," edited by Professor Renivick, is excellent on all the branches which it trents. Professor Renwid'1 ". Applicution of Merhanirs to Practical Prypesse,", is me of the mont useful books of its class, and is consuited with great advantage by working mechanicn. The "Treatise on Mcrhunics," tranalated from Boteharla and edited by Profensor Courtenay, (Harpere New York, is a regular scientific view of the whole subient Ewhank's "Hydravhirs and Merhanira" is intereatias, from its giving the history of these aciences, ond the progress of the arts dependent on them, among the ancienis As a book of general reference Dr_{r}. Ure'n "I Iitionary of .Arls, Manufactures, nud Mins," published recent by the Appletons of New York, is excellent. It clasi. fies the sulijects in alphishetienl order; is very extemave and complete; ind hrings earh subject down to the present state of acience. The trentise of hardner ani Kater is excellent authority, but not so recent os D_{1} lire's Dictionary, and not a tenth prart mo esterisive.]

GE

Maticr exists and gasalus or aê the variuus modi result of certnin operating on the composed
The sulid, liqu assume a fosition heaviness or tensi lowest, and compo: the solid lies the li nivers, snd lakes; sisting ot an expn the whole earth ro to fifty males above occon of air, loaded ure from the liquide med plants grow a ment.
Though differing the liquid and nërife other in many of t constitute the class nify bodies which tirles are easily mov are so thick and vise Gow, as tar, honey, a others flow with ense others are so li-ht an touch and invisible and various gases.
It is common to elastic fluids and clast be compressed into n susceptible of compri water and all other vas erperiments prove tha w them. It has bee pressed in a contined of a very great pressu considerable depth in peesed than at the s. dastic substance ; but fery great difficulty, th gether inappropriate.
Atmospheric sir an mith little titliculty be rolume than they or pressure is rimoverl, t Some gases may be co essume the form of li from the condition of t they can be made to which may loe touched In treating the subj nfler in the finst place form, and after warda to Puro wister, it an orid most suitable example gives the nsine of the
clulea the laws of clules the laws of liybot Grek words signitying Weight, pressume, and eq rett; and Ifydraulux, fr apucr and a pipe, treat eruficial means of condu kiem by [umps.
ng of mon al service; which it is the move 3 in ar their mon
ferent den moticn ol e presentod to sir and ionml to the ty of twenty mes greater te square of ur times the 00). This ugh the air greater procaused by m
et for moderoin what such as that 1 upwards of juick pasaege ucuum behind The form that parahola, or 1 fa duck, the vessel, sharp. c body pasea

HYDROSTATICS-HYDRAULICS-PNEUMATICS.

GENERAL DEFINITIONS.

Mater exists in three principal forms-solid, liquid, and gasaus or sëriform. These forms respoctively, and tho variusa modifications of them, are the immediato result of certain principles of attractinn and repulsion operating on the atoms or particles of which matter is composed
The sulid, liquid, and aetriform varieties of matter, arsume a fusition on our globe corresponding to their heaviness or density in a given volume. The solid sinks lowest, and composes the chief mass of the earth; above the solid lies the liquid variety, in the form of the ocean, nivers, and lakes; nnd above all is the atmosphere, conadring ot an expanse of aeiriform matter, which wrsps the whole enth round to an elevation of from forty-five wfify nules above tho highost mountains. In this great ocean of air, Joaded less or more with particles of moisture from the liquids bencath, we live, breathe, and mova, and plants grow and reccive an appropriate nourishment.
Though differing both in substance and appearance, the liquid and aëriform variotics of matter resemble each other in many of their properties and tendencies, and consitute the class of hodies termed fuxids. Fluids signify bodics which will low, or whose component particles are easily moved among each other. Some fluids are so thick sid viscous, or sticky, that they can scarcely Aiw, ss tar, honcy, and some metals in a state of fasion; ohers flow with ease, as water and distilled spirits; while others are so linelt and volatile, as to be impalpable to the tuch and invisible to the eye, as pure atmospherie wir and ranious gases.
It is common to divide fluids into two kinds-nonelastic fluids and elastic fluicls; that is, fluids which cannot be compressed into a smaller bulk, and those which ure susceptille of compression. The non-elastic fluids are water and all other varieties of liquid bodies; but iccent eqperinents prove that the term is not strictly spplicable ω them. It has leen found that wator may be conpressed in a contined vessel, to a small extent, by means of a very great pressure, and it is certain that water at a considerable depth in the occall is more dense or compessed than at the surface ; water, consequently, is an elastic substance; but as it cnn be compressed only with rery great difficulty, the term nonelastic fluid is not altogether inappropriste.
Atmospheric air and all gases nre elastic. They can with little diticulty be compressed into a much smaller volume than they ordinarily jossess; and when the pressure is removel, they retum to their original bulk. some gases may be compressed to such an extent as to ssume the form of liquids and solids; in other worde, from the condition of being perfectly invisible to the eyr, they can be made to appear as a piece of solid matter, which may be touched and handled.
In treating the subject of fluids, it is convenient to nfer in the finst place to those which are of the liquid form, and afterwards to thowe which are eldastic or nemiorm. Puro water, at an ordinary tempciature, furnishes the most suitable example of liquid bodies. W'ater also gives the name of the dress?ment of seience which inclunces the laws of liyhods. Thus H_{y} drosiatica, from two Greek words signiting evoter a:d to stand, treats of the weight, pressure, and equilbrinum of liquids in a state of ret; and I lydrauliss, from two lireeis worle signifying viver and a pipe, treats of biqui!s in motion, anio t!e evfifial mesns ol conducting liquids in pipes, or rsising wiem by rumps.

hydrostatics.

In ancient times water was believed to be an element or simple sulstance in naturc. It is now ascertained by experiment that water is not an elementary body, but is a substance composed chiefly of two gases in a state of chemical union, snd into those gases it can be resolved by an artificial process. The investigation of this subject belongs to Chemistry.
As a liquil, water consists of exceedingly small particlea or atoms of matter in mechanical combination.
The exact nature and form of the atoms composing water are not satisfactorily known, in consequence of their exceeding smallness. 'They may be compared to very small particles of aand, cohering slightly, and easily slipping or sliding over each other. Whatever may be the nature and form of these exquisitely fine atoms, it is certain that they can adhere firmly together so as to as sume the form of a solid, as in the case of ice, and be made to separate from each other, and disperse through the thinner fluid of the atmosphere, in the forms of steam, clouds, or mist.
Thus, imperfect cohrsion of atoms or particles is a property common to all fluids. The stoma composing water, twing in closer union than those of air, are observable as a mass, and palpable to the touch. When the hand is dipped into them, and then withdrawn, a certain quantity of the atoms is brought away on the surface of the skin; and this adhesion of the particlos of water (eaused by a:trection of cohesion) is what we in ordinary langusge eall uetness. Certain substancess, as is well known, absorb water to a great extent: in such cas a, the minute particles of the water merely penctrate anc fill up the crevices in the substance.

Solid bordies, as a stone, or piece of metal, or wood, have a natural tendency to press only in one direction, that is, downwards, or in the direction of the earth's centre, in obedience to the law of terrestrial attraction.
Wat r has a similar natural tendency to press downwards, all 1 from the same cause ; as, for example, when a jug of water is spilled, the water is seen to fall in a stream to the ground.
Water, however, is governed by a law of pressure, independently of this general lass of gravitation, Thia peculinr or independent law consista of a tendency in the particles of any mass of water to press equally in all directions.
Pressure equally in all directions may the considered as the first or great leading law in refirence to water, and gencrally all tuids, liquid and gascous.
The pressare equalily its all directions is a result of the exceeding omalliness of the individual particles, nnd of the perfect ease with which they glide over or amongst each other.
To exemplify equal pressure, fill a leathern bag with water, and then sew up, the mouth of the bug so closely that none of the water can escape. Now, gqueeze or press upon the lag so as almost to make it lurst. The pressure so applied does not merely net upon the water immediasely under the point of pressure, hut acts equally upon every particle of water in the mass-the particles at the centre lwing as much pressed upon as those at the outside; and it will be observed that the water will suyirt out with equal impetuosity at whatever part you make a hole in the surface.

In this, as in all similhr cases, there in a transmission of pressure throughout the mass. Each particle presses on those next it ; sul so, by the fore communicating from particle to particle, the whole are equally afiected.

In the mase of water lying at repose in an open versel, the tendency to press equally in all directions is not obmerved to act upward, becouse the gravity of the mast keeps the water down; but on pressing upon the surface of the liquid, we observe that it rises against the compression, or tries to escape in any way it can. To take another example-if we plunge our hand into a vesse! of water, we displaco to much liquid, and cause it to rise higher up the aidea of the vesacl. In thia case the water is observed to rise without any reluctance; it as readily presses upward as downward.
Although it is a property in fluida to prese equally in all directions, the degree of intensity of pressure in any mass of fluid ia estimuted by the vertical height of the nuss, and its area at the base.
Pressure of water in proportion to its vertical height, and to area at the buse, is thererore a secont leading feature in the lawa of water. In other words, the pressure of a column of water does not depend on the wilth or thickness of the column, but on its height and the extent of its hase or lower part.
Th; whole of any fluid mass may te imagined to consiat of a number of columns of an inconsiderable thickness, which atand perpendicularly on the horizontal base of the containing vessel, and press the base of the vessel with their respective weights. The pressure, then, if thr beaght of the fluid be the amme throughout, is as the suraber of columne, and this number is according to the aren of the base. Consequently, in veasels whose bases differ as to area, and which contain fluids of the same density, but different heights, the pressure will he in the compeund ratio of the buses and heights.

If the columom of n.ich a fluid mass was supposed to consist, were formed of particles lying in perpendicular lines, the pressure of the fluid would be exerted on the bottom of the vessel only; but as they are aituated in every irregular position, there must of consequence be a pressure exerted in every direction, which pressure must be equal at equal depths. For if any part of the whole mass were not equally pressed on all sides, it would move towarda the direction in which the pressure was least, and would not become quiescent till such equal pressure was obtained. The quiescence of the parts of fluida is therefore a proof that they are equally pressed on all sides.

Several intereating experiments may be made to prove that the pressure of water is in proportion to its height and width of base.

Figure 1 representa a vessel with a broad top EEE, tapering to a narrow base CD. The dotted enclosure ABCD represents an ideal column of water the width of the base. The vessel is supposed to be filled with wnter to the surface LEE. Yet the base or bathom nustaine no more pressure than that described by
 the ideal column ABCD; for the other parts of the contained fluid can only press the column ABCD, and also the sloping aides, laterally, and therefore do not contribute to the increase of the weight or pressure on the bottom (:D.
If we take vereel ot the sane capacity, but with a broad lrame, as in fir. 2, the pressure on the bittom is very different In this case, the lase EiF sustainw a pressure equal w the weight of a column Thowe bame is EF, and zeight equal to $A C$; for se water in the central

Fig. 2.
column ABCD presses laterally ir aillewise, with tha same force as it does on the pert on which it stands; and thua a unióormity of presaure is establiahed over every part of the bottom.

From these two cases combined, the reanon is evilent why fluids contnined in the several parts of vcesels retain everywhere at the same height; for the lowest part where they communicate may be regarded as the common base, and the fluids which rest thereon are in equil:orio then only, when their heigits are equal, however ae't quantities may very.

We may prove the truth of these y positions in $v_{\text {a }}$ rious ways. Let ABCD, fig. 3, repreaent a cylindrical vessel, to the inside of which is titted the cover G, which
by meana of leather at the edge, will easily s!:ice uy and down in the internal cavity, without permitting any wate: iu pass between it and the aurface of the cylinder. In the cover is ineerted the small tube EF, open at top, and communicating with the inside of the c.linder velow the cover at G. The cyiinder is filled with water, and the cover put on. Then if the cover be loaded with the weight, suppose of a pound, it will be depressed, the wate: will rise in the tube to E , and the weight will be suatained. In other words, a very sinall quantity of water in this narresv tuine will jress with a force as great us if the vessel were of the dinensions KI,CD, instead of ABCD. By filling the tube

Fis 3. to F , a force will be gained sufficient to balonce addjtional pound weights on the cover G, and an great an could the conferred by a vessci of equal breadth all the way up to F.
Wuter, in its pressure equatly in all directions, prespes upwards as well as downwatis. This is seen in the above experiments. Take fig. 3 os an exampie. The ws. ter in the vessel ABCD, when the tube is filled, pressen aa has been said, with a force equal to that of a column of water of equal breadth all the way up to F . Thiscan only be in consequence of the water in the vessel $A B C D$ pressing violently upwards against the cover G, which violence causer a corresponding reaction on the bottom of the vessel. This reaction, then, is equivalent to ver. tical height. To une a figure of speech, the water in the vensel is in the condition of a man pressing equally up wards with his shoulders and downwurds with his feet at the same time; and the more he ia seted upon by weight alove, the more powerfully does he exert his pressure in both directions.

An instrumeat called the hydrontatic bellows has leel construrted to exemplify the eflect produced by the , teen slure of a small column of water. As reprenented in fig. 4, it consints of two circular atout boarda connected together with leather, in the form of a pair of strong bellowa. A tube A communicates with the interior brtween the boards. Supposing the inatrument to he strong enough, a person standing on the upper board may raise himmelf by prouring water into the tuhe, and filling it along with the bellown. It is infual to estimate the prosare by meath of weights, W. If the tube hold atn ounce of wster, and has an area cqual to a thousundth pare of the area of the top of the bellowa, one ounse of watur the the tube will bulanes thousand ounces placed on the bellows.

I als remarka the hydrostatic p which in mechan ues. According descending a lon equal in effect to ally shorter way ir applied to liquids, of water descendi $t 0$ a proportionat volume of water The law of pres is ehown in the ar sel with a uniform and full of wate thedepth into 10 eq ω represent feet, foon 1 to 10 , it is at the depth of 1 presturo of one foc at 2, two feet, and at the bottom, whe fet of water. Th the middle, at 5 . iure have no refer length of the mass. whather the vessel As in this examp there is upon the 1 water above the midd compensited by a iemeath the riddle; aifused over the side pint of average pres cubiral vessel, accore literal pressure precis It endared by the bott We may calculate resels having perpen hotoms, by first find the sides below the su ing that by the numbe liquid; by which cala the number of solid f equal to the lateral pre of square feet in the of feet in the cireumfe ker of feet in the septl Example,-'Io find erpendicular sidea of bue of the liquid, and dy the 24 by 40, and of the sides; then mult hat is 12 , and the prod of the volume of liquid presure on the sides. such foot, which is reel [4,5:0 multiplied by 1 which is the pressure of In consequence of t! the rettical ho ighte and it thas the lateran pressur rase y greater than 1 this will he the case wh
writat with the liquid azanitude of the hoten adh laterand und perpemil ache is edral to the worg The circumstance of on to depeth, suggenta
Totly ineroiaving the oly inerrisaing the \therefore genter strenizth

1 ars rensarkalle property in liquids, which is called the hydrostatic paradox, is analogous in prineiple to that which in mechanics ia called the Law of Virtual Velociuee According to thia fundamental rule, a small weight descending a long way, in any given length of time, is equal in effeet to a great weight descending a proportionally shorter way in the same space of time. The rule, as applied to liquids, may be ststed thus:-A small quantity of wster descending in a long column is equal in eflect to a proportionately gleast pressure exerted by a large volume of water in a short column.
The law of pressure in proportion to height of column to shown in the annexed representation, fig. 5 , of a vessel with a uniformly level base, and full of water. Dividing theilepth into 10 equal sertions, ω represent feet, as marked foun 1 to 10 , it is found, that, at the depth of 1 , there is a plessure of one foot of water, ${ }_{3} 2$, two fect, and so on to 10

Fig. 5. at the bottom, where there is a pressure of ten vertical feet of water. The average pressure of the whote is at the middle, at 5. These degrees of intensity of pressure have no reference to the horizontal breadth or length of the mass. The same pressure is suslained, whether the vessel be a foot or a mile in breadth.
As in this example, whatever Ifficiency of pressure there is upon the perpendicular sides of a vessel of water above the iniddlo or point of average pressure, is compensated by a corresponding excess of pressure tmatih tho middle; consequently, the entire pressure offused over the side is equal to that at the mildle or piant of average pressure. A perpendicular side of a cubiral vessel, according to this etatement, sustains a hateral pressure precisely equal to the half of that which in endured by the bottom.
We may calculate the degree of lateral pressure in reeels having perpendicular sides and flat horizontal motoms, by first finding the number of square fret in the sides below the surface of the liquid; then multiplying that by the number of feet in half the depth of the品uid; by which calculation, the proluct will express the sumber of solid feet of the liquid, whose weight is egual to the lateral pressure. We may find the numiar di quare feet in the sides, by multiplying the number if feet in the circumference of the liotom liy the numkrof feet in the depth of the liquils.
Example.-To find the degree of pressure on the kpendicular sides of il vat 21 feet deep from the surbe of the liquid, and 40 feet in circumference.-Multiis the 24 by 40 , and the product 960 gives the area if the edes; then multiply the 960 by half the height, bat is 12 , and the product is 11,520 culic feet of water, at the volume of liquid whose weight is equal to the pmeure on the sides. We next fisd the weight per alic fiot, which is reckoned to be 1000 ounces; then u2,520 muttiplied by 1000 , gives $11,520,000$ ounces, wiich is the pressure of the water on the sides.
In coasequence of the pressure of liquids being as |be vertical he ight and area of the basis, it may happen that the laterat pressure on the sides of a containing rasel 's greater than the whole weight of the liquid; his will be the case whin the surface of the sides in - nater with the liguid exceeds the ratio of doulde the aznitude of the lontom-at dombte the mamitule: oth lateral and perpendicular pressures ate ulike and each ts cenal to the meright of the higuld.
The cirrumstance of pressure increasing in groporfob to depth, sugersta the valuable practical lesson of Graty inereasigg the breadth of "mbankmenta for Hand unt canals from the top downwarde, en an to give Thi, geater strenget to the hase than the summit; 2no of bereasing the strength of the fower hapop of
large vats, to prevent their bursting. It likewise doo monetrates the propriety of making dams, ponds, canaly and vessels for liquids gencrally, as shallow as is consistent with convenience or their required purpose. In each case, it is important to recollect that the degree of pressure on the sides is irrespective of shape or size of the contents, and depends exclusively on the height of the liquid from its upper surface to its base.
That pressure in water is not according to volume, but the height above the point of pressure, is obvious from many facts hoth in nature and art. Whether we plunge an object a foot deep in the ocean or in a jar of water, the pressure upon it is the same. The mere extent of the volume of liquid is of $\mathrm{r} n$ consequence. Therefore, a precipitous shore pressed upon by the sea to the height of any given number of feet, suffica no more pressure (supposing the sea to be at rest) than the side of a canal of the same number of feet in length.
If the law of pressure of fluids were otherwiso than that now stated, no species of emoankment, no strength of shore, could withstand the pressure of the ocean, particularly in a high state 1 the tide. In consequence of the law of pressure being simply as the vertical height, we are cnabled by ar.ificial means to stem the volume of a far-spreading occan, and to secure the dry land from its invasion. A knowledge of this important law might induce the attempt to secure many thousand acres of land which are now covered by the tide.
If a vessel, as for instance a barrel, be filled with water, and three apertures be made in its side at difo ferent heights, as in fig. 6 , the liquid will pour out with an impetuosity corresponding to the depth ot the aperture from the top. The jet A nearest the top of the barrel, baving little preo sure above it, will be orojected but a short way; the jet B, hav-
 ing a gicater pres Fig. 6. sure, will perhaps go to double the distance; and the jet C, having the greatest pressure of all, will go to a yreater distance still. Jets of this kind obry the laws whirh govern solid projectiles in their flight; they deseribe a curvilincar motion, the width of curve being proprotional to the impressed force.

Practically, the discharge of liquids from apertures is partly affected by the slape nod width of the aperture; for water is :etarded by friction, and by its own impetuosity or eress currents in a small channel. It is reckmed that the pressure of water on any body plunged into it, or on the bottom or sides of the containing vess.l, is ahout one pound on the square inch for every two feet in the depth.

Pieces of wood sunk to great depths in the ocean hecome so saturated with water by the pressure of the superincumbent mass, that they lose their buoyancy, and remuin a! rest at the lonton2. The dipth to which divers can desecnd is limited by the inereased pressure they exprimer in their deseent. If a bote be firmly corked and seated, and sunk to a grat deptls in the ocean, the cork will either be forred in or the bottle broken by the presmre. An nir-hell rising from s depth, ecpatuls as it approaches the surface. At the depth of a thousand fathous, water is estimated to ho ahout a twentielh part more dense in the bulk thas an the surfuce.

Thlu zreat eflowe which may take place by the actoon of a smath lout ligh colum of watior, are sometimea exemplified in the remdimy of montains. In lig. 7. a monntain or high rocky knolj is represented, with a
nmall vertical crevice A reaching from the summit to in internal reservoir of water near the base. If there be no ineans of outlet to the liquid, end if rain continue to keep the crevice and its terminating reservoir full, the lateral force exerted by the upright column will be vary considerable. Supposing the crevico to be an

Fig .7.
inch in diameter, and 200 fect deep, the pressure wonld be equal to nearly half a ton on every syuare inch; such a force continually acting on the sides of the mountain (laying out of view the great ndditional force given be expansion of the liquid in freczing during wint ${ }^{-}$wond probably in time overrome tho cohesivenese of the mass, and burst the whole asunder. In this property in water, therefore, wo sce one of the many pro'isions of nature for producing changes on the surface: or the earth.

Etlects of a similar character, but on a less scalo, so oliservable in the bursting of walls behind which rrtic has been piled, and in which no proper outlets . or water have been provided; also in the bursting upwarsh, . ${ }^{\text {e }}$ drains upon a declivity, when they become cheles.

The easy motion of the particles anong ench other causes them to accommodate themselses to the shape of any vessel. The force of gravity also causes them to seek the lowest level for repose-each particle tries to get aa low as it can. The result of this general tendeucy througheut the mass is a perfect levelness of sur-face-the top of the water is smooth.
A reniform leveluess of surfice takes place in every comnected mass of water, whatever be its mngnitude or Its shape. This forms the third leading feature in the laws of water, and is the cause of many of the phenomena in nature.

One of the most familiar examples of the equal height and levelness of surface of water, is that observable in a common teapot. In the representation of a teapot, fig. 8 , the surface of the liquid in the pot is scen to lee at A, and also at the very same height at B in the spout. A straiglit detted line is drawn from the one to the other, to nhow that both surfacee are of the same level. It is cuatomary to kay that the small column of water in the spont inlances the large mess of water in the pot, but, in realisy, there is no balancing in the case. The water balancing in the case. The water
 necessarity possessee the same surface level in alt its parts; one portion eannot stand higher than nowther; all portions, great and small, are only distrihuted $1^{\text {marts }}$ of a single mass.

The tendency which water has to stand at the same surfice level in all parta of ita mask, is usuatly referced to lyy the phrase "water finding its livel."

It is this inherent tembency in water to tind its level thast proxlucen the various phenomena of the trickling Jown of rain and moisture into the ground, the flow nge al all kindu of atreams, from the minall brook to the
mighty river, and the ohooting of rapids and cotamerto over procipices. In each case, the water, in obedience to the natural law or tendeney which governs it, is onlg trying to find its level. In pursuit of this object, the water, by the rubling force which it exercises, weary down all the solid objects which preaent an ohstacle to it in its course. Thus, the aubstances of which hills and plaina are composed, are carried away by streams into the ocean-the ground of continents and islands diminishes in bulk-new land rises in tho aca; and so, by the effects of a simple natural cause, great alter. utions are produccd in the external features of the globe

There ure two kinds of levels-the true lerel and the natural level. Tho true level is a perfectly horizontal plane, as for instance an even line, thus or a perfectly even surface of a floor.

The natural level is a surface, every point of which is at tho same distance from the centte of the carth. The aurface level of water is always the natural level

The character of a natural level is underiood hy 1 reference to the spherical shape of the carih and the pressure of gravitation. The globe is n ball, and any piece of water which lies upon it, lies in the form of a plaster round the ball. Water, thercfore, cannot pessibly have n true surfince level; its level partakes of the sphericity of tho lall. Every piece of water, in a state of entire or partinl repore, is in tiais manner conver in its surface.

The degree of convexity of the carth is, ne nearly as it can the stated in firures, 7 inehes and $9-10$ ths of an inch, or nearly 8 inches in each mile. The convexity, however, is somewhat less towards the north and south poles, hecnuse the earth is a spheroid, or a sphere flath tened at the conds.

Fig. 9 represents a segment of the earth's surface, with the appearance of a true and natural level marked

Fig 9.
upon it. The curve ES is the earth's surface. PC is a perpendicular line pointing to the centre of the carth At right angles from this line, a line TI, is drawn representing a true level. Supposing that the line TL is a mile in length, if we draw a line trom 1 to the rentre at C^{\prime}, it will cut across the surface of the eath at a point a mile distant from the line at ' I ', which point will lue 7 inehes and 9 -10ths depressed below the pan at 1 ..

The convexity of the earth's surfiece is not ohservable in amall guantities of water. The surface of a glas of water is mot a true level, hat the degree of converity is no small that it cammot he practicully estimated on manaret. It as only when a shect of water is strekhed ont to an mencut of several miles, that the consenity lucohars coll-pichatas. It is vory perceptible on the weath when as shpix ande approathing os the horizon; tirst the mants and saits of tho shif are seen, and lavet the hate. In arder to catcle the tirnt glimper of veseds at ma, the priat of outhonk tion lown is phaced bigt

above the water. is shle to see o laformation of th luolow.
The convexity consequence of $t h$ face. It is only i forent parts of thi ceivel is the same In formu. 5 road womako allowance The first thing dor by means of an int varictics of the th stand, which must, fectly horizontal, or an instrument is f by that it is regulat A spirit level is requiring levelneng dists of a cylindric tube, as in Fig. 10, ing a quantity of NF wine sutlicient to fil rept a small part, in the air is left. T nealed, the sinall va sir-bubblo at whate The tube being set bottom, this case is l or other object to b is seen to rest in the jes that the object on level. In the accos men ut the middle at cause the bubble to aber.
A true level being regor looks through t the lower end of whic in a perpendienlar po pose) the distance of pole having tigures ma level with the eyo is are then reckoned da sa that depth we have eurveyor maties his st were to be mado on th it would procend in earth's convestry, like *quently, would react was destinced to go. the water in a canal p ω do so, the water channel prepared for burer end.
As most countrics ar fice, canals are usuull. w inuch of the length on another, as the cas level there is a lock, or wheep the water at t pasago of vessels 'Th ble steps of a stuir, one and by their means ves or down hill.

spect

The more dense in more heavy or weighty purticles to low operuted In refurence so the del craruy is emplayed to Towde 'I'hus, the weigl

caiaracta

 bedients t, is ouly bject, the es, wcary ostacle to nich hills y streams d islands ; and mo, cat alter. the globe. l and the horizontalof which the earth. ural level siood ly th and the , , and any form of a :annot posakes of the r , in a state r colvex in
as nearly as l0ths of an c convexity, h and south suluere flat.
th's surface, level markel
above the water. By this means the person who looks is able to see over a part of the convexity, and give Information of the approach of vessels to thome placed belaw.
The convexity of the land is not so conspicuous, in consequence of the many risings and fallings in the surface. It is only in some extensive alluvial plains in different parts of the world that the convexity can be perceived it the same manner as at sea.
In formu. 5 roads, railways, and conals, it in necensary to make allowance for the convexity of the earth's surlace. The first thing done in such cases is to survey the land by means of an instrument called a thendohte. One of the varictics of the theodolite is a small telescope tixed on a stand, which must, when looked through, he placed perectly horizontal, or in a true level. 'ro find a true level, an instrument is fixed below it, called a spirit level, and by that it is regulated.
A spirit level ia in universal request in works of art requiring levelness of foundation or surface. It consits of a cylimulrical glase tube, is in Fig. 10, containing a quantity of spirits of wine bullicient to fill it, exeept a small part, in which
 the air is left. The tube being completely closed or sealed, the sinall vacancy where the air is left shows an ar-bubble at whatever part of the tube is uppermos. The tube being set in a small wooder case with a level bottom, this case is laid upon the block of stone, wood, on ation object to be levelled, and when the air-bubble wsen to rest in the midale of the upper side, it signijes that the abject on which the instruncent lies is a true level. In the accompanying figure, the air-bubble is men at the middle at b; the slightest unevenness would cause the bubble to proceed to a at one end, or c at the ather.
. A true level being found for the theodolite, the surregar looks through the glass or telescope towards a pole, the lower end of which rests on the ground, and is held in a perpenticular position by a man at (we shall suppose) the distance of a mile, previously measured. The pule hawng figurea marked upon it, a certain figure on a level with the cye is ascertained; 7 inches and $9-10$ ths are then reckoned down the prole from the tigure, und at that depth we liave the natural level from which the surveyor makes his subsequent calculations. It a roal were to le made on the phan of preserving a true level, it would proced in its course at a tangent from the arth's conventy, like the line 'f I, in Pig. 9 , aml, conequenty, would reach a point above that to which it was destined to go. It would be impossible to make the water in a canal pursue a true level; in the attempt ω do so, the water would not remam at rest in the channel prepared for it, sut would rush towards the wwer end.

As most countrica are less or more irregular in surhace, canala are usually constructed with different levels, w inuch of the length being on ous level, and so much on another, as the case may be. At every change of level there is a lock, or portion enclosed with gateways, wheep the water at the proper level, and to nllow the pasage of vessels. 'I'he locks of a canal, therefore, are Wise steps of a atuir, one at a grcuter height than another, and by theit means vessela may be made to proceed up or davn hill.

sPECIFIC ORAVITY.

The more dense in sulastance that a body is, it is the more heavy or weighty, because it contains the more paticles to tw operated upon by attraction of gravitation. ha reference so the density of bodies, the term specofic graruy is emplayed to denute the comparison which is ride 'lisus, the weight of a liunp of lead is greater
than an equal bulk of cork; thereicic its apecific gravitp is grester; and so on with all other substances, when compared together. For the aske of convenience, puse distilled water, at a temperature of 62 degrees, has beer established as a standard by which to compare the spereific gravity or relative weight of solid and liquid bodies. Every such borly is suid to be of either a greuter or lesa specific gravity than water, bulk for bulk.

We have an example of a difference in the specific gravities of liquids, in mercury, water, oil, and spirits. Mercury is considerably more dense or nesvy than any of the others; the next in density is water, then oil, and lastly spirits. If we put a quantity of each of these liquids into a glass vessel, one after the other, in the order here mentioned, we shall ohserve that all keep their respertive places without intermixture, the heaviest at the lottom ant the lightest at the top. Should they even be jumbled together in the vessel, it will be noticed that they in time rectify the disturbance, euch assuming its own position.

Sea or salt water, in consequence of being londed with foreign matter, is of greater density or specific gravity than pure fresh water of the same temperature. If we therefore pour a guantity of salt water into a glass vessel, and then gently place some fresh water above it, we shall ohserve the same phemomenon, of each kind of hipuid retaining jts position, the heaviest to the botton, and the lighterit to the top. After being jumbled togetser, tho two lipaids will, as far as possible, return to their former relative position.

If we fill a bottle with water, and dip it with the open month downwards into a jai or barrel of spirits, the water, in virtue of its density, will be emptied and sink into the spirits, and the spirits will immediately rush up into the empty bottle, aide supply the place of the water.
'I'he force which liquids exert in opposing each other in a state of equilioriun, corresponds to their specific gravities ; in other words, a smali quantity of a heavy liquid will talance a much greater quantity of a lighter liquid. For example, take a bent gluss tuhe, as in Fig. 11, and pour as much water into it as will extend from the bottom at E to A. This quantity of water will the balanced or hept to its sumanit icrel at A by a quantity of mereury moasuring from E to B, or hy a quantity of oil from E to C , or hy a quantity of spirits from E io D. Each of these expriments may be pertionmed one after the other. The pressure of liguids being as the vertical hoight, and not as breadih. it would make no dilkerence in the result of the experments, if the limb of the tube for the meriury, uil, or spirits, were increased to a foot, a mile, or any
 other diancter.

Water, at its ordinary temperature of 62 degrees, has a sipecific gravity of 1000 sunces to the eubic foot. Platinom is $22 \frac{1}{2}$ times heavier, or $22 \frac{1}{2}$ times tise specific gravity of water; gold is $10 \frac{1}{3}$, mercury 131 , copper $8 \frac{7}{4}$, iron 8, common stone about 2h, and brick 2. Aloohol is a little chore than $8-10$ ths of the heaviness or specifio gravity of water, or 11.815 ; and oil of alınonds is a little more than 9 -10ths, or 0.913 . Atmospheric nis at the earthis surface is $1-800$ th part, or 0.10125 ; in other words, while a cubic foot of water weighs 1000 onnces, a cubie toot of air weighs one ounce and a quarter.

Seu-wuter germetally possersers a specatic gravity on 1.035 -that is, to 1000 parts of fresh water there are in addition 35 parts of suline substances.* Sea-water leing, therefore, 35 pasts for every 1000 of wabr more dellos

[^16]than fiesh wster, it posseme proportionally greater power of buoying up bodics. A vessel which will carry 1000 tons on freeh water, will thus carry 1035 tons c: the wea.

FLUID suppont.

The Immersion of solid bodien in liquids develupw some important painciples in hydrontatieg

Any body of greater sperific as:avity than water, bulk for hulk, will aink on being thrown into water; hut a body will float if its specific gravity be less than that of wuter.

The node of stating the law in reference to the immeraion and lioating of solid bodiea in any kind of fluids, is an follows:-

First.-Any solid bedy inmersed in a fluid displares exectly its own bulk of fluid, nad the force with which the body is buoyed up is equal to the weight of the thinid which is displaced ; therefore, the body will sink or swin, according as its own weight is greater or less than the bulk of displaced fluid. I'his refers to boties of less denvity than water.

Sccond.-Any aolid boly of a greater density than water, when wholly inmersed in that fluid, loses exactly as mech of ita weight as the weight of an equal hulk of the water-that is, of the water which it dis. places.

It is of ireat importance that these propositions should be ully comprehented, for they explain innunerable prenomena in nature, in refirence to the floating or aw mming of bodies in water or in the atmoaphere.

Water, as bas been explained, consists of innumerable omall particles, pressing in all directions, or upwards as well as downwards. Let us fix our nttention on a mupposed single particle in the mass: while the lipuid is in a condition of repose, we may imagine the particle to be suetained between contending forcer-ithe force of a colunn of particles above, and the equally strong force of prarticles beneath, puahing to get upward or awny from this colurn.

Let us now substitute nny solid object for the suppoeed particle; for example, the quadrangular olject A B represented in a vessel of water, Yig. 12. This object, supposed to be of the same density ns water, which we see is sunk in a buoyant condition in the water, has displaced a mass of particles, all of which were operated upon in the manner of the supposed single particle. This object, then, by

FIM 12 tiking the place of the mass of particles, has becoms subject th the samo contending forceo, and in commequenty floated or sastained to the same extent an they werc.

If we suppose that the weisht of the object in two pounds, hyuid to the amount of two pronila in displacoid, ald the: object is pressed upwards with the force of two pounde Ur, to vary the cuabile, suppose that only the Lower half bencath the line 1 ; is the sollid object, and that the pate occupimi loy the ulyer half is water, the object ia still pressed upwards with a force of two grohtuls ; tet lwing ono pound weight in itwolf, and hating a pound of wator above it, it remaine nuspended in equilibrium.

Theme examples refer so twatica which ure of the name density or weight as water, bulk for bulk; we slafll now take an example of a borly specifically lighter than i Her, by which it will be obmerved that the buoyancy is guverned by the wame prineiple.

Fig. 13 represerts a solid object A B half imme rned in a veanel of water. In this, as in all cases in which there

Is a portion of the ohject ahove the water, the weight of that portion is borne by, and therefore conveyed to, the portion which is immersed. Thus, In the example before ua, the portion B, though less than a pound weight in itaelf. by uppporting A becomes, wu shatl say, a pound, and displaces a pound

Fig. 13. of water; it is therefore buoyed up with the correspond ing force of a pound.

Whether a bady be large or small in bulk, in propos. tion to its weight, its displacument of water depeuda es. cluaively on its weight, so long as it is not heavier than water. A vessel of cork, wood, or any nubstance iightes than water, waighing a thousand tons, displacea exactly tho aame woight of water, or is buoyed uj, with the aame degree of force.

From these circumstancer, it appears that the entire weight of any fontimg body may be culculated by moasuring the quantity of water which it diaplaces.

On immersing a stonc or any other solid object in water, it is found to be buoyed up in proportion as its apecific savity is less than that of water. If ita sprecifie gravity le greater than water, it will aink to the bottom, and if lews it will swim. As the water of the ocean he comes of greater apecific gravity the greater the depth, if may happen that an object which sinke nt the top of the water, will remain suspended in equilibrium when it de. scends to a point at which the apecific gravity of the water is equal to its own.

Whatever be the weight of any solid obifet when weighed in air, its apparent weight is lessin'd when weighed in water. Thus a atone msy be roved with comparative ease in water, which cannot be iffed without coosiderahle difficuity on land. The apparent diminution If weight in thew cases is caused hy the support afforded by the liquid. Attraction of gravitation, which is the rouse of what we call weight, is counteracted more in. water than in sir, lecause the water has a tendency to buoy up the objert. The weight of any object in watep is therely lessened to the extent of the weight of a bulk of tiquid equal to the size of the ohject. If the olject dioplare a pound of water, it will weigh a gound lighter ill waler than in air.

The circumstance of any solid ohject disיlaring ite owa bulk of lipuid, and losing exartly as murli of tits weigh us the weight of that bulk of liquid which it displaces, has leil to the wase of the liydrostatic or watur balance, for asertaining the intrionio value of gold and other precious motalm. Fur exumplo, ly knowilug in the tirst place how much water a joutal uf pura gold dixpharam, mal then weis!ing in water, as in Fifs, 14, un obyect anid to be a jound of

$\mathrm{F}^{2} \mathrm{ig} .14$. gold, we whould outserve whether it dighlued the poper quantity of water, if it displared more thon was jropir, then we should le rematin that in contained alloy of some inferior substance, Iring tow bulky tirs a pound of gohl. Nuch weighta are used by goldencitha,

Thine, if a piece of gold wrigh 193 ounces in ais, it wobld weigh only infouners in water; the onnce of wright thon countractod being just the weight of the water that the gold disphares. Therefore the weight of the goid would to to that of cee water ne 103 ounces tol ounce ; that i , the sjocitic gravis; of gold in 193 , if water is laken for the standard.

We may caum an olject, such au hieht bollow bal
ar blaidder, to equal to its owi the ball into compensates tho extrancous pre the body itself, Tt human fuil of air, is ape in the aoa than going or fulling they struggla so them up. The the head above t not awim may li, paralyzed, by sin lying with hia fa arms sut of the much liquid; its sinks. Igrorance of resvlution, can.
Thero are vari drowning, callod are those which light material att But air-tight bag rarecly to encu danger approache being blown into cork in their struc of thin metallic Glled with water, above the general is sea-fowl, and viderably lighter a they are covered Quadrupecta avim natural motion of that which beat fi enahlod to change air-bag with which tag is disteniled, th is contracted, they

The huogant pre their depth or exp water to surround will dout as effectua large mass of water. float an oliject :vhic for these phenomet leing as vertical h ty a berly being buc portion to the weigh
These important practical lesson, that wide as will atford upon them, they wi poses of buryancy better on the face o than it would do crough of water in
Every solisl baty to the print upon itself, and remaina is uny position. 1
The equilibrium of same manner. 'I'he rity, about which the the liguid, the henvi more light will be up In refirence to toa the cenire of buoyinne the liquid which is of the mane aperitic of buoyancy will be Vol. 1--24
of platdor，to deplace much more water than what is equal to its own weight；but in doing so，we must prese the ball into the water，and that degree of pressure compensates the deficiency of weight in the ball．Thus， extrancous pressure on a floating body，and weight in the body itself，are the same thing as respecta buoyancy．
Try human boly in a atate of health，with the lunge full of air，is specifically lighter than water，and more so in the sea than in freeh water．Peranna，therefore，on going or fulling into water，cannot possibly sink，unle，es they struggle so an to prevent the liquid from buo；ing tham up．The body will float with a bulk of ahe at half the head above the surface ；and thus a persun who can－ not awim may live and breathe，until chilled or othr rwise paralyzed，by simply atretchitg himself on his＇．．te＇n．and lying with his face above the water．By throsanc：the arms uut of the water，the body does not displaz＂on much liquid；its weight is incrensed，and it naturally ainks．Ignorance of these facts in tiydrosratics，sud want of resolution，cause many deaths by drowning．

There are various kinds of apparatus for preventing drowning，called life－prescrvers．The most common are thaso which consist of pieces of cork or other very light materisl attached to the upler part of the hody． Bat air－tight bags are preferable，as they may be said acarcely to encumber the body when empty，and，as danger approaches，they can be inflated with easo by being blown into．Life－boats have large quantities of cork in their structure，and also air－tight vessels made of thin metallic plates；so that，reen when the boat is Glled with water，a considershle prition of it still lloats wove the general surface．＂he hodies of＇some animals， us sea－fowl，and many otion species of birls，are con－ aderally lighter than water．The feathers with which thay are covered add very much to their luwyancy． Quadrupeds awim much pasier than mer，because the natural motion of their legs in walking or rumning is that which best fits them for swiomming．Fishes are enabled to change their specific gravity by means of an air－bag with which they are provided．When the air－ bag is distended，they rise to the surface；snd when it is contructed，they descend to the bottom．
The huoyant property of liguids is independent of their deptls or expanse，for if there be only enough of water to surround an object plunged into it，the object will thoat as etlectually as if it hud been immersed in a large mass of water．＇Thus a few pounds of water inay float an object which is a ton in weight．We account for these phenomena liy the law of pressuro in liquids leing as vertical height not as width of column，and ty a boly being buoyed up with a force exactly in pro－ portion to the weight of water which it di．splaces．
These important truthe in hydrostaties teach the practical lesson，that if canals se made only as decp or pido as will afford water to surround the vessels placed upon them，they will be sufficiently large for all pur－ poses of huoyancy and navigation．A ship innts no better on the tare of a sheet of water miles in width， than it would do on a mill－pond，provided there be enough of water in the prond to keep it off the hottom．
Every solid body posseнмя a centre of gravily，which Is the peint upon or shout which the boty balances itself，and remains in a state of rest，or equilibriunn，in nny position．4
The equilibrium of tloating bodies is regulated in the same manner，＇The floating body has a centre of gra－ rity，slout which the whole mass witl balance itsolf in the liquid，the hemviest side will sink lowest，and the more light will b．upjermost．

In referonce to toating bodies，there is a point called the centre of homancy；this is the centre of gravity of the liquid which is displaced．If the floating body be of the 解的e sperilic gravity as water，then the centre of buoyancy will be at the same point in the floating
VoL．1－－24
body as it would，wve been in the water；but there is meldom this unifo vity，at least not in vensela uned for purposes of navigution．It is necessary that all auch vessela ahould be of a less specific gravity than water，in order that a part of their weight may be composed of cargo，stores，passengers，\＆c．，and that they may be aufficiently t nyan：．

Heavy matorhla，called ballast，are vaually plceed in the bottom of the holds of vessela to hasure a low cen－ tre of gravity．A ship of the largest capacity and burden，with its centre of gravity properly rugulated， rests in the water with a stateliness and stability which cannot be deatroyed except by some extraordinary violence．

HYDRUMETEAB．

If a substance be weigned in two fuids，the weights which it loses in earh are as the speeific gravities of those fluids．Thus，a cubic inch of lead loses 253 grains when weighed in water，and only 209 grains when weighed in rectified e⿴pirit；therefore，a cubie inch of rectified spirit weighs 209 grains，an equal buls of water weighing 253；and so the specific gravity of water is about a frurth greater than that of the spirit．

The instument alled a hydrometer is constructed upon this principle．Its name is derived from two Greek words，signifying mensure of water；but it is of course use i for sscertaining the density of ：all kinds of liquicis．＇t are are various kinds of hydrometers．One of them consits of a glass or copper ball with a stem， on which is marked a scalo of equal parts or degrecs． When inmerse in any fluid，the stem sinks to a ceftain depth，which is indicated by the graduated ecale．The length to which it sinks in the standard of comparison being known，we esn thus ensily ascertain bow much it is specifically heavier or lighter than the fluid．

Much in the same ranner is constructed another hy－ drometer of great delicacy and exactness．It congista of a ball of glass abont three inches diameter，with another joined to it， and opening into it，of one inch dia－ aneter，$b r$ ，fits，$s \dot{\omega}$ ，and a brass neek d ， into which is serewed a wire a e，di－ vided into inches and tenths of an inch，about ien inches long and one－ fortieth of an inch in dis＇neter．＇The whole weigh：of the instrument is 4000 grains whe lor ded with small weights，such as ．ho．．in the lower bull c．When plangui into water in the jar，this instrument is \hat{i} and to sink at inch if a single gt in the laid upon the top a；hence a tenth of a grain siuks it a tenth of an inch．So great is the delicary of this hydrometer，that the differenco in specific gravity of one

Fig．15． part in $40,000 \mathrm{can}$ be detected．Its total weight of 4000 grains is con en ent for comparing water ；but the guantity of shot in the lower ball can be varied so as to adapt the iustrument to measure the eprecific gra－ vities of fluids lighin＂：or licavier than the standard of comparison．

I＇lare is another very simple hydrometer，which con－ sists of a number of glass beads of diflerent weights， hut whose proportions are known，and the beads marked accordingly．These se dropped in＇o the fluid under exsmination，until one is found which neither sinke wo the lottom nor swins upon the surfiare，but remains at rest wherever it is plared in the tiguid；and this bead leing mumbered，indicates the spocific gravity．

In making calculations of the strength and specifes gravity of spirits，ty the above or my others merns，at－ tention must t ？pidid to the degrece of temperature of the liquid．
． 56
dis the liqnor，and renders it specifi－
cally Kghter; all apirity are therefore more bulky, in propertion to thair weight, in summer than in winter, and also apparenily strouger, not really no.

IIYDRAULICS.

Having detailed the laws and propertion of water in a state of rest or equilibrium, we hinve now to mention some of the more important reanita of these lawn, and also the effecte which are produced upon " in by the applic: $i=1$ or forces, whether natural or int ier il.

watze a machaninid agent.

Water, na already explained in the law of Matter and Motion, may lse made a useful agent of power, merely by allowing it to act with the force of its own gravity, as in turning a mill; and in this manner it is oxtensively employed in all civilized countrics rosemesho ing brooks which are sufficiently rapid in their desent.

But water may he rendered otherwino uneful as an agent of force in the arts. Although subtile in aubstance, and eluding the grasp of those who desire to handle and hold it, it cant, without alteration of temperature, be made to act as a mechunical power, as conveniently and usefully na if it were a soldd substanco, like iron, stone, or wool. 'The lever, the nerew, and inelined plane, or any of the ordinury mechanical powers, are not nure remarkable as instruments of force than water, a single gallon of which may be made to perform what cannot be accomplished (except at enormous cost and dalour) by the atrongent metal.

To render water merviccablo as an instrument of force, it must he confined, and an attempt then made to compreas it into less than its natural bulk. In making this attempt, the impresaed force is freety commumicated through the mass, and in the endeavour to avoid compression, the liquid will repel whatever movable ohject is premented to it. The so:ce with which water may be - puirted from a hoy's syringe, gives but a feeble idea of the power of liquide when subiected in a state of confinement to the impression of exter:a ferce.

The mechanical foree of water is aryplified by tho hydraulic press. 'Thia is an envine to! 5 haved by papermakefs, printers, and manufact en th ious kimds of gools, for the purpose of givina if hegh cgrce of prosgure or smos h glazed Enish to they ruapective artictes It has gencrally wuperseded the acrew picss, on account of its much greater power, with a leas degree of trouble and risk of injury to the mechanism.

Fig. 16.
Fig. 16 represents the outline of a hydraulic press. A is the frane, consisting of four upright pillars sup-
porting a crons top of great atrourth, and agamat which the preasure taken place in an unkard direction. 1 ; the material to be preased, is forced upwaril by D, a tound iron piston. 'I'his pinton is very nicely fitted into an fron came, E, which has a cavity F, for recuiving the water! the neek of the case graspa the piston no tightly that no water can emeape. A amall juipe Ci conveya water into the bollow envity from a forcing-punp H , which stands in a trough of water 'T. All that part of the appuratus below the hase of the pillam in mank ont of sight in the groond. The pump apparatun la bere represented an excecdingly simple, but in real machine it in very complex and of gy ut power.

The pump, on being wrought, eutress the water into the cavity. There the water, in endeavouring to eacape, operates upon the movable pistoll, which it cause! alowly to rime with its hurrlen. The prossure thus exerted liy the liquid almost exceeda helief; unlean the case for the water he of enormous strength, it will ha rent in an instant as if mado of the wenkent matoral. Whelt the weight has been raised to the required holght, n stopeock is turned upon the pipe, and the apparatua remains at rest. The opening of the cock allows the water to gush out, and the weight accordingly ainks.
The mole of calculating the power of tho hydratie press is analogons to that for calculating lever powers Thus, the proportion is entinated betwee" the small hore of the pump and the large hore of the cavity or harrel for the piston. Suppose that the pump has only one thousandth of the area of the barrel, and if a man by reeans of its lever hanille, prese itw rod down with n force of five hundred pounds, the piston of the barrel will rise with a fore of one thousand times five hun. dred pounds, or more thun two hundred tons. A hoy working tho pump hy a long hanile, and taking a sufficiency of time, will raise a pressure of thousanda of tons.
In the hydranlic press, a foree-pump is employed for the sake of convenience; the same end could he attained by a anall columu of water of a creat clevation, on the principle of pressure in liguids leing as vetucal height.

AQURDUCTB-FOUNTAINE.
The tondency in a liguid to find its level, has permittel the construction of apparatus, consisting of pipen and cisterme, for supplying towns with water. No species of hydraulic marhine has been of such great use to mankind as this appraratus.

In ancient times, the fact of water rising to an unio form level in cuery part of its volume, was cither not perfectly underntood, or there was a deficieney of mn* terials wherewith to construct the apparatus required for carrying water a great dintance.

From whatever cause, towns were in these tims nupplied with water ly means of open canals, either cut in the lovel grosind, or aupported on the top of arches built for the purpose. These structures, with their clevsted channels, were calied uquedarts. In Italy, and nome other countries in the nouth of Eurone, the remains of stupendous nqueducts, miles in length, still exist.

Ily a knowledge of the laws of fluide, and by posseat ing an abundance of lend und iron, we are cmalded in the present day to construct apparatus for muplying towns with water in a mamer the most effertual and simple; cousing a cheap iron or leaden tute, sumb in the gromad. to pertorm the office of the most expensive and magnitionnt ayturdurt.

The nuthod of supplying towns with water monger in leading a pipe of antlicient diameter lrom a lake, river, or fountain of fresils and pure water, to the plare where the supply is reguired. 'The iron piges nesel iot this purpose ate composed of a number of short pieces
nanderor. toget any direction. of lead are leo water; and by may be carried lesel than the

Fig. 17 is a re towns with wate if ohserved to po down into a vall sted on the oppo its pasage acro rupply an ornain apouts from this the height of the

In towns not walficient height, of primpe to an pipers ara laid. witl muldy parti tiun at the reservo masas of fine sut

Aprirgs itu the α and are accountel laws of fluids, O lary attraction, or n rise in small tube haties closely luid power is a remark of matter, sad is of gravitation, or stone.

Springs from cap comanon and of sin originate from the ol Tho water which f pround in high situa evel, thoush juerhay
Sorat springs are atmospherice action, tice under the head

Priction ber
The Howing of channels, in liable Water flows smootl friction, when the ch Every litto inequati bejps to retard it, a anyle in its path. A wey more water than Practurally, an allow pips fior the loss of s of the tube is consi ings, it is not unusua celardation.
By increasing the

ater into

eotderec together, and extemiling to any length, or in any direction. From thewe maln plper smaller tubes of lead are led into the housen requiring the nupply of water; and hy means of thene minor tuhen, the wator may bo carried to any point which in not of a higher fort than the orginal fountain affording the supply.

Fig. $\mathbf{2 7}$.
Fig. 17 is a ropresentation of the mode of supplyinus towns with water in thas convenient manner. A prpe is chacerval to proced from a lako on the top of a hill down into a valley, and thence to supply a house nituated on the opposite rising ground. From the pipe, in its passage across the valley, a sinall tube is carried to cupply an ornanental fountain or jet d'eau. 'I he water apouts from this jet d'eau with a force corresponding to the height of the lake above.

In fown a not commanding a supply of water from a nufficient height, tho water is foreed by an appuratus of pumps to an elevated resorvoir, and from that the pipes are laid. When the water is impure, or loaded will muddy particles, it is usual to purify it by thasation at the reservoir; it is male to filter or ooze therough a mas of fine sand, in which the particles of mod are Lepnniti vl.
Sprirga in the ground are natural hydraulic operations, and are accounted for on principles connected with the laws of fluids. One kind of springs is caused by capitlary aturaction, or natural attractive force, by which liquids rise in small tubes, porous substances, or between flat balies clonely laid towards each other. This species of power is a remarkable variety of the motual artraction of mater, and is as unaccountable as the attraction of gravitation, or the attraction excrcised by the lodetone.
Springs froin capillary attraction arc Lelieved to be less cominon and of smaller importauce than aprings which originate from the obvious cause of water fiading its level. The water which falls in the form of rain winks into the pround in high situations, and fiuds an outlet at a lower evel, thuugh perlhaps at a considerable distance.
Burn springs are alos accounted lior by a reference to atmospheric action, lut these will form a sulject of s10tice under the heal Pnemmatics.

PRICTION BETWEEN FLULDS AND BOLIDE.

The thowing of water through pipes, or in natural channels, is liable to the materially stlected by friction. Water flows armonthly, and with lenst retardation from friction, when the channel is perfectly sonooth and strsight. Every little inequality which is presented to the liguid, beips to retarl it, and so likowise does every bend or angle in its path. A amooh leahen pipe will thas conpey more water than a wooders pipe of the same capacity. Practually, un allowance is made in the magmbude of pipes lior the loss of spured by friction. Where the langth of the dube is considerable, and there are several heratinge, it is not unusual to allow a third of the capacity for clarlation.
H_{y} incroasing the capacity of pipen, a proligious gain
in secured in the tranamimaton of water. Th.e lowe from friction on a mall tube of an inch dinmeter of bore in no grest, that one of twice the capacity will deliver five timea an much water.

I'he rate at which water flown from an orifice in a renervoir, or contuining veasel, is affected by the situatiou and the nhaye of the orifice.

The most favourable mituation for the orifice is at the bottom of the vemeel; but the velocity of the emimion is not in the ratio of the height of the liquid, or of a perpendicular column of particles; for an the water presaes in all directionn alike, there in from all parter of the veneal a general rush an it were to the outlet, thua putting the whole mass in motion.

Although the rush of water at the outlet in not an the ratio of the depth, it depronds upon the depth. Thus, if a vessel ten leet high to penetrated at the side on a level with the bottom, and the water atand at two feet nual a half within, it will issue outwards with a certain degree of velne If the height of the water be quadrupled, that doubled. In wi fold depth is n times the ald over propor quantity of 4 II
n sell he flled, the velociry will be also increamed in in a threefold velocity, a nineir a fourfold velocity, vixteen red, and so on. In fact, its whatHo increased in proportion ; heuce the quantity of water dis numged conjointly with ita degree of velocity will te increased in proportion to the pressure There is here a striking coincidence between the descent of water and the relation which exists between the beight troin which a body falla, and the velocity acquired at the end of the fall.

It has been ascertained that water rushes with most advantage from an orifice, when tho orifice is in the form of a whort round tube inserted into the vessel, and of a length equal to twice its diameter.
It has also been found, that if the pipe, instead of being flush or lavel with the bottom of the reservoir, entered into it to some distance, it had tho effect of making the bow of water even less than that which issued through the simple hole without any pife. The singular lact of a pipe und hole of the aamo diameter discharging dilferent quantities of water under different circumstances, whilst the head or pressure remains the anme, must be accounted for by cross or opposing currents being created by the rush which all Auida make to the orifice. (Uurrents will thus form from the top sand sides of the containing vessel, and by their inertia they will cross each other, and thus impedo tho descent of the perpendicular column, causing the water which issues to run in a screw-like form; this, however, is in a great measuro obviated by the application of a short tube from the aperture. That the projection of the tube too far into the interior of tho vessel should mske the flow less than if there were no pipe at all, may be thus explained:-The columns which deacend from near the outside of the vessel, by turning up again to reach the discharging oritice, cone into more diroct opposition to the motion of tho central descending columns, whilst they are at the samo time thonselve comprelled to turn suddenly in opposition to their own inertia, before they can enter the pipe. Thus, tho dis charge is more elfectually impeded than if it were proccaling from a nere opening in the botton of the vessel I'le tube for the discharge of water should net only be short and round, bui also trompet-mouthrd or funnelshaped, hoth intermally and externally, that being the form which admits the blow of ligus with the least poesible retardation.

The effects of frictoon between liquids and solids are nowhere so conspicuous as in the thowing of rivers. Tha natural tendency in the water to desernd at a certain speed, is limited by the roughasss of the bottom. bendm in the cowise of tha stream, and small prijections of t'w

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation
banks. From theme cances, the water in a river flows with different velocities at different parts in any vertical ection across the current. It flow at a slower rate of apeed at and near the bottom than at the murface, and so slower at the sides than at the middle.
The resistance which a body moving in liquid meet with, when it comes in contact with solid, is as the equare of the velocity of the moving body; in other words, the resistance in not twice but four times with double rate of speed. This is eamily explained:-

A vessel moving at the rate of one mile per hour displacem certain quantity of water, and with a certain velocity; if it move twice as fast, it of coures displaces twice as many particlea in the same time, and requires to be moved by twice the force on that account ; but it also displaces every particle with a double velocity, and requires another doubling of the power on this account; the power thus twice doubled, becomea a power of four. When the body is moved with a speed of three or four, a force of nine or sixteen is wanted, and so on. Thus, the resistance increases as the square of the speed.
This important law suggests practical hints of conciderable importance. For instance, in ateam navigation, if an engine of fifty horse power impel a vessel at the rate of seven milea an hour, it would require two of the mame power to drive her ten miles an hour, and three such to drive her twelve miles an hour. Hence the enormous expense of fuel attending the gaining of a high dagree of velocity.

ACTION ON THE WATER IN RIVERS.

In cases where it is desirable to preserve the banks of rivers from injury, either from the regular action of the current or from floode, the water ought to be allowed a free open channel, with banks of a very gradual descent. The utmost violence of water in a state of motion may be rendered comparatively harmless, by allowing the flood or torrent to expend itself on e sloping or shelving shore. Inattention to this simple fact in hydraulica frequently causees much destruction to property on the banke of rivers,

A very amall fixed obstacle, auch as a stone or pebble, may partially impede and turn aside s brook of a slow current. The water, by striking on a stone at one eide, is bent aside to the opposite bank, a little farther down; there it strikes upon the bank, and is returned to the side th formerly struck. Thus, proceeding in currents from aide to side, the banks become worn down at particular places, and in time a new and serpentine course is given to the stream. In the case of rivers flowing with considerable velocity, impediments of this kind are usually overcome, and the stream pursues its straight onward course, dashing down all obstacles to its progress. Thus, rivers are generally frinding in their course in flat countries, and straight in mountainous regions.

It sometimes happens that the water at the surface of - river may be moving in one direction, while the water the thottom is flowing in on opposite direction. This iv ex exceedingly interesting phenomenon, which is oberved to occur in certain rivers communicating with the cea, and is caused by the action of the tides and the difference of specific gravity in salt and fresh water. When the tide is flowing inwards, the salt water rushen up the channel of the river, but not in such a manner as th stem the current of fresh water, which, being lighter, toats on the top of the salt water, and pursues its downward course to the ocean. In those instances in which there is no great disturbsnce of the two liquids, the fresh water, by its specific lightness, flosts on the surface of the eea to a distance of many milea from the land.

waves.

Waves are the risinge and fallinge of the water, caused oy eone pewer, euch as the blowing of the wind. The
power, whatever it happen to be, communicates a fore to the man of liquid, and a meries of undulation in the consequence.

These undulations, or waven, exhibit the tranamission of the cominunicated force. The force does not advance or alter the lateral ponition of the water at any given point; it only alters the water in ite vertical position, or in relation to its depth. Whan, therefore, weves advance. the water doee not advance with them: the water but rises and falle, and asumes the figure of undulations on its aurfice. When the undulations spproach the shore the water then acquirem a progressive motion, whera it is shallow, and by friction on the bottom or impuision against the shore, the communicated force il exhausted The shaking of a carpet affords an exact repreaentation of the action of waves or undulations.

Waves are comparatively muperficial; they seldom, even in the greatemt atorms, rise to a height of more than twelve feet above the level of calm water, and make an equal deacent beneath, making altogether an appearance of twenty-four feet; at eight or ten feet below the hollow or trough of the wavea the water is tranquil. Waven " mountains high" is only a figure of speech.

ALTERATION OF TEMPERATURR.

By altering the temperature of liquid bodics, they become liahle to peculiar laws, and exhibit peculiar phenomena.

At a temperature of $\mathbf{4 0}$ degrees of Fahrenheit's thermometer, water is at the point of greatest density. When the temperature is reduced below this point, the liquid gradually increases in volume till it reaches 32, when it freezes. When the temperature is raised ahove 40, the volume increases till it reaches the boiling-point, at which it has expanded to the extent of $1-22 \mathrm{~d}$ additional to ter bulk.
In consequence of thse expansibility in heating, hot or warm water in apecifically lighter than cold water; therefore, in heating any mass of watar in a vessel over a fire, the lighter or warm particles rise to the top, while the cold and heavy particles sink to the bottom, to be heated and to rise in their turn. In thia manner the process of heating proceeds, until all the particles are of a uniform temperature, which in at the boiling-point, when the liquid gradually flies off in ateam.

If water be heated by the action of the fire, or the aun's rays on its upper surface, the mass is longer in attaining the vaporific point than when heated below, because water is ad conductor of heat, and therefore the heat penetrates with difficulty through the upper atratum of warmed liquid to reach that which is benesth; and if the mass be very large, as, for instance, the ocean, no intensity of heat applied above can warm it throughout, ot to any considerable depth.
Certain currents or sets of the ocean are known to is produced by the effort to attain an aquability of temporature throughout. The power of the sun's rays at and near the equator heata the sea in that part of its volume, to the depth of two or three hundred feet. This upper stratum of heated water flows in currents towards the north and south polen, and there to a certain extent tempers the severity of the cold. The waters of the northern and southern tracts of ocesn, displaced by these currents, necessarily sink below them, and push on towards the equator, to supply the deficiency caused by the departure of the waters above. Thus, in the economy of uature we see a process in constant action precisely the sams in principle as that upon which the artificial hot-water ap paratus has been catalulished.

Having now discuased Hydrostatica and Hydrsulica. we come to the kindred subject of Pneumatics, for which, as will be olsserved. we have reserved a notice of certia hydraulic machines involving pneumatical agency

Pucuma dir, is the lutes to the ceriform or
It was a aphere was It is now clementary Intimato un each other Air, in it fuid, so sub reat it canno
That it is we feel ith or when we quick motio opposed by lungs, we fe the mouth-
Air, like fluid, possess of air certai of water ; sti A bottle full bottle of the extracted.
A cubic foc 1000 ounces grains, heing therefore, is a atmosphere. paring the gr mame respect
The specifi arygen gaa is 69 ; and carb kinds of gaa, carbonic acid. ačiform bodie ment, we who gone into inti which they cor essume relativ weights-the h the top. Such viously noticed, and spirits.
Air snd all application of h opelled from ea process of ligh Rarefied air, bei of a common de lop of a room, : Air is disting comparative ligl it is a compressi
When any qu pace than it na ral balk on the A small blade bences so as to opening the han it will inatantly tube or barrel be which is made which occupien tom of this barr prewed to hu
wilt If the fo tiong is the ransmlscion not advance t any given position, or ves advance. o water but dulations on th the shore on, where it or impulaion - exhausted eprementation
they seldom, of more than and make an n appearance w the hoilow puil. Waves h. peculiar phe

renheit's ther-

 nsity. When int, the liquid es 32 , when it 1 above 40, the point, at which dditional to ithin heating, hot in cold water; on a vessel over se to the top, the bottom, to hia manner the particles are of boiling-point m. ire, or the sun's er in attaining \mathbf{w}, becruse warefore the hest per stratum of ath; and if the ocean, no inthroughout, or
re known to ive bility of tempeo n's raye at and t of its volume, 2. This upper Is towards the ain extent temb of the northem these currents on towards the y the departure comy of 1 nature ely tho same in al hot-water ap
and Hydraulice atics, for which otice of certuia 1 agency

pNEUMATICS.

Gexithal definitions.

Pucumatics, from the Gruek word pneuma, bresth or air, is the name of the cepartment of science which reLutes to the weight, pressure, or motion of air, or of any criform or gaseous fluids.
It was anciently supposed that the air of the atmoaphere was an element or simple aubatance in nature. It is now satisfactorily established that air is not an dementary body, but is composed of certaln gases in intimate union, end these gases can be separated from each other by a process in art.

Air, in its common condition, is a thin transparent Guid, so subtile that it cannot be handled, and when at rest it cannot be felt.
That it is a body, however, is quite obvious, because we feel its impression or force when agitnted as wind, or when we wave our hand quickly throngh it. In the quick motion of the hand, we feel that it is partially opposed by something; and in inhaling breath into the lungs, we feel that we are drawing something through the mouth-that something is eir.

Air, like every other substance, whether solid or buid, possesses a certain gravity or weight. The weight of air certainly, bulk for bulk, is much less than that of water; still the weight may be accurately computed. A bottle full of air weighs heavier in a balance than a botde of the same capacity from which the air has been extracted.
A cubic foot of water, as has been mentioned, weighs 1000 ounces. A culvic foot of air weighs only 523 grains, being a little more than one ounce; water, therefore, is about 840 times heavier than the air of our atmosphere. Inasmuch as water is a standard for comparing the gravities of liquids, air is atandard in the eame respect for all aêrial substancer.
The specific gravity of air being denominated 1000, oxygen gas is 1111 ; nitrogen gas 972 ; hydrogen gas 69 ; and carbonic acid gas 1529. The lightest of these kinds of gas, therefore, is hydrogen, and the heaviest carbonic acid. Hence, if indefinite quantities of these seriform bodies were placed in a wessel, or in an apartment, we whould find, that, after certain portions had gone into intimate union, according to the lawa by which they combine, the arrplue portions of each would assume relative positions according to their respective weights-the heaviest to the bottom, and the lightest to the top. Such an experiment would resemble that previously noticed, of the mixture of mercury, oil, water, and spirits.
Air and all kinds of gases are rendered lighter by the application of heat, for then the particles in the mass are repelled from each other, and occupy a greater space; thia process of lightening or thinning is called rarefaction. Rarefied air, being apecifically lightest, mounts above that of a common density. The warmest air is always at the lop of a room, and the coldest at the bottom.

Air is distinguished from water not only by its extreme comparative lightness, but by the property of clasticity; it is a compressible and elastic fluid.

When any quantity of air is compressed into a amaller pace than it naturally occupies, it will return to its natural bulk on the pressure being withdrawn.
A small hladder of air may be squeezed between the bancs so as to be considerably reduced in size; and on opening the inanda again, and withdrawing the pressure, it will instantly resume its former bulk. If a metallic tube or barrel be fitted with movable plug or piston, which is made to work in it perfectly air-tight, the sir which occupies the epace between the top and the bottom of this barrel when the piaton enters, can be compremed to a hundredth part, or even leas, of its usual wilk. If the force, however, by which the piston is
pushed down, be withdrawn, the alr, by its ciantirlty, will force it up egain with a power equal to that by which it descent was resisted.

In proportion as eny given volume of air is diminished hy pressure, its elastic force is increased; in other words, the elastic force or elasticity of air is proportinnal to its density.

THI ATMOAPHERE.

The air, as formerly expressed, is a great ocean wrapped round the earth to a depth of from forty-five to fifty miles above the higheut mountains, and forms a men struum which is essential to the existence of all animalu and plants.

This ocean of air penetrates into all unoccupied placer, in the same manner as water flows into all crevices and holes bencath the level of itn surface; and it also finde a place in the bodies of animais, plants, and liquid aub stances; hardly any thing, indeed, that we see in natare or art, is free from air, unless force bas been employed to extract it.
The height of the atmosphere, thnugh nsually enti. mated at forty'-five or fifty miles, is in reality unknown. The highest point above the level of the sea, which has ever been renched by any human being, in 21,000 feer, which has been attained in a balloon.

It is only conjectured, from the refraction of the mun's rays and other circumstances, that the height of the atmosphere is about fifty miles. At end near the level of the oceal it is most dense, in the same manner as water at the 2 stom of the sea is more dense than it is at the surface, on account of the incumbent pressurs. As we ascend mounsains, or in any other way penetrate upwards into the atmosphere, the air becomes gradually less dense, and so thin is it at the height of three mile on the summit of Mont Blanc, that breathing is there performed with some difficulty. Beyond this limited height, the density of the air continues to diminish, and at the elevation of about fifty miles, it is believed to terminate.

The extreme height of the atmosphere is not observable from the situation in which we are placed on the earth. Our eye, on being cast upwards, perceiven only a vast expanded vault, tinted with a deep but delicate blue colour; and this in common language is called the aky. The blueness so apparent to our sense of sight is the action of the rays of light upon the thin fluid of the upper atnosphere, and the brightness is in proportion to the absence of clouds and other watery vapours. In proportion as the spectator rises above the surface of the earth, and has less air above him, and that very rare, the blue tint gradually disappeare; and if he could attain a height at which thpre is no air, say at above fifty mile in height, the sky would appear perfectly dark or black. Travellers who have ascended to great heights on lofty mountains, describe the appearance of the sky from theve elevated stationa as dark or of a blackish hue.

The atmosphere possesses the capacity of absorbing and sustaining moisture, but only to a limited extent When saturated to a certain degree, it is relieved by the falling of the moisture in the form of rain. It is calculated that the whole atmosphere round the globe could not retain at one time more moisture than would produce about six or seven inches of rain.

By en elevation of temperature, the capacity of the atmosphere to absorb and sustain moisture is increased, and by a lowering of temperature, decreased. Cold breezes, by lowering the temperature of the air, cane the aetriform moisture to assume the appearance of clouda, and then to fall as rain.

LAWB OF AIR.

Firat-The pressure of the air is equal in all dirme tions: Stcond-Its degree of premmure depends on the
vertical hoight or depth, and at any place is proportional th ite density: Thind-Ite aurince is lovel in all parts of its volume: Fourth-It affords eapport according to Ne donity and to the woight of the fuid diaplaced.
That air premen equally in all directions may be rendored ovident by flling a bledder with that fivid, and then preming upon it so as almont to make it bunt. Thie presure is freely communicated through the mase, as in the case of the bag of water, and it will be obeerved that the confined afr will rush out with equal impetuoaity at whatever part you make a hole in the curface.

The level of aurfice of air ia lean parfect than the uniform level of water, on account of the greater elasticity of the subatance. In a acries of utrata of air of difforent denditien, one above the other, a amall portion of each tringles with thoee which immediately adjoin it-che particles of ene commingle to a certain extent with thoes of another. There is thus, as respecte sedrial bodies, a molification of the law of uniform lovelnces of aurface in all parte of the volume of fluid.

Fresagien of alr.

The presaure depending on the vertical height or depth of air, is an important property in the atmosphere, and on it depends the oxplanation of numerous phenomena.

Air being a substance possosaing gravity, it must of mecemity pres duwnwards in the direction of the centre of the earth, and therefore the degree of pressare on any givan point will be equal to the weight of the column of ir above the point, and proportional to the density of the ir at that point.

The idea of the atmosphere pomeasing the property of gravity or presure, is of comparatively modern date. No euch notion whe eutertained by the ancients, in consequisice of living animala being obecrved to move with perfect eave in all directions, and because there was no other appearance in nature culculated to suggest it to their minds.

It was however remarked, that, when the air wat

 oncked out of a small glas tube, the lower end of which wes immersed in water, the water rushed up into the tube and occapied the situation of the displaced air. In consequencs of this and similar phenomens, it was alleged an doctrine in phymice, that unature abhors a vacuum."A vacuum is a place dectitute of air or any other kind of matter; and the notion was, that whenever by any chance such an empty apace was found, nature interpowed with all imaginabio haste to fill it. With this very rude iden, pumpe were formed to raise water, the rising of the water in these instruments being ascrihed simply to neture's abhorrence of a vacuum. At length it was discovered that water could not be drawn up by a pump above height of about thirty-two foet, and that a vacuum above that elovation remained unflled; whero? upon the terms of the doctrine were changed, and it was said that nature abhorred a vacoum only to a height of thirty-two feet, but no firther.

This explanation was meemingly unphilosophical, and men's minde being carefully turned to the subject, variwa experiments were performed, and the inportant truth became manifent, that the atmosplere powsesed stavity or premare; aloo, that that premeure was the sole cause of the ruahing of liquids into tubes exhausted of alr-the height of the ascending liquida heing in every cave limited by the degree of preseure of the incumbent atmosphere. Thus the discovery of a simple truth in ecience at once abolished the fantastic doctrine of nature's abhorrence of vacuum, and all the laboured sophistry with which it was aupported.* Nature hes no dialike to a vacuum; a vacuum will occur in all situations from
phais great diseovery in physiesl selence was mado hy'Tor-
tieollf, an eminent fialian maibamatician, about the year 1644.

which solids or fulda are accidentally or artufictally es. cluded.

The degree of promare imposed by the atmosphere on any given apot on the earth's sarface, as already noticed is equal to the weight of the column of air above that apot, and is aleo proportional to the danaity of the air at the place. The atmosphere it deepent or of greatom vertical height at the level of the acean, and there it ex erte the greatest presmure. The premure of the air at the lovel of the mea is uaually reckoned to be about 15 pounda on every square inch."

The premure of 15 lba to the nquare inch refers to every shape of curface at or near the wea'a lovel. The preesure in aidewaya, upwarda, oblique, and in every other direction, as well as downward, because fluid prem equally in all directions. Thus, in every crevico, nook, or veseol, in which air happens to be, the pressure is equally intonse. The human being, for example, sustains the pres. mure of 15 lbw to the mquare inch all over his person, and this is a load under which he could not poseibly move,t unlese the presuure was also exerted in the interior of his body, or through his whole system of muacles, viscera, and bones, by which means the external pressure in counter. acted, and he feels no pressure whatever.

If, howover, the air by any meana be withdrawn from the interior of any object, that object becomes imneediately ausceptible of the external atmospheric prescure. There are many familiar examples of this pressure around us, One of the mont common consists in causing a thimble to adhere to the hand by aucking the air from beneath it: the adhecion is the result of the pressure of the atmosphere on the exhausted space on the hand. Another consirts in lifting a stone by means of a sucker, formed of a string and a wetted piece of leather, as in the accompanying figure. The wetted leather is in this came preased down upon the stone, and the string is then pulled: If air were ad mitted under the end of the string, the
 sucker would come.aff; but none being admitted, the atmosphere premses on the aucker, a rigid adhesion of the sucker to the stone is produced, and the stone, if not too heavy, is lifted.

The surgice' -rocese of cupping in upon the mase principle. A lase cup is held with fte mouth neat the part to: sted on, and the air being conaumed within it by angited taper, it is inatantly applied, and adheres with great force. The part having been pre vioualy lanced, the blood, rushing to fill the vacuum, enters the cup in copious amall atreams. The feeling endured in cupping ia that of conviderable weight.

The feet of files and some other insects are formed on the principle of the aucker, by which means they are anabled to walk and run with wecurity on the ceiling of an apartment, back dowhwarda, or on an upright and amooth pane of glass. At each atep in advance, they procure a hold by the formation of a vacuum or air-tight apace be neath their feet. The rapidity with which these vacumm or air-tightnesses are formed and dentroyed, ia an exceed ingly interesting phenomenon in the economy of the animal, and cannot he rivalled by the utmont efforts of human akill. On a very moderato computation, a fy, it travelling aix feet in the apace of a minute, creates and deatroys as many an 10,000 vacuums. When deprived

- deep well neer Florestee, by means of a pump of a greate, height than thirly-two feet.
- The nelual preasure varies from 14 fbe .1015 lbs a accortime to circuinaiances. Hy various sathoritits it ha alaled al ith thes, For convenienoo, we state it throughoul in tho wext in 16 ibs.
\$The body of a man has a surface of 2000 agnare inches and therefore the preseure upan him ia equel to 30.010 live.

A the ov matur for opparent but is qu Ing any limpe adhere to their shel maller b affectually priate plac

Alr me wesel by This appar and consia mouth dow brase pum Af. 19, re the working may be desc is the glas tanding on amooth plat fitting oo ex oo air can between the the receiver plate. In t 88, there is ad A B insu the barrel of Pis the pisto punp, with $;$ cuove, which apwarde and warde by a na winch. The works in a ti lar D. At th which the air ing. On dep tained sir is piston again t rir is admitted expelled in it the air in the wade more ra practicel purp opens outwar the piston by e
By meana 0 experimente example, if a at the neck, be then produced the removal o ready to burst. tion, will exp fruit; and an will explode. below the recei die, both from their bodies.
The atmosph of a light and exhausterl recei sceod with the pect nature. A
the same instan un cxhausted mme moment.

That atm reph

ticmaly en.

10uphere on ady noticed above that of the air at of greationt there it ex he air at the it 15 poundr
ch refors to level. The nd in every fluids prem vice, nook, or ure is equally tains the prew is person, and seibly move, \dagger interior of his 3a, viscera, and ure ia counter-

ithdrawn from

 ompes imatediheric pressure.

Fig. 18. ig admitted, the 1 adhesion of the stone, if ut too
upon the mame h ite mouth neal being consumed ntly applied, and having been pre fill the vecuum ng. The feeliag ble weight.
cta are formed on eans they are enthe ceiling of an right and amooth e, they procure: ir-tight apace be ch these vacuuma fed, is an exceed economy of the utmont efforts of putation, a Ay, in inute, creates and When deprived
pump of a greater 1015 lbs accordibt it is alaled tar m square inchas exd square lise.
30,000 lis.

A the ouner extremition of its lege, on which the apporatus for adhevion is situated, a ty can walk without any apparent difficulty on a horizontal murface, auch as a table, but is quito ineapable of adhering to the roof, or of climbling any upright surface.

Limpets, mails, and some other cruateceous animale, adhere to rocks and atones, by causing a vecuum within their shells, which they accompliah by shrinking into a maller bulk; by thia simple contrivance, nature hae effectually provided for their aafe edhemion to their appropriate places of reaidence.

THR ATR-PUMP.

Alr may be artificially withdrawn from econtaining verel by meana of an apparatus called the air-pump. This apparatua is usually small, for standing on a table, and consists chiefly of a glass jar called a receiver, placed mouth downwarda over a flat surface, and with a amall hrass pump to draw the air from it. The annexed cut, ig. 19, represents an outline section of an air-pump, the working of which may be described. R is the glass receiver tanding on a fist and mooth plato SE, and fitting so exactly that ne air can penetrato between the edges of the receiver and the plate. In the plate 8S, there is a channed A B issuing into the barrel of a pump. Pis the piston of the pump, with ite rod C wove, which is moved apwerde end downwards by a nandleand winch. The rod C

Fig. 19.
works in a tight col-
iar D. At the bottom of the pump there in a valve V, by which the sir escapes, and is prevented from again entering. On depresaing the piston, portion of the conthined air is expelled by the slve, and on raising the pitton again to ite poaition at the top, another column of rir is admitted from the receiver into the pump, which is expelled in its turn. Thus, by a process of expulsion, the air in the receiver becomea at every stroke downwirda more rare, till at length a vacuum sufficient for all practics! purpoees is established. The valve V, which opens outwards, is kept forcibly shut at every rising of the piston by external presaure of the etmouphere.
By meana of the air-pump, a number of interesting experiments in pneumatica may be performed. For example, if a bladder half full of air, and tightly tied at the neck, be placed under the receiver, and a vacuum then produced, the air in the bladder will expand by the removal of the external pressure, and seem as if ready to burst. Dried raieina, during a similar operation, will expand, and have all the pulpness of new fruit; and an egg, by the oxpansion of ita confined air, will explode. Any mall snimals, anch as mice, placed below the receiver and deprived of air, will immediately die, both from want of breath end the expansion of their bodies.

The atmosphere serves to retard the falling of bodies of a light and poroue nature ; and, therefore, in the exhausted receiver of an air-pump, all such bodies desend with the same velocity as bodies of a heavy compact nature. A piece of coin and a feather let fall at the same instant of time, from a hook within the top of an cxhauated receiver, will atrike the bottom at the mime mement.

That atm sepheric air is usoful for the tranmismion of
sound, in the absence of other medis, fa also exempli fied by the air-pump. If we place a amall bell in a ro coiver, in much a manner an to edmit of being rung eavily from the outside without admitting air into the inslde, whilst the receiver is full of air the sound of the bell will be diatinctly heard; but after the receiver han been exhsusted, and although the bell be atruck with the same force, the sound will be inaudible, or nearly c0. If a small portion of air be admitted, it will be faintly heard, and it will gradually increase according to the quantity of air which is allowed to enter the roceiver. Thus, we are indehted to the air as a medium for conveying to un the sound of each other's voices, and all the melodious notes which constitute mucic.

The act of in piring and expiring air resembles the alternating action of an air-pump. The air, on boing drawn in through the appropriate tubes, filla the lunge, and the chest is expended; having performed its office, the air is expelled in an impure condition, leaving a partial vacuum within, until another inspiration causes another expansion.

A machine called a condensing pump or syringe, is formed for the purpose of showing experimente with air more dense than that of the common atmonphere. The spparatus, which is represented in fig. 20, consists of a close glase jar or receiver fixed in a frame. A wire and hook serve to communicate with the interior during the performance of experiments. The syringe i is wrought
 by the piston with the handle k. From the bottom of the syringe there is a tube communiceting with the interior of the receiver. When the piston is raised, a valve benoath opening inwards, admits air into the cylinder of the syringe, and when it is depressed, this quantity of sir is forced into the receiver; by the alternate raising and depressing of the piston, an immense quantity of air is forced into the receiver.

The elastic forco of air eo condensed is very great and la employed for the projection of balls from an instrument called on air-gun. A certain quantity of compressed air is confined in s chamber at the inner end of the barrel, and when allowed to eacape by touching a valve, a bullet is projected with a force resembling that of gunpowder.

The explosive force of gunpowder itself is nothing else than the sudden disengagement of air from the pas ticles of the powder.
prigaurs of alr on souids and hiquide.
The pressure of tho atmosphere affects all liquida as well as polid bodies. The load of the incumbent air is as mensibly exertod within any given mass of water in on the surface. Thus atmospheric pressure keeps water and other llquids at the density they are usually seen to possess.

If a glass be filled with water, and placed under the receiver of an air-pump, the sbstraction of the air, by the removal of the stmospheric preasure, will cause the water to expand or become lees dense, and it will oves. flow the vessel in which it is contained.

Water in ito ordinary condition coutaina a certain quantity of particlea of alr mixed up with it. When the atmonpheric pressure is lightened, these particlee of air expand, and being of a less specihc gravity than water, they mount to the top of the liquit in the corm
of omall globulen, and so dy off. The same offect is produced by expanding water by moane of heat; the globules of air rise to the surfuce, and encape or remain attached to the invide of the vensel. Crystal botlen of water may be observed to be covered inslde with small air-bella when the weather becomen auddenly. light or warm. Water which han boen boiled in comparativoly free of air, and has an insipid flavour.
Certatn gasea are generated in some liquora, auch as th porter, beer, and champagne wine, and unless the bottles in which they are contained be of aufficient atrength to endure the expanaive tendency, they will burut. On drawing the cork from abottle of one of these liqunra, the confined gas or air is suffered to expand, and the contente guch forth, mixture of froth, and liquid. If the liquid remair in an open glase for a short time, a large portion of the long-confined gases ecaper into the atmosphere, and the liquor seeme flat or dead. A portion of coufined air, however, atill remains, in consequence of the atinoapheric pressure. If we take a glase of ginger-beer which seeme quite dead, and place it under the oxhausted receiver of an airpump, it will again froth and appear brisk.

Some mineral waters on apringing from the ground sparkle like becr. These most likely rise from great depths, where the incumbent pressure is considerable, and on attaining the surface of the earth they expand, and give forth the air pent up in their mass.
If a bladder full of air be carried from a low situation to a great height, the contained air will expand, and the bladder will burst, the same as if placed under the exhausted receiver of an air-pump.

If a bladder be filled with air at a great height, where the fluid is rare, and brought to a low eituation, the conthined air will be compresed by the more dense fluid without, and the bladjer will appear as if only half or partislly filled.
The fluids in the animal and vegetable syatem are similarly affected by atmospheric pressure. Our bodies, for instance, would expand, and our blood-vessele prohably be ruptured, if placed for ashort time in a vacuum. On the same principle, any change in the density of the atmosphere has an effect on the animal frame.

The atmospheric presaure, in ordinary conditions of the air, and at the level of the ses, as already atated, is equal to 15 lbe to the square inch. If by any means, such as digging into the earth, we should go below the sea's level, the weight will be found to increase. In deep coal mines, for instance, the presence of the atmosphere in something more than 15 lbs to the square inch.

The pressure diminishes in a similar degree as we aucend into the atmosphere. At every atep upwards from the shore the burden of the superincumbent maes lightens. At the height of three miles, one-half of the weight is lost; or, in other words, at that height the air is only half the density of air at the sea'a level.

The breathing apparatus of animala is suited to en atmospheric density and prescure such as is found at the sea's level, or at a moderate elevation above it. By encending in the atmosphere, as in climbing hills, wo are deprived of the qnantity of air to which we have been accustomed; and when we reach a height of three miles, we in reality inhale only one-half of the weight of air into the lungs that we une at the sea's level. Consequently, those who ancend to great elevations experience difficulty in breathing, and feel an oxpansion in their blood-veanele and muncles by the removal of a portion of the ordinary preasure.* All the

[^17]joints in our bodien, particularly those af the knee and ohoulder, are in a great meauure held together by thn extornal pressure of the atmonphere; and thua a prin ciple in pneumatice compensates for a loading of mus cular ligaments.

A consideration of the effecte of atmospheric pres oure, and ite variability at different olevationa, also the alterations in pressure caused by the expension or light. ening of the air by heat, and its increased density hy cold and moisture, tende to explain the remarkable influence which change of climate has upon the human consitution. Thus, the inhabitants of countries pom scasing a light dry atmosphere are uaually more tively than those of countries with a heavy moist climate.

PRESBURX ON MERCURY-THE BAROMETER.

The pressure of the atmospheric column at any given point, may be weighed with considorable exactness, by balancing it againat an opposite column of mercury, water, or other liquid.
The pressure of 15 lbs . to the aquare ineh at the ocean's level is found by experiment to le equal to the weight of a column of mercury of 30 inchee in height, a column of water 33 feet in height, or a column of oil 37 feet in heiglit. In other words, the burden of the whole of our atmosphere is equivalent to an ocean of mercury covering the earth to a height of 30 inches, an ocean of water to a height of 33 feet, or an ocean of oil to a height of 37 fect.

The fact of such being the degree of atmospheric pressure admits of eany proof, hy meana of a glases tube upwards of thirty-two inches in length, and a cup half filled with mercury, as represented in fig. 21. The tube is close at its upper end at B, hut open at its lower extremity, which is immersed in the mercury below the surface level C P D. The tube having in the first place been filled with pure nercury, a finger is placed on its open end to prevent the egress of the liquid, and thus held, the lower end of the tube is turned downwarde, and plunged into the vessel of mereury, when the finger is removed from the orifice. The mereury in the tube will now be ubserved to fall to E , or the height of about thirty inches ahove the surface C P D, and there it

Fig. 21. will remain.
The question now arises, Why the mercury in the tube does not run out altogether into the cup, instead of atanding to the height of thirty inches in the tobel The explanation of the phenomenon is, that from E to \mathbf{B} in the tube is a vacuum, and therefore the mercury at ite upper extremity is entirely free of atmosplenic preasure-there is no superineumbent weight to puab it out. The column of mercury EP presses with nothing but ita own weight on the mercury of the cup. This weight of thirty inches of mercury is counterbe lanced by the pressure of air on the surface of the mercury in the cup; and thus it is evident that the weight of the atmowphere is equivalent to the weight of thirt inches of mercury. If by any means we remove the atmospheric pressure froin the mercury in the cup, the mercury in the tube will immediately sink into the cup

The circumstance of the column of mercury in the tube being narrow, and the surface of the nercery in the cup being broad, makes no difference in the experis
fora they reeover. In the eievaled plains of South America the iahmbitanis have larger chesse than the inhabitunis of the lower regions-another admiralite instance of the animal frame sulapting itaelf to the circumatances in which it is placed.-it
net's Physies.

inent, becau

 density, not would occu to the atmos. uibe.The hetgh kind, alwayo of the atmos the column. atificial mea the mercury or by ascendi aphrse is rare This very falling of mer algected the yarome'cr (a and me/soure), rure may be a
Tho barone sista of a narrc thirly inches worids at its lo rented in fig. ? troduced into ti so that a perfe rpper extremit mercury in the setion of the ats 4 small plumme thread is attechc upwarls to a which it goes, an lall, W. The f the pulley turns, pints to figure dial. Commonl except the dial-pl ornamental framo Barometers of manner that the cury from atmos dial, and shows t. In comumon ci 99 to 30 inches. to 31. When it nished pressure, air to expand, and moisture is liable Hence a fall in th idered a prognos he reverse. The sondingly.
The barometer, ${ }^{3}$ an instrument uins, or heights at the sea.
As the entire a mercury in the tube uneod, the pressur of mercury be susto of five hundred foet But the fall doos n vands, brecause a ho diput three miles, ditude of almut fift If three miles, the fifteen inelies, or on Mur miles, to twelv Baronncters for rith a determined Wry, and hy consul ${ }^{\text {might of any apot }}$
knee uns her by tha sue a prin ag of mum 18, also the on or light density hy narkable in. the human antries poom more lively climate.

METER.
at any given xactness, by of mercury,
inch at tha equal to the nes in beight, column of oil burden of the an ocean of 30 inches, an in ocean of oil

mercury in the he cup, instead es in the tube! that from E to re the mercury of atmoapheric jeight to push il resses with no cury of the cup y is counterb face of the mer that the weigh weight of thirt we remove the in the cup, the nk into the cup mercury in the the mercury in e in the experit
nent, because the preasure of elantic flulds is as their density, not an whdth of volume. The eame result would occur if the surface of the mercury presented to the atmospheric presmure were only the width of the ulbe.

The height at which mercury atands in a tube of this kind, always bear reference to the incumbent welght of the atmosphere on the open and lower extremity of the column. If we increase the external pressure by artificial means, or by descending below the sea's level, the mercury rises; if we decrense it by artlicial menns, or by ascending into the atmosphere, or if the atmoaphrse is rarefled by heat, the mercury falls.
This very obvious connection between the rising and falling of mercury in a tube, and the atmosphere, has aggested the construction of an instrument called the jarometer (a word from the Greek, signifying repight and me'sure), by which the effecta of atmospheric presoure mny be accurately known.
The baroneter in common use considts of a narrow glass tube upwards of thirty inches in length, and bent upwaris at its lower extremity, as reprerented in fig. 22. The mercury is introduced into the tube with great care, so that a perfoct vacuum exists at the upper extremity. The surfacs of the memeury in the bent part is open to the action of the atmesphere, and buoys up a small plummet or fioat, F, to which a thread is atteched ; the threed proceeda upwards to a small pulloy, 1, over which it goes, and terminates in a smell ball, W. The friction of the thread on the pulley turns a sinall index, H, which points to figures on the surrounding dial. Commonly, the whole apparatus, exopt the dial-plate, is concealed in an anamental frame.

Fig. 22. lors of this description are adjusted in such a manner that the smallest rising or falling of the mercury from atmospheric action affects the index on the dial, and shows the degree of pressure.
In common circumstances, the mercury ranges from 29 to 80 inches. It seldom sinks so low as 28, or rises to 31. When it falls, an indication is given of diminished pressure, and as diminished pressure causes the ar to expand, and consequently to be eensibly cooled, maisture is liable to be precipitnted in the form of rain. Hence a fall in the mercury of the barometer is conidered a prognostic of rain or wet weather, and a rise he reverse. The dial of the barometer is marked aczordingly.
The barometer, besidea being a weather-glass, is used *s an instrument for measuring the heights of mountuins, or heights attained in balloona, above the level of the sea.
As the entire atmosphere sustains thirty inches of mercury in the tube, it follows that at cvery atep as we mend, the pressure will become less, and a less hody
of mercury be sustained. It is found that at the height of five hundred feet the mercury has sunk half an inch. But the fall does not proceed in this ratio as we go upwards, hecause a half of the whole atmosphere ls within dwat three miles, and the other half expanded to an atitude of about fifty miles. Hence, on gaining a height of three miles, the mercury is found to have sunk to fiften inches, or one half; and on gaining a height of for miles, to twelvo inches.
Hamoneters for measuring heights are constructed with a determined seale, marked along the tube of mersury, and by consulting it as we ascend, we learn the leight of any spot that wo may reach. Perfect exactVnt. 1.-25
nean, however, is not to be expected in this mode of measurement, because the atmospiteric pressure in liable to variation from temperature, and the mercury is liable to contraction or expansion from the same cause. To guard against error, a thermometer, as well as a barometer, in consulted in ascending helghts, and the indlcations of both instruments, according to a scale satablished by experiment, determine the degree of eleve tion. Thus, for a diminution of one degree of temperature between 0 and 32 degrees, tho mercury in the barometer falls 0.0034 of an inch, and between 32 dogrecs and 52 degrets it rises 0.0033 of an inch

PRLSSURE ON WATER-PUMPS.

Th effect of atmospheric pressure on water is observabls in various contrivances in the arts.

Fill a glass to the brim with water, and lay a plece of paper over the whole surface of the liquid: then turn the glass carcfully upside down, holding on the paper by the hand; the water will now remain in the glams, being upheld by the pressure of the atmosphere againut the paper.

Glass fountains of water for bird-cagen, ink-holders, and reservoirs of oil for lamps, are constructed on the principle of the liquid being upheld by atmospheric pressure.

The apparatus for lifting water from wells, iorming the common sucking-pump, acts on the principle of removing the atmospheric pressure from a column of the liquid, thus causing a vacuum in the pump, nnd allow ing the atmospheric pressure on the surface of the liquid in the well to forco up and balance the cclumn of iiquid.

Fig. 23 represents the outline of a common eucking. pump; it consists of a cylinder, furnished with a piston A made to fit air-tight. In this piston there is a valve opening upwards, not scen in the cut. When the piston is raised, the air is rarefied more and more at each stroke in that portion of the cylinder through which it has moved upwards, and the pressure of the air upon the surface of the water on the outside of the tube forces the fluid into it. The valve \mathbf{B} is at the same time opened upwards, and the water after asveral strokes rushes in above it. When the upward stroke of the piston is

Fig. 2. complete, it is again do-pressed-the water passes through the valve in tho pioton, and on the next stroke, it is discharged at the spout It is evident, that, when the piston is sunk downwards, the water cannot be again forced out of the pump, because the valve at the bottom is pressed down, and prevents its escape.

Water may in this manner be lifted by a pump to any height, but in each case the lower or fixed valve in the pump must be less than 34 fect from the surface of the water. It is, however, disadvautageous to lin water from great depthe hy this means. In such cases it is usual to employ a succession of pumps, one above another.

It is customary to call pumps hydranlic machines: properly speaking, they are loth hvdraulic and pnet.matic machines, for water is raised by them in a greal measure through the agency of atmospheric pressure.

The form of pump uned for forcing water to a height shove the ground, as in the case of fireengines or portable forcing-pumpa for gardens, in diffierent from the commen suction-puinp. The object in the forcing pump in to lif wator to a certain height by the formation of a vacuum, and then to inject It with violence into the air.

The action of the forcingpunp apparatua is represented In fig. 24. The piston A sucks the water by ite upward motion; but on dopresaing it, the valve \mathbf{B} is
 Fig. 24. closed, and the water lo consequently forced through the pipe C.
In the case of anpplying water to the boiler of a steam-engino, it is necessary to employ a forcing-pump, in order to overcome the pressure of steam within the boiler. The force with which the water is Injected overcomes the tendency which the steam has to ruah out.
Cold or moderately warm water can only be lifted by a puanp. If the water be above a certain temperature, about 150 degrees at the utmost, the sucker cannot form a perfect vacuum, because, in the attempt to do so, the water yields a steam or vapour which fills the space ; in other words, by removing the atmospheric pressure by tho piston, the water begins to vaporize as if about to hoil. When a pump ia mado to operate upon hot water, it labours in vain to raise the liquid. Thia circumstanco limits the heat of water injected into the boilera of steam-engines; or if the water is injected at s high temperature, it must receive its heat between the pump and the boiler. This ia sometimes done, by causing the tube from the pump to pass through a vetsel of waste steam.

SYPBONS.

Atmospheris pressure is very conspicuous in the case of the syphon.
A syphon is a tube bent in a particular manner, and is used for drawing off liquors from csska, or wuter from reservoira. One kind of syphon is represented

Yig. 25. in fig. 25, and consists of a tube bont into two equal limbs, each open at the extremity. If such a syphon be filled with water and inverted, no as to turn the two orifices downwards, the liquid will not run out, but remain xuspended in the tube, because the preasure of the column of water Tithin is not so great an the pressure of the nir without, and thue ite escape outwsids is prevented. If one end oe put into a vessel of water, the vessel will be emptied Jowa io a level with the orifice. It is evident that, when sne end of the syphon is inserted in water, the prensure of the atmoaphere upon the surface of the water impels the liquid through the tube, and it could be forced upwarde to an elevation of alove thirty fect, or the heigit to which water rises in a vacuum. The diagram repreante an inatrumen: of this kind furnished with two cups, firmly attached to the ends, which, by retaining a portion of the liquid, keeps the ayphon always full ind ready for use.
Syphons are more commonly made with a long and whort limb, as in fig. 26. On ingerting the short limb into a veasel of liquid, and drawing the air out of the whe at the mouth A, the liquid will rush out in a eteann, a.d continue fowing till the vessel ia emptied.

The pressure upwardn into the tube at It the eicme of the atmospheric preasure above the vertical prem sure of the column of fluid A B; and the similar prow aure at C in the excess of the atmospheric promure above the vertleal prombure of the column of fluid B C; but the latter excena in evidently the greater, and hence the liquid in the vessel is necelmarily forced upwarda through the tube from C to B ; and thus the voseel in drained of ita contenta. By placing a stopeack on the tubo above A, the atream can be checked, and permitted to flow at pleaaure. There are inatances of
 towns being supplied with water by meana of large syphons of this kind. In these canea tho ayphon is brought over a rising ground from a lake or fountain at aome distance. Certain kinda of apringa are accountoc for on the principle of the syphon; they act from the combined effects of a vacuum and atmospherie pres aure.

apflication of heat to water.

The pretaure of the atmosphere affeets tho boiling of water. At the common pressure of about 15 lbs to the square inch, water will boil, or attain the vaporife point, at 212 degrees Fahrenheit. If we remove the atmospheric pressure by an air-pump, as is done in the hoiling of augar, we can produce the phenomenon of boiling at a murh lower temperature. At the summit of Mont Blanc, where the atmospheric pressure is light, water is found to boil at 187 degreca.
Steam produced from boiling water is a trar.jpareoh colourless, and invisible substance, like air. If we could look into the boiler of a atcam-engine, we should se nothing but the water in a state of ebullition. The white cloudy-looking matter which is emitted in the form of vapour, is moisture produced by the partial condensation of the ateam in the atmosphere-taking the form of vapour is a step towards becoming liguid again.
A cubic inch of wator produces exactly a cubic foon, or 1728 cuhic inches, of ateam, it 212 degrees of tem. perature; in other words, when water is transformed into atcam, it occupies 1728 timea its former bulk. Io this expanded condition ateam is of a legs specific grt vity than air. Its density ia expressed by 0.625 , the of air being 1 .

The elastic force of steam in the process of heatim, -that is, the force with which it seeks to expand-dif fers at different temperaturen ; at first the force is inconsiderable, but it rapidly increases as the temperatum in raised. At a temperature of 212 degrees, the elatie force ia 15 lha. on the square inch of the contuinima vessel, or equal to the external pressure of the atmo aphere; at 250 degrees, it is $\mathbf{3 0}$ lbs.; at 272 degreenit in 45 lbs. ; at 290 degrees, it is 66 liss.

bUOYANT PROPERTT OF AERIFORM FLUIDS.

The atmosphere, as has been atated, possessen ibe property of buoying up hodies which, bulk for bulk, urg lighter than itself. The law governing huoyancy is liquids is precisely the anme an that governing buogng in secriform thide, and may here be repeated in referna to air.
lat. Any solid body immeraed in a fluid digpleced exactly its own bulk of fluid, and the foree with whid the body is buoyed up is equal to the weigh of im fluid which ia displaced. This refors to bodies of hem density than air. 2d. Any solid body of a giester der aity than air, when wholly imnersed in that flud, bow
eractily as m
sulk of airTha supp tand by ite pearalucen in the rising of dying of bird - bog'a pape nuoyant prop The fight the buoyont port themeelv through whle! with the prop cina them at areend. Bird in height, and considerable el to be unsuital nie to the hig atance the cagl onshle them to thin fuid in wl
The light he conds, and is bi Hydrogen, or a than sir, in the atmosphere at t] pecific gravity. or any light gaa ascend in the which is ineapab onelosing warm apartment. If will sink instead
A balloon is a of such a magn aeight of its con utficient to supp parte of the appa to rise by being bensesth them; practice was in co hydrogen gas, one pared. Hydroges carbureted hydrog easily obtained, be generally lighted. light gas, the cont weigh only an eig bulk for bulk; an for weight of app areighths ; in ot weigh two pounds 4 woight of other willoon will ascen mosuring its cap the result with an difference of weigh
Of aérostation, in balloons, great wiud ; luat the ext

atra.

ts the hoiling of about 15 lbs , to ain the vaporitic we remove the as iv done in the plicnomenon of At the summit pressure ia lighth
is a trac.sparenh 0 air. If we could e, we phould so - ebullition. The is emitted in the ad by the partiel moophere-taking s becoming liquid
kactly a cubic foot, 12 degrees of tem ter is transformed s foriner bulk. to a less вpecific grt sed by 0.625 , that
process of heating bks to expand-dif. the force is incos. the temperature is logrees, the elatie of the containing ssure of the atmo ; at 272 degrees it s.

TORM FLUIDs, cated, possesses the h, bulk for bulk, art rning buoyaney is governing buogsoc epeated in refereno
in n fluid dimplowe he force with whid o the weigh of th ers to bodies of hw dy of a grester der od in thest flud, lase
eractiy as much of ite welght as the weight of an equal sulk of air-that la, of the alr whieh it diaplecen.

IThe support afforded to bodies in the atmospheric fund by ite realstance is very evldent from many appearaucea in nature, an the aupport of vapoura or cluuds, the rising of smoke and fine particles of duat, and the tying of blidn; in art, it in exemplified ty the flying of boy's paper kite, the rising of moap-bubbles, and its muoyant property by the floating of balloons.
The flight of blrds is not accomplished altogether by the buoyant property in the air. I'hese enimala aupport thamselven by atriking their wings againot the fluid through which they are pasaing; and thla friction, along with the property of buoyancy in the atmosphere, suatuins tiem at any height to which they are pleased to ascend. Birda do not generally fly above half a mile in height, and meldom above a fow hundred yardn. At considerable elevations the alr is so epecificelly light as to be unsuitable for their easy aupport. Those which rise to the higher regions of the atmosphere, as for intance the eaglo, are provided with large winge, which enshle them to support themsclvea in the comparatively thin fuid in which they move.
The light heated sir which oscapen from a fire, ascenda, and is buoyed up by the more dense air beneath. Hydrogen, or any other gas of a leen epecific gravity than sir, in the same manner ascends and floats in the atmoaphere at the height at which it finds air of its own specific gravity. On the same princlple, if heated air or any light gas he enclosed in a lerge silk bag, it will ascend in the atmosphere till it rench a region of air which is incapable of supporting it. Thus, a soap-bubhle enclosing warm air readily ascends to the ceiling of an apartment. If the bubble be mado with cold water, it will sink instead of rising.
A balloon is a bag made of fine varnished silk, and of such a magnitude that the difference betwixt the seight of its contents and that of the diaplaced sir is qufficient to aupport the weight of the silk and the other parts of the apparatus. Balloons were originslly made to rise by being filled with heated air from a firs hung beneath them; but this dangerous and inconvenient practice was in course of time superseded by the use of bydrogen ges, one of the lightest airs which csn be prepared. Hydrogen gan has lstterly been succeeded by carbureted hydrogen, which, though not so light, is more easily obtained, being the gas with which towns are now generally lighted. Employing a moderately pure and light gas, the contents of a ballon msy be estimated to weigh only an eighth of tho weight of the atmosphere, bulk for bulk; and hence, after alding another eighth for weight of apparatus, it will ascend with a force of areighthe; in other words, if the gas and epparatua weigh two pounds, the balloon will lift from the ground a weight of other six pounds. The force with which a balloon will ascend is therefore to be calculated by masuring its capacity in cubic feet, and comparing the result with an equal bulk of atmoapheric air: the difference of weight is the buoyant force of the balloon. Of acrostation, or the art of moving through the air is balloons, grest expectation: were originally entertwiud; but the experience of half a century has proved
that it is of no practleal value. It only use tia the exhibltion of an interesting principle in pneumaticm. A balloon constructed in the best known manner, and moving upwards with a powerful force, is aulyect to the following drawbacks i-as the balloon ascends, its con tents expand in consequence of the increasing rarefection of the atmomphere; if, therefore, it hes been entlrely filled when on the ground, portion of the gat must be allowed to escape as it rises, otherwise it will bursh. Diechargea of lallast are alao required in connequence of the aboorption of moisture from clouda; and there being no means of recovering the loat haliast, the balloon, on the return of heat, rapldly rises in the air, its contents expanding in the ascent, and rendering further liberntions of gas necessary to provent explosion. These alternations continuing to operato more or leas frequently, it is evident that they muat soon put an end to the buoyant power, however great originally, and, slong with the contending effecte of winda, forcibly terminate the excursion through the air.

[WORKS ON IIYDROSTATICS, IIYDRAULICS, AND PNEUMATICS.

The writer we ahall refer to, independently of thome who treat on overy branch of natural philosophy in con junction, are as follows:
" Hydrostatical and Pneumatical Lectures, by Roger Coten, A. M." This work was published after the death of the author, by Dr. Smith; it possesses great merit, and will, so long as science lasts, be esteemed very highly by its votaries. The early death of Mr. Cotes, at the age of thirty-three, was deplored by mathematicians as a public calamity. Sir Isaac Newton asserted that, had his life been spared, he would have proved one of the greatest men that ever lived. "If Mr. Cotes had lived," said this illustrious philosopher, "we should have known something."
"The Principles of Hydrostatics, for the use of the Students in the University of Cambridge, by the Rev. Dr. Vince," includes the fundamental principles of Pnoumatics and Acoustics; and, independently of an account of the instruments illustrative of Hydrostatics, he has given full descriptiona of the air-pump and condenser; the thermometer, hygrometer, and pyrometer. There ls also a asction devoted to the aubjects of winde, vapours, and the formation of spring.

Ewbank's "Mechanice and Hydraulica" is most thorough and satisfactory on the history of Hydraulice, with the application of the science to the common arts of life. It is very richa. ontellished with engravinge illustrating hydraulic mach zery and implements both ancient and modern.

Adams's "Lectures on Natural Philosophy" contains a great number of experiments in pneumstics, with numerous engravings illustrating the spparatus omployed in the experiments.

The apparatus employed in Pneumatics is manufec tured in great perfection by Mason, of Philedelphia, and Claxton, of Boaton.-Am.Eaj

OPTICS-LIGHT-ACOUSTICS.

OPTICG-LIGETT.
Tas term Uptica is derived from a Greek word which otgnifies seeing, and applies to that branch of natitral philowophy which treate of the phenomens of light and vision. Of the precise character of light, there are varioum theories, but none whlch almits of actual demonstration or proof. By some it has been deacribed as consisting of very minute particles, which are thrown off from what are called luninous hodien in all directions, and with immense velocity; while others consider it an the effect of an undulation or vibration prolncod by luminous bodien in the thin and elastic medium which is interposed between them and the seat of our vision; this vibration producing an effect upon our organn, which wo recognise as light, is a manner analogoun to the impression of aound on the ear, caused hy vibrations of the atmosphere. I'his theory is called the undulutory theory of light ; and the former theory, in which light in cupposed to connist of materiat particlea, is called the theory of emission. Whatever may be the caune or absolute nature of light, wa know it is a remarkable property of luminous bodies, that it enables us to see the fuminous objectn themselves, as well as others, and that its ahsence produces darknem.

All visihle bodice may be divided into two cianses-self-luminous and non-luminous. Under the firat heat are comprised sll those bollies which possens in themeelves the property of exciting the senation of light or vision, auch as the heavenly luminariea, terrestrial famen of all kinds, phosphorescent lodies, and those bodies which shine by being heated or hy friction. Under the second ciass we recognise nuch bodies as have not of themselves the power of throwing off particles or undulations of light, but which possess the property of reflecting the light which is cast upon them from self-luminous bodies. A non-luminous body mey thus, by reflection, receive light from another nonluminous body, and communicate it to a third, and 80 on. All reflected light, however, is inferior in point of brilliancy to that which comes direct from a self-luminous body.

Anciently, it was believed that light was propagated from the aun, and other Juminous bodies, instantaneously; but the observations of molern inquirers have shown that this was an erroneous hypothesis, and that light, like sound, requires a ccrtain time to pass from one part of epace to another, though the velocity of its motion is truly astonishing, as has been manifested in various ways. Astronomers have proved, by observing the eclipses of Jupiter's satellites, when thit planet is nearest and when it is farthest from the earth, that light moves from the sun to the earth, a distance of $05,000,000$ of miles, in seven and a half minutes, or ahout $2 \cdot 0,000$ miles during a single vibration of the pendutrm. So prodigiously great is this velocity, that, as far an any common observation is converned, light may be anid to be perfectly instantaneous in ite universal action.

Light proceeds in a straight direction from the luminute body which produces it, towards the part or situation agairst which it is prermitted to act. In consequence of this directness, a shalow or darkened apot is ohsiervalule behind any opaque object presented to the light. During night, we are in the carth's shadow, nid this shadow reaches oo far beyond us into space, that when the moon plunges into it in her course, she niadergoes an eclipse. The direct shining of the sun, or uny other luminous body, is in the form of rays, or thin ethereal lines, each acting independent!y of the other; no
such meparation of parta, however, is observal le, in eam mon circumstances, in consequence of the diffisive pro pertien of our atmosphere. Becing is sinuply the recep tion of the direet or reflected ray from un object by oup cye. Untii the rays of the sun reach the sjot on whick we are placed, wo are neither conseioun of light nor of the presence of the aun as an object. In the ame manner, a canille being lighted and exponed in the open coustry in a dark night, all who are able to nee it are within the influence of its rays; but beyond a given diotance theae rays are too weak to produce vision, and all wh are in thim remote situation cannot nee the emalient appearance of the candle. It will therefore be undervood, that the accing of any luminous ohject is equivalent to being within the influence of raya of nufficient intennity proceeding from it. The number of raya which proceed from even a common candle is wo vast as to the beyond our imagination to conceive; for if aurh. light is viaible within a aphere of four milen, it follows, that if the whole of that space were surrounded with eycm, each eye would receive the impression of a ray of iight.

In proportion as llght advancen from its acat of production, it diminishes in intensity. The ratio of dimisus tion is agreeable to that whleh governs physical forcea, that in, the intensity of the light will diminizh as the square of the distance increases, or at the rate of 1,4 , 16, \&e. But in proportion as we lose in intensity we gain in volume ; the light is the weaker the farther it in from the candle, but it is filling a wider space.

Preliminary to any further exposition of the nature and action of light, we ofter the following definitions ol terma. Any parcel of raya, passing from point, li calied a pencil of raya. By an optical medium is meant any pellucid or transparent body, as, for example, air, wnter, or glans, which sullers light to pass through it Parallel rays are such an move always at the same dis tance from each other. If rays continually recede from each other, they are said to diverge; if they continually approach each other, they are anid to convergr. The point at which converging rays meet in called the forus; the point towards which they tend, but which they are prevented from coming to by mome obstaclo, is called the imnginary focua. When rays, ster passing through one medium, on entering another medium of different density, are bent out of their former course, ond male to change their direction, they are eaid to be refructed; when they ntrike againat a surface, and nro sent hack again from the surface, they are aaid to be reffected. A lens is a glass ground into auch a form as to collect of diaperse the rays of light which pass through it. Thew ase of ditierent shapes, and thence receive diflient names. The following figuren individually represent sections of the variously shnped ieneen and other glases used in optics.

Fig. 1.
A is a triangular stalk of pure glann, of which we have here a cross sectional or cnd view, and whieh is callelt prism. Each side of the prism is smooth. B is s soc tion of a piece of plane glass, with sides parallel to rads other. C is a sphere or hall of glass, and consequenty is convex on all parts of its surface. D is a piecer 1 glass convex or bulging on its two sides, and is called
mole conmx for magnifyi other inatrur side ano cons a glam holl lens, or planer If is a menise cave on the o we have an ex of the conearoor do not me an Imaginary theough the ce Thus, the line lens, in a direc itunxia,

In treatisen subject into tiv Catoptrics. I' Greek worde si tranamiasion of 4 woll as the l rrics is a term from or against ourfaces, and th rors and other o

Refraction, as raye of light fr If the rays, after 1 of a different de we not refracted their original dir were to strike angles, or perje gostraight to th in the air would they entor obliqu deaser or more rt they are made through that me fucted.
The mode of t tive density or ru melium which t brough it in a trawn to its sur passes out of a de - direction farther tion is greater or bent, or turned a medium through than the first. T an upright empty dimits but a sing hole in a windowon tho floor, a few admits the light, leam of light dest owre the top of th and atrik es the bot dow. Iat the spo diling the vessel w the original apot, bwards the windo th the veesel of wa priat where the ta, hearer to the wind the salt water, an leam of licht will (i) will refract yet The property of is the following ox
mole conyex lens. It is this kind of iens which in uned for magnifying objects, in apectaclea, telescopes, and other inatruments. E is a plano-convex lens, flat on one ide ano convex on the other. Fif a double concove lene, a glasa hollowed on each side. C in a plano-concuve lent, or planod on one alde and concave on the other. H in a meniscus, or lens convex on one side and concave on the other, both murfacee meeting, and of which wo have an example in watch-glassen. I is an example of the concaro-convex lons, in which the surfices disagree, or do not meet when contipued. In all these lenses, an imaglinary line, repremented by M G N, and pansing through the centres of the nurfacen, is called the axis. Thus, the line sald to pass through the centre of any lens, in a direction perpesmalicular to its surfuce, is called ita axis.

In trestisen on optics, it is customary to divide the subject into two aections, under the head Dioptricn snd Catoptrics. The term dioptrics ils compounded of two Greek words algnifying to see through, and refern to the transuission of rays of light through transparent bodien, w woll as the laws by which they are produced. Catoptrics is a term also from the Greek, and signifies to see from or against ; it refers to the reflection of light from anfices, and the formation of images by means of mirrore nad other objects.

refraction of hoirt.

Refraction, as already mentioned, is the bending of nye of light from the courso they formerly pursued. If the raya, after passing through a niedium, enter another d a different denaity, perpendicular to its surface, they we not refrseted, but proceed through this medium in their original direction. For instance, if the oun's rays were to atrike upril the surface of a river at right angles, or perpenoicularly, to its surface, they would gootraight to the bottom, and the line they observed in the air would be continued in the water. But if they enter obliquely to the surface of a modium cither denser of more raze than what they moved in before, they are made to change their direction in passing through that medium ; in other worda, they are retracted.
The mode of the refraction depends on the comparative density or rarity of the respective media. If the melium which the rays enter be denser, they move brough it in a direction nearer to the perpendicular Jrawn to its surface. On tho contrary, when light passes out of a denser into a rarer medium, it movea in a direction farther from the perpendicular. This refraction is greater or less, that is, the rays are more or less bent, or turned aside from their course, as the second medium through which they pass is more or less dense than the first. To prove this in a satisfactory way, take an upright empty veasel into a darkened room, which udmits but a singlo beam of light obligucly through a hole in a window-shutter. Lee the empiy vedsel stand on the floor, a few feet in advence of the vindow which wains the light, and let it he ao arranged that, as the beam of light descends towards the floor, it just passes over the top of the side of the vessel next the window, and atrikes the bottom on the side farthest from the window. Int the spot where it falls be marked. Now, on filling the vessel with water, the ray, instead of striking the original sprot, will fall considerably nearer the side wards the window. And if we add a quantity of salt w the veserel of water, so as to form a dense solution, the point where the ray strikes the botom will move still neaser to the window. In like manner, if we draw off the salt water, aud supply its place with uleohol, the leam of light will be still more highly refracted; and ad will refact yet mone than aleohol
The property of reflaction may also be observable io the following expriment. Let the ammed oblong
figura reprement a veceel h_{w} gilled with water, and R the ray of light which may be expected to pasm throush

It to the betten at d. The direction of the ruy in per fectly atraight until it enters the water at j, when, instead of proceedigg in a straight line to d, it in bent from lis course and compelled to atrike the bottom of the vomsel at e. If oll inatead of water had been used, the ray would have been atill more bent, and have reached tha bottom at f. If the ray had been sent directly downwards, as from i to the surface of the water at j, it would not have been refracted, but have proceeded straight to the bottom at k.

The following single experiment is well known :Take an empty basin and place it on a table, then lay a shilling at the bottom of the basin, in auch a position that the eye of the observer will not see it. Now, fill the basin with water, and the shilling, though lying unmoved, will come completely into sight. The explanation of this phenomenon is, that the rsy of light producing vision in the eye is bent on emerging from the water, and has all the elfect of conveying our sight round a corner.
The refractive power of water is also observable when we thrust a atraight atick or instrument into it, on aiming at any olject. Wa see that the stick seemu to be bent, snd fails in reaching the point which we desired it should. On this account, the aim by a person not directly over a fish must be made at a point apparently below it, atherwise the wespon will miss by flying too high. Persons who spear sulmon in rivers require to calculate upon this refractive power in taking their aim.

With regurd to the refractive power of transparent substances or media, the genersl rule, with certain litnitutione, is, that it is in propertion to the densities of the bodica. It increases, for instance, from the most perfect vacuum which can be formed, through air, freah water, salt water, glass, and so on. But those substances which contain the tuvat inflammablo matter, have the greatest refrarive power. It was from the great refractive powern of the diamond and water, that Newton, with admirable asgacity, predicted that they contained inflammable principles. Thin fact future discoveries in chemistry verified. Tables of the refractive powers of substances most interesting in optics will be found in Brewater's Optica. From these it would appear that substances which contain fluorio acid have the least refractive power, as inflammable ones have the greateat. With regard to the cause of refraction, on the theory of emission, the refracting medium would attract the particlen of light, and increase their velocity during their transmission, and would alter the direction of their motion, thus causing refraction hat the intensity of the sttractive force would require to be different for light of different colours; and on the undulatory theory, the ether within the refracting medium would the condensed by the attraction of its particles on the ether, and the velocity of transmission of the wavn of light through this condensed ether would be less than in free apace. and, from this cause, the direction of the motion would he altered, or refraction would take place and from the different lengths of the waves of differencolours, the velocity of their transmiseion would be dif
forent, thue cauning different ilegreen of refrangibility necording to the difference of colour.

The refrection of raye of light is obmervable in the cave of common window-glases. The two sides of a pane not leing perfectily parallel to nach other, bolies meen tlirough It appear an if diblorted; and an the olliquities in the slume are very various, the distortions are equally grom cenque and nuineroves Bome windows are purpomely ground on the aurfice, to proluce univermal and minute rofraction; and-thum eo great a confunion in intronlueed among the raya, that objects are not dinthiguishable through the gleas. When the obliquitien on the surfuce y one aide of a piece of glame stand diatinct from each other, an an to almit of refraction in a clear and dimtinguibhable manner, then each oliliquity alforda a sepatate view of an object on the opposite aide, and time an object soema to be muitiplied an many timen an there are obliquitiea.
The refraction of light in oheervable on a great acale In relation to our atmosphere. The raya of the sun, on renching the confines of the atmompheric fluid which onvolope the earth, enter a niedium of greater density than that which they have previously been purouing, and consequently are refracted or bent. One obvioua effeet of this is, that we never see the sun in the aetual position which he occupies. He in always, leen or more, in relation to our cyea, what the shilling in said to be in the ahove experiment with the basin of water. This is peculiarly the case in the morning, when his carliest rayn reach our eyes; entering a denser medium, thewe raye bend round to meet our vision, and we actually ace the body of the nun a few minuten before he han risen above the horizon-like the shilling in the basin, we ree him round a corner. In propurtion as the aun approachea the senith, the refraction diminishes; and as he receles cowards setting, it increases. So considerable in it in the hasy atmoaphere of the evening, that we retain a aight of the sun'a diak after it has sunk. The same phenomena oceur in relation to the other heavenly luminarica.
From these explanations it will appesr that the directness of our vision ja at all times linble to lie disturbed hy atmospheric conditione. Solong as the atmosphere hetwixt our person and the oljeet we are looking at is of the mame denaity, we may he said to nee in a straight line to the olject. But if by any cause a portion of that atmosphere is rendered leas or more dense, the line of vinion in at once refractel or hent from its course. A thorough comprehension of this simple truth in acience bas banished a mass of superatition. It has been found that, hy means of powerful refrsetion, objecte at a great distance, and round the back of a hill, or considerably beneath the horizon, are brought into sight. In anme countries, this phenomenon is called the mirnge. The bllowing in one of the most intereating and best authensieated cases of mirage. In a voyago performed by Captain Scorealy in 1822, he was able to recognine his father's ehip, when below the horizon, from the inverted image of it which appeared in the air. "It was," aays he, "mo well defined, that I could diatinguish by a teleacope every eail, the general rig of the ship, and its particutar chasracter : insomuch that I confidently pronounced it to be my father'n ship the F'ame, which it afterwarda proved to be; though, on conparing notes with my father, I found that our relative position at the time gave our clislence from one another very meurly thirty miles, being about seventeeni miles beyond tho horizon, and some leagues beyond the linit of direct vision. I was mo struck by the peculiarity of the circminstance, that I mentioned it to the officer of the wateh, stating my full conviction that the l'ume was then croising in the neighbouriag inlet."
A curiuas plernomenon of thin kind was seen ly Dr. Vince, on the 6ith of Alugunt, 1806, at 7 r.m. 'To an observer at Ramagate, the topa of the four turreta of

Dover Oaatle are umualily acen ove- a hill between Rana gate and Dover. Dr. Vince, however, when at Ranamgate, unw the whole of Dover Cantle, no if it had been brough over and placed on the Rammgate aide of the hill. The image of the cantie was mo atrong and well defined, that the hill itweif did not appear through the innage.
In the andy plaint of Egypt, the mirage in acen to great advantage. Theac plaina are often interrupted hy amall eminences, upon which the inhabitanta have huilt their villagen, in order 'to eacape the inumilations of the Nite. In the morning and evening, objecta are meen in their natural form and position; but when the sarface of the mandy ground in heated by the aun, the land seena terminated at a particular dintance by a general inun. daton! the villages which are beyond it appear like no many imlauxle in a great lake, and between each villaga an inverted image of it in meent.
That the plimomena of the mirage are produced by variations in the refractive power of the atmosphere, can the proved by experiment. If the variation of the refractive power of the air taken place in a horizontai line perpendicular to the line of vision-that is, from right to left-then we have the lateral murnge * "hat is, an image of a ship may be seen on the righe … en hand of the real ahip, or on both, if the variation ot refractive power is the suline on each side of the line of vision. If there should happen at the aume time both a vertical ond a lateral variation of refractive power in the sir, and if the variations should be such no to expand or elongate the object in loth directiona, then the object would be magnified as if observod through a telescope, and might the seen and recognised at a diatanee at which it would not other. wise have been viailif. If the refractive power, on the contrary, varima no as to contruct the object in loth diree tions, the imsgo of it would be diminished as if aen through a concave lens.
In order to represent artificially the effects of the nirage, Dr. Wollaston suggented the viewing of an ofject through a stratum of apirit of wine lying above water in a crystal jar, or a stratom of water lying alove one of syrup. These substancen, by their gradual incorporation, proluce a refractive power diminishing from the apint of wine to the water, or from the gyrup to the water: so that, by looking through the mixed or intermediate atratum at a word or olject held behind the bottle which contaias the fuids, an inverted image will be acen. The rame effect, it has been shown, may be proluced by looking along the side of a red-hot poker at a word or object tes or twelve fert distant. At a dietance leas than three eighths of an inch from the line of the poker, an inverted image ia seen, and within and without that an efect image.
The method employed by Sir David Brewater to illum trate these phenomena, consista in holding a heated iron above a mans of water bounded by parallel piatee of glas; as the heat deacends slowly through the fuid, we have regular varintion of denaity, whieh gralually diminisher from the botom to the surfsce. If we now wiltulraw the heated iron, and put a cold boly in its place, or even allow the air to act alono, the auperficial atratum of water will give out its heat, so as to protuce a decreane of density from the surface to a certain depth below it. Througb the medium thus constituted, the phenomena of the mirs. sge may lie seen in the finert manner.

Double Refroction of Light,-In the preceding par of thin section, we have considered a single ray of light reflected or transmitted through the sulstance of a trint pareut body, as leaving it in the same way in which it came ints contact with it, namely, in a single pencil a ray. But there are a grest many budies which have the power of breaking the pencil of light incident upan thei surfares into two separate parts or pencils, more or lad inclined to one mother, according to the nature end sto of the Inuly, and according to the direction of the incidea
paell. Th whieh prod eryotule. I and crystalli of the culte, Adiecahectro of rhomlowid greatrost cert if has bern, pect. lis ir acute molida a light is amp bnumen ; and propertien m arlyject.
With resp eparaliuns of properties fro that of proilu the original r aleo refer to

One of thr refraction is, ti bo white, may It will he obvi colourn, whero the glancing ar ise, or other er Thu proper discovering int procure a pria in n darkenced
darkenced room, dunit a beann o is interposed, w lorm a lomino prism BAC, w bean of light m the sarne augle tion $\underline{\underline{G}} \mathbf{G}$, and opposite wall, axpect," aау" S adready laid don fell upon P wou add fall nomew white apot exac the case. Inste upon the screed contuining seve blue, indigo, anc ing from its eme bounded by tho α the sun is cey apestrum. If t $g^{\text {fic conaiderable }}$ bright. The lo This red shade orange, the oran grea inte hlud
veen Rana t Rainmgata, een brought hill. The defined, that Ige. il meen to terrupted hy - have buili ations of the 3 are meen in he nurfisee of land mern.t general inua. ppreur like mo cach villaga
produced by mouphere, can of the refraco orizontal line from right to it is, an image A hand of the frnetive powet wion. If there vertienl and a sit, snd if the r clongate the ould the magni. I might be men oull not other. power, on the it hoth diree shed an if sen
ects of the nintgg of an object above water in g above one of al incorporation, rom the apirit of o the water; mo rmediste atrntum which contain ven. The pamm uced by lookina ord or object tea fean thnn three oker, an inverted ut that an erect

Brewster to illus ing a heated iron lel plates of glass: - fluid, we have a dually diminisher now withdraw the ts place, or even ntratum of atet ecrease of density low it. Throash menena of the mis.
preceding part of ngle ray of light, ntance of a irant e way in which it a single pracil of es which have the neident upon theit neils, more or leas he nature and stane tion of the incidea
mactl. This is called double refrictlon, and the bodien whish produce it are callod doubly mifracting bolien or syunda. They are very numeroun, and incluide all malts and cryatallized minerala not having the primitive forma at the culne, the regular octchedron, and the rhomloidal todecahedron. Of all known boliea, the teeland mpar, of thomboidal carbonate of lime, shown the fact with the createot certainty $;$ and as it in a mineral nasily procured, it haw been generaily ueed in experimenta upon this aubfect. Ita rryatala are of rhomboital form, having aix cute molid saglem, and two obtume, Double rofraction of light in emplayed to advantage in come hinde of IIghthousen; and thome who winh to investigate its nature and propertica may be referred to advanced treatisea on the aubject.

With reapect to the polarization of light-whieh is the eparation of a ray of light into two raya, having different prupertiea from each other, among which propertiea is that of prolucing eolour in a variety of waya, aithough tha original ray may be common or white lipht-wo muat sleo refer to worka of higher acope than the prewent.

coloun my refraction.

Onc of the moat remarkable phenomena attending refraction la, that the rayu of light which neem to un to be white, may tee mparated into raya of varioun colours. It will te obvious that light has the efleet of reprewnting coloura, where no colour mubatuntially exints, by noticing the gisucing and varied hues on irregular surfaces of glase, iee, or other cryatallized aubatances.

The proper method of analyzing the raya of hight, and discowering into what coloura they may tee resolved, is to procure priam, and perform the following experiment in a darkeined chainber:-In the window-ahutter E of a

darkeust room, make a anull hole H , through which aduit a beam of the sun's light \mathbf{S}, which, when nothing is interposed, will proceed in a atruight line to P, and fona a laminoua white spot. If we now interpose a prism BAC, whose refracting engle is $\mathrm{I}_{\mathrm{a}} \mathrm{C}$, so that the beain of light may fall on its aurface $\mathbf{C A}$, and emerge at the sane anglo from its second surface $\mathbf{B A}$ in the direction $\mathrm{g}(\mathrm{r}$, and if we roceive the refracted besin on the opposite wall, or on a white acreen MN," we should axpect," saya Sir David Brewster, "from the principles already lail down, that the white beain which previously foll upon P would suffer only a change in its direction, and fall momowhere upon $M \mathbf{N}$, forming there a round white apot exactly aimilar to that at P. But this is not the case. Instead of a white apot, there will be formed upon the screer. MN an oblong image KI, of the sun, containing seven colourn, viz: red, orange, yellow, green, blue, indigo, and violet, tho whole bean of light diverging from its emorgence out of the prism at g , and being bounded by tho linen $g \mathbf{K}, z \mathrm{~L}$. This tengethened unage α the sun is called the solar spectrum, or the priamutic apostrum. If the aperture \mathbf{H} is small, and the distance g (i conaiderable, the colours of the upectrum will be very bright. The loweat portion of it at L_{1} in a brilliant red. This red shades of by imperceptible gradations into orange, the orango in'o yellow, tho yellow into green, tho gren intu blwo, the blue into a pure indigo, and the
indign into a violet. No linee are saen arrosen the mper trum thue produced; and it is extremely diffleuit for the aharjeat eye to point out the boundary of the different colourb, Sir Imane Newton, however, by many triala, found the lengtion of the coloura to he follow, in the kind of glase of which him prisin waa inade 1-Reri, 15 ; orange, 27 ; yellow, 40 ; green, 60 ; biue, 80 indigo, 48 ; violet, 80-Total length, 360."
'These colours are not equally brillant. At the lower ond L of the apectrum, the red in compuratively faine, but grown brighter an it approaehen the orunge. The light incruases gradually to the middie of the yellow, where it in brighteat; and from thia it gradually declinem to the upper or violet end K of the apectrum, whero it ia extromely faint.

From the p'aenomena which we have now deacrlibed, Sir luanc Newton concluded that the lieam of white light in compounded of light of aeven different coloura, and that for each of thene diffurent kinda of IIght, the glame of which his jrimm was made had dilferent indices, thist is, measures of refraction: the index of rofraction for the red light being the loast, and that of the vjolet the greatent.

Hy mesna of a aceond priam placed behind a hole in the ucreen MN, opposite the eentre of each cohoured apace, Sir Ianac Newton refracted the light a aecond time. In thia came it was not drawn out into an oblung innage an before, and wan not refracted into any other colour than that which formerly belonged to each particular ray. Hence thin great philoaopher concluded that the light of each particular colour posmensed the ame index of refriction; and he termed uuch ligis homogeneous, that i , of tho aume kind, or aimple; white light being regarided as heterogeneoun, that is, of different kindm, or compound.

By various exjerimenth, Bir Isauc proved that all the coloura, when again combined, formed or recomposed white light. Indeed, the doctrine miny be illustrated by mixing together in proper proportions aeven coloura as like those of the spectrum as can possilly he got. By their union a grayish white is formed, for jowders of the exact tint as those of the njectrum cannot be oltained. It may also he pruved in this manner:-Let a circlo of paper be divided into sections of the samo size, and coloured tike the spaces in the spectrum, and placed upon a humming-top, which is male to rovolve rapidly; the effect of all the colours when combined is to produce a grayisla white.
"All transparent substances, in bending light," observes 1). Aruott, "produce more or less of the separation of colour; but it is an important fact, that the quatity of merely bending a beam, or of refration, and that of dividing it into culoured beams, or of disprrsion, are distinct qualities, and not having the same proportion to each othor in different substances. Newton. from not discovering thia, concluded that a perfect telescope of refraction could never be made; ho supposed that the bent light would always become coloured, and so render the object indistinct. We now know, howover, that, by combining two or more media, we may obtain benting of light without dispersion-thus, by opposing a glass which bends five degrees and disperses ono degree, to another glass which bends threo degrees and disperses one, the opposing disperaions will just counterbalance or neutralize each other, while tho two degreed of excess of bending will remain to be applied to use."

It having been found, by the experments of Newton and others, that none of the soven colours of the solar bpectrum could be broken by the prism inte new enlours, the theory was in some measure established than there were seven primitive colours. In time, howe ver practical men discovered that there were only three simple or homogeneous coloura, and that all others resulber
from thom. These threo primitive colours were red, Huc, and yelow. That this was the true doctrine of s.otou"s, has been completely set at rest by the experimente of Mr. D. R. Hay (Edinburgh), author of a treatise on the Laws of Harmonious Colouring. We extract the following account of Mr. Hay's experiments from the work in queation, and the principle of which seema afterwards to have been adopted by Sir D. Brew-ster:-
"Although this theory (that of there being only three primitive coloure) was not set up in opposition to that of the natural philosophers, but seemed only to be estallished in a practical point of view, neither was it supported by any scientific experiments; yet it appeared to me more consistent with the general aimplirity of nature, and I could not believe that she required seven homogencous parte to produce what art could do hy three. For inatance, an artiat caa make all the sulours, and indeed a correct representstion of the pria matic apectrum (so far as the purity of the materiala will allow), with three colourg only; while, accorling to the theory of Sir Isaac Newton, seven sionple or homogencous colours were employed to proluce the real one.
"The following discovery, made by Buffon, and illustrated by suceceding philosophera, belped to strengthen me in the conviction, that the scientific theory might, like that of the practical artist, he reducible to three simple or homogeneous parts. If we look steadily for a considerable timo upon a spot of any given colour, placed on a white or black ground, it will appear surrounded by a horder of ancher colour. And this colour will uniformly be found to be that which makea up the triad; for if the apot be red, the border will loe green, which is eomposed of blue and yellow; if hlue, the loriler will be orange, composed of yellow and red; and if yellow, the border will be purple-making in all sases a tri-unity of the three colouta called by artista homageneous.
"With a view to thr uv such light upon the sulject an uny limited opportunities would perinit, I went over the experiments ly which Sir Isaac Newton established his theory, and the sime reanlts occurred: I could not separate any one colour of the solar spectrum into two. The imperceptible manner in which the colours were lilended together upen the spe-trum, however, and the rircumstance of the colours which practical people eall componnd. being always placed at the adjunct of the two of which they say it is composed, with my previous conviction, induced me to continue my experiments: and although I cculd not, by analysis, prove that there were only three colours, I succeeded in proving it to my own satisfaction, synthetically, in the following mamer:-

6 After having tried every colour in succession, and finding that none of them could be separated into two, I next made a bole in the lisst sereen in the econtre of the blue of the spectrom, and another in that of the red. I had therely a spot of pach of these colours upon a second nereen. I then, ly means of unother jrisime directed the blue spot to the wame part of the second scieen on which the red appeared, where thay united and pronluced a violet as pure and intense as that uron the mpectrom. I did the wame nith the blue and yellow, and proluced the prismatic green; as also with the red and yellow, and orange was the reants. I tried, in the samu manner, to mis a simple with what i thaught a compound colour, hut they ilid not unite; for oushnier was the red sjot thrown upon the green than It dianplewted.
"I trim the mane experiment with two spectra, the one behind, and of course a little above the other, and paumed a spat of sach colour successively over the spec. trum which was farthes from the window, and the
same result occurred. It therefore apjecared to mo thine these three coloura hed an affinity to one another that did not exiat in the others, and that they could not le the same in every reapect, except colour and rcfrangibi. lity, as had hitherto been taught.
"These opinions, the reault of my experiments, 1 publighed in 1828, as being a necessary part of a trestise of this nature; and I did so with great diffidence, well knowing that I was soaring far above my uwn eloo ment in making on attempt to throw light upons such a aulject. I had, however, the gratification to leant that these Lcta were afterwards proved in a communication read to the Royal Society of Edinburgh by Sir David Brewster, on the 21 st of March, 1831, in which he also alowed that white light consista of the three primary colours, red, yellow, and blue; and that the other colourn shown by the prism are composed of these.
"'The three horoogeneous colours, yellow, red, and bluc, have been proved by Field, in the most satisfactory manner, to be in numerical proportional power as fol. lows-yellow three, red fivo, and blue eight.
"When these three colours are reflected from any opaque lody in these proportiona, white is produced. They are then in an active atate, but each is ncutralized ly the relative effect that the othera have upon it \dot{W} hen they are abworbed in the aame proportions, they are in a passive state, and black is the result. When transmitted through any transparent body, the eflect is the same; but in the first case they are material or inherent, nud in the second impalpable or transient. Colour, therefore, dejends entirely on the reflective of refructive power of bodies, as the transmission or reflection of sound does upon their vibratory powers."

To persons practically engaged in colours, we have nuch pleasure in recommending Mr. Hay's work, as containing a variety of useful information.

THE RAINBOW.

Every one knows that the rainbow ta that brilliant and many-coloured arch which is occasionally seen spanning the sky opposite to the sun. In France and elsewhere, it is called the arc of the sky; and whilst to poets and other admirers of nature it is an olject al. most worshipped for its beauty, to the philosopher it is no less interesting ond attractive. Rambows are only visible when rain is falling between the apectator and that part of the sky which is opposite to the sun which is in its centre, as if at the end of a straight line drawn from the sun through the eye of the spectator towards the opposite horizon; and being always ender the honzon, the bow is less than a semicitcle. It consists of two bows or arches, the one inner or primary, the othe: outer or secondary; and within the primary rainbow, and in contact with it, and without the secoulary one there have been aeen supernumerary bows.

The primary or inner rainbow, which is conmmenly seen alone, ia part of a circle, whose radius is 41°. I consists of seven differently-coloured bows, namely violet, which is the innermost, indigo, blue, green, ych low, orange, and red, which is the outermont. Thes colours have the name proportional lireadth as the spaces in the prismatic apectrum. This bow i.e there fore only an infinite number of prismatic spretra, arranged in the circumference of a circle; and it would le casy, by a circular arrangement of prisma, or by covering up all the centrul part of a large lens, to pro duce a small arch of exactly the anme colous. All that we require, therefore, to form a rainhow, is a great number of tranaparent bodies capalile of forming: great number of prismatic spectra froin the light of the sun.

St: David Brewster thus explaing the rause of the are of the sky:-As the rainbow is never naen unless when sain is actuallv falting between the apectator and
the cky opp the tramapar wo know to of glass or the aun, we fected from spectrum, th spectrum ver a lovel with in a horizon truk, with th if we hold a these two, so plane incline epectrum ine innermoat. drops in all receive opoc that when co qectrum whi
To explain of rain expos in the direct light which fa through or n to a focua beh side of tho dro

he violet most with such auf be reflected, ar. be again refra will perceivo a with the red most. If the in the sams A B will form how, as in the te near the ho sun are in a ple sun's light will A B, with this tion will he ine of the bow diata fest that the dr joining the eye, in the plane pa form the upper right and left line joining the will form the Not a single dto space within th to that, if a sho the rainbow wo and reached the

If we comput violet ray to the It to be $42^{\circ} 2^{\prime} f$

Fol. I.-26 nder the heriIt consists of nry, the othe: nary rainbow, econdary one,

* Buke of the r asen unless apectator and
.he aky opposite to the sun, we are led to believe that the thansparent bodies required are drops of rain, which we know to be small spheres. If we look into a globe of glass or water held sbove the head, and opposite to the sun, we shall actually see a prismatic spectrum rofacted from the farther side of the globe. In this apectrum, the violet rays will bo lnnermost, and the ejectrum vertical. If we hold the globe horizontal, on a level with the ey, so as to see the sun's light reflected in a horizontal p^{\prime} ane, we shall see a horizontal spectruk, with the \mathbf{v} slet rays innermost. In like manner, if wo hold a glube in a position intermediate between these two, so as to see the sun's light reflected in a plane inclined 45° to the horizon, we shall perceive a apectrum inclined 45° to the horizon, with the violet innermost. Now, since in a shower of rain there are drops in all positions relative to the eye, the eye will receive spectra inclined st all angles to the horizon, so that when combired, they will form tho large circular epectrum whieh constitutes the rainbow.
To explain this more clearly, let A B, fig. 4, be drops of rain exposed to the sun's rays, incident upon them in the ditection 'T A, T B, out of the whole besm of light which falls upon the drop; those rays which pass through or near the axis of the drop will be refracted to a focus behind it; but those which fall on the upper side of the drop will be refracted, the red rays least, and

Fig. 4.
ho violet most, and will fall upon the back of the drop with such sufficient obliquity that many of them will be reflected, as shown in the figure. These raya will te again refracted, and will meet the oye at 0 , which will perceive a spectrum or prismatic image of the sun, with the red space uppernost, and the violot undermost. If the sun, the eye, and the drops $A B$, are all in the same vertical plane, the spectrum produced by AB will form the colours st the very summit of the bow, as in the figure. Let us now suppose a drop to te near the horizon, so that the cye, the drop, and the sun are in a plane inclined to the horizon, a ray of tho sun's light will be reflected in the same manner as at $A B$, with this difference only, that the plane of refleetion will he inclined to the horizon, and will form part of the bow distant from the summit. Hence it is manifest that the drops of rain immediately abovo the line joining the eye, and the upper part of the rainbow, and in the plane passing through the eye and the sun, will form the upper part of the bow; and the drops to the right and left hand of the observer, and without the line joining the eye and the lowest part of the bow, will form the lowest part of the low on ench hand. Net a aingle drop, therefore, between the cye and the space within the how, is concerned in its production; so that, if a shower were to fall regularly from a cloud, the rainhow would appear before a single drop of rain and reached the ground.
If we compute the inclination of the red ray and the violet ray to the incident rays T A, T B, we shall find It to be $42^{\circ} 2^{\prime}$ for the red, and $40^{\circ} 17^{\prime}$ for tho violet, so
that the breadth of the rainbow will be the lifference of those numbers, or $1^{\circ} 45^{\prime}$, or nearly three times and a half the sun's diameter. These results cotncido so accurately with observation, as to leave no doubt that the primary rainbow is produced by two refractions nnd one intermediate reflection of the raye that fall on the upper sides of the drops of rain.

It is obvious that some of the rays will suffer a second reflection at the points where they are represented as quitting the drop; but these reflected rays will go up into the sky, and cannot possibly reach the cye at U. But though this is the case with rays that enter the upper eide of the drop, ss at A B, or the side farthest from the eye, yet those which enter it on the under side, er the side nearest the eye, msy after two reflections reach the cye, as shown in the drops D C, where the raye T T enter the drops below. The red and violet rays will be refracted in different directions, and, after being twice reflected, will be finally refracted to the eye at O; the violet forming the upper part, and the red the under part of the spectrum. If we now compute the inclination of these rays to the incident rays T'T, wo shall find them to be $50^{\circ} \mathrm{E} 8^{\prime}$ for the red ray, and $54^{\circ} 10^{\prime}$ for the violet ray ; the difference of which, or $3^{\circ} 12^{\prime}$, will be the breadth of the bow, and the distance between the bows will be $8^{\circ} 15^{\prime}$. Hence it is clear that a secondary bow will be formed without the primary bow, and with its colours reversed, in consequence of their being produced by two reflections and two refractions. The breadth of the secondary bow is nearly twice as great as that of the primary one, and its colours must be much fainter, because it consists of light that has suffered two reflections in place of one.

Many peculiar kinds of rainhows have been observed, such as lunar ones, in which, however, the colours are faint and barely perceptible. Supernumerary rainbows are sometimes seen. "On the 5th of July, 1828," saya Sir D. Brewster, "I observed three supernumerary bows within the primary bow, each consisting of green and red arches, and in contact with the violet arch of the primary bow. On the outside of the outer or aecontlary bow, I saw distinctly a red arch, and beyond it a very faint green one, consisting of a supernumerary bow, analogous to those within the primary rainbow."

Red rainbows, distorted rainbows, and inverted rahubows on the grass have been observed. ' F 'ie latter are formed by the drops of rain suspended on. the spiders' webs in the fields. It is only necessary to mention that the iris, so frequently scen overarchin:g the cataract, is produced by the refraction of light in passing through the misty vapour genernted ly the fall of the column of water.

REFLECTION OF LIOHT.

Light, as has beon mentioned, is diffused around us by the refractive power of the atmosphere, and therefore objects are quite visible though the rays of the sun do not strike directly upon them; in plainer terms, the atinosphere may be compared to the thick piece of glass called a bull's cye fixed in the deck of a ship, by which rays of light sre collected and dispersed into all corners of the apartment benenth. The atmosphere being thus a velicle of light, it may be supposed tliat, if we were to ascend to a great height nhove the level of the earth. or lnyond the sphere of the atmosphere, wo should be almost in darkness, although we were in reality nearer the sun. There is reason to believe that auch would be the case; for travellers who have ascended to the summit of Mont-Blanc, or nbout 15,000 feet above the level of the sen, mention, that at that height the sky appears to be of an exccedingly dans blue colour, or almost hlack, and the light so faint that the stars are visible. We muy understand from this that the rays of tho sun travel through iminense rugions of darkness before they reach our atmosphere.
and are diffused into hat univorsal son light which we observe around us.

But, besides being diffused by a pure atmospharic medium, light is greatly increased in hrilliancy by refection. If all the objects on the surface of our planet were to be black, which is a negation of all colour, the sun's light would be absorbed, or at least return no part of the rays which fell upon them; and we ahould, even whilc the sun shone, possess much leas light than we now enjoy. Nature has avoided this calamity, and, by producing all varieties of colours in objects, the sun's rays which fall upon them are less or more reflected, or sent back into the general mass of light. We now, then, understand, that every object we see reflects rays of light, and that these rays travel from the object to our eye, as zoon as we bend our vision upon it : inasmuch, however, as a thousand or more individuals may oee the aame object at the same instant of time, it is evident that the rays proceed at all points, and fall upon ojes at every varicty of angle.
If the object be clear or polished in its surface, it will possess the power of representing the image of any olject within reach of ita rays. Thus, the surface of a emooth lake will represent the image of the sky above, or the neighbouring bills, or of any oijject floating on its aurface. This natural property in clear surfaces has suggested the formation of mirrors or looking-glasses, A mirror, or speculum, as it ia scientifically called, is any inatrument of a regular form, employed for tha purpose of reflecting light or furming images of objects. Mirrors usually consist of metal or glass, having a highly polished surface. Those which are constructed of glass are coated upon the back with quieksilver, or rather with tin-foil mixed with a little mereury, for the purpose of reflecting more light; were this not the case, so little light would be thrown back, on account of glasa transmitting it to a considerabla extent, that a very indistinct image would be formed. The word speculum is generally confined to metallic mirrors, and they ara cither plane, concave, or convex. The plane onea are perfectly flat hike a louking-glass; and a common watch-glass conveya a very good idea of the other two species of mirrors. Coat the hollow surface with mercury, and place it before a candle, it forms a convex mirror; coat it upon the other side, and employ it as before, it becomes a concave mirrur.

If a plane mirror AB be placed exactly in a horienontal position, a ray of light c darting downwards in an exactly perpendicular direction, and striking it at d, will be thrown back in the exact path which it traversed in its dencent, without any deviation. If, however, it de- A acends in an oblique manner, as is shown at ϵ, a point inid-
 way between the perpendicular c and the horizontal AB, it will not return, as in the former instance, to the place whence it came, but will be reflected from the mirror at ata augle exactly equal to that at which it dearended upon in. The ray ed is called the incilent ray, and the ray $d b$ in termed the retiected ray. In the figure $e d c$ is called the ankle of inrutene, and bdc the angle of veHection : and they are both, an we have observed, exactly equal to each other. This being the fact, we have afforded us a method of universal application, ly which, when once the ample of incidence, or that at which the ray falls upon a mall, is fuod, that of reflection is casily obtainet. This holds true whatever shape the mirror may le of, plane, concave, or convex, and whatever number of rays may fall upon it.
Let us apply the priaciple bere mentional to the aimple pheruousenon of secing oureelves in a plane looking-glige.

When we atand directly in front of a mirror, we mee ous image represented in it; and an wa muve, so doen the image appear to move almo, but with a peculiarity in lus motion : If, for example, we walk towards the mirror, the image ia seen to approach in a aimilar manner, but the approach is with double the velocity, because the two motions are equal and contrary. Suppose, however, while we atand at the glass, another persoll walks up behind us, his image will appear tu us to move nt the anme rate as he walka, though to him the velocity will seem double, beeause, with regard to us, there will be but ono motion, and with regard to him there will be two equal and contrary motions.
In tr's case of standing directly in front of the mirror, the image is necessarily before us, for the rays procecting from our eye to the mirror are sent back from the aurface without any angle of incidence. The case is otherwise when we atead so far at a side that we cannot see ourselves in the glass, though we can see the image of another person cqually far off on the opposite side. 'Two persons so situated will see each otiter though they cannot see themselves, beceuse the raya from the firat person striking on the glass form an angle of reflection, and dart off in the direction of the second person, while the rays from the second person are similarly reflected towarda the first. Such ia a practical excmplification of the angle of reflection in mirrors.

The principle of reflection may be more minutely explained as follows:-We suppose RR to be the sur-
face of a plane mirror, the arrow MN any object placed in front of it, and \mathbf{E} the eye of an observer placed at $i k$. Of the rays which shoot in a rectilinear direction from the points MN of the object, and are reflected from the mirror, those which enter the sye are few in number, and

Fig. 6 . must be reflected from portiona DF and GH of the mirror, ao situated with reference to the cye und the nlijech, that the angles of incitence of the rays which fall on these portions must be equal to the augies of the reflection of those which cuter the cye between i and k. For instance, the ray MD is reflected in the direction D_{i}, and the ray MF in the direction Fk. In the same mannet, the rays NG and NH will be refected severally in the directions $\mathbf{G} i$ and $\mathbf{H} k$. If the reys $i \mathbf{D}$ and $k \mathrm{~F}^{\text {b }}$ be continued backwards, they will meet at a point m, whence they will appear to have come to the rye. For tho same reason, the rays $\mathbf{G i}$ and $\mathbf{H} k$, if continued in the same manner, will seem to meet at the point n as their focus, and $m n$ will be the virtual image of the otject MN, It is called virtual, because it is not formed by the actual union of rays in a focus, and cannot be receival upon paper. The virtual image $m n$ is as far behind the mirror as the object MN is before it; consequently, if we join $m n$, it will be of the same dimentions as $M \times$, and have the aane position behind the mirtor as the object has hefore it. If we join the points M m and N in the linea $\mathrm{M} m$ and $\mathrm{N} n$ will be precpeudicular to the nirror RR, and consequently parallel. In every position \& the eye, the image is seen in the same apot; its alsolute size is always the ssme, and its apparent size is ulso the wame when seen at equal distances from the eyc. If the object MN is an individual survcying himself in the mirror, he will ace his perfect iunge ua if at $m n$.
The manner in whelh raya are retlected from a rorcave mirror, next deserves oure attention. It will have been frequenly observed ly the reader, that when be looked at himexts in the hollow of a prolinhed meta apoon, his face and bust apprared to be inverted, .: ip side down. We explain thia by referring to the accom
panying distance

and whose diverging m (a little an image prescutatio that a com formed; a though smi centrated, a The size o distance of large, sud experiment object, and of the imne the picture size.

If we cor presentation viewed by a acribed, cons a mall conc imaze, and r laryo mirror nifed still constitutes a from the inve cave we empl F and $\| m$, s wise have m this case also as in the form An image magnified wh passes that p gradually dec orfject when the olject is mirror, the i behind the n the sulistance rons, from the may be used this shape are reflect them, Tha lamps: with these ref
With reape Images of a form them bee of the spectat ject proceed t mirror, and th to be reflecte reflection froo represented is it we could se numsions at tl
It is perhang be formed up bole betweer.
does the iarity in in mirror, the ere, but the so the two , however, talks up be at the some y will seem be but one o two equal s proceeding n the surface in otherwise not see ourmage of an: side. 'Two though they roo the first of reflection, person, while larly reffected uplifiction of re of the object ot formed ly the not be received as far behind the consequently, if enensiots as MN, he mirror as tho ts $\mathrm{M} \mathrm{m}_{\mathrm{m}}$ and N_{n} cular to the nim every position " ijot; its alsolure It size is ulso the I the eyc. If the If himself in the if at $\leadsto n$. ected from a rotr on. It will have er, that when be polished metar inverted, : Lip ing to the aicum
panying diagram, fig $7, \mathrm{MN}$ is an object placed at some diatance from a concave mirror $\mathbf{A B}$, whose centre is \mathbf{C},

and whose principal fucus is E. The rays from M fall diverging upon the mirror, and are reflected to a focus at m (a little without the principal focua), where thay form en image of the extremity M. In the aame way, a representation of the extremity \mathbf{N} will be painted at n, so that a complete but inverted image of NM will thus be formed; and it is evilent that it will be very bright, though amall, because a great number of rays are concentrated, and concur in forming each point of the image. The size of the image thua formed corresponds to the distance of the ohject from the mirror. If the latter be largo, and the former very bright, a saries of beautiful experiments may be made hy varying the disiance of tha object, and observing the variations in the size and place of the image. Aa the object recedas from the mirror, the picture approaches \mathbf{E}, and gradually decreases in size.
If we consider $m n$ as a sma! nbject, a magnified representation of it will be formed at MN, which, when sjewed by a convex lons, such as will ie afterwards deacribed, constitutes a reflecting microscope. If we place a amall concava mirror o p behind it, so as to enlarge the Imarge, nad reflect the rays through an oponing D in the large mirror $\mathbf{A B}$, then this second image may be magnificd still more by means of a lens, in which case it constitutes a Gregorian reflecting telescape, ao called from the inventor James Gregory. If instead of a concave we employ a convex mirror o p, and place it between ni and $n m$, so as to reflect the rays whirh would otherwise have met at $n m$, then an enlarged inage would in this case also be painted at D , where it can be magnified asin the former instance.
An image formed by a concave mirror is always highly mognified when the object is near the focus, but as it passes that point and approaches the mirror, the image gradually drecreases in size, and hecomes equal to the object when the latter touches the mirror. Indeed, when tha oljeet is placed between the principal focus and the mirror, the image is a virtual one apparently formed behind the mirror, or would be so formed behind it if the sulatance of the mirror permitted. Concave mirrors, from their property of converging rays into a focus, may be used as burning-glasses; practicnlly, mirrors of this shape are used to gather the rays from lanps, and reflect them, with increased brillinncy, into the darkness. Tha lamps of coaches, light-houses, \&c., are fitted up with these reflectors.
With respect to convex mirrors, they always form images of a diminished size, hecause the rays which form them become convergent in their passare to the eye of the spectator; in other words, the rays from the object proceed to a virtual or imaginary for us behind the mirror, and thence the image, in a miniature form, seems to be reflected to the eye. In this, us in all cases of rellection from concave onirrors, the size of the imnge represented is exactly what it might be expected to be if we could see through the glass, and ohserve tho dinamsiona at the virtual focus

It is perhape not generally known, that inages may be formed upon a piece of paper, by placing a mall bole betweer. the olject and the paper, and excluding all
axtraneous light. This will de beat understood by the following diagram:-

Fig. 8.
Lat CD be a window-shutter having a smnll aperture A, and EF a picce of paper placed in a dark chamber. Then, if an illuminated object, RGB, is placed on the outside of the ahutter, we shall observa an inverted image of this object painted on the paper a $\operatorname{Prg}_{\mathrm{r}} b$. In order to understand how this takes place, lat us suppose the object RGB to bave three distinct coloura-red at \mathbf{K}, green at G, and blue at B; then it is plain that the red light from R will pass in atraight lines through the aperture A , and fall upon the paper EF at r. In like manner, the green from \mathbf{G}, and the blue light from \mathbf{B}_{1} will severally fall upon the paper at g and b, and an inverted innage $r g b$ of the object RGB will be painted upon it. Evary coloured point in the object RGB having a coloured point corresponding to it, and opposite to it, on the paper EF, the image $b \mathrm{~g} r$ will be an accurate picture of the object RGB, provided the aperture A in very small. If it be increased in size, indistinetness in the image will ensue; for, with a large aperture, two adjarent points of the object will throw their light on the same point of the paper, and thus create confusion in the picture. It ia perfectily clear, that if the paper EF be moved to a farther distanee from the hole A, the size of the image will be increased; and if it be brought neares to it, it will be diminished.

leners.

Lenses, as already mentioned, are of different forms, and consequently luosess different refractive powers A lens may be composed of any transparent sabstance, as glass, diamond, a globule of water, \&c.; in the arts, a lens is made of glass, as pure and colourless as possible. The design in forming lenses is to procure a mediun through which the raya of light frem any object may pass, and converge to a correaponding point beyond. The manner in which the rays proceed through the glass, and then centre in a focal point, will depend on the form of the lens, its capracity for refraction, and the distance of the object.
If we take a piece of glass, flat on one sido and cut into dillerent faces on the other, and then look through it from tha flat side at any object-for instance, a pea, we shall see as many peas as there are faces receiving the rays from tha single pea. Wa may exemplify this

orincipla of multiplication by tho preceding figue, th which $A B$ is a lens flat on one vide, wnd cut into three

Saeer on the other, $g h . \quad Y$ is the eye of the spectator, and P the pea to be looked at. The eye receives a pencil of rays direct through the lens at i, and sees the object without refraction. A pencil also proceeda from \mathbf{P} to the face $g \mathrm{~A}$, and another pencil proceeds from c to the face $h \mathrm{~B}$, and in both cases the raya are bent and refractod to the eye. This eye, however, does not recognise the path of elthor of these oblique rayz, but perceives the image of a pea at D and at E; and thus three peas seem to be seen in place of only one.
In amoothly ground lensea, in which there are no distinct taces to multiply the images of an object, the rays bend, as we have said, so as to meet in a corresponding point beyond them. A lens may consiat of a perfect globe of glase, or globe filled with pure water, in which case the refractive power will be conniderable; a double convex lees, which is the more common kind, may be viewed as a portion cut out of the sido of a sphere, as seen in the annexed figure. Here, as in all such cases of convexity, the focua of the parallol rays passing through the lens is at f, which is the centre of the aphere of which the farther or anterior side is a por tion, or a puint at half the diameter

Fig. 10. of the sphere from it. (Half the diameter is technically called the radius.) Should we take a plano-convex lens, the focal point wnuld be considerably different. In fig. 11 we have an exsmple of this dind of lens, which evidently possesses only half the
refractive power of the double convex glass. Here the parallel raya, falling on the convex side of the lens, are seen to converge at the distance of the whole diameter of the sphere. Thus, the focal point at which the raya of light fall, is always regulated

Fig. 11. by the degree of curvature of the lens. We shall illustrate this by various diagrams, to which we ask the read$\boldsymbol{o r}^{\prime}$ careful attention, for the subject is somewhat difficult, and cannot be comprehended by a superficial glance.

We take a double convex lens, represented by ABC, the axis of which is the line $G^{\prime} \mathbf{C} D^{\prime}$. The ray $D^{\prime} \mathbf{G}^{\prime}$,

Fig. 12.
eemg straight through the centre, suffers no refraction;
but the rays $\mathbf{D} \mathbf{A}$ and $\mathbf{D}^{\prime \prime} \mathbf{B}$ aro cefracted, mo as to mew at the focal point \mathcal{Y}^{Y}. We now obeerve that the paralles rays $\mathbf{E} A, E^{\prime} C$, and $E^{\prime \prime} B$, and also $F A, F^{\prime} C$, and $F^{\prime \prime}$ B, falling obliquely on the lene, will in a similar mannet be refracted, and have their foci at G and $G^{\prime \prime}$, at the same diatance from the lens. Those lines which pass through the centre, si $\mathbf{E}^{\prime} \mathbf{C} \mathbf{G}^{\prime \prime}$ and $\mathbf{F}^{\prime} \mathbf{C G}$, do not slter their direction, not being refracted. Thus, in whatever way parallel raya pass lireugh a lens, we have a focal poin beyend it, be it straight forward or in an oblique di rection.

The distance at which the rays meet beyond the lens is exemplified in the next diagram (fig. 13), given by I_{r} Arnott in his treatise on Physics, and whose definition of the fical point we beg leave to offer:-~R Rays falling from a on a comparatively flat or weak lens at L, might meet only at d, or even farther off; while, with a stronger or more convex lens, they might meet at c or at b. A lens weaker still might only destroy the divergence of the rays, without being able to give them any convergence, or to bend them enough to bring them to a point at all, and then they would proceed all parallel to cach other, as scen at e and f; and if the lens were yet weaker, it might only deatroy a part of the divergence, causing the raya from a to go to g and h, after pasaing through, instead of to, i and k, in their original direction.
"In an analagoua manner, light coming to tho lens in the contrary direction fram $b c d$, \&cc., might, according to the strength of the lens, be all made to come to a focus at u or at l, or in some more distant point; or the raye might become parallel, as m and n, and therefore never come to a focus, or they might remain divergent.
"It may be observed in the annexed figure, that the farther an object is from the lens, the less divergent are the raye darting from it towards tho lens, or the more nearly do they approach to being parallel. If the distance of the radisnt point be very great, they really are so nearly parallel that a very nice test ia required to dotect the non-accordance. Rays, for instance, coming to the earth from the sun, do not diverge the millionth of an inch in a thousand miles. Hence, when we wish to make experiments with parallel rays, we take those of the sun.
"Any two points so situated on the opposito aides of a lens, as that when either becomea the radiant point of light, the other is the focus of such light, are called como jugate fori. An object and ita image formed by a lens, must alwaya be in conjugate fori; and when the one is nearer the lens, the otlier will be in a certain proportion more distant.
"What is called the principal focus of a lena, and by the distance of which from the glass we compare or classify lenses among themselves, is the point at which the aun's rays, that is parallel raye, are made to meet; and thus, by holding the glass in the aun, and noting ot what distance behind it the little luminous apot or image of the sun is formed, we can at once ascertain the focue of a glase, as at a for the raye e and f."

Fig. 13.
From the preceding explanations, it will be understood placed in the principal focus, the rays are retracted paralthat when an object is placed at any distance from a lens, an image of it will be formed in the corresponiling conjujugate focus; but to sec this image distinctly, the eye must senerally be placed at leart six inchea belind it, that Is farmer from tho lens. When, however, the object is
lel, and the image in this case is diatinct when seen al any distance. But the mont remarkable quality of a double convex lens reinains to be noticed; we allude to ita magnifying power. This quality is entirely a result of the refractivo powers of the glass: embraced widio
we eptal rently ex eys. Thi by a refe Let E R W a sn vision (al and let R aided nye between t
hall be in image $R^{\prime} \mathbf{Y}$ ties $R^{\prime} \mathbf{W}^{\prime}$ rections of th W draw the C of the lens ing from the the lens, are they all eme RCP; but portion ente limited by t A of the arr to lie in the is shown ex W will appe larged image The proport be easily nsce W, are simila is that of EF least distance CM of the le tinct vision be quotient will oned 6 inches M be 2 inche. quotient, tho one quarter o a quotient, an be 24 tinses.
A moro sin lows:-Turn faces on one eerved that th frosa the objec fore sees an abote case of manner travel angle of refra the actual ob Uncse pointso 0 raye, wr of ne the glass were olyject would plied in as m
The invers trated by the the point upp double conve

Lne sphtre of the rays from tho lens, the object is apparently expanded in size, and seen. brought nearer to the eye. This may be elucidated, for amall objects seem near, by a reference to the diagram, fig. 14 .

Let \mathbf{E} be the eye, and $m n$ the diameter of its pupil, RW a small object placed at the least distance of distinct vision (about aix Inchea from the oye for amall objects); ond let RW be its apparent size when seen by the unaided eye. If convex lens $\mathbf{A} \mathbf{B}$ in now interposed hetween the eye and the object, no that the object R W

at \mathbf{Z}, and form an image of the arrow-point liverted; while the raya from \mathbf{C} meet at \mathbf{X}, and form a aimilarly inverted image of the feather part of the arrow. The raya proceeding from B unite at b. Here, only rays from A, B, and O , are represented for the sake of cleamess, but in point of fact raya from all parts of the ohject proceed through the lens, and hence on entire image is formed in an inverted position. Should the object ABC

be brought nearer the lens, the imoge will be removed to a greater distance, lecause then the rays are rendered more divergent, and cannot so soon be collected into corresponding points beyond. To procure a distinct image, the object must be removed farther than the focal point F from the glass. In this exemplification, tho object seems to be diminished; but if wo make the small arrow the ohject, the larger one will be the image of it magnified

In order to explain tho power of lensca in magnifying distant oljects, and hringing them near us, let ua suppose an ehject placed at ono hundred feet distance from the eye of a spectator. Let us place a convex glass of twenty-five feet focal distance half way between the object and the eye; then, as lass been previously observed, on inverted image of the object, and of the same size, will be formed fifty feet behind the lens. If this picture is looked at six or eight inches behind it, it will be very distinetly seen, and nearly as well as if the object itself had been brought to within six or eight inches of the eye of the spectatur. If, however, ingtead of a lens of twenty-five fcet focal length, a lens of a shorter focus is made use of, and so situated with respect to the eye and the object that its conjugate foci are at the distance of twenty and eighty fect from the lens-that is, the object is twenty feet before the lens, and its imago eighty feet behind it-then the size of the image will be foun times that of the object. If the eye, therefore, looks at this magnified image six inches lehind it, it will be seen with great distinctncss. In this case the image ia magnified four times directly by the lens, and 200 times by being brought 200 times nearer the eye; so that its apparent magnitude is 800 times larger than befere. At distances less than the preceding, the rule for finding the magnifying powcr of a lens, when the eye viewa the image which it forms at six inches' distance, is, according to Sir David Brewster, as follows:-"From the distanco between the image and object in feet, subtract the focal distance of the lens in feet, and divide the remainder by the same focal distance. By this quotient divide twice the distance of the object in feet, and the new quotient will he the magnifying power, or the number of times that the apparent inagnitude of the object is increased. When the focal length of the lens is quite inconsiderable, compared with the distance of the object, as it is in most cases, the rule lecomes this: Divide the focal length of the lens by the distance $n t$ which the cye looks at the inage; or, as the eye will gencrally look at it at the distance of six inches. in order to see it most distinctly, divide the focal length ly six inches, or, what is the same thing, donble the focal length in feet, and the result will be the nagnifying power."

THE EYE——tston.

Having, in our Acencxt of the Heman Body, de scribed the anatomical construction of the eye, we abull

Wire confine ourselves to the actual procem of vision. Aa mentioned in the article referred to, the eye, ir front, pongists of the iris or variously coloured ring, which hat the property of contracting or expanding to regulata the admisaion of light through the little dark spot in the centro called the pupil. Immediately behind the iris and pupil, there is a transparent aubstance, resembling in diape a double convex glass, which is thence called the crystalline lens. The use of this lens is to collect and refract the raye of light, so that they may converge to a pint beyond; in other words, cause them to fall on the back part of the eye, called the retina. Such are the main Instruments of vision; and the sense of seeing is prodnced by certain nerves which convey intelligence of the image on the retinn to the brain. If these nerven be injured, the image will still be pictured on the retina, but the mind will possess no power of recognising their presence.
It will be understood from these explanations, that the main instrument of vision is the cryatalline lens, which oullects the raya and brings them to a focus on the retina. If the lens be perfectly transparent, and of the proper convexity, the light is enabled to act with due effect on the retina, and the representation of the object luoked at will be correctly pictured to the mind. But if the transparent coating of the eye be dull, or the lens be either too flat or too convex, every object will appear dim.

Two kinds of defective vision are more common than any other, and they are known by the name of longsightedness and short-sightedness. Long-aightedness, or the power of seeing objects best at a considerable distance, is caused by too great a flatness in the crystalline lens and outer coating of the eye; and the deficiency of vision in old persons is usually from a similar cause. To remedy this defect, as far as possible, artificial lenses of glass are employed. These lenses are called spectacles, and may be aupposed to act in the manner we have now to deacribe. Fig. 16 represents an eye in which the cryntal-

tine lens is too flat. $\mathbf{C A}$ is the cornes or outer covering, b is the crystalline lens, and d is the retina behind; B ia the object looked at. We may observe, that in consequence of the flatness of the lens b, the raya proceeding from the object are not sufficiently refracted, but proceed to a focus an far back se R; in other words, the focus would be at R, if the retina would permit; but as the retina is in the way, the rays, from not being focalized upon it, cause imperfection in the vision. To remedy this, we interpone an artificial convex lens, or glase of a pair of spectacles, L. L, and by its aid the rays, represented by dotted lines in the figure, are brought to a focus on the retins at d. Thus, by selecting spectacles of a proper focalizing power in relation to the eyen, one kind of imperfect vision is very happily remedied.

Short-sightedness arines from a cause the reverse of lut just alluded to, being produced by too great a degree

Fig. 17.
of convexity in the crystalline lens and cornea. In this rame. the raya come to a focus too soon within the eye,
and do not reach the retina, unless the object is brough quita cloas to the organa of vision. Wa offor a repro sentation of this condition In Fig. 17. In consequence of the projecting globularity of the comea $\mathbf{C A}$, and the too great refracting power of the crystalline lens, the rays from the object \mathbf{B} fall short of the retina at \mathbf{R}. To remedy this, we interpose double concave lens, $L_{\text {L }}$ L, by which the rays are rendered more divergent before they reach the eye, and are brought to a focus, where they should be, on the retina.
We have said above, that in short-sighted persons the rays do not reach the retina unless the object is held close to the cyen. The effeet produced by this is similar to that of employing concave spectacles; because the nearor we hold an ohjeet to our sight, tha angle of the raya from it is the wider; the rays are more expanded before they enter the cye-that is, mare divergent. This may be illustrated hy Fig. 18. The oxtreme raya from

Fig. 18.
point to the pupil of the eye make a greater angle at o than those from point of a more distant object a make at a; that ia, the raye from o are more divergent on entering the eye than the raye from a, and thua nearness of an object is equivalent to seeing it at a greater distance through a concave lens. . So when the object a ia farther diatant than 0 , the rnya from a have a less diver gence, which is equivalent to viewing it at a nearer distance with a convex lens. These renarks, however, refer merely to tha distinetnese of the vision, and not to the apparent size of the object.

The apparent magnitude of the same object when

Fig. 10.
viowed at different distances, dependa on the size of what is called the visual angle-that is, the anglo formed at the eye by the rays from the extremities of tha object. Wo may exemplify this by Fig. 19. An eye is looking a an object $a b$, and another object c d, at double the distance. It is evident that the raya from $a b$ are more expanded, or canse a larger angle in the eye, than the rayg from c d. Various familiar phenomena are explained from the law of the visual angle under which an object is scen; the apparent size being less alway in proportion as the distance of an object is greater. Hencs the principles of perspective in drawing, by which objecte are insde to appear at a great diatance in the background of a picture, although in reality they are as far forwad as the objects in front.-(See Daawine anj Per. spactiva.)

Another important circumstance connected with vision requirea to be noticed. In consequence of the refractive power of the cryatalline lens, the raya from an object fall upon the retina in such a manner that the image is thew pictured upside down; and this inversion of the real ap pearance of things requires to be corrected by an act of the mind under the influenco of experience. We beg leave to olfer Dr. Arnott's explanations on this somewhit puzzling point :-ـBecause the images formed on the retina are always inverted as respect the true position of the objects producing them-just as happens in a simple camera-obscura - persons have wondered that thingz should appear upright, or in their true situations. The explanation is not difficult. It is known that a man with wry neck judges as correetly of the position of the object around him as any other person, never decmrug them to be inclined or crooked, because their imuges are
'uelined ntina; hed up person w taemaelv although tion of th well in t$]$ that whil wrnal obj judgen of the image the light deeming low in the beom ente sun low carried pa will, so as direction t ned ; but a w judge at contrary ap being accus my object that to mov his hand mi seeing thin la a phenom viewed."

The sam nition of a pamely, why appear to u shall only a chess-boards two eyee then on these puin tine, the sen ciun be made to some distu the vision bed fully associate mova in perfe the ball of e motion of th double vision ame effect. vision, but th sensation in a cyes placed o cans never be nuro remark one cye at a
"The corr diatant and is retines, whien vision, and at of the eyee these points, left of the ce of the centre, outside-that the centre and richt eye betw tus fact arise the two eyes at it, and the it, and ull th mistual corres the sensation at the aame the eye than spading poin
is broukb ir a repm asequence A , and the 6 , the ray at R. To lens, LI L, ont befor where they
d persons ject is held is is eimilar vecause the of the raya aded before This may aya from

r angle at

 ject a make livergent on 1 thus neart at a greater the object a a a less diver a nearer dis however, rend not to the object when\square
${ }^{c}$
e size of what formed at the object. W is looking al ouble tho dis b are more ex. , then the ray are explained hich an object jays in propor. r. Hence the which objects he background are as far for ing ami Pea.
eted with vision f the refractive n an ohject fall 3 image is then of the real sp ad by an act of ence. We beo this somewhat formed on the true position of vens in a simple ed that thinge ituations. The wn that a man position of the never decmrug their images are
'relined in relation to the netural perpendicular of his ntina; an! that a bodridden person, obliged to keep hla hed upon his pillow, soon acquires the faculty of the person with wry neck; and that boya who at play bend tuemelven down to louk backwards through their lega, athough a little puzzled at first, because the usual position of the images on the retina is reversed, noon nee an well in that way as in any other. It appeara, therefore, What while the mind studies the form, colour, \&ec., of exturnal objocts in their images projected on the retina, it judges of their position, not by the accidental position of the imagea on the retina, but by the direction in which the light comes from the ohject towards the eye, no more deeming an object to be placed low becaues its image in low in the eye, than a man in a room inte which a sunleam enters by a hole in the window-shutter, deems the sun low because its image is on the floor. A candle carried past a key-hole, throws ite light on the opposile wall, so as to cause the luminous spnt there to move in a direction the opposite of that in which the candle is carned ; but a child is very young indeed who has not learned to judge at once of the true motion of the candle by the contrary apparent motion of the image. A boatman, who, theing accustomed to hie oar, can direct its point against any object with grent certainty, has long ccased to refiect that to move the point of his oar in some one direction, his hand muat move in the contrary direction. Now; the eseing things upright, by images which are inverted, is a phenomenon akif to those which we have here reviewed."

The same able writer on physica proceeds to a definition of another peculiarity in vieual arrangements, namely, why, from having two eyes, the ohject does not appear to us to be double:-a In angwer to this, we shall only siate the simple facts of the case. As in two chess-boards there are corresponding squares, so in the two eyes there must be corresponding points, and when on these pointa a similar impression is made at the same tinue, the sen ation or vision is single; but if the impressiun be made on points which do not correapond, owing w some distuibance of the natural position of the eyes, the vision hecumes double. Healthy eyes are so wonderfully associated, that, from carliest infancy, they constantly move in perfect unison. By slightly pressing a finger on the ball of either eye, so as to prevent it following the motion of the other, there is immediately produced the double vision: and tumours about the eye often have the came eflect. Persons who squint have always double vision, but they acquire the power of attending to the sensation in one eye at a time. Animala which have the eyes placed on opposito sides of the head, so that the two can never be directed to the aame point, muat have in a nure remarkable degree the faculty of thus attending to one eye at a time.
"The correaponding points in the two eyes are equidistant and in similar directions from the centree of the reinw, which centres are called the points of distinct vision, and at them the imaginary lines named the axis of the eyes terminate; but it is worthy of remark that these points, in being both to the right or both to the left of the cennes, must be one of them on the inside of the centre, as segards the nose, and the other on the outside-that is to say, a point of the lett cye between the centro and nose has its corresponding point in the ripht cye between the centre and the cheek-and from this fact arise consequences meriting attention. When the two cyes are directed to any object, their axis meet at it, and the centres of the two retinge are opposite to it, and all the other points of the cyea have perfect noutual correspondence as regards that object, giving tho sensation of aingle vision; but the images formed at the same time, of an object nearer to or farther from the eye than the first oupposed, cannot fall on correupcading points, for al olject nearer than where the
axee meet would have bott. its images on the outaldee of the centres, and an cbject more distant would have both its imagen on the insides of tha centres, and is elther case the vision would be doublo. Thus, if a person hold up one thumb before his nome, and the ether in the same direction, but farther off, by then locking at the nearest, the more distant will appear double, and by looking at the more distant, the neareat will appeaz double. Ths reason for applying the term 'point of distinct vision', to the centre of the retina, is felt at once by looking at a printed page, and observing that only the one letter to which the axis of the eye is directed, is distinctly seen; and, censequently, that although the whole page be depicted in the retina at once, the eye, in reading, has to direct its centre successively to every part."
The retina of the eye posecssea such exquisite senm bility, that it retains the impression of the image of any bright object presented to $i t$, fer the space of the nixth of a second after the object has been withdrawn, or after the eye has been shut. Thus, the burning end of a rapidly whirled stick will appear to form hoops of fire; and a fiery meteor or sky-rocket shooting rapidly through the air, will appear as a long line of light. The mind is in these and similar instances deceived, as the cye in reality sees only a point of fire at precisely the same time. The retima, for the same reason, retaine for a time an impression of any vivid colonr. When we look at the sun, the retins is so strongly affected as to he incapable for a time of seeling other objecta ditinctiy. The most remarksble circumatance connected with these phenomens is, that when the cye is shut after such impressions, a spot of colour, different from the colour looked at, is apparently scen. A spot of this nature is in optics called a rpectrum; and works of an extended character on the science ombrace lengthened definitiona of the various spectra with which the eye will be affected. We need here only refer to the experience of our raders on this intereating point, and mention generally, that no satisfactory explanation has ever been given of the reason why the colours in the apectre diffes from thoee which were actually seen.
optical instruments.
Telescopes.- Telescopes, sometimes called spyingglasses, are instruments in the form of tubes, fitted up with lenses of different kinds and powers, and used for examining distant objects. The werd telescope is from the Greek, and signifies afar off, and to see. A telescope of a simple conatruction, consists of a convex lena placed at one end of a tube, which is termed the objectglass ; and by it the light refiected by the objects in front is collected and formed into imnges near the other end of the tube, where they are inspected by another lens, of shorter focal length, called the eye-glass. This lens is fixed in s smaller tube, which slides backwarda and forwards, so as to admit of the focal distance being adjusted to different cyes, \&cc. In telescopes with only two lenses, such as those used for astrenomical purposes, with a convex cye-glass, the image is inverted-a cir cumstance of 110 importance in viewing the heavenly bodics. In Fig. 20 we have a representation of the man-

Fig. 20.
nor in which a simple telescope with two glasses actit A E B is a double convex lens, forming the objectglass, and C D is a double concave lens forming t'ie cyegluss. It may be observed, that from the object at M, pencil of raye go on diverging till thev reach the conves
lena A E B, where they are no refracted that they would converge and meet in che point m, did not the lena \mathbf{C} D reiract them parallel. The pencil of ruya from \mathbf{N}, in the same maininer, are converged to a point n. As the rayo are rendered parallol on merging from the glasa CD, they convey a clear image to the eye at E. The telencope made by Galileo was of this simple conatruction.
The magnifying power of auch a telencope being limited, it became necessary to contrive an inatrument in which the defleiency would be remedied. This has been accompliahed by the construction of a telescope with a conver eye-glasa, called the astronomical teleocope. But thia telencope inverta the image-a deficiency which ia removed by conatructing the instrument with four double convex lensen, aa represented in Plg. 21. The raya from the object $\mathbf{M} \mathbf{N}$, are refracted

by the glass A E B, and we have an inverted image $थ$. The raye now pass through C D and EF, by which transit they bring tho image upright at m, and by the glase $\mathbf{G} \mathbf{H}$ they are made to enter the oye at E. This, and other instrumenta in which refracting lenses are employed, are called refraeting telcscopes, and they inagnify or bring near in proportion as the focal distance of the ohject-glass is greater than the focal diatance of the eye-glass.

Refracting telescopes require to be of considerable length where much power is required, and on that account reflecting telescopes are for many purposes preferred. Tho reffecting telescope was invented by Sir Isaac Newton, but has been much improved since hia time. A view of the improved instrument is given in Fig. 22. The peculiarity of this instrument is , that the image of the object is reffected from. a concave mirror within the tube, and this image is again reflected fron a amall mirror to the eye. Referring to the figure, T ' is

Fig. 22.
the tube, and AB the object to be represented. At the end opposite from the ohject, there is a amall tube $t 1$. At the main end of the wido tube, there is a coneavo mirror D F , with a hole in the middle at P. The prineipal focus of this mirtor is at I K ; here the image m is inverted, nad the rays, crossing each other at n, go on to the small reflector L . From this they are reAlected in parallel linet through the hole P. At P they enter the plano-convex lens R, which causes them to converge at $a b$; but here the image requires to be magnified, which is done by means of the plano-convex lens 8 ; in other words, the object is meen under the angle $c f d$. In order to accommodato foral distancen, the small mirror I. can be removed to a greater distance or bronght nearer, by the roda and screws communicating from \mathbf{X}.

Microscope is a term compounded of two Greek words, mignifying to see what is small, and denotes that instrument employed to examine minute object. Those microncopes of greatest power, and termed compound, appromeh to the telescope in their form. The difference ties in this. that whilat in the tnlewcope the object-glass
forme the image of a diatent object just as much mmalia than liself as the distance of the lmage from the glame in leas, in the microscope, convorsely, a amall objech placed near the focus of the ohject-glass, producen n more diatant image, an much larger than jteolf as the image is more diatant. In both cance an appreprinte cye-glass in employed. The olject-glana of a mieru. ncope is in general very amall, that of a teleacope large. An object-glasa of a microacope having one-eighth of an inch of foenl diatance, and so placed as that the image of the ohject is formed at six inches, the image will be of a diamoter forty-eight timea an great as the object and when viowed through an eye-glase of half an ineb focus, it will appear magnified twelve times more, of will appear 30,000 times larger than the oljicet. A aingle or one-lena microscope, magnifiea chiefly by al. lowing the eye to aee the object nearer than it could do without the glass.

A Comera-Obscura or Dark Chamber is formed by placing a convex lens in an aperture made in the win dow-shutter of a darkoned room. A glaga of proper aize and focal distance is chosen, and a acreen or the wall of the chamber is properly prepared to receive the light, and by this meana there is painted on it an aczurato pirture of all the objects acen from the window, every thing bearing an exact resemblance to the reality. Nothing can surpass the benutiful eflecta proluced br this delightful instrument.

The Camera Lucidid is an instrument now frequently used in drawing landscapes, dolineating oljects of natural history, and copying and redueing drawings. The beat form of the instrument consiats of a picce of thick parallel glasa, at one end of which thero is a metallic mirror having a highly polishel face. The raya from the ohject are made first to pasa through the glass, when they are reflected back upon one of its sides lyy the mirror, and from the glass they are again reflected to the eye.

The Mugic Luntern.-When a amall object is placed close to a lens, and the image refiected upon the wall of a dark chamber, at say, one hundred times farthes from the lens than the object is, there will be a greatly magnified representation of the olject. It will ouly be seen, however, under ordinary illumination; and it in therefore neeessary to havo a very strong light, concentrated by a suitable mirror or glass, and directed upon the object. When artificial light is employed, as of ; lamp, the instrument then becomes a magic lautern. It consists of an argand burner placed in a dark lantem, on one aide of which is a concavo mirror, the vertes being opposite the centre of the flame, which is placed in its focus.

A representation of a magic lantern is offered in fig 23. The lantern is made of tin japanned; and k

Fig. 23.
carry off the smoke from the flame, it is provided with a tube T at the top. L is the light, and M N n concave mirror to give atrength to the light, and send the rass through the tube $\mathbf{A} \mathbf{B}$ in front. At \mathbf{A} in this tube is s hemispherical illuminating lens, and there is a conve: lens at B. In the middle of the tube there is a wide part, C D, open at the siden, for the reception of sliths Thene alides are alipe of glase on which pictures an
, nernto 1 , and lorming a ro tre, on a d bing placed 1t? nage \therefore is near Lis, cecauso - polat when ment in exhil lantern, to ca nded und w are placed. has been furth st equal dista is being withd and the cyo acene in winte similar acene disuolving viene in loondon, in

The term words, which a to that branch o nature of souns propagation.
Atmospheric sound For ins the baly of the wnailly assure o He edge: in ite on the air, whieh in compressed or The compressed repents the preas ind thus cach on lag metal sends umewhat like th lropping of a sto alvays lessening from two inclies thas agitated, Iln imilat impulse t the mind then rea call a sound.
With regard to of sound advance experiments on th masking the inter at a distance care sphere is at the renheit's thernom feet per second, of a cannon-ball The ball ia very s the sir, but sound thrugh unequal int mave than four see Courth miles per m thod of determinin objects, and which in thunder-storms. the interval letive four seconda and every necond. It muade, strong of be name velocity;

- The velocity hero Werselyel as hero

ACOUSTIC8.

 pe large the imape ge will be he object; If an inch more, on diject. A efly by alit could doformed by in the winof proper reen or the receive the it an ac:u. he window, , the reality. proluced bt

w frequently

 lijects of naavings. The ince of thick is a metallic te rays from e glase, when sides by the n reflected toject is placed ipon the wall times farthet ll be a greatly It will only be on; and it is light, concendirected upon loyed. as of a ic lantern. It durk lantern, or, the vertex hich is placed
, offered in fig nned; and u

A provided with Min concave send the rass in this tube is a here is a conve: there is a wide eption of sliden cha pieturea an
mantel, and the principle of the apparatus conriata in forming a ropresentation of the picture, in a magniffed des, on diatant white wall or acreen 8. The alide bing placed in one of the conjugate foci of the lens B, It, - nage le conaequently onlarged. By bringing the in nearer the screen, we diminiah the representaEio, cecause we eaune the raye to strike the acreen at a point whern thoy are leas divergent. It is an improvement in exbiliting the repreaentations from the magle luntern, to cause the Images to fall on a piece of disvaded snd wetted mualln, behind which the apectators are placed. Lately, tho mode of repraaenting acenca has been further improved by using two lanterna, placed at equal distances; in thiy case, while the view in one is being withdrawn, the view in another is coming on, and the eye is charmed with eecing, for example, a acene In wintor disaolve and asaume the appenrance of a gimilar aceno in aummer. Such is the principle of the disolving views, exhibited at tho Polytechnic Institution in loondon, in 1841.

ACOUSTICs.

The term Acorstica is dorived from two Greek nords, which signify I hear and an art, and is applied to that branch of untural philosophy which treuts of the nature of sound, and the laws of its production and propagation.
Atmospheric vibration is allowed to be the cause of suund. For instance, a bell is struck by its clapper, the body of the bell consequently vibrates, as we may monsibly assure ourselves by applying our nail lightly to the elge: in its agitation, it beats or makea impulses on the air, which, yiolding under the stroke or pressure, is compressed or condensed to a certain distance around. The compressed air instuntly expands, ard in doing so, repests the pressure on the air next in contact with it; and thus each one of the original strokes of the vibratag metal sends out a series of shells of compressed air, amewhat like the waves dispersed over a lake from the dropping of a stone into its placid bosom, and like them dwaya lessening in bulk and force. These shells are from two inches to thirty foot in thickness. The air, thas agitated, tinally reaches the ear, where it gives a similar impulse to a very fine nervous meinbrane, and the mind then receives the idea or impression which we call s sound.
With regard to the velocity with which the impulse of saund advances, it appears, from the most accurate erperiments on the discharge of pieces of ordnance, and marking the interval between the flash and the report, it a distance carefully measured, that, when the atinosphere is at the temperature indicated by 62° of Fahrenheit's thermometer, sound travels at the rate of 1125 feet per second, which is nearly equal to the velocity of a cannon-ball the moment it isauca from the piece.* The ball is very apeedily retarded by the resistance of the air, but sound advances with undiminished velocity, thrugh unequal intensity. It will travel a mile in littlo move than four secends and a half, or twelve nnd threcfourth miles per minute. On this depends an casy method of determining in many casea our distance from objects, and which may utten prove useful, particularly in thunder-storms. We have only to ohserve in seconils the interval between the flash and the report, and nllow four spconds and a half to every mile, or 1125 feet to feery second. It ia remarkuble, also, that all kinels of whads, strong or weak, acute or grave, nilvance with he sume velocity; and this arises from the circumstance,

- The velocity here assigned to sound, in that given by Sir ohn lierachel. as the inean of the best experiments.
that ell the oscllatory movements in the air, howover mluute or however extended, are performed oach in tha very same interval of time. For every degree of Fahrenheit above 62°, the velocity of aound is increased one foot and alooit a seventh (strictly 1 14-100th foot) and for every degree below 62°, it is 'ssened in the eame meanuro ; 日o that, when the tempurature is at the freezing point, the rate is only 1090 feet per second.

I'hat water is a veliclo of sound an well as the eir, la proved ly varioun cireumstanced, particularly by the fact, that a bell rung under water can be hi ard aloove and if the heal of the auditor be also under water, it will be still more distinetly heard. The sound which the sonorous body producea, howiover, is graver tban that which it givea forth in the alr. That the stmo aphoro la necessary for the transmission of aound is evident from the fact, that a bell rung in tho exhaustel re. ceiver of an air pump can acarcely be heard. Smooth bodies form favourable channels of aound, as, for example, the surface of ice, snow, water, or the hurd ground. Savages, it is well known, are in the habit of putting their ear to the ground in ordor to dineovor the approach of enemice or beasts of prey. Tubes convey sounds with great aecuracy and to great distancea, and this property has been applied to various usoful purposess The most valuable of these purposea is that of examining the eliests of persons snpposed to porreas pulmum nary affections. This is done by moans of the sletho arope, an instrument invented by Dr. Iamennec of Paris, and which resemblea a small trumpet. The wide end of the instrument is applied to the body, and the other is held to the ear of the physician, who then hae a very clear perception of the sounds caused by the action of the lungs, and can judgo whether they be healthy or the reverse. A person of akill can exactly describe the condition of the lungs from the nature of the sounds which thus reach his ear.

In a public exhibition in London, thore has long heen shown on apparatus consisting of a four-footed atond and several trumpet-mouthed tubes, from any one of which a spectator will receive a ready answer to a question. The answer is said to come from "the invisible girl," and the true explanation of the puzzle is, that o secret tulie in the legs of the apparatus communicates the sounds to girl placed in a neighbouring apartment.

In consequence of sound requiring a cortain length of time to travel, it is impossible for two sounde at any distance from each other, to be heard at the sanse moment by persons who are not at equal distances from both. "If two persons, A and B," aaya an Amvican writer, "are standing at the distance of one mile fiom each other, and each firea a gun at the same moment, A will not hear B's gun until several seconds after he heara his own, because the sound will require that time to pass through the distance between them. And the same will be the case with B. One might at first auppose that if \mathbf{A} should wait and fire at the moment he hears the report from B, the two aounds would then be heard together. A would hear them together, but the time that must clapse after B had fired, hefore the sound from A would come to him, would be greater than if they fired nt the same moment. For ho must wait till the sound of his own gun had gone to A, and then until the sonnd of A's discharge should return to him. It is thus evillentiy impossible for two persons, standing at a distance from each other, to produce a sound which shall lie hoard by both at the same time.

It is out account of this priuciple, that in long ranks of soldiers, where two binds of music are placed at a considerable interval from each wher, it is impossinte for the two bands to keep time with each other. They may inleed play together, hut each soldier will hear the nearest sounds quickest, and thus they will seem to lo
out of time. It in often notived too, that if from an ominence we look upon a long column which is marching to a band of musio in front, the various ranks do not step exactly together. Those in the rear are in each step a little later than those before them. This nroducns a mort of undulation in the whole column, which in difficult to describe, but which all who have noticed it will understand. Fach rank stepu, nut when the sound is made, but when, in its progresn down the column at the rate of 1125 feet per second, it reachea their ears. Thone who are near the music hear it as son as it le produced, while the others must wait till nothicient time shall have elapsed for it to have passed through the alr to them.
"Should a commander atand at the distance of a fith of a mile from his army, and command thein to Are, they might all obey at the moment when the word of command reaches them; but the officer will hear the report of the guns from those at the side neareat him lizst, then thowe a little farther off, and so on to the moat remote. Thus, though all might ohey with equal alacrity, the sounds will not and cannot appear simultancous, for the reports of the diatant guns muat le detayed long enough for the command to pase from the ufficer to the men, and then for the sound to return. All atternpts, therefore, to make their firing appear exactly nimultaneous from a long line munt be in vain."
An echa, or duplication of sound, is one of the most interesting phenomene in acoustics. The cause of it is preciecly analogous to the reaction of a wave of water. When a wave of water atrikes the precipitous hank of a river, it is thrown back in a diagonal direction to the side whence it came, and there again strikes on the tank. In the same manner, the pulses or wavea of mound are reflected or thrown back from flat aurfices which interrupt them, and, thus returning, produce what we call en echo. It is evident that tho smoother the surface which reflects the sound, the more perfect will be the reverberation. An irregular surface, by dirowing back the wavo of sound at irregular intervala, w:ll mo confound and distract it, that no distinct or audible echo will be reflected. On the contrary, a regular concavo surface will reflect sound in such a manner, diat at a certain point the reflectiona from each part of the concave aurface will be concentrated into a focus capable of producing a very powerful effect. The velocity with which an echo returns to the apot whero the sound originatea, depends, of course, upon the distanco of the reflecting aurface ; end sinco sound travels at the rate of 1125 feet in ascond, a rock situated at half that distance will return an echo in exactly one second. The number of syllables which we pronounce in a second will in auch a case be repeated distinctly, while the end of a long sentence would blend with the commencement of the echo.

An echo may be double, triple, or even quadruple, acording to the nature and number of the projecting aurfices from and to which the sound is allowed to play. Sistinctly marked echoea of this combined and planned arder may sometimes be heard in the vaulta of catheJrala, in which case the waves of sound are driven from sithe to side of a deeply groined arch, and reverherate in firtracted peals. One of the mont interesting echoes of this kind in nature, in that which occurs on the sankn of the Rhine at Lurley. If the weather be fa--uurable, the report of a musket, fired on one side, is appated from crag to crag, on opposite sides of the river alternately, as represented in fig. 24. P is con--ilred an the primary point of radiation for the aound, ind croseing the river it strikes at 1 , ther is sent of to $\%$ and *o on to 3 and anbequent points, stopping or isintly dying awsy opposito E.

There are nome remarkahle echoca in ecclesiastical trmetures arixing from pmentiaritues in the conatruction.

FIS. 24.
In erecting the baptiatry of the church of Pime, the archb teet, Giovanni Pisano, dieposed the concavity of tha cupola in such a manner, that any noise from below is followed with a very loud and long double echo. I'wo permona whiapering, and standing opposito to each other, with their facen near the wall, can converne together without heing overheard by the company hetween. This arimes from the elliptical form of the cupola, each person being placed in the focur of the ellipse. In the cathedral church of Gloucentor, there is, or was lately, a whispering gallery above the eastorn extremity of the choir, which extend. from one end of the church to the other. If two persons, placed at considerably distant points, apeak to one another in the loweat voice, it la diatinctly heard. A similas effect in produced in the vestibule of the Observatory of Paria, and in the cupola of St . Paul's, in London. A tourist han mentioned, that in Italy, on the way to Naples, and two days' journey from Rome, he anw in on itto square vault, where a whisuep could easily be heard at the opposite coiner, but not at all on the side cornen that was near to you. This property was conumon to each corner of the room. He saw another on the way from Paria to Lyons, in the porch of a common inn, which had a round vault. When any pertion held his mouth to the side of the wall, weveral permons could hear his whisper on the opposite' ide.

The whispering gallery in Bt. Paul's, London, in a great curiosity. It is 140 yards in circumference, and ia juat helow the dome, which is $\mathbf{4 3 0}$ feet in circumference A stone seat runs round the gallery along the front of the wall. On the side directly opposite the door by which visitors enter, meveral yards of the seat are covered with matting, on which the visitor heing seated, the math who showr the gallery whispers with the month near the wall, et the distance of 140 feet from tho visitor, who heans him rords in loud voice, scemingly at his ear. The inere shutting of the door produces a sound like it peal of thunder rolling among the mountains. The effect in not so profect if the visitor eits down half way between the door and matted seat, and much less if he stands near the man who epeaks, but on the other side of the door.

It is of great importance that buildings desigaed for large anditories should be conatructed in auch a manna that the voice of the rieaker will neither eeho from the walle nor be lost to the hearers. The best known form of apartment for the proper distribution of nound, is that in which the length if from a third to a half more thas the lireadth, the height somewhat greater than the breadth and having a roof bevelled off all round the eides. Thin species of ceiling, called technically e coved or roach roof, from its leing lower at the aidea than centre, is in all cases best suited for conveying sounds clearly to the ean of auditora.

mustcal sounde.

There is a peculiar character in aounds, depending a the character of the nounding boly. A blow with tammer, or the report of a pistol, produces only a noim But if a boly be of such a thinnesand tightnem on on produce a succesion of impulses of a sufficient degu
al quilean poned of wher, that anld atringı branem, anc ar the mo Lind. Buc The stu philomophy, sure to n m thone who The natural ti) each othe the whole to of the mont the entire cir The prine ocven in nur produced by vince, in an The noten are above anothe nothing of m play, and havi be ready to an but there are varioun. The aher notes; even, and iden except shrillne least six repetit most keys are the lowent ruml The seven n Si, or by the fir culiar arrangeme thuas represente muscians prese

Let an ordin estenuled betwe up. It may be of tension, to vil and forty times produces is \mathbf{C}, or this is the note w when he attempt perfectly in unis that is to say, th ather, and the e the memirane instrument of hia of timen in a sec does. The equa makes the notea and agreeable.
We ahail auppe that produces the Being extended b board, the experi right in the centre he will find a n reality, the first C notex. In this a aamely, 480 in a rapid the shorter The second or uf beving the eighth
una, the arehb. of the cupole w in followed T'wo persona th other, with rether without

This arinos h person being thedral church apering gailery which extend If two persons, to one another ard. A similas Observatory of in London. A e way to Naplea, nw in an inn a sily be heard at aide cornen that common to each on the way from amon inn, which held hie mouth to 1 hear his whirper
l's, London, in it umference, and in in circumference ng the front of the the door by which are covered with ated, the nall who outh near the will, visitor, whin hears at his car. The sound like a peal ina. The effect in half way betweet less if he atands 3 other side of the
dings designed for 1 in such a manna her echo from the b best known form on of sound, is tha to a half more than ter than the breath nd tho sides. This coved or coach rof, han cestre, is in ill Aa clcarly to the ean
ounds, depending as ly. A blow with roduces only a nove and tightnes an 14 - nufficient degtu
d quicaneme, a towe la the reault, namely, a sound comproed of a great number of nolsem, all so clowe upon each wher, that they bring but one result to the ear. Wiren and stringe of metal and catgut, slipa of metal, fine membranee, and columns of the alr itself enclosed in tubes, are the mont familiar meuna of producing sounds of thia Kinul. Such sounda are said to be musicul.

The study of musical sounde, as a branch of natural phiosophy, is calculated, perhapa, to give as much plenaure to a man of science an musio itself can convey to those who are gifted with what are celled good earn The natural character of theme sounda, and their relation to each other, are very remarkable; while the relation of the whole to the human mind muat be regarded as one of the moat interesting proofe of creative design which the entire circle of nature prements.
The principal sounde of music may be maid to be only acven in number. Thore are other five, which may be produced by the voice with some litife difficulty ; but the price, In an untutored condition, givea forth only seven. The notes are of different degrees of ahrillness, one rlaing above another in auccession. A person who known nolhing of munic beyond having heard unother aing or play, and having meen the key-board of a pisno-forte, wili be resdy to any that there are more notee than seven; but there are only seven that are, strictly speaking, various. The volce or on instrument may run up into oher notee; but all of these are repetitions of the first reven, and identical respectivaly with them, in all respects except shrilness. In ordinary piano-forten, there are at leat six repetitions of the seven notes, no that the uppermost keya are more pecpy than the voice of a child, whilo the lowest rumble like a drum.
The seven noten nre named Do, Ro, Mi, Fa, Sol, La, Si, or by the first seven lettern of the aiphabet in a peculiar arrangernont, namely, $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{O}, \mathrm{A}, \mathrm{B}$. They are thas represented ir the well-known language which unsicians present to the eye (using the treble clef):

let an ordinary piece of catgut or violin-atring be extended between two points on a board, and screwed op. It may be made, according to its length and degree of tenaion, to vibrato, when atruck, exactly two hundred and forty times in a aecond. The note which it thus proluces is C, or Do; and a man, on trial, will find that thia is the note with which he is most apt to begin a song, when ho attempts to sing. The note in his voice will be perfectly in unison with the note produced by the atring; that is to say, thoy will melt into and agree with each other, and tho effect will be pleasent. This is because the membrane at the top of the singer's windpipe (the instrument of his voice) vibrates exactly the same number of times in a secand, producing that note, as the string does, The equality in the number of vibrations is what makes the notes the mame, and the effect harmonious and agreeable.
We shall auppose the string to be forty-five inches long that produces the note \mathbf{C} of 240 vibration in a second. Being extended between two pegs near the aurface of a board, the experimenter may place his finger upon it right in the centre, and twang or atrike either half, when he will find a much shrilier note produced, being, in reality, the first C, or Do, of a new series of the seven notem. In this case, the vibrationa are oxactly double, tamely, 480 in a second, these being always the more rapid the shorter the string or the greater its tightness. The aecond or upper \mathbf{C} is called the octuve of the firm, being the eighth note above it.

We whall now supposethat the atring in mhortened only so far an to leave thirty inchem, or two-thirda of its length, free for twanging. This shorter utring will sound the note G, or \$ol. In this case, as the length of atring is two-thirdn, so are the vibrationa threehalved, or one and a half times those in the former inatance, namely, 360. All the other notes are produced by different proportions of string and numbers of vibrationa, as ahown in the adjoining acale :-

What ia remarkable here is the curious mathematical proportions on which the various noten depend. Tak. ing the first \mathbf{C} as one, and its octave an onc-half, wo have various lengthe of string for the intermediate noter, in the following proportion: namely-for \mathbf{D}

Cor Do (8el.), 34ifin, 460 vib - B or $8 \mathrm{il}, 94 \mathrm{in}$. 250 vibrations.

A or La, 97 in .400 vibralomas.
Gor Sot, $\mathbf{3 0} \mathrm{jn}$. $\mathbf{3 0 0}$ vibrelloman
F or $\mathrm{Fa}, 33\left\{\frac{1 \mathrm{ln} .}{} 320\right.$ vibrationa.
E or $\mathrm{Mf}, 30 \mathrm{in}$. 300 vibrationas.
D or $\mathrm{Re}, 40 \mathrm{in} .270$ vibrations.

- C or Do, 45 in .940 vibrationa. eight-ninthe, for E four-fifths, for F three-fourtha, for \mathbf{O} two-thirds, for \mathbf{A} three-fifths, and for \mathbf{B} eight-fifteentha; atl of which proportions are axsctly reversed with regand to the numbers of vibrations, these being in aucceasion nine-cighths, four-fifths, \&ce. The proportions, at cloarly appears to the eye from the above scale, are not regular: the string is first shortened five inchea, then four, then two and a quarter, next taree and three-quarters, and $\mathbf{0 0}$ on. Nevortheless, theme are the musical notes which the voice naturally gives forth, and which the mind recognimes as beautiful. The etring twonged at lengths of what would appear moro regular proportion, would give forth musical sounds, but not the ieven notes of musionot those peculiar mounds which all nations recognise as such, and which naturo has manifeatly appointed to serve in that character.

Irreguiar as the proportions appear, there aro eome of the eeven notee which ard more proportioned to each other than the rest. They are asid to be more in harmony with each otber; and the effect, whon thoy are struck together, is pleasing. It is to be nbeerved in the first place, that a note always harmonizes well with its octave, or the eighth or repeating note above it This is aupposed to be because the vibrations of the one note in that case are exactly two for one of the other. The firat Do also harmonizes weli with Sol (G), which is called its fifth, being the fift note mbove it; and thia is, on the same aupposition, because the vibrations are in that case as three to two, which is also a symmetrical proportion. Harmony is also produced when some other notes are sounded at the same moment with those which are thind above them (their thirds); and thia may be accounted for in similar way. Thirda, fifths, and octaves, are therefore plessing or harmonious sounds, while seconds, fourths, sixths, and sevenths are less mo. Experimenta of a very curious nature have been made on this aubject. It may roadily be observed by the naked eye, that when onc of the longer strings of the harp or pianu-forte is atruck, there is not only a vibration along the whole leugth, giving it an elliptical appearance, but there are also vibration of shorter lengthe of the seme atring going on at the same timc. It has been found, when light pieces of paper are hung across tho string, that they eettia at certain places, ahowing thut the principal auburdinate vibrations correspond with octaves, fifths, and thirde. A
drum, or a aonomoun honed, over which and has been otrewn, will, if leat, throw the mand into curloun figurea of a determinate and regularly rocuring charactes. Thia la the result of similiar subordinate vilhrationa along the extent of the sounding body.
There are even morn eurioun ferts connected with the harmonious notes. The cries of in eity-that is, the cearcely articulate, but ofen very musieal, mound uttered by persons selling thinga on the streeth-aenemilly rise on thirds of finhe, sometimes on octaves; and this although fow of these poor people have over heen taught music. The ery of oyeters hy wonen in Edinhurgh in alwaya on an octave. Tenchers of elocution are atmo aware that human beinga in general make auch transitions of voice naturally, under the influente of rernin feelingn. For example, a person Indifferently surpuised at herring a friend say "I was the person who didd so and mo," will ray, "Was it you ?" rising only a thind nt the lant word. If greatly aurpried, the rive will be a fith. There may even be so great a degree of intoniuhment, that wis word "you" will begin on one note and terninate on ita octave. The answers, "Yes, it was 1," wlll show correaponding declensions or falls of voice. We thun mee how truly muaie is a apecies of natural languagr. Uuqueationably, ovory shade of human lieeling can be repremented ly auc. cessions of ita mounds, apart altogether from worla.

With respeet to the mounila producell by wind inatrumenta, the effect in caumed ly the vihrations of a column of air conAned at one end, and either open or shut at the other. The length of the mounding enlumn determines the nature of the vibrationn; but along with the funila. mental tone, there are interior and suborlinate vibrations. The whole column diviles itself into regular portiens, oqual to the half, the thlind, and no on, of the longitulinal extent, in the mame manner ar we ahowell was the case in etringed inatrumenta. We may obmerve momething cimilar to thean vibrations in the contraction and expanvion of a long and very elastic atring, to one extremity of which a ball in attached. A apiral apring alno ahowa, and perhapa more clearly, the repeated atretching and recoil. If suddenly atruck at one end, it will exhibit not only a vibration throughout ite whole extent, but likewise partial onea, which wind vermienlarly along the chain of elande ringe. If the air be cruck with great force, the aubordinate vibrationa momrtimea predominate, and yield the clearest and loudent rosea. Thia may be observed in the dying mounda of a bell, which rine one or two octaves, and expire in the acutent note. Upon the degree of force with which the instrument in blown, dopende the performance of the bugle-horn, whowe compans is very umall, conainting only of the simplese notem. In other wind inatrumenta, the nature of several notea produced dependa upon the length and nize of the tube, or the positiona of the holes in its rides. In the organ, there in a pipe for each note, and wind is admitted from the bellows to the pipen hy the action of keya similar to thome of a piano-forte. The organ may be played almo liy a barrel made to turn alowly under the keya, and to lift them in passing, by meana of pins projecting at certain determinate intervals from the asfice of the berrel. In wind inmtruments which are furnishuy with reedn, the tone dependn on the stifiness, weight. lengih. \&ce., of the vitrating plate or tongue of the reel, as well as on the dimensions of the tube or space with which it is connected.
W'ith a view to impart mome instruction in the practice A theory of music, we have, in a aubsequent part of 4. rork, ofisred a complete treative on the aubject.
[W6 RE: ON OPTICE, B.MITT, AND acoustics.
The sutject of Oprices and Light hae attracted more tuention of late yenre than y other branch of natural
philomophy. The resparches and discuverios of it Brawwer of Edinhurgh, pulbliahol in various aelentifh journals, have galined fot him inueh reputation. Many of hia apeculationa and experimenta, however, are moie curioun than useful. 'The Freuch anvana have leeen even more succemful than Browster: and the iliseovery of Daguerre, by which the lightit of the oun in made directly instiunverinil in prislucing aceurate representations of obs jects on metallie plates, in the mont important that han been nuale since the time of Newton. It would exceped our limits to notiec all the worka ou Light anill its enonection with heat, electrieity, magnetiam, and galvaniam which have appeared even during the recent jeriod in which philomophers have tren un carncenty eurgazel in examining thewo subjecta, A tmonz the many general works on Optien, umay he mentioned the following, adapted to persons of different capreitips and attaimments in sci-ence,-Joyce's "Sriensific Dintogues, vol, v.," litemded for thome who have a taate fur the acience without having entered much into the elomenta of $i t$. "The Eiementio of Optica, by James Wood, B.1." "Thin trratise enters hargely upon the aberrationa proluced by the une;jual refrangibility of different kinils of nuys, nud hy the spllerical form of reflecting and sofracting surfacers, It is pather ahntruw, requiring conniderable muthematical knowled?
 in two broke, by Jonrph Hurrin," a more euny and iny wht work. In the firat book the elementary part of optien te explained; in the aecond, the eullject of vilon. U thes latter subject Dr. Porterfleld's Tr tatise un Io E'yp is one
 Syatern of Optics, by Benjamin ihuran,' a populat treatime, illuntruted with cxprimente and exumpler ; of the later many are worked by cominon arithmetic.
"A Complete System of Ophice, in jour books, by Robert Smith, LI.. D., Profeasor of Astromemy and Ero perimental Philuonphy, at Combridge, 2 vola, 4 to." The first part of thim elulorate work is deaigned for the nse of those who would know something of opties, but who want the preparatory learning that is neccesary for a thorough aryuaintance with the nulject. With this view the anthor hua avoided all prometrical demonetra. tions, and sulmetituted the more entertaining sort of proof, drawn from experiments that may be repeated with litit. trouble or appuratua. By thia meana any one wits moderate applisation may mako limmelf master of no inconsideralle part of the doctrine of optics. The second book is a comp lete mathematical treatime of the scienec; and will require, in the reader, a large portion of gro metrical and algebraical knowlelge. In the thind bow is given a ilescription of a cooplete net of optical inntrunenta, with explanations of the various uses to which they may le applied, in Astronomy, Geograjliy, Navizdtion, Levelling, \&c. A hintory of the telescopic dis coveries in the heavens, is the nulyect of the fiourth bouk, which modern discoveries havo, of course, rendered ins perfect.
"The elementary parts" of Dr. Smith's Optics, weto published to Dr. Kipling, in 1778, who added, in the form of .wnes ver.a orplanutory propositiona from otber authors, chi. IT: Mr. Batrow and Demeartes.
 gener. . ni. we tuled the following on a praticiclay branch of it.
"Of Muroasopes, and the Diseoreries male therly; illustrated with many phater, by lienzy L.Wkr, I.L.S." This work, which consints of two volumes ativo, won tains much usefiul knowledge, exhiboted in a simpla and perspicuous methed, for the aake of jersons who lias not had the ralvantage of a learned educution. Whe reftections which Mr. Baker drawa from the variwus pate of theme volumes, all tend to impress the reader with juw ideas of the wisdom, puwer, and goodncas of the greal Creator.

Tun material tlon, inciuling at explored, tho plo the atmospliere of fifty-four simp which compose 1 livar These cineavours to di afe terined the From the earlieat to have been in a they are scarcely
Muster han eve petual decomponit which take place the regular finneti others are effocted the parposes of hila vimplo substances, are permanently g remaining hodies The investigation elementary bodies substances which w which compound : ariginal elementa o the ohjectas of the ac The term chemist ceema to have been methols of melting lifed with the vixio fewed to be the art buse metala into gol last sixty or sevent the rank of a acio: advanced towards ralleled in the histor of chemistry are uni mediately conducive ert or manufactung it has either been some of its greatea sheet, it is our olyject riew of the princin science, with a los bodies, and their m shall commence with cipisa on which the

CHEM

When partielea brought mito contact new sulmances, dil from thue by whon this is called chemi

CHEMISTRY.

Tine material world linmedintely under our obnervaton, includiug such parts of the earth'a crust an have been explored, the plants and animals upon its surface, and the atmospliere which envelopea it, is found to conmist of Alty-fiour simple substancen, just na all the words which compose a language are remolvible into a fow 1 lever 'Theso aubataucea, having hitherto resisted all cniteavours to divile or resolve them into any others, aft termed the rlements of matter, of simple bodies. Prom the earlient ntage of creation mont of them appear to have been in a ntate of combination with each other ; they are ecarcely ever found otherwine.
Matter han ever been, and in now, undergolng perpetual decompositions and recomlinations, mome of which take place upon en extensive scale, as part of the regular functions and operations of nature, while others are effected by the hugenuity of man, to servo the purposes of his ordinary pconomy. Of tho fify-four simple subatances, six are gance, (threo of which only are permanently gaseona), forty-ono are metals, and tho remaining hodies are reduciblo under no fixed class. The inventigation of the laws under which these various elementary bodies havo formed the numerous compound substances which wo see in nature, and tho means by which compound subatances can be remolved into their original elements or thrown into new combinations, are the objecta of the science of Chemistry.
The term chemistry is of doubtful derivation; but it weema to have been applied at an ourly periol to various methols of melting or preparing metala, and was identifed with tho visionary acience of ulchomy, which professed to be the art of tranamuting copper and other base metals into gold and silver. It ia only within the last nixty or seventy yeara that chomistry has rison to the rank of a science; but during that period it has advanced towards perfection with a rapidity unparalleled in the history of philosophy. The applications of chemintry are univeral. There is no acience so immediately conducive to human comfort. To whatever art or manufacture we turn our attention, we find that it has either been created by chemistry, or owes to it wome of its greateat inprovements. In the prosent theet, it is our object to present a nimple and intelligible riew of the principlea of this exceedingly important science, with a description of the various elemental bodien, and their more iminediate combinationa. We thall commenee with a view of the general leading principhs on which the science proceeds.

ChEMICAI, attraction.

When particles of diflerent kinds of matter are boought mito contach they frequently unite and form now sułmeances, dilfering widely in many instadees from thume by whose union they have been formed. This is called chemical attraction, or chemical afintit,
because it lis eaild that the prartieles of certain houllon having an alluity for each other, will unite, while othere. having no allinity, do not readily enter finto uniom. It might aluost the supposed that there are such things ae preferencea and dinfikes among the particlen of matter. Thus, if a pieve of marbin he thrown intin vitriol or ank phurie acid, their particles will mite with great rapmilit and commotion, and there will reanle a mompound diffen hing in all reupectu frou the seid or the marhle. This in at once an inwtance of aflinity between two muhanances, and an exhibition of atronger ankl wenker alifinity. The commotion of effervescence in the experiment, renults from the disengagement of a gaseous (carthomic) acid in combination with the hasis of the marble, in consequence of the vitriotic arid hoving a stronger aflinity for it. When a piece of caustic magnesia is thrown into vitriol, we have case of simple aflinity, with a comploto elange, also, of properties. But the vitriol and magnesia are eminently hurthul to life. All their elomenta combine, without any disengagement, and tho result la the productinn of Epmom salto, a compound with properties entirely new. Neither ingredient ban been deatroyed; they can aguin he extracted pure from the compound; but they have changed their charactern through the force of affinity. But if a piece of glanes, quartz, or gold be thrown into the aeld, no change is produced in elther, lifcause thelr particles have no ellinity. This proceen in termed in chemical language combination. It is quito distinact from aggregation, which is the union of prerticles of a similar kind, forming a masa which has the general properties of the particlea of which it is camposed, whatever may be its structure or form. It is also to be diutinguiehed from mirture, in which the partielen, although they may to intimately blended, aro not as it were amalgamated with each other no as to lose their own individual properties. The difference between combination and mixture will be clearly secu from the following example : -if into a crystal bottle wo pour a quantity of oil and a quantity of water, and ahake them well together, the two subataners can never be made to unite permanently togethes. Although they appear to do so for a alort while after tho experiment is made, yet if the veasel he allowed to stand for a aufficient length of time, the purticlen of water, being heavies than those of oil, will descend to the bottom, whilat those of the oil will aettle upon the top. Here it is evident that no chemical attriftion has been exerted between the particlos of the two bodies, because no chemical change has taken place. In a word, there has been a mechanical mixture without any chemical comlination. But if with the water in this experiment we mix a quantity of potash, so as to form a pretty strong solution, the reaulta will be very different. The particlea of the bodiea will in timately combine with cach other, and a compound will te formed having propertiea entirely different fron either the oil or the potash. The mulbatance thus obtained is the naeful article soap; and if the water be evapurated by the application of heat, it assumen a solle consistency, as in the form in which it ia commonly used for domestic purposes.
It sonetimes happens that two looling will readily combine with each other, but if a third thody be added, the combinution will be destroyed; the first of the two bodics having a stronger allinity for the third than it had for the eccond. Thus, if magnecia be dissolved in nitric acid, a completo union takea place ; but if lime be added to the compound, the nitric acid unitea with the
lime, and the magnesia, which was formerly invisible, will fall to the bottom of the vessel.

Julphur and quicksilver, when heated together, will form a boautiful red compound, known under the name of vermilion, and which has none of the qualitiea either of anlphur or quickailver. Suapend a pieco of aqueous culphate of copper (common blan vitriol), by a thread, in a glassful of water. The particles of both combine and form a atream of blue fluid, which deacenda from the points where they are in contact. The solid is said to be dispolved, that is, the cohesion of its particles in destroyed, and the compound is called a solution of the solid.

The restoration of coherion to a body after it has been deprived of it, ia exhihited in a great variety of instancea. For example, if a quantity of angar be dissolved in water, and the solution be allowed to stand till the water has evaporated, the attraction of coheaion will take effect between the particles of the sugar, which will again resume the solid form. Here, however, a remarkable circumstance has occurred. Whatever the state of the sugar may have been originally, it invariably, in resuning ite solidity, assumes a particular form, one of great segularity and beauty. It was formerly opaque, it is now transparent; originally a shapeless mass, it is now a prism of six sides, sur passing in lustre and syminctry the products of the lapidary's wheel. This solid spontancous production is called a crystal; and the process by which it is produced is entitled

Crystallization.-Bolies, whether soljd, fuid, or vaporous, are susceptible of assuming the erystalline form, and the substances which do so are numberless. The shapes which the crystals take, and the facility with which they assume them, are various. Instances of crystallization, such as gea-salt, Epsom salts, saltpetre, are familiar to every one. Water, it is well known, when cooled to a certain degrec, assumes the form of ice, which is crystalline. There are three methods of producing artificial crystals: first, by dissolving the substance in a hot liquid, and either allowing the solution to cool, or evaporating it by a continucd heat; second, ly making the substance nssume the aerial form; and, third, by melting it by fire without the presence of a liquid, and allowing it to cool slowly. The two first are the most common methods of forming crystals, and by the third, sulphur, spermaceti, bismuth, \&c., may be made to sssume the crystalline state. If as much alum be put into boiling water as the water will readily dissolve, eryatals will be deposited as soon as the liquid cools. The presence of the atmosphere has considerable influence upon the formation of crystals. If as great a quantity of Glauher salt be dissolved in a fask half filled with boiling water as the water will hold in solution, and the flask be corked, no erystals will be formed as the liquid cools. Remeve the cork, however, and crystallization commences as the sir enters, a solid crystalline mass being almost instantancously formed. If the weather ia warm, crystallization will not perhaps take place even after the solution is cool. In this case, the introduction of a smnll erystal into the flask will caume the liquid to crystallize.

The aame body does not invariably exhilit the same :orm of erystals; there may le several forms of crystals belonging to one borly, hut in one or other of these it is sure to crystallize, and not according to any other form. It is also to tre ohserved, that very different kinds of matter may cryatallize sfter the snme motel.

The gencral name for the substance formed by chemical attraction is a componend; the subatances of which it is composed are callerd its component or constituent parta or principles. The separation of these is termed decompostion and when decomposition is performed for the purpose of ascertaining the composition of a body, it is named chenucal malysis. The reunion of
the conutituent parts is denominatel chicmical aynthens Integrant particlea of a body differ from the conatimuent particlea thua :-The latter are the most minute parta into which a compound body can be resolved by decons. position, and are hence of a different nature, both with regard to each other and the aubatance itaelf which their mutual union givea rise to. The integrant particlea are the most minute parts into which any body can be re. solved without decomposition.

LAWS OF CHEMICAL COMBINATION AND DECOMPOSITION.

There are various lawn connected with, and pheno. mens attendant upon, chemical attraction. While, of courso, it can operate only between bodies of a different nature, the qualities which characterize these bodies when separate, are changed or annihilated by their combination, and it takes place only between the atoms or most minute particles of bodies. Chemical attraction can take place between two, three, or even a greater number of bodies. A change of temperature is alinost always observable at the moment of combination. The force of chemical affinity between the constituents of a body, ia estimated by that which is requisite for their separation. It has been alrearly remarked that the degree of ottraction varies very considerably in different bodies; and it is evident that from this variation all chemical compositions and decompositions take place. The preference of uniting with another substance which any given body is found to exercise, is metaphorically termed ilective attraction, or affinity. It is of two kinds, each of which derives its appellation from the number and the powera of the principles which may be brought into contact with each other. When a simple sulo. stance is presented to a compound one, and unites with one of the constituents of the latter, so as to separate it from that with which it is combined, and by this neana producing a decomposition, it is said to he effected by simple clective attration. Some aubstances, however, will not be thus easily decomposed; and it is found necessary to introduce two or more principles, in ordet to effect tho end in view. When two principles, therefore, are presented to a compound body, unil when the principies unite each with one of those of the compound substance, two new substances are formed; and all instances of decomposition in this manner are sail to be effected by double elective attractian. It is to be observed that all changes effected in this mamner are permanent and that the new compound thus formed cannot be de composed, until a subatance having a more powerful attraction for one of its constituents than they hava for each other, is brought into contact with them.

To Sir Isaae Newton we are indehted for the first attempt at a rational explanation of chemical combina. tion. He was of opinion that the minute atoms of cer. tuin bodies attract each other with an unknown but enormous force, which legins to exert itself only when the particles sare at very sinall distances from euch other and that, accordingly, this force exerts itself, and the bodies unite, when they are brought within the requisite distance. These views slowly made their way into the science; but towards the midille of the eigheenth century, they seem to have been almost universally adopted. The term chemical ntlinity was aubstituted for that of nttraction, and the atrength of the affinity existing in bodies came to be measured according to the order in which they were decomposed. It is unnecessary to mention the various tables of nffinity which wrer published previously to that of Bergman, who in 1775 gave to the world a copions table of afinities, and upporars to have fixed the opinions of rhemistr in gene ral to his own views of the sulject. According to thit philosopher, the affinity of eacn of the bodies, say a, t c, l, for r, differs in intensity in much a manner, tha the degree of allinity in each may be expressed h
numbers. 1 equence of b, li a be pr tion will en pound $a x$ w

This theor mediatsly ack brought to lig philosophers, ble to exhibit are indelted fo of the fact, th of which we with as clear a gaged in tleter zalled severally Dalton discove zuire different A voluine ${ }^{\circ}$ of whilst a volum orygen gns.

The conclus that bodies cons nution or divi is these ultima the case above r inflanumable ga of one atorn o whils olefiant g gen and /roo aton an spheres, and circle with a d diameter, and the of a number of by him, and the siliple bodies inf his experiments aydrogen one, composed of, hy as the former gas one atoun of carb to each other in of the atom of ane, that of carl ratios of the w bodies nuy be the compounds oodies.
The combiuati some other bodie its first compounc the atmosphere is two parts of mer the metal be sulj It will be convert a compound of the arteeli paris of o dred and "wo par thin is, that eight and two hundred
ive compound wl - multiple of thes has, in like maun compounds the : stances of thia nif to prove the rems

[^18]
ynthens

 naturuent ute partu y deconsoth with nich their ticles ars tan be re-
position.

 1 d pheno While, of a different cae bodiea their come atoms or attraction - greate c is almost tion. The tuents of a e for their Wat the de. lifferent boall chemicalThe prewhich any trphorically f two kinds. the number be brought simple sub. unitea with to separate it y this means ceffected by es, however, I it is found ples, in order aciples, thereand when tha the compound ; and sll inare said to by o be observed re permanent cannot be derore powerful they hava fot 1 cm . d for the first nical combina 3 atoms of cerunknown but self only when ond each other itself, and the hin the requitheir way into the eighteenth ost universaliry vas nubatitued of the aflinisy d aecording to sied. It is un. f nffinity which rgman, who in of aflinities, and nemints in gene ccording to this bodien, say a_{1} t a manner, the e expressed h
numbers. He supposed affinity to be elective, in conmequence of which, if a have a greater affinity for x than b, if a be presented to the compound $b x$, a decomposition will ensue, b will be set at liberty, and the compound $a x$ will be formed.

THE ATOMIO THEORY.

This theory was not discovered all at once, and immediately acknowledged by chemiats; it was gradunlly brought to light by the repeated experiments of successive philosophers, whose latours, however, it will be impossible to exhilitit a view of in thia place. To Mr. Dulton we are indebted for the first development and demonstration of the fact, that bodics unite in definite proportions; and of which we shanll now attempt to present the reader with as eloar and simple a view es possible. Whilst engaged in determining the composition of the two gases zalled severally carbureted hydrogen and olcfiant gas, Mr. Dalton discovered that for complete combustion they require different but determinate quantities of oxygen gas. A volume* of carbureted hydrogen requires two volumes, whilst a volume of olefiant gas requires three volumes of oxygen gas.
The conclusions at which Mr. Dalton arrived are, that bodies consist of atoms incapable of further diminution or division; that in chemical combinations it is these ultimate particles which unite; and that, in the case above mentioned of the comhastion of the two inflammable gases, carbureted hydrogen is a compound of one atom of hydrogen and one atom of carbon; while olefiant gas is a compound of one atom of hydrogen and two atoms of carbon. The atoms he considered ${ }_{\text {to }}$ spheres, and, representeu them by such symbola as a circle with a dot in the centre, a circle with a vertical diameter, and the like. In this manner the composition of number of the best known bodies was represented by him, and the ratios of the weights of the atoms of the sixiple bolies inferred. For instanee, he concluded from hio experiments that carbureted hydrogen is composed of, aydrogen one, and carbon five; while olcfinnt gas is composed of, hydrogen one, and carbon ten. Now, us the former gas consists of one atom of hydrogen and one atom of carbon, then the weighte of these atoms are to cach other in the relation of one to five. If the weight of the stom of hydrogen, therefore, twe represented by ane, that of carbon will be five. In this manner, the ratios of the weight of the atoms of all the simple bodics may be ascertained by a careful analysis of the compounds formed by the union of the simple oolies.
The combinations of mercury or quicksilver with some other bodies, afliord an illustration of the theory. its first compound with oxygen, one of the gases of which the atnosphere is composed, censists of two hunired and two parts of mercury and eight of oxygen. If, however, the metal be subjected to a cousideruble degree of heat, It will be converted into a red slining mass, which is also - compound of the unctal with oxygen; but in the latter case, sirtern pans of oxygen have united with the two hundred and wo parts of the metul. The explaration of thin is, that eight is the chomical equivalent of oxygen, and two hundred and two of mercury. In every succesive compound which they make, their proportions furm - multiple of these cquivalents. Every other simple body has, in like manner, its equivalent number, and to its compounds the same rule applics. Innumerable inatances of this might he adduced, but these are sutlicient to prove the remarkalile truth, that when diflerent sub-

[^19]stancen combine with chemicnl attraction, tho propurtions of the Ingredienta are alwaya uniform; that for every atom preaent of one aubstance, there is exactly one, or two, or three, \&c., of the other. If, for instance, any quantity of aulphur, intermediate between the two comhinations of that sulatance with mercury, be added, it will not combine with it , but remain as a foreign ingre dient in the sulphurat of mereury, as the compound is termed. All bodiea, however, do not unite in several proportiona, thus glving rise to several distinct compounds from two elements; there are many elementary bedies which will only unite with each other in one proportion, so that any two of such substances can only form one compound. Thia law, however, is not universal as it is well known that water and alcohol, a ad water and sulphuric acid, will unite in any proportions. Water will also unite in any proportion with soluble salt, until it becomes completely saturated. Bodies which unite in any proportions form on infinite variety of compounda, and are distinguished by their being united by a weak affinity, and also by the compounds formed differing little from their simple constituents or from each other.

Theso remarks must be ncla as applying to inorganic chemistry chiefly; vegetable, or organic cbemistry, presents many exceptions to the principles of combination now laid down.

equivalent ratios

The result of these investigations has been the formation of scales exhibiting the equivalent ratios of ehemical bodies, and which are expressed by numbers. It is evident that somo body must be fixed upon, and expressed by unity. Hydrogen gas, being the lightest known body in nature, and combining in the smallest proportion by weight with the other simple aubstances, has been takeu as a standard of comparison for the combining proportions, or equivalent numbers, of all other bodies; and which, in all likelihood, are simple multiples of its number. Oxygen has also, by some chemists, been taken as the standard of comparison, and represented by ten. Water is a compound of eight prrts by weight of oxygen. with one part by weight of hydrogen; which two gaseous bodics we shall aftorwards describe. Whenever hydrogen and oxygen gases are burnt in any proportion whatsoever, they invariably form water; and they cannot be made to combine directly in any other proportion. From this, balton concluded that water is a compound of one atom of hydrogen ond one atom of oxygen. But the weight of the latter gas being eight times that of the former, then it followed that the atom of oxygen was just eight times heavicr thnn the atom of hydrogen. Hence. if the latter be represented by one, then will the former be represented by eight, according to those who take hydrogen ns the standard. Those who take oxygen as the standard, and represent it ly 10, mako the equivatent for hydrogen 1.25: the result is of course the same, the proportion of 1.25 to 10 , being exactly the same as that of 1 to 8 .

These obscrvations relative to water lead us to speak of the doctrine of volumes, ao generally embreced by chemists upon the Continont. The union of gases is always effectel in simple proportions of their volumes; and a volume of one gas combines with an equal volume, or two or three timos the volume, of another gus; and in no intermediate proportion.

ELEMENTAL BODEEG

With regard to the elements of matter, chemists hnve agreed among themselves to consider all those bodies as aimple which have not yet leen decomposed. Aa already mentioned, the simple bodies are filty-four in number, and for the convenience of study they have been arranged into classes. One system of classificution
is tependent upon the elements being motallic or nonnetallic.

The non-metalic elements are divided into gazolytes, or bodies which are permanently gaseous; mefulloidk, or Indies which resemble the metals in their chemical rehations; and halogens, or borles which produce salts when in union with the metals. The non-metallic elemants are thirteen in number; namely, oxygen, hydrogen, nitrogen, chlorine, iodine, bromine, fluorine, carhon, boron, silicon, aulphur, selenium, and phosphorus. The three first are the gazolytes, the next four the halogens, and the remaining aix the metulloids. The metallic elements are forty-one in number, namely, potassium, sodium, lithium, calcium, barium, strontium, magnesium, aluninuan, thorium, glucinum, zirconium, yttrium, manganese, zinc, iron, tin, cadmiuir, cobalt, nickel, arsenic, chromium, vanadium, molybdenum, tungsten, columhium, antimony, uraniuin, cerium, biamuth, titanium, tellurium, copper, lead, mercury, silver, gold, platinum, paladium, rhodiuin, csmium, iridium. These metullic elements are agnin divided into three orders, the first twelve being the bases of the alkalies and cerths; the next twenty-one being metals whose oxides are not reduced by heat slone; and the remaining cight, metals whose oxides are reduced by a red heat. From these fifty-four olsmentary substances is formed all the beautiful varicty of terrestrial oljects. Nor is there any thing pither very womderful or mysterious in this fact, since, an we have seen, any given two of them, if made to unite in different proportions, can be made to produce the most opposite substances. These, again, united with each other, give rise to now compounds, which are susceptible of being combined, and so on through an almost infinite rotation of chemical union.*

heat or caloric.

In our inventigations of the phenomena of the material universe, we perceive two kinds of motion, which result from the two principles attraction sud repulsion. Of the former we have already spoken, and it only remains to say a few words upon the linter. Repulsion, like attraction, takes place both at sensible and insensible distances. The forner is exemplified by the flying of of the same light bodies which have been first attracted, ater they have been some time in contact with a piece of excited resin or glass, and also by the recession from each other of the two similar ends of two magnotized needles. Repulsion at insensible distances, which is chiefly excited by heat, or, as it is called in chemical langunge, caloric, is exhibited in a great variety of phenomera.
The principal effects of heat are expansion, liquefaction, vaporivation, evaporation, and ignition. With few exceptious, bodies are capable of expansion by means of licat; the gaves being the most expansive, fluids less eo, and solids least of all. When the iron rim of a couch or cart wheel is to be pot on, it must first be heated to a considerable degree. The reason of this is olwious; when hot, the circle is larger than wien cold, und thus slips easily upot the whed; as it cools, the circle decreases, and thus firmly binds the woolwork together. 'The expansion of ni riform sulustances is ilhestrated by a liadder being partly filled with cold air, and held belore the fire. The air will swell out with the hent, and become in anme instances so expianded se to hurat the blatiler. As regards fluid bodien, the mane fart is illustrated in the cases of the thermonntur nud Inrometer. Ey the arcession or loses of heat, the alcohol or mereury oxpands or coutracts, as shown by the index attached
a From recent experiments in chemistry, here in resson to beineve that all sutptancea whathover are tiul mod firations of otie pirmitive subutalice. The abinotute truth of that ntarilagg buery remana to the practically themonstruted

The general law, therefore, is, that the expansion and contraction of matter are, with a fow excejtiona, dependent upon the increase and diminution of heat. The quantity or condition of heat that is dimeoverable by the thermomater, or by the organs of aenaation, is called tem perature. We are unacquainted with the extremen of temperature relative either to heat or cold. It has been compared to a chain, the extremitiod of whit h are concealed from view, whilat only a few of the midrlo Hnks are exposed to observation. Although the universal re sult of an increase of teinperature is an increase of bulk to the boly thus subjected to heat, yet all bodica are not alike expanded by the application of the same quantity of heat. It of course followa na a general law, that dif. ferent thodies at equal temperatures do not contain the same quantities of caloric. This quality of matter is called the capacity of bodica for heat, and the quantity of heat which is necessary to raise any Ifrticular body to a certnin temperature, is called its spreific caloric. Heat. however, in some cases causes contraction instead of expansion. Thus water is of greater bulk at a temperature of 32° (the freczing point) than it is at 392° Some solids, also, as iron, antimony, bismuth, and many saits, contract when melted and expand as they become solid.

I'aporization is the rapid production of a thin vapour, as when water is converted into ateam. The boiling point of water, in a vessel exposed to the ordinary atmospheric pressure, is 212°, and although more heat be npplied to the vessel in which it is contained, the temperature of the water is not increased. If this degree of heat be continued, the watery particles separate from each other and become steam or vapour. Steam is colourless, transparent, and invisilie, resembling the atmosphere, and is 1096 times greater in bulk than water. Steam may le condensed, or its particles brought nearer to each other, either by removing the heat which is the canse of the repulsion, or by mechanical pressure, and the result is its return to the form of water.

Whter can be made to boil at a lower temperative than 212° by removing the pressure of the air. If i flask be half tilled with water, the water made to boil, and as the stean escalnes, a cork be put into the mouth of the thask, upon the heat being removed, the water will continue to boil, the heat in it being aufficient for that purpose when there is no pressure frem the air. If the flask be: put into cold water, the boiling will increase, from the steam heing more effectually condensed; whereas, if the tlask be put into boitung water, so as to prevent the condensation of the atram, the ebullition will immediately coase. Steam, as is well known, from its great force, and the inanner in which it can be applied to propelling machinery, is of the greatest usefuluess in manufactures.

Ifistilltian is the converting of a liguid into vapour, which is aftorwards carried off through a pipe and condensed in what is called a refrigerator. 'I'his is a vessel filled with cold water, round the inside of which the pipe in wound; and as the vapour passes throngh the pipe, it is condensed by the lower temperature of the water in the vescel.

Siquid substances give off vapour from their aurface at temperntures below the boiling-point, which is termed rropurution. It is called opontaneous evaporation when this takes plare at the ordinary temperature of the atmoFphere. A large quantity of vapour is given off from the surface of the carth und sea, which cventually for mas coudes or is condensed into rain nod dew. Evaporation alwaya proluces cold when heat is not applied; the heat necessary for it boing terived from surrounding objects. A curront of air or a higher temperature tenda greatly to quicken evaporation, as may le observed in the rapidity with which the surface of the earth dries when a brisk win punses over it.

All substan in the dark a certed into ve light is red at in a state of i becomes white

When a bo there is a quia in raising the beat, a discove ahall shortly e trine, we may perature below it receives enlo thermomitrical rise of tempera during the wh ture, as olso th rataionary at 32 tinued to be c peared, and be uame phenome verted into vap that when a bo quantity of hen passes into the Black was of op cally conbined idity. Ir. Irvin subject. H_{0} su the latent state rization, but the what is called cl of matter which than another, by beat. He concl of all solids for ell fuids hy ev further into this quitting it, we n expansion by he that water freezo sity below 393°. or below that po opecifically light afterwards descri perty of being c

The nature of to us. There ar that light is a from all lominou nght lines with seusation of light fluid filling spact theory. Lumino things, are merd An examination here entered into heat is so obviou the one iuleporn be put into a tire except the expen its temperature. municated, a ren The iron become emits light, and sources of light and stars ; and, s fire or candle. I aphere, antl, strik back by them; at of a wedge of gl:

VoL. I, -28

CHEMISTRY.

All substances become luminons when heated to 800° in the dark and 1000° in daylight, unlesa they are concerted into vapour at a lema elevatad temperatura. The light is red at first, and in this state a body in anid to he in a state of ignition. If more hent is applied, the body becomes white, when it is said to be incandescent.

When a body changes from the solid to the fluid atate, there is a quintity of lieat absorbed, which has no effect in raising the temperature. This has been called latent beat, a discovery effected by Dr. Blaek, and which we shall thortly explain. For a demonstration of this doctrine, we may have recourse to water. If iee at a temperature below 32° be exposed to a warmer atnosphere, it receives enloric, and gradually rises to that point of the thermometrical scale. But as soon as it reaches it, the rise of tenperature ceases, the ico begins to melt, and during the whole period of its liquefaction, its temperature, as also that of the water flowing from it, remains stationary at 32°. It is evident that, as caloric has continued to be communicated, a quantity of it has disappeared, and become absorbed during the fusion. The some phenomenon takes place when a liquid is converted into vapour; and the inference drawn from it is, that when a boly passes from ono state into another, a quantity of heat or caloric is lost, becomes latent, or passes into the bolly without raising its temperature. Di. Black was of opinion that this latent heat betame chemically combined with the solid, and was the cause of fluidity. Pr. Irvine, his pupil, took a different view of the subject. He sopposed that the absorption of heat into the latest state is not the cause of liquefaction and vaporization, but the ellect. The alsorption he attributed to what is called chunge of capacity for heat, or that quality of matter which causes one kind to be more or less heated than another, by the addition of the same quantity of heat. He concluded, as a general law, that the capacity of all solida for heat is increased hy fusion, and that of all fuids by evaporization. It is impossible to enter further into this interesting subject at present ; but, before quitting it, we may mention an exception to the law of expansion by heat in the case of water. It is well known that water freezes at 32°, but it does not increase in density betow 392°. It is then at this maximum, and ahovo or below that point its density diminishes. Hence ice is specifically lighter. 'The earth alumina, which will be afterwards deseribed, also possesses the remurkable property of being contracted by heat.

LIGHT.

The nature of light, like that of heat, is atill unknown to us. There are two theories respecting it: the first is, that light is a substance monating from the sun and from all lominous boties, from which it is projected in nght lines with great velocity; the second is, that the sonsation of tight is produced by the vibration of a subtile fluid filling space-and is hence called the undulatory theory. Luminous boties, necorling to this view of thinge are nerely stimuli, which excite these vibrations. An examioation of thero theories, however, cannot be bere entered into. The connection butween light and heat is so ebvious, that it is scurcely pussible to examine the one indeprodently of the other. If a mass of iron be put into a lire for some time, no change is produced except the expansion of the metal and the elevation of its temperature. Gradually, however, us the heat is communicated, a remarkable orcurrence will be observed. The iron beromes ignited or red hot; in other words, it emits light, and renders objects visible. 'The original eourees of light are, first, the celestial bodies, as the sun and atars ; nul, seconily, terrestrial bodies, us a common fire or candle. Lisht passes freely through the atmoophere, and, striking upon objects, is retpected or thrown back by thein; and thus they become visibie. By means of a wedge of glase called a prism, light can be separated

Vol. 1.--28
into seven colours, which are violet, iudig:1, blue, green. yellow, orange, and red. But it is only with the chemical agency of light that we have to do. Its influence in this way is conapicuous in a variety of notural and artificial processes. In vegetation it is indispensable, as without it plants do not acquire their due elementary constitution. They are wcakly, inoderous, and fail to exhibit their natural colour. Vegetables which grow in the dark have a blanched appearance. The power of light to dispel vegetable colours is manifest in bleaching, where a dingy web becomes pure and white by exposuro to the aun's rays. Its energy is still more decisively seen in the influence which it exerts in promoting chemical combination and decomposition, and the latter effeet has been made use of as a measure of its power. Light enters into a kind of tranaitory union witl certain substances, rendering them visible in tho dark. Bodies which possess this property are called phosphorescent; auch are the shelle of fish, tho bones of land animals, marble, limestone, and the like. The glow-worm is a remurkable instance of phosphorescence in living animals.
A renarkablo recent invention, the Daguerreotype, is wholly dependent for success upon the action of light. It consists in having a thin plate of silver, prepared with iveline, so placed that the rays of light reflected from an object to be sketched will fall upon it. This is done by putting tho plate in a camera-lucida, and the action of the light upon the iodine and sitver is such, that when the plate is sulyected to the vapour of mercury a complete representation of the olject is given. A beautiful illustration of the action of light may also be seen in photogenic drawing. Paper for this purpose is prepared by stecping it in a weak solution of nitrate of silver or bichromete of potassa. The paper must be kept from the light during the preparation; and if it is now exposed to the sun's rays with a leaf or other olject upon it, a complete representation of the objeet will be obtained. The part exposed to the sun becomes darkened, while that covered by the leaf remains of a light colour.

For a further definition of the principles of light, we refer to the article Optica.

combustion.

Combustion is a process not yet perfectly underatood. It is usually deseribed as the union of a combustible body with a supporte of combustion, attended with the evolution of light and heat. The combustible body is that which burns, but, in general, will neither support combustion, nor burn except in the presence of a supporter of combostion. The suppoter, again, does not itself hurn, though necessary to the burning of a combustible. Oxygen gas, the ingredient which enables the air to aupport combustion, possesses, when pure, a bigh degree of the supporting quality. If a lighted taper, a conbustibe body, bo plunged into this gas, the taper burna vividly, but the gas itself is not ignited. If, on the other hand, the taper be plunged into a combustible gas, auch as pure coal gas, the gas is instantly ignited, but the taper is extinguished. These are general rules, relating to suphorters of combostion and combustible bodics. By examining the ellects of conhustion, in the case of a candle burning in the air of the atmosphere, it has been prowed pretty clearly that a chemical action of the following kind takes place:-The combustible matter of the candle consists chicfly of two simple bodies, hydrogen gis and carbon, while oxygen is the supporter of combus tion in the air. On burning a catdle under a bell-shaped glass, filled with common air, a lluid gathers on the glass, which proves, on examination, to be pute water. The bydrogen of the burning borly has here entered into combination with part of the oxygen of the air, forming water, a compound of the two. The carbon of the burning body also enters into union with a portion of the atmospheric oxygen, forming curbonic arid gas, w iuch

T

In ler Aloating in place of the original quantity of oxygen. The presence of these can te proved, and the same procese takes place in the easo of coal, wood, \&c. Thus it us seen that combuation only changea the forms of the murned bodies, and does not annihilate them. Planta, moreover, will soon extract the carbon again from the carbonic scid, and the hydrogen from the water, leaving the oxygen once more in the atmosphere to aupport combuation, and futill ita other uses; while the other priaciples render wood combuatiblo anew. This round of changes goes on unceasingly, without any ingredient being destroyed.
The phenomenn of combuation are thua so far explicable, but unfortunately the source of the light and hcat yet remains a mystery. It is unkuown whother the chemical action ia the cause of the light and heat being evolved, or the evolution of these the cause of the chemical action. Where all is doubt, it would be vain to dwell on this point. The lawa atated respecting combuatible bodies, and supporters of combuation, only apply geuerally, it is also to be observed, and under ordinary circumstances. Under the oxy-hydrogen blowpipe, the most incombustibo bodiea can be made combuatible; and combustion can be shown to take place under an exhausted receiver, without the presence of any supporter, at lenst of a gaseous kind. We must wait in paticnce for a solution of these difficulties, until the genius of man has discovered more delicate instruments of philosoplical inveutigation than any with which we are as yet acquainted.

atr and water.

Air,-By the examinations of modern chemints, it has been shown that air is not an eloment, but ia a compoumd body, consiating chiefly of two gases, oxygen and nitrogen. It also appears that the oxygen is the really active egent in relation to animal respiration, and that the nitrogen is a mere diluent in the mass, on the same principle as water may be made a diluent of apirits. We aubjoin the exposition of Mr. Hugo Reid (Chemiatry of Science and Art) on this aulject:-"' The air consisis mainly of nitrogen and oxygen, in the proportion, if these ingredients ane alone regarded, of

Orygen, Nitrogen,	- -	$\begin{gathered} \text { By masaurb. } \\ 210 \end{gathered}$		By wright. 231
	-	790		769
		1000		1000

It almo containg, as constant ingredienta in overy situation, a little carbonic acid gas and vapour of water. In volume, the carbonic acid forms about 1-2000tly part; or 0.5 parts in 1000 by measure; which is equal to 0.75 parts in 1000 by weight. In aone situationa the carbonic acid is so nuch as 0.62 volumes in 1000 -at other places, only 0.37 volumes in 1000 . Its propartion ia greater in aummer than in winter, during night than in the day time, in elevated situationa than on the plains. The watery vapour is more variable in proportion. The mean is aupposed to be alout 10 ports in 1000 by weight, 15 by volume. The quantity is determined by the temDerature, heat being the sole cause which sustains tho vapour in the actrial state. The various methods of analyzing atmospheric air proceed upon the principle of withdrawing the oxygen. 'This may be done by a stick of phosphorus nurpended over water or mercury in e jar of air; or, which is the hest mode, by the combustion of hydregen nixed with the uir to be evamined. The premence of carbonic acid gas is shnwo by acitating a quantity of "nir with lime-water. The cartonic acid and lime unite, and form the insc'ulle enrbonute of lime, which, ditlused through the liquid, renders it milky and opaque. Cha exposing to the air a saucer of lime-water, a thin erunt or pullicie of carhonate of time will be soon found on the nurface of the liquid, firmed in the amme manner. The yuantity of curbonic acid may be judged of by passs.
ing a little solution of cauatic potuch into a vessol of as over mercury; and observing how much of the gan is withdrawn, this aubstanco removing tho carboule acid. or, by adding watar of baryta gradually to a large quanlil; of uir in a bette, and agitating. The carbonic acid net. tralizea the baryta; and the liquid ia added until there ie a slight excoss of baryts, as indicated by a slip of turmerm paper being now rendored lrown by it. The liyuid added previoualy has exactly neutralized tho carboric acid; and in doing so has combined with an equivalent proportion of that substance, the quantity of which is thua indicated. The presence of watery vapour in the air may le demonstrated by exposing chloride of calcium or cauatic potauh. It absorbs the moisture, melts, and is found to havo incrensed in weight. Strong sulphuric acid abstracta the moisture from air, increasing in buik and becoming weaker. The dewpoint hygrometer ales indicatea the presence of moisture in air, and points cut the precise quantity. The four bodies which enter inlo the composition of the air are regarded as mechanically mixed, not chemically conbined with each other. It is known from the nature of aerinal bolies that they would mix thus, though re:: combined-that they would not arparate and arranfe themeelves according to their resperstive appecific gravitisa-lut would each be diflused through the whole space to which it had access. The only two likely to be chemically combined are tho nitrogen and oxygen; and the great facility with which the oxygen is acparated from tho nitrogen, as well as not being in equiva. lent proportions, shows that they are not in close chemical union. The oxygen ia tho clief agent in the importana operation of breathing or respitation of animals. Each individual ia aupposed, on an average, to breathe about twenty times every minute-to tako in shout sixteen cuhis inches of air (12.8 nitogen +3.2 oxygen) at each inspi-ration-to return nearly tho whole of the nitrogen (12.8 cubic inches), and 4.5 tha of the oxygen (2.50 cubic inches), and to replace the remaining 5 thi of oxygen by an equal volume of carbonic acid (64 cubic inch)." The oxygen of the air is the great meana of procuring heat and light, by its action with combustible bolies.

Water.-Water was also at one period believed to he a simple element in naturo; but this supposition has given way before the examination of chemists. Water is now known to be composed of oxygen with hydrogen gas, in the relative proportions of 8 of oxygen to 1 of hydrogen. Into these aubstances can it be resolved by the artion of electricity or fire, but nt such a cost as to render the process unsuitable for economic purposeat Pure water, in eliemistry, in calked an oxide of hydrogen. It may be formed ly exploding a mixture of oxygen and hydrogen in a tube by the energy of electricity. Sear water (see article Ocrax) contains, in 1000 parts, about 46 of forcign matere, chiefly chloride of sodium. lits apecific gravity is $1.027 .^{\circ}$ Mineral waters, in a similat manner, contain varioua forcign bodiea; as, for exampla,

- Specific Gratity is thn relative gravily or weight of any bolv or substance, compared with that of somne other body whica has heen fixed upon as a aiandarid. Hy univeral consent, pure distilled water hasa been agsunged na a standnrd; and it forib nately happena thas a euhic fool of pure water weighas exuets 1. When, therefore, il is expressed that any body has a apecifc gravity of 2 . lhen, bulk for bulk, it is juat twice has weight of watre. If there be more figures than one, and there le a tol or noim belwerent hemothun, 25-the unit is here divined inte or noim belwernit them-than, 2 and five-teath timen, or twand
 10 -40- hle unit ia supposed to he divided into a hunded pars, and tha forly is ten and forty-huadredh gart times heavirs hian water. If there are liree figures, the unit ia supposed tale divided into a thousamd paris if four, into ten thoukand patis, abd mo on; the number nad value of the ligures atwayn isdoAhtith the exaet apecfic gravity of the looly according to the chlatg the exact apecfic gravily of he botmetinus saken as anvartard with which to compare gamen. an in the instmuere mentionsd it

 the solids aud fluida are estimaled whit regad t. whior
eartwonaled reoua wate chalybeate of iron. $\quad V$ anion of the chanical mi be removed diatillation a pure liquid. When it con to be hard, a which is emp

Acids are poinds and -The great are very corr vegetable blu and they uni axides, formin of the highest Some acila ar for the threo characteriatic. of them have a number of shall be immed The acid is d its degree of o contains, hy th the prefix hypo ation is marked the sall which ate: the next b which is formed the loweat by h orygen counbin able radicals, in peroxygenated. various degrees anly one. The and the number of new onea; b and these we al bases.

This term h compounl, in d_{t} alkali, carlh, or of the constitue stance does not red cabbage, it peculiar powers cealel; they ar bodien combine affinities, they as the predominane infusions, the sa super or bi, is us the contrary, the quantity necessa base, the salt is : the prefix sub is niderstook, how exceptions to be compounds form or a metallie ox cerlain salte form acid he perfectly a sali formed by of an alkali, in double proportion
entrozted waters, whish contain carbonic acid; salphureous waters, which hood sulphureted hydrogen; and chalybeate waters, which contain sulphate or carbonate of iron. W'aoor may be lmpure, either by the chemical union of these and other foreign bodies, or by the mechanical mixture of substances. The latter may generally be removed by filtration, but when the union is chemical, distillation ond other processes are requisito to produce a pure liquid. In nature, water is never altogether pure. When it contains a chemical compound of lime, it is said to be hard, and in this condition it decomposes the soap which is employed with it.

ACIDg.

Acids are a most important class of chemical compo mils and have the following characteristic propertics: -The greater number of them have a sour taste, and ara very corrosive. With few exceptions, they change regetable blues to red, they are moatly aoluble in water, anil they unite with the alkalica, eartha, and metallic mades, forming what are called aalta-an order of bodies of the lighest importanee in the arts, manufactures, \&c. Some acids are destitute of a sour taste, but their affinity for tho three classes of hodies above named is a universal characteristic. Acid̀ are all compound bodies, nnd some of them have moro than one hasis or radicdl. There are a number of acidifying principles, but oxygen (which shall be immediately describcd) ia the most extensive one. The acid is distinguished by the name of its base, and its degree of oxidation, that is, the quantity of oxygen it contains, by the termination of that name in ous or ic, or the prefix hypo (under). The highest degree of oxygenation is marked ly the termination i r, as nitric acid, ond the salt which is formed from it is mado to terminste in ate ; the next by that of ous, os nitrous acid, and the salt which is formed from it is made to terminate in ite; and tha lowest by hypo, as the hyponitrous aeid. Sonetimes oxygen combines in a greater quantity with the acidifiabla radicals, in which case the product is said to be superoxygenatel. All acids are not susceptitle of these various degrees of oxygenation, some being limited to anly one. There are a consideralle number of acids, and the number is continually inereasing by the discovery of new ones; hut of the most important there are few, and these we shall notice as we coma to treat of their bases.

AALTS.

This term hos been usually employed to denote a compound, in definite proportions, of acid matter with an alksli, earth, or metallic oxide. When the proportions of the constituents are so adjusted that the resulting substance does not affect the colour of infusion of litmus or red cabbage, it is then called a neutral salt, because the peculiar powers of both bodies are sunpended and concealed; they are reudered neutral or inactive. When bolies combine in such a way as to satisfy their mutual affinities, they are said to soturate each other. When the predominance of acid is evinced by the red of these infusions, the salt is said to be acidulous, and the preiix mper or $b i$, is used to indicate this excess of acid. If, on the contrary, the acid matter is deficient, or short of the quanlity necessary for neutralizing tho alkalinity of the lase, the salt is then said to lie with excess of base, and the prefix sub is attarhed to its name. These nust he noderstoon, bowever, only na general rules. There are axceptions to be found in the ease of some salta, os the compounds formed by an acid and on alkali, an earth, or a metallic oxide, are denomiuated. For example, a certain salt formed by nitric acid and lead, though the acid le perfectly neutralized, reddens vegetable bhes; and a salt formed by boracic acid with suxia retains the powers of an alkali, in the reapect in question, though with a double propottion of acid in it.

METALS, OXIDEE, EARTHS, AND ALEALEE.
We arrange thene classes of substances together, beo cause, although they are to a certain extent distinct, yet they have all a vary remarkable relationship, as wo shall ahortly see.

Many of the metals, such as iron, lead, \&cci; are familiarly known to every one, but there are a great many others which are very rarely to be met with. The fof lowing are some of the charaeters which distinguish metnls from other bodies:-They ore, for the most part, hard and heavy, and are all opaque; insoluble in water; they possess a peculiar lustre; ndmit of being so highly polished as to reflect light; are capable of being melted by heat, and recovering their solidity by cooling; most of them may be extended by hammering, and all are rapid conductors of electricity. They are of various colours, and require different degrees of heat to fuse or melt them. They generally occur in the earth in what are called reins, and are seldom founl in the pure metallic atate, but generally in conbination with some other substance, in which stato they are called ores. The metals, which are all simple bodies, will be individually described afterwards.

Most metals, when subjected to heat until they become melted, combine with the oxygen of the atmosphere, and form what are called oxides. Oxides are destitute of those properties which distinguish the metal from which they are formed. Instead of being bright, shining, elastic, and ductile subatances, they are generally a dry, earthy-looking powder. Other substances besides metals, however, are capable of being converted into oxides; and it must be kept distinctly in view, that in every case there is not so much oxygen imparted as will produce acidification. Oxygen frequently continea in various proportions with a aubstance, rendering it an oxide, but without advancing it to the state of an acid. In order to distinguish each compound thus formed, the language of chemistry is very aystematic. The first is called a protoxide; the second, a deutoxide; and a third, a paroxide.
The term Earths was formerly, and is still, but in a modified sense, applied to several substances which compose all the various rocks, stones, gems, mountains, and soils, covering tho surface of the globe. They are tastoless, inodorous, dry, uninflammahle, sparingly soluble, difficuit of fusion, and of moderate specific gravity. These bodies will be more particularly deseribed when we come to treat of their metallie bases. Alkalies may he defined as lowlies which comline with acids so as to impair or neutralize their activity, and produce what are called selis. They are distinguished by properties the reverse of acids, and the two classes are generally lookei upon as antagonist substances. Besides the power of neutralizing neids, there are four alkalies, namely, potash, soda, onmonia, and lithia, which possess the following properties in a high degree:-They change vegetable blue to green, red wo purple, ond yellow to a reddish brown; they have an acrid and urinous taste ; they are powerful corrosives of animal matter, with which they combine so as to produce neutrality; they also units with oils and fats, forming the well-known subatance soap; they combine with water and alcohol in any proportion Four of the earths, namely, lime, haryta, strontia, and magnesia, possess alkaline properties to a considersble extent, and are hence colled alkaline earths. These bo dies differ from the pure alkalies, inasmuch as they bo come insoluble in water when nentralized by carlonic aeil. Morrover, alkalies possess the power of changir: vegetable colours after being saturnted with carbonic acid and by this criterion they are distinguished from the alkaline eurths.

It was long ohserved that the propertics of earthe vey nearly resemble those of the compounds of oxygen and metals called netallic oxides; but it remain id firr the
brilizant genixa of Sir Humphry Davy to show that poth the eartha and alkalies are metaliso oxides It thus appears, then, that the globe is one vast mase of various sinds of metala, disguised by various substances, but chiefly by oxygen. Earths and elkalies are simply metallic oxidea; whilst a farther impregnation of these subatances with oxygen produces an acid; and, laatly, tho union of acids with alkaliea, \&c., gives rise to that very nomerous and important clase of aubstances called salts.

Of the elemental suhetances at present known, six neem capable of combining with all the others. When combined with a certain portion of the other simple bodies, they form acids; and when with the reat, they conatitute bases or alkaline bodies, which are capuble of uniting with and neutralizing the ncids, as we have formerly olserved. To these six bodies tho name of supporters of combuation has been given. The eighteen bodies, which, when combined with the supportera, beoome acids, have been distinguished by the name of acidifiable bascs. The thirty-one bodies, which, when united with the aupporters, becomo alkalies, havo been called alkalifable bascs. Tho simple supporters of combustion are as follow :-Oxygen, chlorine, bromine, iodine, duorine, and sulphur.

OXYGEN.

Oxygen gas is a permanently elastic fluid, that is, nno which no compressing force, or degree of cold, hitherto applied, has ever beer: ablo to reduco to a liquid or solid form. It forms, as we have already observed, one of the constituents of the atmosphere, is colourless, and destitute of taste and amell. Its specific gravity ia 1.1111 , that of common air being reckoned unity. Combuatible bouliea burn in it with moro brilliancy, and more light and heat is evolved, than when combuation takes place in the atmoaphere. If a candle, the wiek of which is red-hot, be introduced into a versel containing oxygen, the candle will instantly be lighted. Oxygen has the power of combining with every other simple boly; the multifarioua compounds which it thus forma, such as oxides, acida, and bases or alkalies, we have already adverted to. In the act of respiration, oxygen, in the nice economy of the human boly, is mado to unito with, and becomes a portion of the human frame. Vegetahles also inhale and exhale it at certain seasons, so as admirably to supply what is absorbed by animals. It is the intensely rapid chemical union of oxygen with the combustible body, which gives rise to the light and heat in our common fires, candles, \&c. It may be readily procured from a variety of substancea, as, for instance, from saltpetre or the black oxide of manganeze. These may be intioduced into a gun-barrel, with the touch-hole plugged up. From the orifice of the barrel let a tube be conducted into alt inverted glass jar, filled with water. When the ether extrenity of the appsatas is subjected to heat, the oxygen gas is expelled frons the manganese, snd eutering the glass jar, displaces the water and fills the vessel. This is a cheap and easy method of obtaining this recaarkable aêrifurm body.
Oxygen can be prepared by putting 1000 graina of oinoxide of manganese into a retort with an equal weight of aqueous sulphuric neid. This is done by means of a retort fixed over a spirit-lamp. The bent tube of the retort enters a pneumatic trough, in which jars are placed for raxeiving the gas as it pussers from the neck of the retort.

hybronex.

Hydrogen gas is a permanently clastic fluid, transparent and colourless, and when pure, destitute of taste or amoll. It can scarcely be said to exist in an inolated aste, but it forms one of the constituents of water, from which it can le disengaged by various simple processes. 4 is the lightest body with which we are acquainted,
and is omployed in combination with other gaser to in flate balloons. A bladder filled with this gas will ascend in the atmosphere, in the samo manner as a piece of cork or wood plunged by force to the bottom of a vessel of water. Hydrogen will not support combustion, but is itself remarkably combustible. When one volume on oxygen ia mixed with two of hydrogen, it burna with a loud explosion, by an electric spark, or the contuet of a red-hot fire. The product of this experiment ia water It is said that a few cautious draughts of this gas may be taken, but it cannot be inspired for any length of time without occaaioning death. Frogs live in it for a long time, showing these animals to be very tenacious of life. By far the most important compound of hydrogen with any other substance is that with oxygen, forming the indispensable fluid which covers nearly two thirds of our glole, water. It unites with the other supporters of comhustion; but the compounds, excent muriatic acid, alreedy mentioned, are not of any great importance.
Hydrogen may be preparel ly putting $\mathbf{5 0 0}$ graina of zinc into a common beer bottle, and pouring upon the zinc three ounces of water and five drachma of aqueous aulphuric acid. The hydragen is disengaged, as the acill, the oxygen in the water, and the metal comhina By means of a bent tube from the bottle, the gas can ba conveyed into jars placed in a trough.

azote, or mitroaen.

This gas is permanently elastic, transparent, colour less, and inodorous. It is a very litte lighter than oxygen. When breathed, it destroys animal life; and a burning body, if inmersed in a jar containing it, is instantly extinguished. It is not combustible; it entera extensively into combination; it is an abuidant element in animal matter; sud its existence in such large quantity is clisef distinction between the conatitution of anima1 asd vegetable life. Its existence in the utmosphere wa hava already adverted to. Whether is chemically united with oxygen in thst compound, or only mixed with it is not precisely known. That it has the property of combining with all the supporters of combustion, there can be little doubs; but the subject has not jet beet thoroughly investigated. With oxygen it unites in ma fewer than five proportions; by far the most inportars being

Nitric Acid, or Aquafortis.-Thia virulent substance is a compound of one volume azotic, and two aud a half volumes of oxygen gas. Common nitric acil is of an orange colour, on account of its containing a little muriatic acid, as also a little sulphuric acid and water. Light has likewiso an effect upon it. The glecific gravity of the strongest procurablo nitric acid is 1.55 , and then it contains onc-seventh of its weight of water; that of conunerce is about 1.423, and containa two-fiflhs of its weight of water. Nitric acid han very remarkable effects uporn water with regard to the production of heut. If diluted with half its weight of water, heat is evolved; but if the water be in the state of snow, intense cold is the result. Hence, thia compound is employed to pro duce great degrees of cold. If nitric acid highly con. centrated be thrown upon phosphorus, charcoal, or oin of turpentine, it inflames them. It is very extensively und in the arts, and forms a numerous and tumporant chass of salts, having the generic name of Nitrates, surb as nitrate of silver, nitrate of potash, \&c. Sone of these we shall notice atherwards. Nitious acid is a con. prond of the same kind, but with a lesser quantity of oxygen. Amougst the other compounds of tizote and oxygen, that cutided the protoxide of cazoie, or, as it wat formerly called, niurous oxide, is the nost romawhable Davy diweovered that we may breathe it for a thort whith without any dffect leing produced, except an eshilarn tion of the mind. Combustibles burn in it more brillian d
mant in cor sad a hyponi detail. Axo bromine. \mathbf{N} retort about sulphuric aci aubjected to condensed, is
Anmonia, 4 formed by and is obtaine callod sal am acid and amm into a ratort, a heat. Ammo to be collected moniacal gas an acrid caua lungs. Ita ape 780 times its employed for ch with chlorino, place. The el ammonia, and disengaged in th convines with moniec. Ainm pertiea distingui decijed manner salts which it f importance.

This is a gase a strong sufficat gent taste. Rec is $2 \cdot 5$. If breath however, it not o the remarkable metala, evon nt when beaten ou it. The combina Chlorides. Chlori all vegetable colo uxposed to its a sioned the intro if unblcached line which gives the the substance as: however, must be pure and not su fibre of the cloth four different pro oxygen as to for perchloric acid; any acid properti and are called p chlorine. Beside lines with hydro called
Muriatic Acid.logether in equa daylight in a glas bine and even ex light or the light gas result. Its s stato this gas is under $v_{4} y$ strong Water ausorbs il at 69° abworlis 41 proditeed, and, wh creased to 1.3433 acid. With thea cific gravity is 1.1
anan in common arr. There is also a deutoxide of azote and a hyponitrous arid; but these do not require minute dotail. Azote combines likewise with chlorine and bromine. Nitric acid can be procured by filling a glass retort about one-third full of equal weighte of aqueous nulphuric acid and cominon nitre. The retort is then subjected to heat, and a vapour lis distilled over, which, condensed, is nitric acid.
Ammonia, or Hartshorn.-This important substance t. formed by the combination of azote with hydrogen, and is obtained in the state of gas, by means of the salt called sal ammoniac, which is a compound of muriatic axid and ammonia. This substance is to be introduced into a retort, along with quicklime, and then subjected to heat. Ammonia is driven off in the form of gas, and is to be collected in glass jars standing over mercury. Ammoniacal gas is colouricss, has a strong pungent smell, an acrid cauatic taste, and cannot be drawn into the lungs. Its apecific gravity is 0.59027 . Water absorbs 780 times its volume of this gas, and in this state it is employed for chemical purposes. When the gas is mixed with chlorine, a sudden combustion and detonation taka place. The chlorine unites with the hydrogen of the smmonia, and forms muriatic acid, whilst the azote is disengaged in the state of gas. The muriatic acid formed, convines with a portion of ammonia, and forms sal ammoniec. Ammonia is an alkali, and possesses the properties distinguishing this class of substances in a very decided manner. It of course neutralizes acids, and the salts which it forms are numerous, and of considerablo importanco.

CHLORINR.

This is a gaseous body, of a yellowish-green colour, - astrong sufiveating amell, and of a protty atrong astringent taste. Reckoning air as unity, its specific gravity is 2.5. If breathed undiluted, it dostroys animal life; however, it not only supports combustion, but possesses the remarkablo quality of setting fire to many of the metala, even at the common temperature of tho air, when beaten out into thin leaves, and introduced into it The combinations of metals with chlorine are called Chlorides. Chlorine possesses the property of destroying all vegctuble colours, and of rendoring vegetable bodies, exposed to its action, white. This property has occasioned the introduction of chlorine into bleaching; for if unbleached linens bo exposed to its action, the matter which gives then their gray colour is destroyed, and the substanco assumes a brilliant whiteness. Chlorine, however, must be used cautiously, for if applied in its pure and not sufficieutly diluted state, it destroys the Gibre of the cloth. Chlorine combines with oxygen in four different proportions; two of them contain so much oxygen as to form acids; these are, chloric acid and perchloric acid; but as the other two do not manifest any acid properties, they are to be considered as oxides, and are called protoxide of chlorine and peroxide of chlorine. Besides uniting with oxygen, chlorine comlines with hydrogen, and forms the well-known acid called
Muriatic Acid.-If chlorine and hydrogen be mixed together in equal volunes, and exposed to common daylight in a glass flask, they will in a littlo time comhine and eveu explode in combining, if exposed to sunlight or the light of a candle; two volmnes of muriatic gas result. Its specific gravity is 1.8244 ; in its pure state this gas is transparent, colourless, and elastic: under $v_{1} y$ strong pressure it condenses into a liquid. Water ausorbs this gas with avidity. One cubic inch at 60° abwerbs $417,5 \% 2$ cuhic inches of the gas; heat is produced, and, when cold, the bulk of the water is increased to 1.3433 cubic inches. This is liquid muriatic scid. With these proportions of constituents, its specific gravity is 1.1958 : one hundred grains of it consist
of $\mathbf{4 0 . 3 9}$ of real acid, and $\mathbf{5 9 . 6 1}$ of water. It is a en lourleas liquid, and, when exposed to the air, it smokea because the gas exhaled condenses the moisture of the atmosphere. It extinguinhea both flame and life, and is not inflammable. It is of a pungent, suffocating, and somewhat aromatic amell. It powerfully redilens vegetable hlues. The best method of obtaining it is by pouring sulphuric acid upon an equal weight of sea-salt, and collecting the gas which is given off, over mercury. An inmense number of ealte are formed from the combination of muriatic acid with oxides; such as common ece-salt, which is a muriate of soda. These are very extensively uaed, both in the arts and meducine. Chlo rine combines with azote, and forms what is called

Chloride of Nitrogen.-This is an oily liquid, and the most powerfally explosivo compound known. In this respect it is one of the most dangerous aulatances of nature ; it consists of four volumes of chlorine combined with ono of azote. Chlorine combines with carlon, but the compounds are unimportant.

bromine.

The term bromine is from a Greek word, signifying "s strong disagreeable odour." This substance was discovered only so lately as the year 1826 ; it resembles chlorine in many of its habitudes. It is of a brownishred colour, very disagreeable smell, sharp strong taste, powerfully corrosive of organic bodies, and, when taken internally, a violent poison. Its apecific gravity is 2.96; it destroys vegetable colours almost as powerfully na chlorino. Like chlorine, it sets fire to certain metala when brought into contact with it ; it is not combustible; and it extinguighes combustion; it becomes solid at a little below zero; but if combined with water, so as to form a hydrate, it atiords fine red crystals nt 32°. An acid is formed by the combination of bromine with oxygen, and is csilled bromic acid; another with hydrogen is called hydrobromic acid. Chlorine also combines with it, and forms a chloride. There are numerous other combinations of bromine, but the compounds are unimportant.

SODINE.

This substance was first discovered in 1811, by a aitpetre manufacturer of Paris. It is derivable from sod plants, and in seme of its properties much resembls chlorine, which is also a marine production. If com mon sen-weed the powdered dry, and treated with sul. phuric acid whilst aubjected to heat, a violet-coloured vapour is expelled, which, if collected in a vessel, condenses into scaly dark-gray crystals, with somewhat of a metallic lustre. These are iodine, so called from the violet-colour of its vapour; iodine being a Greek word, and signifying "violet-coloured." Its specific gravity is $\mathbf{3 . 0 8 4 4}$. Its smell is disngrecable, its taste acrid and hot, and it possesses poisonous properties. It is a powerful stimulant, and has of late been much employed as a medicine. It destroys vegetublo colours, but not so completely as chlorine. It melts when heated to 2241°, and volatilizes at $351 \mathrm{t}^{\circ}$. It forms a beautiful blue colour whon mingled with water holding starch in solution; it is itself slightly soluble in water, but more so in alcohol and ether. Iodine combines with oxygen in three proportions, forming iodic acid, iolous acid, and oxido of iodine; with chlorine, forming chloriodic acid; with hromine in two proportions, forming bromides; and also with azote and hydrogen. A compound of iodine und azote is exceedingly explosive. But a par ticular necount of theso substances do nc require to lo given in this place.

FLUORINE.
The existence of this substance, strange to say, in conjectural ; yet its separate ilentity is supported by
the atrongent analogiew. It exiats, or rather is supposed "o cxist, in fluor or Dethynhire apar, and is thus provisionally called ficorine. If some of this mineral in powder be distilled with otrong sulphuric acid, from a leaden retort (a vensel somewhat of the ohape of common Rupert drops) into a leaden receiver kept cold with ice, an intensely active fuid is produced. "It has," mays Davy, "the appearance of sulphurle acid, but it is much more volatile. When applied to the ekin, it instantly disorganizes it, and produces very painful wounda. When it is dropped into water, a hissing noise is produced, with much heat, and an acid fluid ia formed." This substance has been called hydroftworic ocid, because it is conjectured to have fluorine as a base, combined with hydrogen, to form an acid, upon the principle which we have lormerly described nher views have been adopted with reapect to tnis aubstance, but tha above is the one now genorally admitted.

carbor.

Carbon or charcoal is found in many different forms, and can be prepared by burning wood, coal, \&cc., in close vessels. The diamond is pure carbon, and plumbago or black-lead is principally composed of this substance with a little iron. It burna in oxygen with considerabla brilliancy, although in cemmon air it emits but a feeble light. If carbon be burned in a close vessel, filled with oxygen, the carbon will be entirely conalumed, and the oxygen 60 much changed, that if a lighted toper be put into it the light wili be extinguished. Carbon combines with all the supporters of combuation, and with oxygen forms carbonic acid. This acid may be prepared in the pneumatic trough, by putting into the retert an ounce of hydrochloric acid, previously mixed with two ounces of water, along with a tableapoonful of the carbonate of lime. An effervescence takes place between the acid and the lime, carbonic acid gas being given off, which can be collected in the jara and condensed in water. Carbonic acid is fatal to animal life, and the gas will extinguish a candle introduced into it.

Oxalic Acid.-This aubstance, which is also a combinotion of carbon with oxygen, may be formed by digeating sugar along with nitric acid. The acid is depoaited in small cryatala, which heve an intensely acid taste, and, when taken internally even in small quantities, destroys life. It combines with bases, and forms a genus of salts called oxalutes. Carbon is capable of uniting with chlorine in threc different proportions, with bromine in one or two, and with iodine in two. But we must pass from these compounds to those of far greater moment which it forms with hydrogen.
There are many combinations of carbon with hydrogen, and much uncertainty prevaila both with regard to their number and nature ; they are all deaignated by the name hydrocarbons, or more properly hydrocarburets.

coal gas.

Carbureted and hicarbureted hydrogen bear very different relations to the well-being of man: the former, when a spontaneous production of nature in mines, is one of the moat terrific instruments of deatruction, and - great obstacle to human industry; for, by mixing with a ceitain quantity of common air, it acquirea the property of exploding when accidentally kindled, and thoueanda of human livea have fallen sacrificea to its violence, until Sir Humphry Davy's invention of the safety-lamp divested it of its terrors.

Davy's afety-lamp consists of a common lamp surrounded with wire-gauze. On analyzing the carbumed hydroges or fire-damp, Bir Humphry Davy found that it would kst explode when mixed with less than aix timen, or with nore than fourteen times, its volume of sunumpheric air, that sir rendered impure by the com-
bustion of a candle will not explula fire-damg, tnough the candle will atill burn for a time; and that, if a candle be burnt in a close vessel, with amall aperturea only above and below the flame, no explosion will enaue The flame within will be enlarged, but no explosion take place; and It was found that tho gas from mines will not explode in a tube less than oneaighth of an inch in diametor.

Bicarhureted hydrogen is the chicf, although not the most abundant Ingredient in coal gas, now no generally uned for illumination; the other ingredienta are carbureted hydrogen, hydrogen, and carbonic oxide. Coal gas is mada hy introducing a quantity of bituminoun coal into a large iron cylinder called a retort, clone at one end, and furnished with a mouth-piece at the other, for closing or opening it ; there ia also a tube for carrying off the gas and other products as they form. A quick strong heat is applied round the cylinder, and a vat quantity of gas, composed of the four ingredienta just mentioned, is thus extricated, with tar and an ammoniacal liquor, both of which are condensed by passing through pipes immersed in cold water. There is a great difference in the relative proportions of the gases in the mixture, as also in the quantity of tar, according to the quality of the coal and the mode of applying the heat. The more tar the gas holds dissolved, the more dense will be the flame when the gas is made to burn, and the more disagreeable will be the amell when it is not burning. A slow hest give much tar and litile gas, and that little of a poor quality; a quick heat gives much gas, of good quality, and lces tar. Owing to these and other causes, the illuminating power of coal gaa varies much. Before it ia let through the conducting tubea for public conaumption, it is well agitated in contact with a mixture of lime and water, or passed through strata of loosely strewed hydrate of lime; it is thus deprived of much of its smell, and also of some of its illuminating power. On an average, a chaldron of good Newcastle coal, weighing 25 cwt , will afford 12,000 cubic feet of gas, provided that the retorts are new. After being used a few months, the product will not exceed 11,000 feet, or even 10,000 . An illuminat. ing gas of this kind is sometimes presented ready formed by nature. A village of Fredenia, in the western part of the state of New York, is lighted with this gas as it naturally issues from a rock; the flame is large, but not quite so brilliant as that of conl gas." A seheme was re cently in agitation for lighting the towns of Neweatle and Gateahead with a naturna gas which issues from the Wallgend coal-pits. This gas is diluted with about 10 per cent. of atmospheric air, but is otherwise remurkably pure. Oil gos being of a similar nature, it need not be particularly described. There are other less important compounda of carbon and hydrogen, and the whole correapond with the law of multiple combination slready described. Naptha and napthaline are byilrocarburets; the former ia a transparent volatile fluid, the other is a transparent volatile solid, which assumes the form of crystalline platea: both are uotained from coal tar by distillation.

Cyanogen.-This substance is a gascous compound of azote and casbon. It hurnd with a purple flame, and destroys life on being hreathed. Cyanogen unites with a varicty of bodies, and forma unany important compounds.

BORON.

The oorax of commerce is a compound of boracic acid and the alkali called soda. Boracic acid is a compound of oxygen and boron, in the proportion, it is aupposed, of one atom of the latter to three of the for mer. Pure boron is an opacue brownish-olivi powde,

- Donovan's Chemarry, p. 117.
uffunible, an IL has yet b acta upon counbines w

Boraric A pertics of an hary tomper It displaces ceedingly use nobler. Wh vitriol being itself in scal end, if the s flame. Bora clear glass, of considerab fusible nature fux. Flux soy subatance of minerala. hodies ; the Boracic acid with oxygen. vered of boron bines with chl the name of be with fluorine,
Fluaboric Ae is colourless, h similar to muri veeses in power sccount someti eûblure in gas wems to consis nine. The com and carbon, are

Quartz, or ro able a portion o tielly of a pecul acid. This sub base which has decp brown colo ance and in its re gera, and adheres it. It can be ex leing fused; aft 1.837. It diamo scids with great by them singly. potash or sochn. vividly at the oxide is disenga carbon being de verted into silica silicon and ono with calorine, fo culourless volati end probably a unites and forins
Fluosilicic Aci parent, colourles. It smokes when absorbed by wate oities wath carbo

Sulphur, or br stice is too famil scription. In in atate of great pu countries, and minerals i! is a
tufumible, and not volatile at any temperature to which is hes yot been subjected. It neithor dissolves in nor act upon water. At sbout 600°, it takee fire, and combinea with oxygen, forming
Boracic .Acid.-This substance evinces the usual properties of an acid, but it is not a powerfui one at ordinery temperatures. At high temperaturea, however, it displaces the strongeat of the other acida, and is exceedingly uecful in fluxing out the baser metals from the nobier. When the acid is detached from borax, by vitriol being poured upon that compound, it exhilhits ituelf in scaly crystals. It dinsolves in rectified spirits, end, if the solution be set on fire, it burns with a green flame. Borax itself, when heated, meits into a perfectly clear glass, which is the hasis of some artificial gems of considerable beatty. Borax communicates ita own fuible nature to other bodies, and hence is used as a flux. Flux la a gencral term made use of to denoto any aubstance or mixture employed to assist the fusion of minerala. There is a considerabic number of such hodies; the alkalies are those most generaily used. Boracic scid is the only known compound of beron with oxygen. There has been no compound yet diacovered of beron with either bromine or iodine, but it comfines with chlorine, forming a gaseous acid, to which the name of borochloric acid has been given; and also with fluorine, forming

Fluoboric Acid, which exists in the gaseous atate. It in colourless, has an excecdingly acid taste, and a ameil similar to muriatic acid. It containe no water, but posensses a powerful affinity for that fluid, and is on thint uccount sometimes used as a test of the presence of wubsture in gaseb. Its apecific gravity is 2.362; and it ceems to consiat of one atom of boron and three of fluorine. The combinations of boron with hydrogen, azote, and carbon, are atill unknown.

gilicon.

Quartz, or rock-crystal, which conatitules so considerable i portion of the crust of the earth, consiats essenLially of a peculiar acid aubstanco, called silica or silicic arid. This subatance is a compound of oxygen with a base which has been entitled silicon. It is a powder of a Jecp brown colour, and very aimilar to boron in its appearance and in its relations to other matter. It stains the fingers, and adheres to every thing that comes in contact with it. It can be exposed to a very high temperature without loing fused; after igoition, the apecific gravity is about 1.837. It diasolves in a mixture of fluoric and nitric ucids with great facility, although it is not acted upon by them singly. When mixed with dry carbonate of potash or sodn, and lieated far below redneas, it burns rividly at the expense of the carbonic acid; carbonic oxide is disengaged, and the residue is tinged black by carbon being deposited. By this process silicon is converted into silica, which is a compound of one atom of silicon and one atom of oxygen. Silicon combines with chlorins, forming a chloride of silicon. This is a colourleas volatile liquid, baving a suffocating amell, and probably acid propertics. With fluorine, silicon unites and forms

Fluosilicic Arid.-This is a gaseous substance, transparent, colourless, and having a omell like murintic acid. It smokes when mixed with moist air, and it is rapidly sbsorbed by water. Its specific gravity is $\mathbf{3 \cdot 6}$. It comoines whe carbon, but no other compounda are known.

8ULPHUR.

Sulphur, or brimstone, is a substance whose appearance is too familiarly known to require a particular description. In many parts of the world it ia found in a atate of great purity, It occurs plentifinlly in volcanic countries. and is an abundant ingredient in various winerals It is a non-conductor of electricity, and when
rubbed, becomea highly electric. It has a apecifie gre vity of $\mathbf{2 . 0 3 3 2}$. When heated to 170°, it is volstiiizel, and the result is a fine powder called fowers of sulphur It melta at 218°, but at 340° it becomes thick, and from 482° to its boiling point, about 760°, it geta thinnew When auddenly cooled, it remains eof, in which atate it is used for taking lmpressions. It in extendivoly used in the arts; for instance, in the manuficture of gunpowder. With oxygen it combines in four proportions, forming four comp'',nds, ail of which pomuses acid properties.

Sulphurous Acid.-Whe.. sulphur in heated to 800° in the open air, it takes firs, and burns with a pale blue flame, at the same time omitting abundance of fumes of a auflocating nature, which are sulphurous acid. It is colourless, axtinguishes flame, is not inflammable, converts vegetable blues to red, forma a clase of aalta called Sulphites, and has a specific gravity of 2.2222. This gas bleaches various textures, as those of silk, wool, and straw ; the liquid acid bleaches sponge. Sulphurous acid is supposed to consiat of equal bulks of oxygen and sulphur. Its proportions are one part of sulphur to two of oxygen.

Sulphuric Acid, or Oil of Vitriol.-This acid is made in great quantitics for tha use of bleachers, and other manufacturers, by burning sulphur in leaden chambera. At the same time, quantity of nitric acid from the decomposition of saltpetre la almitted into the chamber. The sulphur is converted into sulphurous acid. Five atoms of this scid unite with one atom of nitric acid, and two atoms of water, and form a white solid sait, which falla to the bottom of the chamber into a quantity of water placed to receiva it. As soon as it comes in contact with the water, a strong effervescence takes place: tho nitric acid is decompoaed, and converte the sulphurous into sulphuric acid, while at the same tinne a quantity of doutoxide of azote is disengaged. This gaa, coming into contact witl the oxygen of the air, is converted into nitric acid, which combines with an additional dose of sulphurous acid, and is decomposed as before. Thus the process goes on as long as sulphurous acid and oxygen gas exiat in the leaden chamber." Sulphuric acid thus obtained is a colourlcas liquid, possessing some viscidity; and when as much concentrated as possible, its specific gravity is 1.837 . Sulphuric acid is one of the inost powerfully corroaive bodies known to use The following are some of its principal properties. When mixed with water, to which it has a very powerful attraction, a decrense of volume occura, and a conaiderable degree of heat is generated. It freezes when suffi ciently cooled, and the cryatals are sometimes large, dis tinct, and hard. When exposed to the air, thia acid discharges whitish gray vapours, which aro aulphuric acid in a dry atate. Acid of apecific gravity 1.896 , containa about one-tenth of water, and is ao volatile that it boila at 120°. The constitution of aulphuric acid is, sulphur one part, and oxygen three parts. It forms a very numerous and important class of aalts called Sulphates. The other two compounds of sulphur and oygen, namely, the hyposulphurous and hyposulphuris acids, it is unnecescary to notice. Sulphur unites with chlorine in two proportions. It aleo coinbines with bromise, ioline, and fluorine, but its next most important combinations are those with hydrogen.

Sulphureted Hydrogen, or Hydrosulphuic Acid.-Thia is a colourless gas, having a strong faetid amell, something fike rotten cggs, and a sweetish taste. It 19 a non-supporter of combustion, and, when breathed, destroys animal life. Its specific gravity is 1.1805 . It is combustible, and burns with a bluish red thame. Water absorbs 3.66 times its bulk of this gas; and if it be passed through water tinged with a vegetable blue, it
will change the colour to red. A faw dropa of nitric ceid let fill into a veasel filled with sulphureted hydroaen, aet fire to it. Thla gaa blackena ailver, and darkena the wood-work of rooms painted with white lead, from human exhalations containing a portion of it. Ite ntomic constituents are said to be one atom of sulphir and one atom of hydrogen. Double the quantity of eolphur to the eame proportion of hydrogen forms what Is ealled the binwphuret of hydrogen. No compound of allphur and nzote la known, lmit with carbon there is more than one. With boron and silicon, sulphur forms sulphurete.

BILENIUM.

Thie in a anbetance nenrly allied to aulphur in ith nature, nlthough it in some respects partakes also of the character of a metal. It melts at about 212°, and on cooling becomes aolid, in which atate it has a metallic lustre, and a deep brown colour. It is son and oasily reduced to powder, whinh in of a deep red. Its apecific gravity ia 4.3. It is a bad conductor of hent, a nonconductor of electricity, and ia almo non-electric. Isika culphur, it ithimes into flowers. It combines with exygen in three proportions, torming oxide of silenium, a gaseous body ; selenous acid, which has an acid and acrimonious taste; and, lastly, selenir acid, which resemblea sulphuric acid in its consistence and in many of its propertien. It is to be remarked, that the compounils of selenium and oxygen bear a atrong analogy to mome of those of oxygen with sulphur. Selenium combines also with sulphur, chlorine, and carbon.

PHOBPHORUS.

Thin well-known substance is commonly prepared 'from bones, which consist chiefly of tho phogj,hato of time. This salt is decomposed by sulphuric acid, and after going through a difficult process, tho phosphorus is distilled into a receiver in the ahape of melted drops. It is an amber-coloured and acmi-transparent solid. Its apecific gravity ia 1.748 . It is so very cor'suatible that it takea fire in the air, emitting a white smoke having tho smell of garlic, and appeara lumi,.nus in the dark. At the temperature of 148°, it burna with a large resplendent finme, giving out in white amoke, which in-

Phosphoric Aed.-This sulastance can be obtnined by other processen, in which case it exhibits itself as a transparent solid body like glass. It has no amell, but an exceedingly sour taste ; it is not corrosive. Its atomic conatituents are supposed to be two atoms of phosphorus to five atoms of oxygen. Phosphorus also produecs another acid called phowhorous acid, containing a smaller proportional quantity of oxygen; and a third, called hypophosphorous, containing still less of the gas.

Phosphureted Hyilrogen.-This gas is colourless, han a amell like garlie, and a very bitter taste; its aperific gravity in 1.7708 . It burns spontancously. When mixed with oxygen, rurefuction causes then to explote, as rondensition produres explosion in other gases-a very remarkable property of thik subutance. This gaa may be detonated, also, with protoxide and deutoride of azote. When mixed with chlorine gus, it burne with - greenish-yellow flame. It is composed of equal votumes of hydrogen gas and phosphorus vapour. There are other compounds formed of these two substances; and phosphorus combines also with chlorine, bromine, and lodine, in two proportions each. It likewise unites with fluorine, carbon, aulphur, and selenium.

arsentc.

The White Arsenic of commerce is a combination of arsenic and oxygen. When mixed with black flux (which is composed of cream of tartar and about half its weight of nitre, heated to redness in a covered crueithe), and sulbjected to heat, it is reduced to the mo-
tallic atate. It han a bluiah-whito colour, is aof, bntula and easily reduced to fino powiler. Its specifio graving is 5.672 . When moderatoly huated, it evaporatea, coms lining with oxygen, and forming the arvenic of com. merce, so well known for its destructivences to animal lifu. With oxygen, armenic forms two acids, the arse nuss and arsenic. Arrewos acid is a white, brittle, compract aubatance, having a weak, uerid tante. which at last lenves an impresaion of sweetnews. It in one of the must virulent poisons known. Arsenic acill is quito almilar in ite constitution to phusplioric acid. Armenie combines with chlorine, hromine, fodine, fluorine, by drogen, sulphur, phouphorua, and weleniam.

antimony.

This in a metal which, when pure, possenpen a silver. whito colour. Ita compounda arn well kaown, being murh used as a medicine. Its texture is filrous, and it is casily reduced to powder by being pounded in a mortar. It specific gravity is 6.4386 . It melts when heated nearly to redness, and at a highor hent it is uublimated in white fumes. It combines with oxygen in three proportions, and forme three compsunds, two of which possess acid propertics. The other is an oxide, which constitutes the base of all the uecive medicinal preparationa of thim metal. With chlorino it combinos in two proportions, forming two chlorides, which ure ana logous to two of the compound formed with oxygen It also combines with bromine, iodine, Iluorine, sulphur, melenium, phosphorus, and nosenic. Antimuny is ex. tensively used in the arts, garticularly in type-founding and stercotyping.

This sulstance is n mei..l, having a nilver-whits colonr, and considerable britiancy. It has a laminated texture, in brittlo, may easily he reduced to powder, and has a specific gravity of B.i370. It fuses at a temperature rather higher thnn that which is neeessury to melt lend. It combinen with oxygen, and forms oxide of the lurium. This compound possesses at once acid and alkaline properties. When tellurium in heated teffore the Howpipe, it burns with a bhe flame, emitting : white smoke, which is the ovide. 'Tellurium hurn spontanus dsly in chlorine gas, and forms a rhlorite of tellurimm. It rlso unites with iodine, hydrogen, and cathon. The other combinations of this metul are still unknown.

chromium.

This is a metal of a whitish colour and a brittle connistency. Its specific gravity is 5.9 . It reppures a very high degree of heat to melt it, and is only obtained pure in amall grains. fio acid readily dissolves it, except the fluoric. Chvomiun emblines with two proportions of oxygen, forming (wo compound, which have rectived the names of sreen oride and chromic arid. Chromiun unites with chlorias, sulphur, phosphorus, sad prola ly fluorine. It is ured in coloured glass mahing, and class and porcelain painting. It is also used in chamelling, and as a rich, atrong, und durable pigment. To glass and enamel it communicates a green colour, but to the painter it afforda one of his prettiest yellows.
vanaditm.
This is a metal which was only discovered a frw yeare ago. It is white, resembling siliser, brittle, a wowt corductor of electricity, and is easily diasulsed in a: ric acid and aqua regia. When heated rather uader retacss, it takes fire, burns with a dull flame, und is converted into a black-coloured oxide. It combines with oxygen in three proportions, forming, firat, Glack oxide or protoxide, tho binoxide, and venadic acid. It combines also with chlorine, sulphur, and phosphorus, but its other cons pounda are unknown.

geantym, mo

Theme nub their searcity, thelr metallie fectly known, purpose. U'r able lustre, an producer a de salour to pore communicatea gravity is 9. brittle, and ha bof a grayis having a spee hurnished, nes tallic lustre. considerable br enough to scrn of 6.3 . All th of the other s formed aro not

Potasnium is osefu' articlo were first deter indebted for the line bodice. It is hard und britt aelts, and at a utavity at 60° is exposed to the a potash. This I sliways combined by heat. When water, which it with such rapidit whth a red flame portions of oxyge iodine, hydrogen,
Sdium is a m foregoing, as to s tion. It is the b formed when th wster, or when it water, and in its resemblanee to p
Lithiunt.-Thi, lithis, which is of us caustic as that oxide of Lithium nine, but its othor
Barium.-This line earth. It is ing oxygen rapidl barytes; and it al combines also wi compounds with

Strontism.- T very similar to the senble each other and their combin trong resemblane phaphorus, and n
Calcium.-'Ihin and indirpensable from the remotest nation with an aci mnatituting limes/ frequently with velenite, and sulp! varimus other acid. and much heavie

Vil. 1.-24

brtile rravity f com. animal carat hich of the - quite Arsenio ne, by

GHANIUM, MOLYEDENUM, TUNOETEN, COLUMBIUM, AND titanium.
These mubatancen are all metala, but on aecount of their scarcity, or fiom the dlfficulty of resucing them to their metallio atate from their orea, they are but imper. fectly known, and have not been spplied to any umeful purpose. Úraniam han an lron-gray colour, of conaiderahle luatre, and, when heated to reilneen, taken flre. It produces a deep green protoxide, which given a black colour to porcelain, and a fawn-coloured peroxide, which communicatea to porcelain an orange colour. It appeific gravity is 9. Mniybdenum has a silver-whito colour, in brittle, and has a specific gravity of 8.836. Tunsaten is of grayiah-whito colour, is very hard and heavy, having a specific gravity of $\mathbf{1 7 . 4}$. Columlium, when hurnished, assumea a yellowish-white colour and a metallic lustre. Titainm has n eopper-red colour, and considerable brilliancy. It erystallizes in cubes, is hard enough to scrateh rock-crystal, and has n specifie gravity of 5.3. All these metals eombine with oxygen and nome of the other supportars; but the oxldes and acids no formed are not deserving of particular mention.

alkaline baseg.

Pofassium is the hase of that well-known and very unefu' article potash. The propertics of potasaium were first determined by Sir HI. Davy, to whont we are indebted for the diseovery of the composition of the alkaline bodies. It is a white metal, liko silver. At 30° it is hard and brittle, at 50° is soft and malleable, at 1323° anelts, and at a low red lieat ovaporates. Its specific ursvity at 60° is 0.865 , being lighter than water. When exposed to the air, it mpidly absorbs oxygen, and forma potshh. This latter body, as found in commerce, is always combined with water, which cannot he expelled by heat. When potassium is thrown on the surface of water, which it swims upon, it decomposes that fluid with such rapidity, that the metal takes fire, and burna whe a red flame. Potuasium combines with two proportions of oxygen; it alno unites with chlorine, bromine, rodine, hydrogen, nulphur, and several other bodies.
Scdiuns is a metal so similar in most respects to the foregoing, as to stand in no need of partimular description. It is the base of the alkali called sodn, which is formed when the metal is bruught into contact with water, or when it is heated in oxygen. It decomposes water, and in its relations to other bodies, bears a atrong resemblance to potassium.

Lithium.- This metnl is the base of the alkali called lithis, which is of a whito colour, and has a taste fully us caustic as that of potash itself. It ia of course an oxide of Lithium. Lithium likewise unitea with chlorine, but its other combinations are unknown.
Barium.-This metal is the basia of burytos, an alkaline earth. It is of a whito silvery appearance, absorbing oxygen rapidly by exposure to the air, thus forming barytes; and it alao ropidly decompose water. Barium conbines also with sulphur and phosphorug, and forms compounda with chlorine, bromine, and iodine.
Strontium.-'I'his metal is the base of etrontia, an earth very similar to the foregoing. Strontium and bariuin resenble each other very much in most of their properties, and their combinations with oxygen have also a very strong resemblance. Strontium also unites with chlorine, phoaphorus, and nulphur.
Calcitm.-'Ihis metal is the base of the well-known and indispensable commodity lime. Lame has been known from the remotest agen, nud uppars always in combinamation with an acid, most comnonly with the carbonic, conatituting limesinne, marble, calcureous spar, chalk, nad Prequently with aulphuric acid, constituting gypsuth, redenite, and sulphate of lime. It combines also with various other acids. Cnlcium ia white, like silver, aolid, and much heavier thmn water. When heated in the
V_{01}. 1.-23
open air, it brive i miv, ant quich-lime is Troduced Calefum unit with an in t o propurtione, forining lime and peruxale of c amo. Pure lime has on acrid tante, and is aparingly uhle in whter ft, however, readily shmorhs water pouved upon it, I swells, producing at the name ti a great heat. he fact in, that the water hecomes wolm col, and of eor ogives oul great quantity of heat, which wecounts lior the rime of temperature. This process is called slacking lims.
combinen with chlorine, and forma rhluride of lime, a ho stance which has hecome an important article of c inerce under the name of bleaching poriler. It in a w le powder, with a hot taste, having the power of de ainymin vegetable colours. Calcium comhinea with aulphur and phosphorun.

Magnesiun.-This metal is the basis of magneaia, a aubstance universally known from its frequent employmont in modicine. Magnesium is obtained in liown scalen, which, when rubbed againat agate, leave a metallic atain, of a lcaden colour. It hurna with a red light, and, by thum combining with oxygen, becomes muguesin. This is a soft, elastic, tatclews powder, not rensibly soluble in water, and slowly changing vegetuble bluen to green. Magnesium forma sults with chlorine, bromine, and iodine.

EARTHY BASEA.

This family comprehends fivo aubstances, the oxidee of which are white tasteless powders, diatingulahed by the name of earihs.

Aluminum.-Alumina, which, when pure, is a fine light powder of brilliant whiteness, is an essential constituent in every kind of clay, and constitutes tho base of alum, from which substanco it may easily the obtained. It in a compound of oxygen and aluminum, consisting of two parts of the former to three of the litter. T'inis metal, when bamished, assumes a matallic luatre resembling that of tin. It is not casily fused, but at a red heat it burns with great aplendour, and ia converted into alumina. This substance, so useful in the manufacture of every species of pottery, is the only compound known of oxygon with aluminum. Alumina possesses the remarknble property of shrinking into less bulk according to the intenaity of the heat which in applied to it; hence, it was formerly employed as a kind of therms meter or rather pyrometer, for measuring very high degrees of temperature, in furnaces for instance. A gauge is used for measuring the amount of tha contraction. Aluminum combines with chlorine, phoaphorus, sulphur. and selenium.

Glucinum.-Glucina, which is the oxide of glucinum, exists to about fourteen jer cent. in the beryl or emerald, from which it can be extracted. Glucinum in a darkgray powder, which, when burnished, nequires the metstlic lustre. It is very difficult of fusion. When heated in air or oxygen, it burna brilliantly, and affords the oxido glucina-the only compound which it forms with oxygen. Glucina, which consiats of 100 metal and 44-44 oxygen, is a soft, tasteless, whito powder, which, when wet, ia somewhat platic, like alumina. It neither dissolves in water nor melts in the fire. Its saits hava a sweetish taste, tike those of alumina; and both of these earths are in this respect oppoaed to magnesia, which with acide uffords salts of a bitterish taste. Glucinum combines with chlorine, phosphorus, sulphur, selenium, iodine, and bramine.

I'trium,-Y'tria, which conatitutes the oxide of this metal, is ohtained lizon a scarce mineral called gadolinito Ittrium is procured from it in iron-gray scales. If hented in common nir or oxygen, it burus brilliantly, formus the earth yttria; and as far as is known, this is the oulv compound formed by tho union of oxygen and yttrus 'I'he latter substanee combines with clalorine and the combuatibles.

Corimmas - This notul exinca in a reviliah-eoloured minco ral found in Swerien, callon! ceritr. Cerium is alarkgray powder, having a metallic luatre, hut ite propertiee bava not yet been properly determinect. It, however, combines with oxygen, chlorine, carhesi, sulphur, and phosphorue

Vircomiumt. -The earth called zireonin in harwh whithoh powder, destitute of tante or momell. I'he hame zircomium is compowel of beilliant meales, which are probably metallic, slthough the substance has not ns yet ovineed the metallic luatre. When heuted in common air, it takee fire, and is converted into zirconin, which in perfiectly white. Thin la the ouly compound which it forms with osygen. It unitea with chlorine, carbon, and eulphur.

Thorium.-Thin is a newly discovered metal, of a feaden-gray colour, heavy, and under the burnisher show inetallic luatre. If it the heated in opers alr, it burns with much aplendour, and the reaulting snow*hite oside is the earth called thurina. Thin in the only aompound of thorium with oxygen, and the remalting vubutance is distinguished from the other earthe by various propertiea. Thorlum, when heatel in vapour of sulphur, burns, and it also unites with chlorine and phosphorus.

DIFPICULTLY FTAGALE BABRA,

Iron-Thie well k nnown sulastance is one of the seven metals with wbich the ancienta were acyuainted; theme were gold, silver, copper, iron, tin, lead, and mercury. Iron is a metal of great utility, and it is fortunntely found aloundantly. Alnont every mineral contains it. The ore from which the iron of Great Britain in obtainerl, is a corbonife of iron. Iron, after passing through n fiery ordeal, has a grayish colour, a metallic lustre, and, when burnished, a good deal of hrilliancy. Itw hardiness exceels that of most metals, and, when in the atate o ateel, i' may bo rendered harder than most liodies. Its apecific gravity is $\mathbf{7 . 8 4 3}$ after hummering. It is attracted lyy the magnet, and may itself be converted into a permanent magnet It ia malleablo nt every temperature, very duce tile, and very combustibe, for we we a thin wire burn in the flame of a common candle. It hurna brilliantly in oxygen, with which it combines in two proportions, forining oxides. It combines also with chlorine, bromine, indine, boron, aulphur, elenium, phosphorus, arsenic, chromium, and antimony ; but the mont important of its combinations with simple substances are thome with charcoal, which form the important compounds rast-iron and atcel. Iron form with the acids a numerous and valuable clase of salts.

Manganeac.-When this anbstance ta pure, which is rarely the case, it is rather whiter than cast-iron, of a granular texture, and may be reduced to powiler by pounding. It epecific gravity is 8.013. It is attracted sy the magnet only at a very low temperature. It gralually absurbs oxygen from the atmosphere, and decomposen water, a property which it losen when alloyal with iron. It is much in use. Glass-makers use it for two purposes ; first, for communicating a purple or violet colour, or for destroying all colour, and rendering the glass colourlos. Manganew has a atrong affinity for oxygen, with which it combines in aeven proportiona, forming ecids and oxilles. it unitea also with chlorine, flnorine, carbon and sulphur.

Nickel.-I'his metal, when pure, has n white colour, like silver; is rather mofter than iron; is malleable both hot and cold; is attracted by the inagnet; and, like iron, can be converted into one. Its mpecific gravity is 8.380 witer fusion. The preparstions of this metal contain unisonous qualitics. Nickel combines readily with oxygen, Girming tw, oxides It also unitea with chisrine, carbon, -ulphur, phosphorus, and arsenic.
(' balb-l'? his metal has a gray colour with a ahade
of red, and ia not brilliant. Its texture in zrambitar fil is rather mon and brittle \& its apecifie gravity is ar-7. In Is usent for giving a blue colvor to glawn and pevechain: the tini in heautiful, and heriee the metal bearm o bish price. It unites with ozygen, and tormin two oxilen theee are the preparations of cobvit umed is the arts. It almo combine with chlorine, aulphur, welauium, and phos phorua,

BaBtly funimet maneg.

Of the eight metale composing thin family, all are malle able except bismuth, whleh in not very brittle. They melt at a comparatively low heat. A roul of ainc thrown down theme motals from their acideolutions in the metallic atate.

Zinc,-Thin mrtal in of a Mulsh-white culour, and in compoaed of plates athering togethur. It in a hard metal, loning acted on iy the file with difficulty; and, after fuaion, ith eprecific ar ity i.1 6.806 . It becomen mallealile at 212°, and melta at 773°, or before it in quite red. When heated red-hot with aceenn of air, it takee fire, burn with an exceedingly beautiful greenimh or hluish-white flame, and is at tha mane time converted into the only oside of zine with whith we are ne quainted. It is of a now-white colour, is tanteloss, and insolulbo in water. With coppere, sinc forms that well known and uneful alloy called brase. Tinc combines with, and is met on fire hy, chlorine; it entere into union with plionphorus, mulphur, selenium, lodine, and varioue metaln.

Cadmium.-This metal, which in commonly amoctated with the ores of zinc, has a white colour with : shade of bluish-gray, and resembles tin in its appeas. ance. It is very malleable, nald has a apecific gravity sfter fusion of 8.6040 . It unitras with oxygen, chlorina, and nomso other supporters, but the compounds are unim portant

Lead_-This is one of the mowt alundant of all the metala, and one of the eofleat and most fusiblo. Lend has a bluisli-white colour, and a good deol of lustre, bol it aoon tarnishes, Its apecific gravity after fusion, which takes plere at 600°, is 11.351 . Lead is very malleable, it ia aloo ductile, but ite wiro posseares litile tenacity. By exponure to a very atrong heat, it is volatilized, and at the heat of hurning hydrogen, urged by oxygen, it hurnawith n bluish flame. While expond to the atmosphere during fusion, it inblibes osygen, and is convertel into an oxide. There are three osides of lead-the protoside, which is known in commerce and the arts an a yellow paint, mady the name masaicot, or if it be wemi-vitrified, litharge ; the deutoxide ia almo a paint of a brilliant red colour, inclir ing to orange; it obtainn the name of mivium, of red lead; and the peroxide, which is of a deep puce brow coloun. Whell hented with sulphur, spontaneous combustion takes place. Lead alno combines with chlosine, broraine, iodine, sulphur, sclenlum, arserice, \&c. It in renderd hard by antimony, and the alloy, mixed with a litte tin, constitutes the material from which printer's types are flaborated. The solts of lead are numerous and very important. White lead or ceruac, the only white used in oll oil paintings, is mado by suljecting thin plates of lead, rolled up apirally, to the fumes of vincgur. The lead soon lucomes corroded, and sannmes a white apprarance and a britte consistency. If this substance lo dissolved in nerti- acid or vinegar, it beromes amgar of lemt. Lead in never found native: hy far the most common atate in which it oweurs in nature, is mineralized hy sulphur. The common name for sulphuret of leul is galena. It is abund ant in all quarters of the glowe.

Tin.-Thia metal reambles lead in many of ita prow pertics. It possemes a fine white rolour, with a sligh! shate of blue, and has a gond deal of brillinney. Its opecific gravity after funion is 7.285. It is viry malloable. Tin leat, or tinfoil, as it is called. is alont the
onethorsandth made much th inferiop tenacie remarkuble era 42°, but a ver evaporate. It intensely heatec great brilifancy proportions, fors mesquinxide, wh in yelluw. It al auphur, wlenius with various me in a pure stato and tin; the la metal, quite inn and it is aflirm 2200 yeara ago

Copper.-I'hi next to iron. It degres of brillin rulled out into p and very connide one quarter of a it, whilat hamm more to treak it. inctenond, it evi When rulibed, i hydrogen flanoo ernitting a dazalir roal fire tinges ti it ssillates into and when in cor contines in the two of which oer nent compotnd. boline, aulphur, p with the latter mis twelve parts of tir enpper, comproser Four parts of cop The alloy used fi ployed by the anic rors. It consiats ane part of tin.
Bismulh.-Thi is composed of hre one of the most fi its luailility to 9.833. Although unless when lueat mixture of tils, melts when thros kind is wall kno mersed in a very muth combines sulphur, and ac fusible metal, is a of bismuth, five at 212°.
Mercury or Qui colour, posscsses the commont tenip gravity, at 60°, is it assumes the sol may be leaten ot When heated to ypen nir, it oxidize cury atlord an adi theory. It combin selenium, and pho cury furms with th pams. 「inis metal in great abundan
ane thoteundth part of an inch thiek, and it might be nade much thinner, if requisite. It is duetile, but of inferine tenacity. It ia very foxible, and producen a remarkable crackling noive when bended. If temelte at 42°, hut a very viotent hent is required hefore it will evinporate. It alowly tarninhen with the air, and, when imtensely heated, oxygen being mupplied, it burne with great brillinucy. Tin conhines with oxygen in three proportiona, forming the protoxide, which in blark, the enguloxide, which la grayish, and the peroxide, which byellower it alwo uniten with elilorine, bromine, leuline, muphur, melenium, phopphorus, and fluorine. It alloy with various metaln. It in used in conting vemeln, vither in a pure atate of alloyed. l'ewter in conponed of lend and tin; the latere rendering the formser, a polnonoum metal, quite innocuous. English tin in the beat of all, and it is aflirmed that it wan exported from this island 2200 yeath ago.
Copper,-Thin metal, in point of genoral utility, ranka next to iron. It pomesses a rowe-red colour, and a great degree of brilliancy, its apecific gravity, after being rolled out into phatea, in 8.953. It han great malleability, and very conaiderntlo ductility, \mathbf{A} bar of eant copler, one quarter of an lnch thick, requirea 1192 lise to lrenk it, whilat hammered copper requirea nenrly 1000 the. niore to break it. It melta at 1996°; nnd if the heat lo increamd, it evaporaten in fumes, which are visible. When rutioned, it emita a amell. When heated in a hydrogen flame urged by oxygen, it burna brilliantly, enitting a dazaling green light; a piece of copper in a rond fire tinges the blaze green. When exposed to air, it oxidates into a green carbonate of copper, slowly, and when in contact with moisture. With oxygen it comhinea in three proportionm, forming three oxidea, two of which occur native; the other is not a permanent compotend. Copper combines also with chlorine laline, sulphur, phoaphorun, armenic, and tin. Its alloy a with the latter metal are very important. From eight to twelse parta of tin, combined with one hundred parta of copper, componed brosse, and the metal of cannons. Four parta of copper and one of tin composo bell-metal. The alloy uad for the mirrors of telemeopes was employed by the aucients for the composition of their mirrors. It consiats of about two parts of copper united to one part of tin.

Bismuth.--Thia metal hana reddirh-white colour, and is composed of hroud phates nathering to each other. It is ane of the most fusilho of the metals, and comnonnicates its fusilinity to other metuls. Ita specilic gravity is 9.933. Although not very britte, it is not malleable, unless when beated, nor cun it be drawn into wire. A mixture of tin, lead, and binmuth, is so fusille, that it melts when thrown into boiling water. A toy of this kind is well known; it is a spoon, which, when immersed in a very hot liquid, immediately melts, Bismuth comhines with oxygen, chlorino, bromine, iodine, sulphur, and selenium. What is called Newton's fusible metal, is a compound of eight parts by woight of lismuth, five of lead, and three of tin. It melts at 212°.
Mercury or Quicksitver.-This metal has a silver-white colour, possessea great brilliancy, and remains fluid at the common teapperiture of the atmosphere. Its specific gravity, at 60°, is $13 \cdot 56846$; nt 30° below zero, when it assumes the nolid form, it is 15.612°. When solid, it may be lwenten out with a hammer, or cut with a knife. When heated to 656°, it boils; and when heated in the open nir, it oxidizes. The oxides and chlorides of mereury aflord an admisable proof of the truth of the atomic theory. It combines also with bromine, iodine, sulphur, elenium, sod phosphorus. The compounds which mereury forms with the other metals are usually termed amalpams. Cilis metal occurs in Soulh Amorica and in Spain, in greut sbundance. But the wine of Idria, in Car-
niola, an Auatrian provice, in perhaps the greateet is the warlit, and has heell wrought for more than three centurien

Silver.-This metal lia of a fine white colowr, with a alight nhade of yellow. When polished, it diapliayn a great deal of britliancy and heauty. It ia very malleable, and may bo beaten out Into leavea mo thin as $1.000,000 \mathrm{~h}$ of an Inch. It in wofor than capper, and harder than gold; but ite tenacity in inferier to the former metal. When melted and cooted alowly, tha apecific gravity fo 10.3046; when hammered and rolled it ia a litte higher. Its inelting-point is 1830°; and if it be kept melted for a long time, it almorim oxygen; but it pomemest the very singular property of parting with the oxygen on solidifying. (iay Lumasc, a great French chemint, nayn that the premence of a little copper deprives it of this property. Nilver formn with oxygen only one well-known oxide. It alno uniten with chlorine, bromine, foxline, nulphur, melenium, phoaphorua, and armenic. 'There are numicroun alloyn of ailver, but few of much consequence. One pound of atandard nilver la coined into aixty-six ahillinga : the mint price of ailver, therefore, ia 5a. ©h. per ounce at prement. Silver in found in all parts of the world, nemetimen alloyed with a variety of other metala and subutancea, and nonstime in the native atate.

nonle metals.

Some might include ailver, and even mercury, in this lint, hut it ia more common to say that the family comprolichdn six metnis, which all require a violent heat to fune them. The name noble metala has been given to the fanily, thecause it containg gold and platinum, the moat entecmed of all the metala; and because the other four metula lelonging to it are unually ansociated with native plathum. Their oxides are reducible to the metullic state by the npplicuion of heat alone.

Goll.-Thia is the most valuable of all the metaln, It nlwnyn occura in mature in the metallic atste, allhough wellom pure. It has a beautiful yellow colour, and conniderable luatre, which it retuins, not beieg liable to be tarnimhed by exposure to the air. It is rather moter than vilver, and afer fusion it has a specific gravity of 19.2. It is the most mallenble of metals, and may be beaten out into leaves no thicker than $1-282,000$ th of an inch, and tho gold leaf with which silver wire is covered is only $1-12$ th of that thickness. Its tenacity in consideraHe, but inferior to that of gilver. It melts at 2016^{3}. It is inwoluhle in sulphuric, nitric, and muriati: acid; but it reudily dissolves in aqua regiu, which is a compound of the two latter. It is dilfieult to oxidize gold, and atill more to burn it; hut hoth can be accomplished. Oxygen comlines with gold in two proportiona, poswilly in three, forming oxides. Gold also unites witi chlorine, bromine, iodine, sulphur, phosphorus, and arsenic. Thero are a number of alloys of gold; the stundard gold coin of the realm is an alloy of twelvo parte of gold th one of coppur or silver, or sometimes both. Gold occurs in almost all parts of the world; hut Africa and America aupply the chief European consumption.

Platinum,-This metul is whito, like silver; itn specific gravity is 21-47, so that it is heavier than gold. Its hardness is intermediute between copper and iron. It is very ductile and mallcuble, though much lees so than gold. Its tenacity is considerable. It will nut meh in the heat of our most powerful funnaces, but it may be fused by the oxyhydrogen blowpipe. Its property of resisting high temperatures without fusion is a most inportant one; and on this account, us well as its propenty of resisting the action of most clemical agents, it han been employed in the formution of vessels which it is necessary to nulyect to an extraordinary degree of hen:Liko gold, it resista the action of all the niogle acida, tot dissolves in aqun rogia. It comlines with :zvgen in probably four proportuna forming ocile 1 unize
also, with enlorine, bromine, ioline, ailicon, aulphur, selenium, and phosphorus. There are numerous alloys of platinum, but they are not of much importance. There is a form of this metal which possessea extraordinary properties; it is called spongy platinum. It ia prepared by disalving platinum in a mixture of nitric and muriatic acids by heat; muriate of ammonia is added, when a precipitate falls, which must be fittered and dried. If a amall quantity of this powder be heated by a candle, it will become incandescent, as if it took fire. It is, when cold, fit for use. If a jet of hydrogen, from a tube of a very alender bore, be directed on it from a little distance, the metal immedintely becomes red-hot, and it sets fire to the hydrogen. Thia may be repeated a great number of times; but the aponge at last loses its power; the amaller the quantity, the sooner its power is lost.

Palladium, Rhodium, Irifium, and Osmium.-These tour metals occur in the platinum of commerce. They are procurable in very small quantities; they have not been applied to any ume of moment; they possess no very remarkable qualitics, and therefore do not require to he minutely described. They all unite with oxygen and chlorine, and soma of them with the other supporters.

Such in a brief sketch of the fifty-four simple aubatances, whose numerous combinationa give riso to the intinite variety of objecta which are found ready formed in the Inboratory of nature, or have been discovered in that of the philosopher.

ORGANIZED STRUCTURES.

The suhstances constituting the subjects of this branch of chemistry are those of which vegetables and animals are composed. In vegetables, for exaniple, we have sugar, starch, gums, resin, \&c.; and in animal bodies, ailbumen, muscle, lone, \&c.

Vegetables,-Notwithatanding the infinite diversity of form which vegetable substances assume, it has been proved that they are all composed of the aame ultimate elements, and these are only four in number; namely, uxygen, hydrogen, carbon, and azote. These, again, by uniting smongst themselves, form the compounds which conatitute the vegetable atructura; and being the more immediate objects of sense, in the investigation of any organization, these are called their praximate principles. Exiating ready formed in woods, roots, \&cc, we find a considerable number of proximate principles, in the form of acids, alkalies, sweet principles, bitter principles, oils, exudations; some poisonous, others wholesonc ; some apontaneously separating, others remaining obstinately combined. W'e shall give a brief outline of these.

Citric Acid.-Thin acid exists in the juice of lemons, and, when crystallized, one hundred grains consist of water 233 , and pure acid 76f, which ia a compound of 42.1 oxygen, 31.58 carbon, and 2.63 hydrogen. Sorbic arid is the cour principle of apples, sorbus berries, and rether fruits. It consists of the mame ingredients as tha firmer. T'artaric act ia the sour principle of grapes; when a large quantity of them are left to ferment, the reault, it is well known, is wine. On the aide of the vessel containing this liquor, crystals of the acid comnined with potash are formed, and these, when purified, are cream of tartar. 'I'welve parts in the 100 are water; 3id the remaining 88 consist of oxygen, 52.97 ; curbon, 3.3 .39 ; and hydrogen, 2.64 parts. Oxalic aitid.-The phont called sorre! is valued for its acidulous taste, which in conterred upon it by this acid. It has no hydrogen in its composition, consisting merely of oxygen and carbon. It is an active poison, and from resembling Eprom walts in appearance, many persona have fallen vietimn to its virulence. The antidote is powdered chalk. Gallic acid is obtained from nut-galls. Its mont remarkanle property is that of changing the colour of solutions containing \therefore (Hin in intense bluo-black colour, as in the case if
common writing-ink. One hundred grains conaiat it 56.25 carhon, $\mathbf{3 7 . 5}$ oxygen, and $\mathbf{6 . 2 5}$ hydrogen. Prusth or Hydrocyanic acid, found in various fruits and flowerm is a moat powerful poigon. It ia formed of hydrogen and cyanogen, a noxious inflammable gas. There are a number of other acids, which, heing of little use, are not worth naming. Those just described exist ready tormed in fruits, \&cc.; they are simple educts. But there ase othera formed by chemicnl changes produced on certain elements contained in vegetables, which afford the base of the acid; these are acid produrts: some are produced by the ageney of fire, others by the action of nitne acid Several acids, when distilled at a high temperature, undergo decomposition, and new acids are formed Their namen remain the same, with the word pyro as a prefix. Thus we have pyrocitric acid, \&c. There are other acids generated by similar means, having simple nainea without any prefix.

Figetalle Alkalies.- It has been ascertained that alka. lies, na well as acids, exiat ready formed in plants as ono of their constituent parts. Those which evince alkalina properties of a weak charneter are entitled alhaloids, The alknlies are quininn and chimeinonia, which resemble each other, have a bitter taste, and neutralize acids Morphia, which is obtained from opium, is a white crystalline powder; strychnia, one of the most powerful bitters and poisons, which has of lato been much used in medieine; bruria, also a violent peison; digitulia, which is procured from the lenves of foxglove; hynsriama, atropia, veratria, entetina, \&c., which are derived fiom henhane, dendly nightshade, \&c. Of the other proximate vegctable principles, the first deserving of notice is the woody filire which constitutes the solid basis of all vegtable structures. It is eatled lignin, from lignum, woonand conaists of 52 carbon, and 48 of oxygen and hy drogen, in the ratio which forms water. With lignin are associnted various other bodies, auch ns resins, which are various and abundant. In the different species of the pine-tree, we discover that peculiar liquid reain called turpentine. From reains are olitained what are called essentinl oils; because, after the resin has been heated in a diatilling apparatus, an oloriferous oil distils over, and leaves the resin hard, dark, and odourless. The essenct of the aubstance is supposed to have passec: away in the aeriform state, hence the name. Froms its speedily eva. porating on being exposed to the air, it is also called volatild enil. The seeds of plants yiehl another oil, which not evaporating, is called fired oil. 'To these two oils there are two substances bearing some analogy, urar and canphor. The former, when milted, possesses some of the propertics of a fixed oil, and the latter seems to poss sese the properties of a concrete volatile oil, nlthough it possessea qualities distinct from those of alt other bolies. Gum, for instance gum-arabic, has the following propert : a: namely, tranaparency, tasteleasness, perfert solubility in water, viscidity of the solution, capahility of cementing fragments and of affording a varnish, and total insolubility in spirit of wine. There is a class of hodiea callod gum resins, whoso propertiea are interse diate between those of gum and resin; and somewhat allied to resins, although essentinlly diflerent in most ot its properties, is the substance, called ruout thour, or Inhan ruhier. It is the exuded juice of a peculiar trec, and is compowed of carbon and hydrogen. From wheaten flout n substance is obtained, called ghuter, from its glatinotr nature. There are two prineiples in this substance - the one ja called glimfin, and the other zina.min. A rabstance called regetable allommen secmes to twe the hasis of alt emulsive grains in place of atarch, and gratly re apmbles it. Sturch is a fine white maliment, precipitated from the white and brittle parts of vegretables, particularly the tuherome roots, and the medtes of the gramincous plants. One of the mont remurkahle propertien of sturch, on, a it in called, fecula, in that of being convertible int i wigu
by the action of on'y afforded fr and, an extracte mand is an artic from the roots of gubstance.
Sugar.-Ever: sugar is; being bererages tea a nources-from ti gropes. Nothin grape juice is :white of egge, or it assumes the $:$ Froin oak bark, tained, called tun employed in tuu less, and puswesse

The chief aubs of animal matte phosphorus, and of matter, as cert emall as not to that the toregoin tulk of the anim

Bone congists two other ingredi is the coagulatin, nel jcllics. Wh they form ivory b sels; when recen fectly dry, it is so is an important , nunicates to sou smell, and the gre the solup. The nearly allied to ge
of the fluids of important, is visc of a peculiar odou appearance is ver two parts-one colour, and called of a crimsen rede a deposit, which is
If the clot of mater, it parts witt white, and a fibro jected to analysis, when heated to ab as the white of an If the serum thus exude, which is \mathbf{c} chiefly of water, he little common salt water, allument, so composed of fibri little iron, and call During the con nitrogen, hydrogen formation of new ciples of tho blood of carton. In thi, air in the lungs, th of carbon, and forn constitute the con Futty substance of carbon, with a both. .Ilbunten ia

18 conalat at gen. Prussh and flowern hydrogen and There are a le uee, are not ready tormed 3ut there ase ed on certain fford the base are produced of nitric acid. nperature, unsrmed Theis tro as a prefix. are other acids names without
ined that alka 1 plants as one evince alksline itled alkaloids which resemble utralize acids s a white crysmost powerful 1 much used in ligitalin, which e; hynsrianna, derived fiom other proximate f notice is the sis of all veg? lignum, woon. xygen and hy With lignin are sins, which are species of the id resin called what are called been heated in distils over, and 8s. The essenct ne away in the its speedily evr. it is also called other oil, which these two oils nalogy, u ur and Bu'sses some of or scems to pros oil, although it all other bolies ollowing proper s, periect solun, capability of a varnish, and re is a class of ies are interia; and somewhat rent in most 0 irhour, or Inlian uliar tree, and is m wheaten flow min its glutinots - sulistance - the formis. A sulr low the lasis of sud greaty m ient, precipitated llases, particularty amineous plante. of starch, ot, m ertible int I mag
by the action of diluted sulphurlc acid. Starch is not only afforded from various graina, but from potatoes; and, at extracted from this vegetable, it is mucs in demand sa an article of food. Arrouroot, which is ebtained from the roots of a Weat India plant, is tha same kind of substance.
Sugar.-Every one, we suppose, should know what sugar is; being in particular a swectener of the kindly be verages tea and coffee. It is derived from many mources-from the sugar-cane, maple-tree, heet-root, and grapes. Nothing is essier than its formation from grapes: grape juice is tis he gaturated with chalk, clarified with white of rggs, or blood, and evapornted; after a few days it assumics the form of n erystalline mass. T'amin.From oak bark, or nut-galls, a peculiar sulstimee is oltained, called tamin-so numed from heing the material employed in tuming leather. It is inodorous, colourless, and pussesses a rough, astringent, bitter taste.

THE ANIMAL COMPOUNDS

The chief substancea which enter into the composition of animal matter, are oxygen, hydrogen, azote, carbon, phosphorus, and lime. Wo also find somo other kinda of matter, as certain acids and metals, but in quantity so small as not to affeet the truth of the above statement, that the foregoing six ingredients constitute the great bulk of the animal fabric.

Boac consists of phosphate and carbonate of lime, and two other ingredients, cartilage and gelatine. The latter is the coagulating, or rather elastic, principle in all animal jallics. When bones are burned in a close vessel, they form ivory black. Fibrin is obtained from the vesrels; when recently ohtained, it is elnstic; but when perfectly dry , it is somewhat horny and transparent. There is an impotant substance called nsmazome, which communicates to soups and broths their peenliar taste and smell, and the greater tho quantity present, the better is the sonp. The tendans, ligoments, and membraner, are nearly allied to gelatine in their nature.
Of the fluids of the animal body, blood, one of the most important, is viscid, of a red colour, exhaling a vapour of a peculiar odour. When left at rest a few hours, its appearance is very much altered, having separated into two parts-one quite liquid, of a greenish whey-like colour, and colled serum; the other an elustic firm jelly, of a crimson red colour and thick consistence, resembling a deposit, which is called the critasamentam, or clot.
If the clot of blood be repeatedly washed with cold mater, it parts with its red colour to the water, becomea white, and a fibrous matter remains, which, when subjected to analysis, proves to be fibrin. Berum coagulates when heated to about 160°, nearly in the same manner as the white of an egg, but the colour ia not pure white. If the serum thus coagulated be cut in slices, a tluid will cxude, which ia called the serosity of blood; it consiste chiefly of water, holding a little altered albumen and a little common salt in solution. Scrum is composed of wster, alhumen, soda, and some salts of soda. Clot is composed of fibrin, albumen, red colouring matter, a little iron, and carbonic acid.
During the conversion of arterial into venous blood, nitrogen, hydrogen, and other elements, are spent in the formation of new products, while the proximate principles of the blond remain, with an increased proportion of carlon. In this state it is exposed to the atmosplieric air in the lungs, the oxygen of which abstracts its excess of carbon, and forms the carlonic acid expired; and this conatitutes the conversion of venulta into arterial bloot.
Futty substances, ss lard and oils, are formed chiefly of carkith, with a little hydrogen and oxygen, one or both. Ilbamen is a substance very abundant in animal
matter. It occure nearly pure in the white of egge. Of this substance in the cosgulated state, along with gelatine are horns, nails, and hoofs composed. The brain, the thinking organ of man, consists of water 80, white fal 4.53 , red fat 0.7 , osmazome $1 \cdot 12$, albumen 7 , phosphorus $\mathbf{1 . 5}$, sulphur and various salts 5.15 parts in the hundred.

[WORKS ON CIIEMISTRY.

The numerous applications of chemistry to industria and commercial purposes, have served to multiply booka on the aubject to an almost unlimited extent. Among the general treatises on chelastry are the well-known work of Turner, which is very extensively used in schoola and colleges in this country; Kane's "Elemeni. of Chemistry," edited by Draper, and retently published by the Harpers, esteemed one of the best and mest complete; "First Principles of Chemistry, with Questions, by Professor Renvirk," intended for beginners, and much used in schools; "Conversutions on Chemiatry," admirable for its familiar explanations, and formerly used exclusively for schools; and Liebig's "Chemical Letters," entertaining essays for the general reader. For rcference, Dr. Ure's " Dictionary of Arts, Manvfuctures, and Mines," already referred to, and Brande's "Encyclopertia of Science ana Arr," (Harpers, New York,) are indispensable to tha student who desires to be thoroughly versed in chemistry.

Of the larger werks, adapted to those who have madt some progress in the science, we may mentien, and recommend to general notice: "An Epiome of Chemistry,' by William Henry, which, from a very small volume, has grown to two large and closely printed octavos, illustrated with numerous plates. "A System of Chemistry," in 5 vols. 8vo., by Thomas Thomson, M. D. The object of the author of this work has been to facilitate the progress of the science, by collecting into one body the numerous facts which lay sesttered through a multiplicity of writings, by blending with them the history of their gradual development, aiid by accompanying the whole with exact references to the original works in which the discoveries have been registered. "A System of Chemis/ry," by J. Murray, in 4 vols. 8 vo., to which there is added a very valuable supplement containing a view of the recent diseoveries in the science; also "Elements of Chemistry," by J. Murray, in 2 vols. 8vo., 3d edition, which contains a very able and luminous statement of the general doctrines of the science, and forms one of the hest introductions to chemistry ever given to the public. "Chemistry applicd to the Arts," by M. T. A. Chaptal. in 4 vols. 8vo.; a very usefui * entertaining work. "A Manual of Chensistry," conta .ang the principal facts a ${ }^{\text {P }}$ the science, arranged in the order in which they are dis cussed and illustrated in the lectures of the Royal Institution; a new edition, in 3 vols. 8 vo., by W. T. Brande, is a very useful, practical introduction to the acience. "A Dictionury of Chemistry," on the basis of Mr. Nicholson's, in which the principles of the seience are investigated anew, and its applications to the phenomena of mature, medicine, mineralogy, agriculture, and manufactures, detailed, by Andrew Ure, M. D., piefessor of the Andersonian Institution, at Glasgow. "Elemen/s of Chemistry," \&c., hy M. Lavoisier, translated ino Engliah by Mr. Kerr. Netwithstanding the various improvemente and inuortant discoverics which have been made aince the death of the illustrieus author of these elements. his work will stil. aflord much satisfaction to every person who mukes thas scicnee hia pursuil- Im. Ed.)

U

CHEMISTRY APPLIED TO THE ARTS.

Chemistry, or that department of physical science which recognises the nature and composition of bolics, and the changes which they undergo. is now iudispensaola to the proper carrying on of nimost every useful art. Agriculture, which may be considered the most important of all the arts, is radically dependent on chemistry; for, without a knowledge of that science, the husbandman remaina ignorant of the nature of his soils, the action of the atmnsphere and sun'e light, or the properties of those materials which are required to enrich his exhausted fields. Baking, brewing, distilling, and, indeed, all the operations by which food is prepared from the condition 2n which it is furniahed by nature, are all in general a series of chemical processes. So likewise is the manufacture of pottery-ware, porcelain, glass, psper, the operations of bleaching, dycing, and cslico printing, the preparation of soap, gunpowder, ink, salt, druge, paints, perfumery, and various other articles daily required. The spplications of chemiatry to the arts are in reality so numeraus, that, to do the subject justice, wo should require to take in nearly the wholo circle of manufacturing industry. To do so, however, is beyond our limited means, even were it desirable; and our object in the present sheet is to give a short account of the manner in which chemistry is practically applied in those processes of art which we have not elsewhere nlluded to. The design in view ia not to teach ony one art, but to incite to a general study of chemistry among those classes of the peoplo who are eugaged in such branches of manufacture as involve an elementary change in substance. We sommence with a brief description of the upparatus requisite to carry on practical expreriments in the science.

THE CHEMIST'S LABORATORY.

A laberatory is a chemist's worksiop. It is the place in which he performs his experiments, and requires to to airy and apacious, to have a command of water, to be provided with suitable tables and shelves, mortars, filters, and othor apparatus. Correct weighing being indispensable to every chemical experiment, an exact and very delicate balsnce is an essential requisitc. There should be at least two balances; ono for weighing heavy mstters, and another for very minute quantities. The last Instrument should be sufficiently delicate to weigh from 600 to 1000 grains, and downwards, indicating, distinctly and cartainly, differences of an exceedingly minsta amount. Aa it ia by carefully weighing auhstances, both before and after being experimented upon, that the exact constituent parts of bodien are determined, and the mest importsnt cbemical truth ascertained, the balance and weights should be carcfully examined at intervals, and their accuracy tested. Measurem are necessary for ascertaining the bulk of liquids or gases, and two integera are sufficient, the pint and the cubic inch. Measures should be made of glass, and have a graduated scale marked on both sidea. They are commonly of a cylindrical shspe, like a phial bettle, and poseess a small spout at the orifice. The graduations on these instruments are mometimes very minute, and indicate exceedingly small quantities of the bodies put into them. The measures should be verificd ly weighing into them succerssively portions of mercury and water. A cubic inch of the former, at a temperature of 62°, weighs 3425.35 grains, and the same quantity of the Iatter, at the same temperature, weighe 252.458 grains. Water answera well enough for entimation down to the cubic inch, bit for the tenths and the handredthe of an inch, mercury is both more exset and ubore expeditious.
 of the moat powerful and extensively unetul agents en-
ployed by the chemist for ascortaining the prope tiee of bodies, and the methods of its production become c f greal moment to him. One of the most conveniont forms in which heat can be applied to any chemical operation, la that of placing a spirit-lamp, as in fig. 1 , under a glass retort, fixed to a simple kind of atentl. The lamp is trimmed with cotton wick, and fed by alcohol, which gives a pure flame, and the heat which it genorates is very intense.

Operations on a more extended scale are car. ried on by fumaces. D_{I}. Black's portable furnace, which is mutch used, consists of a stout ironcase, like a round stove in shape. Above is an aperture for an iron pot, to contain sand; and other openings may also be observed, for introlucing tubes and different kinds of apparatus. 'I'lie pipe carry. ing awny the smoko muat be prolonged or connected with a climney. Furnaces upon a large scale are constructed in various waya of fire-brick. which resists on intense heat without fusion. This degree of hent can le producest either by propelling air upon the combuatible matter by means of lellows, in which case the firmace; a called a blast-furnuce, or by forming long flues and raising a high chimney. The ligher the chimney is raised, the more powerfal ia the draught. Upon the top of a furnace of this open kind, and also upon the flues, close by the fire, vessels containing sand, and hence called sand-baths, are placed. In these, bodies can be raised to - higls degree of temperature. Charcoal is the substanct most commonly umed in furnaces. It produces an intense heat without smoke, but very soon cousumes. Coke, ot charred coal, produces a stroug and lasting heat.
The blowpipe is an indispensable articie in the labcta tory of the practical chemist. 'I'he principle on which it operates, is that of a blsut-furnace, oll so minute a scalr as to be capable of being held in the haml. The pipe, which is made of tin or brass, of a shape resembling that represented in fig. 2, is usunlly eight or ten inches in length. M is the mouth or upper end, through which the breath is impelled, and O is the amall orifice. at the point of the side tule, from which the blast comes. By placing the upper end of the instrument in the mouth, and urging a stream of air upon the flame of a lamp or candle, an intense degree of beat ia produced, which may be brought to bear upon any substance placed in a sma!l spoon of pure gold or platina. If the borly to be fused be not of such a nature as to sink into the pores of charcoal, that subatance is cummonly used. A great many importent nnd beautiful experiments may ive performed by this chrap and convenient

Fig. 2. instrument, hut the proper way of blowing it requiet practice. If the two gases, oxygen and hydrogen, le mixed together in the proportions which form water, and compressed to the amount of muny atmospleters in a me tallie tox provided with a snull tube, what is called at oxy-hydrogen blowpije is formed. liy this upparatiss which is quite anfe when properly constructed, an almow iucredible degree of heat cun be produred.

Crucibles temperatures. lar or circular tar the greate promote chen will be after important the is not render crucibles aro bin, thoy ure at moderato Those made o are also oxcell. b!e in the la crucibles. Ch those formed although they
Retorts are and most freq heat higher t a species of ho with the glob sxty degrees. 6ig. 1. The n its belly, its u part '' a neck of materials, t mon. 'They temperatures from their tral tion of the m upon or injur cloaned. To can be fitted, into a refrigera quiring high do ware retorts ar
A pneurnatic retain water, a gilled in it. S the surfsce of placed. If no with water, ins the trough, an from a retort the inverted n matter, which, can thus easily are obtained. they can casily them. Instead nary temperath would absorb required.
A grest vari mersted are cit Electrifying syringes, tubea sizes for fitting holding both so which it is unt but a very cos number of int may be furnisl

Pohtanle - spirit-lamp, of glass, and resting experin those requiring studying tho amall work of Chemiatry," Blacuinonal C

Crucibles are open vessels, which resist very high comperatures. They are made of various shapes, triangufor or circular, and of different kinds of materiala, but by tar the greater number are formed of earthenware. To promote chemical action, what aro called flures (whick whll be afterwards described) gre (-mployed. Now, it is important that the crucible be made of a substanee which is not rendered mere fusible by a flux. Wedgewood's crucibles are made of a clase white ware; and although thin, they ure not easily dissolved; and they retain fluxes at moderate temperatures longer than other cracibles. Those made of a mixture of coarse plumbago and clay are also excellent in these respects. But the most valuabla in the laboratery are the Hessian and the Cernirh crucibles. Charcoal mad metallic ones are likewise used; those formed of platina being the mest generally useful, although they are at first very expensive.
Retorts are vessels employed for many distillations, and most frequently for those which require a degree of heat higher than that of boiling water. This vessel is a apecies of bottle with a long neck, so hent that it makes with the globular belly of the retort an angle of about sxty degrees. One of a common form is represented in fig. 1. The most capacious part of the retort is called its belly, its upper part the arch or roof, and the bent port "a neck. They are composed of different kinds of materials, those of glass being by far the most common. They answer for all operations conducted st temperatures less than that at which glass sottens; and from their transparency, they admit of constant observation of the materials within: they are, besides, acted upon or injured by few substances, and may be easily closned. To the ben!. neek of the retort various tubes can be fitted, and the evaporated substance conducted into a refrigerator. For distillations or sublimations requiring high degrees of temperature, metallic and earthenware retorts are had recourse to.
A pneumatic trough is a vessel constructed so as to retain water, and largo enough to admit of jars being filled in it. Shelves and supporta are fixed in it beneath the surfaco of the water; on these, versels may be firmly placed. If now a large open-mouthed glass jar be filled with water, inverted bencath the surface of the water in the trough, alll put upen one of these stands, a tuhe from a retort or other distilling vessel, introluced into the inverted mouth of the jar, will convey the gaseous matter, which, displacing the water accupying the jur, can thus easily lon collected in it. In this manner gasis are obtained. If the jar he provided with a stupeork, they can casily le withdrawn into vessels titted to retain them. Instead of water, mereury, which is fluid at ordinary temperatures, is used in experiments where water would absorb the gases, or where exceeding nicety is required.

A great variety of other npparatus besides those enumerated are cither necensary or useful in a laboratory. Electrifying machines, galvanic batteries, air-pumps, syringes, tubea bent into various forms and of ditlerent wizes for fitting into the necks of retorts, \& \& c., dishes fior holding buth solids and fluids, as well as other materials which it is unnecessary to name, are frequently required; but a very convenient small laboratory, where a vast number of interesting experiments can be performed, may be furnished at very little expense.

Pontanas Mceseums.- With a few glass retorts, jars, - apirit-laup, blowpipe, trough, erucible, several slips of glass, and other simple apparatus, many highly intereating experiments may be performed in chemistry ; und those requining instructions in this practical methol of studyng the science, are recommended to peruse the anall work of Dr. D. B. Reid, entitled "Rudiments of Chenistry," published in connection with Chambrra's Ealucuitonal Course. In connection with the course of
experiments pointed out by Dr. Reld, there has been prepared by Mr. Macfarlane, druggist in Edinourgh, ami Mr. Midgely, chemist, Strand, London, portable museums of different sizes and prices (from £'1 to £19), which will be found extremely useful, because they contain a neat assortment of every elementary substance in acparate phials, with some of the amaller parts of a chemical apparatus.

Tests, Fluxes, Inetes,-Acids and alkalies in u free atate possess the power, even in very small quartities, of effecting certain general and regular changes in the tints of some vegetable celours. Aecordingly, colours of this description are used for ascertaining the presence of these bodies when in excess or uncombined, and are called tests. Litmus and turmeric papers are most gencrally used. They ore prepared by dipping unsized and bibulous paper in concentrated infusions of these substances. The litmus inparts a fine blue tinge to the paper, the turmeric a yellow one. In using these testpapers with a fluid suspected to contain free acid or alkali, or knowing that one of these substances is predosinant, in order to ascertain which is so, all that is neceszary is to moisten the papers with the liquid, ami observe the change which is ellected; if the fluid be acid, the blue celour of the litmus will immediately become red; if alkaline, the yellow colour of the turmeric will be changed to brown.

A flux is a substance made use of to assist the fusion and union of minerals or metals. It acts by protecting the substance from the air by dissolving impurities which woull otherwise be infusible, and by conveying active ageits, such as charcoal and reducing matter, into contact with the substance operated upon. Upon a large scalc, limestone and fusible spar are used as fluxes. What is called crude flux. is a mixture of nitre and cream of tartur, put into the vessel aleng with the substance to be fused. White flux consists of the game ingredients, in equal quantities, but they are frst deflagrated in an carthen crucible heated red-hot at the bottom. Black flux has the same constituents as the preceding, but the weight of the tartar is double that of the nitre.

Lutes are soft adhesive mixtures, principally earthy, used either for closing apertures existing at the junction of ditlerent pieces of apparatus, or for conting the ext rior of vessels which have to be subjeeted to very high temperatures. 'I'he lutes employed for junctions pass into the nuture of cements, which are substances used for uniting or joining tagether things of the same or different kinds, so as to form a whule. The best lute used for conting a vessel is made of stourbridge clsy. It is formed into a paste, which should be beaten until it becomes perfectly ductile and uniform, flattened into a cake, sud then applicd to the vessel which it is wished to coat. What is called fat lute is prepared by besting dried and linely pulverized clay (pipeclay or Cornish clay) with drying linseed oil, until the mixture be soft and ductile. Caustic lime, when mixed with varioua mincral and vegctable substances in solution, affords numerous cements and lutes, which become hard when dry, and are inipervious to vapours. One of the best is that obtained by using white of egg diluted with its bulk of water. The fluids are to be beaten together until the mixture pours with perfeet liquidity. There is then added a quantity of dry slaked lime in powder, until the mixture asiumes the consistency of thin paste. A solution of glue or the serum of blood is sometimes substituted for the white of egg. White lead ground with oil also makes a very useful lute or cement. Soft cement consista of yelluw wax (which alone is sometimes used as a cement) melted with its waight of turpentine, and a little Venctian red to give it a colour. When cold, it ia hard like suap; but whon pressed by the hand, the heat runders it pliant.
preensses in connection with the arts.
Tnitenation.-Asa general principlo, the more minutely matter ia divided, the more rapid will be the chemical setion exerted between the particles. This division of matter is cffected in varions ways. First, by trituration, or the reduction of substances to a state of powder, which is a mechamcal action not affecting the phyaical state of the boly, and only relating to solids. In accomplishing this, the pestle and mortar sro generally used. Externally, mortars are nsually shaped like a flower-pot, the inside, at the bottom, being curved like the thick end of an egg. They are made of various materials, such as metal, porphyry, agnte, nud so on, according to the purposes to which they are applied. The pestle is gencrally of the same material as the mortar, and is a solid rod having a rounded bulb at one end for pulverizing the substance in the mortnr. Trituration answers very well the purpose of promoting chemical action in a number of experiments, but by fusion and solution it is rendered inore complete.

Fusion.-Bodies are said to be in a state of fusion, when, heat being spplicd to them, they assume tho liquid form, a-state in which all the partieles of a substance move easily among themselves. When a solid body, such as a piece of sugar, is put into water, it is gradually dissolved; and when the lump of saccharine matter has disappenred, and liecome mixed with the water, and remains so, it is said to be lield in solution by it. Heat greatly promotes the rapidity of solution; and glasa vessels liaving a rounded bottom, such as a Florence flask, and placed upon a spirit-lamp, are very commonly employed. In processes connected with the aubdivision of matter, when hot water is merely poured upon the oubstance, the process is called infusion ; and when the substance is hoiled, the result is called a decoction. There is a process of solution called luxiviation, which consists in the ceparation of a soluble borly from an insoluble one by means of washing. Metals, as is well known, insy be reduced to a liquid condition by melting or fusing them in a crucible over a sharp heat, or in a furmace. For the degree of hent at which most metala fuse, we refor to the previous article.

Vitaifaction is a peculiar kind of figion, by which certain materials, when exposed to an intense heat, melt, and form that transparent substance called 'glass or crystal. The materials employed to form cominon glass aro ailiea or mea-sund, and alkali, such as carbonate of potassa, and a metallic oxide. (Sec Gluss-making, in article Miscellanious Mantpacturis.) It is legs generally understood that a kind of glass, soluble in water, may be made from silica and cartonate of potassa. "Mix intimately 200 grains of fine sand, and 600 of fine carbonate of potassa; fuse the mixture in n crucible capable of containing four times as much. Carbonic acid escapes, the silipa and potassa combine and produce glass. Pour out the glass, which is commonly termed silvoted potassa, on an iron plate, and dissolve it in water, the large quantity of alkali rendering it nolirble in this duid. 'The compound formed in this manner constitutes pure silica soup, having all the detergent properties of common soap; it is more active than ordinary soap, and leavea a liarsh feeling upon the hand. Common silica soap is mixed with a considerable portion of common soap, and occasionally with sand."Reid's Rudiments of Chemistry.

Demiccation-The drying of aubstancen, or desiccation, as it is usually colled in scientific works, may be earried on without exhaustion by neans of whit are salled desiceatorn or dryers. This is betier efferted in tome veaseln than in the open air, uniess a current be taken advantage of. In these procenses, nulphuric acid, thoride ot calcium, carbonate of potash, quicklime, and aimilar absorkents, thay be used. A basin of com-
mon quicklime, with a moint I recipitate placed ahove it the whole being covered with a jar or receiver, will soon dry the precipitate.

Filtration consists in putting mixed wubstances into vessela which are porous ennugh to admit of the pamage of one aubstance through them, but close enough to retain another. Unsized paper, cloth, flannel, tew, sponge, sand, pulverized glass, flints, porous stones, earthenware, and many other substances, are used on different occasions; but the first is almost exclusively used in a laboratory, a few of the others now and then being resorted to only on particular occasions. Evapioration is a process ao simple as scarcely to require doscription; it is merely the assumption of the gaselus form by bodies either at ordinary temporatures, or when heat is applied to them. In this general characteristic it resembles distillation and sumlimation, but it differs from these processes in this respect, that the substance evaporated is generally allowed to pass off uncollected by a refrigerator, not being that part of the mixture which is required.

Disticlation and Sualimation mean nearly the same thing; both consist in the conversion of a boly into vapour, its transference in that state, and consequent separation from other substances, and its ultimate condensation. The difference generally consists in the state assumed by the vapours when condensed; if the product be solid, the process is called sublimation; if liquid, distillation. The substunce is exposed to such a temperature as causes it to assume the gaseous state, in which state it is conducted into a vessel containing water of a low temperature, where it is condensed into

Fig. 3. wending through a tub of cold water is represented it fig. 3. The substance is raised into vapour in the still, and being condensed in the worm, runs out at its lower extremity. Distillations are usunlly ctlected in the laboratory ly means of glass retorts and flasks; for subatances, however, which require a greater degree of temperature to effect their distillation, metallic on earthenware retorth ate employed. Bodies whick. aie very volatile aro distilled or aublimed in an alentic, which consists of a globular bottom and conical-shaped head, whence a noan or beak passes off in a downward direction into a receiver.

A great improvement in evaporation has recently been introluced into the refining of sugar, namely, its leing boiled in vacuum pans. It is sel! known that there are frow articles of vegetable production which are not ingured by heing boiled at a temperature of 212°; but to boil thein st a lower tenipernture, it is necesasay to remose the presure of the atmosplere. This in now accomplished hy using close copper vessels of a flat. tened spherical form. On the top is n raised part, from which a pipe proceeds, nttached to no nir-pump. At the sido of this pine nnother enters the vacuum pan, from which freah syrup can be made to enter nt pleasure by means of a stop-cock. At the bottom of the pan is another stop-cock, through which the boiled
a rup can be The pan is rour \rfloor it ; as The air-pun in large sug steam-engin dance, part which liqui su! a saving out.
Fenment changes whi apontancous is one of th usoless subat propertics. fermentation which gum vinaus ferm alcohol; th and other mucilaginou instead of al tation, whicl table bodies.
The chan a inaterial p on a large s which has tially grow mination or tween a por ley, snd the matecial can ane part of the compou of this time verted into io found to l

Fermenta or any othe minary, in holic bevera for example grape juice for some tit Bummer. A becomes mt sometimes tl bubbles rise when they creased, it h cumstance, Latin word to the nurfar sembting fro the bottom, parent. Th name of yea diting ferme ment predis entirely cha of which is fermentatior given out ll our chemica briefly deser axygen corr mainder of and the wh hol: and wi the yeast it mert, solid. sunsement
'sic.l-
placed nbove it eiver, will soun substances intn it of the pame. closo enough a, flannel, tow, porous stones, , are used on ost exclusively now and then ions. Evapoto requile doof the gasellis tures, or when 1 characteristic , but it differs the substance uncollected by mixture which
can nearly the sion of a body and consequent 3 ultimate cononsista in the densed; if the ublimation; if posed to such a aseous state, in ssel containing condensed into or solid state. omon atill con-- a metal boiler taining the subto be distilled; terminating in is adapited to latter is made into the comnent of a spithe, called fixed in s tub whole of this the apparatus called the reor. A worm represented in our in the still, out at its lower ted in the lahoasks; for subater degree of n , metallic or dien whick. are in an alemtic, conical-shap + d in a downward 1 has recently gar, namely, its Il known that tion which are ature of 212°; it is necesmary

This is now -asels of a Hat uised part, from air-pump. At vactum pan, enter at pleabottom of the ich the boiled
surup can be taken out when aufficiently concentrated. The pan is heatod by means of steuin pipes which surrous 1 it ; and the liquid boils at, or even below, 150°. The sir-pump for removing the atmespheric pressure, in large sugar-refining establishments, is worked by a steam-engine. By this process the quality of any subctancs, particularly scenta and medicinal extracts, from which liquid is to be evaporsted, is greatly improved, sult a saving effected by catching the vapour as it passes outh
Fenmentation is the term which expresses the changea which animal and vegetable matter undergoes spontaneously when the principle of life is extinct; and is one of the means which nature adopta to destroy useless substances, and reduce them to their elementary properties. Chemists reckon up five distinct species of fermentation-namely, the accharine fermentation, in which gum and starch ara changed into sugar; the vinous fermentation, in which augar is converted into alcohol; the acctous fermentation, in which alcohol and other aubstances are converted into vincgar; the murilaginous fermentation, in which slime is produced instead of alcohol from sugar; and the putrid fermentation, which is the decomposition of animal and vegetable bodies.
The change of the substance of bnrley into augar, or s inaterinl possessing the qualities of sugar, takes place an a larga scale in making mall. Mnit is dried barley, which has previonsly lieen caused to spront and partially, grow by stecping in water; in the course of germination or malting, a chemical union is effected between a portion of the water and the starch of the barley, snd the snecharine matter is the result. A saccharine material can on similar principles be produeed by boiling are part of starels in twelve parts of water, and allowing the compound to stand for a month or so. At the end of this time about one-half the quantity of starch is converted into sugar, a fifth into gum, and the remainder is found to he a stareh paste somewhint altered.

Fermentation, whether of an infusion of malted grain or any other vegetulile substance, is a necessary preliminary, in order to change the material into an alcoholic beverage. 'The actual process of fermentation, for example, in reference to wine, is as follows:-Ripe grape joice is $p^{\text {nut }}$ into a vessel, and allowed to stand for some time, exposed to the ordinsry temperature of summer. At the end of a certain period, the liquor becomes muddy ; an internal motion takes plnce, and sometimes the temperature is found to be elevated; airhubhles rise to the surface, occasioning a bubbling noise when they break; and the bulk of the liquid being increased, it has a tendency to boil over. From this circamstance, the process is called fermentation, from the Latin word fervere, to boil. The bubbles created rise th the ruzfare, involved in a viscid matter, the whole resembing froth, which, parting with the air, subsides to the bottom, and the liquor becomes trnnquil and transparent. This viscid matter is well known under the name of yeast or burm, and it has the property of exdting fermentation in bolics not otherwise at the moment predisposed to it. The grape juice has now heen entirely changed into an intexicating lifuor, the base of which is alcohol, and this process is termed rinons formentation. A great quentity of enrhonic aeid is given out during this kind of fermentation, and the various chemical changes which toke place have been thus briefly descrihed:-Nome of the carbon and nome of the oxygen combine to form carbonic acid; while the remainder of the carbon, the remainder of the oxygen, and the whole of the liydrogen, combine to form alcohol: and we may totally neglect the decomposition of the yeast it amounting to almont nothing. Thus is this intert, aolid, fixed, sweet matter, resolved by a new srrungernent of ita principles into substances which pos-
V:2. I-30
sess none of these properties, and one of which exera control of so singular a natura over the animal eco nomy.
Liquor, vinously fermented, is aubject to a now series of phenomena. On being put aaide for some time, a frcsh commotion is observsbla, accompanied with the disengagement of a small quantity of gas ; and floating filaments or shreds begin to thicken in the liquid, collecting into a gelatinous cake. This is indicative of another change. The vinous flavour and the alcoholic or intoxicating quality have disappeared, whilst the liquid has become at once sour and transparent. In short, the wine has become vinegar, called in Latin acetum; and the process is called the acetous fermentation Let this vinegar be kept for a length of time, and another, and from the previous quality of the liquor, unexpected, change takes place. It becomes mantled with a green mould; the acidity and pungent acid smell digappear, and a feetid odour becomes perceptible.

The most remarkablo feature in the product of fermentation, is the intoxicating quality. This quality arises from the chemical change into alcohol, a concentrated spirit or essence, which, in one of its purest forms, obtained from distillation, is called spirit of winc. Alcohol exists to a lcsser or greater extent in all fermented liquors, such as ale, porter, or bear; but it is more concentrated, or frec of watery fluids, in the form of brandy, whisky, gin, rum, and similar intoxicating liquids. The amount of alcohol in stout porter is about 6 per cent., and in atrong ale 8 per cent. The alcoholic part of such liguids stimulates but gives no actual nutrition; the only nutritive part is the undecomposed starch and gum not changed into saccharine material. Alcohol dissolves the greater number of acids, the volatile oils, the resins, tar, and extractive matter, and many of the soaps; while dissolving pure soda and potassa, it does not act on their earbonates. The composition of alcohol has been investigated by eminent chemista, and the result is, that of 100 parts there are 13.70 of hydrogen, 51.98 of carbon, and of oxygen 34.32. When alcohol is distilled along with certain acids, a peculiar compound is formed, called ether, an exceedingly volatilo fluid, used in medicine.

While the various phenomena of fermentation, as above bricfly noticed, ara well understood by practical chemists, of the actual cause of the ferment little haa yet been discovercd. It is only known in a general sense, that fermentation is the rapid growth of microsiopic vegetation (see article Veoetable PirisioLoas), and that in the alteration of the liquor to vinegar, nother wonder is performed-the change to microse vie animal life (see article Zoolooy, Radiati, class xix.) When this end has been accomplished, nature makes one pther effort, by producing putrefaction, in which the material is resolved into invisible but odorous gases.

Presenfino-Animal and vegetable bodien may be saved from putrefaction, or the last process of dissolution, by putting them in a substance which will coagulate the alhumen, that being the first part which suffers decomposition. 'I'lis may be effected by steeping the Iodics in alcohol, oil of turpentine, or other volatile oils. Pyroligneous acid, from containing a small propurtion of croosote, has a strong power of preserving animal matter frem decay. The earthy sults are also antiseptics; but common salt, sultpetre, and sal nmmoniac, are the articles most generally used for the purpose of preservation. For the purpose of extinguishing the odour of offensive gases, arising from the decay of aninal substances, none of the chemical products is so useful or so readily availnble as chloride of lime; by sprinkling a small quantity in an apartment containing an unwholesome putrefactive odour, the air is instantly deprived of its noxnou: properties, and is sweetened. Putrefaction goer of
mont rap'dly at a temperature of from 70° to 80°, hut is altogether atopped at tho freczing-point. Thus fiah and ficeh may be kept fresh for any longth of timo when embedded in ice. The abstraction of the oxygen gas will also preserve meat: the simplost manner in which this can be done is to enclose the meat in tin ossen, leaving only a small hole in the cloaely moldered lid. The air may then be expelled by dipping the enses for a minute into steam; on lifting them out, a drep of molder, quickly placed on the hole, prevents the rush of air back into the vessel. On this principle of excluding the air, cases of preserved meata are now manufactured to a great extent for exportation. The proper drying of an animal oubatance is likowiac an invariable preventive of putrescence. Animal matter should be driod at a temperature of from 120° to 140°; but even when dried, the addition of a little salt will be neceseary. The salt is supposed to sbsorb the water from the albumen, and alcohol, augar, sec., act in the oame way.

Tanvina.-Animal substances may be preserved for any length of time hy being saturated with a vegotable extract, known in chemistry ly the name of tannin; and thin has given rise to the common process of tanning the skins of animals, and so making them into leather. Tannin exists in all vegetables possessing an astringent taste and quality, but is found in greatest perfecion is oak-bark and nut-galle. It exists to a considerablo extent in the fibrous substance of peat; bodies of men and of the lower anima! n, as also trunks of trees, impregnated with tannin, have been discovered in a perfect state of preservation in peat-bogs, after having lain for centuries. The principla upon which tannin acts, is the imbibing of an astringent and hardening quality by the muss of the cubstance, by which it ia conatitutionally altered. When the properties of tannin are present in a aoil, the ground is aid to have an antiseptic quality, and bodies buried in it are not apt to decay.
Kramising.-All kinde of timber are liable to undergo a change of substance dostructive of their usetul properties, by the action of damp, seclusion from tha atmosphero, and which may also be promoted by the subacid state of the wood-in common language, the timber rots. There is a peculiar kind of rottenness, callod dry-rot, in which the decaying timber affords nourishment to tho growth of fungi, which sometimes appear like a filurous vegetation, but more ordiuarily as toadstools. To avert the occurrence of dry-rot, which is a rapidly and insidiously apreading evil in the timbers of houses or ships, the only real nethod consists in steeping tho timbers, previous to being used, in a solution of corrosive sublimate. This chemical substance may be prepared by dissolving red oxide of mercury in muriatic acid, and evaporating the solution to dryness; but there are otber modes of procuring it from its busis of mercury.
The corrosive sublinato being procured, it in dissolvod asteep in water, in the proportion of one pound to five gallons of water. Such at least is the method of preparing ateeps in tanks according to the plan suggested by Kyan, and for which a patent has been obtained. The process of k yanising, as this is termed, is very simple. The timber being immersed in the liquid, it becomes after - time saturated, snd when taken out, the vegetative principie of dry-rot is completely destroyed. Only one day is required for each inch, in thichoess, of boards and amall tinbers, commencing with two days for the first inch. On renosal, the cimbers require a few weeks to dry, in order to be weazoncd tior use. Being the subject of a putent, a license requires ω be procured tor liberty of sterpiug.

medtcinal preparations.

Medicioca are those drugs which in some form are appined to the alleviation or cure of loodily uilments; and
they conaint, for the greater part, of anhosencea pril ared from vegetable and mineral hases, by piactical cheminus Retailers of medicines are usually spoken of as chemists but few are actually angaged in the elalorate procesap. of drying, diatilling, calcining, or chemically compounding the various drugs with which they supply their custonn ers. The medicinal preparations of the ancients were principally vegetable, but being constantly liable to dry up and lose their virtues, no dependence could be placed on them, and they went greuly out of repute, till the method of obtaining extracts by distillation came into use. Since that was effected, the value of vegetaile medicines has revived, though medical practice etill relios chiefly on mineral products, which aro generally morn certain in their operation. A few medical preparationa are from animal substances.

Some substances employed in the cure of discase, act mechanically, and others chemically, in the syatem; lut by fur the greater proportion of them act vitally. A medicine is said to act mechanically, when its ellect on the hody io tho same as that which it exerts over inanimnte matter. Demulcents, for instance, or remedies taken to remove the acrid effects of some other substance, operato simply by coating the stomach with a gummy fluid, an action which is entirely mechanical. Tho chemical ope ration of medicinea may be thus explained. When an acid and an alkali are mixed in a glass of water, they unite together and form a third oubstance, a salt, having new properties altogether. The same chenical procesa takes place when sourness, or an acid, is neutralized in the stomach by soda, or any alkali. The vital action of medicines differs totally from the two former. In this case the aubatancea are absorbed into the blood, and are convcyed by the vessels of the heart to the quarter whither their nature determines thein. Diuretics, or medicinea which stimulate the urinary organs, may form an example of vital action. From the stomach the diuretic is absorbed into the blood-vessels, and carried to the kidneys, stimulating them to the secretion of urine, though by what process of separation from the rest of the blood we know not. In these three divisions, mechanical, chemical and vital sgents, all the articles used in medical practice may be comprehended; and after this general explanation, wo may examine the particular classes of each division, commencing with tho most important, tho vital agents, The elass of purgatives (the strongest called cathartics, tho wenkest laxutives) is the best known and mont com monly used of any description of medicines. 'They may be arranged under three heads: those of an oily or sac charino nature; those which are derived trom vegetables such as resine and extracts; and those formed by a conrbination of acids with esrths, alkulies, and metals, termed neutral and metallic salts. The operstion of all these three is of the character of an irritation upon the mucous or inner membrane of the bowela, though in their cflects they ditfer consideralily from each other. The first mentioned seem simply to dischargo the contents of the bowels; the second appear to increase the quantity of matter evacuated, by atimulating the mucous membrane, and increasing the natural flow of mucus; the third produce evacuations of a watery consiatence. The principal purgativea of the oily or eaccharine kind ara, castor-oil, olive-oil (seldom used), manna, tamaninds hosey, and wo forth; croton-oil, an essential oil (that is to say, procured by distillation, not by expression, as the castor-oil is), is scarcely to be included in the class of oils. as its grest strength prevents its being used except in denperato cases. The mediun dose of the cantor-oil is one ounce, of the croton-oil a fraction of one drop. The former is inported in immense quantities into tivis conn try annually. It is one of the most useful and aufe medicines of the purgative class. The rest ratutioned are exceedingly mild in their operation, and are gencraily employed merely to paliate the had havour of eche
stronger drug aloes, acamio The general tnough the th from the othe membrane of simply, witho principal neut order of purs (sulphate of of potash), p of mercury). application 0 regulation of druga, it can disease to wh its usefnlnese dose should b to be guardet the others, lit already given pleasantest, th the phosphate
Sudorifics, perspiration, f dica. Certan into the blood action, and in in which thia kiow is, that, blood-vessels gre roused to audorifics ma lath; the pr powder ; Dov the preparatio which nause Dover's powd cases, when which, when consequences.

Emetics ar the blood, ant that, as they directly and the blood bec the stomach, tion into the on the arm, emetics, indee covering of th thereliy causis them, howeve inversion of t emetics emplo root, chamon vitriol. The the latter bein the alfeat in o

Diuretica a moting the fo Eidreys, the numerous, th that of all the atood. Thos foxglove, jum of ammonia, sit puwerlull coute beis.g The nirst and mure contain Gomentations

Expectorar the langs of
ces pict|ured cal cheminta an chemists ote procesep. compounding heir custonn ncients wers liable to dry uld be placed pute, till the on came into of vegetailo ice still relied nerally morn preparatione f diseare, act syatem; but 1y. A medietiect on the er inanimnte dies taken to tance, operato nmy fluid, an chemical ope1. When an of water, they a salt, having mical proces neutralized in vital action of mer. In this lood, ond are uarter whither or medicines m an examplo liuretic is alm o the kidney, re, though by the blood we ical, chemicah, edical practice l explanation, each division, vital agents led cathartics, nd most com-

I'hey may an oily or saco on vegetables, ned by a contnetals, termed a of all these on the mucous II their effects

The first contents of the quantity nucous memf mucus; the istence. The cine kind are, 1a, tamaninds ial oil! (that is ression, as the e class of oila, sed except in e castor-oil is e drop. The nto this coun cful and safe est roentioned I are generails vour of ache
stronger drug. The second kind of purgatives includen aloes, scaminony, jalap, colocynth, senna, and rhubarb. The general character of all these has been given above, tnough the rhubarb possesses one remarkable distinction from the others. It la supposed to act on tho muscular membrane of the bowela, producing a natural diacharge simply, without altering the character of the feces. The principal neutral and metallic salte, which form the third order of purgatives, are sulphato of modn, Epsom nalts (sulphate of magneaiiu), cream of tartar (guper-tartarate of potash), phosplate of soda, and calomel (submurinte of mercury). The latter is tho most universal in ita epplication of all medicinal preparations. By proper regulation of the doae, and in conjunction with other druga, it can be employed with benef. in almest every dizease to which man is subject. But in proportion to its usefulness, as is its danger when misapplied. The dose should be very amnll at first, and cold ought always to be guarded againat during ita uso. With roapect to the others, little can be added to the general deacriptlon already given, though it may be mentioned, that the pleasantest, though not the cheapest of nll medicines, is the phosphate of aoda, or tastelcss sults.

Sudorifics, or medicines which increase the cutancous perspiration, form another important class of vital remedics. Certan uubstances recrived through the atomach into the blood, excite throurh it the vessela of the ekin to action, and increase the toral discharge. The mode in which thia result is effecred is not well known; all we kaow is, that, during the operation, the heart, and the blood-vessels which terminate on the curface of the akin, gre roused to unusual action. Among the most active sudorifics may be enumerated warm drinks; the warm bath; the preparations of antimony, including James's powder; Dover's powder (compound ipecacuan powder); the preparations of ammonia; and all medicines generally which nauseate the atomach. Probably of all these, Dover's powder is the best. Sudorifics, in almost all cases, when early used, prevent the effects of colda, which, when neglected, prove so often fatal in their consequencea.
Emeics are another class of remedies, acting through the blood, and of very general use. It may be supposed, that, as they are received into the stomach, and act directly and apeedily upon it, there is no absorption into the blood neceseary. Tobacco, for inatance, taken into the stomach, excites vomiting; but it is from its reception into the circulation; because, if the tobacco be laid on the arm, the same effect will be produced. Some emetics, indeed, appear to act principally on the muscular covering of the stomach, exciting it to contraction, and thercby causing the expulsion of the contents. Most of them, however, aimply produce nausea, which causes the inversion of the receptacle of the food. The most active emetics employed in medicine are tartar-emetic, jpecacunn root, chamomile flowers, muatard, and blue or white vitriol. The two first of these are most commonly used; the latter being the gentlest, and perhaps on that account the safest in ordinary cases.

Diuretics are those medicines which operate in promoting the flow of urine, by stimulating the action of the Eilneys, the organs which secrete it. This class is very numerous, though the manner of their operation, like that of all the other vitul agents, is not thoroughly understood. Those chiefly employed in practice ure supuilla, fuxglove, janiper-berries, potash, crenm of tartar, acetate of ammonia, nitric ether, and Spanish flies. All these sit puweriully on the urinary organs, those in highest revute beis.g sipuilla, foxglove, juniper, and cream of tartur. The niret and the last of these are the most efficient, being mare certain in their action than the others. Warm Comentationa we useful accompaniments in all enses.

Expectorants are used to promote the expulsion from the lungs of these fluids which are secreted during colds,
and lodge there, causing difficult breathing, and nomotimes ending in injury of their structure. Thus, those remedien which promote expectoration are of great conse puence to health, though often neglected. The princlpal medicinee of thla class are antimony, squills, ipecacunn, and gumammoniac. Byrup of squilla is the preparation in greateat use.

Carminatives are those medicines which produce the diacharge of flatulence from the alimentary canal. 'Thlu malady is more annoying than dangerous, though it rise occasionally to a most painful height. The warm eos sential oils, such as caraway, anise, or peppermint, and some aromatic stimulanta, as cinnamon and ginger, are the best carminntives.

All those classes of medicines which we have hitherto mentioned, are called evacuanta, from the nature of their operation; and we may now describe another order of medicinal preparationa, acting, like the former, through the medium of the circulation, but repressing inatead of atimulating the powers of the ayatem. There are only two dintinct classes ot medicines of thia kind, narcotice and antispasmodics, though the first of these has sometimes heen divided into two, narcotics and sedatives.

Narcotica are those aubstances which diminish the natural degree of action in the body, and tend to remove irritation or pain, inducing in genernl a atate of repose. Before this quieting effect is produced, however, there is a primary excitement of short duration, which is well exemplified in the case of opium. Sedotiven, viewed as a separate class, are believed to allay pain and promote sleep, without posseasing any atimulating qualities; but it is far from being clear that we have any simple seda tive medicines at all. Opium, which is almost exclusively employed as a sedative, is universally almitted to have a primary exciting quality. Unleas where exceasive pain is present, narcotica may be regarded as a class of medicines only to be used with great caution, and never free from danger. Opium and its preparations, lettuce extract, henbane, foxglove, hemlock, end tobacco, are some of the atrongest narcotics. It is difficult to say which of these is the safest, when a sedative is required, though probably the preparation from lettuce has the slighteat stimulating powers. Morphia, a drug procured from opium, is said to possess the sedative withnut the exciting effect.

Antixpasmodics are used to remove spaama or convulaive contractions of the muscular fibro in the body, and are ao similar in their action to the last-mentioned clase, as scarcely to require a separate noice. Opium, camphor, ammonia, valerian, and assafotida, with most of the narcotics, are the antispasmodics generally in use.

Stomachics.-There is another class of medicines, acting by abaorption into the blood, or as vital agents, which cannot be rankel either amongst those which excite action, or those which repress it. These are stomachics and tonics; the former increasing the digcstive powers of the atomach, the latter renovating the tone, or contractile energies, of the muscular fibre. They are alow in their operation, and angment the stzength of the body without materially exciting its actions. As these two kinds of modicines are not very diatinctly separable, it may be better to enumerate them together. Good nutriment is the most natural and best supporter of the hodily powers, but to effect this purpose, it is necessary that the function of digestion should be in a proper conditiun. Gentian root, quassia, chnmomile, columba, and canella, assist powerfully thia object. Amongat the tonics, Pe ruvian and cascnrilla barks, the preparations of iron, the sulphuric nond nitric acids, are in greatest repute.

With respect to the two kinds of medicinal agetuta, which act chemically and mechanically on the systen, they are generally ranged into five classes-causticw, astringents, antiseptics, antacids, and demulcents.

Caustirs are a class of suhstances employed to treake artificial sorea or ulcers, for the purpose of relieving some
feop-nited malady. The operation of caustics in conwidered chemical, being the result of some altraction between the animal body and the sulistance employed. 'the same action takes place on the application of causties to a portion of the dead mulject. Where auppuration in going on in any internal part, they are exceedingly uneful in creating a drain on the surface of the body. The principal caustice employed in medicine, are potass, bus vitriol, nitrate of silvor, armenic, and some preparations of mereury. The nitrate of silver, or lunar cauatic, is the uubetance in most common use.
Astringents.-The action of this class of medicines is rathor obecure. Their power appears to depend in a great measure on the presence of the principle called tannin, and thoy produce their effect by bringing into closer contact the particles of the body to which they are epplied, without, in other respects, affecting ita mechanical etructure. They are believed to be often of service in restoring tone to the stomach, and it is evident that their antringency will be of great advantage when any laxity of the surface of that organ exists. All the vegetable astringents contain tannin, and those moat generally employed are gall-nuta, catechu, kino, onk-bark, and logwood. A number of the acids, and some of the salts, thuse particularly in which the acid preponderatea over its base, as in alum, which is a compound of vitriol and the carth dumina, possese astringent propertics, although they contain no tannin. Some of the metellic salts, as superacetate of lead (augnr of lead), and aulphate of zinc (white vitriol), are ranked in this class. Cold is also a direct astringent, and is ofen employed in this charactor with great advantage in checking bleedings.
Antiseptics, though still ranked as a diatinct class of medicines, are very little trusted to in the present day. They were great favourites with the ancients, and were aupposed to possess the property of resisting putrefaction, or that tendency to mortification which sometimes appears towarda the termination of fevers and other complaints. Peruvian bark is commonly believed to have untiseptic quallties, and, with the exception of alcohol and vinegar, is the only drug of this clase worthy of notice.
Antacids.-The stomach of many individuals is liable to a continued conversion of their fool, particularly vegetable food, into a species of ucid, which produces the annoying feeling called heartburn. 'Thia acid may be neutralize 1 by any of the eartha or alknlies, and the procees oi' relief is as purely chemical as if it were performed in a glase of water for experiment. The three alkalies, potase, soda, and ammonia, the alkaline carth magneaia, and carbonate of lime (chalk), are the moxi useful medicines of this descriptins. The relief oltained from them is, as might be expected, merely temporary, aince they do not prevent the generation of the acid anew.
Demulcents are a claes of medicinal agents, the operation of whicb seems entirely mechanical. A poultice is applied extenally to eoften an inflamed or irritated part, and with exactly the same viows are demukents used to coothe any irritation of the alimentary canal. Solutions of gum, and ayrups, with bariey water, and other farinaceous drinks, are employed for this purpose. Iceland mow (lichon Islandicus), liquorice root, almonds, sugar, marshmallow, and others, are includel in the clase of demulcents.
These are all the clasees of melicinen that can he asid whave a chemical or mechanical action on the atomach; sud to complete this brief view of tho principal articles uned in medical practice, of the order in which they are arranged, and the nature of their action, some account may be given of rubefacients, as they are called, from reddenung or iuflaming the skin, and of blisters.
Counter-Irritants.-The extremitien of the vessels whirh convey the blood from the heart over the body,
are mupponed, when they terminate on the skin, to divide into minute tubes, one kind of which carries the med globulen, and and ther the colourleme serum of the bloul. When atrong stimulants, such as mustard or 8panish flien, ure applied to the akin, they are supposed to excite these minute veseels no powerfully, that those which contain serum become filled with red glohules. Thin can only be produced during an extraordinary flow of blood to the part, and is the cause of the rednesa consequent on the application of mustard cataplasms or bliators. A blister is simply a rubefacient allowed to remain on the akin until a decper layor of it becomes affected, and pura or serum exodea. Like caustica, histers are exceedingly useful in substituting a superficial inflninmatory action for one existing in some deeper nad more dangerous seat, and thoy are therefore colled counter-irritants. The pritr cipal substances employed in exciting cutaneous inflan mation nre Epanish flice, mustard, tartarized antimong ammonia, turpentine, and a few other druge of a stinu. lant nature. The Spanish flice are alnost excluaively used in blistering, and mustard, as a rubefacient, is held in a similar degree of estimation. La:terly a now and improved method of employing Spaniah flies, or cantharides, has been introduced into practice. It consists in applying an extract, which contains the essential powen of the material to tho skin, by spreading it on paper, The blister so formed, which bears the name of tela vesicatoria (blistering tinsue), produces a much more rapid effect than the common fly blister, and dozs not give the rane pain to the patient.
The principal medicines employed at the present day for the allevintion or cure of diweaso, have been now enumerated in an arrangement which may show their meveral propertics and modes of operation. Each uni. varsity of importance has a list of medicinal prepa:atione drawn up for the guidance of its own nembers and pppils and this list is termed its Pharmaropin: with the ennmoration is given \& full account of the processes by which the various substances are prepared for usc. This paper, which gives a pharmacopeia of a simplo and popular kind, will have the effect, wr humbly imagine, of diesipating some portion of that veil of nysticism which enveloped the art of medicine, and of showing what are the rational objects to be expected from the action of drugs upen the animal frame. In regard to the quantities of medicine to be employed as doses, that ia a liranch of the sulject which we leave entirely in the hands of the medical practitioners properly empowered to administer them. It may here, however, he mentioned, as an interesting fact, that the artion of the dose by no meana corresponis with the quantity. The gencral rule seems to be, that when a too large dose of medicine is taken, rature makes an effort to expel it, and it is accordingly vonited without doing tha intended good. A dome of a moderale size pushes ts way to the bowela, which it irritates and causes to act with a degree of violence. A dose of a smaller size w'll act only on the atomach. The action of inedjcines in the stomach ia by alsooption into the aystem; and as the atomach is alwaya less or more filled with fluid materials, it followe that the medicince received are diluted, and have a correapondingly weak or at least nlow influence on the absorbents. Thus ir has been found that a few drops of certain medicaments dropped on the tongue, by v bich they are absoried at once inta the aystem, have as powerful an effect us twenty times the quanticy poured into the stomach.

Mincral Waters.-These waters, which are expelled frors the earth as aprings, forn a distinct order of medjcaments, prepared in the great luboratory of nature, and depensing for the: character on circumatancea oves which mankind have no control. Mineral watern are generally divided into four classes-acidulated or cur: bonated, saline, chalyleate or ferruginous (that is, wa taining iron), and sulphureous. Some are therond
hot othe found in those whis curbon. an magnesia, ulta of carbonic a of Pyrmot ent hava m infusion state of al sometime sulphate an Tunbridge loua water disengagen times their they conta msgnesta, waters of The sulph disagreceabl and coppe Harrowgat cherr, are
The ther are those and Baden Baden-Bar prung, wh grees of our be either in ejected by yeas, whic place, there at the rate every twent exactly the composition quoted by grains, con principal in being not le Next in in bonate of half grians. of magnesi toch of car
Artificial kinds by el properties usually aold dients are

The art oxther words of which t difficult yo More partic less, practic which do n are conduc ligh' which sulustances provelisent interest, ev vital mome Without t lessors of malysia th compounds cence mig! laws, and
dkln, to divide mries the red of the bloul d or Epanial osed to excite those which obules. This linary flow of redness consems of blisters remnin on the ceted, and pun re exccediugly matory action langerous seat,

The pritr neoun inflam eed antimony 8 of a stinu. ost exclusively Cacient, is held rly a new and lies, or canthaIt consists in sential powers g it on paper. name of tela a much more , and does not
he present day ave been now tay show their n. Each uniul preps:ationa bers and pupila with the enucessen by which This paper, c and popular isgine, of dissi. cism which en ig what are the action of drus, be quantities of a branel of the ands of the medminister them an interesting ans corresponds ems to be, that a, rature makes vomited without moderate size tates and causes se of a smalle action of medinto the system; more filled with nes reccived are or at lcast slow has leen found dropped on the t once into the wenty times the
ch are expelle order of medi. y of nature, amd umstances eve ieral waters are idulated or cur in (that in , wn ere thermal
hot othera nre cold. "The aubatances which have been found in minetal waters are extremely numerous, but those which most frequently occur are oxygen, nitrogen, rarbon, snd aulphur, in different comblnetions; lime, iron, magnesia, \&c. The anline aprings conaint in general of alts of aoda and lime, or of magnesia and lime, with sarhonic acid an t oxide of iron. The principal are those of Pyrmont, Seidlltz, Epsom, \&cc. The ferruginous waers have a decided atyptic tasta, and are turned black by in infuaion of gall-nuts. 'i'he iron is sometimea in the atate of an oxide, held in solution by carbonle acid, sometimes exist as a sulphate, and sometimes both as a sulphate and carbonate. The waters of Spa, Cheltenham, Tunbrilge, Pittahurg, \&c., are among tham. The acidulous watera are chnracterized by an 4° ante, and by the disengagement of fixed air. They contain five or six times their volume of carbonic seid gaa; the aults which they contain are muriatea and carbonrtea of lime and magnesta, carbonate and aulphato of iron, \&c. The waters of Bath, Buxton, Bristol, Seltz, \&ce., are acidulous. The sulphureous wstera are essily recognised by their disagreeable odour, and their property of tarnishing silver and copper. The springe at Saratoga and Ballston, Harrowgate, Moffat, Aix-la-Chapelle, and numerous thers, are of this class."-C'onvereations I.cxiron.
The thermal or hot springs most frequented in Europe are those of Buth, and in the grand-duchies of Nessau snd Baden (there enlled brunnens). In the town of Baden-Baden, there is a saline spring, called the $\mathcal{C r}$ sprung, which gushes out at a temperature of 153 d degrees of our Fahrenheit thermometer, which is too hot to lo either immediotely drunk or bathed in. The quantity ejected hy the apring is enormous. For two thousund yeass, which is as far hack ss any thing in known of the place, there have been thrown up, by the Ursprung alone, at the rate of three mil:ions of culic inches of water every twenty-four hours, and alwaya, night and day, of exactly the same ateaming heat and the same taste and composition. According to the analysis of Dr. Kalruter, quoted by Granville, a pint of water, weighing 7392 grains, contains 23 3-20the graine of solid matter, the principal ingredient of which is common sea-salt, there being not less than sixteen grains of that substance present. Next in importance are the eulphate, muriate, and carbonate of lime, which altogether amount to six and a half grains. The remainder consista of a small portion of magnesia and traces of iron, with ahout half a cubic inch of carhonic acid gas in addition.
Artificial mineral waters are now prepared of elifferent kinds by chemists, for by analyzing these waters, their properties can be imitsted. The article called solla-water, usually sold in bottles, is well known. Its chief ingredients are carbonate of sode and tartaric acid.

chemical analysis.

The art of analyzing the compounds of mattcr, or, in olher worda, of rerolving them into the various elements of which they are framed, constitutes one of the most lifficult yet importunt branches of chemical science. More particularly is it important in relation to numberless practical purposes of life. There are few trades which do not owe nuch of the auccess with which they are conducera in an advnnced state of society, to the ligh' which chemistry has thrown on the nature of the sulastancea employed in them, and the consequent improvements therein introduced. To the highest moral interest, even, of the social looly, chemieal analysis is of vital moment. It is the basis of medical jurisprudence. Without the knowledge of poixons possc ased by the prolessors of that science, and their ability to separate by aualysis the most minute portions. of these from any compounds with which they may have been mixed, innocence might often perish under the erring severity of the laws, and guilt escape the penalty juatly incurred.

The mode In which chemical analyain, eo iniportant in overy reapect, in conducted, may best be explained by individual examplea; but a few general observations will not be out of place. As respects the apparatus necessary for the chemical anulyst in hia laboratory, notice has already been taken of It; and It is only necessary to add, that in performing anslyses, the principal testa and preparationa are also required. The latter articles amount in number to about sixty or seventy. They consist chiefly of the aulphuric, nitric, and hydrochloric acida; aulphur, phosphorua, iodine; the principal alkallea and cartha, with their most inportant compounda; mercury, Iron, lead, tin, cobalt, antimony, gold, ailver, and a few other metals, pure or in a conspound state; with a fow of the vegetable acids, such as the tartaric, and oxalic. Teats and teat-papers, most important matters in chemical experiments, are also to be procured. By boiling red cabbage, one blue solution of this charucter is obtained, which detects acida and alkslies, uncombined or in excess, the formor turning the blue to a red, and latter to a green. Boiled litmus gives another solution, which acida redden; and turmeric in solution is clanged from yellow nearly to red by alkalies. Slips of paper, soaked in these molutions, and then dried in the dark, require only to be touched by the dissolved alkali or acid, to show the change of colour st once. Iron, agsin, is instantly detected by infusion of galls. The presence of acids and alkalies, in almost every compound in nature, rendere these teets of vast consequence in analytic chemistry.

In taking up any hody of unknown composition for analysis, very minute quantities only, finely divided, and weighed, are used. The body is then, if possible dissolved, commonly in water, that the particles may be further separated ss widely as possible, which is the most favourable condition for the action of other bodies upon it, and display of chemical affinitics. It is possidle that the boily msy be insoluble, or but partially solutle in water at a common temperature. In these cases, the processes of infusion, digestion, or decoction, will be tried by the analyst, heat sdding powerfully to the aolyent powers of water. Lixiviation and maceration are also resources of the chemist. Sometimes alcohol or other solventa must be employed, and at times several solvents require to be used in succession, each having the power to take up something insoluble in the others. Once dissolved, the body, or portions of it separatcly, can be trested with tests; and, heppily, there is not one aubstance in nature which has not auch affinities for ono or more substances, in preference to all others, as readily to betray its own naturc. The common resulta of adding one body as a test to another in solution, are either alterstion of colour, precipitation, or gasefaction. In the firs case, the two bodies may form a compound, soluble, bu of new colour; in the second place, an insoluble out stance may be thrown down to the bettom of the solutior. and, in the third, a gas may be set free. All of these resulta may be combined in some cases. The experi menter may, moreover, varorize and rystallyze: fusiond and condensation are processes also at his commanWhen simple solution can be effected in no way, and as no temperature, the experimenter may then have recourse to other agents. Chemical action may be induced by pressure, by electricity, and sometinues liy light.

These are the general ways and means ly which the chemical analyst proserutes his investigations, By way of particular example, let us take a cuse in the department of mediesl jurisprudence. Let un suppose a medical man called upon to examino a case of poisoning, where the only cause of death that can be auspected is the use of copper vessels when corroded by articles of food. The object, thon, is to analyze the vegetable or animal fluids remsining on the stomach, or preserved otherwise, in order to detect the copper, if it exists. Bew ing boiled, the fluid in question is tresteil ur mixed with
filuted acetio acid or vinegar, which diseolver out the enpper from amosg the other matters present. Well aware that aulphur has oo atrong an affinity for copper as to unite with it whenever they meet finvourably in solution, forming a compound of both, called a sulphuret of eopper, Profestar Christison then directa the introduction of sulphur, in the shope of sulphureted hydrogen gas, after the following preparations have first been made: gas The auapected mixture having been prepared by the adilition of acetic acid, is to be aubjected to filtration, and any matter left on the filter is to be washed, collected, and dried, the washinga being, of courne, added to the fuid which first paseed through. The procese here dividee itself into two; for the oxide of copper may be len on the filter in the form of an insoluble anit, or it may have passed through in solution. But it may be obcerved in passing, that very few of the naits of copper are insoluble in diluted acetic acid, so that if copper is prosent at all in a suapected mixture, there are many chances in favour of ite being found by tho first branch at the analysis.
"First branch.-The solution is to be examined first, both becauso it is the more likely quarter in which to find the copper, ond because the analysis is more cany than that of the solid matter. The eolution, then, in to ze treated in the unuel way with a stream of sulphureted hydrogen, and immediately boited to expel the excess of gas. If a brownish-black, or even pale-hrown precipitate is then thrown down, thern in a presumption in favour x the existence of copper: if there in no precipitate or brown colouration, there is nn copper in the fluid. In order to ascertain precisely the nature of the precipitate, which is some metallic aulphuret, the auperincumbent Guid, after ebullition and subsidence of tho precipitate, is to be cautiously withdrawn, and its place supplie \& with water; and when the washing has been eeveral timea repeated in the same manner, the precipitate is to be tranaferred into a watch-glase, or, atill better, into a whito porcelain cup, and dried. It is next to be collected, and thcinerated in a glass tube, to dentroy any adhering vegetable or animal matter. Tho last ster in thin bronch of tha process ia to convert the sulphurot into the nulphate by the action of a few dropa of nitric acid, aided by a gentle heat; and the to add to an excess of ammonia, either without or with previous filtration, according to the degree of muddiness in the nitrous solution. If copper is present, the usual deep violet-blue tint will be struck.
" Second branch-If copper is not detected in the filtered part of the nuspectad matter, it will be necessary to examine also what remained on the filter. This proceeding, which constitutes the second branch of the analymis, will be seldom required in ordinary medicolegal researches, being rendered nccesaary only by the powabiility of the nxide of copper having, either originally or after mixture with the auspected matter, assumed the form of an inorganic salt, insolublo in water or acetic acid.
"The matter on the filter is firm to be well dried, and then beated tw redness in a crucible till it bo completely charred. The copper which is thus reduced to the metallic atate, is next to be treated with nitric acid, diluted with ita weight of water, and aided in its action by gentle heal. A solution is thon procured, which is to the removed by filtration, and tested with ammonia, and the oxher liquid tests" Ammenia, or hartshorn, has a strong autinity for copper, and when added to a saline solution of the latter, thrown down a derp blue powder, called the ammoniuret of copper.
The analysis of mineral watora, where the nature end amount of the whole ingredients, and not of one only, form the sulject of inquiry, is a tusk of very grest diffisulty. Generally, however, non-profeseional experiwenters upon liquids of this deacription, are enxious
merely to ascertain the existence or non exintence of cer. tain ingredienta, witheut entering into minate propor tional quantitien, or the like detalla. The report of cane where a clergyman, the Rev. W. Robertson, junior, of Inverkeithing, examined a mineral apring at Fordeh, now lies before ua, having been communicated to the Philosophical Journal of Professor Jamean. It may give a fair idea of the way of going to work under such cis. cumstancer.
A gan bubhled up, through the spring, which Mr, Robertaon firat examined. The elementary as well as compound gases have properties and affinities as well marked as those of fluids or solids, and can be as readily detected. For example, the gas called carlonic acid, present so largely in nature, has such an aflinity for lime, that, on contact, it in at once absorbed hy lime-water, and rendere that liquid turbid. By trials with e graduated glass tube, whore the gas or air containing cartonic acid is brought inte contact with lime-water, the loss of the acid gas by aboorption may be meanured, and the proportion of it present in the examined air at once deter. mined. So with other gamea, when tented in relation to their reapective affinties. Having satinfed hinuself about the gasee prement in the apring of Fordel, Mr. Rolvertson then tried the following proliminary experinents to determine the subetances contained :-a Even when recent, it did not peceptibly redden tincture of litmus, though the tint was compared with the colour of the tincture diluted to a similar extent.
"It did not affect the colour of Brazil wood or turme ric test-paper. With tincture of galla it gave a slight tinge of purple, and ultimately a scant; purphish-browr. flocculent precipitate, showing the presence of iron, and by the purplish tinge, also, the presence of earthy or alkeline salis.
" The water, next day, gave no tinge with the tincture, showing the iron to be principally in the atate of a carbenate.
"When the water was evaporated by a gentle heat, floceuli of oxide of iron were deposited.
"The water, upon being boiled, gave a considerable yellowish-white precipitate, indicating carbonates. This precipitato was solublo, with considerable effervescrnce, in nitric acid.
"Tho water decanted off from this precipitate gave in tinge wilh tincture of galla, but, on boiling it with a few drops of nitric acid, to peroxidise the iron which it might contain, the excess of acid being afterwaria neutralized by ammonia, it gave unequivocal traces of iron, by a darkisb tinge with the tincture. From this it was infered that the iron in it was in the state of protoxido. A purtion of this water, after being thus treated, also gave a red tinge, with sulpho-cyanate of potash.
"With ferro-cyanate of potash, and a drop of muriatic acid, the water, when recent, gave a whitish precipitate, becoming blue hy exposure to the air, indicating iron in the atate of protoxide.
"With lime-water, the recent water gave a copious flocculent precipitate, the lime uniting with the exceess of the carbonic acid, end the whole of the carbonates falling down together. This precipitate wan redissolved, on add ing more of the mineral water, which showed a consider able excess of carbonic acid; and it was also soluble witt effervescence in diluto aretic acid.
"With the bicarbonate of potash there was no precipitate, the whole heing kept dissolved by the excess of carbonic acid.
"With ammonia, and also with potash, a fioceulen: white precipitate took jlace, partly owing to the abetraction of free carbonic acid. With the carbonatea of potash, soda, and ammonia, there were similar precipitater, but more acanty ; they were all soluble in a dilute acetic acid.
"With a solution of soap in alcohol, a great milkinem

- Witt acert precipitati) in *Witn oxal indicating lime "With carl on immediate indicating ma adid. With e "parately, no of time.
"With mur in murlatic aci "With nitr while mecluded on exposure to
"Two ounce with nitro-mul
"'She water, gave, with alar
"From the water containe ungether with little potash. be incompatil) neither could urnination of was the next necessary here generallities.
The agricult with similar ins rally, of knowin putters on whi nine in what p under examinati the purpques of of ascertaining quote, with sor "Letters of Ag
" In the field the s eface, fro of a f 'und fro sparate them puud each. ' the aun, or hefo \because over frequent Being thus pow uill ullow all it lut which will arad decayed w the rough-wep slones and oft amined apart hard and roug they are silicio dificiculty broke scraped by a clayey ; or if, vincgar poure ω the top of th dixided matter undergo the t. anitate the wh from the batt, "ater till this e 4 settle for tw mudy particles water, which w and the insolut Mir decompositi and if from in calcareous in uantly applied. of water will I
aree of cer. ite propor eport of: on, junlor, at Forden hted to the It may give r auch cis which Mr. as well as ios the well e as readily pic acid, prefy for lime, o-water, and a graduated arbonic acid loss of the nd the proonce deterin relation to imself about r. Rolertson ents to deter. nen recent, it , though the eture diluted
od or turme gave a slight rplish-browr of iron, and uthy or alke-
the tincture, tate of a car.
gentle heat considerable mates. This effervescrnce,
pitate gave ro it with a few hich it might la neutralized of iron, by a it was inferred xide. A por: lso gave a red
op of muniatic sh precipitate, cating iron in
gaye a copious the excese of bonates falling solved, on add red a consider so soluble with excess of car-
h, в flocculen: to the abetrac carhonatea of lar precijitates, a dilute acetic
- Witt accia e of lead, a conshletable milkinem, and a prectpitati, Inmoluble in acetlo acid.
${ }^{*}$ WIta oxalute of ammonla, a conaiderable precipitate, indicating lime.
w With carbonate of ammonla and phomphete of soda, on lmmediato milkinean, and a preclpitate, after atanding, indicating magneaia; the precipltato soluble in acetio acil. With carbonate of emmonia or phosphate of moda, wparately, no milkiness, after standing for the same length of time.
" With muriate of baryta, a slight precipitate, jneoluble in murintio acid, indicating aulphuric acid.
"With nitrata of ailver, a copioua precipitate, white while wecluded from tha light, becoming rapidly purple on exposure to light, indicating muriatio achd.
"Two ounces of the water, evaporated to drynena, gave, with nitro-murinte of plntinum, alight tracea of potanh.
u'The water, very much concentrated by evapr ration, gave, with atarch and nulphuric acic', no trave of lodine.
uFrom the aloove indicationa, It was coneluded that the water contained aulphuric, muriatic, and carbouic achdr? ugether with protoxide of iron, lime, magnesia, and a fittle potash. The presence of alumina was inferred to be incompratible with that of the eurthy carbonates, neither could any be subsequently detected." The determination of the quantities of aach suhatance preaent was the next olject with Mr. Rohertson; but it is not necesanry here to carry our notice of the aubject beyond generalities.
The agricultural chemiat proceeds in a aimilar way and aith ainilar inatruments. He has tho advantege, generally, of knowing beforchand the probable character of the matters on which he operates, and tha point is to deternuine in what proportions they oxist in the particular soil under examination. Where a lops exact analysis will auit the purperes of the agriculturist, the following eimpla plan of ascertaining the qualities of eoila may be adopted. We quote, with somo slight alterationa, from Mr. Young'a "letters of Agricola."
"In the field to be examined, take earth a little below the $\mathrm{s} \cdot \mathrm{rface}$, from four separato placea, about a quarter of a p und from each. Mix them together, and again separate them into four quantities of a quarter of a puad each. Then take ono quantity and expose it to the aun, or beforo the fire, till coinpletely dry ; and turn It over frequently, that it may ho well mixed together. Jleing thus powdered, pass it through a fine sieve, which nill allow all tho particles of sand and gravel to escape, but which will hold hack stones, amall fibrous roots, and decayed wool. Weigh the two parts-the fine and the rough-weparately, and take a note of each. The stones and other bulky materiales aro then to he examined apart from the roots and wood. If they are hard and rough to the touch, and scratch glase easily, they are silicious and flinty ; if they are without much difficulty broken to pieces by the fingers, and can be acraped by a knife to powder, they aro aluminous or dayey ; or if, when put in a wincoglasa, and common vinegar poured upon them, small air-bubblee ascend W the top of the liguid, they are calcareous. The finely dixided minter which ran through the sieve, must next undergo the t'st of experiment. After being weighed, uifite the whole in water, till the eartls be taken up fron the bottom and mechanically suspended, adding water till this effect be produced. Allow the mass then 4) settle for two or three minutes, and in that time the mudy particles will aink to the bottom. Pour off tha water, which will then contain the clay in suspension, ond the insoluble earth arising from animal and vegetathe decomposition. Tho and aloould be first athended to, and if from inspection it be thought either silicious or calcareous in its nalure, the requieite tests may be inotantly epplied. By this time the mixture in tho poureloff water will leave deposited at the bottom of the vectel
the clay and other eartha, with the inmoluile aninal and vegetable mattef. After puining of the water, dry the sodiment, and apply a atrong heat by placing it on the trottom of a pot ignited to rednesm, and the animal and vegetable nuatter will fly off in aeriform producta. The reraainder lying in the bottom will be fouml to conialat of clay, lime, or magneaia.
"To obtain accuracy, another quarter of a pound may be taken, and the whole procews gone over a mecond, a third, or even a fourth time, so that the operator may rectify any blunders he had prevloumly committed, and lee catiafied as to the reaules of the oxperiment. Ho mhould provide himaelf with a pair of fine scalen, and a eet of welghta divided at least into half and quarter ouncen and drachms. Although vinegar will dotect lime by affervencenice, it doen not dinsolve it no effictually as the nitric or muriatic acids, small quantitien of which may be obtained from tha druggista at a amall expense."

Having ascertained by theac, or any other inquiries, what la the composition of the soil, a pretty accurate notion, other thingn considored, may be oltuined respecting its capacity for productive husbandry. If It be neces sary to enter on a course of improvement, the lefect in composition mny be remedied by the applicution of materials of an opposite quality-an excens of colcarcous matter heing counteracted by rind and clay, an excem of clay by the almixture of sand, or an excean of sand by the application of clay, peat, \&cc. An excellent noil for lrearing wheat has been found to contain in 100 parts-carbonate of lime, 28 ; silien, 32 ; aluinina, 29 t and of animal med vegetable matter, with mointure, 11. Oxida of iron, to the extent of 2 or ' 3 in the 100 parts, is not unueual in good aoils.

combuetibies.

The clasa of combustibles in tho manufacture of which a knowledge of chemintry is more particularly required, includea gunpowder, fulminating powders, the material of Congreve and wky rocheta, borlh-shella, percuseioncaps, rapidly igniting matchos, and of fire-works generally. The term Pyrotechny (from pur, fire, and techne, art) has been applied to the art of making and compounding these substances. Of each of them wo shall present a ghort account, with an explanation of the principles on which they fulminato and explode.

The leading ingredients in most explosive combugtibles are charcoal, ealtpetre or nitre, and sulphur. In making fireworks of a varied kind, however, numeroun other substances are employed. The chief are chlorate of potass, fulminating silver, and mercury, preparationa of steel, copper, and other metals, with varicus oila, spirita, and resins. Charcoal, as is mentions \dot{d} in the preceding sheet, is simply wood reduced to a charred condition (pure carbon), by being burnt to a kind of blackened cirder in a vessel closed from the atmosphere. For making gunpowder, light woods, auch as the willow and alder, are the best, and the pieces are atripped of their bark before being used. In preparing thia kind of charcoal, it is important that the vapours he allowed frecly to escape, otherwise its combustibility will be impaired. The preparation is usually etfeeted by iron retorts over furnaces; and by a conneeting tube the vapour escajres, and is condensed into a tarry acid, from which pyroligneous acid is afterwards distilled. After being thua prepnred, the charcoal is ground to a fine powder. It has been properly charred if it burns without leaving any residuum.

Saltpetre, nitre, or nitrate of potass, is abundant in nature, but may also be compounded by the artificiul union of its two ingredients, nitric acid and potass. It is procurad Inrgely $\operatorname{Tr} \cdot \boldsymbol{A}$ India, and also from Egypt. Spain, and other countrics, where it is found on the war face of limestones, marls, and chalky strata, being ep 30
areously generated and reproduced there by some atinoapheric influence not well underatool. The alight silky tuiks of the nitre are swept up with a broom, and are lixiviated, allowed to settle, evaporsted, and crystallized. In this state It in exported; but the impurition which it containe require its sulijection to muccessive aointions and erymallizationa, ere it can be formed into gungoowiler. The lant procese in that of furion, in ieon pota at a regulated heal. Nothing can surpase, in theme reapecta, the nitre prepared in tho government powder-workn at Waitham Abbey, It is teated hy adding to its solution in dim lifed water nitrate of ailver, with which it occaxion no perceptible opalencence.

Bulphur in procured in many volcanic countriea, and the great emporium for it is sicily. At the gunpowisr work, it lis purifed for use either by distillation or by fuwion. In the firat inntanen, the pure part in disatilled over, and, in the second, aximmed off, the impuritien being left behind.
Gunpouder.-The three ingredients, charcoal, nitm, and aulphur, being duly prepared by trituration, and pawed through fine sieven, they are ready to be mixed. There appeara to be a great difference of opinion and practice in determining the relativo proportions of the ingredient.a The following in a seale of proportions in 160 parts, adopted by diterent gunpowder makers:-

Royal millis al Wisliham Abbey
French, for war
" for eporisme
Chaptal's proporitang
Mr. Napinf's dillo
The mingled ingrediente are now carried to a mill, to the properly blended by the preseure of a revolving stone on edge; the atone in of a calcareona quality, and goes round on a bedatone of the mame nature; no metal or mamalatone a emplo; cd either ahout the machinery or the sill-house, in order to avelid the danger of spaiks. "On this bedo atone," says Dr. Ite, in hin history of the manufacture, u the composition in apread, and moistened with na amall - quantity of water in will, in conjunction with tho weight of the revolving atenea, bring it into a proper hody of enke, but not of maste. 'The line of contart of the edgeatane is constantly preceiled by ascraper, which gows round with the wherl, continually acraping up the cake, and turning it into the crack of the atone. From fifly to aixty pounds are usually worked at once in carh millwheel. When the cake has been thoroughly incorporated, it in sent to the corning-boume, where a separate mill is cmployed to form the cake into grains or corns. Here it is first presaed into a hard firm mass, then hroken into amall lumps; after which the graining is exectited, by placing these lunpes in sievea, on each of which is laid a diak of lignum vite. The sieves are made of parchment akins, perforated with a multitude of round holes. Neveral anch ateven are fired in a frame, which by proper machinery bas such a motion given to it as to make the lignum vite runner in each meive move round with considerable velocity, an to break the lumps of the cake, and force the substance through the sieven, forming grains of several sizew. These granular particlea aro afterwards separated from the finer dust, by proper aievee and reels. The corned powder is next hardened, and the rougher edgen taken off, by being revolved in a close reel or cask, turning eapidly on its axin. 'This vessel somewhat rewmbles barrel-chum; it should be only half full at each operation, and has frequently square hars Inside, parallel to its axis, to aid the polish by attrition. The gunpowder is now dries, which is done genernlly by ateam-heat, or by tranamitting a body of air, slightly heated in another chamber, over canvas ahelvea covered *ith the damp gunpowder."

Norkis,-rirenorks,-The common modern rockets, which are generally employed as signsls or tukens of rejotcing, may be described as tubular cartridges of paper,
pastehoaril, wood, or metal, filled with comhuatide mis. nfanrea, which, on ignition, cause the eartrifge to show rapilly through the air. The movement may he irregular, parabolle, or perpendiculariy upwarda, according an a mrnall atick or guide ia attarhed, or otherwies, to the car tringe, to direct ita movements. The prineiple on whirt roekets rine in the air in aimple, and may be esplained here, once for all, an it appllea to all varietien of fying flre-worka. A veasel containing a fluid which tende to expand, will be inotionlema long as the vemenl in clowd on all aidea, thecause the prennure in then equal everywhere; hut if an opening exiat, the preanure will not int equal, aat the venwel will then tend to move in the diree tion in which the preasure exiata. If the opening to bslow, the tendency will be to rise: and if the expanaiva fores tre great enough, and the vernal aufliciently light, the veanel will ohey the preasura and axpind. When the expansive force in exhauxted, it will agnin deacond, by the onlinary influmese of gravitation. In the case of the rocket, the combuntion, commencing below, crentes the exponsive gaa, and the prenaure fircen the rocket upwards. Were there no opsoning, the pressure would he equal, and, if the force were muthicient, it would simply burnt the rocket.
"The rocketr which rise into the air with prodigions velocity," snys Dr. Ure, "nre among the mont common but not lenat intereating fire-worka." The cartridge or tinle, commonly of panteloard or panted papier, must be very strongly formed, if large, and intended to ancend high. Inside of it in a mecond tula, called the moll or fuze of the rocket, the purpose of which in to leave a vacant ajace round the asia, that the volume of elamic gan whicls the ignition producea muy act on a vacant space. On account of its somewhat conical ferm, hollow rodn, aljuntablo to diflerent brancliew or skewern, are uned in packing the charge, the cartridge being sustained by a copper mould or cylinder at the time. 'The clingre of nk y-rockets varien according to the lure of the cartridge. Nitre 16, mulphur 4, and charroal 7, nere the contente and proportions of the charge when the bore is three-fourtho of an inch; and the chareoal is merely increased a very littlo when the hore is cularged. 'Ihins in the common rocket, with the unual licht of gunpowder. When a rocket with a brillinnt light in wauted, 3 ports of fine steel-filiugs are added; and when the light called the (hinesp-fire is desired, 3 parts of fine luorugge of cast-iron form the addition to the three ingredients firnt-mentioned These are the common rocksta; the nources of ether kinds and colours of light will le noticed inmedintely.

I'he garniture of a rocket, ns the crackera, ahowers of fire, utars, serpentw, \&c., are called, which are commonly attached to it, with what in termed the pot, are uf coutar adiled loffore igniting the charge in the central tube or fusere. "The pot is a paxteboard tulue, wider than the hody of the rocket, and nne-lhird of ite length. After being ktrangled at the bottorn like tho mouth of a phial, it is attached to the end of the fusee by means of twine and paate. These are afterwards covered with paper, The garniture in introluced by the neck, and a papet plug in inid over it. I'he whole (for atill grrater strengthening) is enclosed within a tube of pastehoard terminating in a cone, which in finly pasted to the pot. 'Ihe quirsmatch in now finally inserted into the soul of the rocket. and a light roil or stick attached to the end of the whole, to keep it in a perpendicular ascent."

The beauty of the rocket dependa much on the atile of the garniture. These, whether atars or serpents, sro charged furees, atronger or weaker, formed intr the shape wanted, and giving kinde of light modified by the ingreli enta. Stars which give golden ahowers are tormed of nitre, 10; nulphur, 10 ; charcoal, 4 ; gunpowider, 16: lamp-black, 2. Petanda are acaled cartridges, which burst in the air, and crackera are mquare boxes of pasteboard, hooped, and charged with guapowder. But the finea!
weompanimpnt α a fuece mo form rominution reach one amall cylindr (nowier, atoepend ronketa of courme maraiture. Thia anoal to apply to opecial character a thua dewcribles the m the attuck of dona, and are difl the field or for 1 arry shells of ca vary combuatible Their form la rylis metallic ravera 'I light are of diffore weket. The carc amical heads, pie tance an hard unc inflamed, in inex particies in every aumed, the ball e projected horizont Hisough the air. rlamed-lieavy, m dll above forty-two wo to twonty-faur ar pounds inclunis a Leipaic and Co thitn tu ber much atis, benides, the known every where
l'o return to art We have only no pired tire-works, on quot, can the made lots, whein, auna, double or Cuthari volving opposito w rancea, have been (wo Ruggieris, ren ala even displayed serpent chasing a b their motions beins, all preparations of chatcoal, and gunj areans of spirits, P duration of the lig α that descriptio hor, wak, turpen molour of tha tire, rents, is molition filinga and malown rine a fine blue: low; taigj-black and a pink with white; Iycopoliun atrontia a beautifu are at the comma beauliful variation
latintaneons known as Lucifer the chlorate or o may be made by of carbonate of ${ }^{\mu}$ precipitated ; or in new, common ast reculiar way. Bu tar mketch a proce none but the yu white cryutalis. D s at followar- Tr
Vol. I.-31
meompaniment of the rocket is the Rommen candle, whieh ne a fumet mo formed an to throw out in auccosaion, an the combuntion resichea tham, very fine utars. 'Thene stara wre amall eylindrical maswen of nitre, aulphur, and gunpuwiler, stepeped in epirith and gum. The varinty of rocknte of course dependa on the difference of aize and garniture. 'I'his remark, however, muat not be unilero thool to apply to the Congreve rocketa, which have a apecial character and purpome. The Popular Eincyeloperlia thus deucrilues thein $1-a$ 'The Congreve rocketa, firet uned in the attack of Boulogne, 1406, are of varinun dimen. dons, and are differently armed as they are intended for the feld or for bomberdment. Thome of the firat mort carry shella or case nhot; the othern are armed with a very combustible material, and ace ealled carcass rockelu. Their form is cylindrical, and they are eomposed of atrong untallic cawes. The sticke employed for regulating their tight are of iliferent lengtin, accoriling to the aize of the rockel. T'he earcases rocketa are arined with atrong lron anical heada, pierced with holen, and containing a nulbstance an hard and molid an iron itwelf, which, when once inflaned, is inextinguimbable, and scatters ite burning particiea in every direction. When this mubetance in consumed, the ball exploclen like a grenale. The rocket is projected horixontally, and whizzes loudly an it flien through the air. The ammunition in divided into three clamer-heavy, medium, and light; the heavy ineluding dll above forty two pounder, the medium, thone from forty. twa to twenty-fiour pounds, and the light, from elghteen to six pounds inclusive." 'The Congreve rocketn were used us Leipsic and Copenhagen, but experience has proved thitu tu be much lean eflicacions than common artillery, ar.'.' besider, the secret of their manufneture is now bllow everywhere.
'T'o return to artificial fire-works, made for amusement. We have only noticed the Aying-rocketa or fusese, but fired tire-works, or those whowe motion in contined to a unot, can be made of a much more splendid appearance. lote, wheles, auna, treen, lancea, apirals, revolving suns, duble or Catharine wheels, (two suns in one axin, revalving opposite wayn), and many other beantiful contrirances, have been at timen exhibited, and chiefly by the two Ruggieria, renowned pyrotechnists. Theme individuals even diaplayed in public the apectacle of a luminous *epent chasing a buttertly round and round a large apaco, their motions being governed ly unseen machinery. In all preparations of pyrotechnic nature, nitre, aulphur, rharcoal, and gunpowder, are the chief ingredients. Hy awans of spirits, guma, reainm, und ouls, the quality and duration of the light is the tuied, and the principal articles of that description in use are alcohol, bitumen, camhar, was, turpentive lavd, and the like. Again, the colour of the fire, on which no much of the aplendour resta, is molified by mnoloying other articles, Coppertilinge ond arkemmoniac give a greenish tint to flaine; rinc a fine blue; amber and very dry common sall a yellaw; latnp-black proluces a deep red with gunpowder, and a pink with nitre in excess; eamphor gives a fine white; fycopolium given a rose colour; and sulphate of atroutia i heautiful purple light. Many other substances ure at the command of the pyrotechnimt, which produce beautiful variations of colour.

Intantaneous Matches.-'These matches, commonly known an Lucifers, nre nearly all inalo of one substance, the chlorate or oxy-muriate of potaas. This nubstance may be made by passing chlorine gas through a solution of carbonate of potass, when the chlorate in firmed and precipitated ; or in a dry way, by mixing oxide of mangir new, common sult, carlonate of potash, and vitriol, in a neculiar way. But it is auperfluous to dencribe in a popuiar nketrh a process which can be safely attempted ly none but the qualified. The chlorate of potass is in white cryatals. Dr. Ure's formula for making the matchew a at followe :-Thirty parte of the chlorate, in fine powe

Vol. 1,-31
daf, are to be mixed gently with a knifo upon paper with ten parte of very fine milphur, eight of augar, five of powdered gum-arabic, and enough of powdered vermilion to give a rowe tint to the whisle. The chlorate, guin, mogner, and vermilion are then gently but well-mixed, aller which an nuch water an will make a thin paste is aildeel; and then the sulphur is thoroughly mixed with the whole. A great, improvement, however, han lately taken place in the use. The matehes were dipped for merly in mulphurio neid, but by abling a little more of the chlorate and nulphur than is in Dr. Ure'n recipe, they are liglited by friction on and-paper or any rough mubatance, atich an n otone floor. The convenience of matione in thus doubly heightened. No other fulninate has been so effectually useal for matehea na chlorate of potasa, Neat, but contparatively deur and ineflicient lampa have been made with mongy platinum, which kimdlen on receiving a stream of hydrogen.

F'rlminatink Poudern-I'Thero are a number of these explonive compounde known to cheminte, of whieh the principal are fulminating gold, mescury, platinum, and wilver; mid one longer known than rither, in mixture of nitre, sulphur, and petana None of theas have any prenctical intportance, comparatively mpeaking, excepting the fulminate of mercury, which in umed for percusionlirks. We believe that a report to the government of Great Iritain in 1831, made by Dr. Ure, had the effect of introlucing the improvement of percussion-locks inte the pullic service. The formula which that report given for the manufacture of the fulminate in as follows:-Disaolve 1000 parta of mercury in 1000 parta of nitrie acid, and add the solution to 830 parts of alcohol, a large versel being used. A gas rises, which muat bo allowed to ewcape, and at a diatance from flame. When the effervemcence ceamen, the contents of the vessel are to be poured out on a large double paper filter in a glane funnel, and cold water thrown over it till the draininge no Ionger rediden litmue paper. The powder alhering to the vesmal in also to be placed on a filter, with a tittle water. The superfluous reid thue washed awoy, the powiler of fulminate of inercury, adhering to the filter, is lifted away and opened out on plated eopper or atonewaro heated by steam. 'The powder, when dried, in in the form of emall gray crystals, and ia then to be packed in emall percels, and kept close from the air in bettise or boxes. Dr. Ure examines several other modes of making the fulminate, but pointe out defecte in all; and his own, though not free from them, wan the one adopted most generally, we believe. Two and half pounds of the fulminate, when prepared for the purpose, will charge 40,000 percussionocapas, according to the calculation of French manufacturers. The proparation conaiats in grinding the fulminate upon marble with 30 per cent. of water, adding six parts of gunpowder for *very ten of the fulminate. A dougli is obtained, which, when dried in the nir, is introduced in small fixed portiona intu the bot tom of the percusvion-cups. The gune on which thesa caps are placed have, it ia woll-known, no pans on the lock. In place of them amall open tube projecta sionzontally, mill which another small tube standa perpendieulurly. The cock is a hollow hammer, fitted to descend on the lube mentioned, though large enough almo to grasp the pereusaion-cap-a thin cone, when placed on tho tube The fulminate was formerly placed dry in the bottom of the cap; but of late a most important improvement has taken place, in as far as an alloy of copper in made for the purpore, which contains the fuloninate wain itmelf, so that all chance of injury hy wet, or danger from the mixture, is put entirely out of the reach of possibility.

Tombenhrlla.-.This species of explosive combustible possenses little interest, an regaris its structure or manu. facture. In their various ahnpus, shells are nerely a modification of one arrangement-that of a circular case of uetal, fitted to be dixcharged by cannon, and cor:
raunirg a central charge of gunpowder, with an extensive rhargo of aubstances fitted to spread and inflict injury on the explosion of the powder. The bomles aleo apread combustion where they slight. The experience of the late sieges of Antwerp by the French and Acre by the British, has shown that this apecies of warlike machine is calculated to riee into greater importance than it has hitherto done, rendering forte and cities untenable, when it is well used.

Explosion of Combustiblen.-Whon gunpowder and vimilar combuatibles are fred, they explode with a loud noise, and with an extraordinary degree of force. The explosive sound ta caused by the rapid disengagement of dir in the contustibles, and the shock of striking upon the volume of the external atmosphere. The explosion as, Indeed, a chemical process, in whieh a tangille matorial sudlenly vanishes into air, and is no more seen. The velocity of movemont in the flame of ignited powder, as it rushes through the tube of a gun, is an immediate sonsequence of the sudden disengagement of the confined uir, and is calculated to be at the rate of 7000 feet in a recond, or little less than seventy miles per minute. A cannon-ball, however, though projected witis this velocity, immediately encounters a retardation from the atmosphere ss well as its own gravity, and does not generally proceed at a greater rate than 2400 feet per second, or litule more than twenty-seven miles per minute. The egree of force with which it is impelled, of course, depends on the strength of the charge, or the quantity of slastic fluid to be expended.

boap and candle making.

Both these arts depend on chemistry for the perfection to which they have been brought. That exceedingly useful article, soap, of which tho ancients were entirely ignorant, is a compound of certain principles in vils, fats, or reein, with a salifiable base. If this base bo potash or soda, the compound is used ns a detergent in washing clothes. When an alkaline parth or oxide of a common metal, such as lead, which forins litharge, \&ce, is the base, the compound is insoluble in water. Tho insoluble compounds, however, are very little used, except in some few cases of surgery. Animal fat, greame, or tallow, as it is variously termed, is a compound of a solid substance called, in chemistry, stearine, and of an oil called oleine, the basis of which is earbon, with a little hydrogen and oxygen. On subjecting tallow to a hot ley of potash or soda, a chemical chango thkes place in the constituents, and wo have the matcrial named marearic acid, and a fluid, olecic acid, and together they aiter into a aline combination with the alkali. The result, a coapy substance, is thus said to be a union of an alkaline margarate with oleate. Saponification also takes place with oils.

The commonest hard noap is that made chiefly from kelp and tallow. Kelp itself is a result of chemical sction. It is made by reducing certain kinds of sesweed to ashes by burning; tho result in soluthe material is a crude alkali, consisting of sulphate of soda, woda in carbonate and sulphuret, and muriate of sola and potash. It was at one time manufactured in large quantities on the shores of the Western Inles of Scotland, but has latterly been disused, in consequence of the subatitution of barilla, and soda-ush from the decomposition of rea-malt. Supposing kelp to bo employed in making monp; to every ton of kelp, about one-sixth of newthked lime is added. The whole, after mixture, is put into a largo tub cailed a cave, having a perforation at the bottom, shut with a wooden plug. Upon the materials water ia very slowly poured. Thse liquid, after digestion, is suffered to run slowly of into a reservoir sunk in tho ground. The first portion, or ley No. I, is of courso the atrongest, and is reserved for the last operation in soap-hoiling Six daya are required to make
one boiling of soap, in which wo tons or Jpwarts of tallow may be employenl. The loys 2 and 8 , imxed, are used at the beginning, diluted with water, on account of the axcess of sea-salt in the kelp. A quantity of ley, not well defined, is poured on the melted tallow, and the mixture is boiled, a workman agitating the materialy to facilitato the combination. The fire being withdrawn, and tha aqueous liquid having subsided, it is pumped off, and a new portion is thrown in. A second boil is given, and so on, in succession. T'wo or three boils are performed every twelve hours, for six days, constitating twelve or eighteen operations in tho whole. Towarda the last, the stronger ley is brought into play. Whenever the workman perceives the saponificntion perfect, the procose is stopped, and the soap is lifted out and poured into the moulds.

The compounds of tallow or oils with potash, remain or a soft consistency, and form what are termed ooft mospa, useful in scouring. Wa can only afford apace for an account of the process of manufacturing one of the common kinda of soft soap, as lately practised by an eminent soap-boiler near Glasgow. Whale or cod oil, to the amount of 273 gallons, is put into a boiler along with four hundred weight of tallow and 252 gallons of potash ley. On heat being applied, the mixture frothe up very much, but means are alopted to prevent it. boiling over. There are then added at intervals four teen measures of stronger loy, each measure holding twenty-one gallons. After suitable boiling without agitation, the soap is formed, amounting in all to one hundred firkins of sixty-four pounds each, from the above quantity of inaterisls.

What are called toilet soaps are made from purified hogs' lard, with the addition of olive, almond, or palm oils. These, when prepared, are perfunsed with variouscents. The soap is cut inta thin ahavings with a plans, and melted in a pan placed within a hot water or steam bath. When melted, the cclouring matter and perfume are added, which generally consist of vermilion, ochre, bergamot, musk, essence of orange-bloseoin, cinnamon, \&c. Although the French excel in practical chemiatry, they make very inferior sonps, either fine or common. Tha English, on the contrary, manufacture soaps of a auperior quality; and no well is this known, that the greater number of English tourists on the continent take soap as a necessary with them.

Candles,-The process of making candles by simply melting tallow, and pouring it in a liquid state into moulds containing wicks, requires no particular notice. It is of the improved mode of making tallow-candles to resemble those of wax, and involving an intimate know. ledge of chemistry, that we wish to speak.

Some years ago, M. Chevreul, French chemist, undertook an investigation into the nature of fatty substances, which he found to be composed of what we now know them to be-two materials, stearine and olrine. He ancertained that the oil does not combine directly with the alkali, but that its two components are cor verted by it into two corresponding acids, the stearis and oleic, which then combine with the alkali, like the mineral acids. Ho found, indeed, the amalogy peffet between them in every respect. 'Ihey umie with all the bases, forming compounds which difier in the degree of their solubility : with potash, for instance, a very soluble compound is formed (sott soap); with sola, hard sosp, which is dissolved with more dilliculty; while its combination with lime gives rime to a perfeclly insoluble compound. These facts linve lech most import ant to the sonp-maker, in ensbling him to reduce his art to scientific principles; they explain why a solution of noap may be nised as a test for the purny of water why rain water is preferred to that from the apring for washing; and why we add soda to hard water befme using it with soaj, for soda separates the lime which the
band water conts map without p iestroys the clea
M. Cherraul pounds, and fous perties :-Oleid cloocly resemblin blos wax in so at distinguished fro wre it at a pric is sold, he, in cor distinguished ch for the preparatio from which they account of the n prepared from ta manufacturers, w tion of the pate regard to truth, t candles, epeedily wishen to preps himself, it may b wlve a little har water, and to the rinegar or other is easily separatoc exists in soap. stearic acid rises stance, which, on ficial wax, mixed unpurities, which been expelled hy on a large scalc, The tallow is say the preparation of necesseary to boil t vessel for some h verted into a kind starate and olea acids, are separa They are melted jected to the po which separates arid as pure and which masy be un canilles, In Frar ate dipped in a so borax fuses during on the summit of it out of the flame thus ensures perfe sity of snutfing.
It was found tallized in thu m the formation of culty wes overco arsenic. The Fr course to their kn for ths remedy. tion only takea p, from ifluid to a time for its mole determinate form filfilled in the eor but by planging melted stearic ac was prevented, a Stearic candles, puished from was large acale in E chespness, are cor of the mididle ani fir the value of Nie of to a muma
t Jpwarus of nd 8_{1} mixed, r, on account antity of ley, 1 tallow, and the materiale g withdrawn, it is pumped recond boil ia hree boile aro constituting le. Towarde lay. Whenation perfect, ifted out and
otash, remain termed sof afford space turing one of ractised by an ale or cod oil, a boiler along 452 gallons of nixture froths to prevent it intervale four asure holding iling without 5 in all to one ach, from the d with variow 9 with a plane water or steam and perfume rmilion, ochre, m, cinnamon ical chemistry, e or common ure soaps of a nown, that the continent toke
diles by simply juid state into irticular notice. llow-candles to intimate know.
rench chemisth, re of fatty subed of what we arine and oleine. onbine directly ments are cor ids, the stearis alkall, like the analogy perfect unsec with all ifiter in the deinstance, a ver p) ; with sola, difliculty ; while perfectly insoen most iuport a to reduce his why a solution purity of watet in the apring for ard water befine lime which the
hard water containa, and thus enables us to diemolve the nop without producing the curdy preripitato which ilestroya the cleansing properties of the soap.
M. Cherreul separated these acids from their compounds, and found them porseased of the following pro-jertics:-Oleid acid is a liquid, clear when pure, and foocly resembling oil; stearic acid is solid, and resemblos wax in wo striking a manner an to be with difficulty distinguished from it. On finding he could manufacture it at a price much inferior to that at which wax is sold, he, in conjunction with M. Gry-I ussac, another distinguished chemist, took out a "brevet d'invention" for the preparation and sele of "chandelles ateariques," from which thoy never derived any benefit, solely on account of the name, which, inerely implying candleo prepsred from tallow, attracted no attention; whereas manufacturers, who took up the trade after the expiration of the patent, and who announced, with less regard to truth, their productions as "bougies," or wax candles, speedily made large fortunes. If the reader wishen to prepare and examine the artificial wax hinself, it may be easily accomplished. Let him dissolve a little hard white soap in hot rain or diatilled water, and to the clear solution, whilo hot, add some rinegar or other acid. The stearic being a weak acid, is easily separatod from its combination with aoda, as it exists in soap. Acetate of aods is formed, and the stearic acid rises to the top of the liquid as an oily substance, which, on cooling, solidifies into a cake of artificial wax, mixed with a certain portion of oleic and umpurities, which render it softer than if this fluid had been expelled by pressure. A similar process is pursucd on a large scale, but regard must be had for economy. The tallow is saponified, not by soda or potash, as in the preparation of soap, but by quiek-lime. It is only necessary to boil the lime, tallow, and water, in a largo vessel for some hours, when these ingredients are conretted into a kind of hard sosp. From this substance, starate and olente of lime, also the staaric and oleic acids, are neparsted by the addition of oil of vitriol. They are melted like tallow, run into cakes, and subjected to the powerful action of a hydraulic press, which separates all impurities, and leaves the stearic arid as pure and white as the fincst bleached wax, which niay be used immediately for the formation of candles. In France, besides plaiting the wicks, they are dipped in a solution of borax, and then dried. The borax fuses during the combisstion, and forming a globulo on the summit of the wick, assists by its weight to bring it out of the flame in contact with the atmosphere, end thus ensures perfect combustion, and obviates the necessity of snuffing.
It was found that the artificial wax generally crystallized in the moulds, circumstance which prevents the formation of a solid candle. In England this diffisulty was overcome in some cases by the addition of arsenic. The French, more scientific than we, had recourse to their knowledge of the laws of rystallization for the remedy. It is known that regular crystallization only takes place when the transition of the mass from fluid to s solid state is so gradual as to allow time for ita moleculen to arrange themselves in those determinate forms called crystals: this condition was hlfilled in the cooling of the moulda and their contenta, but hy plunging them in cold water as soon as the melted stearic acid had been poured in, crystallizntion was prevented, and n perfectly solid candle procured. Stearic candles, which can with difficulty be distinguished from wax candles, are now manufactured on a large acale in England, and, from their comparative cheapness, nre coming universally into use in the houses of the midilie and higher elnsses of socicty. So much fir the value of a knowledgo of practical chemiatry in mie of tis mmmonest of tho usefill arta.

COLOURS-DYEIMG.

There are, as is well known, two model of lmparting colours-dycing and painting; the former applied to articles coloured by a liquid infusion, and the latter applied to the laying of a colouring substance on the surface. We dye eloth, and paint a house. The materials employed in dyeing are usually druga, salta of some kind, or vegetable fluids; but in painting, the prepared colours are chiefly pigments. The preparation of dyestuffs and pigments is one of the chief departments of practical chemistry.

According to the definitions of men of acience, there is no such thing as material colour. The colour is not in the substance; it is only a renult of the operation of rays of light on the peculiarly formed particlat in the mass. It is stated that when the rays strike upon the surface of a body, they are decomposed into their elementary tints, and some gubstances reflecting one colous and some another, the impression is made on the eye accordingly. When the particles of the body do not reflect any of the rays, the body appenrs black; and when they reflect them all equally, it appears white. A piece of blue silk, for instance, absorbs'six rays and reflecte one, the blue, by which a blue appearance affecta onr eye. What is the precise constitution or figure of the particles in a substance which produces the phenomens of colours, has never been ascertained. It is certain, however, an we have just mentioned, that colouring less or more depends on the well-known principle of the refrangibility of light. (See Ortics.) Both dycrs and painters require to be more conversant with chemical than optical science; yet there are cases in which a knowledge of the laws of light are of importance. It is a well-known truth, that the common white ray of light can be refracted into threc primitive colours-red, blue, and yellow-and that these can be recombined into the white ray: A dyer could not expect to dye white by employing nn infusion of red, hlue, and yellow druge, but it is certain that the application of a little blue improves a white colour; and this is perfectly understond by paper-makers. Mixtures of Prussian blue and cosc'j. neal pink are likewise used to improve the whitening of silks. The colours resulting from a mixture of two primitive colours, ns gr in from blue and yellow, are only a delusion of the eye. Both the component colourm are present and distinct, but they are so blended that we cannot separate them by the naked sight. For instance, a gray hair, when seen by a microscope, is not actuelly gray, but a composition of small black poir ts on a whitish ground.

Painta.-The colouring substances used as paints are partly artificial and partly natural productions. I'hey are derived chiefly from the minerals by certain chemical processes; and even when animal or vegetable substances are used for colouring, they are alwaye united with a mineral substnnce (an earth or an oxide), because by themselves they have no hody, which they acquire only by a mixture with a mineral. In painting, the colours are ground to a great degree of fineness, and applied by means of nome liquid with a brush or camel-hair pencil. Different fluida are employed for this purpose; and the difference and the material used, with the method of employing it, has given rise to the modes of painting in water-colours, oil-coleurs, in distemper, and in fresco (pninting on dsmp plaster as an absortent). Oil-paints are usunlly prepared with boiled linseed oil, which is drying in its nature; the colours employed all consiat of metallic oxides, or salts, or of combinations of mulphur. Among the metallic oxides used as pisments are minium and masticot, from lead ; the ochres. burnt sienna, umber, from iron; smalt, from conslt. Among the sults, or saline metallic comminamon, nru white lead, cremuitz white, froun lea l: Prussisn blue,
fiom iron; verdigris, mineral green, Brunawick green, from erpper. Metallic combinations containing sulphur are cinnatar, from quickiilver, and orpiment, from alsenic. The lake colours have tin or alum for their hasee, and owe thrir tint to animal or vegetable colouring subetances. Among thene are the red or pinkiah lakes propared from cochineal, madder, and Brazil wood; the yellow, from fustic, \&kc.; the brown, from everal other colouring barks; finally, indigo, which, however, is entirely vegotable. In staining porcelain and glase, the metallic coloura which are not driven of by heas, and are not eacily changeable, are used. Gold containing tin givca a purple, nickal green, cobalt blue, iron and manganese black, uranium yellow, chrome green. From the chromate of iron, or rather ferrugi: nous oxide of chrome, one of the moat beautiful yellow pigmente is now preparied for the use of painters.
The material principally employed by reepectable house painters to give consistency to their paints, is white-lead or cerume. This aubstance is an oxide of lead saturated with carbonic acid. It is prepared by exposing thin plates of lead in a closed vessel to the vnpourn arising from hot vinegar. The vapours of the acetic acid become asturated with the metal, and change the latter into a whitish substance, which is scraped from time to time off the plates. The whitish substance is afterwards pulverized, and mixed with properly prepared oil. Much of the white-lead in common use is adulterated with whiting, that is , purified and ground chalk, which is much less durable, and many be easily washed off by an alkaline solution.
Oil or apirit of turpentine is also largely used by house-painters, chiefly for the purpose of imparting a drying quality, or of deadening the glitter of the paint Turpentine is a fluid extract from certain kinda of Ar trees, from which it exudes, and being diatilled, the oil or spirit of turpentine is obtained; the reaiduum is resin. Turpentine is of a powerful acrid qunlity, and is now employed for certain purposes in medicine. All the varnibhes used by painters are of the class of gums or reeine, properly prepared, such as copal, mastic, sandarac, lac, gum-lac, dragon'a blood, \&e. All are extremely inflammable, and great caution is necessary both in their preparation and general use.
Isxs, either for writing or printing, are as much the rosult of chemical operations as paints or dyes. Black iuk is a decoction of partly vegetable and partly metallic sultatances, the basis of the latter being iron. The ingredien's commenly used are Aleppo galls in powder, logwood, gum-arabic, and sulphate of iron, in certain p:oportions; but, latterly, the art of manufacturing the article has been greatly improved, chiefly with the view of giving great fuldity as wel! as colour. Printing-ink is quite a different subastance, being a thick viscid body, resembling a black paint. Ita ingrediente aro boiled linseed or nut oil and lampblack, in the proportion of two eull a half ounces of black to sixteen ounces of oil. The preparation of the oil is one of the most dangerous processes in the arts, and great care is required $t \mathrm{t}$ provent conflagration of the oleaginous material. There are rarious qualities of ink to suit different kinits of work. The prime object of attainment in making fris ing-ink, is to give it a deep black colour, which will endure after exposure on the pasea of a book. Uinleses very great trouble be taken in grinding and mingling the materials in exact proportions, the ink, on tring ueed, will gradually become brown, ly the spreading of the oil. The French printing-inke are much superior to those made in Britain.
Indian Ink.-This article is used in China for writing with a bruab, and for painting upon the wof flexible payper ot Chinees manufecture. It is ascertained, as well from expmriment as from information, that the cates of this uk are made of lampblack and azza or animal glue, with
the addition of perfumen or other fuostas res nor ammuli, to ite quality as an ink. The fine soot frmm the tlanme of a lamp or candle, received by holding a plate ovee ${ }^{12}$, mixed with clean size from shrode of parchment a gloveleather not dyed, will make an ink equal to tha imported.
Drixiso-A remsrkable circumatence connected witl dycing, in the different degrees of facility with which animal and regetable substances imbibe the colouring matters applied to them. Tisesues compoeed of the for. mer, as ailk and wool, receive more brillisnt collourt than those composed of the latter, as cotton and linen The cause of this difference has not hitherto been diar covered.
Although in the most numerous class of cases it in casy to impart colour to various tissuce, yet when thest bccome exposed to moisture, the dye-stuff is removed. It has therefore been found neceesany to employ certoin chemical subatances, which shall have the property of permanently fixing the colour upon the body which is dyed. These aubstances have obtrined the name of mordants (from tha Latin word mordere, to bite), hecause they were suppwoed at first figurotively spraking, to bite the dye into the cloth. The same name has sloo been applied to those prepsrations which possess the propenty of siltering the ahade or of heightening the colour, pasity it called. The latter, at the auggestion of Bertholet, are sometimes iermed alleronta. The principal mordants are slumina, employed univeraally, we believe, in the form of a alt, as that of alum ; the oxidea of tin, employed like the former in the shape of aalte, which ase pree pared by dissolving tin in muriatic acid. Sillk and woollen dyers, however, employ nitric acid or aqua. fortis for forming the salts of tin which they use. The salts of lead end coppor aro likewise had recourse to as mordants ; ond the nut-gall, which contains two very peculiar vegctsble aubstances, tannin and gallic ecid, if not only employed as a moriant, but aloo as a powefrul dye-stuff.
By varying the mordant, e great variety of shadea may be derived from the same colouring matter. Indeed, the mordant itself, in many instances, supplies a colour. For exsmple, in dyeing with cochineal, when the aluminous mordant is employed, the colour produced is cin. son ; but when oxide of ircn is aubstituted for the alu. mina, a black colour is the result. The whole phenomena sre accountod for on the principle of chemical affinity of sttraction. The mordant employed ahould have an at: traction both for the stuff to be dyed and the colouning matter, and act as it were like a third party in reconciling two inimicals. The way in which it is ued must depend entirely upon the degree of affinity exerted be. tween the stuff and the coiouring matter. Where that in slight, the former should be saturated with the mor dent before the latter is communicated. A knowledes of the nature and chemical affinities of the subtances used is necewary, beforo mordants can be had recourse to as a medium of union in imparting colour to clotha or other atufls which we wish to dye; for by an indiscrimi. nste une of them, results the very opposite of those anticpated may take place.
Calico-Printing.-In impressing the representation of figuree on calico goode, the otject generolly hell in wiew is the fixing of mordsnte on the cloth, which in afteramfa dyed in the usual way, those parta which have reexied the mordsnt only retaining the collour, the rest remaining white. In ame canea the colour is remived from certan portions of cloth already dyed, an that they may either remain white, or receive sonne new colour aftrwadis Sonetimea it is applied to cloth before it in dyed blue, iv order to prevent the indigo from being fited on thoom parts to which it is applied, that they may remuin whik. or receive other collura afterwaris. subtanines prx: wosed of this property are called resiut-pasten, Lastly, it
in frequently emp :olouring matter the mordanta ia of successful practice bringing out of process. Madder red by the calicofustic, or quercitro nith the various, we wis!. to produc tuining red, purple three mordanta a pacline, putting i bickened; into th bird a mixture of few daya to fix bath of madder an finest madder rede Heck, we must app of two densities, ap is a madder bet the black, and of the purple, must b are to insert these goode then being do next dunged, are umach. They mu -Ure's Dictionary
After the cloth i potash, soap, or fres the ingredients use necessary in thi ingor be too strong dong áffused throt gools in a particuls ik lone in oucier to doth a portion of trevent any undiss the blank salled, is he washin ap pastole, without to pass through roll dung.bath, it is was ing. The cloth ia a calender, which The action of the from impurities ia respects tho chemid understood when muriate of aods, su carbouste of line lerging.
Blesching is the be deprived of the ind so rendered w to submit textile free action of the a procees of bleaching and the substitution the celebrated che imp:ovement, such requiral. Berthol chiorine, which poe regetablo colours. of lime, as it is ut posing slaked lime much of tho lutter combining with unu in the bleaching \mathbf{P} sundry preparatory regetablo uubatance is the colouring a effect, but would

mected witt

 with which te colouring d of the for. liant cnloura on and linen. to been dig.of cases it is when these is removed. aploy certain property of ody which is he name of bite), hecause aking, to bite asa also been the property colour, as it in Berthollet, aro mordants are , in the form tin, employed hich are pre1. Silk and cid or aqua. ey use. The recourse to as ins two very gallic acid, is as a powerfut
ety of shades atter. Indeed, plies a colour. aen the alumi. duced is crim. d for the alu. Jle phenomens ical affinity or ld have an althe colouring ty in reconcilis used must ty exerted be. Where that with the mur. A knowledye the substances 1ad recourse to ir to cloths ot an indiscrimiof those antici-
presentation of ly hedd in vier th is afterwarls have received rest remaining ell from cortan hey may eithct out afterwards. in dyed blue, wh fired on tho remuin whik sulstances porter. Lastly, is

If frequently employed to communicate mondents and soloaring matter at once to cloth. The thickening of the mordsnts in of considerable importance towards the nucceasful practice of the art. The spplication, or the bringing out of the colours, is an ingenious chemlcal process. Medder is the substance commonly used for red by the culico-printers, and the sddition of sumach, fustic, or quercitron bark, will produce a variety of tinte with the various mordants at ons operation. "Suppose we wisl. to produce flowers or figures of any kind, containing red, purple, and black colours, we may apply the three mordants at once by the threc-colour cylindermachine, putting into the first trough acetate of alumina thickened; into the second acetate of aron; and into the third a mixture of the two; then drying in the air for a few days to fix the iron, dunging, and dyeing up in a bath of madder and sumach. If we wish to procure the finest madder reds and pinks, beaides the purple and black, we must apply at first only the acetate of alumina of two densities, by two cylinders; dry, dung, and dye up ia a madder bath. The mordants of iron liquor for the black, and of iron liquor mixed with aluminous for the purple, must be now grounded in by blocke, taking are to insert these mordants into their precise epots ; the gonds then being dryed with airing for several days, and acet dunged, are dyed up in a bath of madder and rumach. They must be afterwards cleared by branning." -Ure's Dictionary of Arta.
After the cloth is dyed, it is washed either with soda, potesh, soap, or fresh water, sccording to the nature of the ingredients used in the dyeing process. Great care \therefore is necessary in this department; for if the washing ininor be too atrong, the mordant may be injured. Cowdang aiffased through hot water, is applied to calico gools in a particular stage of the manufacture. This ii lone in oucer to dissolve and carry off from the cloth a portion of the thickening matter, and also to arevent any undissolved mordant or acetic acid from the blank parts of the piece. The dunging, salled, is performed seversl times, genersily the washings. The picce should be immersed, is jowible, without folds, and to secure thia it is made to pass through rollecs. As soon as it comes out of the dung-bath, it is washed in the dash-wheel as in blesching. The cloth ia then finished by being passed through I calender, which greatly improves its appearance. The action of the solution of cow-dung in cleansing from impurities is both mechanical and chemical; as respects the chemical part of the operstion, it will be understood when we mention, that cow-dung contains muriate of sods, sulphato of potash, sulphate of lime, carbonate of lime, and other mattere useful in delerging.
Bleaching is the art by which various articles may be deprived of the colours which they naturally possess, and 50 rendered white. Formerly, it was the cuatonn boubmit textile fabrice in a moist condition to the free action of the atmosphere and sun's light ; but this process of bleaching was not only imperfect but tedious, and the subatitution of a chenuical effect, as suggested by the celebrated chenist Berthollet (1787), was a great imp:ovement, such ae the atate of manufacturing industry required. Berthollet's plan consiated in employing chorine, which posesesses a wonderful power of removing regetable celours. 'The bleaching-powder, or chloride of lime, as it is usually called, is manutactured by exposing slaked lime to the action of chlorine gas, till as much of the latter is absorbed as the lime is capable of combining with under these circumstances. The chlorine in the bleaching powder, which is not spplied till after sundry preparatory washings of the cloth, acts upon regetable substances by dissolving their hydrogen, which to the colouring agent; the air would have the same effect, but would require a much louger timo than can
be allowed. The cloth is left in a cold solution of the bleaching-powder for about mix hours, and is then taken out and washed with water. The next part of the pro coss is called smuring, which is immersing the cloth in \boldsymbol{r} solution of sulf. uric acid, so diluted that it does not in jure the texture of the goods, whilet it improves theis colour. The sulphuric acid diseolves and removea thir oxide of iron with which the cloth is always contami nated; it also removes the lime which may have attacher itself to the cloth during its previoua treatment with the' substance. It is again washed, boiled in an alkaline ley, and once more carefully washed in cold water. Another solution of bleaching-powder, two-thirds the strength of the former, is then prepared, ir which the cloth is immersed, and left for five or six hcurs; it finally undergoes another process of souring, by which means it is rendered perfectly white. The acid is carefully removed by washing ; und after each piece ut' cloth has been stretched to its full length, it undergoes a procese of mangling, by being passed successively between cylinders forced towards each other by levers, to which a considerable weight is attached. The cloth being thus stretched, smoothed, and wound upon a roller, is rendered fit for starching. The atarch is that of flour, deprived of its gluten by remaining for twenty-four houre in water, and then passed through a sieve, which retaine the bran, and allows the atareh to pass. A little indigu is mixed with it, and sometimes porcelain clay. The starch is applied in the atste of a pretty thick pasto -- ilst the cloth is passing between a pair of rollers. Tho goods are then dried and passed through a calender for the purpose of giving them a gloss and texture.
Such is the process of bleaching as practised in the large bleaching estalishments on the common class of goods. The number of processes which the cloth undergoes amounts to about twenty-five, but some of the earlier ones are occasionally omitted. The axpense of bleaching and finishing a yard of cotton cloth is about one halfpenny, and the time required is trifing. A bleacher in Lancashire, we are told, received fourteen hundred pieces of gray muslin on a Tucaday, which on the Thursday following were returned bleached to the manufacturers, at the distance of aixteen miles; and on the aame day they were packed up and sent to a foreign market.

CONDIMENTS.

Sugar-Salt.-Two of the most important condimenta in domestic use are, as is well known, sugar and salt; both of which substances are the crystallization of liquide loaded with their respective properties ; each j r produced by an evaporation of the watery particles, l, iving the solid cryatals behind. Thus, sugar is a crystallizstion of the juice of the augar-cane, beet-root, or other vegetable containing saccharine matter; the residuum or uncrystallizable material being that viscid and sweet fluid called treaclc.

Salt, culled by the chemists the muriste of soda, or chloride of sodium, is found to exiat in a natural atste in various quarters of the globe, among others, in the county of Cheshire in England, where it ia dug from a mine, and purified by being mixed with water and subjected to evaporation. The principal souree of aslt, however, is the water of the ocean, which is boiled for certain length of time, to drive off the watery particles. Senwater differs in strength; that which contains the largent quantity of salt being in the middle of the ocesn, fur from the mouths of rivers. From 38 to 43 per cent. is the quantity commonly found in the seas round our coasts.
The method of making salt is sicmple; but from the length of time required in boiling, it is not economically [erformed unless near mines from which coal can be cheaply procured. 'Lhe plan puraued is to erect a reper
volr near tice mea, into which at high water supplien are tuken by means of a pipe extending a good way down the beech. The pipe ie generally placed near the lowwater mark, in ordar to get the water from a point as far from the aurface as pomible, so that it may be the more iappregnated' with salt, and require less boiling. The pans are built on a range on both sides of the reservoir, from which the water in pumped into thean after the impuritias have settled. The pana sre shallow veseele, made of abeet Iron, about twenty feet long and twelve brond, with ifurnace below. These are contrincd in a amall low-roofed house, the covering of which is of deala, with an opening at the meetiog of the roof and the wall, to allow the vapour to eacape. When the water is boiling, little bullock's blood is put into the pan, which bringe the impurities to the aurface and allows of their being akismed of:. As the water boila down, more is pumpe ' in ; and this process is repeated before the salt is fiss drawn. From a pan of 1300 gallons fifteen or twenty busiels, of fifty-six pounds each, are obtained in this manner, the process requiring about twenty-four hours. The salt is at first very light and floury in proportion to its bulk, and in this atate is most oppreciated. A atill finer article, resolving into large crystals, is made with a low fre, and when a longer time is allowed in the evaporation. For use at table, the salt is refined, and usually run into large lumps.

Tho water which remains after the salt ia cryatallized, called the mother-vouter, conteins a consideruble quantity of the chloride of magneaium or bittern, chloride of sodium, and sulphate of magnesia. If the moticer-water is exposed in tanks during winter, it will afford three succesaive cryataliine deposits, the last of which ia sulphate of soda nearly in a pure state. The chloride of magnesium deterioratee the salt very much, but may be removed by the following simplo expedieut, mentiuned by Dr. Ure:ω Let quicklime be introduced in equivalent quantity to the magnesia present, and it will precipitate this ear'h, and form chloride of calsium, which will imm liately react upon the sulphate of acda in the mother-water, producing sulphste of lime and chloride of sodium. The former being nearly insoluble, is easily separated. Lime, moreover, decomposes directly the chloride of magnesium, but with the effert of merely substituting chloride of calcium in ite atead. But in general there is abundance of sulphate of mode in brine apringe to decompose tho chloride of calcium. ' still better mode of proceeding with eca-water would bo to add w it in the ectaling tank the quantity of lirse equivalent to the magneaia, whereby an available lepocit of thic earth would be ubtained, at
the ame time that the brine would be aweetesed Wate thua purified may be aafely erytallized by rapid uvepora. tion."

The fineat tuble salt is made in the western parts of England, from the produce of the selt mines ; and, along with salt of a common quality, is exported in immenso quantities. In 1836, 240,560 tons of salt were exported from the United Kingdom, the greater part of which went to the United States, Russia, Belgium, the British North American Colonlos, the Weat Indies, \&cc. M. Desormes calculatea that the internal conaumption of salt in France is rather more than 200,000 tons annually, which is about fourteen pounds for each individual. In this country it is thought to be nbout $240,000 \mathrm{tc}:-$ annually, wbich is upwarda of twenty pounda for each individual.

fBOOKS ON THE APPLICATION OF CHEMISTRY TO THE ARTS.

Amone the worke partially or wholly devatcd to this subject the following v.II be found worthy of the atudeat's attention. "Applied Chenistry in Arts, Manufactares, and Domestic Econmy. By E. A. Parnell." "Rural Eronomy in its Relation with Chemstry, Physirs, and Meteorology. By Bouissangault. Translated by G. Law." "Dr. Fresenius's Elcments of Chemiral Analysis. Edited by Bullock." "Fa*kner on Manures and Agrirultural Chemistry." "Chaptal's Agricultural Chemistry." "Lie. big's Agricultural Chemistry." "Draper an the Chemical Organization of Plants." "Enryrloparlin of Chemizaly. By Professor Booth." "Farmer'e Eincyrlopadi-"

Of all the practical applicutions of chemistry which have beer prosecuted of late years, the most importe at in undoubtedly that which bringe the science to bear ypon practical agriculture. The relption of noila and manuret to cereal productiona, and the alteri,ation of crops, has re. cently been inveatigsied with perseveriug zeal by the most enlightened chemists of Europe and America, and dis coveries of very great practical importance have been mode. The work of the German chenist Liebig on this subject is one of very special interest. It has been trans. lated and published in the cheap pamphlet forin in this country. It still remaine for some A merican, who understands both chemistry and agriculture, to opply liebig' science to the soil and productions of our owr country and to reduce his principles to the form of axioms, and publiah them in a cheap manual for the daily une of the Americen farmer-Am.Ed.]

ELECT

LT was observe vas rublied, it ac 1 ug such light b nviver afterwards dectron, the Gree clents were thus vious phenomena gate the aubject lization: of facts in modern times, wh blished by the evi lised by philosopl with electricity as Gilbert, an Engli warda goneralizat a raluable treatise amber, but variou made to draw lifg Newton, and son contributed to ext teresting aubject; its rise in a latter teenth century, se certained, particu identified lightnin relations which co ments of phyaical present century, appreciated. In th founded on that known by the n battery (which wi strument for anal stances, has conne timate manner. tar, one of the divisions of the p wetism is a still acience, and whic were previously rt
Aa the best me ame time, philoso we shall, in the fir state the most ger with it. After th will then be prepa have been advanc nomena, and for mind. The gene think may be clas tation of Electrici tricity. Connecte ous phenomena, during the gradus

EXCITATION OF
If a piece of watch, or sny ot upon piece of the sleeve of a cl quired a new and property is exhil been subjected t mances, such as ntraw, cork, \&e. WI' some of the
ed Wite id uvaport in parts ol and, along n immene re exported which went ritish North 1. Desorme It in France uich is about s country it ly , which in stry." "Lie. the Chemrical of Chentistry. radi."
mistry which importa it in to bear upon and manures crope, has re. tl by the most rica, snd dis e have beeo diebig on this as been trans forin in this n , who under. pply liebig' ows country exioras, and ily use of the

ELECTRICITY-GALVANISM-ELEC'TRO-MAGNETISM

ELECTRICITY.

IT was olserved in ancient times, that, when amber tas rublied, it acquired a power of attrach, 2 g and repel1 ug euch light bodies as hair and feathers; and this inser afterwards cane to be called Ecectnicity, from dectron, the Greek word for amber. Although the ancents were thus acquainted with some of the more obvious phenomena of clectricity, they did not investigate the sulject methodically, or attempt any generalization of facts into a scientific theory. It was only in modern times, when close reasoning from truthe pritsblished by the evidence of tho sensea began to be practised by philosophers, that the phenomena connected with electricity assumed the dignity of a science. Dr. Gilbert, an English physician, made the first step towards gencralization, in the yenr 1600 . He published a yaluable treatise, in which he observed, that not only amber, but various other sulistances, can by friction be made to drave light bodies to them. Boyle, Guericke, Newton, and some other philosophers of that period, contributed to extend human knowledge upon this interesting subject; but the real science of electricity took its nise in a latter age. About the middle of the cighteenth century, several very remarkable facts wero ascertained, particular!y by Benjamin Franklin, which identified lightning with electricity ; but the extenalve relations, which connect it with so many other departments of physical science were not discovered until the present century, nor was their importnnce until then appreciated. In this short ers a new science has arisen, founded on that modification of electricity which is known by the name of Galvanism. The galvanic battery (which will be afterwards described), ss an inatrument for analyzing or iecomposing chemical substancen, has connerted it with cbemistry in the most intimate manner. Hencs lias sprung Er.nctuo-Cummisrix, one of the connecting branches between remote divisions of the philosophy of nature. Electino-Magmatism is a still more recently discovered provinco of scieace, and which identifies as one, two powers which were previously regarded as distinct.

As the hest methol of conveying a clear, and, nt the ame time, philosoghic.al view of this interesting science, we ahall, in the first place, independently of all theory, state the most general and remarkable facts connected with it. After these have been enumerated, the render will then be prepared for a reviow of the theories which have heen advanced for the purpose of explaining phenomena, and for connceting the various facts in the mind. The general facts relating to this subject we think may be classed under two heads-l at, The Ex.itation of Electricity ; and 2d, The Distribution of Electricity. Connected with each of these heads are variou phenomena, which we shall notice as they occor, during the gradual development of the subject.
excitation of electricity, and resulting pheNomena.
If a piece of sealing-wax, amber, the class of a wetch, or any other smooth piece of glass, ive rubhed upon a piece of dry tlannel or woollen cloth, or even the alecve of a cloth coat, it will he found to have arquired a new and very singular physicni property. This property is exhibited ly holling the boily which has been suljected to fric.on, over small nud light substances, such as shaells of paper. gold leaf, feathers, uraw, cork, \&c. These will be first instantly attracted W $1^{\prime \prime}$. some of then adhering to its surface: others fall-
ing back to the place whence they were withdrawn whilat others are thrown off from the body as if thes were repelled from it. Here, then, is a distinct phenu-menon-a process of attraction and repulsion at thr same instant of time, which requires careful examina tion. It is observed, as above stated, that only cettain substances will become endowed with these remarkable properties, and for convenience such are called electrics. those which cannot be excited in the same manner are said to be non-electrics; for example, stone is a nonelectric.

The phenomena of attraction and repulsion may be excmplified in a striking manner by a small apparatus, of which we present a representation, fig. 1. A is a stand bent at its upper extremity, and having a 'sook to which a fine silk thread is attached, with a very small pith ball at its end, B. Rub an elec-tric-for instance, a dry rod of glaseand, on presenting it to the ball, B, the ball will be immediately attracted to the glase, snd will remain in contact with it. After they remain in contact for a few seconds, if the glase bu withdrawn without being touched by the fingers, and again presented to

Fig. 1. the ball, the latter will be repelled instead of being attracted, as in the first instance. By being touched with the finger, the ball can be deprived of its clectricity ; and if, after this has been done, we present a piece of sealing-wax in place of the glass formerly enployed, the very eame phenomena will take place. On the first application, the ball will be attracted; and, on the second, repelled. It is clear, then, in the first place, that both these clectrics have the power of uttracting another body before they have communciated to it any of their own electricity; and, secondly, that they repel the body after they have communicated to it a portion of their own clectricity.

But a very remarkable circumstance takes place, it we, after having conveyed electricity to the ball, B, by meana of excited glats, whirh was for a moment or two in contact with it, shonld present to it, after the former was withdrawn, excited sealing-wax: the ball, instead of being repelled, as it would have been were the glass again appiied, is attracted by the wax. If the experiment be reversed, and the excited wax first presented to the ball, and then the excited glass, the latter will be found to repel the ball. "Henco it followa," says Sir David Brewster,* "that excited glass reprls a ball clectrified by excited glass. Excited wax repels a ball electrified by excited wax. Excited glass attracts a ball clectrified by excited wax. Excited wax attracts a ball clentrified by excited glass. From which we conciuice, that thele are two opposite electricitics; namely, that produced by exited glasa, to which the name of vitreous or positive electricity has been given; and that pro duced by excited wax, to which the name of resincun or negatire electricity has been given.
"If, when the pith bal B, is electrified eithor with excited glass or wax, we touch it with a rod of glass, its property of berrg subsequently attractel or repelled by the excited glass or wax will suffer no change; but if we touch it with a rod of metal, it will lose the elec tricity which it had received, and will be attrse ted elthet

[^20]by the excited glane or wax, an it wa when thoy were Girst applied to it. Hence, the rod of glass and the rod of metal possess difierent properties, the former being incapable, and the latter capable, of carrying off the electricity of the pith ball. The metal in therefore said to be a conductor, and tho glass a non-conductor, of electneity."

In these experimenta, electricity has been produced by friction; but there are other methods of obtaining it, which, however, will be afterwards explained.

With regard to attraction and repulition, a few facta remain to be atated. Some subatances remain longer in enntact with the electric than others, and two bodien which have both been in conduct with the anme electric, mutually repel each other. If eiectrics of considerable wize are employed, the phenomena of course aro best ubserved; and if the experiment be performed in a darkened chamber, flashes of bluiah light will be seen wo extend over the surface of the electric submitted to friction, and which we shall suppose in a cylinder of mealing-wax, sulphur, or glass. Sparks, accompanied also with a sharp snapping sound, will be seen to dart round it in various dircetions. If a round body, na a metallic ball, be presented to it, and moved from on end to the other, a succesaion of aparks will he obtained ${ }^{5} \mathrm{t}$ the ball passes along the surface ; and if the knuckle be presented instead of the metallic ball, each spark will be accompanied by a pricking sensation. If the cylinder be brought near to the fice, an unpleasant sensation of tickling is felt in the skin, as if it were covered with a cobweb. If a metnllic glohe the sugjeaded in the air by silk thrends, and in that situation rubbed by an eiectric, it will also become electrical, and exhibit the same properties as an clectric. It is essential to the auccess of thin experiment that it be insulated; thnt is, cu! off by means of an electric from all communicatron with any sulatunce, except the air and the electric which sustains it. The instruments employed in experinents similar to those alove described are termed ilectrosmpes. Besidea that one, of which a representation has seen given, there are various others, all of which are furmed upon the same principles.

It it now proper to mention the principal electrical mbstances in nature. They are, amber, gum-lack, mesin, sulphut, glass, talc, the precious stones, silk, the fur of most quadrupeda, and almost aft vegetable substances (excepting charcoal) which have been thoroughly deprived of moisture, as, for instance, baked wood, and very dry pajer.

distribution and transference.

We have noticed that when the excited ciectric was brought near the pith ball, B, the latter was first attracted and then repelled. If we now remove the electric and present to the ball which has thus tourhed it, a second ball which has had no previous communication with an electric, we find that these two balls attract one another, and come into contact. The same actions are repeated between this mecond lafl and a third which may be presented to it ; suld no on in succession, but with a cintinuel diminution of intensity. This dimimution plainly indicates a liminished power, in ronsequence, as it would seem, of its being distributed among a number of bedies. if in clear. therefore, that the unknown power which we have called clectricity, ran, like heat, be transferred or communicated from one boly to another, and that its intensity, like that of heat, is weakened by being diffused among a number of troclies. An el,getnfied ball can be deprived of its electricity ly being 3 buched with a rod of metal of any kind; hut if we touch it with glask or wax, it will not be carried off. Hence, metals are seid to be conduclors, and glass and way nom-rowductorn, of electricity. Bodies greaty vary in theis powet of conduction, and many of them owe it
to the weter which iney contain. The conducting power of any substance depends on the state of the nh mosphere at the time with regard to humidity, and on. the intensity of the electricity employed. The following lista of conductora and non-conductore are by 8 Bi David Brewater, and have bren collected by him from. various authors, with great care. The bodiea are placiri in the order of their conducting or non-conducting power ; "but it is prolahle," saya Sir David, "that thin order would be greatly changed, if the bodien ware all submitted to a new and uniform exnmination."

List of Conductors.-Silver copper, lead, gold, brase, zinc, tin, platina, palladium, iron heated, iron cold, charconl well burned, plumbago, concentrated neids, pow. dered charcoal, diluted acids, anline solutions, metalic ores, animal fluids, hot water, sea-water, spring-water, river-water, ice above 13 degrees Fahr., snow, living vegetalles, living enimals, flume, amoke, steam, soluble salts, rarefied aiz, vapour of alcohol, vapour of ether, moist earths, anthracite, powdered glass, flowers of sulphur, resins rendered fluid by heat, glasa heated to rednema.
List of Non-conductors.-Shell-lack, amber, resing, sulp:iur, wax, jet, glass, vitrifications, mica, diamond, trausparent geme, variout mineraln, raw silk, bleached ailk, dyed silk, wool, hair, feathers, dry paper, parchment, leather, air and all dry gases, baked wood, dry vegetable bodies, porcelain, dry marble, and ailiceous and argilleceous stones, camphor, caoutchouc, lycopodium, dry chalk, lime, phosphorus, ice lelow 13 degrecs Fahr., asines of animal bodies, ashes of vegetable bodiee, oils (the heaviesi being the beat conductors), dry metallic oxides.

The two qualities of a capability of excitation, and a power of conducting electricity, appear to be inconpratible with each other, for the one always diminishea in proportion as the other increascs. Hence it iollows, as an invariable law, that electrics aro non-tonductoriz, and, on the other hand, that conductore aro non-electrics. The mopt perfect non-onouluctors of electricity are aiso cnlled insulators, from their power of insulating an electrified body, or preventing any of its electricity from escaping along ite supiport. The insulating power of atmospheric air depends upon two circumetances-its density and its dryness. Air of the ordinary density of the atmosphere, if perfectly dry, is a remarkah'y gool insolator, and no change of tempereture appears to affect its insulating power; but rarefaction dimilishes its power of roufining electricity, and, when greatly rarefied, it may lie elassed among conductors The conducting power of air of the ordinary denaity depends upon the quantity of mnisture which it contaios, water being a very goad conductor of electricity. Changes of tetriperaturc and also of form affect the conducting powers of mont thodies. Thus, thoug! water, in its ordinary liquid state, is an excellent conductor, yet, when it appears in the solid form of sce, its conducting power is much impnired, and at z very low tempera.ure it ceases entirely. Glaks, when coli is a non-conduc' r , but when heated to reduess it conc. tolerably wed. Hence, although sone bodies are sak. to be perfect non-couductors, yet this is not strictly true. In Dr. Faraday's interesting researches on this suljech he gives the following sumbary of conditions of cotduction in hodies, which, although they apply chicfly to voltere electricity, are yet true within certain limita of ordinary electricity :-

1. All todies conduct electricity in the aame manner. from metals to lac and ganes, but in different degrees.
2. Conducting power is in som- bellies powerfully in. ereased by heat, and in others dimi ishest, yet without or: perceiving any accompanying eas ntial electrical its. ence, either in the bodies ot in W_{1} changea ocr anond by the electricity conducted.
3. A number o invensity when soli and are then decon
4. There are ms evaduct electricity which conduct it a esential to decomp
5. There is but mercury), which, and conducting it latter case.
6. There is no which can as yet b be elementiry, and There are variou conducting power ingtance, is affected by the nature of tinged. When of ducting power is th or a nut-brown itr lomb, who has inve asigns three canse body in a state cf i first, the imperfecti wlids by which it i successive portions which deprivea the thirdly, the depositit the insulating bod wih its remote en ducting power. T cumstance relnting the ahape of the retaining power is it possesser. The to its retention; w especially if the p surface, electricity hand, these bodies thooe of any other

OF THE T
It will be unders that there are two or positive electricit Although we have appear to be the a they are taken ind cervable when brou marked a contrari they may be viewe which completely just like an acid a excitation of one panied by the pre disced to an equal is rubbed by ailk produced in the sill in the giass ; and by the one, are at : :ra a surfaces, hnvi riably attract each rubbed againat eac exhibit electricsl
The black is resi trified; of course, rated, the one att repels Whun t aane longth are whye and at right which has been : acquires 7 itreous like manuer, whe

VoL. 1. $=32$
3. A number of bodies inaulating electricity of low intensity when aolid, conduct it very freely when fluid, and are then decomposed by it.
4. There are many fluid bodies which do nut sensibly conduct electricity of this low intensity; there are some which conduct it and aro not decomponed, nor is fluidity euential to decomposition.
6. There ie but one body ye mercury), which, insulating a - ic current when oolid
scovered (periodide of and conducting it when fluid, os not decomponed in the lotter case.
6. There is no strict electrical distinction of conductors which can as yet be drawn between bedies aupposed to be elementary, and those known to be compounds.
There are various other circumstancos upon whieh the conducting power of bodies depends. That of silk, for instance, in affacted by the colour of the thresd, or Father by the nature of the dye-stuff hy which it has been tinged. When of a brilliant white, or a hlack, ita conducting power is the greateat; and a high golden yellow of a nut-brown acnders it tho best inaulator. Mi. Coulomb, who has Investigated the subject with great ability, aseigns thres canses as chiefly operating in depriving a body in a state of imperfect insulation of its eactricityfirit, the imperfection of the insulating property in the wlids by which it is supported; secondly, the contact of successive portions of atmospheric air, every particle of which deprives the body of a portion of its electricity; thirdly, the depomition of moisture upon the surface of the insulating body, which establishes communications with its remote enda, thus virtually increasing its conducting power. There is another very remarkable circumstance reinting to the dissipation of electricity, namoly, the shape of the body which holds the electricity. Its retaining power is materislly affected hy the form which it possesser. The spherical shape is that most favourable to its retention; whilst, from bodies of a pointed figure, especially if the point projects to a distance from the surface, electricity escapes most readily. On the other hand, these bodies receive clectricity more readily than thooe of any ather form.

OF THE TWO KINDS OF ZLECTRICITY.

It will be understood, from the preceding explanations, that there are two kinds of electricity-namely, a vitreous or positive electricity, sud a resinous or negative electricity. Aldhough we have thus two electricities, there does not appear to be the amallest difference between them when they are taken individually. 'The distinction is only observable when brought in contact; they then diapl? marked a contraricty, or matually opposive force, that they may be viewed as agents having opposite qualities, which completely neutralide one another by combination, just like an acid and an alkali. It is remsrkable that the excitation of ono species of electricity is always accompanied by the presence of the other, and both are produced to an equal extent. Thus, when a piece of glass is ruhbed by silk, just as much resinous electricity is produced in the si!k as there is vitreous electricity produced in the giass ; and whatever clectrified bodies are repelled by the one, are attracted by the other. Of course, these ivo surfaces, havirg acquired opposite electricitien, inveribly altract each other. A white and a black ribbon rabbed against each other between the finger and thumb, exhibit electrical phenomena in a very marked manner. The black is resinuusly and the white vitreously electrified; of course, they attract cach other; and, if sepsrated, the ono ettracts the light bodies which the other repels. Whin two pieces of the same ribbon of the same length are rubbed, the one being drawn lengthwaya and at right angles over a part of the other, the one which has been auljected to friction in its whole length, aequirea citreous and the other resinous electricity. In liks manner, when the whole length of the bow of a
violin is drawn over a limited part of the etring, the hairs of the former oxhibit a vitreous, and the latter a recinoum electricity. It is to he obeerved, that the body whom excited portion is of the .east extent, is generally forms to be resinously electrified.

To know the species of electricity evolved, it is merely necesary to communicate beforehand, to the slipe of gold ieaf, a known electricity, either from excited glasa or sealing-wax. If they be divergent with the former, then the approach of a body similarly electrified will augment the divergence, but that of one oppositely electrified will cause their collapse.

No visible relation can be pointed out betwcen the nature or constitution of aubstances, and the species of electricity developed by their mutual friction. The only general law among the phenomena is, that the rubbing and the rubbed body always require opposite electricities. Sulphur is vitreously electrified when rubbed with every metal except lead, and resinously with lead and every other kind of rubber. Resinous bodies rubbed againat each oiher acquire alternately the vitreous and resinous electricity; but rubbed against all other bodics, they bocomo resinously electricsl. White silk acquires vitreons electricity with black silk, metals, and black cloth; and resinous with paper, the human hand, hair, and weasel's skin. Black silk becomes vitreously electrical with meal ing-wax, but resinously with hares', weasels', and ferrets' skins; with bress, eilver, iron, the human band, and white silk. Woollen cloth is strongly vitreous with zinc and bismuth; moderately so with silver, copper, lead, and specular iron. It ia resinous with platina, gold, tin, antimony, gray copper, sulphuret of copper, bisulphuret of copper, sulphurets of silver, antimony and iron. Dry air impelled on glass becomes resinously electrical, and leaves the glass in the opposite state. Silk stuffe agitated in the stmosphere witl: a rapid motion, always take the resinous electricity, while the air becomes vitreously electrified.

Numerous experimente have been made with the view of ascertaining the conditions that determine the speciea of electricity exerted in the respective bodics of which the suriaces are made to rub against each other, but they have Ied to no satisfactory conclusions. The mechanical configuration of the surface oppears to have a greater influence in the reault than the peculiar nature of the substance itself. If a plate of glass with a polished sur face be rubbed egainst one which is roughened, the former always acquires the vitreous and the latter the resinous electricity. Various substances, if rubbed when pulished, exhibit a different kind of electricity than that with which they are excited, if rubbed when roughened or scratched, No purely seientific explanation has ever yet been given of these remarkuble phenomena.

If a body is charged with electricity, and insulated so perfectly as to prevent the eacape of the electricity which it contains, it nevertheless tends to produce an electrical state of the opposite kind in all the bodies around it. Thus the vitreous induces the resinous, and the resinous tho vitreous electivity in a body that is situsted in the vicinity of eithe of them, and this to a degree proportioned to the smallness of tho distance which separstes the bodies. The electricity is in this case said to be induced, and the phenomenon is called electrical induction. The operation of this law is a key to the princijal phenomena of electricity. In illustration of it, we shall quote an sble writer upon the subject "If on electrified body, charged with either species of electricity, be presented to an unelectrified or neutral body, its tendency, in consequence of the law of induction, is to disturb the electrical condition of the different parte of the neutral body. The electrified body ndurey a state of electricity contrary to its own in that port of the neutral body which is nearest to it; and, consequent Jv . a state of electricity similar to its own in the remote

Vol. 1.-32
part. Hence, the neutrality of the ememnd body is theatroyed ty the action of the firt ; and the allincent parts of the two hodiee, having now opposit. eleectricitloe, will aurract osch other. It thuy appears that the attraction which is obseeved to take place thetween electnfed bodles, and those that are unelectrifed, is merely n consequence of the altered state of those bodices. reaulting direetly from the law of induction; and that it is by no means iteelf an original law or primary face in the acience.
The effect of induction will be in proportion to tho facility with whieh changes in tho dlstribution of elec. tricity amı $n \mathrm{~g}$ the different parts of a boly can be offected, af facility wi.ch correpponda with tho conducting power If the baxis. Herce, the attraction exerted by an elecwiffed body upon another body previously neutral, will bo mach more energetic if the latter be a conductor than "fit be anl electric, ". hich thene changes can take place only to a very smail extent. Thia is confirmed ly the following experiment:-" Suspend, by fine silk threads of oqual length, two emall balis of equal dimensinna, both made of gum-lac, but one having ita surface covered with gold leaf. Place thene two pendlulume, as they may be called, at a lititlo distance from one another, ao as to admit of a compariwon of their motions; and then prement to thom an excited eloetric, which may be either a tube of glase or a cylinder of sealing-wax. It will at once be cen that the ball with the metallic covering, which realily admits of the transfer of electricity from one side to the other, will be much more readily and prwerfully attracted than the other ball, which allows of nu miotion in its electricity. The latter thall will, by slow degrees however, assume electrical states of the sanie kind as the gilt ball, and will be fully attracted. As this change in very alowly effected, so it in more permanent when once produced; and the plain ball adheres for a conaiderable time to the electric which has attracted it. The gilt ball, on the contrary, is sooner repelled, hy ite readily receiving the charge of eleetricity imparted to it by the electric. A degree of permanent electricity, however, is also induced on thit ball, in consequence of its graiual penetration into the sulbstance of the gum-lac."

Electrical phennmena are generally accounted for by oupposing that there is an ext memely subtile and highly elastic fuid, which pervades all 1 . aterial subetances, but tis iteself devoid of any seensible graity. It is supposed to move with variound grees of facility through the pores or actual subetance of various kinds of matter. Hence, in proportion an they adrnit of the fluid passing through them with ease or dificulty, hodies have been divived into conductors and non-conductors. Accorling to the doc. trine of there being but one specien of Euid, it is suppowed that the electrical equilibrium which constitutes the natural atate of mater is disturbed by friction, and that one of the two bodies brought near to each other, attracts to ittelf a surcharge of the fluid, and is over-sataratated, whilst the other is left in a deficient state, and is under--aturited. For this view of the sulbject we are indebted to Franklin; and hence, the terms of positive or plus, and negative or minus, have arisen. But as mome of the appearances cannot easily bo reconciled to the hypothenis of a mere excese or deficiency of one fluid, there is another thoory which supposes the fuid to be a rompound, susceptitibe of deconnposition by friction and other means; and bence the orisin of the terma vitrous and reainous electricities. With respret to the intensity of the electric force, it resembles that of gravitation, hy heing inversely an the xquare of the disalance. like pravitation, also, it ocle at all distances, and it is not inperted by any intervenius loody, provided it be not in an active electrical atace. But whilat the particles of each fluid repel those - the same kind, they exert, as we have secin, a high atructive power over those of an opposite kind. The invesaity of this attraction, almo, like that of gravitation,
increanos with a diminution of distan.e. It a viders therefore, that from the powerful altraction whech hive huve for each other, they would al waya fow towandi each other and coalence, wero it not that the non-cen ducting properties of electrics olfer an impedilitent ${ }_{1}$ their mation. When these olustacles are removel, they immediutely rush into union, and give rise to the ro markable phonomena already noticed.

electrical machines.

Rubling or friction, it will be perceived, is als., requivite to proluce an artildcial display of electricau phenomena. Thus, in rubbling the back of a cal, In rapidly drawing off a silk from a woollen stocking, of in performing any similar action with suitathe, and in anll caese dry, subtutancee, we evolve electric sparka, of lesser or greater intennity. For the purpose of producing powerful electrical reaulta, the aid of nechanium has been found essential. There are various kinds of olertrical machines, but all constructed or: sir tlar principleas Wo here offer a representation of that vhich is most cnm. monly used, in our dencription of which, tho essential parts constituting auch instrumente will appear.

Fig. 2.
AB, fig. 2, is a hollow cylinder of polished glam which revolves upon a horizontal axia, and is from eight to sixteen inchea in diameter, and from one to two ficet long. For the purpose of insulation, it ix supported on twa upright pilars of glase, which are fixed in a wouden stand. 'Iwo hollow metallic conductors, equal in length to the cylinder, und alout one-fourth of its diameter, are placed parallel to it, one on each side, upon two insulating pillars of glass, which are cemented into two separate piece of wood, that slile across the base, so os te allow of being brouglt within ditferent diatances of the cylindor. To one of these conductors the cushion is attached, which is of the same length with the conductor C. The cushion is usually made of sot shammy leather, stuffed with hair or wool, so as to be as hard as the bottom of a chair, but yet sufficiently yichling to accommodate itself, without much pressure, to the surface of the glass to which it is applied. The prime conductor is a cylindrical tube, each end terminating in a hemisphore. An the electricity is only contained at the surfaces, it is made hollow, generally of thin aheet lras, copper, tin, or pasteboard covered with gold ieaf or tins foil. It must ho carefully fred from all points and agperitiea; and if perforations are made in it for the purpose of attaching wires and other kinds of fixtures for the purposes of experiment, they should be mado about the size of a quill, and should bave their cdgea well rounded and smoothed off. The pressure of the cushion againat the eylinder in regulated by an adjusting scresw, adapted to the wooden base at E , on which the glass nillar ithe-
aupports the con of the curhion the which in sowed or from its upper edg of the glaus cylini tallic points, proce horizontal rod, wl opposite cenducto legiven by a sing must always be That part of the the glase cylinder composed of a lit paste by minana of placed uniformly line formed by the face of the cushion this line, nor on t wipe the silk flap of the muchine ahn amalgam on its su
This machine a the cylinder is dri of tho cushion upo fuid from the latte becamer negatively Br: the revolution the glass is carried rented by the silk it arrived near to 4 of the electricity, This being rositive with the cishlion argatively vectrif. threads at F ', bei each other. Aftes the cusbion and their eleetricity ; sc from the oarth, the easily donc, by es the cuahion and chain or wirc. In positive electricity tive electricity ia o which the cushion conductor with the collected from the the machine be es legs, and connecte metallic rod, or if to be in the same on atanding upo him by presenting
By using the el we are enabled to trecity, and thus scale. A pith ba strongly and imme ductor, and, the with i t, it is repe other bodies in it ninates its own ele to influenced by al; and this alter w the conductor t attractions and re electricity by mov tha mutiona of a

In esitain cond sre evorved in abs silinders in the pap msterinl on parla of af the phenomena. ad to cotiect vicae matily performed w
eupporte the conductor is fixal. From the upper edge f the cuabioa there proceedsa a flap of thin oilod wilk \mathbf{D}, which is eewed on the cuabion ebout a quarter of an inch froni its upper edge. It extende over the upper surface of the glawe cylinder to withln an inch of a row of mewhllce points, proceoding, like the teeth of a rake, from a horizontal rod, which in fixed to the sdjscent aide of the opposite conductor. The motion of the cylinder, which it given by a single handle, or by a multiplying wheel, must alviyy be given in the direction of the silk fap. That part of the cuabion which comes in coutact with the glased cylinder should be costed with an amalgam composed of a little tin-foil and mefcury, mixed like a parte by means of hoge' lard. The amalgam ahould be placed uniformly over the cushion, until level with the line formed by the meam which joins the silk fap to the face of the cushion. No amalgam ahould be plsced over thie line, nor on the ailk flap; and it in even requisite to wipe the silk flap clean whenever the coutinned motion of the macline shall have soilod is, by depositing dust or emalgam on its surfice.
Thie macline acts in the following manner:-When the cylinder is utriven round by the handle, the friction of tho cuallion upon it producea a transfer of the electric fuid from the later to the formor ; that is, the cushion becomer negatively, and the glass positively, electrificd. B: the revaluton of the cylinder, the fuid adhering to the glass is conried round, and its escape is at frrat prevented hy the silk flap which covers the cylinder, until it arrives near to the metallic points, which aboorb most of the electricity, and convey it to the prime conductor. This lecing !usitively electrified, the conductor connected will the cashion being dep:ived of this electricity, is aggatively rlectrifiod; so that light balls, suspended by lireads at \mathcal{F}, being orfositely electrificd, will attrait each olter. After tho action has gono on for some time, the custion and its conductor become exhausted of their electricity; so that a new supply must be brought from the earth, the great reservoir of tho fluid. This is easily done, by establishing a communication between the cuslion and the ground by meane of a metallic chain or wire. In this manner, a constant streant of positive electricity flows to the prime conductor. Negative electricity is obtuined by insulating the conductor to which the custion is attached, and connecting the prime conductor with the ground, so as to carry off the fluid oollected from the cylinder. If the person who works the machine be supported upon a stool having glass legs, and connrcted with the conductor by means of a metallic rod, or if he touch it with his hand, he is found whe in the same state of electricity ; and another peroon atanding upon the ground can draw sparks from him by presenting his knuckles to his body."
By using the electrical machine in the above manner, We are enabled to collect a considerable quantity of clec. trcity, and thus perform experiments upon an ample cale. A pith ball, or a fragment of gold leaf, is very strongly and immediately attractrai by the electrified conductor, and, the instant efice it has come into contact widh it, it is repelled; jut it, is now attracted by the other bodies in its neighlourhood, to which it communinates its own electrieity, and then io again in a state to to influenced by the conductor, and to be again attractN; sud this alternation of effects will continue as long w the conductor remains charged. This alternation of atractions and repulsions accompanying the transferring electricity ty movable conductors, is also illustrated by the motions of a hall euspended by a silk threal, and

[^21]placed between two beilis, of which the one is elbectrinod and the other comnunlentee with tho ground. The alternate motion of the ball between the two della will keep up a continual ringing. This amusing experiment has been applled to give notice of changes taking ploce in the electrical state of the atmosphere.

The mutual repulsion of bodies that are similarly elec rified givee rise to many interesting experiments A small figure in the sliape of a human hosd, covered with hair, when placed upon the conductor, and electrifled, will exhibit the appeararce of terror, from the bristling up and divergence of the hair.
The intensity of the electricity which bodies may contsin, is measured by a dolicate inatrument, called an Elcctrometer, of which there are several invented by various distinguished individuals. Our linits, however, will not admit of our giving a minute account of them. They all depend upon the repulsive property of electrified bodica, and the distance to which the one is repelled by the other is indicated by an index of one kind or another.

We have alst idy observed, that upon the extent of the aurface of a body, it capacity for recolving electricity principally depends. Electricity is therefore supposed not to npresd throughout the whole mass of a body, at least equally, but to remain principally, if not altogether, at the surface. This has been proved by experiments for trying the distance to which the electricity extended beyond the coating of the Leyden jat.

Several remarkablo phenomena occur when electricity is drawn off by means of a conductor from those bodies in which the electrical equilibrium has been destroyed. A sharp snapping sound is heard, sccompanied by a vivid spark, whilst intense heat is evolved in the path which the electric fluid takes. A perfect conductor miering no impediment to its course, it is unattended with light during its passage through such a body, light only appearing when there are obstacles in ite path, such as imperfect conductore. Of the velocity with which it is transmitted, we have slready spoken. It is so great, that in experiments yerformed with a chain of considerable length, each link becomes apparently instantaneously luminous. There are various methods of showing the intensity and colour of electrical lightConductors having a roundel form give the longest and most vivid sparks, which are sometimes seen to take a zig-zag course, similar to that of a flash of lightning. This deviation in its course is supposed to he occasioned by this fluid darting to minute conducting partieles, such as those of moisture floating in the sir. Electrical light is similar to light obtained from other morices, and its brilliancy depends upon its intensity. Sir David Breweter found that it was capable of polarization. It displays every shade of colour, that quality being dependent upon the nature of the substance through which the fivid passes.

An intereating question arises-Whence comes the light-is it the electric fluid which thus renders itself visible? This was really supposed to be the case by the carly electricians, but later philosophers have substituted other theories to account for the phenomens. That of M. Biot, a celcbrated French philosopher, is, that electric light has the same origin as the light disengaged from air by mechanical pressure; "and that it is purely the effect of the comprission produced on the air by the explonion of electricity." This hypothesis has been oh jected to, however, on the ground that electrical light is produced in the best vacuum that can be formed; and although he has replied to the objection, that no perfect vaeuum can exist, yet his arguments, though they carry weight, do not bring conviction to the mind.

We have alreaily observed, that various mounds acompany the variuus modes of transference of the cleetric fluid; a peculiar odour has aleo eometimes been fon
mear a machino which has beon aharply wrought; but whance its origin, is unknown. All sharp-pointed bolion, wo have said, concentrate moos of the olectric huid at thair apex, from whence it han a powerful diaposition to ceeapp; and every diecharge in accompanied by currents of air. Upon this principle many ingonious experimonto aro founded. An apparatue, conoicting of wires corminating in pointe, and having balle annexed to them to reprement the planete, may be conatructed no an to rovolve when electrified, and thue to imitate the planemary motiona. We cannot enter further into this subjoct, but inay state in general terma, that the appearanoes of the electric spark depend upon the nature of the surfice from whence it iseoues, and towards which it in dirooted. When it ewcapea from a pointed body, the luminoun appearance ia that of diverging streame, rewombling the flaments of a brush, and forming what is cermed a pencil of light; but when the fuid goen to a point, the light concentrates at the point itself, and asaumee the appearance of a atar.

The moet convenient mole of obtaining an eccumulation of electricity arising from induction, in by the em. ployment of coated glasan ; that ia, of a plate of glases on eech wide of which is pasted a aheet or coating of tin-foil. Care must be taken to leave a aufficient margin of glase umcovered with the metal, for preventing the trannfer of eloctricity from ene coating to the other, round the edge of the glase; and all sharp anglen or ragged edgen in the continga should be avoided, as they have a great tendency to diaipate the charge.
The form of coated glase bent adapted to experimenta in that of a cylindric jar; this in coated, within anal without, nearly to the top. The cover consints of baked wood, and is inserted with sealing-wax, to exclude moiture and dust. A metallic rod, rising two or three inchea above the jas, and terminating at the top in a brasa knob, is made to descend through the cover till it touchea the interior coating. The name of the Leyden phial, or jar, bapplied to this instrument. It is uned in the following manner:-The outer conting being made to communicate with the ground, by holding it in the hend, the knob of the jar is presented to the prime conductor when the machine is in motion: a auccivion of oparke will pase between them, while, at the same time, nearly an equal quantity of electricity will be pasaing out from the extarior coating, through the body of the person who holda th to the ground. The jar, on being removed, in said to be charged; and if a comununication in made between the two coatings, hy a metallic wire extending from the external one to the knob, the electric fluid which was scoumuiated in the positive coating, rubhes, with a sudden and violent impetua, along the conductor, and pases tato the negative coating; thus at once restoring an

Fig. 3.
amost complete equilibrium. Thin audden tranmfer of a large quantity of accumulated electricity in a real explodon, and it gives rise to a vivid flash of light, correcoonding in intensity to the magnitule of the chargs.

The offeot of ith tranamieaion is much greater than then of the aimple charge of he prime conductor of the ma . chine ; and it imparts a cenastion, when pawing througl. any part of the body, of a pocutiar kind, which in relled the dectric shock. The arrangement of the partu in a Leyden jar in shown in the foregoing figure, in which the simple hent diuchurging rod, for establiahing a dizeet evmmunication between the inner and outer coating of a jar or battory, and restoring the electrical equilitrium, without the operator receiving the charge of the jar, is exhibited. E represents the insulating handle, and A the bent rod of brase reaching from the ball to the oxternal coating. When opened to a proper degree, one of the balla is made so touch the exterior conting, and the other ball in then quickly brought into contact with the knob of the jar, and thua a diecharge la effected.
By uniting together a aufficient number of jara, we are able to accumulate an enermous quantity of electricity. For this purpose, all the interior coatinge of the

Fig. 4.
jara must be made to communicato by metalic rods, and a simidar union muat be eatablished among the esterior coatinga. When thua arranged, the whole serics may be charged, an if they formed but one jar; end the whole of the accumulated electricity may be transferred from one syatem of coatings to the other, liy, a general and aimultaneous dimeharge. Such a combination of jars is called an electrical battery. An arrangeneent of this dewcription is here represented, in which twelvo jara are united in one box, and the whole series comected together by wires and bella.
If we winh to send the whole charge of electricity through any particular substance which may the the wub. ject of experiment, we muat so arrange the connecting conductors as that the substance ahall form a necessary part of the circuil of the olectricity, an it is tenmed. With this view, we nuat place it between two gool conductorn one of which is in communication with the outer costing; and the circuit may then be completed by connecting the other conductor with the inner coating lyy means of a diacharging rod, to one brancb of which, if necessary, i flexible chain ray be added.

In forming arrangements for directing the passage of accumulated electricity, it ahould be borne in unind that the electric Auid will, on thewe occasions, always pas through the best conductors, a^{\prime} though they may ive more circuitous, in preference to those which are more direct, but have inferior conducting power; and it muat alwo be recollected, that, when diffirent pathe are open for tue trannmission along conductors of equal powir, the electricity will always take that which is the shortest. Tllues, if a person holdiug a wire between his hands dischargys a jar by meaus of it , the whole of the fluid will para through the wire without affecting him; but if a piere of dry wood be aubatituted for the wire, le will feel a shock; for the wood being a worwe conductor than bo own body, the charge will pass through the latter, u being casier, although the longer cincuil. During its
nause through th whock la felt only i of communication Hrough a number tha hand, and form end outer coatingo thock in the marne menantion reaching the hreant. By val the athock may be may either be cona made to traverse th to foot.
By aecurate expe the electrio ahock in by employing a con dircharge. A retal alo takee place if rise; and when th: tancen where the charge will not be plotely. It has alno line of its course, be which may attract it perfect conductors tion In the mechanic povided they be of dloctric fluid tranam diderable efferts are ent through a wire quantity to pass witl perfect conductor, th a tree ia struck by li
electnictity. App
The elfects of ele kances are both of The former resemble a material agent dri substance of the bod duced by electricity, chanical agency, ar nature. Some of t bean noticed. Dr. I bodies. This is pro through a capillary cury ; the latter will the glass to shivers course be greater an which tranemits it ; of the nature of ele venient to speak of which either obstruc age, render 3 its an the laws of its equili able fuld. Solid b into rapour by paaa down by the follow ef window-glass, end wide, and hnving p of leaf brass botwee leaf project a little of a large Lacyden j lint will be found to int: the surface of re gel.erally broken one, which frequen melallic atuin upon olviously the metall prres of the glass.
The metallic cole for impresaing orne in order to do this
rallan through the human boily, in tike manner, the hook is felt only in the parts altuated in the direet line of communication; and if the charge be made to paem through a number of permona, who take one another by the hand, and form part of the eircuit hetween the inner and outer coatings of the jar, each wiil feel the electric dhock in the mame manner and at the same inntant \mid the rensation reaching from hand to hand, directly acrowe the breast. By varying the pointm of contact, however, the ahock may be made to pase in other directiona, and may either be confined to a small part of a limb, or be made to traverse the whole length of the body from head to foot.
By necurate experimenta, it appears that the force of the alectric shock in weakened, or itn effectn are diminished, by amploying a conductor of great length for making the diecharge. A retardation in the passage of electricity ano taken place if the conductur in not of a aufficient gise; and when thin is the case, as well an in thowe inatancen where the conductor is not a good one, the discharge will not be effected an indantaneously or no completely. It has also a tendency to diverge from the direct bine of its course, being drawn towarila conducting bodiee which may attract it. The notion of electricity through perfect conductors is attended with no perceptible alterafion in the mechanical properties of the conducting bodien, provided they be of sufficient nize for the charge of the dectric fluid tranamitted. On the contrary, very condiderable effects are produced when a powerful charge is eat through a wire which is too amall to allow the whole quantity to pass with perfect freedom, or through an imperfect conductor, though of large aize, an is proved when attee ja atruck by fightning.

IESCRIOITT APPLED TO INORGANTE DODIES AND

 ANTMALO.The effectr of electricity passing through various aulsances are both of a mechanical and chemical nature. The former resemble those which would be produced by a material agent driven with great velocity through the wabstance of the boly. But there are many changen indoced by electricity, such an cannot be attributed to mechanical agency, and are undoubtedly of a chemical nature. Some of the mechanical effects have already been noticed. Dr. Friostley discovered that it expanded bodies. This is proved by passing a atream of the fuid through a eapillary or thermometer tube filled with mercury ; the latter will be so much expanded as to break the glass to shivers. The tendency to expand will of course be greater as the conducting power of the body which transmits it is less. Although we know nothing of the nature of electricity, yet it has been found convenient to speak of it as a fluid. Its action upon bodies which either obstruct its motion or afford it a ready paneage, render 3 ite analogy with a fluid very etriking, and the laws of its equilibrium are juat those of an imponderable fluid. Solid bediee are capable of being diffused into vapour by paseing electricity through them, as is dhown by the following experiment:-'Take three atrips of window-glass, each about three inches long and one wide, and having placed two narrow strips of gold leaf of leaf brass breween them, so that the ends of the gold lewf project a little beyond the g'ass, transunit tho charge of s large Leyden jat through tie gold leaf. The gold Foat will the found to be melted by the shock, and driven int the surface of the glass. The outer plates of glass ve geterally hroken in this experiment, and the midalle one, which frequently remaina entire, has an indelible metallic etain upon each of its surfaces. This stain is olviously the metsllic vapuur of the gold driven intu the proes of the glass.
I'the netallic colours thus obtained have been employed for impresaing ornamental figures upon paper or silk. in onder to do thia, trace the outine of the figures on
thick druwing-paper, and having eut it out an in wincl plater, place it on the silk or paper intended to be ernemented. When a gold loaf is laid upon it, and a cand above the gold leaf, the whole in placed in a prems or the neath a woight, and an electrical charge sent thronkt its the metallic atain is limited to the portion of the drawingpaper that in cat away, and, connequently, any outline figure may be readily impreseed upon tha ground amo ployed to receive it.

CWEMICAE CHANGME OF ELECTRICETY.

The effects of electrieity an a chemical agent are atrikingly diaplayed in ith power of evolving heat, and, consequently, of inflaming and fusing bolies, and itw power of promoting chemical composition and decomporition. Combuatibie bodies, wuch as a common entilt, can be lighted in varioue waya, by psoming the electric fluid through them. The heat ovolved by electricty. like moot other of ite effecte, is in proportion to the resistances opposed to its pansage. Nor is its henting power in the amallent degree dim!nished by ita being conducted through any number of freezing mixtures which are rapidly alworbing heat from surrounding bodicon. Eparks takell from a piece of ice are as capablo of inflaming bodien an thome from a piece of a red-hot irom. Among the more atriking chemical effects of electrieity, or electro-chemistry, are the decomponition of wuter, the oxidation of metals, and the restoration of the oxides to their metallic state.

Many experiments have heen made for the purpose of ascertaining the changes ellieted in phophorescent bodies hy electricity, and the results are not without importance. It has been discovered, for intance, that sub atances not naturally phofphoremeent, soch ae statuary marble in ite natural or caleined atate, were not only rendered phosphorescent hy beat after being atrongly electrified, but acquired this property with a beauty, variety, and an intensity of colour, superior to those which occar in apecimens that possess natural phosphorescence. It has also very recently been discovered, that electricity exercises a curious influence upon odoriferous bodien When a current of the fuid is made to traverse camphor, the odour gradually disappeara. After being withdrawa from electrical influence, it remains odourless for somo time, and then slowly resumes ite former properties.
There are certain mineral bodies, which, from being in a neutral atate at ocdinary temperatures, acquire electricity aimply by being heated or cooled. This property is poos seased only by regularly crystallized mincrala; and of these the most remarkable is the tourmalin. It is a stone of considerable hardness, and the form of ifa crystals in generally that of a nine-sided priam, terminated by a three-sided pyramid at one end, and by a six-sided pyramid at the other. When heated to between 100 legrees and 212 degrees, the latter extremity becomes charged with positive electricity, whilst the former remaine negative. On cooling, the electric states are generally reversed, that end becoming positive which was formerly negative. Other gems possem similar properties, such aa the topaz, some specips of diamonds, sce. There are a great many substancea which hecome electrifled by passing from tne liquid to the solid formo, such as sulphur, gum.lac, and in general all resinous bodies. The conversion of a body into the aseriform atate, is slso generally attended by some change in its electrical condition.

There are some bodics which nre rendered electrical by pressure. The eubstance which possesses this property in tho most remarksble degree, is that variety of the earbonate of lime known by the name of Iceland apar. Cork, bark, hairs, paper, and wood also possean the property of producing electricity by compression. A number of substances, when reduced to powder, exhibit electricity, if they are made to fall upon an insalated motallic plate. The relation subsisting between electricitv
and the chanical propenies of matter, io the moot im. portant tranch of thia inquiry, It in oheerved hy Bir Humphry Duvy, that moot of the subetancest that act diatinetly upon rach other electrically, aro aloo auch an aet ebsamically when their particlea have freedom of mothon; thin in the easo with the different metale, with sulphur and the metale, with acid and alkaline subutances. of two metaln in contact, the one which has the greatest chamical attraction for oxy gen acquires positive electricity, and the other the negative. There is littie dents, in deed, that eleetricity in not only elieited by, but in intimately counected with, all chemical action; and there is overy romen to believe that electricity le emontialiy conoerned in the procemes that are carried on in the living cysem both of animala and regetahleas.

The linduence of electricity upon the human frame, whether it in administered in mnall quantitices mo an to oxeite and aurprise us, or in the nore powerful and awful form of a ntroke of IIghtning, mumt be well known to every one. When the human frame forme part of the olectric circuit, or when the charge of a Leyden phinl in made to enter the boily at one hand and paesout of it at the other, a vioient cencuasion or shock in felt along the line of ita pasuage ecroes the breest and through the arma. This ahork, and the motion which accompanies it, no doubt resuit from the body being composed of varioua subatances of diflerent degreen of conducting power, thua presenting various obstacles to the free paseage of the fluid. If the charge is increased, the patient falls down paralyzed, auffering a temporary cessation of vital action; and if it be increased to a atill greater extent, it produces inutantaneoua death. Thia is frequently exemplified in the cases of individuala who are killed by the lightning stroke. It is upon the nervous syatem that electricity producen the most powerful influence. A atrong charge paseed through the hend, gives the sensation of a violent but univeraal blow, and is followed ly a trumsient lose of metwory and indistiuctness of vision. If a charge be pesed through the apine, the person who receives it loses his power over the muscles to auch a degree, that he either drope on his knees, or falla prosirate on the ground. small animale, auch as mice and aparrows, are inatuntly killed by a abock from thirty inchea of mquare glass. If a ahock be ment through the wholn boly of ar. eel, i: is irrecoverably deprived of life; but if oniy through a part of the body, the destruction of irritability is confined to that particular part, whilat the reet retains the powers of motion. Different permona are affected in very differont degreen by electricity, according to their peculiar conatitutional susceptiliitity.
M. Roumenu, as we learn from a paragraph in the Athenowm, No. 637, has suggested a meana of "ascertaining the purity of certain aubatancea, and of detecting any adulterationa in them, by measuring their conducting power for electricity. Some years ago, he describod a simple apparatua by meana of which the purity of oliveoil might te tested on similar principlea. He now statee that, by these meana, any multerations in chocolate or coffee may be readily detected : he finds that pure chocolate is a non-conductor or insulator of electricity, but that in proportion to the quantity of farina or fecular matter with which it is adulterated, the more easily doca * conduct electricity; and in the same way, he staten that coffee is an insulator, whilst ebicory, with which it in often nixed, ia an excellent comiductor, and hence the presence of only a suall quantity of that mubstance in easily detected in coffee by ita increased conductiog power. M. Rousseau alno considers that this teat may be applied with advantage to the examination of pharmaceuticul extracta and preparations, because they very much differ in conducting power, and thereform any mixure or adulteration will be readily discovered."
Electricity is oxhibited in a remarkable dogree in Parious living animala; for exemple, we end in certain
fiches a regular aymem of electrical otgann, by wina they either defend themneives from the attackn of tnois efietalea, or meize the proy nature has provided for then ues. Among the mont remarkable of theme io the rate torpedo, which in capnhie of giving a great many abacto to a number of individuuis connected together, in the vame manner aa in the experinvent with the leeyden jath Another in the electile rel, which, whien provoked, dia chargen ite electrieity, and the ahoek to experienced if the hand be dipped in the water containing the fall.
Although many ingenioun electrical experimenta have been made upon vegevalied, nonve of which meem to indi eate that the fuid exercinee consideral) influence wet vegotable life, yet the aubject is atill invoived in too great ohncurity to admit of our treating it as a branch of cleco trieity. Piartas, of couree, are deatroyed like onimals, when a powerful charge in neilt through then; but feeblo electricity exerta no influence on either animal or vegetable life, at far as ean be perceived.

THE ELEOTRICITY OF THE ATMOAPAKRE,

We have now arrived at that part of nur subject which is perhape the most generaily intereating off all The rememblance between the electric apark, and more eapecially the explosive dimeharge of the Leyden jar, and atmoopherie lightning and thumler, struck the mind of Dr. Franklin with so inuch foree, that he was determined, if ponsible, to varify their Wentity by experiment.
Having conatructed a kite, by atrotehing a large wilh handkerchief over two aticks in the form of a crow, on the appearance of an approaching atorm he wellt into field in the vicinity of Philadelphia, and rajwed ith taking care to innalate it by a silkent cord attached to a key, witli which the hempen atring terminated. No moner had a denme cloud, apparently charged with lightniog, rassed over the apot on which he atoox, than his atten. tion was arrented by the bristling up of some loowe fibrea on the hempen atring: he immediately preaented his knuckle to the key, and received on electric spark. Overcome with the ennotions which his discovery evinced, he heaved a deep sigh, as if he felt conscioun of having achieved immortal fame. The rains now foll in torrente and, wetting the atring, rendered it a conductor through out ita whole length; so that electric aparkn were now collected from it in great abundance. Tho discovery of Franklin soon engaged the attention of all the philowo phers of Europe, and the truth of the theory, that light ning and electricity are the same fluid, was put bryond all question.
The atuosphere is very generally in an electical stote Thin ia ancertained by employing a metallic rod, insulated at its lower end, elevated at some height above the ground, and commuaicating with an electroseope. In order to collect the eiectricity of the higher regions of the air, a kite may be raised, in the atring of which a slendel metallic wire ahould be interwoven. The atnoaphere in almost invariably found to be positively electrified; and ita eiectricity is stronger in the winter than in the summer, and during the day than in the night. From the time of sunrise, it incroases for two or three hours, and then decreases towards the midule of the day, being generally the weakent between noon and fur oclock As the sun declines, ita intensity is again augmented, till about the time of suiset, after which it dinsinishes, and pontinues feeble Juring the night.

In cloudy weather, the electrical ntate of the atmosphere in much more uncertain! and when there are meveral atrata of clouds, moving in difleront directions, it is aulject to great and rapid variationa, changing backwaria and forwards in the course of a very few minutea. On the first appearance of fog, rain, nnow, hail, or aleet, the electricity of the air is generally negative, and oflen highly no; but it afterwards endergoes frequent tansitions to opposite states. On the approach of a thander-storm
these altornat ona repd one another parke are sent ou ductor, and it bece nentes with it in item
The protection effecte of lightuin applification of the 1 for this purpome, pointed at the upp ect a fuw feet abo they are intended without interruptio below the foundatio b iron an the mate liable to deatructio alwo a greater cond whould be frem half the point should b be more effectually
An important co that ao interruption tup to bottom; and wgether by atripa o other conaiderable ing, so as to form for carrying the e ground. 'I'he lowe ried down into the tha leant a moist at
For the protecti of iron rond linked munt of their flexit bighirt point of the lower part should dile of the ship, by
One of the main ecquinition of that mind from mipervtit thoss phenomena wh nuly of electrical these reapects. We ning aro a nutural e the atmospliere, and currence of clouds that the metcoric balla, streamers, will simply electric phen alarm nhatsoever article Metronolo the varioun other apt on the principles of

Taya branch of the close of the la circumstance which rani, an Italian baxing been accille blade of a knife w - بpeimenting witl diately throw.. int D.u present when tI ritcumstance, he lo and extending his He found that ot! tnife answered th that they owed thi ructions to their th
tialvani proceed by means of metall cinsion, that the di
thrae alternations of the electrie condition of the air aucreed one another with remarkable rapidity. Etrong upurk are ment out in great abundance from the condiwtor, and it becomen dangerous to prosecute experimente with it in ite ingulated state.

The protection of building from the domtructive pifect of lightining, is the moat limportant practics] application of the theory of electrieity. The conductora, fof this purpose, should be formed of metallio rodm, pointed at the upper extremity, and placed so to profoct is fow feet above the highest purt of the building they are intended to wecure; they should be continued without interruption till they descend into the greund belaw the foundation of the house. Copper in prefuralile b iron an the material for their construction, being less liable to destruction by rust or by fusion, and posseasing shoo agreater conducting power. The size of the rods ohould be from half an inch to an inch in diametef, and the point should be gilt or made of platina, that it may be more effectually prep rved from corrosion.

An important cundition. in the protecting conductor in, that no Interruption should exist in its continuity from wp to bottom; and alvantage will result from connecting wgether by stripa of metal all the leaden water-pipen, of other conaideralile nasas's of metal in or about the buildiug, so as to form ene continuous syatein of conductors, for carrying the electricity by different channels to the ground. The lower eml of the conductor should be cartied down into the earth, till it reaches either water, or at the least a moist atratum.

For tho protection of shipe, chains, made of a series of iron rodul linked together, rire most convenient, on ace must of their tlexibility. They ahould extend from the bighent point of the inant sorne way into the sca, and the lower part should be removed to wome distance from the dide of the ship, by a wooden spar or outrigger.

One of the main advantagea of acientific atuly, is the seguisition of that degree of knowledge which liberates the mind from suricratition, and crplains the natural canses of thore phenomena which jill the ignorant reith alarms. The atudy of electrical science has beon of peculiar mervice in these reajects. We learn from it, that thunder and lightuing are a naturul electrical result of certain conditions in the atinosphere, and are no morn wonderful than the occurcence of clouds or rain. We learn from it, also, that the meteoric apprarances called falling-stars, fircballs, atreamers, willo'-the-wispm, silent lightning, \&e., are sinply electric phenomena, which need give no caune of darm whataoever. 'That anch is thig case, we refor to our article Mareonoloor, in which the anrora borealis, mid thevarious other appearances just mentioned, are explained on the principles of intelligible science.

GafVantsm.

Tris branch of electrical science took its origin, about the close of the last century, from a trivial accidental cireumstance which wecurred in the house of Signor Galrasi, an Italian philosopher. A recently killed frog, baving heen accilentally touched in the limb with the blade of a knife which was held by a person who wus -xperimenting with an electrical machine, was immediately throwr. into violent convulaiona. Gialvaris was nu present when this occurred, but lieing informed of the ricumstance. lie lost no time in repenting the experiment, and extending his ehservation upon the phenomenon. He found that other metalis besiden that composing a snife ansivered the purpose, and very jus y inferred that they owed this property of exciting muscular contractions to their being gookl conductors of electricity.
tialvani proceeded with his experiments upon animals by means of metallic substances, and arrived at the consnasion, that tho difkerent parts of an animal are in oppo-
nite atatee of olectricity, and that the efferet of the mefal In merely to restore the equilibriam flut this theory was proved to the erroneoua by Volta, a celebrated philomophet of Pavia, who, alont the year 1801, diweovered the Gubvanir of Voltaic pile. Ho wan led to it by meditating on the dnvalopment of electricity at the surface of continet at two different metala, Ite tried the effect of his compound platen of metal upon animala, and wan lid to infer that the electricity is derived, not froin tho fiving syutem, bat from the action excited hesween the metal and the humid naimal fibre; that the moninal matter actu merely se o medium conducting this electricity; and that the effecte profluced are to the ancribed to the stimulus of the electric fluid pansing along the nerves and threm, an in a shock from a Leeyilen Jar. Volta further discovered, that the metallic plates which he used, such an ailver and zinc, are excited, the former negatively, and the latter pasitively and alao that the galvanic energy could be greatly aug mented by employing several paira of plates, connecting them in such a manner that the electricity exeited by sach pair shoull toe diffuwed through the wholo: and this conatituted the voltale pile. From theas, and ncmercus other experiments, it became apparent that electicity could le produced from the action of twodifferent metale immerwed in a suitable monwtrum, and in aone manner connected with each other. On this elementary trutio tho ntructure of galvanic science wis reared.

In order to form a galvanie circle on the principle n : w mentioned sparatus of the mont simplo kind is sutfcient. For instance, If a amall alip of zinc be lide upon, and a piece of silver wnder, tio tonguo, we have two perfect conductors in the metals, with one imperfect one, the tongue, or the fluids whicis surround it; and by this apparatur, si:nple as it is galvanic artion is jroduced. In all action of this satum, and partic bady when powerfill acida are employed, the metals, as lutter of courme, are caten awoy or decomposed, sfret ripcipi ated in the liquid. The knowiedge of this fat has cxplained the cause of the gradual it inmurance of metnla, winn two of an opposito electric fan'ly were adjoining eat other Thus, in the shemtinis of dips, it in aecessary to we bolta of the same metal which forms the plate; for if twe different metals be employed, ene of them oxidates very speedily, in consequence of their forming, with the water of the ocean, a simple galvanic circle.

Compound galvanic circles, or galvanic batteries, are formed ly multiplying thone arrangements which cempose aimple circles. Thus, if plates of zine and of silver for of zine and copper), and picees of womllen eloth of the same size as the plates, and moistened with water, or, what is better, with dilutod acid, be piled upon each other in the order of aine, silver, cloth; zine, silver, cloth; and so on, for twenty or more repetitions, we have the voltaic pile. The power of auch a combination is sufficient to give a smart shook, as may be felt by grasping in the hands, previously moistened, the wires connecting the upitr d lower extremitics of the pile. The ahock rus : activily of the pile begins to abate, and finally ceasen sltogether, till the plates are chaned and new diluted acid idded.

After various improvements in the mode of eliciting galvanic action, the spparatus found to be beat adapted for experiments, is that of a trough or open bex of wood, well joined together ind secured from leakage by being lined with some kind of resimous material or pitch. Into a trough of this kind plates of zine and cupper are pur vertically, like so many cross divisions, the supports being grooves cut in the sidea; a wire is led from each extre mity of the row of plates, to act as conductors in any experiment to be jerformed. One wire represents the positive, and the other the negative pole of the electricity The liquid in the trough occupies tho cells between the plates. Figure 5 is a representution of a trough of thin
tind. The plates are usually about eight inchea long, by

Fig. 5.
five or aix inchea broad; and in all arrangements, whether one or tanny trougha are emplayed, cana muat be taken (1 place the plates in one unvarying order, the zine and copper aucceeding each otber alternately throughout the series. When several troughs are connec ed together, as is figare 6, the apparatus is calle in battiry. The cella

Fig. 6.
are anually charged with acids diluted with water to a cortain extent; muriatic acid bei; diluted with five parts, and sulphuric acid with fifty parts of water. By experiments, it has been ascertainel that increame of galvanic power is not in the ratio of an increasec size of plates, but in the ratio of an increased number. Several troughs of amall plates will thus have grenter power than one trough with a greater nuperficies of metal. It may be farther mentioned, that if a battery is to consiat of a certain number of square feet of platea, then, for producing calorific effects, or the ignition of metallic leaves and other combustibles, the plates ought to be large; for chemical effects, the aize ought to he small, and the plates numerous; end for physiological effects, that is, for operating on the animal system, they ought to be mado of an intermediate side.

The chemical changes effected by the electricity of galvanic action, are among the most remarkable phenomena in physical reience. We ahall instance a few of these facts, gathered from the best authorities. If a plate of zine, and another of copper, be inmersed is very dilute sulphuric acid, without touching or communicating with each other, the xine will be acted upon ly the acial; part of the water will be decomposed. its oxygen combining with the xine, and forming oxide of zinc, and its hydrogen will be disengaged in the form of gas from the surface of the zine plate. The copper is not neted upon. If the metals be brought into contact, the oxidation goes on with greater rapidity and energy, although without the evolution of the eame quantity of hydrogen gas from the oxidating aurface. But, from the whole flinid, hydrogen is disengaged in quantity exactly corresponding to that of the oxygen lierived from the water, and the greater portion of it risea in a copious atream of bubblen from the surface of the copper plate, which remains unacted upon ta before.

If, however, an acid, auch as nitric acid, caprable of acting upen the copper as well an upon the zinc, be employed! instead of the sulphuric seill, similar phenomena will take place, with this additional circumstance, that the action of the ecid opon the copper will cease the instant the galvanic circuit is completed; and instead of nitrous gas being formed on the surface of the copper, which sappens before the circuit is formed, only bubbles of pure ordrogen will make their appearance; and the copper in
protected from all further action, the zinc being, as m_{1} the former case, oxidated and dinsolved with additional energy It ia on thia principle that Sir Humphry Davy effected the protection of the copper sheathing of ahips from the cor rosion of sea-water, by placing in contact with it piecen of zinc or iron, on which sea-water exerts a greater che. mical action than on copper. Among the amplest effect of galvaniam upon fluid conductors, is the resolution of water into its two gaseous elements, oxygen and hydrogen. If the water employed he not perfoctly pure, other substances besidea the two componente of water make their appearance at the two wirea employed in the ox. periment. The apparent formation of these subatances greatly puzzled the carly experimentalists; but Sir Humphry Davy proved that, when the water is perfectly free from any foreign ingredient, only the two eimple gases of which it is composed are obtained. He also discovered, that, under the influence of voltsic electricity, neutral aalts exiating in any solution were decomposed, the acid portion being accumulated around the positive wire on the same points where oxygen was disengaged; while the basia, whether earthy, alkaline, or metallic, were st the anme moment transierred, along w 'h the hydrogen to the negative wire.

Phenomena of a atill more extr fdinary nature pro sentel themselves to Sir Humpliry Davy in the furthe prosecution of these inquiries. It was discovored that the elements of compound bodies were actually conveyed, by the influence of the electric current, through solutions of substances, on which, under other circumatances, they would have exerted an immediate and powerful cisemical action, without any such effect being produced. Acids, for example, may be transmitted from one cup, connected with the negative pole, to a nother on the opposite or positive side, through a portion of fluid in an intermediate cup, tinged with any of the vegetable-coloured infusions, which are inatantly reddenell by the presence of an acid, withont occasioning the alightest change of colour. The same happens also with alkalics. If three cups be arranged, and connocted with each other in a seviea by moistenel cotton, the middle cup, and also the one next to the positive aide of the battery, being filled with blue infusion of calbage or of litmus, and the cup next to the negative side containing a solution of sulphate of soda on the series being placed in the voltaic circuit, a fed tinge will soon be perceived in the water of the positiv: cup, which will hecome atrongly acid. It is evident tha the sulphuric acid so transferred must have passed througl the fluid in the middle vessel, but without affecting the coloured oolution in its pasange. By roversing the con. nections with the poles of the battery, a simils: transfet of the alkali will be made: it will be collected in the tinged water of the negative cup, which it will rendes green; but the intermediate prortion of fluid will ne, sither in this or in the former case, exhibit any trace of the subatance which ia carried through it by the influcnce of electricity. Coheaion, however, where powerful, as might have been expected, intercepts the transmission of the substanco. So powerful is this mysterious agent, that the minutest portions of a substance, acted upon by either of the wires, is collected around $i t$.
"An interesting clams of experimenta are due to Mr. Cromse, on the employment of electricity, in a state of bigh tension, to iorm mineral and other nuhstances. There is a envern near Broomfield, of which the vault is covered with arragonite, and carbonate of lime, and fine crystals. The water which drips from thin vault holla in solution ten grains of carbonate of lime, ald a little sulphate of the same to each pint. A glass filled with this water was submitted to the action of a battury con sisting of 200 pairs of plates, and at the expiration of ten daya the negaise pole was found to have formed rhomboilal eryetais of varbnnate of lime, sccompanied by some gas-bubbles, and is lesa than a munth after, the
wre was covered whence it follow int carbonate an water drop on a p $\$ 00$ five-inch plate nol which conduct lour or five month battery was covar the positive pole w gonite; and the a fuvailicic acid, regt reapects to quartz, in a dry place ac glasa; the othera h their transparency natere, he has suc galvanio battery, tl limo, arragonite, qu opper, and its bl of copper, carbonat Cyclopartia.
Why compound am decomposed, at around the positive of the battery, are satisfactorily solved theory that all boc give, which are inhe state of combinatio and acida, according tire; while inflam and metals, are na combinations of the galvanic influence, dectric state natural tristy that bodies it the axygen, being n be positive wire, wl being naturally po wire. In this way bodies at their partio if hydrogen is natu negative, according attract each other ; ciently elcuated to g o the power of ag combine; and, in li bicles are in differe united together. If exceads that of one 0 to act upon thuse, it Is place; and this 1 decomposition from
The agency of the ing decomposition, wires placed in cont of electricity more dates of the two i these two highly ele ing between thoso immediately drawn conatituont to the which is naturally 1
With respect to actian, it may be ob human booly from unting from la tharged. Tweuty to give a shork wl With a hundred pa sontinued flow of th panied ty a contin made apon sume o lorm part of the circ lol. 1-33
mire wat covered with regular and irregular crystals; whence it follows that the blcarbonate was decomposed int carbonate and carbonic acid gas. He also let the water drop on a piece of brick subjected to a current from 100 give-inch plates, the brick boing aupported by a funmel which conductod the water inte a vessel below; after lour or five monthe the brick near the negative pole of battery was covered with carbonste of lime, while near the positive pole were disposed priamatic crystals of arragonite; and the stame experiment being repested with fuouilicic acid, regular hexahodral pyramids, similar in all respects to quartz, were obtained; those which were left in a dry place acquired sufficient hardness to seratch glase; the others had not that power, and gradually lost, their transparency. In his varied experiments of this nature, ha has succeeded in forming, by mosns of the galvanic hattery, the following minerala:-carbonate of lime, arragonito, quarta, protoxide of copper, arseniate of copper, and its blue nid green carbonates, phosphate of copper, carbonate of lead, chalcodony, \&ic."-Pcuny Cyclopadia.

Why compounds, when placed in a galvanic circuit, an decomposod, and why their elements collect, some around the positive and others around the negative pole of the battery, are questions which have never been satisfactorily solved. Sir Humphry Davy auggested the theory that all bodics possess natural electrical energirs, which are inherent in them, whether they are in a state of combination or not. Oxygen, chlorine, iodine, and acids, according to tho theory, are naturally negative; while inflammnbles, as hydrogen, sulphur, \&ce., und metals, are naturally positive. Hence, when the combinations of these substances are subverted by the galcanic influence, the substances are evolved in the dectric state nntural to them; and as it is a law of elecricity that bodica in opposite states attract each other, the oxygen, being negative, is immediately attracted by the positivo wire, while the inflammable or metallic base, being naturally positive, is attracted by the negative wire. In this way, the uniform appearance of these bodies at their particular poles are accounted for. Thus, if hydrogen is naturally positive, and oxygen naturally aegative, according to the laws of clectricity, they must attract each other; and if these opposite atates are sufficeatly elevatod to give them an attractive force auperior ω the power of aggregation, they may be expected to combine; and, in like manner, other bodiea, whose particies are in different states, may from this cause be united together. If a body, also, whose electrical energy ucceds that of one of tho substances cembined, be brought wact upon these, it raay expel that ingredient, and tako It place; and this may be the cause of what is called decomposition from clective alfinity.
The agency of the galvanic apparatus, then, in producing decomposition, it is conceived, is this-that the two wires placed in contact with the compound are in states of electricity more intensely elevated than the natural astes of the two ingredients; hence the attraction of these two highly electrified points overcomes that subsisting between these ingredients : they are separated, and immediately drawn to the respective poles-the positivo conatituent to the negative wire, and the ingredient which is naturally negative to the positive wire.
With respect to the physiological effects of galvanic sction, it may be observed that the shock received by the human boly from thes voltaic pile is similar to that tesulting frow a large electrical battery very weakly tharged. 'I wenty pair of plates are generslly sufficient $t 0$ give a shock which is sometimes felt in the arms. With a hundred pairs, it extends to the shoulders. A sontinded flow of the current through the body is accompanied ty a contiuned aching pain. The impression made apon sume of the nerves of the face when they form part of the circuit, is accompanied by the senmation

Val. 1-33
of a vivid flash of light. When a picce of zinc and piece of copper are placed, the one above and the othe: below the tongue, which must be in a moist stato, peculiar taste is experienced. This is supposed to arise from the saliva of the mouth having been decomposed by the galvanic action, and not merely the effect of a direct impression of the electric current on the nerves. of the tonguc. When the current of voltaic electricity is made to pass along a nerve distributed to any of the musclen of voluntary motion, they are thrown into violent convulsive contractions. The ausceptibility of some animale is very great, and numerous curious experinents may be perforined with them. If an earth-worm be placed upon a crown piece which lies upon a plate of zinc of larger size, it will suffer no inconvenience as long as it remaina in contact with the silver only; but the moment it has stretched out its head, and touched the ziuc, so as to complete the galvanic circle, it auddenly recoila, as if it hal felt a severe shock. If the battery be pewerful, small nimals may be easily killed. Striking eflects are produced by galvanism in the musclea of an animal after death, as long an they retnin their contractility. The convulsions are so general, as often to impreas the spectator with a belief that the animal has been restored to the power of sensation, and that it is auffering the inost cruel torture. The eyes open and shut in their sockets spontancously, as if re-endned with vision; tho nostrila vibrate, as in the act of omelling; and the moveinents of mastication are imitated by the jaws. The experiments which are calculated to produce the greatent terror and astonishment are those inade upon the hodics of recently exccuted criminals; but for any account of these operations we cannot afford room in our limited pagea.
The effects of galvanism upon the functions of secretion are the most remarkable as well aa the most inexplicable. 'Thnt it acts especially, and in a peculiar manner, upon tho gastric juice, a fluid essentially aubservient to the process of digestion, there can be no doubt Perhaps the various functional parts of the body form a sort of galvanic battery, by which a regular ureatation of this subtile and mysterious fluid is kept up. On the supposition that auch is the case, galvanism has been applied with good effect in medicine, in the cure of nervous disorders. Tic doloureux, which is a chronic derangement in the nervous energy, has been aubjected to the influence of galvanic currents, and these, in particular cases, have completely removed the complaint. It is perhaps necessary, by way of precaution, to say that all such npplications ought only to be made under the special direction of a skilled medical practitioner.

Gslvanism has lately been applied to the protection of plants from worms and alugs, as appears from the follow. ing notice in a Liverpool newspaper:- C The protector censists of a conical ring of zine about four inches in neight, the top end flanked off nbout a quarter of an inch, and cut into nuncrous vandyked points; and immediately under is a ring of copper neatly fitted. The bottom of the zinc ring is pressed into the soil until the lower edge of the copper ring is an inch and a half above the surface, care being taken to enclose within the ring the stems of such plants as require them, otherwise the moliusen will find a road to them by the stems. The mollusea may crawl up the zine with impunity, but on coning in contact with the copper, will receive a galvanic shock and fal 's the ground. The npparatus acts in wet or dry wenther, and is alvays in operation. It nppearance is like a flower-pot, and it is cheap and durable. After a trial of twelve months by Mr. Cuthbert, the inventor, ho found that not a plant to which it was applied wns injured."

Electro'yping.-In 1839, the galvanic principle, in re lation to the deposition of metal from a metnllic solution, | was applied by Mr. Thomas Spencer of Liverpuol, te
the multiplying of plates of engraved copper, medals, sec. The nature of this most ingenious discovery, which was first brought into public notice at a mecting of the Liverpool Polytechnic Society, (Sept. 12, 1833,) will be best understood by doscribing the process which is now ordinarily pursued.

We take a trough or box, which may be represented by Fig. 7. This box is divided lengthwise by a thin partition P, composed of sycamore, that being a jorous and durablo material. \mathbf{C} is a copper plato auspended in one of the colli by a wire attached to an upper rod of metal R , traversing tho mouth part of the box. In the other cell is similarly placed a plato
 of ziuc, nearly the size of the copper. The zinc is similarly suspended by a wire from the traversing rod above. A wire passing over direct from the copper to the zinc, would answer the same purpose of communication, but the plan of an intervening rod with attaching serews is found to be more convenient. Into the cell containing the copper we put as much water as will about fourfifths fill it ; then into this we place crystals of sulphate of copper, which soon dissolvo and form a solution. Into the other cell, containing the piece of zinc, we place a similar quantity of water, into which pulverized sal ummouiac is put, so as to form a solution likewise. The preparatory process may now be suid to be complete; but, unless the copper has been previously prepared to receivo the deposition on ono part only, the deposition would take place nll over it. To guand against this, the copper, before being phaced in the trough, must have been coated on the baek and edges with a mixture of sealing-war dissolved in spirits of wine. This mixture or varnish may be of such a consistency as may be laid on widu a camel-hair pencil. The copper is not put into the trough till the varnish is lard. The wire of the oopjer must likewise be varnished; and it is dso neceseary explain, that the wire must be flattened at both extrem es-one extremity being soldered to the bark of the copper, and the other fastened beneath the serew to the rod. The wire for the zine is to he flattened at tho extremities, and attached in the same mamser. No varnishing is necessary on the zinc.
We have now deseribed all that requires to be done in the first instance; and the trongh may he put aside wallow the process time to operate. This operation will cousist of a galvanic current, coumencing with the action of the sal ammoniac upon the zine, proceeding up the wire, and thiough the rod to the copher plate; porosity in the dividing parition being also essentin! to tie surrent. As the action proceedn, it will be observed that an effervescence is going on in the zinc cell; and this indicates that the deposition of inctal from the sulphate of copper is taking effect on the plate. The bength of time occupied in purfecting the process will vary from four to six days; but during this interval it will be necessary to add freeh maturial, both of sulphate of copper and sal ammoniac. In viome boxes a small theif is put, to contain the sulphate of copper during its linsolution. The copper plate may be occasionally examined, to ascertain the extent of the deposition; and shen this deposition in as thick as a slitling, it may be separated froin the plate. We hase now procured a fac siunilo of the engraved copper plate in rrlicf-in point of fact, a substantial piece of copper formed from a solution. The copy in relief is of no value in the arts; and to be of ame it bamet te aubjected to a fresh process, in which
it receivea the cerosition. This second deposited cakt of metal is a fac nimile or duplicate of the original pluke; and by thus using the relicf plate egain and again, wo may obtain any number of engraved copper plates of the same subject that we may think proper. As engraved copper plates are soon worn out by printing, the value of the above sinplo and inexpensive means of creating duplicates is very evident. Such is the fidelity of thes process, that the slightest scratch on the original plate will be ahown on the duplicate copy.
Varioua other objects may be multiplied by thin kind of electrotyping, as it has boen nauned; for example, dien for seals, medala, plaster-casts, \&cc. Mr. Barclay, a seal. engraver in Gerrard Street, Soho, London, has carried the practice of electrotyping metal scal stamps to grent perfection. A small tract which he has published on Ule subject, furnishea tho following observa'ions on the method to he pursued. It will bo noticed that he mul. tiplics tho dies or seals from impressions taken in seal-ing-wax :-"The paper on which the impressiona are to be taken should be thick and sott, like that on which music is printed, dried over the light, and apread natthe wax slould not be put into the light, or allowed to flame; when on the paper, it must be kept flaid, while by stirring to the required size and gradually diminishing the hent, all bubbles are removed: when nearly cool, make the seal of the same temperature as the wax, or sufficiently warn as to be bearable on the back of the land. If the scal lee too hot, the impression will be blackish, and unequal on the surface; if mucls too het, the wax will adhere. A littlo dry vermilion, sparingly powdered over the seal with a canel's hair brush, will greatly assist in preventing ndhesion, and considerably improve the aypearance of the impression, without any apparent diminution of its sharpness; dry black-lead will answer also for this purposc. After powdering, strike the side of the senl simartly against the table, in order to abake of the loose ond coarse particles. The seal must be put down and taken up perpendicularly and without hesitation ; before the wax is cold a weight should be put round it on the paper to kecp it flat, by meaus of a small box, wine-glass or tunhber, according to the size of the impression. Tho facility of laking impressions, or ensta, in this or other non-eonducting sulstances, called tho attention of Mr. Murray, in January, 1840, to the best means of oltaining upon them cortecting surfaces, and to lim we aro indebted for the u co of plumbago, or black-lead, a dixcovery not the resuit of arcihent, but of judgment, and without which the electrotype would be deprived of half ite advantages
"In the npplication of hack-lead, inuch misconception has arisen as to the quantity requisite to insure a deposit. On scaling-wax, harely a tint is sulficient. On wexed plasur, nore is required; and it is liable to be washed off if disturbed in the solution lefore it is covered by the deposit; and this is slaso the case with fruit and vegctablen, with smooth skins. Having the jnr, poreun tule, and zinc, with copper wire sttachel, take a wax impression, mske the cul of the wire wnan, and prese it ngainst the side of the impression till it autheres fimly. Then take a soft tooth-brush, dip it into a little dry back-lead, and with it gently brush the way direction, until tho black-lenad is equally distratued. Scrape a small portion of the metal inserted inte the wax cloan; nud, on the point of a dnife, take a litle damp Hack-leal, with which make good the contact be tween the hack-lealed surface and the copper wire; varnish over the remainder of the wire, and those portions of the impression where a deposit is not required, except that part covered with the damp black-lead. place the whole in the apparatus as hefore the deponit will slortly commence on the damp Hack-lead, and subsequently spread over the whole surface not covered with varnisb. Weon the deporit law oltaiurd aufficient
tuicknens, hold the geutly heated, whe the metal. The d rapidly at the edg dickness as possibl in well varnished; extend over the var nut and washed in which deposit is no niished.
"Plaster casts (M next to seal impress rlectrotype from the melted white wax, effected:-Take a max, and hold it ove ef, drop in the pla the wax docs not ov by kecping it warm, and when it is ous surface, it must be boting-paper, to al will better effect by It must then be laid which time it may and black-lead, with ropper wire, use in alvt, having a bent I mih which to make murface, or the wire As in tho case of th and the parts of the llaving equally oiled male as follows :bitle water in a basi the plaster into it, p then stir it gently ; portion of the plaster much as will make medals can be teradi impressions; if the best sttained from pl or gilt, as hereafter if well with black-le brushing it. Variou bints; should the fir may be well washed process repeated. engraving take a wund the sides, car 10 bring it in cont then, with the wire bong enough to surt ratnish as before. dost, unless a firm in its vertical positi for, if it incline it a meatest distance fro, formed in ridges. be impossible to obt cepper accumulates ari the hollowe rem first deviation from erery kind of deposi plates. A similar r solution, or in a dec particles of copper, regular channel to rpace for a descent containing the met moodengravings ha process for obtaining perfect direet from copies frequently re
thickneme, hold the wax in warm water, till it becomea geutly heated, when it may be readily separated from he metal. Tho deposit will alwaya accumulate most rapidly at the edges; therefore, to insure as great a hickness as possible on the subject, the extremity should le well varnished; but if the action be violent, it will estend over the varnish; in that case it should be taker nut and washed in cold water, and that portion only on which deposit ia not wanted, wiped dry, and again varnisbed.
"Plaster casts (Mr. Barclay procceds to mention) are, next to seal impressions, most casy of attainment. To plectrotype from these, it is necessary to soak them in melted white wax, stearine, or tallow, which is thus best effected:-Take a hallow vessel, in which put a littlo rax, and hold it over the flame of a lanp; when meltad, drop in the plaster cast, face upwards, taking care the wax does not overflow the surface; in a short time, by keeping it warm, the wax will ascend in the plaster, and when it is observed to have equally pervaded the surface, it must be removed and placed on a piece of bloting-paper, to absorb the superfluous wax, which it will better effeet by being kept warm for a short period. It must then be laid by for twelve hours "at least, after which time it may be well brushed with a son brush and black-lead, without fear of injury. To attach the mopper wire, use melted bees-wax at the back of the east, having a bent portion of the wire near the surface, rith which to make the connection with the black-leaded surface, or the wire may be made to surround the cast. As in the case of the wax impression, varnish the wire sid the parts of the cast on which no deposit is required, llaving equally oiled the subject, a plaster east may be mule as follows:-Take fresh plaster, and having a litle water in a basin, drop from between your finger the plaster into it, pour off the superfluous water, and then stir it gently; take a hog-hair brush and brush a partion of the plaster well into the subject, then pour as much as will make the required thickness. Coins and medals can be scadily copied by means of sealing-wax impressions; if the relief the very prominent, they are best attained from plaster casts; a coin can be silvered, or gilt, as hereafter described, or bronzed, by brushing it well with black-lead, then making it hot, and again brushing it. Various degrees of heat will give different tints; should the first attempt not give satisfoction, it may be well washed with hot water and soap, and the process repeated. Having well hlack-leaded a woodengraving take a strip of tin-foil, and bind it close mund the sides, carefully pressing the edge all round, to bring it in contact with the black-leaded surface; then, with the wire nttached to the zine, which being long enough to surround the whole, bind it tight, and ratnish as before. Wood, from its buoyancy, will doak, unless a firm, stout wire be used to retain it in its vertical position, which is essentially requisite; 60 , if it incline t an angle, with the lower part at the greatest distance from the rine, the new deposit will be formed in ridges. After this has once occurred, it will be impossible to obtain an equal deposit: because the copper accumulates only on the most prominent parts, and the hollows remain proportionntely thin, as at the first deviation from an equal surface. This applies to erery kind of deposit, whether seals, medals, or copper plates. A similar result will also take place in a weak solution, or in a deep trongh, from the liquid losing its particles of copper, and becoming lighter, rising in a regular channel to the surface; the deep trough giving apace for a destent of the denser portion of the liquid containing the metal in solution. Theso copien from wool-engravings have an advautnge abovo the ordinary poress for obtaining duplicates for printiny, being made perfect direct from the wood, wherens the stereotype eopies frequently require re-touching ly the engraver,
arising from the friability of the plastal from which thet are cast."

Mr. Smee, whose researchea in electro-galvanimm are well known to the philosophical world, has suggested still more extraordinary kind of electrotyping, namely. the making a copperplate engraving without an engrave ing in the first instance. He deecribea it in a paper in the Philosophical Magazine, No. 105, from which we extract the following passage:-- First, draw the required subject upon a smooth copper plate, with any thick varnish or pigment insoluble in water, and then expose the plate in the usual way to the influence of the current, when first copper will bo thrown down upon the uncovered parts and will gradually grow over the drawing, and the electrotype, when removed, will be ready for printing. Very thick oil paint should he used, else sufficient depth will not be ohtained to hold the ink. As an additional advantago to its cheapness, this method does not require the artist to revorse the design. An opposite effect to this may be produced by placing a piece of copper similarly drawn upon at the oxygen end of the battery, when the metal will be acted upon, leaving a drawing in basso-relievo."

Electric Telegraphs.-Gslvanism, and its twin-principle electro-magnetism, have performed other wondere in application to the arts. One of the most intereating of their powers in this respect, is thai of transmitting telegraphic signals through wires to anj asaignable distance. 'lhe general principle on which such an operation is founded, is that of causing the galvanic current to deflect or turn a needle poised on a centre, and by certrin arrangements the needle is made to point to any letter on a dial-plate. The discovery of this kind of telegraphic action is by no means new. From a passage in Arthur Young's 'Travels in France, published in 1787, it appears to havo been at that period known, and to some extent practised, by a M. Lomond. But like many other remarkably ingenions devices, it was long in being heard of popularly after science had estalblished its capabilities. Even now, it is one of those practical improvements which, to a certain extent, remain under public suspicion. Twelve years ago, Dr. Ritchie made some attempts to complete the plan of an electric telegraph; Sir Humphry Davy and others also engaged in a similar undertaking. In 1837, the model of an apparatus for commonienting by galvanic action, was exhitited by Mr. Alexander lofore the Bociety of Arts in Edinburgh; and this, as far as we know, was the firat time the thing was brought in a tangible form before the public. Mr. Alexander's telegraph was in the form of a chest, containing thirty copper wires, answering to the twenty-aix letters of the alphabet, threo points, and an asterisk to denote the termination of a word. At one end, in connection with tho wires, were keys like those of a piano-forte, and underneath these were F ; 1air if plates, ainc and copper, forming a galvanic ircugh : at the other extremity of the wires wero thirty steel magnets, and, any one of these being affected by the elvecric agency produced by touching the key, it was turned to the right or left, and unveiled a particular letter. On removing tho finger from the key, the magnet sjrung back, and tho letter was screened from observation. Thus any letter conld be instantaneously expoed, or words spelled letter by letter, according to the will of the operator. As galvanism requires a complete circuit for its operation, it might be supposed that a duplication of the thirty wires would have been necessary, but by a happy arrangement of Mr. Alexander, with one return wire to serve for all, thie oncumbering of the apparatus was avoided.
Sinee this time, considerable inprovements have been effected on the mechanism of electric telegraphs, bv Professor Whentstone and Mr. Cook, one matetial ob ject having lreen the reduction of the number of wirem
which has bren effected with a aurprising degree of skill. A writer in Chambers's Edinburgh Journal, (July 25,1840 , , thu describes what he saw of the process on the occseion of a visit to the profaseor's class-room at King's College, London :-" The professor showed two varietice of the appraratus, ons being the latest invention, and the mont decply interesting from its simplicity. It may be briefly described as consiating of two amall galvanic troughe or batteries: four lengthe of copper wire; an object resembling a brass clock, with 2 small opening or dial on the surface sufficient to show a aingle letter at a time; close by thia case of mechanism atood an upright pivot of brass about three inchea high, having a circular top inacribed with the lettera of the alphabet all round, and from each letter a apike pointing outwards like the spokes from a capatan. The whole stood on a table, excepi the wires, which, being four milea In length, and warped in numerous convolutione through the vaulta of the college, were observablo only at their extremitice in conncetion with the apparatus.
"With respect to the principle of the process, it will euffice to state, that the clecinicity or galvanic property generated in tho batteries, was mate to proceed along the wires, and in ita passage to affect the mechanism in the case. In the construction of this mechanism, the ge-at merit of the invention consists. It is a beautiful combination of brass wheela, and other detaila, the object of which is to produce a desired letter or figure at the exterior opening or dial. 'l'o bring any particular letter into view, the capstan is turned hy the finger tili the metal point projecting from a similar letter upon it is mado to touch a corresponding point near the side of the case. Thus, there is a sympathy, as I mny call it, between the letters in the ense and the letters on the capstun. A touch of the point opposite \mathbf{L}, will bring L , into view on the dial, snd so on with any other letter. Nothing can be more perfect, or apparently simple. To appearance, the letters can be cxposed at the rate of two In every moment of time. A lady, turning the capstan with her finger, brought into view the word loondon, in the time it could be uttered letter by letter, althougiz the idea had to travel through four miles of wirc.
"In the transmission of the electric influence through the wires of this or any other apparatue, distance is of no consequence as respecta time, for electricity is supposed, with some degree of probability, to travel with the velncity of light, or $192,000 \mathrm{miles}$ in the space of a second. In point of fact, therefore, no longer timo would be orcuppied in transmitting intelligence to the uttermost ends of the earth, than would be required for sending it across a room or a table. Distance is a matter for consideration only aa regaris expenditure of galvanic force. 'The electric agency has a tendency to weaken in ita progress, according to circumstances, and thia must necessarily be provided for by increasing the number of batteries to the desired amount and rawer, It has been supposed that the difficulty of perfectly isolating and preserving the wires from injury in their course, would be an insuperable thar to their establishment on an effective footing; but fears need be no longer entertained on this acore. Ench of the four wires in the above apparatus is wrapped round with wellrosined thread, and the whole are then tied together with a cord, possessing a sim'Iar coating, so as to present the appearance of a tightly-homend rope. 'This it is proposed to place in a anall iron tube, like that used for bringing gas into houses, and the tubes united to any length, are laid below the ground, or in a woodeh case on the wurface, to preserve them from injury. Yet another d:ficulty here presents itself. What if the rope, or any particular wire, should be frnctured nomewhere in its carrae? How would the precise point of injury be dieco rerable? This the professor has likevise provided in, ns far as it pomibly can be. He proposes that
there shali be a Bignal-case at an interval 0 . even rea milea along the whole line, and therefore should ary injury be auatained by the wires, it will ba apeedily dia covered in what portion it has takon place, and a new and complete section of rope inserted in connection with the other pieces. T'o avoid a very remote chance of delay in the tranamisaion of intolligence from this canse, it wound be easy to lay two sets of wires, one of whict could be employed while the other was in course of be ing repaired.
"'The capabilitiea of the principle have been fully teated in a practical manner oll tho line of the Great Western Railway. In September, 1889, when the wire of the clectric tolograph were carried as far as West Drayton, a diatance of fifteen miles, the following account wa: given of it in one of the London papera:-
" The apace occupied by the case containing the inachinery (which simply atanda upon a table, and can be removed at pleasure to any part of the room) is little more than that required for a gentleman's hat-hox. The telegraph is worked by morely pressing small brass keys, (aimilar to those of a keyed bugle, which, aeting by means of galvanic power upon various hands placed ufion a dial plate at the other end of the telegruphic liae, as far as now opened, point not only to eack letter of the alphabet, (as ench key may be struck or pressed,) but the numorals are indicated by the aame means, as well as the various points, from a comma to a colon, with notes of interrogation and interjection. There ia likewise n cross $(+)$ upon the dial, which indicates that where this key ia struck, a mistake has leen committed in some part of the sentence telegraphed, and that an crasure is intended. To a queatior-auch, for instance, as the following: "How many passengers started from Drayton by the ten o'clock train?"-the answer could be tranamitted from the tenninus to Drayton and back in less than two minutes. This was proved on Saturdar. Thia mode of communication is only completed as far as West Drayton atation, which is about 131 sniles from Padlington. There are wires (as may be inagined) communicating with each end, thus far completed, passing through a hollow iron tule, not more than an inch and a half in diameter. which is fixed about six inches above the ground parallel with the railway, and about two or three feet diatant from it. It is ihe intention of the Great Western Railway Company to carry the tube along the line aa fast as the completion of the rails takes place, and ultimately throughout the whole distance to Bristol. The machinery, and the mode of working it, are so exceedingly simple, that a child who could rcad would, alter an hour or two's instruction, be enabled efficiently to transmit and receive information.'
"It being thus ascertained, lyy practical working, that the electric telegraph can jerform oll that its designers have proposed. it orly memains that it should be spreal in different directions over the country, or at the least laid in communication from London along the grest lines of thoroughf:re.
"The method of working the apparatus will be readily understood. At each extrenaity of the line of rope-far it would work beth way-there would be an office far recciving and comsuanicating intelligence, at a price conformable to the extent of the message. Being despatched from one end, the communication would be instantaneousiy received ot the other by an officiatung clerk, and forthwith made know: hy n note to the pary concerned. Thus intelligence of the rise and fall of atocks, foreign news, onlers for goods, or any othry npecies of communication of an urgent nature, anght with the uimort facility, and at a trifling cost, be trankmitted to any imaginable distance."

Still more lately the galvanic principle has been opplied to the regulation of clocks, with a view to preserva a unifurmity of motion in all the clocks in 8 town, or ia

- pablic office, to whi in which this ia ace axnibited at the Polyt

ELEE
Beroke noticing th ary to give a short propertiea of the mat in Magnesia, in Λ si which the remarkable ing other kinds of ir received the name of place in which it was terms mog'vet and ma has been discovered in kingdom of Naples, at rica. This magnetic quality for making atec rilly occurs eryatallize drons ; its attractive qu to the air. It has lik stoaes, which are coing astrong magnetic virtu earth.
Although the ancien tractive property of th mode as to discover th nicated to the iron whi Since this important magntis, composed of easily constructed; and rirtien of the loadatone metals are susceptible cobalt and nickel; but srail in the arts.
ladependently of attr ettraordinary property netic bar is poised at th in any direction, one er of the earth and anothe there are variations in of the glole, but with t netic needla, as it ia cal and another to the aout compass to navigation. what will be immediate doubting that the map tricity. When two ina the north pole of the o ather, and the same wit of apposito names attr mena are evidently ana positive snd negative el Artificial but permana nearly the form of a hor the twa poles are bro wher, and we connecter ties by a small piece of the keeper, which serve trength of the mingnet A magnet of this form Pig. B. M is the n with a ring R at the may le suepreuded. into which a hook is weight beneath, so a arength of the insognetic \ln 1819, Jrofessor 0 angen established a mg bation between magne niectricity, thus laying
s pablic office, to which wires may be led. The manner in which this is accomplished is nov (or was lately) axnibited at the Polytechnio Inetitution in London.

ELECUTRO-MAGNETISM.

Herone noticing this electric quality, it seems necesany to give a short explanation of magnetism, or tho properties of the inugnct. Anciently, there was found in Magnesia, in Λ sia, a certain kind of iron ore, in which the remarkable property was diseovered of attracting other kinds of iron or steel; this ore aftervards received the name of loadstone, but from Magnesia, the place in which it was originally found, v/e deriv, the terms mog'el and magnetism. Latterly, loadstone ore has been discovered in Siberia, Sweden, Piedmont, the kingdom of Naplea, and various places in North Amcrica. This magnetic iron ore, which is of an excellent quality for making steel, is of a dark colour, and gencrally occurs crystallized in the form of regular octahedrons; its attractive quality is strengthened by exposure to the sir. It has likewise been found that meteoric toges, which are composed of iron and nickel, possess a strong magnetic virtue resembling the loadstone of the earth.
Although the ancients were acquainted with the attractive property of the londstone, it was left for the made as to discover that the property conld be commupicated to the iron which the magnetic stone attracted. Since this important discovery was made, artificial magneif, composed of bars or slips of iron, have been easily constructed; and theso possess all the attractive rituea of the losdstono itself. Besides iron, a fow other metals are susceptible of being attracted, such as pure cobsil und nickel; but the power is weak and of no orail in the arts.
Independently of attracting iron, magnets possess the estraodinary property of polarity. When a small magnetic bar is poised at the centre, so as to be free to move in any direction, one end points towerls the north pole of the earth and another towards the south. It is true, there are variationa in tho direction at different parts of the glove, but with these slight exceptions, the magactic needle, as it is called, offers one point to the north and another to the south. Hence the application of the compass to navigation. (See the Article Ocean.) From what will be immediately mentioned, no roon is left for doubting that the magnetic virtue is referable to electrieity. When two inagnets are brought near together, the north pole of the ono repels the north pole of the ober, and the aame with the two south poles; but poles of opposite names attract each other. These phenomena are cvidently analogous to the demonstrations of poitive and negative electricity.
Artificial but permanent magnets are usually made in nearly the furm of a horse-shoe, by which the two poles are brought near each aher, and we connected ut the extremities by a sunall pieco of solt iron called he keeper, which serves to inerease the reagth of the magnet when not in use. A magnet of this form is represented in Pig. B. M is the magnet, furnished with o ring R at the top, by which it may be suspended. K is the keeper, inso which a hook is fixed supporting weights bencath, so an to exhibit the urngth of the insgnetic influence.
In 1819, P'rofeswor Oersted of Copenbigen established a most iuterestiug relation lretween magnetisin and voltuic viectricity, thas luying the foumbation of

Fig. 8.
electro-magnetism. He discovered that when a wire conducting electricity is placed parallel to a magnetic needle proporly suspended, the needle will deviato from its original or natural direction. This deviation follows a regue lar law.

1. If the needle is above the conducting wire, and the positlve electricity goes from right to left, the north end of the needle will be moved from the observer. 2. If the ncedle ia below the wire, and the poaitive electricity passes as before, the north end of the needle will be moved towards the observer. 3. If the needle is in tise aume horizontal plane with the wire, and is between the observer and the wire, the north end of it will be rlo. vated. 4. If the needle is similarly placed on the oppo site side, the north end of it will be depressed. In these two experiments the needlo must be very near the wire, From these simple facts, Mr. Oersted concludes that the magnetical action of the electrical current has a circular motion round the wire which conducts it.

The metallic wire to be made use of in this experiment, should be two or thrse feet in length, to allow of its being bent in various directions. It is called the conjunctive wire. Ampère and Davy discovered two very inpportant fsets soon after Ocrsted had made his experiments public -namoly that tho conjunctive wire itself becomes a mag. net, and that magnetic properties might be communicated to a steel needle, not previously possessing them, by placing it in the electric current; and the degree of mag. netic power thus communicated, Davy showed was always proportional to the quantity of electricity transmitted through it. When the conjunative wires of two distinet galvanic batteries are made to approach each other, they exhibit magnetic attractions and repulsions. Two wires of copper, silver, or any other metal, connecting the extremities of two galvanic troughs, being placed paralle! to each other, and suspended so as to move freely, immediately attract and repel euch other, according as the directions of the currents of electricity flowing through them are the same or different. Upon this experiment is founded the most plausible theory of magnetisin, namely, that it arises from the attractions and repulsions of currents of electricity, constantly circulating round every magnet. This is conceived to explain the reason why the magnetic needle places itself at right angles to a wire conducting clectririty, namely, that the current passing along the wire may coincide with that circulating round the magnet.

From these and other experiments, it seems clearly proved that electricity and magnetism are identical. A permonent magnet is supposed to be thes constituted:It is a mass of iron or stee!, round the axis of which electric curren's are constuntly circulating, and these currents attract all other clectric currents flowing in the same direction, and repel all others which are moving in an opposite direction. The eluctric currents flow round every magnet in the same direction in reference to its poles. For instance, if we place a magnet with its north pole pointing to t^{\prime}, a north, in the usual position of the magnetic needle, the conrent of electricity flowe round it from west to eust (that is, the direction in which the earth and other planets revolve round the sun), or, on the eastern side of the magnet, it is moving downwards, on the western side upwards, on the upper side from west to cast, and on the lower side from east to west. This is found to lee a uniform law. To complete the view of this dactrine, it remains only to explain the influence of the erth on the magnet, by whirh the needle is kept
 dian. It is conjectured that currens el electricity, anisise gous to those which circulato round every magnet, art constuntly flowing round the glole, as the cursent of electricity in a galvanie apparatus nuves in al wiroken circuit from the negutive to the positive pole, sum from it, by the conrecting wire, round again to the negstive

INFORMATION FOR THE \& EOPLE.

pole. The sirection of thene currents in inferred to be the aame an has been atated with regard to artificial mage nets; and it is simply hy the attractions and repulsions of theme t:rreatrial currenta, bringing the currents round the needie 'o coincide with them, that the latter always points to the north.

By tacans of a galvanic bettery, iton may be tempora. rily magnetized, that is, endued with an attractivo power, so long as the iron is in connection with the seat of power in the trough. When a metalic wire of grent length is collod ruend the iron, forming what ia called a helix, the magnetic power of the magyet is correspondingly increased. The wire requires to be previously coated with silk varnished, to prevent the electric current paasing from sarface to surface of the metal. A magnet of this kind is usuali.y formed in the chapes of a horse-shoe, as in the case of tho permanent ragnet already mentioned. When euspended so as to picik int the extremitica downward, and the galvaric communication is established, the mamnetic power is int once exerted, and a piece of iron held to the extrenities will instuntly lo attracted and adfiere. On brefling the communication with the treugh or hattery, the nagnetic virtue is deatroyed, and the puece of irch which was attracted drop*. Nectro-masueta save thus been mode of great power ; ohe baving benn firmed which would xustain a weight of $2(t 63$ pounds, or ns ntily a ton. There is, however, no assignable limits to the power of the apparatus.

Electromagaets, like those formed permanently, pes. Eres opposite poles, on. attracting and boother repelling. Freme tias pronerty the attempt has beca made to give futas:… 4 a wricel, so:misting of cross bars of iron; one pole we "encac: : loar arall another repelline $i t$, and thus, Sy a say abarint or an poles, riblime the wheel to tevalve. Inotherplow bas comstad in reiterated attrac-
 sterged; in c.tis a whan, the attration being destroyed, us islates in sut nor of the wheel, that bar is liberated and whe wed to go on, while the attraction is being exerted on the next bur.

Filertro-Mcgretic Machines.--The possilility of moving anall pieces of mechanisth hy electro-magnetic action, to a hich allasiou hes jus: been made, hat been known for \& number of years; hut as far as we have heard, tho priveiple was nut applied practically till 1837, when it Wea adapted ly Yrofesror Jacehi of St. Petersburg, to the propulsion of a spall vessel on the Neva. Under the atapices of an imperial commission, the fiast attempt was made on the 25 th of September, 1838. A gailey or boat, 28 feet in length and 74 in breadh, was provided with paddles similar to those of a stean-vessel, and the apparatus was pitt on board. Tle ection was proluced from 390 pains of plates, arranged along the aides of the boat, and room was left for twelve jeesons. Owing to inperfections in the arrangements, the atternpt to propel the vesmel with ita burden of apparatns and pasiengers was less succesgful thar was expected; neverthelems, the professor anceeded in making the boat procsed againat the stream, and the speed attained in still water was three Einglish niles per hour. In this end other efforts of Professor Jacobi, his plan consisted in rapidly reversing the poles during the action.

While Jacobi was husy with hie experiments in Juaseis, mechanicians in England and A merica were puraning a sinnilar course of investigation. I'ו Mirch, 15,37, Mr. Darenpart pahibitesl at New York an electro-naguetic machine of comiderable power; and noro lately great alvances in the art of electromugnetic motion were mate in Cormany by Stochrer of Iseipsic, and others, on the pancules of Jacohi ; and in some instanes with remartaable simeress. arding to the accounty given of thmir experimens, $i^{\text {t }}$ ate that the power of the electu ruaznetic us ${ }^{\text {s }}$ in inereased in propontion to th eouren of tha ...s.aser of the elrments of the batterit

We regret to any that this, like all other enal clamnas a tho subject, wants the confirmation of practical men; anc up till the jeriod we now write (December, 1841) nc trustworthy account han reached us, an respects either thit ratio of the magnetic power or the expense at which i can be oltained.

Machines conctructed on the principle of alternate attraction and repulation being liahe to several objections, those In which a reiterated series of attractiona are em. ployed are more likely to answer the end of praction! working. A mechine of this kind was contrived by M_{f}, R. Davidson, of Aberdeen, in 1839, and brought into notice by the following letter from Professor Forbes, of King's College in that city, to Professor Faraday (Oct. 7, 1839), winch wad pullisimd in the Londorb and Edinburgh Philasophticni Jours: al:-"Ifaving seen a notice from Mr. Jacohi eutte ty you to the Jondes fand Edinburgh Philosophicat Nagrat in. regardiag the wacre'se of his experisuents on; the fracution of a moving paract by electromagnetism, I am sure it will give yo , ware to know
 tl is place, his leen crunen:ly succeasful ir,. .4 labours in the same field of diacovery. Fer, in tho tlrst place, i.e has bin arrangen ent by which, with o:dy two electro magnots, val leas than one squaro foot of zinc surface (the negative mital being copper), a lathe is driven with ruch volority ne to 3 e copable of turning ; mall articirs. Sive.ondly, ho has another arange aent b; which, with the eatucatale extent of galrnnic power, a small carriage is drem, ofe which tivo peremos wew carved along a very comae wrodra foore of at, Ast he has a third ar. thincemend, not ve: conplete ${ }^{2}$ by which, from the imper. feet experiments he las maile, he expects to gain very consilerable ziore forco from the same extent of galvanic power than from either of the other two.
"The first two of these arrangeneats were seen in operation by Dr. Fleming, Professor of Nutural Philosophy in this University, ond myself, some daya ago; and there remains no douht on our minds, that Mr. Davidaon's arrungements will, when finished, be found availahle as a highly useful, efficient, and exceedingly simple moving jwiver. He has been husily employed for the last two yars in hia attempts to perfect his marhines, during all which time I have been acquainted with his progress, and can bear teatimony to the great ingenuity In has shown in overconing the numberless difticulties be has hat to encounter. So far as I know, he was the first who employed the electro-nagnetic power in producing motion by simply suapending the magnetism without a change of the poles. 'This he accomplished alout two ycars ago. Alrout the aame time, he also constructed galvanic batterica on Professor Daniell'a plan, by substituting a particular sort of canvas instead of guh, which substitution answers [erfectly, is vers durable, and can he made of any form or size. And, laatly, he ha: arcertained the kind of iron, and the mode of working it into the liest atate for producing the strongest maguets with reitainty.
"The firat two machines, seen ir operation by D_{r}, Fleming and myself, are exceedingly simple, without. indeed, the least complexity, and therefore casily manageable, ond not liable te derangement. They also take up wery little room. As yet, the extent of powir of wlich they are capable has not been at all ascertained, as the size of duttery employed is so tritling and the magnets an few; but from what can le judged by what is alreuty dene, it a mas to be protatile that a very great power, in no deses. - Y, sinferior to that of stema, but inuch more mas.: : sutrh less expensive, and occup; loss taitw tiuc coals be taken into account, may be nit ort, the inventione of Mr. Duvidan reem to be sting to railond proprictors in particular, that in
and be at the exp ary to bring thi wale, which, indes while it is very a rich, and who lass and money for th which he exprecte and to mankind. nu has male ro as nid explaised al wished it. His and I ahall deem trymen if he be al have an oppertuni tions and bringia mise to be produet
The following n wards appeared in November 6, 1841
"Mr. Davidson' by common couse manting to perfe Several thousand whom was Profess farourable to the Apsociation of Sc Professor Jacubi re nelism, which nee! in the science: lu machino proceeds which Jrcobi's e cohi proluces mot arts, Mr. Devidso given proints-the axds, from a neut la buth experime that the power of the diameter, and power may be al, the bars. On the magnet, the all vat not be made so fut uralizing the rage action, whicl. reta other the re tation that powe Ace Jucobi, ar alinost taiaed b- increas quastitr of wire of that power so reguly led to a fra In concluding methuds in which aary to menind $t]$ partments, is atil for the erterpris:
[WORKS ON

The following be mentioned as Pr. Priestley' - Rhent or t Sore the public. of the "Sricntif are accumuiated periments ; whi given for thel:
milyatinean m cal men, nic er, 1841) he cts either thi 0 at which i
of alternate ral ohjections, ions are cm . 1 of practical trived by Mr. br ought into or Forben, of raday (Oct. 7, on and Edin. n a natice from Id Edinhurgh t'se of his ex. wer ly electro-- ure to know aridsor, ol ${ }^{4}$ as laboure in first plare. lie y two electrof zinc surface is Inven with - mull noticles, 1, which, with mall carriage is 1 along a very lias a third apo rom the imper. os to gain rery out of galvanic
were seen" in atural Philosodays ago; and lat Mr. David. be lound asail. edingly simple ployed for the lis machines, ainted with his preat ingenuity less difficulties ow, he was the power in prothe magnetism - necomplished ne, he also conaniell's plan, by instead of gut, r d durable, and 1, lastly, he ha: e of working it ongest magnets
veration by Dr . imple, without. te casily manThey also take Jower ol'wl.ich ertained, as the the maguets on what is alreads great power, in but much mare cups ing greatl! unt, may be ob

Ison seem to by articular, that it \because the muljer
and be at the expense of making the experiments neces. any to hring thia power into operation on the great arale, which, indeed, would be very trifling to a company, while it ia very serioua for an individual by no means rich, and who has already expended so much of his time and money for the mero deaire of perfecting machines which the expected would be ao beneficial to his country and to mankind. For it deserves to be mentioned, that ne has made no seeret of hia operations, but has shown nid explained all that he has dona to avery one who wished it. His motives havo been quite disinterested, and I ahall deem it a reprouch to our country and countrymen if he be allowed to languish in obscurity, and not have an oppertunity aflorded him of perlecting hia invelltions and bringing them into operation, when they promise to be productivo of such incalculable advantages."
The following notice of Mr. Davidson's operations afterwards appenred in tho Aberdecn Constitutional newapuper, November 6, 1840 :-
"Mr. Davidson's invaluable invention ia now set down, by common consent, as the desideratum that has been wanting to perfoet the powe- of locomntive agency. Several thousande havo visited the exhibition, emong whom was Professor Mamel, whose opinion was decidedly favournble to the principle. At a meeting of tho British Association of Science, held at Glasgow the other week, Professor Jacobi read a paper on the power of electro-magnetism, which seemed to point to some great improvement in the science: but the principle on which Mr. Davidson's machine proceeds is altogether different from tlat on which Jacobi's experiments were made. Profeasor Jacoti produces motion by changing the polea of the magats, Mr. Davidsoar by cutting of the galvanic current at given prints-the power alternating, as tie rotation proaxds, from a neutralized magnet to n newly charged one. la both experiments, it has been clearly demonstrated that the power of the magnet is increased by increasing the diameter, and adding to the length of the helix. The power may be also increased by increasine. the sizes of the bars. On the principle of changing the joles of the magnet, the allvantages of this increase of power could not be mado so fully available as on the principle of neutralizing the magnets-there being in the one case a back action, whicl, retards the momentum power, while in the other the retation is constant, which tends to iucreasc that powe- Accorling to the proportions assigued by Jocobi, ar alinost indelinite amount of power may de obtained br- increasing the diameter of the rods, ond the quantitr of wire or helix; this, too, constitutes an index of that power so simple and practicable, that it may bo regalyted to a fraction."
In concluding the subject of Electricity, in the various methuds in which it is artificially dernonstrated, it is necess anry to remind tho reader that the science, in all its departments, is atill in its iniancy, and offers great scope for the erterprise of ingenious students.
[WORKS ON ELECTRICITY, GALVANISM, AND BLECTRO-MAGNETESM.

The following works on the subject of Electricity may mentioned as descrving the reade.'s notice.
Or. Priestlcy's "I Ito duction to the Stuily of Electricity," ; + cilent 'or the urim iated; but it is out of priat, and in fistes beinis inn, is wot likely to be brought again beSore the public. As a , ehsitute for this, the sixth volume of the "Scientific "Jiatwes may be fitly used, in which are accumbiatel all the common and mos inu.esting expeniments; which, being repeated, wi:: the directions given for thei performance, tho young electrician will
afterwarda find no difficulty is ha pursuit of electrical knowledgo in all its bronches.
"An Essoy on Elertricity," \&c., by Gecrge Adams, with improvements hy W. Jones, is a valuable compilation of all tho material and experiments in thia branch of science.
"A Complete Treatise on Electricity, in Theory and Prartice," in 3 vola., 8vo, by Tiberius Cavallo, ir a very proper work for those who ate denirous of an extensive knowledgo in every department of electricity. The firut volume treata of the lawn and theory of electricity, and contains a full detail of the practical branches of the science. In the second, the author describes a number of new experiments, enters rather at large on the suoject of medical electricity, which was in much more estimation twenty years ago than it ia at present, and treats of tho electricel properties of the torpedo, \&c. In the third volume will be found, among other interesting aubjects, a particular aceount of what was then deensed animal electricity, but now denominated galvanism.
"The History and Present State of Electricity," by Joscph Psiestley, I.L.D., F.R.S., \&ce, will always be a stock book, valuable as a work of reference, and highly interesting to thoso who would wish to trnce tho progress of the science to that advanced period in which it wan when tho author wrote.
"Principles of Elcotricity, containing divers neve Theorems and Experiments," \&e., by Charlea Viscount Mahon. This work was published on the occasion of the dispute which, more than thirty years ago, engagel the attention of clectricians, respecting the lest mode of gecuring buildings from the eftects of lightning.
"Practical Elcetricity aud Galvanism," by John Cuthbertson, Philosophical Instrument Maker, contains an extensive series of interesting experiments.
"Elements of Electricity and Electro-Chemistry," by Gen. Singer;" Miscrllancous Experiments and Fienarks on Eicrtricity," \&c., with a description of an electrometer on a new construction, hy A. Brook; and "New Experiments in Electricily," wherein tho causes of thunder and lightning are explained, \&e., also a description of a doubler of electricity, and the most sensiblo electrometer, \&e., by the Rev. A. Bennett, F.R.S., are excellent treatises, and may be consulted with pleasure and improvement by the atudent in electricity.

The most elegant and scientific, and at the same time elementary nccount of the phenomena of electricity, explained on the simple theory of Franklin, is that contained in the Supplement to the former edition of the Encycloperlia Brilannica, under the head Electricity, which was drawn up by the late Professor Robinson.

GaLVANISM.

Of tho writers on this branch of science there is but little to bo said: it is even yet too much in its infancy to have adaitted of a regular elementary treatise; but indepeudently of the third volume of Cavallo's Electricity, to which we have before referred, the atudent should be informed of the following works:
"Eaperinents on Animal Electricity, with thrir Application to I'hysiology," \&c., by Euschius Valli, M.D.
"Experinents and Observations Relative to the Infls onec lutely discorered by M. Galvani, commonly calied Animal Electricity," by R. Fowler.
"An Acrount of the Late Intprovements in Galvansm, reith a set of Curious Experintents," \&e., by John Aldın. These tracts contain many judicious, wei? sonducted, and lighly interesting experiments; but they e'ate wholly to Galvanism, and were all written prior to the discoverion since made liy means of Volta's batteries. Am Ed.j

METEOROLOGY-THE WEATHER.

Metcerolooy is the aciesco of the Weathev, and treats of the menomena which occur in the atmosphere, thus es snes and effects. Mert in all agea of mociety have been led, by motiven of necessity or comfort, to atudy the indications of the weather in the different appearances of the akiea.
The mariner, the shepherd, the huabandinan, and the bunter, havn the strongest motivea to examine cloeely overy varying appearance which may procede more inportant changes. Tho result of these observations forme a body of maxima, in which facts are often stated correctly, but mixed.with erroneous deductions and superstitious notions, such as the credulity of ignorant peoplo always renders them ready to adopt. Hence the diaposition to refer the ordinary elanges of the weather to the influence of the moon, and even the atars; and to look for signa of approaching convulsions, even in the moral worli, in horrid cometa and strungo metcors. The progress of seience, which tends to separate the easual precursord from the real causes of phenomena, sofutes these false reasoninga, dissipates the empty terrors to which they give riso, and aims, ly more patient, long-continued, and wide-extended observations, to deduce the general rules ly which the phenomona e? the atmosphere appear to be regulated.*

Meteorology, therefure, taken as a distinct bianch of knowledge, rests on no idle conjecturec or imaginary fearg but has its foundations in the ascertan eed trutha of physical science. The phenomena to which it refers are accounted for ly natural lawa disclosed to us in the study of chemistry, electricity, the atmospheric properties, optics, acoustica, heat, and other departments of physics. Of all hranches of learning, none, perhapm, is more serviceable in clearing the mind from superstiLion than that now before us; and, on that account alone, independently of all other considerations, we aro anxious that it should be extensively underatored among the classes whom we have the pleasure to addrees. That nothing may be len to douht, we commence by a recapitulation of the leading facts connected with the atmosphere, from preceding treutises, along with some new matter of information.

THF A'CMOSPHERE.

The atmosphere is an invisible aefiform fluid, which wraps the whole cart, round to an elevation of almut borty-five miles above the highest mountains. This great ocean of air, as ve may call it, is far from being of a uniform density throughout ita mass. At and near the level of the sea it is nost denee, in consequence of the prensure aluve. As wo ascend mountains, or in any other way penctrate upiwaids, the air becomes gradurily leas dense; and no thin is it at the heiglat of three miles, as, for instauce, on the summit of MontBlanc, ooe of the Alps, that breathing is there performed with some difficulty. Beyond this limited height, the density of the air continues to diminish; and at the oferation of alout forty-five milea it is helieved to terminate. So denme are the lower in proportion to the higher regions, that one-balf of the entire body of air
is below a height of three milen. the other half toding oxpanded into a volume of upwarls of forty milas
The extreme height of the atnosphere la not obmerv. able from the situation in which we are placed on the earth. Our eyo, on beiug cust upwards, perceives only a vast expanded vault, tinted with a deep but delicate blue colour ; and this in common language in called the heavens or the aky. 'The bluenoss so apparent io nur sense of sight is the action of the rays of light upon the thin fluid of the upper atmosphere, and the brightnens is in proportion to the ahsence of clouda and other watery vapours. In proportion na the spectator rivea from the surfuce of the earth, and has lcas air above him, and that very rarc, the blue tint gradually diap. pears; and if he coukd attain a height at which there is no ait, say fifty miles alove the level of the sea, the sky would appear dark or black. 'Travellers who have asconded to great heights on lofy mountains, deascribe the appearance of the sky from these clevated stations as dark or of a hlackiskl huc.
The atmosphere exerts a certain pressure en all oh jects, the degree of pressure heing of course in proportion to the height of the atmosplere at the spot. The part at which the pressure is greatest is at the level of the sea, for there the atmosphere is highest. The pressure at the level i_{a} ordinarily conputed to be about fifteen pounds on every square inch. At every step upward from the level of the ocean, the hurden of the sujerincumbent masa lightene, and at the height of three miles, one-half of the weight is lost.

The Darometer.-The pressure of fifteen pounda to the square inch at the lovel of the sea, is found hy ex. perienent to be equal to the weight of a column of metcury of thirty inches in height; and the fact of such being the case has surgested the construction of an isstrument to measure the atmospheric pressure at diffesent points and in various circumstances. I'his instru. ment is called the burometer, a corpound from (wo Greek words, signifying weight and measure.
The barometer in common use consista of a narrow glass tube upwards of thirty inches in length, anil bens upwards at its lower extremity, as repre aented in fig. 1 The mercury is introduced into the tube with great care, so that a perfect vicuum exists at the upper extromity. The surface of the mercury in the bent part is open to the action of the atmonphere, and broys up a small phuminet or float F, to wiich a thrend is attached; the thread proceeds upwards to a amall pulley 6 , over which it goes, and terminatea in a small ball \mathbf{W}. The fretion of the thread on the pulley turus a mmall index II, which points to figures on the surrounding dial. Commonly, the whele apparatus, except the dial-plate, is concealed In an oruarnental frame. Barom ters of this description are adjusted in such a manacr that the smallent rising or falling of the mercury from ennowpheric action, affects the index on the dial, and consequently whows the degree of pressure.
In compion circumstances, the mercury ranges froin tweuty-nine to thirty

Fig. 1. iuches. It sellolom ainks no low as twentyeight or rised to thirty-one. When it fulla, an indication is given of diminiahed pressure: and as diminished pressure caumas the air to exper, \cdot d consequently to be meneibly
unled, mointure is of rain. Hence a in considered a pro arise the reverse. accordingly.
The common ru the utate of the wen re in many cases on the situation in dituated near the ee will appear greater quently, nn genera very disesimilar. It wined on this subju mored that changea actual height of the One of the most ge ble ruies in, that w therefore the atmo dorme may be exp nerally be relied ul Generally the risin monch of fuir weat proach of frul wea of the mereury indi nise of the merenry atcen thaw, and its change of weather berometer may be Thus, if fiuir weat the mercury, there amo way, if foul ary, it will last bu ontinụe for nevera constantly fiells, a ln promality eusue : sul ml days, white the r ession of fair wen fuctuating and uns indicates chancrable would becouse a m nead of the words 1 list of the hirst esta companies it, whic plate or printed on his writer) to expr of probability whiel justified. There is will hold good."
The Thermometer capacity of rececivin : aps or any other proportionate to the cordingly varies in that the air is moro and this is a preculia difference of densit pound wright of a pound weight at a fond that each poun tity of heat; but in the air will feel w: wir will fell cool. a truth. A pound compret in suhsta mall bulk; hut th moopitere is thin, This exphains wh semingly colder til is as W. ${ }^{1 / 2} 1 \mathrm{t}$ off.n : horo will in hatua than from the nit
Vol. L. 1 :34
umled, molature ia liable to be precipitated in the form of rain. Hence a fall in the mereury of the barometer la censidered a prognostic of rain or wet weather, and - rise the reverse. I'he dial of the barometer ia marked accordingly.
Thie common rules, however, as to prognosticating the atate of the weather from the action of he barometer, are in many casea very illusory, because much depends on the situation in which the barometer is placel. If sduated nenr the aen's level, the pressure on the mercury will appear greater than it on a high ground, and, consequently, no general sealo can apply to conditions so rery dissiailar. In alluding to the vulgar errors entersined on this subjeet, Dr. Lardner remarks-" It is observed that changes of weather are indicated, not by the sctual height of the mereury, lint by its change of heizht. One of the most gencral, though not absolutely invariabio rules is, that where the mereury is very low, and therefore the atmosphere very light, high winds and torms may be expected. The following rules may geperally he relied upon, at leust to a certain extent:-1. Generally the rising of the mercury indicates the approach of fair weather ; the falling of it shows the npproach of foul wenther, 2. In sultry weather the fall of the mercury indientes coming thunder; in winter the nise of the mereury iadientes frost; in freat its fall indicaten thaw, and its rise indicates snew. 3. Whatever change ot weather suddenly follows, a change in the barometer may be expected to iast but a short time, Thue, if fi.ir weather follow immedintely the riso of the mercury, there will be very little of it; and in the: ame way, if foul weather follow the full of the anereury, it will last but a short time. 4. If fair weather coatinue for several days, during which the mercury constantly falls, a long cintinuance of foul weather will probalily eusue : and again, if fout weather last for sevenl days, while the nwreury continunlly rises, a long sucexsion of fair weather wiil probably succoed. 5. A fuctuating and unactiled state oi the mereurial column indicates changeable weather. The domestic barometer would berome a mulh more useful instrumont, if, innead of the words usually ningraved on the plate, a short list of the hest establishich rules, such as the above, accompanied it, which might the either engraved on the plate or printed on a card. It would be right (conclurit , this writer) to express the rules only with that degree of prebahitity which ohservation of past phenomena has justificd. There is no rule respecting these effects which will held gool."

The Thermometer. - The atmosphere possesses the eapacity of roceiving and containing heat from the sun's rafs or any other source of warmth, hut this capariiy is proportionate to the degree of density of the air and aecordingly varies in different situations. It is well known that the gir is more warm on low than en high grounds, and this is n preuliarity in its condition arising from the difference of density at the two places. If we take a pound woight of air near the sca's level, and another pound weight at a spot a mile above the sea, we shall ond that each pound contains precisely the same quantity of heat; but in the case of that taken near the sea, the air will feel warm, and in the case of the other, the ir will feel coot. This seems a contradietion, yet it is struth. A pound weight of air taken near the sea, is compact in sushstance, and goes into a comparatively mall bulk; hut that taken from a high part of the atnosphere is thin, and necupies a much larger space. This explains why the thin air on high grounds is seemingly colder than on low situations. Aloft, the nir is as w. ; n it is lelow, but the .e is less of it ; the partion aore widely asunder, an ${ }^{\frac{2}{3}}$ thia produces the ff:rys. Prop apeaking, the whlt inकl situa ions urises from the want of air, rather than from the air itself.

In the warmeat regiona of the globe, the eir ke ould at the tepa of high mountains, merri'y because the ait is there thin, and insujpalle of forming a mediun for the retention of the oun's raya. In every country there ia a point of altitude at whicb water freezes on all oceasions, whether aummer or winter. In Europe, this roint-called by some the snow line, or point of etemal anow-la from five to six theusand feet above the lovel of the sea; in the hot regions of Africa and America, it is fourteen thousand feet high. At these pointe of altitude reapectively, anow liea constantly uninolted on the mountain sides and summits. In the warm regions of Hindostan, the atmosphere is as cool and pleasant at a certain height on the Himalaya mountains as it is in the northern part of Europe. The plains of Mexico, under a burning sun, would not le endurablo by man, if they were not at such an elevation as to poasesa an atmosphere so thin as to be incapable of being heated to excens.

Although the heat of the atmosphere thus dependa en the denaity of the fluid, it ia proper to atate that it is likewise influenced by other circumstances. Certain hodies firve the power of heating the atmosplicre in a greater degree than would otherwise be the ense. For example, in valleys the heat is thrown off from the sides of adjacent hilla, from feresta of trecs, or other oljecte; and in these situations the nir is hotter than if there were no such radiation. If the spot be sheltered from the cooling effect of winds, there is ancther cause of increase to the temperature.

Tha derrees of heat and cold in the atmosphere are called its temperature; and fe: finding this correctly, with reference to a standard, an instrument has been invented, called the thermometer, a word signifying heat-measurer. It is n glass tube with a buib at the tottom, into which mercury or quicksilver in put, with a scale of figures aleng the tube to mark the rising of the quicksilver. This instrument differs from the barometer, inasmuch as the quicksilver is sealed up close from the air. 'The atmospheric heat, however, affecta the metallic fluid in the tulb, and, according to its warmth, causes it to expanu and rise in the t. The degree of temperature is indicated by the figures to which it aseends.

Our common thermometer (Fablewmit), of which a reprearnution is given in "as. nas a graduation from No. 1, near the bulb, to 212 , the tegree of heat of hoiling, water. In the scale of figures, " 2 is markod as the freezing-poiat-that is to say, when the mercury is at the hright. of 32, trater freezes; and the more it is be!ow that point, the more intense ia the frost : 55 is reckoned modcrate heat, and 76
 summer heat, in Great Pritain: 98 is the heat of the hlool in the average of living men.

Different nations adopt different graduatiens in. the scale of thermemeters, which is a fertile seurce of error and confusion in estimating and comparing the atatements of temperature mad. whific men in different conntries. Wherover the sitaitis language pruvails, the graduation of a pers n called Fahrenheit is generally preferred. By the Germans, Renumur's is used; and the French now adopt what they term a centigrade thernometer. In the French centigrade thermometer, 0 is the freczing-point, and 100 the beilinc-point; in Reaumur's thermometer, 0 is the freezing-pount, and 80 the boiling-peint. Ench degree of Reaumur is equal to two and onc-fourth of Falireaheit. It was at ono tims imagined that the greatest cold could make the fluid in the thermemeter fall only 32 degrecs below the freezingpoint. the place to which it then fell being zert, anu therefore the notation has heen commenced by Fitiren

Vuz. I.—34
heit at that olace. But much greater degroes of colld exist at different parts of our globe in whiter, and may be proluced artificially, so that the fluld in the atem of the thermometer often descends below that point, and ia then asid to be at so many degrees below zero.

Water, as ahove mentioned, boils at 212 ilegreen, hut this is only under the common pressure of the atinoaphere near the sea's level. By removing a portion of the presaure either bv aus air-pump or ly ascending a hoight, the vajore or boiling point will lin reached correspondingly sooner. On this account we might ascertain with tolerable accuracy the height of mountaina, by noticing at whet degree of heat by the thermometer water boiled. A writer in the Encyhloperlia Britanaida, has given the followinm it wuctions on this sub-ject:-
"Boil pure water : a an of n, "d at the lottom of the elevation, and nitine on the tharimoneter the point at which it boils. Boal it ugain at the top of the mountain, and observe with the thermometer the point at which it now boils; the difference of temperature, mulLiplied by 530 feet, will give a clowe approximation to the height of the upper above the lower atation. Thin will give an approximation; but if greater accupacy be required, it will further he necessary to correct f:difference of the temperature of the air nt the two stationa, in the following manner:-Add the temperatarea of the air at the mations, and subtract sixty-four from their wum; multiply the remairuler ly one-thounandth ymit of the height found. and this will be the correction L" "a alded to the height formerly found. The reanlt thea found will ktill require a slight correction for the fisure of the carth and latitude of the place; but this dies not amome to nore in our latitude than an addition of alout two feet in a thousand, which forme a scond correction.
"To illastrate the mole of deducing heights from the boiling-point. as we have given it, we take the following example :- Vhater boils on tho top of Ben Nevia at 203.8 degreen, whilo at the side of the Caledouian Canal it boils at 212 degrees, the temperaturo being 30 degrees on the summit of the mountain, and 35 degrees below. In order to determine the height,

4355, Irue measared theight-the ditference being lass than : fors.
"This method, however, is seldom susceptible of ao high a degree of accurary, even with the most carcfully conducted experiments."

The Hygrumicer.-Oue of the principal meteorolugical phenoment of the atmosplere is its capacity for receiving and holding moisture. Evaportion, io a lesser or gecater extent, is in constant exercise wer the wholo earth. The ocear, laker, rivers, fietlet ever yielding up water to the atmosphere, and ' and n imals are sles at all times giving forth crohations. The atmowndere in thus a great receptasle fur the moisture of the "arth, an! its capacity in this resport is increased hy an increase of tomprature. In a hat day, much more e7aporation in prombuced thun in one which is cold, bat it is not on that acrount more perceptille ly the sensea. The more warm and free the air, no in the nointure less strac vahble in itw mazs: and it in ouly when the atmo-
aphere minks to a certair. piteh of eckd, that we begin k *ee the sunpended moninture in the form ef miats and elouda. Thun, in a hot day, we do not see the breath lasuing from our month, it heing. conducted away in an ethereal state, hat in a cold damp day in winter, we mea It proceeding in puffo at every expiration.
The state of the atmospliere an reapecta itn mointneas In called ita hygrometric condation, from the hygrometer, an instrument for measuring the degree of dryneess on moistness of the air. There are various kinds of hys grometera, depending on the principle of the shrinkian and expanding of hodies in relation to the degree of humidity with which they are aflictect. F'ibrous vegetable sulnsances, such an ropes, contract by imbiling moishare, while, on tho contrary, haira and catgut (strings of vio lins), contract by drought. Hair has been found to be the most delicate in hygrometrical mution. The celebrated Sunsure, a Frenels philosopher, accomplished the conatruction of a hygroneter from a single long hair, previenaly cleaned in a soda ley. Virious phitonophical toya, as ornamenta for muntelpieces, have also been constructed to indicate the dryness or moistnesw of the atmosphere, all on the ainuilar principle of contraction and expmasion of a hair, piece of catgut, or part r the beard of the willd-oat. Wue of the most useful c.strimicits of thin clans is a suall olyjeet resembling a watch in external appearance, desigued to provo the dampness or dryness of heds: a movable laand on the dinl-plato pmints out very specolity the hysrometrical comulition of the led-clathes on which tho instrunent in laid.
Hygrometers of the kind juat mentioned, however ingenions, fail as instruments of acicuce or comparison, chiefly from the circumstance of their liahility to lose their contractilo and expanaive energy, as well as tho dilficulty of makiug many of thom jossessing silailar powera. To supply the re,puired instrument of compre rison, Profeasor Daniel contrived a very elegant hygro meter, which is now univeraally in use. It consista ct a glass tule, bent nearly in the form of Ω, supported on a stand, with a ball nt ench extremity, and containing only some ether. Wi:hin one of the depenting limb a thermoneter is pacc.: The instrmment opecutes on a litte ether being dropped on one of the halls ; "' apo. ration immediately takes place, hat is alsstract " "nd the lall containing the thermometer is so cooled, t . dew pereeptilily gathers on its surfice. The degree of temperature at which the dev is seen to colleet, mark the exoet hygrometric condition of the atmosplete The principle is precisely that on whicha luttle of eull liquor, on being brought into a warms apartment, colo lects dew on its surface. If no dew appents on a boule in surh circumatances, the atmoyphero of the room is certainly very dry.

clotps.

The capacity of the atmosphere for moiature, even in the most favourable circumstamere, is limited. The ait cannet he loaded with water, in any form, beyond a cer. tain print. Meteorologista mention, that if naturated with vapour even to its itmost extent, the whole would not form moce than from six to seven inches of rain; in other words, not more than six or seven inches of water can ho mainained in solution throughout the fortyfive niles of atmosphere alove, at any one time. The capacity for retaining moisture in greatest in the lower strata of the atmosphere, or where it is most dense and warm. At great tievations, auch an eight or ten miles. the sir is too thin to hold water in molution: ath in all ordianry circumstances, the vapours of the earth do not ascend above four or five miles from its surface at the sen's level. Above theer heighte, whatever he the sture of the weather bencuth, all iu clear and comparatively dry. In very many cases, clouds do not rearh the mo
derate height of iations in tempero - mile or a mile

Clouds, it will on temperature, a winde. In a wat procreds with gre to the cye, the n the air. If the thus uselnd neve leaving mo clond lore, appeara clea cold air may now the sccue - the douls consequen occurrenes will cun'e rays, and w wight, when elow numerous.
Clouils are com invisible vapour it they take stanpes ture and action o and other circumst changing, that as mair of one form rise, fleet nway to and vunish. Wh by their emming their cyanishing on by the current which they have persal and the ev be peen to advan of hilla torminatin the hill-tops are se dipitous derlivity, of a brecze in tha the precipice, thes the fill. Dr. Arn nomenon at Tal Hope ; and we ha nation of the rane The explanation clouid, on solling an athensphere of being diminishod When, on the con It enters a region ripitated as a shoy facts, the old sayit

When
Luke Howard them into four e formations arediverging in all 2. Cumulns, or ro - horizomtal has exteniled, connec beary lla:k clen divisions in this ura'us, \&e:
Dy the same weximed to three midste, and the 1 mav he allidel. in surll a state, tha and thin vapours - representation verinus forme of greatest heignt is the first indica
derate hoight of three milest, and the fold of their evolutions in temperate elinees is more frequently not alove a mille or a mile and a half high.
Clouds, it will be perreived, ave in reality dependent on temperature, and teriperature is ofen tependent on winda. In a warm and dry nummer day, evaporation proceeds with great activity, and, in a manalea invisilile to the eye, the moisture rines to the higher -agions of the sir. If the sun be powerful, the monature may thus ascemil neveral milea, and be diapersed like a gaa, leaving no choud to intivate life existence. All, therelore, appears clear, serene and twesutifisl. Currents of cold air may now ho aupposed to intrude themselves on the srene-the gas-like vapour is condensed-and donds consequently make their appearance. A mimilar occurrence will take place by the weakening of the mun'a rays, and withlrawal of hent at the approach of night, when cloudm as is well known, are alway" mont numerous.
Cloudy are commonly formed by the ascending of the Inviaible vapour ints the coll regiona of the air, where they take abaper conformatile to the degree of temperature and nction of varying currenta. These currenta and other circuinstuncer affeeting them are so constantly hanging, that meldom for a singlo minute do they remair of one form, hut shif linto all aorta of posturen, tise, fleet away to a distanee, congregate, sink, disperne, and vanish. While the aggregntion of clouda ia caused by their coming in contact with cold currents of air, their evmishling is attributable to their being acted on by the currenta or atrata of air warmer than those in whieh they havo previounly heen sustained. The diaspersal and the evanishment of clouds may occasionally to seen to ndvantage in the neighlourhood of ranges of hills terminating abruptly. The clouda reating on the hill-tops are seen to begin to move towards the preapitous declivity, in consequence of the apringing up of a breeze in that direction; and when they arrive at the precipice, they seem to tumble over and vanish in the fall. Dr. Arnott speake of the beranty of this phenomenon at Table Mountain, at the Cape of Good Hope; nul we have observed it oecurring at the termination of the range of Pentland Hills near Edinhurgh. The explatation of the phenomenon is simple: the cloud, (in rolling from the summit of the lith, falls into an atmosuhure of a higher temperature, and its particlea being diminishled into the gaseous form, diapppear. When, on the contrnry, a cloud is seen to ascend a hill, It enters a region of cold, and bring condensed, it is presipilated as a slower of rain. F'rom these of-observed facts, the old waying has been derived-

- When the clonis go up thr hill,
"They"ll send dosen water to turn a mill."
Luke Howard, in hia Fssay on clouds, distributes them into four essentially ditferent formations. These formations are-1. Cirrua, consisting of threaly fibres diverging in all directions, or curled up at one end; 2. Cumulur, or roundish linnk of cloud, inereasing from a horizontal base upwards: 3. Strutur, layera vastly axteuled, conuceted, and horizontal: 4. Nimbus, the heary las:k clowd dismolving in rain. There are subdivisions in this classification, as cirro-cumulus, cirroutra/w, de.
By the same meteorologist, the clouls are generally waigned to thre atmospherical regioun-the upper, the midile, an! the lower ono, to which a fourth, the lovest, mav be adidel. In the upper region, the atmospliere is in such a state, that it can receive and sustinin only lisht end thin vapoures and to this district belongs the cirrus, a reperecutation of which is given in fige 3. Of all the various forms of elcud it lass the least density, luat the greatest heignt and variety of shape and direction. It in lle first indication of serene and wetted weather, and

Art ahows liself in a fow abros, apreading th.rough tha

Figs 3.-Tlie Cirrus.

atmoaphere. These fibrea by degrees incrense in length, and new fibrea attach themselves to the sidea. The durntion of the cirria is uncertain-from a flow minuten to several hours. It lants longer, if it appeara alone and at a great height; a ahecter time, if it forms in the neiglithourhood of other clouda. From its usually curbing apprearance, the cirrua in called in England the mare's tail cloud.

The cumulus ia a cloud of a much more maseive character. It in vapour in the moat compact form, and usually moven with the stream of air nearest to the earth. This region can receive much humidity, hut not in perfect golation. The humidity becomea collected, and shown itself in massea riaing conically and resting on a region of air capable of giving it aupport. The annexed engraving, fig. 4, reprevents the more usual forma of cu-

Fig. 4.-Variona forms of Cumulus.
nulus, whether in aeparate or congregated naasea. The appearnnce, increase, and ovanishing of cumulus, in the weather, are ofen periodical, and correspondent to the degree of heat. Generally, it forms a fow hours after sunrise, attaina its ligheat degree in the hottest hours of the afternoon, and decreasea and vanishea at sunset. Great masses of cumulua, during high winds, in the quarter of the henvens towards which the wind blows, indicnte approaching calm and rain. If the cumulus does not disappear, but rises, a thunder-storm in to be expected during the night. If the upper region, with its drying power, predominates, the upper parts of the cumulus become cirrua. But if the lower region predominates (into which the densest vapours are attracted and dissolved into drops), the basia of the cumulus sinks, and the cloud becomea stratus, which is of moderate density, and its lower surface resta gencrally upon the earth or the water.

The cirrocumulus, of which a representation is given in fig. 5 , consists of a collection of amall white clouds,

Fig. 5.-Cirro Cumulus.
of a roundish form, which give to the sky the eappeatunce called dappled, and are in summer considered a prognostic of setted weather, or at lenst of an increase of temprrature. Occasionally the cirro-cumulus may In observed to change into another varicty of cloudsthe cirro-stratus.
'Ihe cirro-sfatur, which we represent in its common forms in fig. G, exists in a high region of the ain, and u
nten the cirrus in an atteral shape. It in generaliy in the form of long horixontal etreuke, whichs are over ahining thuir Águre and position. Aonetimes it las a long row of

Fig. 8.-Varinus forms of Citro-ariaus.
alanting atreaka, and at other timee an apparently drawn out and traumlucent cumulus. In the latter forin, when thone upont, at the close of day, it is not unilike a long feathery atreak of fire.
The utrutus is the proper evening cloud, and in in reality the vapour which creepa along the ground or mounta into the loweut region of the air at aunmet, anter a fina aummer day. All mimes and foga are of this apecies of cloud, which in its lighteet atate does not wet leaves or any objects with which it comes in contact. In calin eveninge, the stratur may be wen ancending from the velloys to the higher grounder, and there, as ahown in fig.

Fig. \%.-The Sirntua.

7, it extends itelf in mames like a Reecy mantle. It grnerally arrives at its pint of greatent density about midnight, or between that time and daylight, and disnipeara at munrive by the gradual elevation of temperature in the atmosphere. Sonetimes it remains quiel and accunuulates in layers, till the atmosphere incapalle of sustaining its weight, when it assumes the condition of the henvy and dart nimbus, and falls in a shower of rain. We have placed a representation of the nimbus, yielding its tribute of ring, as a froutinpiece to the present article.

The various circumstances which concur to precipitate moisture in the atmosplere into the visible form of clouds, are nummed up an followa hy an intelligent metcorologist, Mr. Graham Hutchinson, in his Treatise on Mettorological Phenomena (Glasgow, 1835): -1 . "When a diminution of the atmospheric temperature, unaccompanied by atmospheric rarefiction or tranaportation, takee place. 2. When a diminution of the ntmospheric temperature, arising from atmostheric rarefaction, takes pluce. 3. When - diminution of the atmonpheric temperature, arixing from the tranuportation of air froin a warm to a cold clinate by the agency of winds, takes place. 4. When an intermixture, and consequent reduction to a monn temperature, of diffierent portions of air, of previoualy different temperatures, takes place. If any one, or any combination of thsee circumstances happens to occur, when the atmosphere is previously saturated with humidity ; or supposing the atmosphere previously aomewhat undereaturated, if they take place to such an extent an to pruluce over-saturation, a precipitation of moisture, into the visible form of cloud or mist, is the necessary conscquence"

Clouds of the cumulus form are frequently seen to rest or hover over the topm of mountains, and it has therefore been aupposed that hills attract clouds. Undoubtedly, from electric caumen, clouds are occasionally uttracted by mountain-tops, where they discharge their contents in a thunder-storm; but, in common circumetancer, attraction not the cause of cumulua on hille. The ordinary caume
ie n low temperature of the stmouphere at theme atititurten - Eemperature lower than that of the region of air at the aame height away from the hilis. The novie of clous formation on meuntain ranges coems to lve thiat the warmer air of the vallisya oc of the mee loaded with insviaible particles of moistur', in l!owa in the direction of tha hilla, and beiug comralicy to amend, the particlen bo come viditle when the!, 1ain tha sumait. But the wind doen not rest there : "o poiticlen are hlown away beyond, and perhapa vanish in a warmer region of nir but new particlem are constantly comhig up to supply their place; and thuan a shifing appearanese in given is the maseea of cloudn which we oluerve hovering on the tope of the hilla. "Mountain of themelven," oliserves Mr. Hutchinmon, "that in to say, without wind, cun form no clouds : mond winds of themenvives, that in to may, with. out the aid of atmospheric rarefaction which aceompanien thoir exaltation while possing over mountuins, are, in thin reapect, equally inellicient. In short, mowntaina in all elimates may be regarded an pamive instrumenta in the formation of elouila only during windy weather. And whenever their height is such that the temprature of the lower atmoopheric atrata, while surmounting them m_{1} beromea so much reduced na to cause over-waturation, the formation of clouls must take place. Hence, the higher the mountaina, the more certain they are, during windy weather, to cause the formation of clonits; and the nenrer the hygrometric comdition of the aetrial strata before beginuing to amecnd the mountain, ia to the point of saturation, the lens height will suthice for that purpowe. Accidental coldnems on the topm of mountaina, beyond what reaults from their height, sometimes addr to their efficacy in cauning the formation of cloude Suels mny be occasioned by enow-falla during the cold seanon remaining unmelted, or only purtially melted (u frequevtly happens on the notheni exposure of mountains in the worthern hemiaphere), till long uther the returning heat of apring nod summer has rendered tho fulling of snow, at corresponding altituden, extremely improbable."
Maze-Mist-Fog.-Mistn or fogs, as has heen notired nbove, are a variety of cloudm, and are meientifically deacribed by the termatratus. A haze in that appeciea of vapour in which the watery particlea are only partially or imperfectly condensed, so as to produce an indefinite obscuration, which generally nay be observed in the evening, when the temperature of the air lecoturs diminimhed by tho decline of the mun towarda the horizon. When viewed from a distance, the surfice of the carth alway appeary enveloped in a haze of greater or leseet density ; and although, when auiling on an open expanse of ocean, the ntmosphere may appear very clear, yct, on being viewed from a high mountain, the water will appear olscured by a haze, which will be found to extend many feet above ita narfacc. When the watary vapour in the surrounding air beconea more condensid, with a defined outline in the form of a cloud, either resting on the surfice of the earth or a few feet above it, then it is termed a mint; and when the whole atmosphere nround appears equally obscured, then we give it the name of a fog, which, however, in not to be confounded with that moist end olmecured state of the air which otten accompanies our custerly sud westerly winds.

Mists, an well an foge, consist of thin vericles of water containing air. How theme vesicles are formod, is not well understoxnl; but the general opinion is, that ninite and fogn arime from air of unequal temperatures, halding moisture its solution, mingling together. Accordingly, the mixture of the cevening mea-brecze with the air alove the lnad, often produces dense miats; for the air a!ove the sea is warmer tha. that ahove the land, and when they intermix, a conu neation of nquecun vapour into mist or fog takes place. Beside: this, tho contraction of the air, from its becoming colder after
canmil, often proaucen wices fuating in it. no donilt that a certa couporatem, from the e wh have leen within and thin, having beco the ground, in like ma the night, therefore, it -thus generally rent erved hanging in gau the sumninita of hillo a in noticing is spprea fol panate :-
"Night wanes: the
Meli hion morn, and
Foga are often, eap denme ; indeed, so mu denta from their inter frequently happena in and arieca from amo anced in the thick fog may be observed, that deceends towards the often met through flues firc. Fogn meldom ri Dr. Darwin, in giving opread a truct of grou to ride, atates, that on quite alove itu level, 1 on taick onat he con torme't hend. In the dense, owing, doubtie kemperatury of the ai uacts of ief extendin and that of the air wh of thas menn. It in on the whalera and navis wencoarerer.
Colour of the Clour pure watery particlen colour of nay foreign liar action of the rays mass, thry frequently luriy red and orange, sun and moon likew rapoury medium, assi would ascrithe thene mut, in truth, all is bility of the rays of posed in shb:aing thro thine an if coming t article Oprics , as hat rayn of which the whi degree of refrangibili rariety of colours exi wise-had the object David Ilrewster, "he the particles of which frangibility, and were on which thry fall, a leaden hue, and all jects, and all the fen would have exhibit which thry possena it ing. But he who ha the organization of , tate in the lorms u mperadded that eth mure permanent qui the ever-varying colo
In cold climates t rouy tinge, even in fi

- Life of
anmet, ofters procusces a conclenantion f the watery paruded foating in it. In addition to winien, there can be no doubt that a certain quantly of vapour rimes up, or waporates, froin the earth itself, which we may suppome to have lieen within a short perial moistened by rifn, and thia, having become elevatod to mome diatance above the ground, in like manner hecomee condensed. During the night, therefore, the alr above the nurface of the earth \checkmark thus genepally rendered hazy, and light mist are oberved hangiug in gauxy foldsalong the aides and around the auminite of hilla and mountalina; hence Lord Byron, in noticing is spproach of morning, gives us this beautiAl panage :-
"Night wanna; the vapoupa round the mouningen earld
Mell inio moro, and lighi awakes the world."
Foga are often, expecially in large townm, remarkably denme; indeed, so much mos to oecasion scrious accidente from their interference with distiact vision. This frequently happena in Ioondon, and in other large citiea, and arisea from mmoke, vapoure, dust, \&ce., being ntag. nated in the thick fog. On certalu calm winter days it may be ohmerved, that the smoke, on leaving the chimneys, descends towards the ground, and downward currents often ont through flues at the bottom of which there is no fire. Fogn meldow rive high in the atmosphere; hence Dr. Darwin, in giving an account of one which overupread it trict of ground thron, if which he had ocenaion to ride, atates, that on every rising of the ground he wan quite alvove its lovel, though in descending again it was to thick innt he could ncarcely mee a yard boyond his boseo's hrad. In the northern regiona, fogs are extremoly deare, owing, doubtlens, to the difference between the temperature of the air which sweepm over the immene tracts of ice extunding through those desolate regions, and that of the air which panses over the warmer surfare of tis menn. It in one of the greateat annoyancea which the whalers and navigators in those dangerous seas have wencoacter.

Colour of the Clouds, \& co-Cloudn being composed of pure watery particles, cannot intrinaically poesess the colour of nuy foreign hoily; nevertheleas, by the peculiar action of the rays of light on ditterent parts of their mass, they frequently ansume a variety of tinta, particulaty red and orange, at and shortly after sunact. The sun aud noon likewise, when shining through a dense vapoury medium, assume a deep red tinge. Superstition would ancrile thene phenomena to supernatural caumen: but, in truth, all in hut a minple ellect of the relirangibility of the rays of light. The white rays are decompooed in shising through the glolulex of vapour, and they ahine as if coming from a prismatic spectrum. In our article Oprics, as has been explained, each of the seven raye of which the white light is componed, ha a different degree of refrangibility, and it is on this aecount that n rancty of colours exint in nature. "Had it been other-whe-had the objects of the material world," gayn Sir David Brewster, "heen illuminated with white light, all the particles of which possessed the name degree of refrangibility, and were equally acted upon by the bodiea on which they fall, all natury would have shone with a laden huse, and all the cotabinations of external olo jects, and all the featurea of the human commenance, would have exhibited no other variety than that which they possess in a pencil-aketch or china-ink drawing. But he who bas exhibited anch matebless akill in the arganization of material boalies, and such exquisite taste in the forms upon which they are molelled, has aperadided that ethereal besuty which enhances their more permanent qualities, and presented them to us in the evep-varying colours of the ajpectrum."*
In cold climatea the aky has genorally a dull blus or rray tinge, even in fine weather, a eircumatance arining

[^22]from the prevalence of moisture in the alr, which forna a kind of gause, through which our eye in unable to penco trate. In more warm and genial clines, wuch au that of Italy, the colour of the nky in a bright blue, and in hot weather allightly purplinh. Thin frilliance arisen from the comparutive ahmence of vapoury partieles; yet that vapour does exiat in the cirareat azure aky in indiaputshle, for it in by refraction of light that the celour appearme If mointure were entirely abwent, there would be no refrangilility, wed consequently no blue colour. 'Ihe nky, an formerly mentioned, would be black. The reason nasigned for the prevalence of a blue colour in the aky is, that the blue rays are refected more copiounly than any of the others.

DEW.
Dow in a reault of an alteration of comperature after sunset. No sooner does the sun hegin to decline towards the horizon, than its raya fall more alantingly on the earth, whereby their intensity is diminished, and a change of temperature inmediately ensues; for the air moon feela chilly and damp, and the grass beneeth our footstepa lecomes moistened with a genial and ro freshing dew.

It has been eloewhere explained, that all bodiea receive a certain quantity of heal, which in particular circumstances they again emit $;$ in doing which they necemarily become eolder than they previously were, unlean they recrive in exchange nnother quantity of heat nullicient to compensate for the lons they have suatained. In this ease. their temperature will remain stationary; but if they part with more than returns to them, their temperatura necesmarily must fall. When, then, the object so cooled is encompased by a warm and moist medium, it condenses, hy ita cold contact, vapour on ita surface, and thereby lecomes moistened. Hence tho oligin of dew; for no sooner doca the sun sink towarda the horizon, than the bladea of grase which clothe the surfice of the carth give out the heat which they have been receiving during the day; the consequence of which is, that their temperature falls mo much below that of tho aurrounding air, thint they condenme on their surfaces part of the mointure which immediately surrounda then. The temperuture of the body, an indicated by the thermometer, at which this deposition takes pluce, ia called the "dew point," which, for the formation of dew, must always le below the temperature of the aurrounding atmosphere; indeed, the quantity of dew formed will always be in proportion to the of the grass und to the quantity of moisture suss, the air. Besides this, affer the sun has aet, $t \mathrm{ll} \mathrm{m}$ which the earth has imbibed during the day, still rests below the grassy surfuce, rises ur or a -in doing which, it rises up through
blades of grass, the cold contact of wi
densea it. Dew, therefore, on calm a. it e
more abundant shortly after rain than duin
sen of dry weather. During westerly or south. which are generally impregnated with moisture, it o a formed more copiously than during eosterly and noriterly winds. Besides the quantity of moisture exis ing in the air, the greater or lesser copiousness of the stew formed, depends, as wo have premised, on the coldness of the oljeets on which it is about to be condensed. If the night be caln and clear, the grassy hades emit their heat freely, and it is dispersed through the ntmosphero without any equivalent roturn, whereby the temperature of the grase soon sinks sufficiently low to conderse tho surrounding vapour; but if, instead of this, the night is cloudy, then the clouda reflect, like mirrors, tho rays of heat back again to the grassy blades, and prevent this diminution, so that less dew is then deposited. If, in addition to the sky leing overcast with clouds, the weather be windy, no dew will be tormed; for the tenperature of the grass is then prevented suasing of the
agntation of the air, by which a warmer current is coninually brought to succeed the colder current by which t is surrounded. Hence, if, during the night, the weather, from baving been caln and serene, become windy and sloudy, not only witl dew cease to form, but that which has been already deposited will disappear, or diminish considerably. Every kind of covering or ahelter which extenda above any object, will interrupt the radiation or escape of its heat; for which reason gardeners, to prevent plants being chilled, cover them over, on the approach of evening, with a layer of straw or matting.

Frr reasons similar to those now advanced, the grass Which is siturted teneath the bougha of large and spreading trees, becomes only sparingly moish ned with dew; for the shelter above interrupts the progress of radiation from the substances underneath, and so preserves their temperature. Accordingly, it is un established axion, that whatever diminishes the view of the sky, as seen from the exposed body, will occasior the quantity of dew to be leas than would have beon deposited if the exposure to the sky had been complete. Dew ia formed, therefore, more sparingly and irregularly in cities than in the country, where the most open grassy plains are always the most abundantly bedewed. In England it beigins to uppear in shady places as soon as the heat of the atmorphere has declined; but though the grazs on cleer still evenings often becomes moist several hours before sunset, dew is seldom present in such quantities as to exhioit visible drops until the sun reaches the horizon; nor does it hecome copious until some time after sunset. It continues to form also in shaded places some time after sunrise; and it is remarkable, that more dew forms a little before, and in shaded places a little after zunrise, than at any other period. It has also heen olserved, that more dew is formed letween midnight and suncise than between sunset and midnight-a circomstance which is owing to the cold of the atmesphere being greater in the latter than in the former part of the night. As the quantity of dew deposited thus depends ao much on the degree of coldness which the body about to be bedewed attains, its quantity muat be materially modified by the greater or the lesser facility with which substances part with their heat. Grass, being a filsmantous aubstance, parts more readily with its heat than garden mould or gravel; wherefore dew is mare plentifully deposited on meadow grounds than on ploughod lands. Thun, cultivated soils are refreehed with abundance of dew, while barren rocks and sandy deserta do not receive this congenial mqinture. Indeed, every shrub and herb, every leaf and blade of grass, possessee, acconding to its kinl, a different power of radiation, so that each comlenses as much dew as is necessary for its own individnal and pecaliar exigencies. Thas, not even a single tev-drop serms to have been formed by the rude hand of chance, lut is adjusted by the balance of infinite wisdom to accomplish a definita and benevolent end.

THE WINDS.

A change in the temperature, a diminution of the vapour, or any other cause that may occusion a portion of the surrounding atmosphere to contract or expand, will give rise to the airrial currentg denominated winds, which, indeed, bear a stronir analogy to the currents which occur in the ocean. When the air by which we are nurrounded becones heated, it expands, snd becomes specifically lighter, in conserfuence of which it mounts upwardn; and the eolder and denter air which surrounds the mans thos rarcfied, rushes in to supply its place. When the deres of a heated apartment is thrown open, a ruernit of air is theresy immediately producet; the warm air from the apartinent passing out, and the cold sit from the passage rushing in. So, also, in those buildings where the manufacture of glass is carried on, the Bunt of the furnace in the centre leing intenme, a violent
current of air may be olserved io force its way in chruugt. the doors or crevices on the opposite sides of the houso. On applying these principles to account for the origin of the wind, we find that, when the rays from the sun, by. their reflection from the earth's surface, have hented ot rarafied a portion of the surruunding air, the air so rarefied ascends into the higher regions of tho atmosphera and the colder air by which it was surrounded movea forward in a renaible current to fill tha vacuity. When, also, a condensation of vapour in the atmosphere suddenly takes place, giving rise to clouds which speedily dissolve in rain, the temperature of the surrounding sir is sensibly altered, and the colder rushing in upon the warmir, gives rise to a sudden gurt of wind. For this reason, cold heavy shower passing overhend, with a hasty fall of snow or hail, is often attended with a violent and sudden gust of wind, such as sailors call "a squall," which ceases when the cloud disappears, but is renewed when another cloud, sweeping along in the sane direction, brings with it a fresh blast.

The general nature of the winds in this and in other countries depends very much on the character of the region whence they may have sseept; and, accordingly, it is necessary to remember that the globe is divided into , We zoncs or belts-the torrid, which is exposed to the direct rays of the sun; the two temperate zones, which, meeting the rays of the sun obliquely, enjoy a moderate degres of heat; and tho two frigid zones, which, deprived of the lieat of the sun for a great part of the year, and during the other part receiving his rays still more obliquely, are regions of ice and anow which, it would appear, are destined ever to remain uninhahituble solitudes, Generally, in the British islands, a westerly wind is moist, hecause it comes from the Atlantic, where a great yuantity of vapours arise. When mingled with that of the south, which comes from the torrid zone, it is reodered particularly' worm. The cast wind is the driest, lrcause it comes from the continent of Asis, where there are few meas. The north wind, however, is the coldest, because it sweeps from the immense tracts of ire and snow in the frigid zone. The northerasterly winds, therefore, being so dry and cold, are in this country proverbially the most chilly and hitter.

While the south-west is the most predominant wind in Europe, the north-east wincis in giring may be ro garded as periodieal in the climate of Britain; it is to be remembered, however, that the succession of the seascus of the yea:, with their characteristic changes of tempersture, depend principally on the relative position of the earth to the sun. The moro vrtieally or directly the sun's rays rench the aurface of the esith, dessending in a more concentrated manner, the greater is the degree of heat which they produce; but the more obliquely they fall, being thereby inore sentterev, and consequenily failing with less power, the smather is the degree of heat they inpart. Accordingly, in the winter meason, the sun's ray's reach tho surlace of the globe in our intitude nore obliquely than they do in the summer season; consoquently, that veason is characterized by the colldnens which then prevails; therefore, the winds, pmerful is their agens rertainly is, exercise only a sulsidiary influence in modifying the temperaturo of the seasins. Besiden this, the physicul aspret of a country, its mountaina and talle lands, its chains of hills and its valleys, its rocky elevations and its level plains, its poteeted or exposed consts, all influence very materially the direction of the wiod, which must, as it sweepw along, coincide with the elevationa and depressions of the country over which it passer. Hence it has been shown by physiciana, that the climate in certain destricts of England, owing to the protection of surreunding é. vations, rivals in salobrity, even in the mont tryiog measons, many of the mod fivourite and fashionable resorts for invalids in the sonth of France.

Basiden the divi rection from the ca s.outh, south-east ; Aivided by meteoro lar, irregular, perio which, with the $1^{\text {h }}$ will now be consid

Regular Windsdistinetly understar winds, it is necess the centre of its cir the poles, is divide bemispheres-tho equator, cutting it cirele called the ecli traverses. It exten woth of the equato traverses; for, wher he agaio seems to 1 be very evident tha within a circle draw of the equator-w portion of Africn, n tica, and many larg fast and West Ind rays in a direction: tallo heat might th called the torrid zon stops, and appears t name of tropies, or mised, and 'it bein revolves daily, " her sun from west to et be readily understoo rent motion from e leat they impart. th rises into the higher this takes place, the mo zones rushes in the polar regions, nt rents origin 'y com such would be their bowerer, north of $t]$ winds is from the n the southereast; the The velocity with rable, if apprecialise adrance, and is at winds, in sweeping tesponding velocity wance towards tl hawly than the balies with the ex to the olsserver who pears to move in a the earth, namely, aind thus blows no doubt that an o tatefied sir which direction, at a grent The external lim north nond 30 dergr limit diminishes us fic. The larger t awcep, the more sul: ane moro steady in ha the Suth than: the region of tho, surs, but it falls a The reason is, that thee of sir of differet but the comstant c from the uppere str: reat, maintains so

Besidea the division of the winda founded on their direction from the cardinal points-as into north, northeast; quuth, south-east; west, south-west; east, \&c.-they are sivided by meteorologista into four classer, namely, regular, irregular, periodical, and hot winds; the causes of which, with the phenomena by which they aro attended, will now be considered.

Regular Winds-Trade-Winds.-In order that wo may distinctly understand the cause and nature of the tradewinds, it is necessary to bear in mind that the earth, in the eentre of its circumference, at an equal distance from the poles, is divided by a line called the equator into two bemispheres-tho nurthern and southern. Across the equator, cutting it obliquely, there passes another great circle called the celiptic, which describes the path the aun traverses. It extends $23 \frac{1}{2}$ degrees north and $28 \frac{1}{2}$ degrees south of the equator, which is the utmost limit the sun traverses; for, when arrived at eithe of these boundaries, he again seems to return towards the equator. It must ho very ovident that the region of the earth included within a circle drawn $23 \pm$ degrees north and 232 south of the equator-which will comprehend the greatest portion of Africa, a considerable part of Asia and America, and many large, fertile, and populous istmods in the East and West Indies-mill rercive constantly the solur rava in a direction so little oblique, that the most intolerible hent night there be muticipated. It was therefore called the torrid zone; and the limits at which the sun stops, end aprears to retrace his course, have received the name of tropics, or circlea of return. This being premised, nud it being elso remembered that the enrth revolves dnily, "her silent course advancing." round the sun from west to rast, the cause of the trade-winds will be readily understood. 'I'he rnys of the sun, in its apparent motion from enst to west, olviausly rarcfy, by the heat they impart, the air beneath, and the air so rarefied rises into the higher regions of the atmosplere. While this takes plare, the colder air from the adjoining tempemet zones rushes in to supply its place. But it is from the polar regions, north nad south, that these colder currents origin 'y come; and did the earth remain nt rest, such wouht the their obvious direction. Instead of this, however, north of the equator the direction of the tradesinds is from the north-cust ; sonth of the rquator, from We southocast; the ranse of which is thus explained:The velocity with which the rarth revolves, is inconsiderable, if appreciabie, st the poles, but increases as we deance, and is nt its maximmen at the equator; the winds, in sweeping from the poles, do not aequire a cormejponding velocity with the metion of the earth, as they advance towards the equator; therefore, moving more duwly than the earth, they are left behind, striking bolics with the excess of the earth's velocity; so that, to the observer who imagines himself at rest, the sir appears to move in a direction eontrary to the rotation of the earth, namely, from east to west. While the tradenind thus blows upon the surface of the earth, there is no doubt that an opposite current, probably that of the mrefied air which has ascended, flows in the contrary direction, at a great elevation in the atmospluere.
The external limits of the trado-winds are 30 degrees morth nand 30 degrees south of the equator; but each limit diminishes as the sun alvances to the oprotite tropic. The larger the expanse of occan over which they wacep, the more steadily do they how; accordingly, they an more sto ady in the ['a.cifer than in the Athantic, and ha the Santh than in the North Athantic Ocenn. Within the region of the constant trade-winds, rain meldom onsurs, hut it falls ahmodantly in the ndjoining latitudes. The reason is, that rain is protuced by the sudidon mixthe of air of dillirent tempreatures charged with moisture; but the constant circulation and intermixture of the air fron the upper strata of the atmosphere, or ground curreat, maintaine so equal a temperature in these latitudee,
as not to occasion the condensation of *epour which in necessary for the production of rain. Besides which, it is plausibly enough alleged ly Daniel, that the aqueoun vapour constantly flows off in the current of the eque. torial wind into the adjoining temperate zonea. Within the limits of the trade-winds, contrary to what might have been anticipated from the latitude, the atmoaphere is peculiarly vool and refreshing.

The agency of the winds in clearing the atmosphere from noxious cffluvia, and kecping it from stagnating, is so apparent, that it scarcely requires to be noticed. In the case of the regular winds to and from the equetor, an interchange of atmosphero is effected, beneficial to both trrid and temperate zones. On this interesting point in naturgi ecience, the following observations are macio by Liebig in his wark on Orgnnic Chemistry (1840). -." The proper, constant, and inexhaustible sources of oxygen gas are the tropics and warm climetes, where a sky seldom clouded permits the glowing rays ef the sun to shino upon an immeasurnbly loxuriant vegetation The temperate and cold zones, where artificinl warmth most replace deficiont heat of the sun, produce, on the contrary, carbonic acid in suparubundsnee, which is expeuded in the nutrition of the tropical plants. The same stream of air which moves by the revolution of the sarth from the equator to the poles, brings to us, in its passage from the equator, the oxygen generated there, and carries away the earbonic acid formed during our winter. The experiments of 1)e Saussure have proved that the upper strata of the air contain more earbonic acid than the lower, which are in contect with plants; and that the quantity is greater ly night than by day, when it undergoee decomposition. Plants thus improve the air, by the removal of carbonic acid, and by the renewal of oxygen, which is imenediately applied to the use of man and animals. 'I'he horizontal currents of the atmosphere bring with them as much as they carry away; and the interchange of uir hetween the upper ond lower strata, which their diflerence of temperature causes, is extromely tritling when compared with the horizontal movements of the winds. Vegetable eulture brightens the healthy state af a country, and a previously licalthy rountry would bo rendered quite inhabitable by the ressation of all cultivation." How grand tho theory in these passages respecting the influence of winds on vegetation! 'I'hose streams of nir, which superstition would ascribe to demons, are nmong the most hencficent muans armuged to preserve atmospheric satubrity, and aflord materials for man's subsistence.
The Monsoon,-In India, a very remarkuble periodical or half-ycarly wind prevails, which is called the Monsoon, from a Malay wurd moussin, which signities season. It howa one half the year from the south-west to the northeast, ond the other half from north-east to south-west. The former is accompanied by rain and tenypest, and constitutes in India the "rainy senson;" the latter, although in thia respect adnitting of some modifications, ronstitates the "dry season" of the year. The southwest monsoon, in the southern puts of India, commences about the beginning of June; luit in procceding northwurds, it does not rommence until luter. It is ushered in by vast masses of clouds, which arise from the Indian Dcean; and as they advance towarda the north-cast, gather and thicken us they approuch the land. In a few days atterwarls, the sky assume's a bore troubled aspect lowards the evening, nad it is in the night that the morsoon generally sets itn. It begins with violent hasts of wind, which are succeded by floots of rain, during which the lightinge theshes wathout intermiss: 1 ; at first Illuminatiog the sky, showing the clonda near the hon zon ; then discuvering the distant hills, and lenving thean nguin shrouded in darkness; then, in an instant, reappearing in vivid and successive tlashes, which exhihit even the neareat objects in all the eleamers and diatinet
ness of noon-day light. The thunder, in the mean timo, continues in loud peals, and whon it ceasea, the rain poura in large volumes. I'hia lasts for seversl daya; the sky then elears, the air becomea moft and pure, the rivers are full and tranquil, snd the whole face of the earth, as if by enchantment, appears elothed with thick and luxuriant verdure. The rain, sfter this, falie at intervals for about a month; then it increases in violence, and attains itu height in the month of July, when it descends thickly and heavily en masse from the hesvens. Then this monnoon, in Augush somewhat diminishes; in Septemter it sbates, or is entirely auspended until the end of the month, when it ugsin reanppears; and departs, as it came, amidst thunder and lightning, and all the turmoil of tempest.
Buch is the south-west monsoon, as it appears in the greater part of India; but it is liable to considerablo rariations, caused by the influence of the ses and the mountainous regions along which it may swecp. Near the sea, the rain falls mord plentifully; becsuse, from the more abundant evaporation, tho air is there more charged with moisture. The mountaina also aflect its course, by interrupting and diverting the progress of the winds and the clouds they bear. Thus, the wind which brings the rain to the north-eastern part of the Indian continent, originally blows from tho south-west over the Bay of Bengal, until it reachea the Himalaya Mountains, and thore which join them from the south; theso check its current, and compel it to follow their rango towarls the north-west; but when it has continued so far towards the north-west as to meet that chain of mountains called the IIindoo Coosh, then it is by them turned off towards the west, and sweeps along until interrupted by the range of the Solimaun, which prevents its proceeding farther in that direction, or compels it to part with the clouds with which it was laden. If tho reader will for a moment trace on the msp tho course here described, he will at once perceive the influence these mountains must have in modifying the direction and general character of the monsoon.

Hitherto we have principally noticed the south-wert monsoon, which constitutes the "rainy season" in India; to this succeeds the north-east monsoon, which, with the exception of the castern side of the Coromandel coast-to which it lirings the periodical rains that begin about the middle of October, and end generally in the middle of December - is attended with dry weather throughout the penimsula. After ketting in, during the month of September, with considerable varialions in its commencement, the northeast monsoon establishes a milder thongi not less absolute dominion, which Insta until the and of Feloruary or the beginning of March. From that period to tha month of June, the winds are irregular, and the heat rery great all over the peninsula. In respect to the car:a of the monsoons, they are, on the authority of the celchrated philosopher Halley, to be explained on the name prineiples as the trade-winds; the sction of the cin's rays inducing a rarefaction of the air, and consquent rushing in of a colder current from the sea el.d land; and the physical axpert of the country, is cievations or plains, monlifying the reflection and inflecnce of the solar rays: which causes, taken conjointly, sutliciently account for the proriodical occurrerice and local peculiaritics of the mensoon.

Sea and Iand Breezes.-The sea and land breczes, orcurring in warm climates, may also be classified undor the heal of perimliesl winds; they oceur in the followIng manner:-During the day, the wind blows for a certain number of hours from tho sea to the land; but when evening arrives, it changea ite direction, and blows as many hours from the land to the mea. In this countre the seabrecze sets in about meven or cight in the morning, ond is strongest at noon, but continuen very
sensible until three o'clock, when the aurface of the sea will be olsserved to exhibit ripples of a deep blue colour. After this, at six in the evening, the land-brecze commences. Tho sea now assumes a greenish hue; and thin breezo continues until eight the next morning. 'The cause of this alternation may tre rendily explained. During the day, the air over the surface of the earth is more hested by the rays of the sun than that over the surface of the sea; because tho earth, from its greater density, compen rative stato of resh, and numerous elevations, reflects the sun's raya sooner, and with more power then they sru reflected from the sea, which, from its state of constan motion and transparency, imbibes the warmeth very intimately, though more alowly. Accordingly, when the sun, having arisen above tho horizon, has, hy the reflection of its rays, thus imparted a sulficient degree of warmth to rarefy the body of nir over the land, the air so rarefied necends into the higher regions of the stmosphere, while that over tho surface of the soa, being searcely at all rarefied, rushes in to supply its place. Hence, a sea-breeze, or curient of air from the sea to the land, at this time prevails; but when the sun ngain begins to sink below the horizon, the body of nir over the nurface of the land becomes rapidly cold, and the earth itself, by radiation, parts very quickly with the warmth it had absorbed. Then the land nir, being below the tempernturo of the sea air, rushes in to supply its place, and thus during the night, a land-brecze, or a current ol air from the land to the sen, is produced. When the sea-breeze first seta in, it commenees very near the shore, and gradually extends itself farther out to sea, and, as the day ndvancen, becomes more or less bot. Hence, the sails of ships have been observed quite becalmed six or eight miles out at sea, while at the same time a fresh sea dreeze has been bowing upen the shore. The eause of this is olvious : for it is natural to sippose that the mass of air nearest the land will be the first to rush in, for the purpose of supplying the place of the air whic; is rarelied immediately above it. On this aceount tha effect of the sen-breeze is said not to ho perceptible at a distance of mere than five or six leagues from tho shore, and for the most phrt becoracs fainter in praportion to its distance from the lamel. 'The distance, on the other hand, to which the land-brecze extends in hlowing across the sea, depends on the more or less exposid as. ject of the const from which it prorreds.

Ho? Itinds-The simosm.- lhot winds of a very deado ful character occur, in Arabia, Hippt, Ss ris, and adjocent countrica, the moving air having nequircil a prodigious degree of hent sud aridity in passing over the hot desert continents. One of the most appalling of these winds has been cnliad by the Arabs the simorm, from a word meaning poison; and it is also known by the name of the kamsin, whill sipnifie's fifty days. When the simoom begina to How in Armbia, the atmo sphere assumes an alarming aspect. 'I'he sky, at other thmes no clear, becomen dark and heavy; the sun loses its endendour, and appears of a viohet colour. The air is not cloudy, but thick from the sulule dust with which it is Joaded. Nometimes the sky apmears yellow from the refraction of light on the minute fieces of quartz which are floating in the air. Fometimes it has a jectliar and frightful hhe colour; which varisty of this wind comes from those districts where tho suil is compord of a great denl of blue-coloured ma:l and limestone. At first, the wind is light and rapid, and not remarkably hot; its temperature, howeser, soon irercases, until it ranges at upwards of 129 degrees Falreuhcit. The danger, hewever, is most imminent when it Hows in sudilen sypunlla, as then the rapuity of the wind in. crcasen the heat to such a degree as to le altogether intolerable. "When this wind occurs," says Volney. " all animated bodies discover it by the change it proo duces in them. The lungs, which in too rarefiod air to
onger expands, ar Respiration is short dry, and the body c vain ja rocourse had sall restore respirntic sll bodies in which band that touches withatending the sun weets sre deserted, evsrywhere. 'The is shut themselves up desert in their tents, they wait the termine mavellers bear testin this wind; and it is s of their danger from i bury their nostrils in until the squall is ove The Sirorro-the S piren to the hot wind a.d which is suppose resaively heated deser applied to a modificati in Spain and Portuyal describd to be excessi seexperienced its lirst urpased to the burning When this wind occu dose their doors and hexternal air, and sp Sit \& personi ventures is or seven to thirtypricd the air is thick ypear. 'The thermo chenly rises to 110 When this siroceo wit with, shifts, the north whane, succeeds, and tis distressing visitatio of the sirocco is the ext which it produces. It n the body and mind, propining their functio atives themselves," sa hat strangers; and all mirsbominable wind." lebuity of the 11 im foom an imperecptible bour. When it moves ass said to he hardly 1 proptible; at 10 to 1. when, bracing; at 20 tu 35 miles, high; nt 35 wiles, storin or tempes *) miles, hurricano; n op trees, and throwing The Anemometer.-M alied the anemometer xesuring the force of wiss with the same na se not only the force, \$ wind at every minu mi rane, a conaretion ot the form of a penci aves, travels on a shee sfoom beneath, and min hiea as it proceeds. I the movementes of a clos at divivinons for every oul reconl is produced. Luy established at all th
"1 hav becli esplained
nonger expands, are contracted and become painful. Respirstion is short and difficult, the skin parched and dry, and the body consumed by an internal heat. In rain is recourse had to large draughts of water; nothing an restore respiration: in vain is coolness sought for ; all hodies in which it is usual to find it deceive the band that touches thom. Marblo, iron, water - notwithstanding the sun no longer nppears-are hot. The greets are deserted, and the dcad silence of night reigns everywhere. The inhabitants of towns and villages dhut themselves up in their houses, and thoso of the deecrt in their tents, or in wells dug in the earth, where they wait the termination of this destructive heat." All travellers bear testimony to the destructive effects of this wind; and it is stated that camele are so conscious ftheir danger from its influence, that they instinctively bury their nostrils in the sand, and keep them there until the squall is over.
The Sirorro-the Solano.-The sirocco is the name giren to the hot wind which oceasionally blows in Sicily, Wh which is supposed to derive ita origin from the exresively beated deserts of Africa. The solano is a term applied to a molification of this wind which is met with is Spain nnd Portugal. The heat of the siroceo wind is lescribd to be excessive. Brydone olserves, that, when sexperienced its first hast, he felt as if his face had been "pposed to the burning steam from the mouth of an oven. When this wind occurs, the inhabitants of every town Wse their doors und windows ugainst the ahnission of heesternal air, and sprinkle their apartments with water. Sita a person ventures into the open nir. It lasts from as or seven to thirty-six or forty hours. During thia prisd the air is thick and henvy, and the sun doee not eypear. 'The thermometer, from 70 or 72 degrees, eddenly rises to 110 or 112 degrees, or even ligher. When this sirocco wind, which always hows from the with, shifts, the north wind, which is ealled the trawatane, succeeds, and the country is again relieved from this distressing visitation. The most remarkable effeet the siroceo is the extreme depression of numal spirits wiach it produces. It gives a degree of lassitude both n the body and mind, which renders both rlike unft for profming their functions in an eflicient manner. "The atives themselves," says Brydone, "do not suffer less thin strangers; and all nature scens to languish during thas sbouinable wind."
Fellity of the Hind.-The velocity of the wind is tom an impereeptille movement to 100 miles in an bour. When it moves at the rate of 1 mile per hour, sis said to be hardly perecptible ; nt 2 or 3 miles, just preptible; at 10 to 15 miles, plensant or lorisk; nt 20 mila, hraning; at 2t) to 25 miles, very brisk; at 30 to 25 miles, high; at 35 to 45 milee, very high; at 50 riles, storin or tempest; at 60 miles, great storm; at (i) miles, hurricano; at 100 miles, hurricane, tearing prees, and throwing down houses, \&c.
The Anemometir.-Many years aro, an instrament alied the anemometer was contrived, for the purpose of sesuring the force of the wind; and latterly an appawu with the same name has lnen invented, to mea. we not only the force, hut to indicate the direction of也n wind at every minute of the day. From nn extem: vane, a convection is established to n pointed index whe form of a pencil, which, according as the vane oves, travels on a shect of thaper spread on a tathle in room leneath, and nurks the praper in certain waving Fowas it proceets. The perncil luing induencol by to movements of a flock, sul the paper theine squarsid andivisions for every hour in the day, a most etheocol reeonl is protuced. Ansmometers of this kind are yw established at all the pincipal observatories.

RAIN.
Ithe iem, explained in the preceding pararraphs,
that the waters of the earth yield up a certain quantity of moisture into the air, which, being condensed, assumes the form of clouds of greater or lerser donsity and magnitude, floating at a variable distance above us in the regions of the atmosphere. It has also been shown that clouds consist of an assemblage of small vesicles, or globules of moisture, which, on being affected by a diminution of temperature, lose their suspensory property, and gathering into larger globules, they ilrop to the ground in the forin of water drops or a shower of rain. The fall of rain, therefore, is tha result of ao simplo and obvious a cause as to require no lengthened explanation; and the only circumatances demanding our attention are the lesser or greater size of the drops, the closer or more distant arrangement of the showers, and the quantity which fatls in reference to peculiar localities and different regions of the globe.

Within the tropics, and also in Great Britain, when tho air has been charged with electricity, as often happens during the dry summer or autumnal months, the rain-drops are very large, but during the wet and chilly season which attends the fall of the year, they are often very small, and, as it is technically termed, drizzling. It is a remarkable fact, and wortly of our notice, that drops of rain have always been found larger in the lower regions of the atmosphere. Thus, Dr. Walkar observed, in going down a high mountain, that the drops gradually increased in size as ho descended. At a little way below the summit of the mountain, the procipitation appeared only a gentle mist; but this gradunlly became denser as he descended, until, on reaching the valley, it inereased to a heavy rain. In the year 1776, Dr. Heberden proved this curious fact. He placed one instrument for measuring the quantity of rain which falls, called the rain-gauge, on the square part of the roof of Westininster Abbey; another on the top of a neighhouring house considernbly lower than the first; and another on the ground in the adjoining garden. The rain collected o, each was as follows:-Top of Westminster Albey, 4 ? inches; top of the house, 18 inches; and on the ground, 22 inches: so that much more rain was collected in the luwer than in the upper rain-gauge. It has been observed, that this difference may in some measure be owing to the action of the wind, which might drift the rain from the higher and more axposed vessel; but let the greatest pains be taken to avoid this difficulty-which may be done by placing all the vessels in positions equally exposed to the wind -still the fact will hold good, that the quantity of rain incren.es as we descend in the atmosphere.

It has heen conjectured that the incrensed size of the drops, as we descend mountains into valleys, depends on their uniting together as thry fall. But the truth scems to be, that the increased quantity of moisture precipitated is owing to the continued evaporation going on at the parth's surfacc. When the sun has withdrown his rays, or is overcast by a dense cloud in the higher
 escess of vapour, should an alditional quantity arise from the carth's surface, it must be obstructed in its ascent, and, mecting with a colder current, be condensed, and converted into rain. In traversing a mountainoue conntry during a storm, we have had occasion to observe this tact; for ofen the rain by which we have been wet through has seemed not so much to descend from above, sa to be formed immediately around us The garments about the knees of the pedestrian will, under such circumstances. le wet through, while hiu shoulders re:main compatively dry. Menee, marshy and maritime situations whis? emit moch vaporer are d.ase wed to be remarkably rainy. Dmontainona recinam are cenerslly visited also with bach rain. is conim quence of the condensation of douds on the summes of the hills. Whorm the liils ate in the minhmothes!
of the osean, therr tendency to excito rain is greatly itsareased; and in proportion as we lesve hills mu situated, and pase into inland and more level districts, the less min will be found to fall.

Winds, however, exert the chief influence over the atmospherie condition which produces rain. Thua, if winda hlow from instead of to a hilly country, the clouds will be carried elsewhere, and be precipitated in lower regions at a distance. But, if these low-lying regions be warm, the clouda will be radiated, and their particles, in a retined state, will be carried onwards ly the winils, till thoy como over a cold, high-lying country, whese they wil! drop in heavy showers. In this manner the vapours from the Mediterranean are carried over Egypt, and do not collapse into rain till intercepted by the higher regions of Abyssinia. In conaequenre of certain winde blowing within tho tropies, most countries near tha equator have their rainy scasnas-noriuds daring which much greater quantities of rain fall than we are ecclatomed to in temperate elimes. The rains in India, which are often so desolating in their effects, as already noticed, generally oceur during the shifting of thr moncoons, ant also during what is termed the zouth-west monsoon.

In that part of Peru called Vallen, which lies on the north and winth side of Lima, and is bounded on the east by the Andes, and on the west by the Pacific Ocean, it never rains at all; but during winter, the carth is covered with a fog so thick and dense as to interecpt the rays of the sun. These fogs supply sufficient moisture to render the most arid and barren soil fertile, and to convert the disagrecable dust in the streets of Lima - ato mud. The reason why it never rains in this comntry, is, that the wind always blows from the sonth, that is, from a coller to a warmer region ot the wor: $:$ l.

Speculations on the chance falling of rain in such countrics as Britain are exceedingly hazardons, in conequence of the variahility of the winds, and the conditions of the atmosphere at points far beyond our knowledge. With respect to the likelihoor of rain, we can attain only a few general principles, all beyond which is doubt and ditficulty. For example, if the wenthor be steady and dry, tho winds, if not distracted ly any foreign cirennstance, will continue blowing and carrying away the evaporated moisture to distant region, thus averting rain; but if, in the meanwhile, the temperature suddenly falls, or the winds rhiff, clouds immedintely make their appearance, and showers of rain ure the conequence. Yet there are exceptions to these general rulea, as we will immediately mention.
In all countrics, particular winds are noted for being ecompanied either by wet or liy dry weather: thus, the south and the south-west winds liring much moisture into Britain, while those from the north and northeast are coll, dry, and penetrating ; hence the old pro-verb-

> "When the wind's ln the south,
> It's in the rain"s mouth."

Not only does this arise from the immense surface of ocean over which these winds sweep soruth of the equator, the evaporation from which must be prodigious, lint from these noutherly winds being of a ligher temperature, whereby they hold a greater guantity of vapour in auspenaion or solation, the condensation of which mast be proportionally greater on arriving in this colder climate. Accordirigly, it has been observed that the wind will turn from the norls to the south quirtly and without rain, but, on returning from the south to the north, will blow hard and hriug unuch rain. Again, if it hegin w rain frotn the mouth, with a high wind, for two or three hours, and the wind falls, but the rain continucs, at likely 4 rain for two Ive houre or more, and does snally ruir until a ntrong north wisd clears the air. for the aa!nc reason, winls from the west and routh-
wout aro considered to bring with them wot wanches hence the old maying-
"A raintow in the morning is the shepherd'n waraingi But a rainbow al night la the ahepherd'h delight."
In the morning, the sun rising in the cast shines $d j$ rectly upon the rain falling in the west, and therehy warning the watchful shopherd of the approach of wet weather with this humid wind; but at night, when the sun sinks in the west, its rays fall on the rain in the eas, and the shepherd then sees the storm departing; hence this is one of the many popular sayings founded on observation of nature.

Men of selence have made very careful inquiriea to ascertain the quantit- of rain which falls in certain places during a giv' n cime, and the instrument devised for that purpose i, the rain-guuge. Its construction is very simple, con sting merely of a circular or aquare sessel, to which a affixed a pipe, funnel-shaped, for condacting the ran into it, where its quantity is eais. maied ly a seale marking the number of square inches which enter. The annual quantity of rain is greatest in tropical countries, and diminishes as we appreach the poles; a circunstance explicable by the great evaporative qualities of tho stmosphere in wann than in cold countrices. The following table illustrates the progressive diminution of rain as we reach higher latitudes :-

The mean quantity falling annually in England is reck oned to be 32 inches, or, according wh Jalton, $31 \cdot 3$; bot this is unequally distributed. At Keswick, in Cumber. land, the depth, on an averuge of neven yeurs, was found to be 67 inches; and at Ilymouth, in Jevonchire, 18 inches. In the western parts of scotand, the depth in from 30 to 35 inehes, which is from 6 to 10 inches morn than that on the east coast.

Although the quantity of rain which falls in tropical countries is usually greater than what is precipitated in colder regions, it is dispersel over less time, and chicfiy falls in lieavy showers during a limited season of the year. In our temperate climates, therefore, we have more rainy nod drizzling days throughout the yesr than are experienced in warm countries; and it is this which gives the character of mointaess and persomal disconr fort to our elimate.

The seasons of the yerr, while thry contrihute, bo their variety, to our pleasure nod happuness, are characterizerl by such weathor as :\% lust adapted to the neces sities of the vegetable and nnimal creation; wherefore the propertions of rain vary in different nonths of the yeaz. la mhamer we have nut so many rainy dayn as in winter; but the showers are then henvier, the streams of rain choser togethor, and the quantity which falls is greater than during nny other feason. Dr. Daton ha nsernained that the firat six monthe of the yoar may he recarded as dry, and the lant six an wet months. Ane other insenious author thas infermed, from Iong obsers. tion, that in spring it rains ofbencr in the evoning than in the morning, hat that towards the cod of mamer, oftener in the mornine than in the evening, nud atorms at this time are apt to orcour a little ntler cumrise.

The reason that in wintur lopa rain fallo, though we have more rainy days than in mummer, is, tlat the tern gerature of the nir is less varimble in winter, and the condenation of houstare not wo forcible ; therefore, the min contimuen fulling in mana:' Irizaling ilropm, which, nccompanied of followed by chiliy onitus wads
pree rise to colds maladien. It is slao ond damp atmesphe foliage, it is not so uch seasons, while the nutritious prine 1ot well developed soover grass are ob disfy their appetites. such pastursge, ms aly eating ; wherea the occasional rain grass grows more better evolved, sand be scen tying down the progression of during the twenty-f ained that much les
Rein has occasio liar colour or suhistat phenemena, sdmits o In the year 1810, a It lasted a quarter o bisod. This was as watet being loaded of trees from a neigh is more frequently c atmogphere of a ini malcules, both too a livind or a kind of In the 'Iransactions scount is given of pened in Irelaud. owing to the presen getable and partly ahoren to the French of Persia. It wua e pattle and many ot'ic was found to be a v oventis of botanistsbr the wind.
We are not, in th powerful agency of proved to carry to a and the ashes and daring the eruptici rears ago, during a wete carcied from distance of upevarda Signs of hain.rain by enumerating approaching rain, mast interesting. colour, good weathe nown or chestnut-c This is owing to the qpere in refracting reason, when ntars the approach of rait
When mountain nearer to us than 11 clearly from a diata tare than usually cated. 'The first o of an excess of mo the rays of rght-.. odoura being conve through a ilry nir. ratra appromilling r pursue flies, which acapeng from the pearer to the surf. mal ly lisue hirds. Datiks, geewe. at onal discont
nves rive to colds and coughs, and many distressing gasladies. It la also to be observed, that, while a clouded and damp atmosphere favourn the incraase of vegetable fillage, it is not so favourable to its fructification. In auch seasons, while the blades of grass grow broader, the nutritious principle which they ehould contsin is aot well developed so that animals feeding on this soover grass are obliged to take a larger portion to sadify their appetiten. Cattle and sheep which feed on wuch pasturage, may be observed to he almost continualy eating ; whereas, in moderately dry seasons, when the occasional rains have been heavier, every blade of grass grows mora hoalthily, its nutritious principle is better evolved, and less sufficing, the same animals may be scen lying down and ruminating in the shade. In be progreasion of the scasona, rain falla at all times Juring the twenty-four hours; but it has been aseertained that much less falla by day than by night.
Rain has occasionally been known to fall of a peenline colour or substance; but this, like other atmospheric phenomena, admits of an explanation on natural grounds. In the year 1810, a shower of red rain fell in Hungary. It lasted a quarter of an hour, and the water was like bivod. This was ascertained to be owing to tho minwater being loaded with the red polten of certain kinds of trees from a neighbouring forest. Red rain, however, is more frequently caused by an incorporation with the atmoghero of a ininute fung sus vegetation or of onimalcules, hoth ton small to be seen hy the naked eye. lixid or a kind of glutinous rain has likewise fallen. In tho Transactions of the Roya! Society of London, an sceount is given of a shower of viscid rain which happened in Ireland. On examination, it was found to be awing to the presence of extrancous matter, partly vegetable and partly animal. In 1828, a substance was donen to the French Aradeny, which fell in the plains of Persia. It wis edible, and afforted nourishment to matle and many otfier animals. This nutritious matter was found to be a vegrtalle proluction-the Lichen esmentis of botanists-which had been transported thither br the wind.
We are not, in these various instances, to forget the powerful agency of the wind, with often has been proved to carry to a prodigions distance, sand and dust, and the ashes and scorise which have heen thrown up during the eruption of volcanoes. Not very many rears ago, during a strong gale, herrings and other fish were carricd from the lirth of Ferth to Lochleven, a distance of upwards of ten miles.
Sisus of Raia.-We conclude our observations on rain by enumerating n few of those prognostications of approaching rain, which, admitting of explanation, are mant interesting. When the monn is of a pure silvery colour, good weather is indicated ; but vihen it has a hown or chestaut-coloured tint, rain many he expected. This is owing to the cffect of the vapur in the etmosphere in refracting the moon's light. For the same reason, when stars are surrouniled by coloured halos, the approach of rain is indicatel.
When mountain ranges or distant objucts nppear dearer to us than usual-when sounds are heard more ckarly from a distance-when the olour of plants is 7.ore than usually powerful, rain may be prognosticsted. The first of these signs arises from the effect of an excess of moisture in reflecting and refracting the rays of ight-- the two last from kounds as wetl ns alours being conveyed lweter through a damp than through s dry nir. The low dight of swallows indirate alypuaching rain. The cause of this is, that they pursue flies, whish delight In warm nir ; and these fica, eraptor from the excess of moisture above, deacend bearer to the surface of the earth, and are there purbat ly blave hided.

Theks, geewe, and other materforvia, hefore the ep.
proach of rain, may be seen to throw water with then bills over their backs, and dive frequently; the cauve of which is, that, although eo much in the water, thoy dn not lika being wot to the skin; to avoid which, when warned by the peculiar sensation preceding rain, they close their plunage together, by throwing a audden weight of water on their bodies, in tho direction of the growth of their feuthers.*

Bafore the fall of rain, enttlo may nometimea be observad stretching out their neeks, and snuffing in the air with distended nostrils, which, doubtless, in occasioned by the odours of plants being mors powerful than usual, when the air is saturated with an excesa of moisture.

Man in strong and robust health does not feel his constitution affected by that chango in the state of the atmosphere which precedes rain; but persona who are in delicate health are often much affected. Pain of the head, toothache, irritability of temper, pains in old sorew which have healed, the aching of corns, and excessive nervousncss, are al!, in certain habita of body, signs of approaching wet weather.

Doge closely confined in a room become drowsy and stupi' before rain; the same, in a less degree, is observed in cats; horses neigh much; cattlo low; the fillow. leer becomes restless; and many other animala, from the uneasiness they feel owing to the altered condition, prognosticate the approach of rain. Insecte, being very sensible of every change in the state of the atmosphere, aro good weather-gnides ; hence, fine weather may be predicted when many spiders' webs are seen in the open air; also when bees are found far be yond their hives. On the contrary, when spiders remain hidden, and bees do not range abroad as usual, rain may be expected. Many flowers and plants are excellent progrosticators of the weather. When the flower of tho clickweed expands freely, snd remains open, no rain will fall for many hours; but when it rloses, showery weathez or continued rain may be ex: pected. The trofoil, the convolvulus, and many other plaris, contrect their leaves before the npproach of rain.

FROST-8NOW.

Wheit the temperature of the atmosphere falls to a certaia degree of cold (indicated by 32 degrees in our thermometers), which it dies principally from the weakness of the sun's rays in winter, the phenomenon of frost or freezing ensues. Freezing is a process of congelation, or properly, crystallization, produced by the ivithdrawal or absence of heat, and by which water assumes the form of ice.

When the temperature of the atmosphere arriven at that low pitch which effects freezing, the watery particles which are upheld in the clouds are frozen in theit descenc, and coalescing, reach the earth in the form of flakes of snow; and these accumulating on the ground, constitute the appropriate characteristic of tho winter season. An intensely cold current of nir, mixing with the vapour suspended in a warnser current, occasions, as in the case of hail, this precipitation. Snow, however, is formsed in the lower regions of the atmosphere, or might, if commencing in smal! nucleus, in higher regions, be converted in its descent into hail. That show is formed in this manner, there can be no doubt; for a very cold stream of air, fulmitted into a room in which the contained air is warmer, and loaded with wutery particles, will occasion its formation. In the huts of the people in the desolute arctic regions, snow is often so formed; they stop the chink, yet still the walls a:c often covered with a thick icy enust; and whenever a cold current from the extental air is ad-

* Lake !loward'a Ctimete of Iondon, notes to vol. t
mitud, anowy fakea are precipitated. Dr. Robertson atates, that, in a crowded assembly-room at St. Peternburg, a stream of cold air was accidently admitted into the room ly a gentleman breaking a pane of glass, on which the vapour in the alr was inmediately congealed, and fell in the form of anow-flakes. In Biberia, Pallas, Chappe, and others, have seen it formed under similar circumstances; and by the nurrative of the Dutchman who wintered in Nova Zembla, we are informed that a niuwer of snow fell, from the vapour of expiration, every time there was any communication with the external air. 'l'he peculiarities of snow consiat in its extreme lightness, and also in its being purely white. Ita lightness is occasioned by the excess of its surfnce exceeding so much in comparison the matter it contains, and its whiteness is owing to the minute particles into which it is divided; hence, when iec is pounded, it is equally white. When snow, however, accumulates in large quantities, its weight becomes very considerable. Snow occura in all regions of the globe nt a certain height above the lewel of the sea, but falls more abundantly on plains as we proceed from the equator to the poles. In the aretic regions, snow falls nine days out of ten during the months of April, May, and June, and often a depth of two or three inches is deposited in an hour. In these regions, the thickest precipitations are observed to precede the occurrence of storms.
The forms of snow-flakes present an almost endess reriety ; they are often very regular and beautifinl, and reflect with exceeding splendour the rays of the aun. When they are very large, they are said to indicate the approach of thunder. Affer a copious fall of anow, when the temperature is too low to produce any moisture, its level surface may often be seen sprinkled with thin delicate plates of ice, which refract the light in colours as varied mud brilliant as drops of dew. At ouch times, on the borders of lakes, and on the lentes of teees, groups of feathery icy crystals may be seen, remarkable for the most exquisito delicary.
Dr. Daniel Clarke. in his Travels in Russia, mentions that, while at St. Petcrsburg, he observed flakes of snow falling in regular and beautiful forms. "The sernson," he aays, "began to change before we left Petershurg. The cold became daily less intense; and the inhabitants were busied in moving from the Neva latge blocks of ice into their cellars. A most interesting and remarkable phenomenon took pluce the day before our departure: the thermometer of Celsius stoon at that time only 5 degrees below the freezing-point, and there was no wind. Snow, in the mont regular and beautiful eresstals, fell gently on our clotios and on the sleflge, as we were driving in the streets. All of them possessed exactly the same figure and the same dimerision. Every particle consisted of n wheel or star, with six equal rays, mounded by circomferences of equal diameters: they hal all of them the same number of rays branching frot a common centre. The size of each of these litle stare was equal to the circle presensed by dividing a pea int) two equal parts. This appearance continued during three hours; in which time n other snow foll, and there was sufficient linure to examine them with the atrictest attention, and to make the reperesentation giveat in the first figure.

* As water, in its erystallization. नeenus to conmist of radii divecging from a common centre, by the usual appearancer on the surface of ice it might be possible to obtain the thony, and to encertain the laws, from which this
atellar structure resulta. An equiangular and equilaters plane hexagon is divisible into three equal and similat rhombs ; and if the engraved figure \mathbf{A} be attentively observed it wi!! appear that each linear ray of the star is a diagonal (see fig. B) joining the acuto angles of a rhomb, whose aides are the loci of the extreme points of the lines of ramification from these dingonals. The rhomb may therefore be the primitive form of water crystallized. This seems the more manifest, because, if equal and similat rhombs be applied leetween all the rays of the star A, in the spaces $1,2,3,4,5$, and 6 , an equilateral and equiangular hexagon will be the result, as represented by the dotted line in fig. C." The same star-like shape of nnow flakes has been scen in Britain. According to a notice in an Edinhurgh newspaper, the phenomenon occutred in Lanarkshire in the winter of 1838.
Snow is occasionally seen of a brown colour, which arises from its being impregmated with earthy substancea, brought from the mountaing hy those streans of watel which are derived from the thowing of ico or snow Much oftener has suow oeen observed of a red colour, which appeare generally to have arisen from its intermix. ture with sume vegetahle substan:n. Cnptain Scareeby informs us, thut, it the arctic regiots, the reciness of the noow may occasionally be nuttributed to the little auik (Alca allc), which feeds on shrimps, and accumulatea in immense numbers.

Snow, which in Britain falls genecally most capiously during the months of Decrmber, January, and Feliruary, seldons occurs so carly as October, and is generally, aller wemaining some time on the ground, diasspated by an increase of temperature, arising from the direct action of the sun's rays or the frili of rain. Ocensionally, however, it disapprars without any apmarent thnw, or so much dissipatea as to leave deep furtows on the nnowy plain. This arises from the snow itself lsiug evaporated, which will ocous ever lelow the freezing-point. "On the night of the 10th of Fehruary," says Luke 1 loward. "I exposed 100 graina ot light snow, spread on a dish (which had previounty the temprrature of the air) of six inches in diameter. In the first hour after dark it lost five grains; in the third it nequired a grain, the wind having clanged, and the temperature, which had bern falling from 25°, inclining to rise again. In the course of the night the loss was about 60 grains." 'This very ingenious nuthor adds that this esapuration from snow probably supplies the water for the formation of those thill mists which appear during intense fonst. The air then becomes partially baded with particles of ice, or of water at so low a temiperature as to lor ready to become solid the monemt ies find support. Henee, too, may arise the rime-frost, which is found to accumulate on the windward side of the twig and branches of shrubs and trees. Snow seldom remains long, in temperate latitudes, on phains or in valleys, but on the top of hish momutains it occasionally appears throughont the year. The cause of its continuance on these exalted spots, is the thimess of tho atmospheric ait, which is incapable of holding sullicient heat fron the sun's rays to meth the general mass.

Sleet is only a modification of show. When aquesus globules frecze in the higher recions of the atmosphere, they aggregate touether, and form thakes of snow; an! when these have partly thawed, and have again treome frozen, they constitute slect, which is thus cansed br tho variable temperature of the attmowhere. Sleet fillo at all seawons, and sometimes changes into nam ond sometimes into ancow. It oreationally falls, indect, very heavily, gythering and fraveing additional moisture in is denemit.

Hinl is demerited by mateorologitaty ns frozen drym of re: 1, har forezing haviog taken phate while the smaller vesiclea of water were assoming tho beavier properthe of the raindrop. A rold curtent of air. blawing sul. denly in the drection of a rain-clund, is understoud is

- the immediate donet vary much nound, but some angular. pyramida ral point whence nya in all direct they have appear unty in size from woy's marble, the notherly climates in difforent parts builstones have damage.
If is calculated wor of which is ont will, in descending nine or ten feet pising that hailst bould occasionally plants but even to a atributed to an theit descent. It i formation with tinual accessiona f ind atlaches to itse donea are found to than in the neigh not falling so far, the aldition of su npour.
Harefrost, whic alluation on trees converaion of dew ment in anture, ly kerily of u freezir
thunder
Independently an watm climatea, aceur sudden and at rea and land, th graerally dependin mare and electrical particular, are de imosphere and of temperate clime ware occurring in rgionas.
Thunder-storms. amply a case of e nother, and are a electrical equilibriu time clear the air perties. The exp Professor Thomso lleat and Electrici hall lay it befor are non-conductor composed of it, are of bladders of vap of electricity. It the vesicles from the form of rain. rapour assumes is charge! with elet electric particles they are prevented of the surroundin, og give the vapour douds ceme to be to say. But, as c evaporation, tho rharged with elec race, ol at least
nd equilaterat l and similat attentively obf the star lia es of a rhomb, to of the lines 3 rhomb may tallized. This 1 and almilar the star Λ, in ral and equiesented by the hape of now ng to a notice mon oceurred
colour, which hy substancen num of water ice or snow a red colour. n its intermix. tain Ncoresby redness of the the litule aur aceumulates in
nost copiously and Feloruary, grenerally, after pated ly an inct action of the however, it dismuch dissipatet n. This arises hich will occus ight of the 10th osed 100 graina 1 previously the diameter. In ; in the thitd anged, and the 125°, inclining t the loss was s nuthor adds ly supplies the a which apperg omes partially (so low s trim. e monaent: :ipy ime-frost, which side of the twizs seldom remains in valleys, but ionally appears continuance on ntmospheric ait, heat from the

When aqueous die atmosphere, of snow; ant - aysain become hus csused br re. Sheet falls into rain ind Is, intect, itry moisture th is
is frozen dups hile the smaller avier properthe C blowine sulanderatuod to

- the immediate cause of mont hail-вhowera, Hailnonea vary much in shape; they are generally oval or pound, but sometimes thin, flat, irregularly globular, angular, pyramidal, occanionally irregular, having a ceniral point whence proceed numerous licy spicule, like myn in all directiona; and, also, although more rarely, they have appeared as six-sided priams. Hail-stones nery in size from that of a small seed to that of a oy's marble, the ansaller generally falling in the more notherly rlimates, the larger in the sonth of Europe. In different parts of France and Britain, very large bailstones have occasionally fallen, and done aerious damage.
It in calculated thut n aingle drop of water, the diamefor of which is only the one-thousandth part of an inch, will, in descending through the sir, acquire a velocity of ning or ten feet every second; wherefore it is less surprising that hailstonea of auch magnitude and weight hould occasionally prove testructive, not only to delicate plants but even to animals. The large size of hailstones B attributed to an accumulation during the progress of their descent. It is probable that the largest comnences it formation with a small nucleus, which receives coninual accessions from vapoury particles which it freezes and attacher to itself as it proceeds. Accordingiy, haildones are found to be smaller on the tops of mountains than in the neighbouring plains or valleys; breause, not falling as fur, they do not augment their size by the aldition of successive layers of congealed watery uppour.
Hoar-fros', which appeara like a beautiful powdery crystallation on treea and herbage, is only frozen dew. The conversion of dew into hoar-frost is another wise arrangement in nature, by which plants are protected from the serity of a freezing cold utmosphere.

THUNDER AND LIGHTNING-STORMS.
Independently of the storms of regular occurrence in warm climates, such ins mousoons and simooms, there ocerr sudden nad violent atmospheric agitations, both 1 fea and land, the causes of which are various, though generally depending on rupid transitions of temperathe and electrical inüuence. Two kinds of storms, in particular, are dependent on electrieal netion in the itmosphere and clouds - the common thunder-storins of tenperate elimates, and those of a very violent nature occurring in the form of hurricanes in tropieal mgions.
Thunder-storms_Storms of thunder and lightning are mimply a case of electrical diseharges from one cloud to mother, and are a means adopted by nature to restore dectreal equilibrium in the atmosphere, and at the same time clear the air from unwholesomo vapours or properties. The explanation of thunder-atorms given by Professor Thomson, in his Outhines of tho Science of Heat and Elcetricity, leing the best we havo seen, we hall lay it before the reader:-"Air and all gases wre non-conductors; but vapour and clonds, which are composed of it, are conductors. Clouds consist of a kind of bladdera of vapour, charged each with the same kind of electricity. It is this electric charge which prevents the vesicles from unting together, und falling down in the form of rain. Even the vesicular form whith the vapour ussumes is prolnably owing to the particless leing chargel with electricity. The mutual repulsion of the electric particles may fee considered us sutlieient (sinuo they are prevented from leaving the vesicle by the action of the surrounding air and of the sarrounding vesicles) w give the vajour the vesicular form. In what way these clouds come to he charged with electricity, it is not casy to say. But, as electricity is evolved during the met of evaporation, the prowability is, that clouds are always charged with electricity, and that they owe their existence, or at least their form, to that tluid. It is very pro
bable that when tro, currents of dry air are miving difo ferent ways, "ie in". .a of the two aurfaces may evolve electricity. Din., ! thers currents be of different tenperatures, a portion of the vapour which they alwaya contain will be deposited; the electricity evolved will he tuken up by that vapour, and will cause it to assume the vesicular gtate, constituting a cloud. Thus we can ne, in general, how clouds come to be formed, and how they contain eleetrieity. This electricity may be cither vitreous or resinous, accorling to circumatances. And it is conceivable that, by long-continued opposite currents ot air, the charge accumulated ir a cloud may be considerable. Now, when two elouds, charged, the one with vitreons and the other witl reainous electricity, happen to appronch within a certain distance, the thicioness of the coating of electricity increases on the two sides of the clouds which are nearest each other. 'Thia accumulation of thickness soon beconses so great as to overcome the pressure of the atmosphere, and a diteharge takes place, which occasions the flash of liglitting.
"The noise accompanying the discharge constitutes the thunder-clap, tho long continuance of which partly depends on the reverberations from neighbouring objects It is, therefore, loudest and largest, and most tremeadnus in hilly countries. These electrical discharges obviously dissipate the electricity; the cloud condenses into water, and occasions the sudden and heavy rain which alwaya terminates a thunder-storin. The previous motions if the clouds, which act like electroneters, indicate the electrical state of different parte cf tha atmosphere. 'Ilun. der, then, only takes place when the different strata of air are in different electrical states. The clouds interposed between bese struta are also clectrical, and one their venicular nature to that electricity. They are a!a condnctors. Hence they interpose themselves betwien strata in different states, and arrange thernselvea in such a manner as to occasion the mutual dischurge of the atrata in opposte states. The equilibrium is restort the clouds, deprived of their electrivity, collapse into raia; and the thunder terminates. In thunder-storms, the diseharges usually take place between two strata of air, very seldom between the air and the earth. But that they are sometimes also between clouds and the earth cannot be doubted. These diselarges sometimes take place without any noise. In that case, the flashes are very bright but they are single flashes, passing visibly from one cloud to another, and confined usually to a single quarter of the heavens. When they are accompanied by the nuise which we call thunder, a number of simultansous flashes of diffirent colours, and constituting an iuterrupted zigzag line, may generally be observed stretching to an extent of severnl miles. These seem to be occasioned by a number of sucvessive or almost simultaneous discharges from one clond to nother, these intermediate elouds serving as interm diate conductors, or stepping-stones, for the electrical fluid. It is these' simultaneous discharges which occasion the rattling noise which we call thunder. Though they are all made at the same time, yet, as their distances are ditferent, they only reach our ear in suceession, and thas occasion tho leagitened rumbling noise, so different from the smap which accompanies the diseharge of a Ley. den jar.
"If the electricity were confined to the clouds, a single discharge, or a single fash of tightning, would restore the equilibrinnt. The clond wond cubuyse, and cischarge itself in rain, and the serenty of the heavens would te restored; lut this is seldom the case. I la.e witne ased the most vivid discharges of lightning fion one cloud to another, which eulightened the whie horizon, rontinuo for several hours, und amounting to a very considerable number, not fewer eertainly than finty, and herminating at last in a violent thunder-storm. Wo sce that these dincharges, though the quatity of
electricity munt have been immense, did not rentore the equilibrium. It is obvious from this, that not only the cloudn, but the atrata of air themselven, must have been atrongly charged with elertricity. The clouda, being conducton, servel the purpose of dimeharging the electricity with which they were loaded, when they came within the striking diatance. But the electric atratum of air with which the cloul was in contact, being a non-conduetor, would not lose ita electricity by the diweharge of the cloud. It would immediately anpply the cloud with which it was In contact with a new charge. And thin repeated charging and diecharging process would continue to go on till the different atrata of excited air were bronght to their natural ntate,"
After theso explanations, it in only necessiry to any, that hovever awful the noise which thunder usually inakes, it ia in no shape dangerous. The real danger is from the lightning, which hna a tendency to strike high pinnacles of buildings or spires of churches; hut if these high places be furnished with metal rods to conduct the lightuing to the ground, no injury is likely to ocrur. Lishtaing, oither silent or accompanied by thunder, is of much rarer occurrence In the British islunds than on the continent of Europe.

Laum of Stormn,-Considerable attention has been bestowed by various men of science on what are supposed to be the regulating principles of storms; for it caunot be dontted that, however irregular their oceurrence and apparent action, they are subifect to certain lixed laws, and tleree it in important to discover. As yet, the law of storins has aswumed no very distinet or generally recogniwd form, alinost every stulent of atmospheric phenomena having his own theory on the subject. The queation upon which the chicf difference cxists, is, whether storms blow in direct lines or in circles. The probability is that stoms of wind are greatly influenced by the reviguration of the loculities over which they blow, as well as by the opposition they lany meet with in their course : for example, a violent gale of wind, coming in direct force against a lofty mountain, will probably be transformed into a whirlwind ; and a aimilar result will follow the opposing contact of two fierce winds.

At a meeting of the British Arseciation at Niwcastle in 1538, Lieut. Colonel Reid, of the Royal Eugineers, laid before that body his siewa respecting the laws of torms, which have met with general acceptatuon. Prom extensive obervations on foreign ntations and at sen, he was of opinion, with Mr. Relfield and Cohnel Capper. two persons wha had previoualy invertigated the subjert, that hurricanes are great whithiniols, und that these whiswinds were proprewite. "The getural phenomena of these storms," he chserved, "will he understool, if the *torm, as a great whirlwind, twe repeemettiol ly a circte whowe centre is made to progrematong a curve, or part of a curve, which is in most eases of a form approaching the parabolic, the cinclen expanding as they mikance from the point at which the atarin lyging to be filt-the rotatory motion, in the northern hemisphere, leing in the contrary ditection to that on which the hands of a watich gnes ruund ; while, in the southern hemisphere, the rotation in in the same direction an that in which the lamels of a watch revolve. He puinted out how him siews were allustrated by the disastrous storm of 1809, experieneed by the East India tlect, unler the convoy of the Cullemen lineorf bathe ship, and the Terpmichore frigat', and four British men of war, whith left the Cape of Ciond Itope a) out the same time, interding to crnise about the Maurius. Sonne of thene vessels scublad und ran in the storm for days; mone, iy !ymg to, got alinest inmediately out of it; while others, by taking a wrong direcuon, went into the heart of it foumbered, and were mever heard of more; others, by miling right acruse the ralm apace, met the name atorm in different parls of its progrems, and the wind blowing in oppositu directions,
and cousidered and spoke of it en two ntorms whel encountered; whils othern, ly eruising about withu hend of the curve" it beyond the circles of the greai whirl, encaped the porm altogether, which harl been for dayn raging on all sidea of them. This leel him to dran the very important practical conclusion an to how a ahip alould act when she encountercol a gate, so an to emape from it. By wateling the mole of vecring of $t: s$ wiml the portion of a atorm into which a ship is falling may be ancertained; if the ship be then so munceuvred as that the wind shall veer aft instead of niemd, and the vemel is made to come up instead of heing allowed to hreak ofth she wif ran out of the storm altogether; lout if the contrary course he taken, either through chnnce or ignurance, she goea right linto the whirl, und runs a great rikk of leing suddenly tuken ahack, hut moat assureelly will meet the opposite wind in puasing out through the whirl. 'ro accomplish her olject, he showed, by a diagrati, that it wan necessary the ship shonld be haid on uppooite tackp, oll oplowite sides of a storm, an may be undertond ly drawing n number of concentric circles to represent the whirl of the hurricaue, and then tillirent lines aeroae these, to represent the caurso of shipes entering into of going through the storm.
Mr. Espy, an American gentleman, who haid a nume ber of facts on the sumjeet larfore the Britislı Asamciation in 1840, arrives at the same courlusion a4 liodteld. Caph per, and Reil! but adds, that the whirlwinda how prow grexsively towards a common centre. 'Thiss Howing inwards io a centre, Mr. Espy conccives to the the conse. quence of the aublun and powerinl asecnt of a column of nir at that rentre, from the athosphere heing there more heated thun eleswhere.
 of the aremu, pessenws tiucts which trill to throw any light on this execodingly important branch of ecience, it ix his duty to make them known for the general benefit of munkiul.

unubuat. meteotic phenovina

Among the metreric phenomenas which ate of lew frequent occurrence than those already noticed, may be included rainhows, figures in the uir, luminous meteora iguis fatui, the uurora borculis, halos, parluelia, wiul aêtoo lites. Having in the atide Gutics esplained the couse of rainhows to the simply the refraction of light through the drope of a shower of ruill (or through the epray of catanct), nothing nore neod be said on the sulget here. With rexpect to the mysurance of fipures in the air, wh as representatious of landaropes, ment, atel nuitula, shing at sera, and sum, it has likruise bect shown, in the wrich Gritin, that they are a matural consequence of gecoliar refintive powera of the atumphere at the time of the orentrenue. The Mirage of the desert, the Fata Margana of the Vometiana, the Brocken of the Ilarta Ahontaius in Germany, and the almies seen in the ait, according to Scontieh superstition, all leelong to this clase of meteoric phenomena.
Luminohz Miteors.-These are of vniounk kinds, One of the most fansiliar is the Wi^{\prime} il o the wisp or ignin fulmas (the fire of fools), which ple:irs at nighe on marshy grounds or places of se pulture. The apparance is that of e small bickeriug light, strageling in an irregular manter at the height of one or tha fiet from the ground, and gonetimes standing for a frew momenta note a parti-ular epust. When appromelhed or pursted, the lights are ugitated by the mestion of the air, and secm to chule investigation. The catse of this xaciors of anctor ia will! known to men of neience; the light luing nothing more than phaspharetol hydrogen gats, arixing from do comansing sulmanece in the ground, sipontancously lighterl. The metcors commonly called fallumg ature, which shor
 a similar origin: they are mabees of mater indlated wrin
plowphureted hy gnited, ahoot in reateat height dhree milen, and supposed, in almo
Aurora Boreal maltudes, and gex the aky appeara 1 the eurora loreal phenomenon is e the centre of Euy lund, where it is ip In the latter coun uniformly arinea to the west; an time of the equi year. Its mann it assumes, vary e to prechude any bour or two ner Iegion of the ak dued twilight, wh darkucss. Some appea: i: diffiere and temulous he aplendour. Nut apot of light the timea the pheno atreaks or thread inconceivatle ral which completely general v^{-}, rinei at cqual dista anran's each of bnuicist masa. timb or segment and sometimes each other. 'Th and the rapid ntu as they swerp ac and aduiration o
The lueight of wo be trom 100 earth, and cons atmospheri. A to the mature an fartory: the me menon is a dem from the inhar t facts nete still re theory on the si
Halue-P'arh and sometimes what are called mock-mouns, ar sists of two cone such as that of ebout $23!\mathrm{degr}$ grees, with the circles, and chie with the sur, br which have rece mouns, accordin from the munn these hright sp ally ohsur vable. duced ly the frozen wapour i helia, or loright Some slappose artangel in sut the light of the rentrated instea

METEOROLOGY゙ー:IHA WEATHER.
phoophurered hydrogen gas, whlch, being epontanoousy Gnited, ahout in a downward direction to the carth. The | greatoat height whence thoy come ia not abovn two or three miles, and seldom so much. Efectricity, it may be cupposed, in slano concerned in this class of ineteors.
Aurora Borealis,-In extreme northern and anothern latitudes, and generilly in the coldest season of the year, the aky appears luminous with streama of soft light, culled the aurora borealis or the northern lighta. This heantiful phenomenon is comparatively seldom seen as fur so.. it on the centro of Euglanl, hat is frequently observed in ScotIsnd, where it is popularly known by the name of streamery. In the lutter eobairy it appears a little after sunset, and uniformly arises in the nortl., inclining generally a little to the west; and it occura moro frequently about the time of the oquinoxes than at any olher season of the year. Its manner of arisi , and the general characters it assumes, vary extromely; int ind, so much so as alitiost to prechade siny accurnte den iption. Sometimes, on bour or two fer dark, it seems to illumine the uorthern region of the sky with no more than a gentlo and subdued twilight, which gives a sun relief to the surromiling darkurss, Sometimes deturlued masses c? light sudidenly appea: i: diflerent parts of the sky from which silsery and tremulous lwams aloot with dnazling and evanescent spledour. Nut unfrequently, indeed, from one wingle poot of light the leame vividly and rapidty extend. So: tines the phonumenon ia first discerniblo in deliest streaks or threads of tight, which enlarge and shift with inconceivable rapidity, until a tremulous arch is ormed, which completely spans the azure vault. Vel, a'en one general or , rincipal arch is ohserved, wh shather ones at requal distances, which frequently move lateratly torvas's each other, and suddenly unite into on: road bril...st mazs. Olten, from the horizon, in the norm, one aimb or sagellent in the arel sjurings up into the heavens, and sometimes several of these atise at distances from each other. 'I'he 'arying eplendour of the coruscations, and the rapid and play ful movements which they diaplay, as they swerp across the heavens, excite alike tho wonder and adtuirntion of the spectator.

The height of the w: rora has been variously computed to be fron 100 to $\mathbf{7 0} 0$ mises alove the surface of the earth, and consequently far beyond the splier of our atmosphern. All the eonjectures hazar led with reugert to the mature and cause of the aurora fore heen ubsatisfactory: the most feasible conclusion in, that the phenomenon is a demonstration of Nectric fluid in its jassage from the pular to the equaturial regions. Well-dierested facts are still required to form an exact and satisfactury theory on the suljeect.

Hatue-Parhelif.-In the colder regions of the pis e, and sametimes in tempreate clines during cold w, what are called hatur and prorletia, or mock-suis unu mork-moons, are sometines seen. A halo usualy consists of two concentric circh's of colvured or refracted light, such as that of a rainlow, the one forming an angle of whout 23 d degrees, the other an angle of sbout 47 de grees, with the sun or noon. In different parts of these circles, and chiclly in opposite points at a similar shitude with the sure, bright spots of unrefracted light ar ssen. which have received the name's of mock-suns and morknooms, accorling as the light is received from the ran or from the mon during the upprarmee of the halis. From Uhese hright spota diverging horns of light are orcasionally olservable. It is generally ugrerd that a halo is prosduced ly tho sun or moon's light being refracted ty frozen vapur in the umosphere. That cause of the parbelia, or bright sun-like spot, in more dillieult of defin. (nn. Sone suppose it to be cuused ly the frozan vapour being arranged in such a mumer at particular points, as allows the light of the sun or mom bu be transimitted in a conentratenl instead of a refiated form.
weimites.- These ate fiery meteors, which, in various
lurms and sizes, are acen to shoot from the heavenn, and, falling to the earth, are frund to connist of certaln klnitn f stonea. The chroniclea of almost every age anul ountry record the fall of these bodien, which sometimen rrive on the surface of our planet individualiy, and nt ther times in what must be called a atruam or shower. The celebrated Gassendi informe us, that, on the 201t, November, 1637, about ten o'clock, A. m., while the ak! was perfectly acrene and trangparant, he anw a flaming stone, apparently about four feet dianeter, fall on Mouni Vaison, in Provence. This atono wan encircled with n zone of varioua colours, like a rainbow, and accompsnied in its fall with a noise resemlling the discharge of artil lery. It was of a dark metallic colour, extremely hard, and 59 lls . in weight. In June, 1668 , two atoner, one of which weighed 300 , and the other 200 llis , fell near Verona. The event took place during the night, and when the mither was perfectly serene and mild. They appeared to bo all on fire, descending in a sloping direc. tion, and with a temendous noise. The phenomenon was witnessed by a great number of people, who, when tho sounds had ceased, and their courage was sufficiently reoestablished, ventured to approach these celestial deposita, and found that they had formed a ditch, such had been the force with which they had descended. One of the largest meteoric stoneg which have ever faller, is now exhibited in a room in the British Museum; it is several feet in dianeter, of great weight, shaped like a spheroid. and brown in extcrior appearance.

All meteoric stones that have been examined, present a similar structure and appearance. The chemical analysis of none which fell in Franco in 1810, may be taken an a sample of the whole:-Silica, 38.4 ; alumina, 3.6 ; lime, 4.2; magnesia, 13.6 ; iron, 25.8 ; nickel, 6; manganese, 0.6 ; sulphur, 5 ; ehrome, 1.5 ; total, 98.7 . The veloeity with which the stones are ahot through the atmosphere renders them red hot, and some time clapses after their fall lofoce they cool and can be handled.

With respect to the origin of aerolites, there are fous theories, each having its supporters. According to Laplace, Poisson, Dr. Hutton, and others, they are stones projucted from volentioes in the moan; it being demonftrated that an initial velocity of 6000 feet per second would be sufficient to drive them heyond the moon' nttraction, and to bring them within the greater attraction of the enrth. Another set of philosopher's allege they are projected from volcanoes on the earth, which is exendingly improbable. Playfair and others say it is nut :mbikily that the stones are formed in the atmonghere, hy an aggregation of particles of matter, the result of gascous vapours; this chemical theory is also very unsatisfactory. The fourth and most probablo theory is, that the stones are astcroids, or diminutive phanets, drawn to the earth's surface when our globe, in its annual revolution, arrives at points near which these bodies are performing circuits round the sun. A scries of remarkable phenomenal, of recent occurrence, serve to suiport this theory. On the morning of the 12th, 13 h , or 14 th of November, every year since 1833, there have occurred, at diffirent parts of both Eorope and America, showers of metworic hodies, of a most brilliant appearanco; and it has thence been conjectured that the earth, in its revolution round the sun, had fallen in with these borlies in the same or nearly the same part of its orbit. If such be the true hypothesis, it follows that these meteors are travellers in space, performing circuits like the plaoets, nad have most likely heen projected from the sun in the same mansur as the earth and other phanetary bodies are he. lived to hive taren harled from that laminary. slans. ers of fieny meteors, sometimes only gaseous, and nt ohfer times solid, are, however, found to oceur mmually in August. Derember, and other periods of the year. In September, 1841, a shower of many millions of meteonc stones, the greater number of which were not larger thas
rmall hailatonea, occorred in Hungary, their chid ingredienta being oxydate of iron, osyde of iron, and oxyhydrate of tron, with Alint, lime, and clay eerth.

THE WEATHER.

From the preceding account of the various phenomena of the atmosphere, it munt be evident that prognonticatione reapecting the weather must be extremely ancertain, if not, for the ment part, quite illumory. Arcording to en anciont projudice, it has been auppoaed that the moon, on entering its different quartera, escrcisen an influence over the westher; but this is sempaineyl by men of acience to be without foundatio, in renth. 'I'lie moon affecte the tides of the ocean, but in se other lonown manner has It any inflis a over tho ordinary phesomena of our planet.

It has leen seen that the wincla nre the grand disturbers of the weather, und that to them wo may proximntely ae ribe the occurrence of clear akies, foga, clouils, rain, sec. Aa the winda originate fron circumatancen frequantly far beyond our horizon, and cannot consequently be foreseen, every prognostic of either tine or had weather i liable to complete derangensent. The chance foating of an iceberg from the northern polar regiona to a temperate latitude in the Athantic, his been known to alied ouch a cold over Britain as 0 deutroy the beat hopea of summer. To utter prophecies of the coming wenther, in country exponel to such contingenciew, appeara ridiculous. It has long been a favourite belief with certain clasees of persons, that the weather goea in cycles-that, after a limited number of yeurs, the same enceession of weather in the diflerent seanons of the yoar recurs, and is repenterl periodienllv. A period or cycle of nine, cighteen, thirty-six, and iffy-four years, bas keen variously fixed i; mos. In Scotland, nineteen yeurs has been more generally believed to form a cyele, and on that account, leases of faims are commonly nude out for that period, in ordar to give the agriculturist the benefit of an entire round of weather. To suit and support these theories, which rent on no solid foundation, almnnuca have been put forth, pretemilisg to forctell the weather of the coming year; but, unless when favoured by aecidental rearmbiences between the weather and the

proved by facto. As far an the records of meteorol uaire phenomena for a long series of yeurs warrant in conclusing the followin: princtiplen respecting the weather may he considered setied so- -1 . The weather of each yanr matade lyy itwelf; 2. The weather differs annually, an't in differ. ent in difierent placen accotding to cireumatnuces ; 3. The weather in the interior of continenta in 00 recirlar in lto mensonal variations, that it may bo foretold witt, itasider. able certulnty i 4. The weather ef stae Drisist adanim in ao irregular, from unforemen caumes, that trediction as to its condition are only warruntable in very general terms, at any seamon of the yeur, 5. Tlint murieultural in provenent, auch the draining of moist grounds, imb proven climate, amil iond to equalize temperature; and, 6. That the as mither of cold in our winters, and ex. treme heats of "is numiners, huve been mulified fiom thia cause; whic, though in sound respects uncomfortalsle, our climate is improved in its anlubrione pooperties, and by allowing out-ofdoor oxercimes and employment for a greater number of days throughout the year than that of most other conntries, is higlity conducive to health, hon. gevity, und mocial advancement.

[RECENT DISCOVERIEB in MikTROROLOOY.

The acience of Meteorology has nttracted more attern tion of late than in former times. Among the most ance. cessful inquirurs is Mr. Espy, of Ihilsdelphia, whome ingenious theories on the subject are founded on a courne of olsservations and experiusuts continued segularly for some thirty yenrs. Hin predictions reapecting changes in the weather, and the precinion with which he has pointed out the locality of storms raging at the moment at great dintauces from his own recidence, have excited astoniphment. 'These, however, nre foumded on scientific principles which he has develored in his theory of storman

The facts and laws which lie has liscovered are generully recognised as having consideralle practicat value.

Other inquirers both in Anterica and Europe are atill carneatly endenvouring to advance the scienice and to reduce their diacoveries to such practical resulta na may be umeful to the agriculturist and the marinet.- $A m$. Ed.]

It has of late by popular cycloprodin ous In mont if not been done, the artio who denied that [] tal philonoplay, and want of sonund fount wat ctrinem. In eve warde succeanfully their acience laad bo challenged on unfai tion might an well inerruction of can have reeolved to ea menting a viow of be the true system course the more ne uthogetler ita orgn inuelligible view of the phenomerna of physical systems. of mental |lhilosap bunch less nowitr: sccount which it g ary propls feel, f pychological inve Whercon to reat the ing tho observation of certain manition artain jurts of the diatinct value in p^{\prime} means of studyin ane time, to sien beforehund likely natural hasis to 1 that its losuling do respectful attention * rast muount of mlightened and $1^{\prime \prime}$ Its supporters ha introductory remat own opiaions reap enabled to do wo which, licrefore, evidence.-Ed.

Punevolomit course on the m passea by this nan Gall, a Gicrnenn p led, when a swhom ticular montal face in coneequence of eyes of a compui conmitting word formation in cthe od that it was pos panied by extern also be so inclieat marked fratures hicads, was struch being prominene others, with corre tndividunls. Aft vation, lee first lee There his lectur ignorant deepoti many and settled

Vot. I. -36

PHRENOLOGY.

coml yales oncluain,

 or may he amr olatido I la differ. a; 0. Itis : $\operatorname{sln} \%$ In its 1-romavider. - br alande ry general gricultural punda, imp ture; and A, and $e x$. ifired from minfortable, writies, and rent for fan that ol realth, lontIt has of late been cuatomary for the conductors of popular cyclopedina to admit articles on I'hrenology; bas in mont if not all the listancea in which thia has bren done, the articles were the componition of permona who denied that phrenology was a true system of menIal philosophy, nud whone aim rather was to show itn want of sound foundation than simply to prement a view of toid ctrinem. In every one of these instances, it waa afterwards successfully ahown by phrenological writery, that their science had been mintepremented, and its doctrinee challonged on unfait grounda; ao thint the articlea in questien might an well not have been written, in so far an the instruction of candid inquirera was concerned. We have resolved to eschew thila practical abmurdity, by prementing a view of phrenology by one who believea it to be the true syntem of inind. This we conceive to be a course the more necensary, that phrenology, ovedooki. altogether its organological basia, preaenia n far inulligible view of the faculties of the haman mind, anthe plenomem of their working, than any of the metn phyaical systems. It is eminently, we think, the of of mental philosophy for the unlearned man, hecaz is much leas ubstract than any other. In perusius, th account which it given of the mind and its parts, ordinary peoplo feel, for the first time in their attempte m pachological invertigation, that they have ground whercon to rest the soles of their feet. Thus, supposing the obscrvations made with regard to the connection of certain manitestations of thought and fecling with artain parts of the brain to be untruc, there is atill a distinct vulue in phrenology, as an extensively available meana of stadying mind. We deem it right, at the aune time, to nemion that phrenology opprars to us an beforphand likely to lo trac, in as far as it assigns a natural basis to mind; while wo aro equally sensible that its leading doctrines have acquired a title to a very requectful attention, from the support given to then by a vast amount of eareful oloservation, and the strikingly onlightened and philanthropic aims for which many of its supporturs have become remarkable. With thene introductory remarks, we leave our eadera to form their own opinions reapecting the acienco, as far as they are enabled to do so liy a treatise necessarily bricf, and which, therefore, adinits of but a alender exhibition of evidence--Eil.

Puanvolons is a Greck compound, signifying a discourse on the mind. The system which exclusively passey by this nume, was founded by Dr. Francis Joseph Gall, a tiorman physician, born in 1757 . Dr. Gall was led, when a srhool-boy, to surmise a con, nection of purticular mental farultics with particular parts of the brain, in consequence of observing a marked prominence in the eyes of a companion who always overmateled hitn in conmitting words to mernory. Finding the same conformation in cthers noted for the same talent, he reflectod that it was possible that other tatents might be accompanied by external marks, and that dispositions might also be so indieated. He devoted himelf to observing marked foatures of character; and on examining the heads, was struck with differences in their forms, there being proninences and hollows in some not found in others, with corresponding variations of character in the tndividuals. Alter most extenaive nud arecurate observation, he first lectured on the aubject in Vienna in 1796. There his lectures were suppressed by a jealous and ignorant despotisin; upon which he abandoned Germany and settled in Paria, where he practised as a phy-
sician, and atudied and extended hia "doctrine," an he always culled it, till his death in 1828. His great work, with its illuatrative engravinga, is one of the mont extensive and beutiful examplea of inductive evidence of which any acience can boat. Many phrenologists, who had previounly read the worka of the Britiah writera only, have expressed their aatonishntent, when they cane to read Giall'a work, at the immenae fabric he had reared, and how little, in the way of proofin of the organs diacovered by him, he left to be done. Dr. Gall never took any particular atep for making phrenology known in our islnnd. With the exception of a light and trivial article in the Edinburgh Revicw in 1803, and another in the Edinburgh Mediral und Surgical Journal in 1806, the acienca was not heard of in Britain till introhnced by Dr. Spurzheim in 1815 . IIe was a ative of 'rreves on the Moselle, born in 1776, the "piv' and, from 1804, the nesociate of Dr. Gall. Bo-
aking many valuable dincoveries in the anatomy
sitology of the brain, and aacertaining soveral
ins in addition to thowe dimcovered by Dr. Gall, Dr.
\rightarrow heim had the distinction of systematizing the dis-

* of hoth into a harmonious and benutiful mental al philosophy. Dr. Spurzheim dicd at Boaten us tho United States in 1832. Since then, the recognised head of tho phrenological school has been Mr. George Combe, of Edinburgh, anthor of many able and popular works on the acienco, and its most distinguiahed and successful teacher, by hia public prelections both in Britain und America. 'The applications of phrenology to insanity, health, and infant treatinent, have been at the aame time admirably made by Dr. Andrew Combe, Mr. George Combe's distinguished brother; and to the trentment and ecformation of criminala, and the now or character-forming education, by Mr. George Combe himself and Mr. James Simpson of Edinburgh. Many writeps of more recent date have followed in the track of these authors, for, indeed, no other is now followed with prictical effiect on the subjects enumernted; but to phrenology the sound viewa now current on theae mub jects can in a great measuro be traced.

tie principles of plirenolooy.

1. The bruin is the organ by and through which mind in this life is manifested. This truth is now diaputed scarcely anywhere. It was a great though wide-spread error, betore the discovery of phrenology, that we can recognise mind and body as two distinct entities or existences: under the influence of that error, they were treated of separately ly two several orders of philoso-phers-the netaphysicians and tho anatomists. In vaip to the metaphysician was it obvions, thut we have do knowledge of mind but through the medium of a budily npparatus, with which it grows and decaya; he continued to teat of rind as a spirit unconnected with body. The anatomical investigator reasoned quite as unphitosophically, when he assumed that mind was nothing but matter, the higher qualities of which were to think and feel. The phrenologist avoids both these unproved assumptions. He docs not pretend to know, much less to nssume, the essenee or nature of cither mind or matter. Whether they are one or distinct in known only to the God who made them; and whatever they are, they must, therefore, be the best possibly adapted to their end and design. This is his answer to the unproved and unwarranted asamptions of spiritunlism on the one hand, and materialism on the ther: while lie confinca himaelf to the observation of the laws

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

which regulato mental phenomena, in their invariable connection with bodily organization; and to the hrain, as most obviously so connected, he has seen reason to addreas his chief attention. To all sane manifestations of mind, brain in healthy action is necessary. In sleep, fainting, and compression of the brain, mind is susponded. In perfect sleep, the brain reposes, and mind ceases to be manifested. Were it an immaterial apirit, ecting independently of the brain, the repose of the masterial brain could not suspend the spirit's working. In fainting, tho blood ceases for the time to supply the brain, and consciousncss and motion are suspended. Pressure on the brain instantly suspends consciounness. Mr. Combe, in his "System of Phrenology" (4th edition, p. 14,) describes several most interesting and instructive experiments on compression, as made by Richerand, Cooper, Chapman, Cline, and others. In soveral indinduals, when the brain was partially exposed by necidents, these gentlemen applied pressure to the exposed part, when apeech and consciousness suddenly stopped, to return when the pressure was removad. Pinel clearly traces to a bodily cause the diseased manifestation of mind called insauity, by the following cascs:-_" A man engaged in a mechanical employment, and after wards confined in the Bicêtre, experiences, at irreguls intervals, fits of madness, characterized by the following nymptoms :-At first there is a sensation of heat in the abdominal viscera, with intense thirst, and a strong conetipation; the heat gradually extends to the breast, neck, and face, producing a flush of the complexion; on reachlag the temples, it is still grenter, and is accompanied by very atrong and frequent pulsations in the teinporal arteries, which scem as if abont to burst ; finally, the nervous aftection arrives at the brain." What then follows? All the effects hitherto described are purely corporeal. Pinel proceeds-"The patient is then aeized with an irresistible propensity to shed blood; and if there be a sharp instrument within reach, he is apt to eacrifice to his fury the first person who presents himeelf." How powerfully this case conncets mind and brain, and what a strong light it sheds upon that really bodily, that is, cerebral, disease called inaanity! Pinel cites another case of total change of character, from mild to furious, in an insane person, when redness of face, heat in the head, and thirst, occurred. The brain, when exposed, has been seen in action, during emotion, conversation, dreans, \&c. Sir Ashley Cooper refera to the case of a young man who had last a portion of akull above the eyebrow. "I distinctly saw the pulsation of the brain," aays Sir Ashley; "it was regular and slow; but at this time he was agitated by some opposition to his wishes, and directly the blood was seat with increased force to tho brain, and the pulsations became frequent and violent. If, therefore, you omit to keep the mind free from agitation, your other means (in the treatment of injuries of the brain) will be unavailing." \dagger Blumenbach saw a portion of exposed brain to cink in sleep, and awell when the patient awoke. $\ddagger \mathrm{Dr}$. Pierquin, and a writer in the Medino-Chirurgical Review, adduce other instances of the brain awelling out in waking hours, and still more in mental agitations. In thene, auch as pain, fear, anger, the dressings were disturbed, and the brain throhied tumultuously. The cause is obvious: increased activity of brain, as of muscla, is accompanied by increased flow of blood to the part. Dr. Fierquin cites an ense which is extremely Instruct've. His antiject was a female, twenty-six ycars of age. who had lost a large portion of the skull and dura mauer, so that a corresponding portion of the brain vas laid bare. When alse was in a dreamless aleep, ser brain was moliunless, and lay inside the cranium ;

- Sur l'Alienation M.-ninle, p. 157.
t Lectures on Sirgery. vol. i. p. 2,0 .
Eillorzon's Blumentiach, 4ih elhioa, p. 259.
when her sleep was imperfect, her brain moved and pro truded; in vivid drcams, the protrusion was consider. able; and whon awake, and particularly when engaged in conversation or mental action, it was still grcater. and remained so whilo conversation lasted.

Conmon fecling refore the mind to, or localizea it in the nead; and common phrases aro in accordence with this conviction. We have long-heuded, shallou-pated, rrark-brained, well furrished with brain, \&cc.; as expres. sions in every one's mouth.

From tho above facte, phrenologists assume :-lat, As there is no vision or hearing without their respective organs, the eye and ear, no there is no thinking or feel ing without their respective organs in the brain; 2 d . Eivery mental affection must correspond with a certain state of the organ, and vice versa; 3d, The perfection of the mind will have relation to the perfection of its organs. The study of the cercbral organs, therefore, ia the study of the mind, in the only condition in which we enn cognise it. Hence all previous study of tha mind, without reference to cerebral organization, has, philosophically speaking, gone for nothing, if we except the shrewd but unsystematic guesses of superiar sagacity ; \dagger and phrenology presenta the first practical mental philosophy known to man.

The brain being the general organ of the mind, we come next to inquire whether it is all necessary to svery act of feeling or thinking; or whether it is divided into parts, each part being the instrument or organ of a particular mental act. 18t. It ia a law of organization that differeut functions are never performed by the same organ. The stomach, liver, heart, eyen, ears, have each a separate duty. Different nerves are necessary to motion, feeling, and resistance, anil there is no example of confusion among them. Analogy, therefore, is in favour of the conclusion that there are distinet orgnns for observing, reflecting, and feeling kindness, resentment, self-love, \&c. 2d. The mental powers do not all come at once, as they would, were the brain one indivioible organ. They ap pear auccessively, and the brain undergoes a correspend ing change. 3d. Genius varies in different individuals; one has a turn, ns it is called, for one thing, and another for something different. 4 th . Dreaming is explained by the doctrine of distinct organs which ean act or rest alone Its disjointed images and feelings could never occur if the brain acted as a whole. Undivided, it must either all sleep or all wake; so that there could be no such thing as dreaming. 5th. Partial insanity, or madoess on nat point, with sanity on every other, proves the distinction

* More lately than all these examples, Mr. Combe has ro corded note of his own ohscrving in America, which goes nol ouly to prove action of the brain corresponaing to acuvity of mind generglly, hat aclion of asertained organs whern the correaponding mental manifestalions were called forth. The subject was a girl of eighly years of sge, who four years lefore,
from a fall oul of a window, loss the portion of akull which fromers the organe of Self-Fsteem and Jove of Approbation. covers the organe of Self-rstrem and love of Approbation. The integuments and hair are the only protection her brinh
hat in that region, and its movements cas be felt by the bend, has in that region, and its movements can be eit oy wis bend, hike a leech througha mik hamkerchief. Mr. Coombe pisciugg him hand on the part, ted the conversaison so as to pliqe the
child's self-esicem, when the motion was distinctly fell. Whea child s self-esteem, when the motion was disinnety felt. Whee
she was requested to do some arihmetical lesson, to set in setion has requested ind o some arilhmetical the brain at Self-Esterem ceased to move. She wan praised for her success, when the organ of his Lave of Approbaliveness, bitherlo quiescent, sensibly moved; agnin the chith altention was dircected to something dianlucl rum herself, snd mee more the organ of Seli-fisterm rida ave of
Ajprobation reposed. Mr. Conlbe repealed his triala seleral Approbation reposed. Mr. Combe repealed his trials sol
times with the same resulis.-Notes on the United States.
\dagger An opinion, not inuch different, was expressed ly the las
 of the Scellish metaphysical achool, townids the end of hat

 with the nimplher of masters, nult with the progress of kiopl. ledga: and Furope, whech it presemp possesses libraries gith with philosophient works, unil whieh reckons up simost as pes. ny ph losophers as writers. poor in the midni of so macib ricl. a and uncertait. with the nad of all ita guides, whech ras.
shoa'd follow-Furope. the centre and focus ol all the lighti of

of orgens furies of th the injured prove diati such stale contend, ar were one

These unique, bu bla of actit clueion, th in repeate tationa of quency of lar parts 0 pend on th investigati inluctive grounded one unifo them as a genes of investigati of phrenol words, its portion to ing organ health, qu same, has true of : n ing, cagrés and its me very small idio:y. 1 more in he slways idi bral discas slona, is al
ti the ho
tha head o Hoy, whic manifested that the H power cor ticulars, of for the do
Napolca:n, बize.

Powerfu alze of hea witl them head is lar pied Euro mountaino to follow i taga Hind bence the
moved and youa was convider. when angaged ta still greaut? localızen it in ceordance with , shallow-patech ce.; as expres
sume :-lat, A their respective hinking or feel the brain; 2d with a certrin 18 perfection of ction of ita 0 ns, therefore, iv dition in which study of the ganization, has, g , if we except - superier saga. practical mental
f the mind, we cessary to avery t is divided into organ of a parrganization that by the same orars, have each a ssary to motion, xample of con, is in faveur of ns for observing, nt, self-love, \&c. at once, sa they gan. They ap ca a correspond ent individaals; ng, and another is explained by aet or rest alcne ever occur if tho must either all no such thing madness on on the distinction

Combe has re which goes ing to activity oi gaurs when the:t glled forth. The bour years before, h of skulf which of Approbation. tection her brain fell \downarrow." lia band - Coomibe placing oo an to pique this inetly fell. Whea sson, to sel in acceased to move. gain of lise Lova y moved; again ing dinanel from em ald love of his rinals se teral ited States. essed by tha last ls the end of his O demes as true oll of M. de tro'0 age 10 ope rogreas of kun es I braries fil! up almosi ns pi mo much riel. BS, wh!ch rat. t all the lighta

of orgam, and their eaparate action. 6th. Partial infunes of the brain, affecting the mental manifestations of the injured parts, but leaving the other faculties sound, prove distinctiveneas of organs. 7th. There could be no such atate of unind as the fainiliar one where our feelings contend, and sntagonize and balance asch other, if the brain were one organ.

These are grounda for presuming that the brain in not onique, but a cluster of orgens, or at least that it is capable of acting in parta, sa wall an in whole. For this conclusion, the phrenologists have found satisfactory proofs in repeated nbservationa, showing thest particular manifestations of mind are proportioned, in intensity and frequency of recurrence, to the size or expansion of particufar parts of the brain, and are thus to be presumed to depand on those paits. Every step they have taken in this inveatigation has heen guided by the strictest rules of the inductive philosophy, each of their inferences being gronnded on an overwhelming number of casca leading to one uniform conclusion. It is therefore considered by them as a settled point, that the brain consists of a congerice of organs. It is a necessary result of the came inveatigations, and one of the most important doctrinee of phrenology, that the power of each organ, in other words, its degree of mental manifestation, is in direct proportion to its size. This is a law everywhere seen affecting organic nature; * a large musele, the conditions of health, quality, and outward circumstances, being the same, has inure power than a amall one. The same is true of : nerve. Doge have very large nerves for amelling, eagres for seeing, \&c. A child'a brain is amaller, and its mental power weaker, than those of an sdult. A very small brain in an adult is the invariable cause of idio:y. Dr. Gall observed that a head not measuring more in. horizontal circumference than fourteen inches, is always idiotic. A large head may be idiotic from cerebral discase, hut a very amall head, from defect of size alona, is always idiotic. We present a contrast. Fig. 1

Fig. 1.
Fig. 2.
15 the head of an idiot of 20 yeare of age; fig. 2 is the head of the celebrated Hindoo reformer, Rammohun Roy, which was of great size, and, as is well known, manifested great power. It will in the sequel be shown that the Hindoo type of head is manall, and the mental power correspondent ; hence the exception, in both particulars, of Rammohun Roy's head, telle the more strongly fur the doctrine. Men of great force of eharacter, ouch ss Napolca:si, Franklin, Burna, had brains of unusually large wize.

Powerfui energetic nations exceed weaker ones in alze of head, sud invariably, when brought into collision witt them, overcome them. The Gothic or Teutonic bead is larger than the Celtic, which last race first occupied Europe, but was driven by tha Gothic into the mountainous regions, where it waa not worth the pains to follow it. The averuge European head is to the aveage Hindoo as the head of a man to that of a boy; and bence the collquest and aubjection of a hundred mil-

[^23]lione of the latter by thirty thousend of the former Fige. 9 and 10, to be lound in subsequent solumn contrast a European with a Cingaleme head. Indeed, the doctrine of size of brain accompanying power of cha recter, is now genersilly admitted by the opponents of phrenology.

The general law, then, being that size of organ in aco companied by power of manifestation, we proceed to inquira, mecondly, if there are any circumstances, and what these are, which modity this law. It will be found that quality of brain is a modifying circumstance, also health of brain, and exercise of brain.

1. Phrenologiste conjectured that different braina differ in quality, but were long without any indications of these differences. The doctrine of the Temperaments has thrown considerable, though not perfect light on this point, and for this we are indebted to Dr. Thomas, of Paris. There are four tempersmente, aceompanied with different degrees of power and activity, in other words, quality of brain. Theae are the bilious, the nervous, the sunguine, and the lymphatic. These temperaments were observed and distinguiahed long before the discovery of phrenology, though to little purpose. They figure in the fanciful philosophy of Burton, and similar writers of former times, and much nonsense is written connected with them. Phreuology has adopted them, and mode them intelligible and useful. They are supposed to depend upon the conatitution of particular bodily systems. The muscular and fibrous systems being predominantly active, ecem to give rise to the bilious temperament. The name is equivocal, and therefore not well applied; the other three are more appropriate. The brsin and nerves predominating in sctivity, give the nervous; the lungs, heart, and blood-vessels, the sanguine; white the glands and assimilating organs present the lymphatic tamperament. The predominance of these several bodily eystems is indicated by certain sufficiently obvious external signs, whence our power of recognising them. The nervons temperament is marked by silky thin hair, thin skin, emall thin muscles, quick muscular motion, paleness, and often delicate health. The whole nervous system, brain included, is active, and the mental manifestations vivacious. It is the temperament of genius and refinement. The bilinus has black, hard, and wiry hair, dark or black eyes, dark ekin, moderate fulitesa, but much firmnese of fleah, with a harsh ontline of countenance and person. The bilione temperament gives much energy of brain and mental manifestation, and the countenance is marked snd decidvd; this is the temperament for enduring much mental as well as bodily labour. Tho sanguino temperament has well-defined forms, moderate plumpness and firmness of flesh, light or red hair, bluo eyes, and fair and often ruddy countenance. It in accompanied with great activity of the blood-vessels, an animated countenance, and a love of out-door exercises With a mixture of thy bilious-for in most individuala the temperaments are mixed, often all fout occurring in one person-it would give the soldier's tempersment. The brain is active. I'he lymphatic temperament is indicated by a round form, as in the fat and corpulent, soft flesh, full cellular tissue, fair hair, and pale akin. The vital action is languid, the circulation weak and slow. The brain also ja alow and feeble in its sction, and the mentel manifestations correspond.*

It must be kept in mind that the temperamenta are only useful in comparing different brains; and thie welt illustratee what ia meant by the condition of caterioparm bus, or other things being equal, a phrase much used ir plirenology. If two brains, in every way similarly organized in size, ditier in manilestation of power sad activity, we must louk to the temperaments of the indivilusls ; and if we find one nervous and tho other lynuphate, we

* For a futler degcripion of the temperamemes, bue the asuele account of tue liunan boov.
have a key at once to the difficulty. In the same brain all the organs, being influenced by the wame temperament, munt he aubject to precisely the mame modification. Various causes of the tomperaments have been pro pounded, but none eatisfactory : the effecte more concern us, and these are now toletably well recognised. In Mr. Combe's System (4th edition, page 43) there are colo ared portraits of the temperamenta, which convey a very eatisfactory idea of them. Wo would recommend to our reader to see these, as wo are precluded hy our method of printing from introducing coloured engravings. The temperainents and their mixtures, for they are rarely if ever found unmixed, whould be observed in living subjecta.

2. The brain muat be in a sound healthy condition, to menifent itself properly in the mental faculties. In judging of character, the phrenologist muat inquire into this circumstance, as the external develepment does not reveal it.
3. Exercise-or whether or not, and how, the brain has been exercised-is another condition to be inquired into before judging of two individuals similarly organized. The brain which has been the more, and more judiciounly, exercised, will manifest the greater degree of activity and power. The law of exercise is of univergal application to animals, if not to organization in general. A muscle or nerve is strengthened by exercise; and n tree or plant by the motion given it by the wind. Over-exercise injures the brain. It is only another mode of inquiring into the circumstance of exercise of brain, when a phrenologist asks what opportunitiee of education an iudividual has enjoyed, and on x bat kind of society he has been accuatomed. To this information he is entitled in judging of character, for the head alone will not reveal it.

If aize of organ implies vigour of function, it ia of great moment in what region of tie brain the organa are largeat -whether in the animal, moral, or intellectual. On this preponderance depends the character. 'I'wo braina may be exactly ulike in size, generally, yet the characters may be perfect contrasts to each other. If the organa predominate in the moral region, the leading manifeatations will probably be of a virtuoua character; if in the tatellectual, talent will be the probable consequence; if in the anitnal, there will be tendencies accordingly. There is nearly as much brain in fig. 4 as in fig. 3 ; yet Gg. 3 is the head of Melancthon, the moat virtuous and

ralented of the reformers; while fig. 4 is the atrocious eriminal Hare, who murdered by wholesale for gain. The superiority of fig. 3 in intellect is obvioun by one glance at the high and full forehead, compared with "the forebead villanous low," as Nhakapeare would have called it, of fig. 4 The horizontal line in fig. 4 showa the shallownews of moral brain. A line drawn from the same points mfig. 3 wruld show a much greater depth; while the mage of brain behind the ear in fig. 4, compared with fig. 8, shows the preponderance of animal brain in the furmy Hare'n head is an average apecimen of the crimi-
nal type, of which there are hundreda In the phrenoingien museums, all of one unfortunate faruily likenesa; whilu Melancthon's head may be taken as a type of hlgh virtua and irstelligence.*

THE PRIMITIVE FACULTIES OF MIND, A8 CONNECTEN

 WITH THEIR OROANS IM THE BRAIN.Mind, which was conaidered by the metaphysicians as a single thing or essence, was asid by them to be capable of being in different stotes, in each of which atates it malle one of ita various manifeatations, as memory, judgment, anger, \&c. In no particular does the phrenological hypothesis differ more from the metaphysical then in this. The phrenological doctrine is, that the brain, the organ of the mind, ia divided inte various faculties, each of which has its own mode of acting. It is held-

Firsl. That by accurate observation of human actions, it ia possible to discriminate the dispositiona and intellectual power of man, auch as love, anger, benevolence, observation, refiection, \&cc.

Secomilly. That the true form of the brain \dagger can be ascertained from the external form of the head; the brain, though the softer aubstance, being what rulea the shape of the skull, just as a shell takes its form from the animal within. \ddagger

Thirdly. The organe or parts into which the brain is divided, all of which organs are possessed by cvery individual except in the case of idiocy, appear on the brain's surface in folda or convolutions, somewhat like the bowels or viscera of an animal, but have a well-ascertained fibrous connection through the whole subatance of the brain with one point at ita base, called the miclulla ob longata, which unites the brain to the spinal cord. The organs have thua each a couicul form from the medulla oblengata to the surface; the whole being not inapty compared to the atalks and flower of a caulifiower.

Fourthly. The brain is divided into two equal parts called lemispheres; on each side of the fosse or division between these hemiapheres the same organ occurs; all the organs are therefore double, in analegy with the cyed, eans, \&c. But when the term organ is used, Inth argans are meant. The organs which are situated close to the middle line drawn vertically on the head, though close if cach other, are nevertheless double; for example, Indi viduality, Benevnlenee, Firmaness, \&c.

Fifihly. Besides the brain-proper, there is a amallet brain, attached to the hinder part of the base of the brain, called the cerrbello

Sixthly. The brain, is
3 the cercbellum, is di vided into the anterior, n.. : , and posterior lobics. Tho ccrebellum forms part of the posterior lole. The anterior lobe contains all the iutellectual faculties; the posterior and lower range of the middle lobe are the regiona of the animal propensities ; while the moral sentiment are found, with a sort of local pre-eminence, to have their orysus developed on the top or ceronal surface of the head.

- In these contraned heads. the distinction may nppear to be favoured by the way in which they are placed. We canasmirs our rendera thnt the hends, however placed, fully make out the contrust here insisted on.
- A profile view of the unked broin, with the connerted nerves nnd vesarls, is given in the articte entited "Acconnt of lise llumnn lody."
\ddagger The skuli being formed of two plates, a phritial suparation generully in the forghead over the nose. often rakes place, calitid the fromal sinus. This has given rine to truch controversy, and tise comporinnce hos been given it by opponents hanit duservea. science. arn treated of in most of the phrenological works. Wa may udd. that every student of p...enology should undersmad the anatomy of the Grain, nithough such k nowledge is nen ind. peusalile. We cannol emter on the suljecl of the bran here, but recommenud br. Spuraheim's work on the hrain, and a br:t and ciear exposition of its asmamy in Mr. Combe's $\mathrm{Sj}_{\mathrm{y}} \mathrm{Hm}$, th edilion, p. \%.

The gradati
Very Snall.
Small.
Rathei Small
It has been in aumbers, th

$$
\begin{aligned}
& \text { 8. (Idlocy.) } \\
& \text { (Very Sma } \\
& \text { 6. (Amall.) }
\end{aligned}
$$

The interm thing between found useful.

In practice, in eeveral dire males, from 2 occipital apine neck) to the p on an average es $8 \frac{3}{8}$, and o apine to the some being a the hollow of as above, aver From the aam ebout an inch Dess), the aver Acroms the hea (from Deatruc was $5 \frac{\pi}{1 \pi}$; som in these twen natives of Brit ond none amal

It ought nev character from of the aame he organ in anotl offect of a part and for the p word for the n teighbours in have the organ a person rem will be found t that there has son, and not organs in the tive aize of the think of comp in other hands heads may be ticular orgena abeolutaly am ex:reme casea o

We have aa haad, the more little wit," is of with a large br when sonie d taken place, to when the large is to be rem brains have g li: inal delicion I rain is chiedly nave much in po:ver will he ages hefore the many other nd

Phrenclogie activity in the
degree posees

innecter

 . physicians hem to bo of which as memory, the phe taphy sical , that the to variou ecting. It
on sctions

d intellectolence, ob-
at csn be head; the ; rules the n from the he brain is every indithe brain's the bowela ascertained ace of the medulla ob cord. The te medulla 10t inaptly wer. qual parta or division ars; all the the cyea, roth organa lose to the gh close to mple, Indi

The gradatio n in size of the organs is thus denoted:-

Very Sinall.	Moderata. Rauher Full.	Rather Large. Iargo. Rather
Ramall.	Full.	Vary Large.

It has been found convenient to express these degreea hi aumbers, thus:-

L.	8. (Rathar Small.)	
9. (Idlocy.)		16. (Rather Larga.)
	10. (Moderate.)	
8. ${ }^{\text {4. }}$	12. (Rather Full.)	
6. (Emall.)	13.	20. (V)
	14. (Full.)	

The intermediate numbers, 3, 5, 7, \&cc., denoto eomething between the two denominations, and have been found useful.

In practice, the general size of the head is measured, in several directions, with calliper compasses. Twenty males, from 25 to 50 years of age, moasured, from the occipital spine (the bony knot over the hollow of the neck) to the point over the nose between the eyobrows, an an average, $7 \frac{1}{2}$ inchen; some of them being as high as 8 , and others as low as $6 \frac{1}{2}$. From the occipital quine to the hollow of the car, the average was 4 ? some being as high as 5, others as low as 31. From the hollow of the ear to the point between the eyebrowe, as above, averuge nesrly 5 ; some being $5 \frac{1}{2}$, others $4 \frac{1}{2}$. From the saine hollow of the car to the top of the heal, about an inch behind the centro (the organ of Firm-口ess), the average was $5 \frac{9}{n}$; some being $6 \frac{1}{2}$, othera 53 . Acroms the head, from a little below the tops of the ears (from Destructiveness to Destructiveness), the average was $5 \frac{3}{10}$; some boing $6 \frac{1}{2}$, others $5 \frac{1}{2}$. The averages are in these twenty individuals higher than those of the natives of Britain generally, some of them being large, and none small.
It ought never to be lost sight of, that, in estimating cheracter from development, it is not legitimate to go out of the asme head, and compare any organ with the same organ in another head. This will never ascertain the offect of a particular organ in the head where it exists; and for the plainest reason, that character is another word for the most powerful organs, as modified by their ueighbours in the samo head. A virtuous person may have the organ of Destructiveness absolutely larger than a person remarkable for a violent disposition; but it will be found that there are moral faculties to control, or that there has been education to modify, in the one permon, and not in the other. The relative size of the organs in the aame head has been compared to the relative size of the fingers in the same hand. We do not think of comparing any one finger with the same finger in other hands. But, in studying phrenology, different heads may be compared, in order to obscrve where particular organs are absolutcly large, and where they are aboolutely small. The learner should first attend to exircme cases of size, as the most casily observed.

We have said, the largor the brain, and of course the head, the more the power. The old adage, "Big head, little uit," is often true, but not always. It is true when, with a large brain, thero is a lymphatic temperament, or when some damaging or deranging circumatanee has taken place, to deprivo tho brsin of its natural power, or when the largeness is not in the intellectual region. It is to the remarked, however, that even large animal braina have grent animal power, in spite of their incelli fual delicincy. A moderate-sized heal, of which the a rain is cluefly in the nnterior or intellectual region, will nave much more wit ar cleverness than the other. Its power will he intellectual. Tho adage, which originated ages hefore these discoveries were made, must now, liko many other ndagen, suffer inodification.

Phrenologists further distinguish between pourer and ectivity in the organs of the brain. Power, in whatever degree possesuod, in capubility of feeling, percoiving, or
thinking; while aitivity is the exer rise of power, or the putting into action the organ with more or lews intensity. An individual, for example, may posueas great power of rage and destruction, and yet it may remain quiet, and the Individual be perfectly calm. His large Destructivo nees, however, will be more prone to atart into activity than a mnaller would. Activity in measured by the rapidity with which the facultica act. Clever brilliant men have activn but moderato-sized braine, and do not make the impression, or command the homage, of larger, and of course mole powerful, heads.

The powera of ruind, as manifested by the organs, are called faculties. A faculty may be defined to be a particular power of thinking or feeling. A faculty has seven characteristica, in order to our concluding it primitive and diatinct in the mind, namely, 1. When it exists in one liind of animal and not in another; 2. When it va ries in the tivo sexes of the same species; 3. When it is not in proportion to the other facultics of the same individual; 4. When it appears earlier or later in life than the other facultics; 5. When it may act or repose singly; 6. When it is propagated from parent to child ; and, 7. When it may singly preserve health, or singly manifest discase.
divigion or classification of the faculties.
The faculties lave been divided by Gall and Spurz hein into two great orders-Feelino and Intelenet, or Affective and Intellectual Facultile. The Feelings are divided into two genera-the Propensities and the Sentimcuts. By a propensity is meant an internal impulse, which incites to a certain action, and no more; by a sentiment, a feeling which, although it hat inclination, has also an emotion superadded.

The second order of fuculties, the Intellectual, also suffers division into the Perceptive or Knowing, and the Reflective Fuculics. The Pcrceptive Faculties are again divided into three genera-1st, the External Seuses and Voluntary Motion; 2d, the Internal powers which perceive existence, or make man and animals acquainted with external objects and their physical qualities; and, 3d, the powers which perceive the relationa of external objects The fourth genus comprises the Reflective Fucultici, which act on all the other powers; in other words, compare, discriminate, and judge.

We owe to Dr. Spurzheim the names of most of the faculties as yet in use; and they have only been ridiculed, on account of their novelty, by those who did not perceive their logical accuracy. ${ }^{\text {s }}$ In all the propensities, we find the termination ive to denote the quality of pro-ducing-as Destructive. To this is added the ayllable ness, to denote the abstract state. Instead of ive, the termination ous is found in the name of a sentiment, with ness added-as Cautious-ness, Conscientious-nessto express the abstract quality. The names of the intellectual facultics require no explanation. The arrangement of the faculties generally adopted in the present state of the science, is that of Dr. Spuraheim in the third edition of his Phrenology, 1825-an arrangement to which he was led by the anatomy of the brain.

In the case of many of the organs, the proof from observation is so strong, that these are said to be established, while others are only probuble; a very few are no move than conjectural.

The following is a reprosentation of a bust of the human head in four points of view-front, side, back, and top-with the organs marked by numbers; and there follows a table of the names of the organs synoptically given, before we proceed to describe each faculty as related to its organ. The reader is requested tu remember tho number of each organ :-

[^24]

I.-Peorswatites.

t. Amntiveneas.

- Amniveneas.

2. Inhabitiveneas and Coneentrativenens. 4. Adhesiveness.
3. Combutivenes.
4. Dealructivenes.
[Alimenilreness. Alimendreness. Love or Lifo.]
5. Aequisilivences.
. Aequinilivenesa.

II.-Sx.-7timentin

10. Self-Fisteem.
11. Love of Approbation. 12. Cautiouenepe. 13. Brnevolence. 13. Brnevolence 15. Firmness. 18. Firmness. 16. Conacientiousness. 17. Wope.
12. Wonder
13. Ideality. 20. Wil, ar Ludicrousnass. 21. Imitation

INTEH.ECTUAL.

I.-Prackptive	
2. Individuality. 8. Foim.	
94. Sizo.	
\%.	Weight.
	Colouring
27.	Locality.
23	Number

29. Order.
30. Eventality.
31. Time.
32. Langusge.

1i.-Rxplictive
34. Comparison.
35. Counelity.

ORDER FIRST.-FEELINGS.

The propensities are common to man and the lewer animala; they neither perceive nor reason, but only feel.

No. 1.-Amativeness.

This organ (No. 1 on the marked bust) is situated immediately over the nape of the neck, and fills up the spece between the cars behind, or rather between the inastoid proceases, or projecting bones behind the cars. It generally forms a projection in that part, and gives a thickness to the neck when it is large, and a sparenem when amall. Tho cerebellum, or little brain, is or at leart contains the organ of this propenaity. The nerven of aight and hearing can be traced lnto contact with the crebellum, which probahly sccounts for blindness a:id leafiess being often among the frightul consequences of abuxing the propensity. In a populss work like this, t would not be proper to go into the details of this function. These are to be met with int the more acienific phrenological booka, especially Mr. Combe's trana ation of Dr. Gall's proofs of the function of the ceretrellum. Annong other evidences of the function of the erehellum, it may be stated that the organ acarcely eximes in infancy. It was Dr. Epurahein's opinion, that be finet that the cerebellum is tho organ of the annative
propenvity, was aupported by a more overwhelowinat mase of evidence than any other truth known to him Many of the enemies of phrenology make the phrenolo gista a present of this organ, as not to be longer doubted; though, in doing so, they are unawares alandoning their chief tenet, that the brain is not divided into organe Although Amativenesa is the only ascertainell function of the cerebellum, it is not impoesible, from its size and atructure, that it may have othern; but no others hava yet been discovered.
It is not neceseary here to enter fully into the charnoter of thie faculty. Ae the basis of the domeatic affice. tiona, it is one of great importance, and its regulation has ever been one of the prime objects of moral systems, laws, and inotitutions. For the evils and calamitice, often amounting to national, which it has occasionelly led to, in its abume, we need only refer to history. Dr. Spurzheim held, with regard to thie faculty, that, in education, a more candid and explicit mode of treating it might be advantageoun ; and much could be maid la defence of his opinion.
Wo here present the remder with a head (fig. 5) in which the organ is smell, and another (fig. 6) in which

Fig. 5.

Fig. 6.
it is large. We shall, in the sequel, give a few of the organs as apecimens, as we cannot afford space for the whole. This organ is ostablished.

No. 2.-Philoprogenitivenear.
This, in man as well as animele, is the feeling of the love of his offspring. It depends on no other faculty, as reason or benevolence; it is primitive; and in the mother, who, for wise reasons, in gifted with it mow strongly, its object, the infant, instantly rouses it to a high state of excitement. It ia situated in the middle of the back of the head, and when large projects 1 ke : portion of an ostrich egg. See fig. 7. It is small in fig. 8.

Fig. 7.

Fig. 8.

It wan discovered by Dr. Gall, from its extreme protoberance in monkey: and we have only to visit a roological garden to see how that animal cherisher its young. All naturalista aro agreed in this as a quality of tho monkey specics. The organ is one of the eusiest to tistinguish in the human head. Thooe who are fiat and perpendicular thero, instesd of being delighted are annoyed by children. It ia gencrally sunaller in malea than in fernales, though sometimes found larger; and men so organized delight to carry alout and nurse children. The feeling gives a tender eympathy generally with weakness and helpleseness; and wo find it often returned by the young themselves to the old ama feeble. It is emential to a sont kind attendant on the vick, to a nurne or nurnery-maid, and to a teacher of youth. It induces women to make pets of amall and gentle animals, when tyrant circumetances have kept
nem aingle In feellingu liuhtrul, that bength of ex into vicieus The ergan the Negroen mon as well countrymen navage races young, or th most forocio developinent prove, that benevolence, have the org ny, confirme affection of t could not, b part with t cerebral orga the aubject o Dr. Andrew days' fit of i recovery, she hrad, pointin thing else th quainted wit tion, the mo wihout the : way with tw hivo had the was large.

No.
The organ ing. T'wo of heim and U orgsn-at le not discover observing it place, or any it Ihhabitiven function: and ment to place to move him imbucements. nem to settle imennsiatent is ohvious; n the feeling. extended sph the aame tir love of place organ large feelings and iless of other that they are subject, or or puint. The tinue the ana grarefully to ronverse witl gives us the briins. Dr. known to cac opinion, that p icre, or to al une, till all, Gedl with reg tinued feeling tons of Mrs. the andience wiulo interva

rwheloilate

 wn to him e phrenolo. or doubted loning their nto organa ed function its size and others have estic affec. - regulation ral syiteme, calamitico, occasienally istory. Dr. Ity, that, in of treating I be alad ind (fig. 5) in 6) in which
a few of the pace for the
acling of the ther faculty, and in the with it mow uses it to a the middle ejects I.ke a nall in fig. 8.

6

reane protuvisit a zooloer its young. uality of the usirest to dis are flat and hted are anler in malea larger; sud It and nune uputhy gened we find it the old ant dant on the a teacher of of amall and es have kept
nem mingle, and denied them offapring of their owno In feellinge are, by a kind Providence, rendered so dolimhtful, that they are extremely apt to be carried the length of excese ; and spoiling and pampering children, into vicioua melfishness, is the ruinous consequence. The organ ls large, and the charactor corresponds, in the Negroes and Hindoon, who are both good nurses, men as well as women-a fact practically known to our countrymen in the East and Weat Indies. The most savage races must have the impulse to protect their young, or they would becone extinct. The Caribs, the most forocious race known, are remarkable for a large development of this organ; afact which may be said to prove, that the care of children is not an impulse of benevolence, as is insisted on by some. The Esquimaux have the organ large; and Captain Parry bears teatimony, confirmed by Captain Lyon, to the extraordinary affection of that people for their children. Captain Ross could not, by any bribe, induce any of the parents to part with their children. The organ, like the other cerrebral organs, may become disensed; and madness on the subject of children may he found in many asylume. Dr. Andrew Combe attended a woman who had a three days' fit of insane anxiety about ber children. On her recovery, she said she had had a pain in the onaric of her hrud, pointing to this organ; but had engmitten every thing clse that had passed. She was yltogether unacquainted with phrenolagy. U:ider this mental aberration, the most delicate and virtuous fenale will boast, without the alightest foundation, of being in the family way with twins, nay, with aix children at a time. Malea bive had the same hallucination, and in them the organ was large. 'This organ is held eatablished.

No. 3.-Inhabiliveness-Concentraliveness.

The organ is aituated immeliately above the preceding. Two ef the most distinguished phrenologists, Spurzheim and Uombe, diasgreed ahout the function of thia organ-at least about its whole function. Dr. Gall did not discover its function at all; and Dr. Spurzheim, observing it large in persons attached to their native place, or any place in which they had long dwelt, called it Ithabitiveness. Mr. Combe does not dissllow to it this function; and certainly man has auch a faculty as attachment to place, often so strong as to render it impossible to move him from a partienlar spot by the most tempting inducements. The purpose of a faculty which prompts nuen to settle instead of roaming, which latter habit is inconsiatent with agriculture. commerce, and civilization, is olvious; nostalgia, or home-sickness, is tho disease of the feeling. Mr. Combe claims for it, however, a nore extended sphere of action than luve of place-one, at the same time, with which we have alwaye thought love of place may be reconciled. He has observed the oryan large in those who can detain continuously their feelings and ideas in their minds, while the feelings and ileas of others pass away like the images in a mirror, so that they are incspable of taking aystematic viewe of a suhject, or concentrating their powers to hear on one puint. Tho first class of persons, in conversation, continue the same aubject till it is exhrusted, and pasa grarefully to another connected with it: it is painful to runverse with tho others whose unconnected thinking gives us tho netion of what in vulgarly called scatterbrains. Dr. Welsh, and Dr. Hoppe of Copenhagen, unknown to each other, communicated to Mr. Combe their opinion, that the faculty gives the tendency to dwell in a plice, or to durll on feelings and ideus, for a longth of ture, till all, or a majority of the other faculties are satioGied with regard to them. Mr. Combe illustratea a ronfinsed feeling, by the lengthened pauses in the declamstuns of Mrs, Siddons and Mr. John Kemble, in which the audience saw the mental atato prolonged over the Whole interval Wo must content ourselvea with what
we have asid, and refor the reader for proofi and argoments, on either alde, to the works of Mr. Counbe and Dr. Spurrheim. We may, however, observe, that the knowing facultiea may be ateadily directed by auch a power as well as the refiecting. The rope-dancer fixe his eye ateadily on the point, else he would lose hia belance; and the American-Indian rifleman will lie for many hours behind an object which conceals him, with cocked plece, waiting for the uppearance of a hostile head at anme selected point, at which he instantly firea with deadly offect. The organ is stated as only probable, till further facts are obtained.

No. 4.-Adhesiveness.
Thls organ will be olserved en the ongraving of th marked bust to be situated on each side of No. 3; little lower down than No. 3, bu! a little higher up than No. 2, st the middle of the postrior edge of the parietal bone. It was discovered by Dr. Gall, from being found very large, and of the shape as on the bust, in a lady remarkable for the warmth and ateadiness of her friendships; and was observed in so great a number of instances to accompany this propensity, and to be flat or hollow in those who never fermed attachments, that he came to consider it as demonstrated. It attachea men, and even animals to each ether, anl is the foundation of that pleasure which we feel, nat only in beatowing but receiving friendship. It is the faculty which prompts the einbrace and the shake of the hand, and gives the joy of being reunited to friends. Acting in conjunction with Amativeness, it gives constancy and duration to the attachments of the married. Amativences alone will not be found sufficiont for this. Hence the frequent misery of sudden love marriages, as thry are called, founded on that single impulse. The teeling attaches many personm to pets, such as birds, dogn, rabbits, horses, and other animals, especially when combined with Philoprogenitiveneas. With this combination, the girl laviahea carerees on her doll ond on her little companions. Added to Nos. 1, 2, and 3, with which it is in immediate contact and ascertained fibrous ceunection in the brain, it completes what has been called the domestic greup of organg, or the love of apolise, children, home, and the friends of home, as brotherr, sisters, cousins, \&c. These domestic feelings bind the dwallets lunder the same roof to each other faster than chains of brass. The finger of God it here, iensoucisily. effermally, benutifully; for be ham :-able the bonch uet inksome but exquisitely delightful. Eo:ma of our bellade nariress Adtresivenese with much beauty. "luin Rallosen, my jo," and "There's nae luck aboit the houmu when cur gulemsn's awa'," ere must touching examplew. The feeling is strongest in wo:nan. Her frierishids, speaking generally, are more ardent than man's. The faculty is not kindness of benevolence; it is instinctive attachment, often felt by those vicu are nelfish in every thing else-selfish even in their attachments. It is the faculty which prompts man to live in society; and it existence overturne the absurd theory of Rousseau and some others, that man ia solitary, and that mutual intereat alone bring men to congregate with their fillow-men. There are other faculties, the existence of which implies society at much ns the lungs imply atmospheric air, or the eye light: Benevolence, Love of Praise, and Justice, are of the number. It is in this way that a true analysis of the primitive faculties settles, with a word, questions which philosophers ngitated for ages without advancing a step Various animals congregate under the impulse of adhe-sivencss-shecp, pigeons, deer, \&c.; but it should be observed, that pairing for life, or marriage, is net found in oll, though it is in somo of, the congregating suimala M. Viment thinks there is a distinet organ for the marriage adhesivences, forming a part of what haa been assigned to Philoprogenitiveness, on euch side if it Thia
is yet open for further proof. Mr. Stewart and Dr. Brown both admit this faculty of attachment as primitive in our nature, and deecribe it nearly so the phrenologist do Dugs manifeat it very rtrongly. The organ in held to be esteblinhed

No. 5.-Combativenese.

The organ of this propensity in situated behind, and a little upwarda from, the ear; anatomically, at the poste-nnr-inferior angle of the parietal bene. Compare fig. 9, which is an outline of the skull of General Wurmacr, at the organ 5, with fig. 10, that of a Cingalem, at the ame

Fig. 0.

Fig. 10.
organ. No. 12 is the organ of Cautioumess, to he afferwarde treated of. In thia, the difference is reversed between these two heads. Dr. Gall diacovered the orgen by a vaat number of observationa on the heads of individuals whom he observed to be addicted to fighting. Dr. Spuraheim extended it function to contention in ceneral, whether physical or moral. In this view Sir George Mackenzio concurs; and Mr. Robert Cox, in un interenting paper in tho Phrenological Journal (vol. ix. tage 147), endeavourn to ahow it to be of the nature of epposition in general, and terms it opposireaess: The condition of the physical world, full of difficulties and dangers, seems in itself to make it necemanry thut man should posmess a fuculty giving the inpulse to meet boldly, and press vigorously through, such impeliments. In the mingled sceue, also, which forms the mornl world, such an impulse is not less necded. It is easy, therefore, to raconcile with our ideas of divine wistom and goodDess the existence of this vehement quality of our nature, the true intent of which is expressed in the well-known edage of tho Mantuan bard-"Ne cede malis, sed centra andentior ito," [Do not give way to cvils, but go the more daringly ugainst them.] A small endowment of this faculty manifests itself in that over-gentle and indolent character, which is casily aggressed upon, easily repelled by the appearance of difliculty and trouble, and which naturally weeks the shades and eddy-corners of "ife. Na. tions mo organized-the Ilindoos, for example-are easily emquered by others, under whom they naturally siak into a condition more or leas of aervitude. A large aro dowment, on the other land, shows itself in a love of danger for its own sake, a delight in ndventurous military life, and a tendency to bluster, controversy, and turmoils of all kinds. Society calls, no doubt, for all the overaverage endowments of this faculty which exist, to perform its dangerous and difficull work; and we see such endowments rightly directed in the Leonidases, Willaces, Tells, and Waslingtons of history; in Luther, Knox, and the whole tribe of mational reformers; in the Columbuea, De Grmas, Cooks, and Parrya of nautical adventure, and in such professions as that of the fireman, the common mariner, and the lund-clearer of the "far-west." But, being lef free to act, and not being certain always to follow the guidasce of the moral feelinge and intellect, great combativencss often exhibits itself in painful forms -in aggressive war, blustering, bravadoing, outrageoun polemics, and a babit of encountering dangere without any useful end in view. Tho French are much marked an nation by irrationally directed combativeness. Percons with large combativenese may be readily recoznised th private society by their disposition to contradict and wrangle. They challenge the clearest propositions, and tako a pleasure in uunting where everybody else is corsnnced. The generality of boy manifest an active cuinhutiveness in their adventurous apirit, and their dispodition
to fighting, ond to the working of all kinds of petty mischief. To control and guide the propenaity la one of the moat delicate, but alan mont important, dutien of the educator. When combativenew in deranged, we have a violent and noiry, and often a dangeroun putient. Intoxi cation generally affords a great atimulun to it; hence, drunken quarrela and fightinge. The organ is eatablished.

No. 6,-Dealrumiveneas.

This organ is witunted on both midea of the head, immediately over the externai opening of the ear, extending a little forward and backward from it, and rising a trifie above the tup or upper flap of the eur. It corresponds in the lower portion of the aquamous plate of the temporas bonc. When the organ is large, the opening of the eas is depressenl. In fig. It the organ is large; in fig. 12 in ja aninll. Dr. Gall discovered the organ by comparing

Fig. 11.

the skulla of carnivoroue with those of graminivoro": animala, end afterwards by observing the same prom. nence in those of several murderers aent him for exans nation. Dr. Gull, from observing the organ large iv murderers, called it the organ of murder, thus deseribing it from an abuee, a mistuko which gave occasion to a great outcry against his doctrines, and not without enuse. It is still generally considered as giving the impulse to kill and destroy ; but, in man, thia propensity is shown to havo. under the control of tho higher sentiments and intellect, a legitimate aphere of exercise. I'hose roughnesses and dilliculties in the physicul world which have been shown to cull for the exercise of combativencss, that man may not siak under them, aloo appear to call for a faculty which may prompt to tho destroying ot repressing of thein, so that the way may be cleured for tho future. The annoyances and troubles of the moral world call in like manner for a faculty which may bo always endeavouring to put an end to thein. There are many auimate and inanimate things, and mony institutions an I social arrungements, which, though useful for a time, become in the end noxious, and require to be deatroyed: the organ under notice appears to be that which is comnissioned to do this duty. It prompts beasts and birds of prey to keep down the redundant breeds of the lower apimals, and enables man to "kill" that he may "rat." It dictutes tho demolition and clearing away of obstructive objects of all kinds, and prompts Luthers and Miralseus to the extermination of had systems Anger. resentment, and indignution, in all their shaper, likewise spring from this taculty. St. Jaul indicatea its legitinate exercise in this cluss of its manifestations, in the words a Be ye angry and sin not." ITho penalties itnjosed in all civilized communities for offences arise from destruc. tiveness, more or less under the guidance of reason and humano feeling. Blame may be described as a comparatively gentle enotion of destructiveness.

A suall endowinent of this foculty is one of the elements of a "soft" character. Persons so organized seem to want that which gives momentum to humat opelations, liko on axe wanting in lack weight. 'The Ilimboe are deficient in Deatructivenews as well as Combativeness, hence thoir remarkable averweness to the ahedding of bloud, and, in a great measure also, their leing constntity the slaves of other and more energetic nations. 'I'howe, on the other hand, who have a large endownent of Destructivenesa, are generally marked by an energetic, and probably fierce and passionate character. If uncontrolled by mora feelinge naturally strong, or cultivated into activioy ty education, they are apt to be violent und vindicuive liow
and untutore this feeling, at each other, neipleas crea whatover is I gentloman g manifestation active in lia a. Juelling, a who have giv of the facult temperates perputrated but is also so of any such the connmitti could not ue able to restrs the impulse t oggan. P'ras grohally, un disconed stat excellent me alvanced stas refruis from of value near
In a very \mathbf{i} nolagical Jou affecting Des mora than t every pleasu a feeling of g equally tenils Mr. Cox trac each of our f lence and Des Self-eatecm \mathbf{j} we disapmoint var Alimentiv ing lion, and slmost unuroi aruolty presen dhe alarm to clared eneny u) punish the Destructivene allowed a free a bricf interv kindly by its tivencess mor sngry and vi life in genera

The organ blished.

Ali
Some of th pert of the o mentiveness, Love of life wolle, and th number allott

Alimentive In this feelin its functions digestion of o in our desire This desire o iouled; it oft .eding, whic nient to the the sick by tl nouth of the dishes-must

VaL. 1. 3
whe of petty ity in one of duties of Ulim , we have ! ent. Intwi o it: hence, entabliahood.
he head, im. ar, extending rising a trifle rreaponds is the temporn ig of the eat in fig. 12 it y comparing hat he may ing away of Luthers and mas. Anger, pes, likewise its legitimate In the words imposed in fom destruc. (reason and as a coin-
e of the eleanized seem iman opeltThe IIindooe nhativencess, ing of iloud. anstantly the Howe, on the Destructivend protably Iced by mond activivy by
and untutored naturen gensrally allow free exorcise to this feeling, an we may dally see in their hrutal swenring at ench othor, their horrible combata, their cruelty to every nelpleeas creature under their care, and their delight In whatever is mercitess and inhumane. The highlyotrained genteman generally manters the tendency to all such manifeatations, hut often shows the same native quality active in his nature, in polished sarcasm ond invectives, or duelling, and in cold and stately alienation from those who have given him offeuce. Tho most notable abusen of the faculty ia in honicide, a crime which the nimed in a temperate state regards with horror. This act is often perpertated under the inthence of infuriate rasentment, but is ulso sometimes committed without the appearance of any such prompting cause. Men have contessed to the committing of murder under impulser which they could not account for, hut which they wero equally unable to restruin. In thege ensen, we may surmise that toe unpulse took its rise in some murbid action of this organ. Frantic inclination to lireak and smush is also, probally, nu efliet of this organ in an unduly excited or discased atate. There are instances of rational and excellent ment, who, at a particular and by no meuns alvanced stage of intosication, find themsel ves unahie to refrain from lireaking bothes, mirrors, and other artickes of value near them.
In a very ingenious and elaborate paper in the Phrendogical Journal, Mr. Robert Cox haa expounded a law affecting Destructiveness and Benevolence. It is no mare than the common olservation of mankind, that cery pleasure we enjoy tends to goothe and to create a feeling of good will to others; while every amoyance cqually tends to rufle and to produce a feeling of angor. Mr. Cox traces this to a sympathetic action, of which each of our faculties is capalilo with regard to Benevolence and Destructiveness. Are we undervalued?-our selfeatecm instantly awakens the latter faculty. Aro wo lisaplointed of a meal, or even of a favourite dish ?Jur Alimentiveness is equally alert in rousing this slecplag lion, ond a certain exhibition of pettishuess is the almost unavoiduble consequence. Is a secue of wation aruelty presented to our gaze !-our Benevolence sounds the slarm to the faculty which may he termed its declared enemiy and antagouist, and we are all eagernesa up puish the authors of the outrage; and so on. Even Destructivencas itself may be so much pleased by being allowed a free action, that a benevolent feeling may for a bricf interval supersede it, and induce a wish to act kindly by its victims. Were this lawa affecting Destructiveness more gencrally hedd in consideration, many angry and violent scenes might he spared, and social lift in geners! would the much sweetencd.
The organ of Destructiveness ia held to be established.

Alimentiveness, or Appetic for Food.

Some of the recent phrenological works treat, in this part of the order of the faculties, of a faculty of Alimentiveuess, and also of anuther which follows, namely, Love of life. The first being yet no more than probulle, and the second only conjectural, they have no number allotted to them on the bust.
Alinentivenese is tho desire of, or appetite for, food. In this feeling, as such, the stomach is not concerned: its functions are strictly confined to tho reception and digestion of our food. But, that the mind is concorned in our desire of food, is proved by many circmantances. This desire offen continues after the stomach is everinaded; it often prompta to a fuluess and frequency of iteding, which must he in the higheat degree inconvenient to the digesting organ. The mosees created in tha sick by the itea of food-the rush of saliva to the nouth of ihe gourmand. on hearing a description of rich dishes-must alike be the effeet of mental enotiona.

Appetite may be taken away by other organe of the brain being auddenly and atrongly afleeted; ae, for instance, in sudden acceasen of joy, fear, or grief. In these casea, wo may presume that the nervous infuence is ahatracted from the organ ot Alimentiveness to supply the oxtra domand of the othera. Were lesilre anywhere but in the brain, there could be no permanent character in individuals, as the glution, the epleure, the abstemious. Tho stomach alone could make no auch dimeriminationes. Satisfled that appectite in a mental faculty, phrenologita have long been looking for its organ. Dr. Hoppe of Copenhagen was the firat to obwerve, in those who manifested remarkably the gournand or glatton, a fulnesa in front of Destructivenesa, in the foza zygnmatica, between the top of the ear and the temple. Its place is marked by n cross t on the aide view of the bust. Many phrenologista have confirmed this by observation. The convotution is developed in the base of the brain farthez in than that of Destructiveneas; but it la believed that it also showa itself by contact with the cravium at the point now deseribed. A phrenologist once naw it obviously large in the head of a stranger who sat opposite to him in the saloon of a steamship goiug to London. Ho resolved to olserve the individual's manifestations; whenever he beard the gentleman ypeaking, it wan about excellent dinuers and cookery, while his practice was cating and driaking, with short intervals, all hia waking hours. Tho propensity is sulject to insane action, one of the atrongest proofs of ita being a primitive faculty of snind. Voracity and insatiableness, far beyond the stomach's natural espacity, or the natural want, are then often the conaequences. A patient in the Infirmary of Edinburgh was permitted, by way of experiment on the cupacity of the stomach, to ent for six hours without ntopping. He dechured in a state of delirium, that neverthcless he was dying with hunger. His delirious "ry was "Hunger! hunger! hunger!" Ho complained of poin in the spot where Dr. Hoppo observed the development of the organs, and nowhere else. Mr. Sydney Smith states, that a patient in the same circumstances was blooded with lecchea at the same apot, and thereby relieved. M. Descuret mentions a woman in the Sulpetriciro, who ate the allowances of fifteen persons, and was always stealing bread and meat; when prevented she had recourse to raw vegetalies, planta, and roots, and poisoned herself by devouring ranunculuses. Alimentiveness, from its near neighhourhood to Destructivences, seems to have a peculing influence on that faculty, rousing it to great energy when its own enjoyments are endangered or interrupted. It ia not horsen, dogs, and wild beasts alone, which aro dangorous when feeding. The organ of Aequisitivences in also clowo to this aupposed orgsn. Mr. Simpson observed the organ of Alimentiveness very lurge Acquisitiveness, w.i 'raid periodical fits of indincriminate then ; and expeceng that Alimentiveness might probably be active at the same time, asked the question, and was answered, that the young man'a friends knew when to look after his stenling propenaity by heing forewarned by his inordinate voracity. The function of thin faculty is obvious from ita ohject, nanely, food suitable to the palate and digestion, and its end the preservation of the individual. In diseased aco tion it is discriminating, as in the case of the devourer of ranunculuses; but when acting in health, it discriminates the food which is desirable, and rejects other substances. It has heen said that unimals are casily poisoned; this is true, but it is ulways ly disguising the poison in the food which their alimentive faculty espeo cinlly kelects. The chick just out of the egreshell picke up crumbs and seeds, but rejects pebbles and sand; ond the new-lom child, without the power of relieving any other pain. if all the medicines known wore placed j within its reach, instant!y relieves the pain of hubger
by applying its lipa to the nipple and draining its mother's hreast. Stimulating liquore are aupponed to pleame thin organ, wo as to conathute it the organ of drinking as well as of eating. Hence the prevailing couclusion that drunkenness is a functioual, if not an organic, disease! and in Ainerica, as well as this country, it has been treated as sucls. Pobsceo nend ophum are believed to tee craviugs of thia orgnu; but nuch ols eorvation is called for before phrenologista can apeak poaitively on the aubject. No attention bus bren piid to the proper training of this faculty in edheation. It natural activity in the young, their bolies demanaling much food, has been too mucli parmpered and indulged, to the great injury of both health and character in after life. Gilutony and drunkenuesw stimulate the other nuimal organe, and hence the licentiounnesu of glutions and drunkardo-hence, too, their crimes. Inannity in onc of the orilinary effecta of atarvation. The organ may now be said to be advanced from conjectural to probable.

l.ove of Life.

The melf-premervation involved in the love of lifo in certainly not accounted for by any known orgnu or combination of organa. Cautiouamean is fear of injury: fear of death; but it in not love of life. This feeling in powerfully manifested by somo when their lifo is in no danger, hut who look upon the close of life an a very great ovil. Others are mo iudifierent on tho subject, na ecurcely to care whether they live or die, but for the diaagreeatle effect the contemplation of death has upon their other faculties-such an leaving children unprovided, \&c. Mr. Combe thiuka thint the organ is situated in the base of the brailu, and that ita development cannot be awectuined on the akull during life. Dr. Andrew Combe had a patient whose constant theme was ber love of life, and her unwillingness to part with it. After her death he maw the bruin, and sisgerved nu enormoun development of one convolution it the base of the midalle lobe of the brain, lying towarda the midale line, farther in than both Destructiveness and Alimentiveness. The lase of the akull presented au uncommonly decp groove, in which the convolution lay. Tho Scottish phrenologisth wait for further olservation before coming to any conclusion on this supposed organ. The Prench phrenologists think they have discovered the organ immediately above the aphenoid houe; but their facts are too few and uncertain to be philosophically founded apon.

No. 7.-Recretivgnesm.

The order of this faculty will he ohserved, by its number on the buat, to be nitunted immedintely ahove that of Destructiveneas, at the inferior edge of the pariotal hones, or in the middle of the side of the brain. Dr. Gall observed this fulness in one of his companions remarkable for finesse and cunning, and for its aly oxpression. He observed it in another companion, whose gait and manner were those of a cat watehing a mouse. The first companion was honeat, and only deceived for aport; the other, however, being deficient in moral reotraint, turned out perfidious, and dereived hin companions, his tutors, and his parents. Onc of Gall'a pitienta, who p ssseamed a large endowment of the organ, continued through life to deceive the world as to :is real character; but his alfairs on his drath proved that he lad been extensively frandulent. Dr. Gall cites many other inatances of decei'ful and ennning characters, all showing the saise development. An immense number of ohmervations have ennfirmed tho solundness of Dr. (iall's conclusions with regard to the function of this organ. The legitimate use of the faculty is to exercine that coutrol over the outward manifestation of the other meulties, which is necessury to a prudent reserve. Without it, and of course, in those in whom the organ

In small and the manifentation weak, the foelings expme theineelven too openly. Such individuala "wewr thets heartu upon their sleeves, for dawn to peck at." They are too open and unsumpecting, and often all grod tamin and propriety are loat sight of by them, in the expoure of their feelinga. Bociety would be linaupportable were there no mecretivenean. There is an namaing fairy tale called The Palice of Truch, designed to alow how truly this in the case. We may consider mecretivenes an an lustinct to concent the frelings or thoughta, till reason showa it to be prudeut to declare them. Thia control evidently was not left to reason alone, whom judement would have proved too alow tor the end in. teuded. Concealinent in given to animala to enable them both to avoid and to prey upon each otimer. Many animuin owe their mafety from thir dentroyern to their cunning; while to othera is given that quatity to steal upon their prey unperceived; such ta the fon, the ent the tiger, \&e. Mr. William Nocot, in an essay in the phrsuntugiral Trnmaartions, han thrown murh light on the functions of this organ. 'The mecretive, he remarka are alwnya oceupied with prying into the thourhts and motives of othere, while thry nre closely veiling theit own. The character of Louis XI., an drawn in ferentin Durverril, is of the "calm und crafly" desweription; he usel to may, that if his enf) knew his secrets, he would throw it linto the firc. Such are the intriguing politicinns of the old, nad yet too mucls of the modern school, who inistake rumniug for wistorn.
In aluse, the faculty leads to lyiug, hyporriny, and fraud. When arting with Acyuisitiveneas, it forma the thicf, cheat, and swiutler. The orgun is almont alway fombl large in these persous; and they have lisen known to say that they have great plenaure in the secretive part of thicir penfesaion. All ruses nul stratagema are exei cises of secretiveness. The faculty, in combination with the Love of Approbation, occusions much of the hypocrtical insincerity of civilized society. It ia, nceording to Mr. Scotin view, the hasis of that form of the ludierous called humour, manely, concealing tho mirth which is In ono's own lireast, and with a grave countenance and manuer wetting the table in a roar. The netor must possess the organ largely, if for no other purpose than to preserve his grnvity while his nudience is laughing; hut atill more to conjure down his nuturnl farculties, that lic may nsaume those of the character ho playa. Mr. Scott illota both effirts to Secretiveness; whilo Mr. Compe, with more truth, limita Secretiveness to the cencenlment of the actor's own natural feelings, while the positive art of imitating those of his part must be the resmlt of Imitation. Accordiugly, in all great actora both Secrectivenese nall Initation nre large. To such an oxtent is Serretiveures carricel in the practice of malin. greine, as pretending sickness is called in the army and havy, that incredillo tortures have luen sulmitted to without a wince. In auch cases, Firmuess, of coume, nida Secretivenese.
We are indebted to Mr. Richned Carmichael of Dub lin. for a report of the singular case of A mine Ross. Tlis girl, to gain the favour and charity of some pious Inclies, thruat needlen into her nrm to promuce disease, and went the length of auhnitting to amputation without revealing the truth. On disseeting of the arin, the needtes were found, a circmustance which njpeared to distress her much more than the loss of het srm. Me Combe saw this extraordinary girl in Dublin, anth founa both Secretivenene and Firmiess large in her head. He mupposes that the power of cuduring torture, withuat the expression of pain, which is the !oast of the Nurth American Indians, is the result of these two ficultiens which are found large in all the akulls of that race is the museum of the Phrenological Socioty of Edinburgh

The Hindoon their akutli, by in much m organ in antrje difficult to de in plota and colamon with tiveneas nugl latal, nad th wimoten. Th Mlisherd.
'I he orgnn than, and a 1 inferior augle perehtral orga portion in alizi queration of tt and net, as \mathbf{H} the natural re of matify ing aniual before pular metuph ting too many -at he did w prop naity in the phrenolo and cails it "4 alone exphain ever putting physicinus ably gratificatio, n trates this ol character of ' very essence. nature, is a d pone of applis Dr. Gull ili was a comino of persons of rouraging the tural and un in each group and theso we this line. A vone that ntha ent in the large, thowe maliun indiv the deaf and physician, he pensity, with he dill, house argin alwny led to call it prinitive func one of ith gre ceptions with
The facult eally conld, grovelling, a consider it a greatest utilit whose impul are rendered facully, min although eve which, under to the store o tion to gener gulation, the man; by mea nothing may
celings exprone dif "wewr theis ck at." They all go od tanta , in the expo insupportable munusing falry I to mhow how secretivenem thoughte, till I them. Thin 1 alone, who or the end in. rala to cnable othor. Many truyern to their quality to steal c fox, the rath n essay in the nuch light on e, lie remarkn, c thoushts and y veiling theit wive in (ementin leseription; be rets, he would triguing politimoilern school,
hypocrisy, and ss, it forma the almost alway ve been known , necretive part gems aro exe. mlination with of the hypociin, necording to f the ludicrous mirtlı which is tuntentince and he artor must purpose than - is laughing; 1 tacultics, that 1e plays. Mr. s: while Mr. fres to the conngh, while the rt lilust he the cat artors hoth 'J'o such an tice of malin. the army and submitted to '8s, of course,
chael of Dub Anme Rose" of nome piour orluce disease, putation withf the arm, the (1) apleared to het arm. Mr iii, al.il founa her head. Ile ture, without of the North two faculties, f that race in of Edinhurgh

The Hindoos are cunning, and Becretivencea la large in their akulla, in the aame colloction, and proved to be wo by much more extensive olsservation in India. The organ in aubject to disense, and the cunning insane are difficult to deal with. Dineane here leatn to the belief in plote and conapiracies formed agninat the patient, wo columon with the inanne. The manifentation of Secretivencas ought to be watelied in education, and reguintad, nad the maxim limpressed, that cunning in not winlom. The organ is held by phrenologiats to be eatahiahed.

No. 8-Aequmilivenpss.

'I he organ of this faculty is sitnated farther forward than, and a little shove, Secretivenena, at the anterlorinferior angle of the parictul bone. The exintence of a erucbral organ for the lesire of property, benring a propotion in size to the degree of that dealre, deciden the quation of the foeling heing a primitive animal power, and not, an Hutchemon, Stewart, and Brown have held it, the natural result of calculation, wealth being the meana of wratifying ali our other inclinationa. Man feels an an animal before he'reusons. Loord Kamee, whom the regular metuphysiciana of his time considered as admitting too many facultiea, takea, ly angacious onticipation -at lo did when he recognised a hunting and killing propunsity in man, phrenologically Deatructivenessthe phrenological view of Acquisitiveuesa as primitive, and cails it "the hoarding appetite." This theory of it aloue expluins the miser's desire to accumulate, without ever putiong his wealth to the use required by the mictaphyaicians niowe named, the purchase of enjoyment. the gratificution of the other ficulties, Mr. Combe illuse trates this blind passion for wenlth by alluding to the character of 'I'raptrois in The Fortmes of Nircl. The very essence, he ааул, of this charucter, which is truc to nature, is a demiro for wealth, incirpendent of overy pirpose of appliration.

Dr. Gall discovered the argan by rearting to what was a conmon practice with him, collecting a number of persons of the tower ordera in his house, and encouraging them to the ferest manifestation of their natural and unregulated instinets. Ho found that some finearh group were chararterized by the reat as thieven, and these were geuerally prond to avow their skill in this line. Anong his very promiscuous visiters were eome that nhborret theft, nill others who were indifferent in the matter. He found the thinves with the organ large, those who abhorred theft with it sunall, and the madiun individuals with a nedium development. Anong the deaf and dunb of an institution which he served an plysician, he found some who showed the thicving propensity, with the correaponling organ. Visiting, as he dil, houses of correction and prisons, he found the organ nlways large in thieves; and was unfortunately led to call it the organ of Theft, thus deacribing not the primitive function or legitionate use of the facsilty, but one of ita greatest abuses, and raising atrange misconceptions with respert to his system of mind.
The faculty of Actuisitiveness could not, and no faeulty could, he given to man by his Creator for a mean, grovelling, and immoral use; accordingly, when we consider it aright, we recognise in it the dignity of the greatest utility. In a word, it is the faculty throngh whose impulse man aceumulates capital, and nations are rendered rich, great, and powerful. Without the faculty, man would be content to satisfy hia daily wants, althongh even in this lie would fail; but the surplus which, uniler the impulae, of thin fuenlty, he contributes to the store of wealth which accumulates from generation to generation, would not exist. Under proper regulation, then, the farulty is of the greatent value to man; hy means of it he "gathers up the frngments, that nothing nay be lost." Excessive pursurt of wealth is,
hownver, an al une of the faculty, and too much the viee of civilixation, when it advances, an it haw hitherto, dons, without adequate noral improvament. This ahame withera up every generoun purpone, perverts the i.sollect itaelf, and in a grand national evil. This country, at ita preaent atage of progrean, auticra from thie albue of Acquinitivenems. So, according to Mr. Combe, doen America." When aceumulation hecomes a pasmion in the trader, there in no end to it: it is necessary to his happinesp, and hence one elemeut of the ennu: and regret of the retired tralenman or merchant.

The faculty in often diseased, no that those who are Insane in thin organ, without any temptation ariaing from their circumatances, which are oflen above want, and even prosperous, pilfer every thing of value, and often of no value, which comes in their wny. Mony incorrigible thievea in lower life, on whom the puniahmente of the law fail to have any effect, are disessed in thia organ. Phrenology la daily demonatrating that many aupposed criminala are In truth patienta; and a more enlightened and henevolent syatem of criminal treatment, froin which the element of vengeance shall be excluded, will in time come to deal with them as auch. When treating of alimentiveneas, we mentloned the case of a young man, the mon of a man of fortune, who was suljeet to fits of veracily and steuling aimulteneonaly; the following is an account of his case:- An English gentleman, aged nineteen, and his tutor, aclergyman, reguested that the development of the former should ha taken, which wan done by Mr. Simpson, and afterwards confirmed by four other phrensiogists. General size of hend, considerahle; anterior lobe, large; temperament, two parta sanguine, two nervous, and one Jymphatic. Development irregular and unuaual. (Here followa an estimate of the organa, of which it is enough to shy, that Amativenesa, Philoprogenitiveness, and Acquisitiveness, nre large, and Belfeesteen, Benevolence, and Veneration, very largo-the two last unuaually no.) Ho had been rickety, acrofulous, and unable to walk alone until six yeara. His feelings were always, as his tutorexpressed it, 'at high pressure.' Knowing that the impulses were thus strong, Mr. Simpson considered the enso as one of a certnin degree of derangement. He infirred that all that cluss of facultien, called the Feclinge, would act with a force beyond the control of the individual. The tutor was mach struck with the question, Doea your pupil approprinte articles that do not belong to hion?" And the answer wan given that he had been forced to quit a great public educational inatitution for deterted theft, committed both in shopa and houses. Mr. S. then inquired respecting vicious manifestation of another of the propensities, and received, as in the former case, a strikingly affirmative nnawer. - Did fita of morarity in food over show themselves ?' Answer. The three vires acted simultaneously, so that the others had to he watched when the voracity appeared. Mr, S, then observed to the tutor that hia pupil wra a patient, not a criminal. Yet, wherever he had turned, he had seen hostile society, and even legal vengeance; the walls of the late place of his study were chalked with his disgrace, and prosecution threatened by tradesmen. The present was the first time that his tutor had heard him humanely sheltered as an irresponsible being, visited with disease by his Maker's hand. The organization of the young man indicated great kindness of heart, which, his tutor said, was manifested at any expense of personal lahour ; great tenderness in children; end, what was most to his tutor's content ardent devotional sentiments and active religious habits. Of course, all who knew the fatal propensity of theft to which the young man whe subject, set his religion down to gross and disgusting hypocriay. Phrenology tenchee

[^25]
INFORMATION FOR TIIE PLOPLE.

that such religious firelingw, when mere frelings, an they are If umlirected hy intelleet, are impulaps puite as real en the acquisitive propenaity itwelf. Flying froun prosecution and permecution, withont one friendly hand held out to him, aive that of his kimidheartod tutor sind a few plous permone who prayed over himi in vain, the outcast comes at lant, at the dintance of hundrecta of milles from nia forbiditen home, into contact will the dinelplea of a new and ignorantly-deapised philomophy of man, by whons his cane is at once understonel and explained, and a mearan pointed out for him cure." We may mhlid, from our own knowledge, that, at the nuggeation of those who had judged of hin cams, the young mun wna bouried in the conntry, with a mueh larger peenniary allowance than him relatione at firnt inteculed for ome whom they ignorantly held a dingruce to them; that he graduntly recovered his hrallh, wan relpamed from his bul habita, and is again of sound mind and correct conduct.

Tho periodical recurrence of diseame in Aequinitiveneas is a curioun fact. The young man juat alluderl to wan nulject to auch fits, and many uther iuntuncen nre detailed in the workn of the phrmoluginta. Dr. Ginil cites four canes of women, who, in their orilinary atate, had no stenliug tendency, hut manifiosted it in the mont marked, and, to those arouml then, unaccountable manner, when In a wate of pregmancy: the train at that orgnn, or its meighbourhond, muat have been subjected b) emme morhid over-excitement during the peenliar condition of the ayntem whirh pregnancy induces.
A variety of the iaferior animula maniferst the senme of property, and wome of them of arrumulation. It is a mintake to say that human lawe estaldisish property; a naturnl propenxity does thia, and laws becone necensary to protect it. The orgun is establiwhed.

No. 9.-Conaructivenes.

The aituntion of this organ is imureliately behind the vemples, in the frontal bone, nbove the apheno-tumpural suture. It is monetimen found higher up than ita usual powition; but a littlo practice familiarizes the ohmerver with ita appearance. The temporal mumele, which varica in thickness, thrown mone difticulty in the way of ascortaining this organ and nlwo that of Acquisitivences. This thickness can be felt in the living sulbject, while the lower jaw in moved, and itw dicknens may be allowed for ; which cannot he done in a plaster cast. The dilifulty in removed when the cast is taken, nut from the head with the integumente, but from the skull. 'The faculty of which this organ in the instrument, is the power of mechanically making, conatructing, ard fashloning, by changing the forms of matcer. Many of the inferior animals poseses it, wa the bre, the beaver, Eirim, and insecta. Some savages have it in such small endowiments an never to have built huts of made clothen, or even the nimplest inatruments for eatehing fish. Such are the New Ilollandere, in whom the organ appears very alightly developed. Dra. Gall and Spurzheim verified thin organ by a vast number of inatancera-in mechunicians, architecta, designera, sculptors, and even painters. Indeed, the concomitance is so constant as to be a tent of the fiticess of individuals to be devoted to those branches of art. It is carily observel. and the student may verify it for himsolf In the easts of the arada of the celcbrated Branell, me inventor of the H:rk-marhinery and engine work of the 'Ilames tunnel, Gin W. Herachell, the painters Inyiton, Wilkie, and $^{\text {W }}$ Willia ms, it is remarkably lares. In all opentives who exrel in their art-engravers, joiners, tailors, \&ce. and ir. children who earty manifist a turn for drawing figurem, sind cutting them out in paper, the organ is large. Naturnlly the French, and atill more the Italians, are more construcuve than the English; yet, with the cid of capital, the division of labour, and other favourable
circumatancera, the Einglinh actually arn the greateo manufiseturing, in other worda, conntruetive, mepple is the world. Wiso theme advintages trausferred to France and Italy, a grenter prevalence of the facility would make It more eany to procure akilful hamita. The metapliymo cians do not recognine a prinilive ficenty for Conatiuo tivenem, hat commiler meshaniral akill to bo the trault of renam. Thin in an error, which the slighteat olnete vation contrailicta, Were it true, the nuost angacioue aninala would the the mont conatruetive ; yet the horee, the dog, the elephant, never construct; while the lwe, the benver, mul many lifeds and linecta, perfinm worke, by this hatinet, which exeite our wonler. Veiy : iung chilidren, long before renaen could anaint them, have mat nifiouted profleien'y in making mackela, Irawhan, cutting with mejinuss, Asf.i und a tulent for mechanien, offen nmounting tos a pameion, turning, clock-making, lock. making, has lieen fouml in juigen, atatewmen, noblem, anal event priseren. 'This talent in ofen ponsemed in a high degree hy men of very moderate and even inferior rellective prowers; while sone men of a great intellectual atmudard have been unable to make n p wn. The primitive character of the linculty in proved hy the poses being offen ao much increased by inmanity, in to apprat to le reated ly it, Idiota are offen akilful constructera, witness many of the Cretinn of the Alpa. Intellect is, however, important to the range, variety, and appliza. tien of human Conatroctivernens; while the Cenatruco tivenesy of the inferior animala ia limited to one invariable rosult.

The une of this farculty in obvioun. Physical nature consints of raw material, in acurecly niny instance fitted for the convenience and accomnoolation of man Constructivenfas prompta him to form nuel fashion; and ho continuen to do mo, advaneing-which the inferier mimala never do-from building the rule wigwann and miking the stone hatehet, up to nehieving the palace, the stemm-fugine, nul the cottom-npinving macline Man was held by Franklin to the the ouly tool-making animal; unlike the other nnimnlm, he runatructe tools to apply to further oljects of ronstruction. Mr. Rirhard Edmouson, of Manchester, in an ingenious puper in the Phrenolugical Jutronal (vol. ix. p. 624), while he ailmita thin orgnn to he that of the impulse and power to construct, form, nul tashion, suguents that, iunsmuch as wo camut construct, form, and fiashion, without a nice perecption of the application of the requisite force, it is therefore the organ of the faculty, which must exist, for the applieation of forre in romiteraction of mechanical renstanure. He cites many enaes in ronfirmation of this view. If he he corrert, the function of the faculty must he much exteraled, for all animala nilly force to antagonize resistunce in many wny, without cither constructing or fashioning. We sinail, in the neyucl, be brought bark to this subject. The orgnu of Construc. tiveness is establinhed.

genus II-SENTIMFNTS

Mr. Combe introlures this brunch of the subjict thus:-"'lhis genus of faculties embraces certain fictings which rorrespond to the 'cmotions' of the metaphysicisis. 'Thry ditfier from intellectual perception in being accompanied with a peculiar vividness, wheh every one unilerstands, but which it is impossihle to exprese by any verhal detinition. 'Iloy may be excited by the presentiment of the external objecta naturally related to them, as danger is to fear, or angust apprarances to reverence, or ly the spontaneous artivity of the organs Dr. Spurhein has named these faculties Sentments, breause they prolnce nin pomotion or ferling of a certain kind, joinell with a propensity to act ; but, as slowno in the Appendix No. Il., the detail of his classification is
here hy no m in man and man. The ments, whall ferred to by ment of wn Phrenningical denverita to properaitien clinationa : menta have . go farther or pansideration not excepting sity to net at will not dint! frutign for hlis tuphyaical del
f. AENTIMEN

The altunth the head, at th turn between It is a little pariatal bonea ward and hact organ. It la (iall firat ohar This man laa labour for his that pride col postively aver cending to in and living in Gall, and foun men. He cite urgan and ma

called to consu his seniora, and all orcasions. eightesn, who When she sp pressed in her little backw pride. Althou ciate only with Gall found the prile was a lcgitimnte use is that degree pleasures of 1 dence in his ou the best advnan ar self-rospect, in resisting ten is called being mean action. humble, an! t

the greatoes

 re, poople in red to Prance woulil nake e metuphysin for Conatruo be the result glitest olinet. oat sagacious yet the horne, hile the hee, rfinm work, Very : inng em, have ma. whing. cutting hanich, often naking, bock. menen, nublien, озмемитd in a even tuferior reat intellese a jnin. The by the powes , as to trpeat constructora, Intellest in, and applisa he Colistruc o one invari-yywical nature iny instance ution of man fashion f mid the inferint wigwoma and g the palace, ing machine tool-making truects tools to Mr. Richard puper in the rile he oulmits power to empo inmuch as we ut a nice per. c firce, it is lust exist, for f merhanical nation of this ficulty must orre to anta. t rither cone nequel, bo of Construc.
the sulfiges certain fielof the metaserception in oese, which msilite to ex. we exeited by trally rilated furarances to the organs Sentuments, of a certain as shown in sification in

Weep ty no means accurate. Several of them are common to man and the lower animalis; othera are peculine to man. The former, atyled the Inferior or Jower Sentiments, shall be firat treated of." The argument referred to by Mr. Combe in him appendix, in an abrilgment of an ingeniens paper hy Mr, Rohert Cox, in the Fhrenningical Journol (vol. x. p. 154), in which he endeavours to show that, on the one hand, several of the prapensitien are acrompanied by emotions as well an inelinations : ast, and, on the other, several of the eenif. menta have ikewise loth qualitiea, We are incllued to go farther even than Mr. Cex, and to sulmit for the connideration of phrenologinas, whether all the farmotien, not excepting the intellcrtual, have not hoth a propensity to act and an emotion. At prement, however, we will not liaturb the old arrangenent. The reader will juitge for himaself: Murh is yet to be done in the metuphynical departunent of the subject.

1. Bentimente common to man and the lower animala.

No, to - S_{r} tf-Fintenm.

The aituation of this organ is at the top of the back of the heall, at the centre; furming, as it were, the curve or turn between the back and top of the head. 'Techuicully, it in a little ahove the poaterior or angittal nugle of the parietal bonea. When it in large, the bead rises far upward and backward from the enr, in the direction of the organ. It is large in fig. 13 and manall in fig. 14. Dr. Gall first observed the organ in the head of a heggar. This man had spent a fortune, nnit was too prond to habour for his hread. De. Gall loug heritated to believe that pride could stoop to leggging; but the individual pasitively averred that hin sense of degratation in conilegeembing to lahour was much greater than in hegging and living in lilleness. The orgun was noted by Dr. Gall, and found by hims large in a grent number of prond men. He cites many instances of this courcomitance of urgan and manifetation. A physiciun of Vienna, when

Fig. 13.
Fig. 14.
called to consultations, ulwaya put himself beforo oven his seniors, and insisted on placing his signature first on all orcations. At Heilellierg, Dr. Gall saw a girl of eighteen, who could not bear a worl of familiarity. When sho sjocke, assurance and presumption were expreseel in her featurea. She carried her head high and a little benckards, and all her movements expressed pride. Aldhough of humble rank, sho contrived to ansociato only with persons of rank auperior to her own. Dr. Gall found the organ large in chiefs of brigurds, whose prite was a main canse of their had eminentes. The legitimate use of tho thatuly of Self.Esterm, or Self-Love, is that degree of self-complacency which enhances the pleasures of life, and which gives the individual contidence in his own powers, and leads him to apply them to the lest advantage. It is sometimes callell proper pride, or seiffrespect, in which form it nids the moral sentiments in revisting temptations to vice und self-degradation: this is catled being aloer doing a criminal, a vicious, or a mean action. Ita deficiency renders an imlisidual too bumble, and tho world take him at his word, and push
him autife. In large and uneontrolied ende mment, it proclucea great abuye, and cansei mukh annoyance ana often mimery to othera. Is in the quarrelling, innulting, ilo mineering tyramiziug, duelling faculy. In chliliren it is pettishuesa, forwarinem, and melf-will, and produces dinohedience. It adulte, it given arrogance, suppercliousnema, anil mellontnema. In nationa, the feeling ahowa itevelf in national pride and boastlug. It charncterizes nearly all, if not all nations, evory one conclutings itwelf the mont meritorious, if not the greateat people on earth. This proluces reptempt of other nations, and leala to internatimal jealiusien sund hatreda, the origho of almont all the wara that have dingraced and ileolated the worth. It in not loug since, in linghum, the young were truined up to call the E'ruch people their "natural enemion !" The (ireeka and Rouman seyled all other nationa murharians, and the Chincse do the same at thin day. The vainglorious recorda und anniversaries of our hatiles, the exultations beculse of our martial prowem, our illuminationa, and our very Te Deuma, are all the oflapring of Self. Jisterm. It occupies the inalividual so intensely with melf, that he ia insensille to all interents but his owns every thing is neen by hiln through the medium of nelf. The first thought, when a proposal is mach, is, "How will this nffect me?" Love of Approhation in ofen useful by suljectlug the indivilual to some degree of dependence on the opinion of othera, to molerate the intensity, the exclusiveness, of Solf.Emterm. Without this counterpoise, the selfentcening person becomea a welferected atandured of opinioun, manoers, and morala. It has leen obnerved, that prouil men often merry beneath their runk; less, we think, berause they do not like to riwk the mertification of refunal in their own rank, for they to not think it possifle, but that they do not conceive that any thing which they may please to do can he degrading. These are your solemis men, your "Sir Oracles," who, mistaking, ns they ofen the, the mere bitul feeling of selfexaltation for talent and geniun, speak forth the merest twadillo with a solemn emphatis extremely ludierons to thowo who seo its nothingures. But every thing that romes from a person of such setfimportance must he admirable. Accompanying this high apprecintion of aelf, wo generally find depreciation of nthers. This is the havis of sensoriousness and invidionsurss. Disenssions of charneter, with vilifying remarks, come from a large Self.Esterem and that want of candour nad finirness which in the result of an inferior entlowment of Couscientiousness. Envy, which incluter hatred, is KelfeFaterm rousing Destructiveness; with doficient Benevalence and Conscientiousnesa, the envioun coubl injure a fortonate individunl merely because of his loetter fortunc. It is a moxlification of inviliouancss, uthough directed ngainst thingg and not persons, to affect to undervilue every thing one sees- f other wordh, neves serm plewaed-in orter to reup from this jeetty exhibition a fincied consequemee, extremely gratifying to a largo and active Self-Estecm. This character in satirized by Voltuire, who makes Candide nnively exclaim, "What a greut man that Pococuranté must be-nothing can please him." Never lit the truth be forgotten, that the abuset of Surf-Eifterem. nud nlso of Love of Approbation, invariably thent their own end; they lower, but never exalt, the indisidual. Tlie fieling magnifiea not only self, but all that helougs to self. A valgar Self.Eateem prompta the individual to dilate upon the excellence of " m hy horse, my gun, my yarht, my house," merely hecause they are his. Mr. Cumbe states, that an mininent phrenologiat sailed passenger with a enptain in whose head he saw the organ very large, and Reflection and Conscientiouness deficient. His manifestations were in accorlance. His ship, which he thought a very orlinary vessel before it was his, "hecame the first of Sel-boata" when it became his. He himetf was the most powerful of captaina dictatorially telling hia passengera that he would send them
befors the mast, and speaking always of himself. The phrenclogist observing that the organ of Cautiousness was large in a petty tyrant, dexterously used it as a counterworking engine, and in his turn ruled the ruler. A large Self-Esteen renders its possessors what is called touchyimpatient of reproof, and irritated by it, however just, as if it were a positive injury. The cause of reproof in misconduct of their own, however marked to every one else, gees for nothing with, or rather is never admitted by, themselves. They are of course never in the wrong, that 5 impossible; and however they may have ly some act injured others, to be even told that they have, is an injury which they deeply resent. They are alwnys themselves in such cases the injured party. A loud and clamorous announcement of this is sometimes resorted to by the secretive and unconscientivus, in order to avert the legitimate resentment of the really injured party. Yet as Self-Esteem is almost in every one a strong and also a tende: feeling, it ought to be one of our earliest, longestcontinucd, and moat carnextly-pressed exercises, to moderate its manifestations in ourselves, and treat it tenderly in others. The greater part of real politeness, and of its external manner, consists of an effiort to reduce, outwardly at least, our own self-estimation ond our general aelfishness, and pay homage to, or treat delicately, these feelinga in others. In lus society, the radeuress and coa:senoss which work the most annoyance, are nothing else but an unregulated contest of the self-esteem of the individuals for temporary ascendency; and to this may to traced the quarrels and blows with which, in that cociety, even convivial meetings arc often disfigured. Yet the refined visiters of the drawing-roon, and the brawlers in the pot-house, are the same leings; only the one class reatrain, while the other gives free vent to, Self-Esteem, and yet lower propensities. Intoxiration, in sume individuals, increases the activity of Self-Esteem. This was Iudicruasly experienced ly a person who, when negotiating for the purchase of a horse, thought, by giving lityur to its cuner, to find him more easity dealt with in his inebriety. He succeeded only in rendering hin utterly in.practicable. His horse rose above all price, and he resented as an insult the very proposal of the ether to buy it. Tho selfesteeming indsidual usea the capital I, with me, mine, myself, and other correlatives, with great emphasis and abundance, both in discourse and writing. There is a joke ugainst an author of this stamp, that, doring the printing of a work of his, the press was stupjed till the printer could get a fresh stock of capital I's. Cobbett was an example; his Self-Esteem and Combativeness led him to dogmatize quite as confidently crery time-and the times ware many-that he changed his opinions, as he had dome before the change. Atl patronizers are self-esteeming and benevolent men. You will know them by such modes of address as "My good sir""My good fellow"-"Mark my words"-."That's my maxim," \&c. Mr. Scott contributed an amusing paper to the Phenological Journal (vol. i. p. 378), of great value, in whic: he shows the effects of self. Esteem in combination with various other faculties. A small endownent of this faculty is exceedingly rarc. A large endowment leads to a wish for selfish and exelusive pleasure. This feeling will be observed in children who value some inJulgence the more that their brothers and sisters are not to share in it. Proper training would prevent this paltry and most unamiable manifietation; and likewise lead perhaps to less of that molification of selfishness seen in adults in the ambition of possessing tunyws. Such persons have been known to purchase a duplicate, if they heard of the existence of one, in orler to destroy it, and then boast f being the sole porsessor of the article in the world Parks and pulaces are kept shat againat the pullic by the asme pitiful appirit. SelfEnteem givea love of power and dislhe of power in whers Hence the moturious fact, that many viotent
republicans have become, when veated with pwwer, the greatest tyrants. A due proportion of the feeling, naw. ever, is essential to independence in a people. The English have it lurge.*
Self-Fsteem has a marked natural language. When powerful, the head is carried high, and reclining backwards, an attitude well known to atage kings and lordh. The monner is cold, haughty, and repulaive; and two self-eateeming persons meeting, repel each other like the similar poles of magnets. Dr. Reid and Mr. Stewart acknowledgo this sentiment, under the name of the Desire of Power. Dr. Thomas Brown calls it Prite. It is evident that these are narrow and partial views of tha feeling-one or two only of its manifestations, phrenology alone has brought out all its phases. The crgan and feeling are opparently possessed by some of the inferior animals, such as the turkey-cock, pea-cock, horse, \&e. Lord Kames observed that the "master-ox" must have the lead, else he will not work. A cow of a herd ro fused to cuter the cowhonse, if the others went in first; when this happened, they were tumed out, and she then walked in nad otcupied her stall.
Self-Esteem is found insane perhaps more than any other fuculty, and then shows itself in extravagant notions of self-importance. Such maniacs are kings, emperors, and even the Supreme Being. Pinel mentions many such patients: one man under his care helteved himself to be the Prophet Mahomet, and moved nhout with the most dignified majesty. When camuons fired, he believed it was on his own account. In the great Hospital of St. Gcorge's Fields, there were at one and the same time several George the Fourths. The organ is generally larger in men than in women; nud more men are insame from pride than women.

We cannot conclude our observations on this faculty, without alding that it is usuatly an element in religious intolerance. Cowper in one of his letters says, a'There is no grace which the spirit of solf can counterfeit with more success than a religious zeal. A man thinka he is fighting for Christ, while he is only fighting for his own notions. He thinks that he is skilfully searching the hearts of others, when he is only gratifying the malignity of his own; and charitably supposes his hearers destitute of all grace, that he may shine the inore in his own eycs by comparison. When he has performed this notatie task, he wonders that they are not converted: he has given it them soundly; and if they do not tremilie, nud confess that God is in him of a truth, he gives them up as repro hates, incorrigible, and lost for ever." This is a nimpor for too many. The organ is established.

No. it.-Love of Approbarion.
This organ is situnted on each sile close to Self. Esteem, and commences abont hali an inch from the lamindoidal suture. It gives, when large, a matked fullness to the upper part of the back of the head. It cano not be shown in outline like the previous organ of SeffEsteem, which, when large, with Love of Approbation moderate, gives a conical slape to the top of the hack of the head. Dr. (Gall discovered the organ in an insane woman, who imagined herself Queen of France. He looked for the organ of Self-Esteem, of course, and was much perplexed to find a hollow where its prominince should have leven, that, at the same time, a marked rising on both sides of the hollow. The quen's manilistationa soon explained to him the difficulty. There was na calm, grave, arrugant, imperiousness in lier, as in the kings and quens of self.Entcem. She was restlessly vam of her rank; talked of it in the most frivelons and nfiected way;

- It has happetis that self-isterm is the natarnj defence
 A proper endownent of is never neta en the offensive; but it
 an offr nsie und dffinsice Sirlf C: a key to character thus diserimumang
nad promised ounveried. S unst time, Dr. Fatoem and I caya he, "is in merit, and, fro contempt or in attaches the ut of him by oth approbation. cormo to him e knocks at evel nupplicates fo proud inan de the vain, conl man is disgu man inhules profusely olfer
Dr. Gall ni ahuses, as he elucidated the in the desice o Is legitimate ter, gnd it giv lent guard uI of character, is worse than this sentiment too, of the pr wartior, states many, mind ha The decoratio the tattooing, apring from L ties predomin thought the acquaintance. tial to an ami "the desire to geant of socie widely frow t us to suppres: ness, and to disposition, If giving offenc when, by mea What the wo mind when 1 in whom it is because every The young cially in relat nitions of the in cempariso Ridicule is in any age. H, laugh which Combined w that the wor themselves; feting sulve is the unhapl even philosel

As this lac the canse of education on new system competition honoura, is 8 character of
The facul large and vis
*Stupson's and Phrenolos
th power, the feeling, now. people. The

2age. Whea clining bsck. gs and lordn. ive; and two ther like the Mr. Stewart ne of the D_{o}. Pride. It is views of the ions; phrenoThe crgan te of the infeck, horse, \&c. " must hsye of a herd ro vent in first; and she then ore than any travagant noo - kiugs, cmpenel mentions care hetieved moved nbout annous fired, In the great e at one and. The organ is ad mere men tin religious says, "There unterfeit with 1 thinks he is for his own ring the hearta lignity of his estitute of all own eyes by notatile task, chas given it , and conficss ו s is a mirtor
lose to Sulf reh from the marked fallead. It canorgan of Self. Approbation f the back of in an insnuie France. He urse, and was s promineuce marked rising naniferstationa was no calm, the king ${ }^{3}$ and ! rime of the afficted way;
nturnl deffence why nother
rensive; hut in densive; hut it
cels in ont net on belwern 5) alona aliorda
ad promised fsvours and honours to all with whom she convaried. She was a vain, not a proud, qucen. From that time, Dr. Gall perceived the difference between Self. Fatcem sind Love of Approbstion. "The proul man," cays he, " is imbued with a sentiment of his own superior merit, and, from the summit of his granileur, treats with contempt or indifference all other mortals. The vain man attaches the utimost importance to the opinions entertained of him by others, and seeks with eagerness to gain their spprobation. 'The proud man expects that mankind will come to him and acknowiedge his merits; the vain man knocks at every door to draw attention towards him, and supplicates for the smallest portion of honour. The proud man despises these marks of distinction, which, on the vain, confer the most peneet delight. The proud man is disgusted with indiscrect eulogiums; the vain man inhales with ecstany the license of flatery, although profusely offered, and by no very skilful hand."
Dr. Gall named this faculty Vanity, from one of its shuses, as he named Self-Esteem Pride. Dr. Spurzheim elueidated the ultimaice functions more satistactorily. It in the desire of approbation, admiration, praise and fame. Its legitimate function is rergard to reputation and coarac: ter, soul it gives the sentiment of shame. It is an excellent guard upon morals as well as manners. The loss of character, to those largely endowed with this feoling, is worse than death. If the moral sentiment be strong, this sentiment will desire honest fame, and in the line, too, of the prevailing fatelties-as poet, painter, orator, wanior, statesman. The love of glory is a passion with many, and has deluged the world with blood in all ages. The decorations, orders, stars, garters, of civilization, and the tattooing, nose-boring, and pluming, of savage life, all sping from Love of Approhation. When thr pripensities predominate, the vain man will be plea.י.' to be thougit the best fighter or greatest drinker anoug his acquaintance. A due endurvment of this faculty is essential to an amiahle character. "It gives," says Mr. Coonbe, "the desire to be agreeable to others; it is the drill-sergesnt of society, and admonishes us when wo deviate too widely from the line of mareh of our fellows; it induces us to suppress numberless little manifestations of selfishness, and to restrain many peculiarities of temper and disposition. from the dread of incurring disapprobation by giving offence; it is the butt upon which wit strikes, when, by means of ridicule, it drives us from our fellies." What the world will think and say, is upprimost in the mind when Love of Approhation is too strong. A youth in whom it is powerful. camot do this thing or the other, because everyburly will look at him, or wonder at him. The young are extretnely sensitive on this point, especially in relation to those of their own age. The almonitions of the parent or teacher are nothing with them, in comparison with the jeering of their companions. Ridicule is intolerable to a large Love of Appretation at any age. Hence the poet's thought, "the world's dread laugh which scarce the stern philosopher can scorn." Combined with Self-Estrem, it creates the impression that the world are all busy thinking of us, instead of themselves; whicls tant is the truth. This excess of the feting subverts all independence. The opinion of others is the unhappy individual's rule of morals, taste, religion, sven philuscphiy.
As this faculty, and that of Self-Estcem in abuse, are Un cause of mueh evil, both to the individual sud others, oducation ought to moderate their activity. Vnder the new system this is attemid to; but under the old the competition of pride and vanity, in places and school honours, is still the grand stimulus, to the injury of the character of the young lor life.*
The faculty, unless kept in suhordination by a very large and vigihant Conscientivusness, prompts to all the

- Smpson's Phitosopt y of Fducation. second edtion, p. 103 ; and Phrenological Joarnal, vol. v. p. 613, nind x. p. 9.
conventional insincerities and Mattenies of society, from the dread that the truth will offend Self-Esteern, and draw down on the teller of it disapprobition. When Secretiveness is large and Conscientiousness emsll, Love of Approbation is profuse in the unmeaning compliments of society. These compliments many people scorn only when spplied to others, but take them more complacently when addressed to themselves; their Self-Eateem supporting them, and persuading them that these compliments have a meaning, and value too, when they are the objects of them. It is held to be Love of Approbabation, which prompts to the equivocation of "not at home," when the person does not wish to admit visiters. "The faculty of Conscientiousness would desire that the plain fact should be stated; but Love of Approbation produces an instinetive feeling that the Self-Esteem of the person calling will be offended, if any engagement can render it inconvenient to see him. T'o save this pang, Love of Approbation and Secretiveness resort to the invention of this little equivoque. The deceit is seen through by all; and, nevertheless, the use of it is more pleasing to persons in whom Love of Approbation and Self-Esteen are very lurge, than the announcement of the simple truth." Much of the acutest suflering of life consists in nothing else but wounded Love of Approbation, when the feeling is powerful. The rivalries of rank, wealth, and fashion, commence with school hoys and girls. The youngest ereatures will, uncheeked by delicacy, boast of the importnnce, in these particulars, of their parenta, and vilify their companions, to the intense suffering of the latter, who have not arrived at suilicient retiection and force of character to disregard such taunts. Successful rivalry wounds the feeling both in the young and in tho old; equipage, dress, attendance, when superior in others, these being aequaintances, oi who have been equals, are all tormenting distinctions of Love of Λ^{\prime} pprobation. Refusing to acknowtedge, or shunning, well-known acquaintances, when the vain happen to be in what they consider higher or more fashionable company, is a very usual abuse to the feeling. This is not only a pitiful weakness, and confession of want of personal merit, but not seldem an aet of coldhearted, seliish, ingratitude. With a good endowment of regulating moral feelings and intellect, turned into their right channel by proper charactes-improving celucation, this paltry conduct would be of muea more rure oceurrence. The vain talk of themselven, theix athiars, and conneetions, and much affliet their auditors ly so doing. Education would modsrate this variety of bad taste. The same weakness leads the vain to le impatient of the appearance of neglect or torgetfulness of thelaselves in company, sad to resort to many artifiees to attract nttention. Dr. Jolnnson notiecd this small ambition in Goldsmith, who, he said, often began to talk lest his presence should be forgotten. Vain children force themselves into notice in the same way; a teacup has been purposely broken to this end. Extravagances, and even crimes, have been committed for mere notorinty. In these extreme cases the organ is diseased. The incendiaries of the Temple of Ephesua and YorkMinster, and the lumatic Oxford, who fired on the queen furnish exampics. Shamelessness is the effect of the want oi this faculty, often observed in criminals. It is a great defect in character; the individual is beyond the saintary goverminent of the feeling; he cares not for the opinion of others, and laughs equally ut their censure or approhution. The educator finds this aegation very diffirult to deal with, imasmuch as one engine, with which he might otherwise legitimately work, 1 useless to him. His pupil will not arau by Lave of Approlation. This defect aids the inpudent, who have a purpese to serve. Their importunity is oiten boundles and untiring. No repulses affect then, no indignities touch them, so long as absolute personal violen:e in not
epplied t their intrusions. The blush is the nutural ' language of shmme-one of the feelings of powerful and ensitivo Love of Approbation. The organ ia oftener found inssane in women thm in men, as in women it is more active than in the other sex generally. The patients whose love of Approhation is disensed, are not solemn, haughty, and irascible, like the monarehs of Belf-Esteom. They are generally in a bustle of display, overpowering tho listener with details of their merits, their tulents, their works, and even their beauty. 'They are decked out, without regarl to taste or sense, in colours, flowers, feathors, ribbons, crosses, and orders; their rooms are decorated with trophics and all sorts of imaginary proofs of their own transeendent merit, worth, fime, and glory. Prompted ly Acquisitiviness large, the sulyject of their boast is the fincied possession of wealth that has no bounds; and if to this combination the added Benevolence, checks on their hankers for immense sums are freely given to strangers who visit them. As Dr. Gall welt observed, pride and vanity are nover hetter distinguished than when manifested uncontrolled by the insane.

The organ and faculty sre observed in some of the lower animals-dogs, hormes, monkeys, and others. It is established.

No. 12.-Cautionsness.

The organ of this farulty is situated abont the middle of the parictal lone on loth sides. Dr, Gall diseovered it by first observing the prominenee large in two individuals, who positively harnssed him with their doubts, fears, hesitations, and precautions. When he observed this cerebral mark for the peculiarity, he contirmed it by numberless subsequent otservations. Dr. Gall's two first subjects of ohservation were a prelate and a councillor of the regeney, in Vienma. The tirst, through tear of compromising himself, overlaid his diseourse with neverending qualitications and cautions, spoken with erent slowness. A conversation with him was interminable; he stopied in his kentences, and cantinusly recurred to the point where he began, to be assuted that all was right before procecting farther. He was always mending what he had said. His preparations were caretin and cantious in the most insigniticant matters, and his examinntions and calculations most rigorous. The councillor, again, from his marked irresolntion, was nicknamed Cacaduthio. Sitting behind both of these individuata, on a putlic oceasion. Dr. Gall had an opportunity of comparing their heads, and observed their agterment in the protulerances since called the organs of Cumtionsness, The intelleetual powers and dispesitions of these two men were dillierent in all other respects; hut in Cantiousness and its external deverepment they closely reacmblex earla other. No organ is more casily observed than Gantionsmess. It is evident to the ege as well as the hand, and there is nome of which the concomitant mental feeling may be predicted with, more confidenee.

It has heen said that fear is the fundamental ferline of this faculty. We douhthere Fear is a disagreatio affection of the farulty, far it is nom of its ferliners; urd we are disposed to think that the disagreable or painfing is not the root of any of our fiveulties. Wer are not neresarily conscions of the fiotheg of four whild we are taking the mowe circumapect precautions fir our siffity, sad it is just when we have taken these procautions that fomo is excludect. In our opintion. Cautionsurss expresses the ferting better than Fiar. 'The woride tomeorbh or circmapperton are too intellectual for it; for it toes not foresere or look around; it merily feyts litiolly, and dimulates the intelleet to take the means of insuring samety: its motu in, "Thake care," It is an important olement in prrudnere. which placen the individual on his grard, and warns him not to be rash in his morel an
well as his physical muvements. In generat, the organ is large in children-a wise und bencficent provision for their protection. Children who are deficient in the organ are in constant mishapa and accidents; twenty kecpers will not supply to them the place of the ln . stinctive protection of Cautionaness. Mr. Combe men. tions a boy of six yents of age, in whom the organ was very smali, who took off his clothes to plunge into tie depp water of an old quarry, into which the wind had blown his cap. A child with a large Cautienshecse is comparatively safo; much mole so than any degree nf care ly others would reniler him. We have seen inas organ so large on both sides an to deform the head, and give, ly contrast, to the fore part a great narrowness, especially in children. Mothers are often alarmed with this apprarance, secing that wnter in the head often shows itself in this region. But there is also a natursl and healthy developinent of the organ when extraordinarily large. The symptoms of a very large endownent will ho great timidity, fears, and exen imaginary terrors, especially in dreams; but the existenee of these would argue that the sulstance itself of the brain is large, and not merely extenaled thy bydroerphatons atlection, ia which last case there could be no inerrase of the power of manifestation in the organ, but the contrary. No feeling is more rapidly and extensively communicated by sympathy than fear; it is wrll known to run through and intect a whole urmy ; in surh cases, it has the name of panic, It is therefore of vital importance, and a chicf ofijert of an oflicer's attention in butte, to prevent even the commencement of a ferling of fear, by checking all outward manifertations of $i t$, and setting an example of coolnrss and courage to the soldiers under his command. In the history of war, there are iustancers of panic afferting both the contending ammies at the same time, when they have turned their backs upon rach other and fled in opposite directions from the fipld. The orcan is often diseased, and then produrpe canseless dreal of evil. despondeney, and often suicide. In the heads of suicides the organ is invariathy large, and Hope deficient, Destructiveness also being of course large. Persens with the organ diseased will often shrink r if the house were ahout to fall user them, or a lirilge under them. Those who do not distinguish fieline from thinkines, imazine that surlo persons may te reasoned into a dismiusal of their fears, un theing shown that they are groundes: ; but if, as is demonstrable, the fereling results trom a portion of brain theine pewitively dispased, it would be as ratiomal to attempt to reason an leerson out of the pain lie suffires from a buhbly wound or sote. A brief' extract from Dr. Aultew 'ombe's almirable work on lusanity, which hav greatly herped to revolutionize the whole sicience and practice of that interesting field of medicine, will serve the twobldy purpose of showing in what manner Coutioushese berones dise rased, amd likewise how clearly and intelligithy the the mologint treats the sulberet of that disense of lrain called insmity. "Among the functional canses of cerebra: disuane and mental dernugement, the ower-activily of
 proweminnem. 'inder the prement siltivh system of som cicty, there is purhas mo faculty whirh is called so otton, sop pworfilly. and so permanenly into urtion; and the natural result is, that nume is so frequently the sourer of nerveras diserate. In times of public distress, the victims whose healh it destreys, whom it depriven of rensom, atol throwe into the eells of an neyhm, are incalculahly numerous. T'imidity, nupreh'osiun, far. despmoneres. and dexpair, ate thic ditherent dereere of intensity of the same ferling of t 'antionsurse gradually roused io a higher and higher ilegrere, the the health of the cereloral organ at last gives way, and the most sumb bre melaucholy ensues. The wild prevalenere of hypochondriacal affections, which embitter existence, is
the gloomy depr which I have els feature a norbid arry convincint function in ind number of such real or fictitious friends, the sulece ment, the flucturt dll directly adilres Dr. Comlie hen ended in suicide, sulden and violer ducing mental d diseaso, is well k stance from Boer rendered a lady Dieu in Paris, w drawn sword. I the hospital ; one in white, by " frighten her ; the thuuder which to at finding herself the bad lwen un and partly in th induced ly the o erdinate degree, in the brain. ITl mad hy the noise tion, and ceer af fimitative of the aimilar functional
Practical jokes filly overshot th knowledge of thi Kanes is the on as a primitive fac naterized by dill man heal, inclu larger than tho luso than the Fr beal than in th savages, and in th It is simall in fir.
Having hrougl tire faculties co we will prowed yexts paonga
th.-superio
We have hith nologists descril minals; we are ments which the argans of these the brain. Tlat in muimals, is an get, prububly, ha in the mean ti sicw. It may on lutions of thi" bin tiousness, and II the convolutions appear ; and the with which it ss dowed.

The organ of part of the fromt: in the mididle of to firm part of Vol 1. -38

, the organ

 rovision for in the or. ts ; twenty of the \ln, ombe ment. organ was ge into the e wind hat ionshers daegres os 0 seen ting chead, and larrownesn, armed with head often o a natural xtraordinaendowment ary terrors, hese would large, and on, ia which power of No feel. micated by an through s the name ree, und a to prevent , by check. ting an ex. a under his e instances jies nt the acks upon is the field. n causeless c. In the large, and of conrse tten shrink or a bridge eline from e remanand I that they the ticeling \because disuised, n a jerson ad or sote. almirable to revoluinturesting marpose of omes lis. y the pherain cadled C'errbra: activity of 10--stands tem of sorulfect so to artion; wently the ic di tress, a depriven ylum, ate wion, fiar degrees of gradually - howalth of most sumb ice of hy. istence, bythe gloomy depression to which they give rise, and which I have elsewhere shown to have for a common feature a morbidly aetive Cautiousness, is another and a very convincing proof of the influence of excitoment offunetion in inducing cerebral discase. In the greater number of such cases, it is easy to trace their origin to real or fictitious causes of anxiety about the health of friends, the success or failure of schemes of advancement, the fluctuntions of trade, a many other grounds, all directly addressed to the f_{u}. of Cnutionsness."
Dr. Combe here mentions th atances, one of which ended in suicide, and proceed . . '1'le effect of fear, or sudden and violent excitement of पantiousness, in producing mental derangement, and all sorts of nervous disease, is well known. I hnvo already quoted an instance from Boerhnave, in which a fright from thunder rendered a lady insane, and also of a girl in the HotelDieu in Paris, who was frightened by a soldier with a drawn sword. Pinel received three young women into the hospital; one deranged from seeing a ghost elothed in white, ly which some young men wished to frighten her ; the second, from a tremendous clap of thunder which territied her; and the third, from horror st finding herself in a house of bad character, into which she had been unconseiously decoyed. In the two first, and partly in the third also, the disease was evidently induced by the organ of Cautiousness roused to an inordinate degree, producing general disurdered action in the brain. The story of the purrot which was driven mad by the noise of the great gyuns cluring a naval actim, and ever afterwards could emit no sound but one imitative of the report of a carmon, is an instance of similar functional excitement."
Practical jokes, intended to frighten, havo often fearfully overshot their aim, and produced insanity. A knowledge of this enght to put an end to them. Lord Kames is the only metuphysician who recognised fear as a primitive faculty of the mind. Nations are characterized by different degrees of this organ. The German head, including the English and Scotch, has it harger than the Celtic, imeluding the native lrish, and also than the French. It is smaller, too, in the Turkish bead than in the liuropean. It is very large in many savages, and in the IIindoos and Cingalese. See tig. 10. It is sinall in fix. 9 . 'The organ is held estahlished.
Having brought to a close our account of the affective farulties common to man and the inferior anmals, we will proceed to an analysis of the seremion sintahints proifil to man.

II,-SUPFRRIOR SENCIMENTS, PROPER TO MAN.

We have hitherto considered the faculties which phrenologists deserilo as common to man and the lower aninals; we aro now to treat of those supcrior sentiments which they eowidor as peculiar to man. The organs of these sentiments lie in the superior region of the brain. I'hat they are all of them entirely wanting in animals, is ath opinion which the phrenologists will get, probally, have to reconsider; bit we deem it best, in the meati time, to follow the generally received hiew. It may only be remarked, that, while the convolutions of the brain which firm Veneration, Conscientiousness, and Hope, arr inot found in amimals, traces of the convolutions forming llonevolence and Imitation do appear; and these two last are the powers of this class with which it seems most likely that unimals are chdowed.

No. t3.-Henevolence.

The organ of this sentiment is situated at the upper part of the frontal home, immediately before the fontanel, in the midelle of the top of the foreheal, where it turns 6 firm part of the top of the head, or coronal surfuce.
VoL I. -3

It is casily distingulshed; and when large (see fig. 15) gives a round elevated swell to that region. When the organ is small (fig. 16) tho forehead or top-front is luw,

Fig. 15.

Fig. 10.
flat, and retreating. We cannot blame the unfortunate individual so organized, sceing that he did not make himself; but wo are so constituted as instinctively to slariuk from him, as deficient in ono of the chief ornaments of human nature-the faculty of kindness and brotherly love. Dr. Gall discovered the organ, and at the same time distinguished the faculty as primitive. ho observing in what region the heuds of several remarkably henevolent, disinterested, and generous persons-whom, after suspecting the existence of the faculty, he placed together-agreed, however much they differed in other particulars. His subsequent observations left no donbt on the matter.

The faculty of Benevolence gives more than compassion for, and a desire to relieve, suffering; it gives a wish that others should be positively happy; prompts to active, laborious, and continued excrtions ; and, unless Acquisitiveness be very large and powerful, to liberal giving to promote its fivourite object. It differs casentially in its charity, "which suffereth long and is kind," "and vamiteth not itself," from that which springs from Love of Approbation. Yet to this last selfish ficulty, how often is it necessary to appeal when funds are wanted for benevolent purposes! Hence the published lists of subscribers' numes; hence, too, the appeals to other selfish faculties by balls, plays, \&c., for contributiona to relieve sulfering, as if it were to be charmed away by dancing and music. The Samaritan's condact was pare benevolence. Addison portrayed the feeling well in Sir Roger de Coverley. All the phrenological books cite the case of Eustache, a St. Domingo negro, who was so striking an example of this faculty in great power and activity, thant he received the prize of virtue from the French Iustitute. The organ in him was so large as to give un uncommon height to the front of his head. 'I'le faculty, like sunshine, lights as well as warins the whole of social intercourse. Mr. Combe well expresses this lecreming influence. "It is a vulgur idea that this ficulty comnot be manifested except in bestowing alans or money. It may be exerted it the domestic circle, in a thonanad ways productive of advantage, without being ascompanied by donation. It is benevolence to those with whom we live, to order our arrangehents with a due regard to their comfort and hapiness, and not \approx deny them proper gratifications; it is benevolence io suppress our own humours and temencies when these wonld give umnecessary pain to others; to restrain SelfEsteem and Destructiveness in our commands; to be mild and merciful in our censures; to exert our intlacme and authority to promote the welfare of others: and one of the most henevolent of all exerises is, to visit the pesor and vieious when sulliging and wretehed, even with the view of alministering only the pecuniary bounty of others. Benevolence is an essential element in true politeness." Those who have the organ smal: are not on that account cruel; for cruclty is the result of a positive faculty, Destructiveness; they are merely indifferent to whers' suffering, so that their Destructiveness meets with no check. IIare, the murderer, was ul, example. He rejuired no effort, no drowning influence of liquor, as even the wretched Burke did, to steel him against the cries and struggles of his victins. New hie

INFORMATION FOR THE PEOPLE.

b,end, hg. 4, contrasted with a benevolent development, Ag. 3. Benevolence is the chief ground of an individual's popularity; whon added to intogrity and tulent, it renders a public man justly an idol; it is always tho moat prominent inscription on his monument. Tho martial faine of Henry IV., of Franca, has desconded in the mild company of the history of his benevolence; ond his memory is yet, stier neurly three centuries, dear to the Fiench peoplo. The air that bears his naune is the Girst they call for in their theatres. Unregulated by Conscientiousness and Intellect, Benovolence degenerates into abuse, and becomes profusion and fucility. Such an endowment gives indiseriminate alms, without refecting that it is thereby probably encouraging frnud and crime. When Conscientiousness is weaker thun Benevolenco, we see tho individual gencrous before he is just-inaking expensive presents, and leaving his tralesmen unpaid. Benevolence oflen co-exista with Deatructiveness, although this has been ignoruntly denied as an inconsistency in nature. How many individuals known to un are at once kind-hearted and hasty and irascible! shakspeare has often portrayed characters showing both the feelings in extreme endowment. Dr. Currie, in his Life of Burns, says, "By nature kind, brave, sincere, and in a singular degree compassionate, he was, on the other hand, proud, irascible, and vindictive." To explain this seeming incongruity, phrenology steps in and shows that the two classes of manifestations de;erul on two distinct faculties. The sword of justice is Destructiveness, coming in aid of Conscienنousness and Benevolence. The knifo of tho surgeon has a benevolent purpose. While Destructiveness arms the soldier, Benevolence provides the surgical stair that follows hin to the field. Horses and dogs are known to be mild or vicious by the brealth and roundness, or the narrowness and flatness of the region of their furethends in the middle, a little way ulove tho eyes. In the iuferior animals, Benevolence is little nore than passive milluness, and is quite enough distinguishablu from the fuculty as abovo deseribed in man, to warruat the general position that Benevolence is peculiar to man. Mr. Conbe, however, mentions several examples of benevolence nore positive in certain of the lower animals, The Scotch metaptyysicians in general adnut this faculty as primitive. Hobber, wha traced all our benevolent and just actions to selfish calculation, denies it. Phrenologites account for such a theory by concluding that the organs of Benevolence and Justice must have been amall in Holhes's own brain, so as never to have inapired hinn with their legitinate feelings. As alrendy mentioned in the section on Destructivencers, Mr. Robert Cox has shown, by a variety of facts and arguments, that when tho other faculties are agrecably excited, Benevolence, as a feeling, is increased; while Destructiveness is excited by the disarrceable activity of the other faculties. Huppiness, therefore, gives generosity and aweetness of temper, whilo inisery gives sourness and irritahility. From these principles important practical results are to bo deduced. The organ is establishlied.

No. 1t-Veneramon.

The organ of this faculty occupies the centre of the coronal region just at the fontanel-the centre of the top of the head. It was discovered by Dr. Gall in the pious थnd devout; and is very obvious in the labld head of the monk of real sentiment and not of mere interest. 'Tho function of the faculty is the sentiment of veneration, or deference in general for superiority, for greatness, snd gombess. Its highest olject is the Deity. It is remarkable a how many instances the painters of sacred anbje to save given large development of this organ in the hearls of their npostles and saint-no doubt, lecause the pious inkviduals whom they would naturally select * ntudies for such characters, posscsaed tho organ large.

Veneration has no special objoct: it finds approprate exercise with regard to whatever is deemed superiur. One man may venerate what another treats with indifference, because his understanding leads him to consider that partieular object as superior, while his neighbour deems it upon him own lovel, or beneath it. But any man with a largo endowment of the organ will have a tondency to consider thinga as superior: he will be unturally dispowed to look up, and not to look down. Self-Eitecm ie a positivo faculty opposite to Vencration. The one prompts to a regard for, and appreciation of, self; the other to a regard for, and apprectiation of, others, or something above self. Ho in whom there is much V_{e} neration, with a moderate or defective Seti-Esteem, will always be disposed to think well of what other persone do, nisid to put himself under their guidanco and advice, which he will serupulously follow, ulthough his own understanding night have suggested better coursea Veneration is the basia of the feeling of loyalty: it is a main element in such political parties as the Jacobites of England and tho Carlists of Frunce. Wo see it irrationally exercised in the savage, with regard to his idals of stono and wood, and, in civitized society, with regard to the mero idea of rank unattended ly worth. It is, on the other hand, retimally exercised with regard to persons of real excellence, and those who have been invested with important functions for the benefit of mocicty. It in, indeed, at the root of all subordination, and even of that courtesy which forms so important an clement in private life. Without this sentiment to mole man look up to man, a people would be like a rope of mand, and society could not exist. 'Ithe denoeratic spint, when not entertained as a dogma in philosophical politics, depends expressly on a prefonderance of Self-Es tem over Veneration. There are many so constituted in this respect, that suhnission to authority of any kund would te to them positively painful. "I an as good as he," is a formula of words in which such a nature finds appropriate expression. The fact may be, that the individual referred to is possessed of infinitely superior endownents, and has a high place in wociety, which the other wauts; hut tho defective Veneration does not allow of the difference being appreciated.

Veneration, having the Deity for its highest objects forms an element in the purent snd most exalted religious feeling. But whilo there cam he no perfectly pious man without it, we are bound to admit that individuals are often found, passing for very fair religious characters, in whom Veneration is by no menas conspicuous. Such show little reverence or care in the handling of divine things, num often uddrens the Deity in their prayers in a style calculated to shock others hy its familiarity. Some languages are said to be better alapted for uldereqgina the Deity than others: the (aaelic of the Sroteh Itighlanatere bears this repotation. Such a circumstance would seem to show that the people whose language that is, are nationally characterized by large Vencration.
Phrenologists trace to this faculty a love of sntiquities, and a tendency to approvo of every thing that is old. They ascrike to it the awe with which many visit ancient temples, cathedrals, and the sepulchres of the illustrious dead. It is said hy them to delight in cob lecting relies, snil arelniological oljects generally. They describe it as looking lack to pust times with regre: that they ure past, and as being the basis of the ofenerspowed fallacy as to the wision of our ancestors. There is sone reason, however, to conchude that these manio festations, in some degree ut lenst, belong to another crgan, for which a site has been assigned in a space heretofore unmarkel in the busta, and whose primitive tunco tion may he defined as a love of, or regard for the past as hope is a love of or regard for the fiture.
So linble is the organ of Venerution to discase, that devotional exaltation is well known to be one of the anca
common form abound in the duce many exa Veneration wa that, although deranging rolig consequence of bably a preaxi

The organ n blind Venera of peculiar cha an inclination of existing or who is deficion slancea and in ness is apt to hava the organ wont," that be tion; but the if perly csilcd the severanco, and it produces ol The organ will ble children. objects; its inf quality of endu For exsmplo, it very; Conscie with others. V alsolutely impr feet in charact 18 is that of th taken because shuuld live: he observed large, fully and punc English soldier athough in \mathbf{c} battle of Wate remarkable inar enduring Amer found it large i resisted the mo cape from ago After his death just over this that single case excessive ener recommends th The insanity must naturally The insane of fusing food, \&e with in educati and teachers resembles un on the head wi organ. In figs large.

The organ o of the urgan of that of Chutio organ, and tha maral science. puinion as to tive instinctive and Mandevill lation. Even hope i. icterna melfish calculat x moral uppr
s appropriate uperior. One indifference, consider that hbour deems nny man with n tendency to rally disponed - Esteem is a

I'he one of, self; the of, others, or is much V_{e} [-Esteem, will other persona - and advice. uglt his own etter courses yalty : it is a the Jacobites

We see it regard to his soriety, with ed by worth. d with regard ho have been ae benefit of subordination, important an iment to make ke a rope of nocratic spirit sophical polie of Self-Eis so constituted y of any kind ain as good as a nature finds that the indiitely superior ty, which the ion does not ighest objicth : exalted reliperfectly pious at individuals sus characters, picuous. Such ling of divine r prayers in a liarity. Soms midre'sgine the II Highlanaera ce would seem luat is, are na-
ve of antiqui, thing that is ch many visit ulchires of the delight in cob nerally. They ith regre! that the often-cxpators. There hat these mani to another cra spare hereprimitive funco rd for the past re. to discase, that one of the mand
commen forms of insanity. The religiourly insane bound in the agylu ns. Drs. Gall and Epuralieim adduce many examples, and in all of them the organ of Veneration was found large. Esquirol justly remarke, that, although a particular sermon is often blamed for deranging religiously the mind, yet it has that effect in consequence of a predisposition to the disease, and probably a preerxistence of it in the individual.

No. 15.-Firmneas.

The organ of this faculty occupies the top of the head, belind Veneration, in the middle lira. It ia a faculty of peculiar character. Dr. Gall held that it was neither an inclination nor a power, but a manière d'étre-a mode of existing or being firm, remolute, and determinod. He who is deficient in the faculty, is the sport of circumstances and inpressions. Dr. Spurzheim says that Firmness is apt to be mistaken for Will, because those that bave the organ large are prone to sey, "I will," and "I wont," that being the natural language of determination; but the fecling is quite different from what is properly called tho Will. It gives fortitude, constancy, persoverance, sud determination; and when too powerful, it produces obstinacy, stubbornness, and infatuation. Thas organ will bo found large in obstinato and intractabla children. Firmness has no relation to external objects; its influence is within the mind, and adds a quality of endurance to each or all of the other faculties. For exsmple, it renders Combativeness determined bravery; Conscientiousness, inflexible integrity, and so with others. With Self-Esteem, it renders the individusl ahsolutely impracticable. The want of it is a great defect in character; it is unsteadiness of purpose. Fig. 18 is that of the head of a lady who had several houses taken because she could not determine in which she should live: her Conscientiousness (marked 16) will be obscrved large, and this feeling she manifested by frithfully and punctually paying the rents of thein all. The English soldier has more of Firmness than the French, although in cournge and spirit they ars equal. The battle of Waterloo illustrated the two characters in a remarkable manner. The organ is large in the tortureenduring American Indian. Dr. Gall mentions that he cound it large in the hend of a highwayman, who firmly resisted the most horrible tortures, and contrived to escape from agony and confession, at once, by suicide. After his death, the parietal bones were found separated just over this organ. Dr. Gall did not conclude from that single case that this separation was the effect of the excessivo energy of this portion of the brain, but he recommends the fact ns worthy of notice in similar cases. The insanity of the faculty has not been observed; it must naturally be a morbid aggravation of its symptoms. The insune often manifest indomitsble obstinacy, in refusiug food, \&c. The faculty is a difficult feeling to deal with in educstion. To contend with it, as many parents and teachers do, is to aggravate it. Such procedure resembles un attempt to extract a nail by striking it on the head with a hammer. Firmness is an established organ. In figs. 18 and 20, it is amall; in 17 and 19, large.

No. \mathbf{t},-Conscientiousness.

The orgen of this sentiment is situnted on each side of the organ of Firmness, between the latter organ and that of Chutiousness. Dr. Spurzheim distovered the organ, and therchy incalrulably lwenefited mental nud moral science. Previously, metaphysicians diflered in puinion as to the existence of a mornl vense-a primilive instinctive fecling of truth and justice. IIobles and Mandeville held justice to he a mere selfish culculation. Fiven Paley considmed it as influenced by the hope if etornal reward, and therefore no better than a selfish calculation. Adan Smith placed tho standard © mosal approbation in sympathy, Hume in utility,

Fig. 10.

Fig. 30.

Clarke in the fitness of things; while Hutcheson, Cedworth, Kames, Reid, Stewart, and Brown, all contend for a facully which proluces the sentiment of right and wrong, independently of all other considerntions. Mr. Combe says that these conflicting theories will aerve "to convey some idea of the boon which phrenology would confer upon moral science, if it could fix on a firm bssis this single point in the philosophy of mind -that a power or faculty exists, the object of which is to produce the sentiment of justice, or the feeling of duty and obligation, independently of selfishness in any form, hope of rewnrd, fear of punishment, or nny extrinsic motive ; a faculty, in short, the natural language of which is 'Fiat justilia ruat calum.' Plrenology does this by a demonstration, founded on numerous observations, that those persons who have the organ now under consideration large, experience powerfully the sentiment of justice; while those who have that psit of the brain small, are little nlive to the emotion. This evidence is the same in kind as that adduced in support of the conclusions of physical science." Without this faculty, the sentiments which guard, or rather constitute', morality, would be incomplete. Benevolence prompts to kindness, and is ollended with cruelty; Veneration induces piety, and is shocked with blasphemy; but neither of these faculties gives the perception or feeling of obligation, duty, incumbency, truthin a word, justice. When, however, Conscientiousness is added, the defect is supplied, and morality completed -that morality which Scripture rocognises in the precept "to do jusily, to love mercy, and to walk humbly with Gorl." This is a besutiful accordance of Seripture morality with natural, and demonstrates the identity of their divine origin. In the last quotation we have distinguished by italics the three words which correspond to Conscientiousness, Benevolence, snd Veneration. The word "humbly" is important; it expresses the self-abasement of Veneration, when directed to its highest object, the Omnipotent, and the utter incompatibility of pride, which was not made for mnn-in other words, the abuse of Self-Esteem-with that lofty sentiment. In these three words there is a completer sy stem of ethics or mornls; for ans netion is right whirh satisfies nll, and wrong which offends any one of these three facultics, So simple is truth-a few words thus make clear what volumes written in the dark have failed to do.

Conscrientiousbess gives the emotion of justice, but intellect is necossary to show on which side justice lies. The judge must hear both sides hefore deciding, and his very wish to be just wild prompt him to do so. This faculty regulates all the other faculties by its rigid roles. It say; to them, "thus far and wo farther, ir you will do injustice." Benevolence and Veneration thenselvea
require its guar lianship, to provent the one from running into generosity without justice, the other into higotry, fanaticism, and persecution. Conscientiousnesa not only curba our faculties when too powerful, but atimulates thome that are too weak, and prompts ua to duty even againat atrong Inclinations. To cultivate it in children is most important. No organization, however favourable, compensates a want here; yet phrenologiots are forced to confess that it is not the largest organ in the great majority of braina, and hence the injustice that is, silently as well as openly, nt work in society. The training of it by practical exercise in infant education is explained in the volumo on Infant Education in Chambers's Educational Course. Conscientiousness not only prompts to honesty and truth, in opposition to common fraud and falsehood, but, more delicately still, renders the individual who is blessed with it in large mensure candid and fair in his judgmenta of the conduct, opinions, aid telents of others. It is from its defect to this extent, that in controversy we hear so much complaint of mirrepresentation and misquotation. It pays delts, kecps sppointments, performs promises, and gives a beautiful consistency and trustworthiness to the whole conduct, which securen the reapect, and, when blended with Benevolence, the love, of all within the range of its influence. Without Benovolence, it is apt to to too severo and stringent. When Conscientiousness is weak, or when, as happena in perfectly "houst" and "honouruble" people, in the brond eense of these terms, it is not something more than arerage in its power, the defect will run through the whole conduct and judgments of an individual. It is important to observe the inanner of this. Mr. Combe eays, "The predominant propeusities and sentiments thus act without this powerful regilator. If Adhesiveness and Benevolence attach the individual to a friend, he is blind to nll his imperfections, and extols him as the most matchless of human beings. If this model of excellence happen to offend, ho becomes a monster of ingratitude and laseness; he passes, in an instaut, from an angel to a demon. Had Conscientiousuess been large in the offended, the other would have been viewed ell along ss a man; esteem towards him would hnve been regulated ly principle, and the offence candidly dealt with. If Love of Approbation le large, and Conscientiousucss deficient, the forner will prompt to the edoption of every means that will please, without due regard to justice and propriety. If an individual have a weak point in his chasacter, Love of Approlation will lead to flatering it; if he have extravagant expertations, it will join in ull his hopes ; if he be displeased with particular persons, it will affect to hate with his hatred, altogether independently of justice. In short, the individual in whon this taculty is deficient, is npt to act and also to judge of the conduct of others exactly according to his predominant sentiments for the time; he is friendly when under the influesee of Benevolenec, and evere when Destructiveness predominates; he admices when bis pride, vasity, or affection give him a favourable feeling towards cthers; and coudemes when his sentiments take an oppowite direction, but is always unregulated hy principle. He is not scrupulous, and rarely condemne his own conduct, or acknowledges himself in the wrong. Minds on constituted may be anialile, and may display many excellent qualities, hut they are never to be relied on where justice is looked for. As julges, their decisions are meound, and often partial; an fricuds, they are liable to exart too much, and perform too little; as eellers. they are prone to misrepresent, adulterate, and overcharge; as buyers, to depreciate quality and quansity, or to evade payment." This is a painful but true pieture of what is ton often found in society. We often near people complaining that a particula friend in "un-
certoin." Thla word expreasen concisely the defoct of Conmelentiousnems above described. The farulty pom erful, is esmential, in both partios, to a aincere and lant ing friendshlp.

Honour, as it ia misnamed in society, is often Pribe or Self-Esteem, and Love of Approhation, without $\mathrm{C}_{1 \text { In }}$ gcientiousnens. The individual will fight, and thereby increaso the wrong he has done, but he will not neknow ledge the wrong by an apology. There is no philowo phic mind without powerful Conscientionsness, Without it, scientilic men only aeknowledgo foshionable truth Mr . Combe again says on this point-ucI I have obscred that individuals in whom Love of Approbation wa large, and Consclentiousuese not in equal proportion, were incapable of conceiving tho motive which could lead any one to avow a belief in phrenology, while the tide of ridicule ran unstemmed against it. If public opinion should change, these would move foremost in the crain of its admirers. They instinctively follow the doctrines that are most estecmed from day to day, snd require our pity and forbearance, as their conduct proo ceeda from a mornl deficiency, which is their misfortuno rather than their fault." 'The existence of Conscien. tiousness as an independent element in the human con stitution, renders intelligible many supposed inconsib. tencies in human conduct-that a mnn, for instanna, will be kind, forgiving, even devout, and yet not just. It is a great mistako with regard to those who, after mang ycars of sanctimonious professions, are detected in dishonest acts, to say that they must have been nill along mere hypocrites. It is quite possible that many of their religious feclings and convictions may have been sincere, but only insufficient in force to compensate for the lack of direct Conscientionsness. Conscientiousness, give remorse when the individund has been tempted to sin Criminala seldom experience remorsc ; it is erronennely smpposed thant thry do; their terrors are dread of purs ishment only. In fig. 18, Conscientiousuess is large; in fig. 17, it is smull, and appears in a slope from Firm ness; and in fig. 20, it is small, from the general flat ness of the coronal region above fig. 12, or Cqu tiousness. In this last, Firmness itsolf is sinat. It representa the head of a boy remarkable for falsehood and deceit. The organ is larger in some nations than others. It ia larger generally in Europenns than in Asiatics and Africans; very generslly it is deficicut in the savnge brain. It evidently grows in civilization; indecel, it constitutes an essential of civilization. Enghish and Scotch skulls, fonnd in numbers in old cemeteries and battle-fields three and four centuries old, present much grester deficiency in that organ than modern eknils of the same nations.

The organ is often found diseased, and the insanity consists in morbid self-repreach, imaginary debts, snd unfounded belief in meritad punishment. Cowner, the poet, once believed that tho arrangementa were made in the market-place for his own exccution for a fancied crime.

Mr. Combe's theory to account for the denial by some philosophers of a sense or sentiment of justice. is, that it was weak in themselves, from defect of organization. Those in whom the orgst is large express astonishment that the existence of a moral faculty, primitive in man, could ever be the suliject of douit. The organ is enise blished.

No 17.-Itope.

The organ of this faculty has its nlace on each side of Veneration, partly under the froutal, and partly timer the parictal bone. It was discovered by Spurzhiein, hat never admitted by Gall, who considered Hope as a funco tion of every faculty that desires. To this Dr. Sparb heim answered, that we desire much of which wa anve
no hope; ecri Hfe, hut lus no Ilope a facuity of good, or gra careful observa aitustion just to man to mak checrfulncws, lo and raints the regulated by the tionl, and, in cor bling, both at house. It tends often indolent. atrongly dispose Mr , Combe obz dready stated a God founded on tion, conferring God is the pro probability of a deduction from appears t: me tl natea the notion forward in endle time. May it dency to leave t 19 spring forwar rity, and to exp of su eternity to a more glorious grave?" Addis the Spectulor, an nology gives we this "ardent hop not factitious idle and wander results of two Jife, and Mope, their functions al Pope introduc uticipation of a
"Lo! the poo
Sers Goid in
llis soul pro
Far as the
Yet situple
Beyonit the
Some safer
Sonie happi
Where sinv
No fiends to
The inctuphys phrenology, ther ethects of differe

The organ of that of Bencvol tation, interpose lateral parts of Gill discovered visions and dren the marvellous. dendorg, were ware attended

[^26]the defeet on fuculty pown cere and litut

8 often Pristo without Cund and thereby not acknow. s no philorow ess. Without ionable trulh have observed robation wa a priportion, which could gy, while the
it. If public c foremost in ely follow the y to clay, and - conduct proeir misfortune of Conscien chuman con. sed inconsisfor instance, t not just. It o, uffer many etected in dia ceen all along many of their b bren sincere, te for the lack ousucss givea empted to sin is errouconaly dread of purn ness is large; pe from Firmc general fist 12, or Cqu. is sunau. It for filschood e nations than mans than in t is deficicut n civilization; ation. English old cemeteries -s old, present than modero
al the insanity ary dubts, snd Cowper, the its were made n for a fancied
lenial by some justice. is, that forgarization astonishmeat mitive in man, : organ is exim
e on each side al partly uruler Sparzlicim, hut tope us a funco his Dr. Spurb which we aara
no hope; a criminal on the scaffold intensely deaires Hfe, hut has no hope of It . Dr. Spurzheim considered Hope a facuity sui generis, producing hope, In general, of good, or gratification to the other faculties; and, by careful olsecrvation in nature, found the organ in the siuution just described. It seems to have been given to man to make him happy. It produces gayety and checrfulnews, looks on the sumny side of every thing, and rainta the future with bright colours. When not regulated by the intellect, Hope leads to rash speculation, and, in combination with Acquisitiveness, to gambling, both at the gaming-tahle and in the countinghouse. It tends to render the individual credulous, and often indolent. In religion, hopo leads to fuith, and gtrongly disposee to a belief in a happy life to come. Mr. Combe observe日 (Syatem, vol. i. p. 372): "I have dready stated an argument in favour of the being of a God founded on the existence of a faculty of Venerabion, conferring the tendency to worship, of which act God is the proper and ultimate olject. May not the probability of a future state be supported by a similar delaction trom the possession of a faculty of Hope? It appears $1:$ me that this is the facilty from which originates tho notion of futurity, and which carrics the mind forward in endless progression in periods of everlasting time. May it not be inferred that this instinctive tendency to leave the present seena and all its enjoyments, 69 spring forward into the regions of a far distant futunity, and to expatinte, even in imngination, in the fields of an eternity to come, denotes that man is formed for a more glorious destiny than to perish for ever in the grave?" Adlison beautifully enforces this argument in the Spectator, and in the Soliloquy of Cato; and phrenology givee weight to his reasoning by showing that Hie "ardent hope, thim longing after immortality," aro not factitious sentiments, or a mero product of an idle and wandering imagination, hut that they are the results of two prinitive faculties of the mind-Love of life, and Hope, which.owe at once their existenco and Heir functions to the Creator. The well-known lines ol Pope introduce hope as the foundation of tho Indiun's witicipation of a happy hereafter :-
> "Io! the poor Indian, whose untulor'd mind Sees Gond in clondt, anill hears him in the wind,
lis soul prond science never tapugt to atray llis sout pront science never taught to stray Far as the solur whik or milky wny: Yet simple Nature to his hope hns given Beyond the clout-iopt hill nin hambler henvenSome safer world in depils of woods embraced, Sone linppier isfant in the wntery waste,
> Where siaves once more their mative Innd heliold,
No fiends torment, no Christians thirst for gold."
> No fiends torment, no Christians thirst for gold."

The metaphysicians admit Hope as a primitive faculty; phrenology, therefore, only points out its organ, and the effects of different degrees of its endowment.

No. 19.-Wonder.
The organ of this faculty is situated on each side of that of Bencvolence, with one other organ, that of Imitation, interposed. Technically, it has its place in the lateral parts of the anterior region of the vertex. Dr. Gall discoverel it hy ohserving it large in the secrs of visions and dreancrs of drenms, and in those who loved the marvellous. Socrates, Tasso, Jonn of Arc, and Swcdenhorg, were examples. The two first believod they were attended by a familiar spirit." Swedenborg be-

[^27]lioved and declared that he was admitted to the premence of God in heaven, to receive a revelution of the trua religion. Joan of Arc related that she aaw St. Michael, and received from him her commission to raise the aicge of Orleans, and enthrone Charles VII. as king. There are many other examplee in the phrenological bookn In modern times, Joan of Arc would have been held to be a mere maniac.
Persons with the faculty powerful aro fond of nown, especially if striking and wonderful, and are alwaya expressing astonisnment; their reading is much in the regions of the marvellous, tales of wouder, of enchantcrs, ghosts, and witches. When the sentiment is excessive or diseased, it produces that peculiar fanaticism which attempts miracles, and with Language active, speaks with unknown tongues. It draws the ignorant and fanatically-inclined, who have the organ large, with case by its pretensions; hence the numerous followers of Johanna Southcote, Courtenay or Thom, and Edward Irving. Mr. Combe says of the latter-" I examined his head before he was established as a preacher, and when his peculiarities were unknown, and observed that the organs of Wonder and Self-Esteem were very large. They gave a tinge to his whole public life. The organs of Benevolence, Conscientiousness, Veneration, and Intellect, were also amply developed, so that he possessed the natural elements of the Christian character in great strength, but their direction was rendered unprofitable by the prelominance of Wonder and Seli-Estcem." Mr. Combe quotes the extraordinary case of Dr. Andersom, of Cupar-Fife, who was tormented by tho belief that there were invisible encmies planning his destruction by supernatural means. On examination of his bruin after death, an inflammatory deposit, of apparently old standing, was found over the organ of Wonder. During lifo the part was puinfully heated, and Dr. Auderson was in the halit of sponging it with cold water. Pain in the seat of the organ of Wonder has been localized by several ghost-secing patients, who knew nothing of phrenology. Many instances are mentioned in the phrenological books. Second sight, as the Highlanders call it, is explained by over-excitement of the organ of Wonder. Mr. Combe adds-"At the same time, it is difficult to comprehend how an exalted stato of this organ should produce these effects, unless we suppose it to excite the organs of Form, Size, Colouring, and Individuality, so ns to prompt them to conjure up illusions of oljects fitted for the gratification of Wonder, just as the involuntary uctivity of Cautiousness during sleep excites the intellectual orguns to conceive objects of terror, producing therely frightful dreams. This theory is rendered probable by the fact, that morhid excitement of the knowing organs produces spectral illusions, independeutly of an affection of the orgun of Wodnder. Mr. Simpson has communicated an admiralle paper on this subject to the Phrenulogival Journal (vol. ii. p. 290), to which I slall have occasion afterwards to refer." We shall also refer to that paper in the sequel. The general function of the organ is lueld to be ascertained, but the metaphysical analysis is still far from being perfect. Dr. Spuraheim named the faculty Marvellousness instread of
verso with me.' 'I lonked with the greatesi earnesiness, but conld see nothing enter the nynrment. In the menn time. Tnssog began to innverse with the mysteriots heing. I saw and hearil himself nlone. The subject of his discourse was so elevated. und the expressions so sublime. ihni I feth myself in troulte of eesinay. Idid not ventare to interrnpt im. or to trefore thet spirit disappenreit. and a consinernble its departuro by Thsso. who. urining lownrds me, suid. 'tn fulure you will cense to doubt.' 'Rantier.' sudd 1 . 'I nhinll be more skentical, for though I have heard asionishing worils, I have seen nothing.' Smiling, he replied. ' You have pertans henril nill neen more than'-He stopt short. and fraring to importunc him by more than'ole blopl shint. and fraring to importunc him by count for 'Tasso's spectral illusion, tor it cou' t be mothing eleo in the sequel.

Wonder, becausw, as he arguen, it causen astonishment oy the contemplation of both naturs! and superiatural eircumatances. Mr. Compe holda Wonder to be the eetter name for the fundamental feeling, just becaume it fereited by natural circumstancea, to which Marvellounness does not apply.

No. 19.-Identily.

The organ of this faculty is situated farther down, but clowe to that of Wonder, along the temporal ridge of the frontul bone. Dr. Gall discovered it in the busts and portraits of deceased, and in the heads of a great numbber of living, poeta. This confirmed to him tho old clasuical adage, that the poet is born, not made; in other wo:ds, that his talent is the result of a primitive faculty. Dr. Gall called the organ the organ of Poetry. Dr. Spurzhein eorrected this, and gave it the elegant name it now bears; which has, as well as others of the expressive names of the phrenological organs, been ndopted into ordinary language. IIe sayo-"It is impossible that poetry in general ehould be confined to one single organ, and I therefore think that the name " Organ of Poctry; does not indicate the essential firculty. In every kind of puetry the sentiments are exalted, the exprese sions warm; and there must le rapture, inspiration, and what is commonly called imagination or fancy."

The faculty delighte in the perfect, the exquisite, the beau-idcal-something loyond the scenes of realityeomething in the regions of romance and fancy-of the beautiful and the sublime. Those writera and speakers who possess it large, adom all they eay or write with its vivid inspirations. It is the organ of inngery. The sermons of Chalmers owe much of their chanms to it, and the organ is very large in his head. Shakapente created such beings as Ariel, Otreron, and all tho imsginings of the "Tempest." and "Midsummer Night's Dream," under its influence. Prospero's speerh, when be abjures the art of magic and breaks his stafl, is unequalled as a specimen of Ideality. The passage is well known-
"I have belimmed
The oonntide sun. called forth the farious winde, And 'iwixt the green sea and the saure veult ket roanng war," dc.
The faculty renders converantion elevated, animated, and eloquent, the opposite of dry and dull.

Nature abounds in beauty and splendour to gratify Ideality-a proof of pure beneficence in the Creator; for it is a pleasure of ummixed gratuity, if we mey so speak; man misht havo been created without it, but Divine goodness superadded that. the most exquisite, to his other enjoyments. The organ is smsll in criminala and other coarae and brutal characters, for it is esmential to retinement. It prompts to elegance and ormament in drems and furniture, and gives a taste for portry, painting, statuary, and architecture. Bome religious mects, as the Friends, condomn elegance and ornament. They should revise their standarde, now that it is discovered that a farculty is given to man whose function it is to enjoy these without abusing them. A point of interrogation is placed on the bust on the hack part of the region of this organ, conjectured to be a diffrent organ, but one allied to Ideality. Some phrenologists have considered it the organ of the Suthime, from its touching on (isutiousmess, which the grand, at least the terific grand, in some degree atierts. A writer in the Phrenologiral Journal suggests the love of the past as its function. The existence of the faculty of Ideality deinonatrates that the sentiment of leauty is an original emotion of the raind, and settles the controversy in which Profeamor Stewart, Ioonl Jeffrey, Dr. Brown, and others, took a part, as to the origin of our perception of beauty.

The following passage from Combe's Sysirm (vol. i. p.407) is well worth quoting. It tiven practical aid to *ur conceptions of the nature of Ideality, and affords an
example of the application of phrenology to literary criticisin. "In compoaition, this faculty Imparta aplendow and clevation to the atyle, and manifesta taelf in prowe as well as in verne. The style of Lord Bacon is romarkally limbued with the aplendour of lieality, sometimes to excess, while that of Looko ls as decudedly plain; and the portraits of both show that their heade corresponded with these different manifestations. Ilare litt'a liead indicated a large development of Idrality, and the firculty glows in hin compositions. It was the sustaining power which gave effect to him productions, for he was eminent for neithcr nound principlen, correct observationa, nor extenaive knowledge. He mectus to have relied chiefly on his imagination and language for hia aucceme, nud his works are alrendy sinking into tho shates of oblivion. In Lord Jetfrey's lical, us it aprearn in the hust, Idenlity docs not predominate. The report was current at the time, that the review of Lord Byron's tragedies, which uppenred in No. IXXII. of the Edinburgh Iicricw, (Feb. 1822,) was the joint production of these two celebrnted authors; and keeping ia view the fact, that Mr. Haalitt's 【deality is larger than Laod Jeffrey's, it would not le dificult, by a rareful analysis of the article, to assign to each the sentencea which ho wrote. Lord Jeffrey's predominating intellest. unl organs are Eventuality, which trensures up simple incidents or events; Comparimen, which glances at theis aunlegics and relations; and Causality, which girea depth and logical consintency to the whole. Iluzlitt, on the other hand, ponsessed a large Comparison, respect nhle Causality, with s decidedly large Ideality, elevating and adoning his intellectual conceptions. Procceding on these views, I would nttribute the following sentence to Loord Jeffrey's pen, ns characteriatic of him inanner. Speaking of the qualities of shakspeare's writing, the reviewer says, "Though timo may havo hallowed many thirgs that were at first out common, and accidental associations : inparted a charm to much that was in itself indillirent, we caunot but helieve that there was an original sanctity, which time only matured and extended, and an inherent charon from which the association derived all its power. And when we look candidly and calmly to the works of cur carly dramntists, it is impossible, wo think, to dispute, thal after criticism has done its worst on them-after all thy deductiona for inupossible plots and fantastical charactires, unaccountable form of speech, and ocrasional extravin ganre, indelicacy, and horrors-there is a facility and richness sbout them, both of thought und diction, a force of invention and a depth of sagacity, an originality of ronception and a play of fancy, a nakedness and energy of passion, and, above all, a copiousness of imagery, and a sweetness and flexibility of verme, which is altogether unrivalled in earlier or in later times, and places them in our eatimntion, in the very hishest and foremost place among ancient and modern pocts.' In this passage we have the minuteness of enumeration of Eventuality, the discrimination of Comparison and Causality, and the good taste of a fair, but none of the elevation, ornament, and inteosity of a large, Idcality. In another part of the revies we find the following sentences. In Byron there nre some sweet lines, and many of great weight and energy, but the general march of the verse is cumbrous and unousical. Fis lines do not vihrate like polished lanees, at oure strong and lighs, in the hands of his persona, but are wielded like clumsy batons in a bloodless affruy. * He hass too littlo sympathy with the ordinary ferlinge nod fraitties of humanity, to succeed well in their representation. "His soul is like a star, and dwella apart." • "It does not "hold the nirror up to nature," hor entch the hues of surrounding objects, but, like a kindled furnace, thrown out its intense glare and gloony grandeur on the narrow seene which it irradiates.' Here wo perceive the glow
of Cleallity, th and the diction namental, I wntences whl wrote in thin brief oxnme"." when Ide.:-': the author ; on that the passag The organ is e

The organ little lower tha a breadth to th portraits of Ste on this angle 0 large, and the y
The plorenol length, and wit sical nature or require to follow are agreed tha enjoy the luili, laughter. Man impulse and its not to be the n Beattie's theory the ohjects of certain mixture his wig on his d he inight wipo ! with the incons congruity of a tho stage to con large, the indivi crous, and is npt that passes thro which Mr. Seot Rtociholm, have of Gall, Spurahe Combe's Nys'en serve that Mr. 5 the organ, No. 2 affective faculty which we discri, by much ingenid lie the function we perceive re function of No. intrinsicalitiesCombe ththks make it prohahi but that it is not Mr. Scott's and dowing that the with Ideality, un and not no intel the same faculty differences; nnd all those who de gan 20 large, co ject or oljects somethiog speci ame mutition! nevesssarily ludic ernotion which organ essuntially it estahlintich. stances confirms best observed in is very large, th ludicrous. This by all the contro
iterary eriaplendoum If in prom coon is relity, some decidedly heir heade ons. Haz. leality, and the the ans urtions, for correct ob. us to have age for hin ig into the 1 , as it apnute. The w of Lord XXII, of the int produc kerping in larger than y a enreful e sentencem ny intellect. up simple rees at thei which giver Huzlitt, on son, respect ty, elevating Proceding lowing sern riatic of his thak speare's 3 may havg t out coma charm to thut believe h time only churin from And whon of cur catly diapute, t:al fafter all thy nl clinracters, minl extraver fucility nol d liction, a an originality hess and enness of imarese, which is himhest and h pertshest and umeration of parison and none of the rge, ldeality. fllowing venines, and maenerul march His lines do ong and light d like clumay has too little railties of huation. " His - It does nut the hues of mnece, throws on the narrow five the glow
of Ideality, the simplicity of the former style ia gone, and the diction has become elevated, figurative, and ornainental. I am not informed regarding the particular mentencon which each of the above-named gentlomen wrote in this reviaw, but these extracta will merve as brief exam in of the difforences produced on atyle when Idc. c^{\prime}; hede few or many benms on the pen of the authot ; and I regard the probabilitios as very strong that the pasanges are assigned to their actual sources." The organ is established.

No, 20.-Wit, or the Ludieroul.

The organ of this faculty is situated before, and n little lower than that of Ideality. When largo, it gives a breadth to the upper region of the forchead. In the portraits of Sterne, him forefinger in represented reating on this angle of the forehend, which in him was very large, and the mental manifestation powerful.

The phrenological writers havo discussed nt great length, and with not a littlo controverny, the metnphyrical nature or annlysis of this faculty. We do not require to follow them into this inquiry, an mont of them are agreed that, by menne of this faculty, wo sec and enjoy tho ludirrous, and experience the emotion of langhter. Man is the only laughing animal, and the impulse and its result are too well marked charscteristica nat to be the manifestations of a special faculty. Dr. Beatie's theory is tho most satisfuctory of any-that the objects of the ludieroun are incongruitien, with a certain mixture of congrnity. When the butcher put his wig on his dog's head in the pit of the theatre, thnt he aight wipo his beated brow, Garrick was so tickled with the incongruity, mixed, be it olsserved, with the congruity of a wig lelonging to a head, that he ran off the atage to conceal his laughter. When this organ is lurgu, the individual both enjoye and crentes the ludicroun, and is npt to give a ludicrous turn to every thing that passes through his mind. For the discussions in which Mr. Scott, Mr. Watson, and Mr. Schwartz of Alockholm, have taken a part, as well na for the opinions of Gill, Spuraheim, and Combe, we must reier to Mr. Combe's Sys'cm (4th edition, p. 416.) We may observe that Mr. Scott and Mr. Hewet Wataon consider the organ, No. 20, tis that of an intellectual nod not an affective farulty. Mr. Scott views it as the faculty by which we diseriminate or observe differences; und this, by much ingenions reasoning, he is inclined to hold to be the function of a diflerent faculty from that by which we perceive resemblances. Mr. Whtaon thinks the function of No. 20 is to inveatigate what may be called intrinsicalities-the intrinaic nature of things. Mr. Combe thiliks the facts niduced hy Mr. Wntson make it probable that there is a faculty for this power, but that it is not No. 20. Dr. Spurabeion unsettles hoth Mr. Scott's and Mr. Wataon's theories anatomically, by dowing that the portion of brain is in the anome region with Ideality, and is therefore the organ of an nffective and not an intellectual faculty. He farther holda, that tho same faculty which perceives resemblances perecives differences; mud both he and Mr. Combe, observing that all those who deal largely in the ludicrous have the Organ 20 large, conclule, that whatever may be the objeet or ohjects of the ludicrous in nature-whether momething speritir, like coluur, or olour, in a rose, or some condition of things, which in themselves are not nevessarily hedicrous-there is a mental sentiment or enotion whirh moves, or is laughter. No. 20 is the organ eszentially of this cmotion, nad no far they hold it established. Our own ohservation in numerous instanecs confirms this conclusion. Primitive function is best ohserved in extreme development, and when No. 20 is very large, the individual exista in a world of tho ludterous, This conclusion is ngreed upon, generally, by all the controversialigts on the function of this focul-
ty, es thoir discussions relate to the metaphyajeal anely dia of tho faculty oniy. Curran and Sheridan. wetv both considered witty men, yet in meither is the orgen. 20 large. Mr. Comine thinks that their cases only confirm the viow of the faculty, which he with Dr. Spurn heim is disjosed to take. He thinks that in Curran's works there are none of the witty contras's of Sterno Voltnire, and a living wit, the Rov. Aydncy Smith. Curran's is burleaque humour, of a coarse sntirical kind Secretiveness and Imitation, with Eventuality and Comparian, gave him fertility of invention, copiousnems of illuatration, sovoir faire, and tact, nnd Dentructivenese gave hia ideas a pungent eting, which ho wiokled with much address. Sheridan, agaln, notoriously atole from others his witty sayings, and applied then in hia own compositions. "The Rev. Sydney Smith," maye Mr. Combe, "is a living exanplo of a really witty mind. His wit is always pertinent to the object alout which lie reasona. It is the scamoning to solid argument, and in fact is often in itself nrgument. Sheridan, when he Irew on his own resourceu, manifested Individuatity Eventunlity, and Comparinon, in enumerations and doscriptions of playsical objects and evints, and by means of a moderato organ of wit, he tinged them with the ludicrous. Sylney Smith, on the other hand, impreg* nates the abstrnet deductions of reason with wit, presenting the stiongest arguments in the most ludicrous attire, yet keeping the wit always subordinate to the logic. Causality, combined with a lnrge organ of Wit, appears to me to be indispensmble to the manifeatation of these qualities." Mr. Combe ndds he following true observation, which every one is enaoled to verify in the circle of his own acquaintance. "Some individunla, who possess a large development of Individuality, Eventuality, nnd Comparison, particularly when Secretiveness and Imitation (which are great elements in the talent for acting) are also large, often enjoy a great reputation for wit and drollery among their companions, nlthough in them the organ of the Ludicrous is by no means large. Two explanations mny bo given of thia fact. First, the conceptions formed by the fneulties here named are palpalle and striking, and if even a molernte portion :- the lisdicrous be infused into them, they produce a oreat effect on ordinary minds. Seo condly, many persona tako every thing for wit that makes them laugh, and, in consequence, dignify with that name mere imitations, and sometines even absuxdities, when uttered with a confident air, as if they had legitimate pretences to be considered ludicrous."

No. 2t-Imitation.

This organ is situnted on each side of that of Benevoleuce. Dr. Gall found the protuberance accompanied by instinctive and often irrepressible mimicry. A deaf and dumb boy had this power quite uncorisciously. The purpose of the farulty is to enable the young to learn from the moro advanced, and keep a convenient uniformity in the manners and externnls of society. Celebrated players nlways possess it largely, nnd by it imitate the вupposed mnnner, and even feel tho sentiments, of their charncters. In the Transactions of the Phrenolugicel Soriciy (page 169), Mr. Sentt has shown that Eeeretiveness must coneur with lmitntion to complete the actor. He must conceal his own, as well as imitate the chnracter he plays. The Imitutive arts depend on this faculty; nud its organ is found large, necordingly, in pninters and sculptors of eminence. Ventriloyuism. at shown hy Mr. Simpson in two papers in the 1"hrenologis cal Journul, is nothing more than exquasite power of imptating wounds according to position and distance. What a fund of amusement and delight comes from the group of fucultien whose organs aro ull in this one region of the hend, well named "Tho Poet's Corner," namely, Ileality, Worder, Imitation, Wit or the Ludicrous, Time and

Tunfel The faculty of Imitation has ween recognimed in a ntate of diseane, when the impuine to mimic in beynnd the individunl's control. Pinel makes meation of an adiot girl who way affected in this way. Parrota, monkeye, and the mocking-hird, initate and mimic. The Inat-mentioned often attracta other birde by the crion of their own kind; mal then, waggishiy, us it were, aenres then awny with the ery of some bird they drend. The ougan is emtablished.

ORDER SECOND.-INTELLIVCTUAI, FACULTSES.

By thene facultiea man and animals perceive or gain knowleige of the exturnni world, and likewine of thicir own mentai operations. The object of the ficultion fis to know wht exista, and to perceive qualition and relationn. Dr. Spuraheim divided them into three genern :1. The External Neunes; 2. The Internal Bensen, or Perceptive Fuculties, which procure knowledge of external oljeets, their physical qualities and relations ; 3. The Redeeting Facilties.

From the great length to which our ohmervations on the Feelings have extended, and from the more metaphysieal nuture of the nonlynim of the Intellectual Dowern, wo must be more brief in our exposition of themrefirring to the phrenological books for a fuller trentinent of this branch of the subject.

genub l.-External senses.

By theme, mann and the inferior nuimuls are brought into communication with the extermal muterial world. Much metaphysical acumen has bren wnated, mod much nonsense written, ulout the senses. Before phrenology discovered internal facultion, of which tho senses nere the ministers-they themselse, giving only passive imprem aione called sensationa, but forming no idens-the sensea were considered the sele sources of our knowledge. They are necessary to that knowledge, but woull never of themetven have completed iL The sulject is admirahly treated by Mr. Combe in hia System (4the elition, page 436). By earh wense we diacover sone quality of material nature. The Sensen, an genernlly received, are five in number-Tourh, Tastr, Smrll, Hearing, and Sizhi. There are cortainly two more, namely, tho aenar of Ilumger and Thws', and the Muscular Re'nse, or that hy which we feel the state of our muarlea an acted upon ly gravitation and the rexistance of matter. Without this last eense we could not keep our balance, or nuit our movements to the lawa of the inechnuical world. Dr. Thomns Brown conjectured this mense many yeara ago, ant sir Charles Bell has thrown much light on it by proviug that mparate roots, afterwardx joining in one apparent nerve, but evidently being two, give muscular motion and muscular sensation. Mr. Simpson has long given his attention to thia interesting subject, and thrown so mach light apon it, an to render it next to certain that nll animaly have a possive sense of maturial resintance, and niso an actice faraliy for applying counter resistance-hoth lwing necessary to every muscular exertion." The mentex, there is every reason to hold, are not tive, but seven in number.

vents if-intrllectual faculties, which pro-

 UURE KNOWI,EDGE OF EXTERNAL ORJECTS, OV THEIR physical qualities, and various reiations.These facultien correspond in some degree with the perceptive powers of the metaphysicians, and form ideas

No. $22 .-$ Imtividuality.
The orgen of this faculty is situated in the middle of

- See Phrenological Journal, vol. ix. 103. x. 535, xi. 275, and previoualy in vol, iv. wit. Sir George Markeacie has comributed an ingenious paper on thas subjeci, vol. ix. 349; and Mr. Nohls of SHanchester. x. 7:0, xit. 206. See additional viewi by Mr. Simpwon, in The Lances of IFilh July, 1541 .
the lower part of the forehend, immediately noove the top if the nowe. It taker cogninance of imtividual ex. intences-of a horwe, for example. Other knowing freul tien reapectively olwerve the form, colour, nize, and weight of the horne, but a fuenlty was necerasary to unite al theme, nuid give the individual iden of a horne. If furnishen the substratuen which has form, colour, \&ec,, an old desideritum of the melaphymiciman, Individuality in the ntorehoune of knowledge of thingn thut nituply prist, it in often largo without being accompanind ly reflecting power; when thin is the came, tho individual han been compared to an encyclopredia, full of facts, but unable to reason from them. All the objecter of Indiviluality ane nosa aubatantives. Verba and adjectiven are tho perceps tiona of other facultica to be aterwards noticed. At Inclividunlity merely observes existruces without regaril tr their muskes of action, it th the fieculty of the naturaliat. Thuse who powasea it harge and active, olwerve the minutest oljects; wohing escapen them, and they rememler even tho minutest oljects so well, that they will misn thero when taken awny. On the contrniy, thowe who huve it small, olserve nothing, and give the noost imperffet necount of the objeets which have heen in their wny. In tha artint, the faculty given great minuteness of aletail, and with Imitation und Form, grent power of hilting likonesses in portrit-pninting. The firculty prompes to per. nonification of ubstract idean as Fume, Envy, Wimbom Folly. Mr. Combe mayn-" In adulta, the frontal simus is generally present at the situation of thia organ, and this throws a dilliculty in the wny of jutging of ita dize. The function, however, is aspertained by ohserving young persons in whom the sinus in not formed, and also ly the urgative cridenve; that in, when the external part of the skull at the top of the nome is unrrow, contracted, ond deprenseci, the portion of hrain brlow is neecessarily smad and then the mental power is found invarially weak This concomitunce of large size mal great power it young jersman, and of deticipury of wize nud fieblenes of power in all agen, proves tho finnetion." "The orgas is rxtahliahelt: tho motuphysieral nualysis of the faculty repuires further inquiry. For able disecusximens on thi tinld of inquiry by Mr. Scott, Mr. Hewet Watson, ans Mr. Schwartz of Storkholm, meo Phrenoligical Journat vol. v. 220, vi. 328 , and vii. 213.
No. 23.-Form.
'This orgon in mituated on encll side of, and close to the mesta galli, and orcupies the spaco hetween the eyes In those who have it large, the eyew are wide asundes and vire rersa. Dr. Gall diseovired the organ in persons remarkablo for recognising fares affer long intervala, am althomigh, prerhaps, only once and brietly serens 'The bus of Georke III. furnishlees the trest example in the Phreno logicul Sowiety's collection ; and it is wrll known that he uever forgot a fice. 'Townsend, the famous How-street offiere, hat the wame talent, one mome essential to his oflice. As overy materina ohject must have a firm, regus lar or irrogular, this faculty was given to man and animaln to perccivo dorna, and thry could not exint without it When large, it constituten nu essentmit clement in a talent for drnwing, but refuires Size and Conntrutiveness to perfect the talent. Forms aro capable of great beauty, and of affording much pleasure, and in nothing mora than in the human figure.
Many permons who have the organ of Form large, con nect their words and ideas with forms, and theme often fanciful and of their own creating. A singular instance of this is recorded in the I'hrenidepiral Journul, vol, viii p. 216. Mineralogists and cryatallographers generaliy posmess this power in large pudow ment. The celobrated Cuvier owed much of his success in comparative anstomy to his large organ of Form. De Candolle mantions, thal " his (Cuvier's) memory wan particularly remarkalika in what related to forms, considered in the wident wene at
duat word; the dasving, never of compurisom Grat celeliruted ompmenty areat io establinhed.

Every objert 1 in necesaary to c aed at the ioner tarn upun the n wour mavement There la no ner this organ. A al α persiving per of Size, is ment 479). "Mr. Fw Marknnzic, state, lng a lamberape parred to him to surfa e, without ife uttributed th having heren tang tir roures of fint the firms of olyje be likes brilliane eeiven dixtauress nei thbouthaed o the beatuy whiel rajy yel it with n piecer of Might: dem. Rivers, 1 are, however, the turning his hack his ryes, his reenl His is not atile to of the orjocets, wh mpressions whict brance dies not Heality, Wonuler Fomi and Lacali his arperience lox (isouge Mackenzi eognises dimensi breath. thickueser eulty wherely wi to the faculty of ferent indiviluals of percriving suza of estimating dis drav a circle wit gue alrendy draiv hady is muntions accurate in tha fo the oljects or pur

Weight is n its other qualitie is only aunther dency-ita :atras ceive the differen man's masemen must he a tiow thist hase a ceret have generally 1 ringo or cy.hrow frmin the top of il Dhgan 25 hats neave it far irn Coulke snys. "18 und alvo thene w mentum wad fo porswisilir paiss

ndowe tho

 vilual ax. wing fecul. and weight 0 unite al It furmilhes an old de. dity in the $y$$y$
y
refint. It 1 hos been at tuable io illuality are the percepp otiered. 1 nt regarid to anturalist e the minu y remember 11 misas thera who have it miperfect aco ir way. In ffletail, and hitting liko mplis to per y, Windom, rontal unu 4 ortan, and zof its aize. rining young 1 aleo by the 11 part of the ntracted, ond ssarily mmal rially weak at power in ad liectione The orgar r the farulth sinns on thi Watson, an iral Journa
and close to cen the eye vide asunder an in persons intrervals, an -11, 'the bus 2 the Phreno nuwn thut he as Bhweftreet ential to his a furfu, regloman and anivist without it ent in a talent urtivenes to giceat lenuty, nothing more
rm large, con d theese often pular intance Irnul, vol. viii wers generaly the crletrated ntive onatomy nentions, that reminkalive in didext sente of
dal word; the figure of an animal seen in reality or in dawiug, never left his mind, and morved him as a peint of comparimon for ali similar oljocta." Mr. Bewick, the Arot celelirated Enslish wooleengraver, showed an unommunly great diatance between the ejem 'The opgsn is established.

No. 94- \mathbf{S}_{178}.
Every ohject has a size or dimension Hence a ficulty in tecesmary to cogniwe this quality. I'he organ is sittisted at the inner extremities of the eychrows, where they urn upon the nose. A jurception of Size in important to our bovements and actions, and casential to our safety. There is no nereuracy in drawing or perspective without this organ. A singular instance of a defect in the puser a perefving perplective, accompanied witlo a amall organ of Size, is mentioned by Mr. Combo (Xynem, vol, i, p. 478). "Mr. Ferguson, tutor in the family of Sir (Veorge Markenzie, stated that he had a dilieculty in 'understame ing a landacape' in n pirture, and explained that , it apparal to him to preacnt a aroup of objects on a phain anfla en, without nay perceptille fore or lack ground.' Ho uttributed this defert in his prevecptions to his mot baving loen tanght the mies of perapective nt achool. In the course of forther interrogation, he atated that he sees the forms of oljecets distinctly, ne nlso their colours; that he likes brilliant tints hest, and that in naturo he perceiver dintanees also. Ite has visited Roslin (in the teithbouhowe of Bdtinturgh), and not only perceived the teamy which characterizes that delicions apot, hut rnj wed it with a keen relish. The has alan seen many piecen of Hishland scenery, and been delighted with them. Rivers, meadown, trees, and cultivated ground ane, however, the objects which interest him most. On turning his hark upon any natural landsenpe, or shutting his eyen, his reestlertions inutintly breome very confuned. If is not able to call to his minil the 'relative positions' of the oljoets, white he diatinetly recollects the plensiag mpresions which they made upon him; this remembranec does not soon fade." Mr. Ferguson's orguns of Weality, Wonder, and Intellect, are good; lut his Size, Form and Locentity, are all deffeicnt. 1Iis deseription of his experience looks very liken defeet in all three. Sir fieorge Marknomie thinks that the faculty of Size, as it eognises dimension of every kind, whether in length, hradth. thickness, height. depth, or distance, is that fioeuty wherety we perecive sumer in general, annlogous to to the fienlte of 'rime, by whirh we pererive time. Different individuals manifest dillerent degres of the power of pereriving suze. Some seem not to possess the power of estimating distnnce or dimension, white others can drav a circle withuut compasses, and find the centre of one alrealy drawn with the greatest acourncy, A young lady is mentioned by Mr. Combe, whose drawings were arcurate in tha form, but slways erroneous in the size of the oljects or parts. The organ is established.

No. 2s.-Weight.
Weight is a quality of matter quito diatinet from all its other qualities. The weight of any materinl object is only another name for its degrec of gravitating ten-deucy-its attractability to the enrth. A power to percive the ditferent degreer of this attraction is essential to man's movernents, satity, and even existence. There aust lie a tionoly for that perception, and that faculy must lave a coreliral instrument or organ. Phrenologisis have generally localized that organ in the supurorbitar ridge or eychoow, immedintely uext to Nize, and farther fron the top ot the nowr. But as yet the finction of the Dgan 25) has given rive to so imuch disenasion, as to resve it far fom certain what that precisely is. Mr. Consle snys. "]'er:ons who excel in archery ind guoits, und ako thone who find great tiacility in fulging of momentum and resiatance in mechanics, are oloserved to maswex the paits of the hruin lying seareat w the organ

Vol. 1.-.3J
of Size largely developed; and the organ le now regarcled an prohahle. Pernons in whom Individuality, Size, Weight, and Locality are large, have generalig a tulent for engineering, and thone branches of mechanica which consiat in the application of foreers ; they dellyhs In stenin-enginea, watur-wheels, and turning-lnthew. The amo combination occura in permons distinguished for successful lents in akuting, in which the regulation of equilibrium is an impotant element. Constructivenose, when Weight is amall, leath to rearing atill-falories, rather thmn to falvieating working machinery, Mr. Simpenen has given ruch attention to thin faculty (Phrenologiral Jonermal, vol. hi. p. 412), nad opened up ame original viewa for disenswion in the phretiologiral world :-a new chapter, ne Mr. Conile cails It , in the erlence of mind. Itu citea a number of noted mochuniclumand angineers in whon the Organ 25 is large. In the hust of James What it in partirularly prominent. Children who walk early and ateatily hase uniformly the orsan large, and the inference was drawn that the faculty gives the pownt of preserving equilibrium, or thut halance of lorees which is ensential to the application of animal power, and even to nuimul existence. The inatances of Mr. John IIunter, the nuntomist, a young lady, Mise S. L., and the Eigglizh Opinm-cater, nre ndduced in confimation of the uetion of this power, these persons exbibiting the elliects of a sunjerinion ol' it. Mr. John IIunter, in an ilhess, felt as if he had drunk too nuch, although he had been extremely temperate-as if he were sugpended in the air, as if the room went round with him, nud as if he were insernsilile of his own centre of gravity-no he expressed himself. 'The young lady had the same sensations, and sav perpendiculura at oher angles, The Opium-eater felt as if he were falling millions of milea, as he expreases ith without ever tinling a bottom. Intoxication sports with perpemdirulars, it is well known. Sir George Mackenzie suggeated Resistance as the finction of thin puwer. Mr. Simpson considers Resiatance to be the passive senantion of a sense (nee External Sennes), and the Organ 25 that of applying Force, or the adaptation to resistance of connter-resintance. For his matured viewn, ace Ihrenolugiral Jomernal (vol. ir. p. 193). Mr. Richard Edinonson of Manchester, in the Phrenologicul Journal (vol. vii. p. 106, and ix. p. 624), argues that the Organ 25 gives the perception of the dirccion of gravitating foree-in other worts, the perprudicular or vertical; and cite instancus among his own numerous work men, and others, of individuals who conld guess the perpendicular without applying the plumb-line; and Mr. Edmonson, as be himvelf states, mokes use of Mr. Simpson's facts, especially the cases of disensed perception nhove cited, in support of his own theory. I'here is much worthy of reflection and farther ohservation in this view. A standard of the direction of grsvitation is essential to our sufety in person, buildings, \&e., and the standard is the vertical. A thae pereption of this is certainly necessary to the engineer nod ruechamician. But it appears to us that the perception of the mere divertion of gravitation were useless to us without the perception of gracitation itself, which is just another term for Weight. Mr. Hytche, in a juper in the Fhrenclogical Journal (vol. xiv. p. 109), alduces many proofs in fatiour of the conclusion, that No, 25 is the organ of the ajplication of mechanical power. In a paprer lately read to the Phrenological Association met in Jondon," Mr. Simpson suggests, that what nupear to be dillient manifestations, according to the virws of Mr. Edmonson, Mr. Hytche, and himelf, seem all to be necessary to the ution of one single power, the me haniral perception und applieation of fores: in a work, that the halours of all three may le fomd tendiag to the same olject. Mr. Edinonson, however, mithes some facts to show that tine active applicestion of foree in its due proportion is the lunction of the organ of Ova

- An aluiruct in published in The Lanced of 17 h Julv. 1 \& 4 2. 2
atruct rencas, Yed amafruction in change of form, and all animala apply foree, whiles fow cenatruct. 'I'he functivis insuted liy Mir. Filmonson to buth 25 and 0 are yet "ans opxin guenton," waiting for further proofa by facte. The stindent of phremolosy chould read all the papera to which we have referrct.

No. po.-Colourlng.

An avery objert must have a colour, in order to the visilhe, it weens necenmary that there mhould low a ficulty to cognhe thils guality, 'The organ ta the nexs outwarile from Wielght in the cyebrown, ocrupying the precise cantre of each eyebrow. A hollow there, into which the end of the Anger could be put, ur much a Hatiesm in tha ridige of the eychrow that a perpendicular line dropleal from it would pase through the eychill, lum, tinces without mumber, been found to loe necomprand with a wath of power to dimeriminate colnura, of en to n ludicroun rxterit. A mercer"s apprentice, who worl to offer red tu match green, was dimminned as untit for his trader 'Tlio organ ia large in great pmintern, emperinlly great colouriata, and given an arched appearance to the cychroiv: for example, In Ruhenw, Titinn, Rembrandt, Salvitor IRoma, (laude Ioorraine, and others. A large endownent of the organ gives grat delight in flowers and hrilliant colouring of all kimis. Nature latw widely and profumely provided for the gratiflention of thia faculty, by the expluisite colouring in whirls luer work are dicessed. Some metaphysicimens commider the phesme we dirive from colourn to be the remult of the asw of ideas. Phrenclogy has diacovered that it in the dirert gratification of ant organ forming prot of our colleitution. Sike that of heality, her pleasures we derise from Colour are gratuitous gooluem from the Creator'm handa. light and mhale, mere hack and white, might have rudered oljects vimible, but what n nombre hue would nature in that ense have worn! In sume inilividualn the love of flowern amounte nlmont to a puswion. 'This organ is held entabished.

No. 27.-I acnlity.

Dr. fiall was led to the discowery of thin farulty an primitioe, ly comparing his own ditlifuttiew with a companim's farilities, in finding their way through the woads, where they had placed mares for lirils, and uarken! nexta, when atudying nutural hintory. Iix fy naterial ohy et must exint in mome part of appore, anil that part of space becones place in virtue of theing so ocenpind. Ohjects themselven are cognisell ly hadividuality; hut their place, the direction where they lin, the way to them depend on another fiuculty, a faculty given for that furpose. Without wuch a power, mien and animals nust, in sitnutions where oljoeta were numerous, mal complifated in their positions, as wowls, have lost their way. No man cond! fiml hín own home, no lifit it own nest, no mouse its own hole. 'The ume of the faculty will ter rendered phain by convidering what it is we do when we wish to rememiner our way through the strevin of a large city; we note puticular ohjerets, luilding, for example, and observe how they atand in relation tuearh other, and these relatione we can rememiner, nithough with a faint reeollection of the forme of We objucts themelves. "Ihis indural Nir (icorge Haehenzie, in his "Illustrations," to attribute to this faculty the perception of relatief $i_{\text {maition of ohjerts. It is evi- }}$ dent that the oljeets must le fixm-at least, if movalle, fixed for the moment-in order to les in a purtionlar flaw, to enabif un to find or go to that giare. Nhere is diother rel." n. natoely, that betwoen ouratera and the face Ille the use the puints of the compass, nhich a. "Ut Roar of cetermining the direction of phaces in rointh"s "o surariverent theno places. 'The ngan in la:ge is th ar. wi, tind their way casily, and

materially alds the traveller, and it suppoment wn mos a love fur 'ravelling, The organ wan larye in Culurs. bua, Coonk, Park. Chirk, and other travellern, (ieemes tricinne, whome atuily in the relation of epacea, have the orgun lurge-as was the casen with Kepler, Cinlileo, Ty, cho Brahe, and Newton. I'se henliy, when aetive, promptes the buliviluala to localizenevery thing, and thinis of it an in ite place. One ghane at a jaragraph or ast verliaerment in n newapapar treew iter place in their minda mo that they will tarn over the lurgest und mort volunio. noum newapupier, nul know in what columin, aud part of a columo, they will thal it: ur direct intures to do ma
 necting their topher with placers : will thow whe have
 pagen, where parthethar parta of their dimeourme are nuted down. Indeed, the word copier is alorived from the
 anlyjects. A permon with the fuculty powerful, will gn in the dark to find what he whnte, and will hat it if in it phoce. Nkillit chemophayers invarially lase the of.
 organ of which they make the primipal uta ; fur it given the power of conccising, lefore muking " move, the effert of now relative punitions of the pieces. Migno tory birda ne believed to be direrted ly this orgna; and animuls, like doge, und, it is suinl, rits-which, ater laing carried far from lome, contrive, to the ustanish minit of exery one, to renplear there, howeree distant. W'e refir to the I hrenaligeral Jowral (vol. vii. p. 7:7)
 the poover of uxing the farulty of foreality, whin wil
 than much abstract deseription."

No. $\mathbf{g u}^{\mathbf{u}}$-Numilier

The organ of thin faculty in placed nt the outer extre mity of the cyrbrown and amgle of the aym It ocenaions, when larre, a fulness or liremith of the twimple, and offer druse downwards the revertal comer of the rye. When it is manll, the patt in that und narouw be tween the reye and the wemple. 'I'heir mamber is a very important riblation or combition of things, and repuires distimet jermertive power. Our watity, and esparest ence may depend on " chenr pererpition of Number. Ur, Giall mal'al the farulty " I.c Acua de Nimblers," "Tha Fonse of Numbers," mid nssigued to it nut only ariter netic, but mathematies in gemong. Dr. spurat im
 and logarithinn; grometry locing the exereive, as atemely slown, of othar facultiox. Ir, Gall lirst whersed tha orgun in " hoy of nine years of age, near Vicona, who could moftigly nud divide, nevitally, in lean time than expert urithmeticinus cond do with that perritas ten or twelve ly three figures. Dr. (iall ullde, "he had erented his own method." An ndvornte of "ionna regretted to I)r. (Gall that hik aon was ao murla 'mpeosed with caleulating, that he uttendel to mothane clac. Dr. (inll compiared the hicula of there two lneym, mall found no particular rememblance but in ote pianombthat do
 went to hored arithowe 'low, wheng them no whor of tablen of lagation
the sume tion. Maty othe
fotud in the pherno
 'Ilic most womberlal arithmetical promlisy we known to phrenologists is Grorge lideler, how a civil ensineer When quite a child, and without uny instatiction, he
 When lie canse to Edinhurgh-where nome armenific sentemen' undertook to iducute him, with the view. if josssible, of ascertaining his methord, which thy nevel

- Reprimed in Chambers's Edinburgh Journeli Nin sub.
odi, whe is yed deven years of ans ower the mont corn writing down a ('ombe, alonge wit) sa him, one deficie elever at whool in oul out the deficlen the lurgeat argan that the third wam tolhurn, detaileol less mo thinn llitile of the I'lirendious of theme young in ometrichans. In I argan and power denec in rino mitre the organ in wanall, tal calculation. N the multipliention

Some manuge t or fity. It umbold Americh, who, wi butr, can rach 1 Humh: lid reteark th :"..n in P , tweily by the ai Tlas interior nuin bin far ilty. A (exwis minall piet astindied when lie mor wh nomer. M de Venionea ansery
The organ is o vity , and when tt pro known th pe aluebraical fontas. natic Anylum in very large orgmo tesident burgeun Grures. The org

The organ of between Colourin Aillingt, rubl ofter who are romarka and aymmetry, at gulurity. The m and lacir sulferint ather farulty, or brace. Several al boois, where ningt every whime woull mot enter in ronfision; ant de l'Aveyron. w which others, of $\mathrm{Mr}_{\mathrm{r}} \mathrm{J}$., a late n renarkalle for t is is puintal in h this important h regular in his ares in him persoll: il one manifestation in that gentlema arrangements, the knife into a turou de persuaded to the right olle. murh disconcort phaed article.
Gilley, and dixgum
wand to nim re in Culum: err, (ieomeo cen, have th Ciuliten, Ty. when entlve, "In, anel thinl ayruph or alb 1 their minila mont volunil. 11, and part ul "Tra to do sa rulty by com "ite" who have W, or parta of diferoutrue are ivel from the
 erful, will gn II Honl it is in have the orthant it in the "; liof It givea " move, the eces. Nigha in organ; and - Whech, aftel the uxtoniah weser lintans. 1. vii. j. 17\%) Anprovivis ly, wlín wil of hate perace
to outer extre eys. It orca. if lise temple. rorsiar of the nd narauw beo mber in a very aul reyuires a
 1 of Numher. mble"," "The at only ariter r. Slurat tima metile, ulyobra ine, as atrealy wherervin the nour Vionna ', in hise time their pracils milt, whe had of Viemare whin engrownd inis ulse. Dr. yn, and found lure-that de Dr. Gullthen 'In an acthor 1 m in l'ue phreno recl in nature ve: known to civi! rngimers iwataction, he al culdulation gone somuific h the view, if ch they never
did, as he in yet wuahle to put it in worid-hen was deven years of age, anul coutd, in a minute or twit, nnower the moat compiticated quewtiona in alyelira, wilhout wrifing down a figure. Is was prowited to Mr. Combe, along with two other hoyn, all Hiven) atringerm to him, one defleient in arithinctical jower, and ansither dever at achool in that line. Dr. Combie at once printal out the ilefleient and the sood arithmeticiant wal, by the largent organ of tha three, withou ditlientey dectided that the third was George Hidder. 'The cave of Zhern Collorn, detulled by Itr. (iall, wan a meriklug olu, but Iras wo thun Itidiler'n: canta of both nere int the Mumenom of the 1"irendogieal Nociety in Eitlinhurgh. Neither of thew young men turned out inore than ordinary pro ometricinus. In Humboldt, brother of the travelle t, the organ and power are both great. The hegative evidence in also strong t there are individualm in whom the organ in monall, and who find great ditliculty in unetio al calculation. Nome have been utterly unalle to learn the multiphiention talike.
Some wivnge triben are unalile to count nuove thirty or filty. Humbwhe pmrticulariare the Chayman of Nonth Ametica, who, with an expreasion of grent montal thbour, con rearh theas mombere; and it in curionm lint Humbel.4 romarked that the external nugles of their en pual up, instend of down, ne they ure when th ar, in "r," The (irvenland triber can reanh (wenty by lin aid of thoir ton fingern and tun toen. Tha intirior mimala, there camot be a doult, ponserн that fur ilty. A dog was accuatomed to be fed by ateacwil, muall piecen thrown to him. Ile went nway atistled when he had reereived the fill thle, lat not sha mor-ul aoner. Maqpies, it in said, comit three. Dupont de Cenours amperts that they count nine.
the organ is often fommi in a shate of diacased netivity' and when the other faculties were dormant, it lone tre known to perfirm mont ditlicul arithmetical nusd algelraical frata. Mr, Combe anw a pationt in the Jillnatic Anglon in Nowentle, in whon be ohserved a very large orgnin of Niminer, mul was informed hy tho refident surgeon that he was pergetually employed in frutes. The organ is extublishled.

No. 2ti,-Opiler.

The organ of this farulty is placed in the eyebrow, botwern Colonring and Nimber, and ia large and prominant, atel othen pinteil like a limput-athell, in thome who are pemarkable for love of methokl, arrangement, and symmetry, and are anmoyed ly confusion and irregutarity. The marked love of erdor in aome prosons, snd their autfering from disordor, are feelinge which no other faculty, or combination of facnlties, neems to emhrace. Sevoral cases are mentioned in the phremologial books, where it eharacterized idiots, teticient in almowt every ohne faculty. An illiot girl in Edinhurgh woubl not enter her lrother's room, which wan nlways in conliajon; mul Dr. Npuralicim mentions the Sanvage de l'Aveyron, who rephured every thing inatinctively which others, often purpesaly to try him, disarranged. Mr. In, a late medical gwnteman in Filinburgh, was renarkable for the organ abl its maniliestation. He ts is printed in his engagements-for the fueulty gives this important hahit-neat mel earefal in his writings, regular in his necounts, prefied in his elreses, and clowly in his jepeon: the lest-mentioned hatit being likeovese one maniferation of order. 'I'he faenley was hereditary in that gentleman: for hiw father was so precian in his arrangenents, that on ane ocraxion, haviug gut his pentknife into a verone joeket, he would not for some time de presuaded to try any uther thans what he held to be the rught one. He yielded, however, at last, and was much diaconcerted when he fonnd the unwontedly misplacel neticle. In mavares, whos habits are slovenly, Gilly, and disgus.ang, libe the Lespuimaux, the organ is
amull. When we cenaider the ahridgmunt and farilite thon of our labour which reault from arrangement, wo enn meo a purposen in the endowment of thin faculty We doulit not that a more extended and earefil ana lysin may dineover for it yot more important functions 'I'he organ in eatablisheci.

No. Th. - Fireminality.

'The organ of thim faculty in mituated In the very centre of the forehearl, and whon large, gives to thim part uf the hemd a rownded prominence. Iudividuatity han bern ralled the furulty of nemas: Fiventunlity is the flarulty of rerh. 'The flrnt jurreivea mere exintence; the wher motion, change, event, hintery, All knows lealge muat Io of one or the other of these tivo deacrip-fionn-e eithes thinge that ere or thiogen that hujpen. In the following examplea-the mav upentis, the wisn bilonem, the bay delfen, the monns cognined by Individuality no printed in rapitalf, while the verbs, adilrefacd to Eventuality, are in italien. The first is simple exintence; the other in action, went, history, Ifr, Gall dixtingulabed, at the motaphyshelanm do, verbai nemory, lirnt memory, renl memory. It in now phrenological doctrine that all the intelleetual farultiem have their own memory. Form remmalern forme; Culons, eshorm; Size, dimanniona Intividuality, objecta; Eventuality, artiontim; Tune, masic Compramon, resemblancerand anulogies; Causality, loo gical tensoma.

I'he most powerful kmoming mimin have a large ondownent of both Individuality and Eventuality; and nuch individuals, evens with a medium rellecting organization, ure the chever men in nerciety-the acute men of hasineas-the reudy practienl lawyers. When the ove organ in more developsel than tha other, the diflerence will he marked in the writinge of the indivithala. Mr Combe (systom, p. 618) adduces ame ntriking proof of this in extracts from crelebrnted writern, and refern to nome aente and interesting ohacty ions hy Mr. Hewet W'ntann (1 /hemingionl durnal, vos. vi. pp. 38:3-451) on this nid to literary criticiam. "l'he organ of" Eventuality is genernlly well developed in children, mind their appetite for stovica is well known. 'Thow', however, in whom everntunlity in moderate, and Individuality large, are prompted lous to liaten to tulen than to "aco things," nes they eall the excreise of their more powerfill finentity. In alher life, the latter will observe minute eaistence: will toll how many mails nro in a door, and miss cise if taken out before their next inspection. Misw Pratt, in the novel cnlled tho " lnheritance," in an example. The former will make une of indidente when they wish to recall any matter of memory. Dame Quickly conviets Nir John Falstall of n promise of marringe. by recalling to his recollection a whole cutalogue of simnitaneous occurrences (Sccomd put of Hewry J., act Dd, bceno 21). Joth liculties nre important, we may say essential, to a tencher of youth. The organ is established.

No. 31.-Time.

Whatever he the psenence of time ns an entity, it is a reality to man, cugusable by a faeulty by whib he observes its lapse. Somr pereons are called walling timepieces; they can tell the hour without lonaing at a wateh; nul some even ean do so, nealy, whom waking in the night. The farnlty also marks the mante divisione of duration, nud their relations and harmonies, which are rallod time in music, and rhythm in veraification. The impulse to mark time with the hend, hanila, fert, and whole hoty, is two common, too nateral, and too strong, not to he the result of a faculty ; it is the impulse to dance, nold almost universal in both savagu and civilized man; and itm existence settles the gruertion with the "Friends," of the innocence or sinfulumess of lancing. In some, the itrpulse, when well-marked time is oflered-the better if cembined with music, thangh a well-beat drum may be danced to-is often irreristible

It exiats in a diseased atate, for we havo seen dancing madinen. Mr. Combe refers to a paper ay Mr. Simpson in the Phrenological Journal (vol. ii. page 134), in which much light is thrown upon this faculty. Mr. Simpson accounts for the dancing of the deaf and dumb; time being conmunicable through tho cye, and by touch, quite as much as through the car. Masters of time in music aro called good timists. The organ was deranged in a lady of Copenhagen attonded by Dr. Hoppe: alie complained that she had no conception of time; things that happened appearing sometimea very long ago, and sometimes only a fiew moments. She complained of pain in the forehead, and phaced her finger on the very organ. Doge, and even horses, give plain indications of possossing the fuceulty, hy their conduct on the return of particular days, occasions, \&c.: Mr. Combe mentions several instances. The organ, situated on ench wide of Eventuality, is held to be established.

$$
\text { No. } 32 .-T \text { Tune. }
$$

The organ of this faculty is situated atill farther out than that of T:me, giving roundness to the point where the forchead turne to form the temples. It is large in grest musicians; and when amall nud hollow, there is an utter incapacity to distinguish either melody or harmony. The organ is sometimes diseased. A young lady, a patient of Dr. Comle's, was seized with an irresistible eraving for music, which hannted even ber freams, and she complained of pain in the very nituation of the organ. Music may be defined as a species of natural language, depending inmediately on either a melarious succession, or a harmonious unison, of tones -tones, ngsin, bejug distinguished from simple noises by a pecaliarity in the mode of their protuction. A noise is the result of aome isolated concussion of the air; when concussions or impulses on the air follow in a sutficiently rapil succession, they melt into each other, and the effect is a tonc. These are fincts in tuatural philosophy, and have been curiously illustrated by a piece of mechanism, which, in its alow movenents, produces only noises, but, when impelled with great rapidity, gives forth tones. The musical notes are repetitions of a series of seven tones, each of which is produced by a certain number of impulas on the air within a given space of tine, and the numbers of these impulses all bear certain nice mathematical rehationa to each cther. The organ of Tune in the human brain appears to have heen constituted in relation to these plysical facts, and, in cages of goox endowment, to have a most exact perception of all their niecties, and a power of using them to the production of the species of natural lampuge which we term music. Cases of a low endowment of the musical taculty, or of persons said to want mutionl air, are of frequent occurrence, though, perhaps, in toany such instances, early culture would have l, rought out some trace of the faculty. 'The grent bulk of mankinal posmess the organ in a moxlenate endowrachat, so as to be capable of enjoying music in some degree. The individual possessing it in high endowment thecomes, in all stages of aociety, a distinguished artist, exercising a peculiar power over his follow-creatures, ss as to rouse, melh, soothe, and gratify them at his plessure. But the gif, in this active furm, is liathe to tee mueh modified according as it is necompmied hy Letality, Iscnevolence, Wit, and other faculties. Thie organ, as comected with music, is helle estaldished; but its fundararntal fumetion-suazested hy. Mr. Simpson to ine mundi," or the perception of the sonorons in uature - yet renaius fase from teing fally elucidated.

No. 30,-l.angunge.

When the facuities are in activity, rither singly or tn combination, the irferise in almost all individuals is
-2. Nep poper in Phronolognith Journal, ii $t 20,500 ;$ x. 403 , 731 ;
atrong, in many irreaiatible, to communcate to othen the feelings or thoughts produced by them. This may be done hy aigns, which is natural language, or by words, which coustitute conventioual. A faculty la given to man nad animale which connecta feelings with signe and cries; but to mm nlone ia given articulate speech The comparative fucility with which different men elothe their thoughts in worda, depends on the size of this organ, which is aitunted in the auper-orbitar plate, immedintely over the eychall, and when large. plusher the eyc outwards, and sometince downwards, proluc , in the latter casc, a wrinkling or pursing of the lower oyclid. There is no fluent apeaker detiecient in this orgnn. There ia anme doubt of the fuculty giving tho power of learning langunges, and the spirit of langunges in philology; the prevailing opinion is, that the faculty of Languago has less to to with this power than Individunlity, imitation, and some other faculties. Lenrning the words and structure of other languages is quite a different thing from applying our own to express out thoughts.

None of the organa have lsen better proved to be primitive, ly diseased manifestation, than this. The instances are numerous of persona losing the power of finding words for thrir thotghts, and recovering it again; and in many of these cases, the lorain in the organ, when examined after denth, haa been furund diseased, Pain in the region often accompanies the loss of appropriate speech, in plague, yellow and typhus fiver. Bui we must reler, for further information on this interesting suliject, to the works on phrenology, especially Mr. Combe's Systom (4th clition, p. 612). Mr. W. A. F. Browne, Medical Superintendent of the Dumfries Lu: matic Asylum (lately of the Montrose), has cnriched the subject (Phren. Journal, vol. ix.) by classing the elise of disease, either in involuntary activity or deprivation of this faculty, hich have cone under his own obser. vation-such ns rnpidity of volunkary and involuntary utterunce, partial losa and total loss of memory of words, loss of preception of the relation of words to things, Mr. Browne has had pntients who have. for many years, spoken with unknown tongues; therely explaining a recent exhilition in this country of insinte fanaticiesm. Mr. Browne's work on Insanity is an invaluable contribution to this sulject. Dr. William Gregory observed, that taking morshia produced in himself losis of control over the faculty of Lanesuage, so that he could not stop spenking. He coneluiled that that medicine acted on the naterior lole of the brain, especially the emvolutions of Latgunge. (P/iren. Journal, vol. viii. p. 161.) Some intoxicated persons are more talkative than when soler, pouring out mere worls without meaning. Dr. Gregor entreats plarenological medien! men to note the effeet of difficrent medicines on the faculties, na a posithe source of valuable light. Ir. Otto, of Coperiazen, physician to the King of Denmark, read a paper to the Phirenological Association, which met in Lomion in June, 1841, on this subject. (See Phremologiral Journol, wol. xiv. p. 288). The inf rior animals communicate with their kind ly, to then, intelligilie language ; and the dog, the elephant, the cat, even the horse, can be made to comprebend words, otherwise there would lw nu use in tulking to them. How well a dog that wishes to wais understands and disrelishes, "(io home, sir!" T'ms organ lage, with its correspombine manifestation, in a compaion of Gall, firat suggested phrenologg. it is extablished.

Internal Exectement of the Knowiag Organs-Spectral lilu. num.

The Knowing Organs are for the most part ealles int.) artivity by cetermal objects, surh as forms, coloum soonds, inctividual things, de. ; but internal causes often excite them, and when they ase in action objecto wil
be perceived which, neverth real. Thia is ghosts, and at that they havo norer happena the aame time Tasso's familia he declared it markcd, when rage in that or the marvellous the knowing o are the conseq subject, and su concluded our simpson has g paper furnished p. 294, and seve he las succeedc tions, which ha ing so, has at tl evidence of the sted along thio cause of their s ists have to dist abjects. Λ yo mentioned in th 8. L., lived in i consequcuce of sons and other lights, brilliant the time of the treating of the ance, she lost th nas perpendicu She complained pearel to her; and cven tho sit and thumb, who argana of Form these were the the figurea whi rolorr, rescmblit was Form activ atter this, her ol pain extended of Colouring. illusious referal, siagulat; she sa dwarfish, nnd wards aloug t became alfeeted and most anmo seemed to tuin confused mass ritions legan at much aggravat Langunge and heard bauls ant she was grentl. peetres was el left her entirely It is likely it manifestntions the region of t situated. Nicol: to the same dise anil as the lece ing fininter an causes, revenler bewilderius it Opium-Eater 1 8. L. Ho sa
reate to othen m . This may nguage, or by faculty is given
ngs with sign iculate speech different men on the size of er-orbitar plate, latge. pushes krds, preducl g, gi of the lower chicient in this ulty giving the rit of languageg that the faculty ower than Indi. ties. I Learning asges is quite to express out
er proved to be ann this. The Ig the power of sering it again: in the organ, found diseased. ne loss of npprohus fever. But on this intercst , especially Mr . Mr. W.A. F. ce Dumfies Lu. has enriched the assing the reses y or deprivation chis own obser. nud involuntary cmory of words words to thinge for many years, by explaining a sane fanaticism. asuluable contriregory observed, If lois of control te could not stop cine acted on the the convolutions i. je 161.) Some than when sulep ng. Dr. Grezory o note the efleet es, as a possible of Coprenhayen id a paper to the lanatun in June, cal Jomrnal, vol. mmmnicate with age ; and the dog, cim be made to muld be no use ta t wishers to mais me, sir!" I'his innifestation, in : arenolugy. It is
rans-Spectrat tilu
most part rallad as forms, colours ronal canse's ollen etion objecta wil
be perceived which have no external existence, and which, nevertheless, the individual will boliove to be real. This is the explanntion of visions, spectres, and ghosts, and at once explains the firm belief of many that they have appeared to them, and the fact that it nerer happens that two persons see the same spectres at the same time. Tho Marquis de Villa did not see Tasso's familiar spirit, although sitting besido him when he declared it appeared to himself. Wo formerly remarked, when trenting of Wonder, thnt excess or disease in that organ predisposes the patient to believo in the marvellous and supernatural, and probably stimulates the knowing orgums into action, when spectral illnsions are the consequence. We promised to return to the subject, sud submit this as the proper place, after having roncluded our analysis of the hinowing Organs. Mr. Simpson has given much attention to this subject. In a paper furnished lyy him to tho Phren. Journal (vol. ii. p. 294 , und several other confirmatory communications), he has succeeded in clearing up the mystery of appuritions, which have so long terrified mankind; and in doing so, has at the same time furnished the most prointed evidence of the distinctive functions of the organs situated along the eyebrows-organs so much doulted, hecanse of their small size, ulthough chemists and naturalists have to distinguish much smaller, often microscopic, objects. A young latly, known to Mr. Simpson, and mentioned in the phrenologieal books ly the initials of 8. L., lived in indescribable horrors for above a year, in consequance of the visits of the spectral forms of persons and other ohjects, and the pereeption of bright lights, brilliant colours, music, and other illusions. At the time of these fulse perceptions, as we stated when treating of the organ of Weight and the sense of Resistance, she lost the power of preserving her halance, and sas perpendiculars and horizontals at other angles. She complatined of sharp pain when her visitunts appeared to her; nad although ignorant of phrenology, and even the situation of the orgams, she put her finger and thumb, when asked where she felt the pain, to the organs of Form and Individuality. For several weeks, these were the site of her pain exclusively; and then the figures which sppeared to her were forms without solow, resembling, as she stated, cobweb. Here plainly way Form active, but Colouring dormant. Some weeks ffet this, her ohjects became nuturally coloured, and the pain extended along the eyebrows, including the organ of Colouring. Embrocing, as the progress did, Size, her illusions referable to that organ"in morbid netivity were singular; she saw objerts sometimes gigantic, sometimes dwartish, and even minute. The pain proceeding onwards along the whole eyebrows, Order and Number became affected, and her visiters came in great numbers and most annoying conlusion, so that sometimes they seemed to tumble into her npartment like a cascade, u confused mass of persons, limbs, heads, dee. Her apparitions legan at last to speak to her, and her terrors were much aggravated. It was probable that the orgatis of Language and Tunc hecame affected; for she often hearl bands and choruses of music. We may ndd, that she was greatly reheved when the true mature of her epectres was explained to her. In time the affection left her entirely.

It is likely that the proximate crause of these morbid manifestations was an uadue determination of bhood to the region of the head where the knowing organs are situated. Nicolai, the lookseller of Berlin, when subiject to the sane disease, applied leaches along the cyebrows; and as the lecehes filled, the illusions vanished, becoming fainter and fainter. Such are oflen the slight causes, revealed by science, of important and otherwise bewildering etfects. The mysteries of the luglish Opium- Bater have leen mado plain ly the case of Niss 8. L. He saw faces in millions, insulferable lights,
brilliant colours, \&ce, and, an we have atated when treating of the organ of Weight, he lost the sel satious of support or resistanee, and seemed to fail millions of miles. Mr. John Hunter, the anatomist, whom we mentioned as having somothing like that horrible sellsntion, likewise suffered from illusiosa of Size and Wright, his leg often extending, as he thought, many miles ir length, and having the weight of a inountain. Many persons suffering from the same cause, snd experiencing the same effects, have communicated their cases to the Phre oologiral Jmurnal, sinco tho publication of those above mentioned.

genve nt, - REFlective faculties.

The Intellectual Faculties already considered, give us knowledge of ohjects, and the qualities and relations of ohjects, also of the changes they undergo, or events, Tho two remnining faculties, according to Dr. Spurzheim, "act on all the other sensations and nctions;" that is, they judge of the relations of difficrent ideas or classes of ideas produced by the Knowing Facultics. They minister to the direction and gratification of all the other faculties, and constitute what by excellence ia called reason, in other words, reflection.

No. 34.-Comparison.

Dr. Gall discovered the organ of this faculty in n man of science, who reasoned chiefly by means of analogics and comparisons, and rarely by logieal deductions. He illustrated every thing, fand carried nis opponent along with hin with a flood of resemblances, coneluding that the thing disputed nust be true, being like so many thinga that are known to be true. In his head was a fulness in the form of a reversed pyramid, just in the middle of the upper part of the forehead. The faculty perceiven analogies and resemblances. Every faculty can compare its own objects. Colouring can compare colours; Weight, weights; Form, forms; Tune, sounds; lut Comparison ean compare a colour with a note, or a form with a weight, \&c. Analogy is a comparison not of things but of their relations. I'he Snviour, for example, in his parental apostrople, does not compare Jerusalen with bimself as two objects; but compares the relation of a hen to her chickens covered with her wings, with the relation of his own benevolent feelings towards that devoted eity. In doing this, he addressed the faculty of Compurison in his hearers. It is constantly sddresaed in Scripture by sintes, parables, allegories, and all kinds of malogies. As the faculty deals in these, and in illustrations in general, it forms the great power of the popular orator. Dr. Spurahcim thought that the ficulty preccives dillirence, Mr. Scott dissents from this, all. nttributes that function to the faculty of Wit. The precise fundamental function of the faculty is yet controverted. Mr. Hewet Watson (Phreulagical Jourmal, vol. x. p. 168) argues ingeniously that it is the perception of ruadi imes, of the condition in which objects ex ist. "The yourg man dies." Man is cognised by In-dividanlity-his ant of dying by Eventunlity; hut neither the one nor the other of these can take notice of his condition, as lreing young; and as it requires the ad. jeetive to qualily a comdition, Comparison is the adjecitie faculty, ns Individuality is the nown, and Eventuality the rerb, faculty. Mr. Comber thinks there is soundurss in Mr. Wutson's speculation, and that it is really romditions we do compare - the condition, for example, of the hen covering her chickens with that of the saviour gatherng Jeru*aletn under his metaphorieal wings. As the orean of unnlogies, similitudes, and comparison of idens, :t in established.

No. :5.-Causality.
This is the highest und noblest of the intellectual powers, and is the last in the phremolopical analysis of the faculties. Dr. Spurahoim so nased it, from observ
lag that it traces the cennection between cause and effect, and sees the relation of idens to each other in reapect of neressary ronsequence. Its organs aro situated on euch side of Comparison. Some metapleysicians have beld that we havo no idea of cause, but see only sequence, or one thing following another. It is true that we do see sequeber. When, for example, firo is put to gunpowder, Individuality perceives the existence of the powiler and of the match; Fventuality seen the motion which unites them, and the change or event which takes place in the explosion; hut wo have a third Alea, namely, that of power, agency, or etliciency, existing in some way in the cause, to prodnce the eflert. Whence do we get this third iden? -from a third or distinct faculty, and that is Causality. We are just ns litte entitled, by means of Camsality, to deny the percoptions of Individunlity and Eventuality, which the celebrated Bishop, Berkeley did, who denied the existente of a moterial world, as by these hast to deny the conclusions of Causality. With a powerful perception of causation, the individual reasons from cause to effect by logical or necessary consequence. It is the laculty which sees prineiples and acts upon them, while the other two faculties only try experiments. Resource in dillicuties, and sombl judginent in hat, are the result of powerful Cansality. Dr. 'Jhomas Brown catse very near the phrenological division of the intedlectual facuilties into Krowing and Edeflecting, when he distinguished them into powers of simple suggestion and refative suggestion. Causality existing as a faculty rives jowerful and to the natural argment: for the oxistence of God. Causality desiderates a couse, and gees upwards to a First Cansi, as that which must evist; che the faculty in man has no legitimate object. and was hestowed in vain. 'l'hir proof, added to that drawn from the existence of the faculty of Vencration for the aloration of the First Cause, as traced by Causality, constitatos an immense addition to the argment for the existence of God from the light of nature; and when yet furtluer. fortitiod by the existence of facmities in man of Henevolence and Justice, which necessarily imply a benevolent and just Creator, phrenology may be said to have been a contrilutor to the evidence of the highest and holiest of truths, the existente and attributes of the Most High. 'The organ is establishod.
Adaptation of the Fixtema! Worta to the Inteller tual Facnlties of Mur.
We quote the following passage from Mr. Combe's Sy*tem. (4 th edition, p. 593:) 一. 'The human mind and the evternal worhs having emanated from the same Creator, ought, when understond, to lw found wisuly adapted to each other ; and this accordiugly appowats in an minemt iegrete to lue the case, If the reader will dieret his attontion to any waturnl or artificial objeet, and consider, lat. its exintence; © IJ, its form: Id, its aike; 4th, its wrisht ; 5th, its locality or relation in space it ather oljecets; 6th, the mumber of its purts; Thls, the order of physical arrangement of its parte; Nib, the changes which it undersoen: 9 th, the periotes of time which theser reguire (we would adel heres, its sombed-producing quality or womonsmess, as qume ditherent from all thome emunerated) ; foth, the anallegen and ditlire eners lwetwern the indivihal ohjoct maler consideration and wher abyects; 11th, than effect whish it prowluces: and. Dautly, if tie will desigmate this ansemblage of jiteras by a name, he will tind that he has ohtained a tolerably complete notion of the objert." Wi mat aht, that the rolations lntwern the affective facultios or ferlinges of man and the mord word are not lowe harmonions; ind tenomatrate dexign in a mamer alogenlere irresistible.

In the intronluction ha his translatoon of that part of Dr. Ciall's work on the I'hyowhosy of the L'rum which
treats of the functions of tho cerebellum, $\mathbf{M r}$, Conbe sat atated the result of certain obscr rations of his own, which tend to confirm as true the allotment of function to the ds ferent regions of the brain, which has been ascertained by phrenologists. An accumnulation of facta, which amount to proof more cogent than is to be fouml in regard to any other physical truth, bas connected with the anterior lobes of the brain the Intellectual Faculties, and with the michler and posterior lohes, the Feelings. Thue Intellectua Fnculties constitute the will of man, und in ohedience to the will are the roluntury motions. But the feclings, when in uctivity, as is well known, have certain mroluntary motions connected with them. Now, the spinal cord has two columns, the one, the anterior, ouserved to produce the motion, and therefore adled the motory tract; and the other to produce sensation, nud therefore called the sensory Iract. 'I'here two tracts join the brain by what is callod the mochullu oblongutu: and here a most atrikinc distinction tukes place. The motory tact alone communicutes with the anterior lobes, in which, in the intellachal orgams, residers the will: Hence, in molnontary motion, as an efliet of will, the motory tract oheys the anterior lobe none; in othar words, the anterior lohe of the brain manifests will, and the notory tract excrutes will. The sensory tract has no comenction with the anterior lobes or intellectual organs.

Again, the sensery tract has a fibrous connection with the middle and posterior toles of the brain, and with the
 gans of the fochurs. Ihat as the feclings lave invelune tary motions when acting, these are provided for hy a fibrous connection between the organs of the fedings and hoth the sensory und motory tracts. I't, as the motions comeguent upon the curryy of passion are not voluntary hut instinetive, we should expect a separate motory tract for instinctive motion, whin which, and not with the tract of voluntary motion, the argans of the frelings should tre connected. This distinetion, how ever, has only leen conjectured, it is not yet aserertained Mr. ('ombe firther adds-- It is certain that mental cmotions evercise a powerful intluence over the organic functions; when the emotions nere asrecable, they stimelate these functions to heathy action; and when paia fut, they depress their enorgios and produre liablity to disease. IReciprocally, when the organic fumetions, such as disestion, respiration, and secretion, are disordered, an irritable and distressing state of the mental felings is induces. The intimate relations hetween the comoo lutions of the hain devoted to the mental emotions nad the sebsory tract of the spinal cord, is in harmony with these facts. The habit of contending with meflerfugl ditliculties, if unconneeted with ferling, deres not injure the orgmic functions sw severely as do strong and powerful emotions; hut it weakens the hecomotive powers Sedubuas students of abistruse problems acepuire a great aversion to locomotion. These lactis rorrespund with the arrangenents of strueture, hy which the condutions of the antarior lopers, devoted to intellect, suring from the motory tract, and wre not connected with the sensory tract of the spanal harrow," Wie no hos aware that anatomaral and flysiological investigations hane unfold. ed facts more interesting than thowe now detaital. The light they throw on pherembegy, und the support they aflord it, are truly invaluable.

What has bera stated in the procoding settion will prepare the reader for the fact, that, hy mans of invo lanlary motions, cach organ of fichine prohlaces move mems, attitules, and exprexions peruliar to itsedf. The chouf aim of the dramatio artor ald phatomment is w
 expressions; and henee such of them as have mulided
plurenolegy hav raluablu guida and Dr. Spurzl into this curion which determil It has teen laic instinctive mo gans. Self-Es and slighaty ba nose" at any t on the permon. rards and to bence the rev notions exten dark and hars? anile of Bene countenance to the prevalence renders the p urustworthy. cal art. Skilf argans from th when aided b dions, mud, not tiveness givims is a power pos noter which unnevessary. key to elaract

It is instruc man faculties contiguously apparent sym 1st, 'The supl mentivenes: contigums in stomach and merve his ow in the two or the gentler m ferocious; he Secretivenes organs mentic tion of surph ant to man's ness; while, for want of fewer than si tive group of moro than his spectios. another grou be callod the Amativens ${ }^{2}$ o Alhesiveness low-men, in power lys s , eneed, ly thu of his comdi charster. The three o rques mint eroup. ly e ilenevolener religumes gro Wonder. II a religious: of the purfe videl a rich may he eal faculter,
'Tune, and '

Yit. ss the lassion are not Pret a separate which, and not - organs of the istinction, haw yet ascertained in that mental ice the organic ble, they stimu. and when pain. dure liability to - functions, such are disordered, morntal frelings vern the cono. al colotions and harmony with with theiliertuel thess not injure trong and jows. mutive powers. acyuire a great orrespent with her convoluticing spring from the the the sensory not aware that us have unfoldArtailad. The a suppurt they
 moluces more (t) itsclf. The utumurinst is w attitultos, and as lave eradied
phrenolegy have declared tha: it affords them the most valuahle guidance. Dr. Gall's Physiology of the Jirain, and Dr. Spurzhein's Physiognomical System, enter fully into this curious subject, and have ascertained the laws which determine the natural langunge of the faculties. It has tween luid down as the lending principle, that the instinctive motions are always in the direcion of the organs. Self-Estecm, for example, throwa tho heal high and slightly backwards, vulgarly called " turning up the nose" at any thing. Firmness gives an erect stiliness to the jerson. Cautiousuess throws the head backwards and to the side. Veneration slowly ferward; bence the reverence and the bow. The involuntary motions extend to the features of the faco; hence the dark and harsh expression of Destructiveness, and the smile of Bencvolence and Love of Approbation. The countenance tends to take a permanent expression from the prevalence of particular feelings. It is this which renders the physiognomy of phrenology scientifically trustworthy. It was ir, Lavater's hands a mere empirical art. Skilful phrenologists have often predicted the organs from their expressions in the countenance; and when aided b; the pathornony, or attitudes and motions, und, not lcast, the sounds of the voice-Destructiveness giving harsh, and Bew?volence soft, \&e.-thero is a power possessed by phrenolugists of judging of chatacter which alnost rembers manipulation of the head uneesesary. When this last, however, is added, the key to eharucter is complete.

The Organs arranged in Groups.

It is instructive to tind the organs of such of the human tiaculties as have an uthinity to each other, placed contiguously it the bain, and to observe that, by an epparent sympathy, they stimulate each other to activity, lst, The supposed organs of the Love of Life and A i -mentivenes:-the essentials of Self-Preservation-lie contiguous in the brain. Hut man has a carnivorous stomach and weth, und must Jestroy animal life to preserve his own. Destructivencss, accordingly, lies close th the two organs mutioned. He must not only devour the gentler mimals, but must not be devoured by the ferocious; hence his Cautiousness, Combativeness, and Secretiven's.s, are all close meighbours of the three organs mentioned, and of each other. The accumulation of surplas:, alove his immediate wnits, so important to man's preservation, is frompted by Acquisitiveness; while, without Construetiveness, he would perinh for want of shelter and rhothints. 'I'hus a eluster of no fewer than seven organs forms to man the sel, -preswrutive group of facultios. Dl, Man is commandell to do more than "subdue;" he is mjoinen, by maltiplying his species, to "replenish the carth." Behodd, then, another group of faculties for this purpose, which may be called the spers-pmementure, or domestio groupAmationdess, Philiprocenitiveness, Inhabitiveness, mad Adhesiveness. 3J, Designed for the society of his fol-low-men, man nowiets his own rights and legitimate power by Self-listerem or self-lave; while he is influenced, by the 口finion of others, to the proper reculation of his combluet, by love of Approtation, or regard to character. Fimmess uits self-histerm in asserting right. The bliree oryans locetod elose to ench other form our rgits am! chun ater-prservutue sroup. Ath, The mozul eroup, ly exeellence is formed by Conscindiousness, Henevelence, and Veneration earthotiverted. 5th. Jhe
 Wonder, Ilyse, and ldatity; the last boing elained as
 of the pertect. Gith, I bountifial Providence has provided a rich fund of recrentive plensure for man, in what may he called the poratal or vereatue gronp of his Gacultes, namely. Imitation, Wouder, Edeality, Wit, Tune, and 'lime, all tying contiguous in the hrain, and
not inappropriately called the "Poet's Corncr," as they form a corner of the head. These art the faculties ad. dressed by artists of overy kind-the poet, the actor, the puinter, the architect, and the musiciun. Tho theatra engages them all. Lastly, Turning to the intellectual powers, we have them in one splendid and "godlike" assemblage in the forehead of man, aubtlivided into three groups, according to their uses. Tho lowest range, the simply-picrcplive group, gives the perception of oljects and their qualities. Ahove it is placed the relatively-perteptive group, for perceiving the relations of objects and ovents; and, above all, the organs of the highest of man's facultics, his reflecting powers, which perceive the relations of ideas, and reasons upon thein; or the reflective group. The organs of the luman brain, as found to be grouped in correlative clusters, were not so discovered. The great majority of them were observed singly, and the full display of their harmonies cume forth on the completion only of tho successive emergence of the organs, and presented a combined force of truth which well merita the character of irresistible: "There is magie in the web of it."
continuation of phrenolooy as a complete phiLOSOPHY OF MND.

The phrenologists lave chiefly confined their attention to the organs of the brain, and the various faculties of which these are the instruments. The former writers on mint (Reid, Brown, Dugald Stewart, and others), gave, on the contrary, their chief care to the mential acta ralled Attention, Perception, Conception, \&c., which they considered as faculties. The phrenologist does not overlook the importance of this department of mental philosophy, but dillers fiom the metaphysicians in considering perception, conception, \&c., as only modes in which the real facultics above described act. This dis tinction is one of great importance.

According to the phrenologists, the fuculties are not mere passive feclings; they all tend to action. When duly nctive, the actions they produce are proper or neeossary ; in exeess or abuse, they are improper, vicious, or criminal. Simall moral organs du not produce abuses; but they are unable to prevent the abuse of the animal organs, as the larger tend to do; thus; smull Benevolence is not cruel, but it does not offer sufficient control to Destructivencsis, wnich then impels to cruelty, Large organs have the greatest, small the least, tendency to act - each faculty producing the feeling or idea peruliar to itself. Secing that all the organs tend to action, the Creator must have intended a legitimate siphere of action for them all. he could never have created cither bad or umicessury facultics.

The Puopensities and Sentiments cannot be called into action by the will. We cannot fear, or pity, or love, or be angry, by willing it. Hut internal causes may stimulate the organs, and then, whether we will or not, their emotions will be felt. Again, these feelings are celled into action in spite of the will, by the presentation of their certernal oljects-Cautiousness hy objects of terror, Love by beaty, and so on. The force of the feclings, whether exritid from within or without, will be in proportion to the activity of the temperament. Excessive netion of the allertive faculties, or the removal of their oljort, chusces pain. Excersive rage is painful to Destruetiveness; and the death of an infant pains the Philoprogenitiveness of the mother. lasanity is a frequent result of over-nctivity of the atfertive forlings. An affective ficulty may le discased, and yet the intellect sound. 'The comverse is also truc. When the organ is small, ita fieling camot be adequately experiencod. Hence the trands of those with smatl Conscientousness and large Secretiveness and Acquinitivencss. 'I he will can man rectly excite the aflective feelings, by setting the intelleet
to work to find externally, or ronceive internally, the proper oljects. I'his accounts for different turris and pursuits. The value of the truth, that large organs give etrong, and small weak impulaes, is incalculablo in society; all the practical arrangements by which persons may he relected to perform certain fluctions, and exeluded from others where they would bo profitless or unase, depend upon it. Moral training by educators is founded on it. The weak thenlties sloonld he strengthenel, and the strong regulated. Laatly, the affective faculties do not form ideas, but simply frel; and thereGore have no memory, conception, or imagination. They have Scusation only; in other words, they feel. Hence Sensation belongs to ull the faculties which feel, and to the external senses and nervous system in general. Sensation, therefore, is a state or condition, not a faculty, as it is held to be by the metaphyoicians.

The Kximino and Reveietive Facelities, or Intellect, form ideas, perceivo relations, and aro sulject to, or rather constitute, the Will; and minister to the alfective faculties. Illey may be excited liy external objects, and by internal causes. When excited by the presentation of external elyects, these ohjerts are perreived, and this art is called Penceprion. It is the lowest degree of activity of the intellectual faculties; and those who are aldicient in a faculty cannot perceive its ohject. We often sece, for example, inability to perceive melody, colour, analogy, or necessary consequence, from defective 'Iune, Colouring, Comparison, and Causality. Every faculty, as a percipient, has its own perception.

Concsption is also a mode of action of the faculties, not a laculty itself. It is the activity of the faculties from internal causes, either willed, or involuntary from natural activity. Imanivation is Conception carricel to a high pitch of vivacity. Thus, Perception is the lowest degree of artivity of any of the intellectual faculties. Cinception the sccond, und Imacination the highest. Imagimation is oten contounded with Illeality, but is quite. distinct from it. Each faculty conecives in its own way. Form conceives forms, and may ingeine them expuisit.ly beautiful; Tune conceives music; and so on. Curious elfecter result when these ficulties are morlidy active. The whole mystery of spectral illustons is thas made plain,

Dukamina, to aceount for which so many volmmes have ben written in vain, is at once explained by the excitability of the organs from internal causes; and as eome orsans may he awake while others are asleep, the disjointed images of our dreaniug monents are, to the phrenologist, a thing which was to have been expected. Tho kind of dreams most frequent with us could be predicted hy the phrenologist from the size of the predo minating organs.

Meyonit wo, is net a faculty, but a mole of action. It necessarily follows that there can lae no such thing as the general memory of the metaphysicians, hut every faculty must have its own memory. Memory belones. however, only to the intelloctual fincultios. It dithers from Conception und Imasination in tisis, that it revollecte real objecta or events whid it has urlually perreived. and adds the consciousness of time chapmed witure they were perceived. The other named mones of netion do not require realitios or time-

Johiomet, in its proper enener, is the perception of edaptation, fitness, and nocessary consequcuce; athl is a mode of action of the retlectiog prwers, In 11 certain wane, the knowing liaculties may esch le said to $\boldsymbol{j}^{\text {mas }}$
 Corm, I'une of intasic. Whern, however, we use the worl judgment, we mann right reasoning, monnd deciling. 'I'o, this a proper balance of the aflectuve faerltion is eswential. There is no mound judginent, even with qreat retlecting powern, if any of the leeliligs are excencive. Hence the diffoculty of ponvin ing each ot mer expreienced by heated con'varsiuliate. What in called a person of good sense,
is one who has not only elear and atrong reflectlig fusw ers, lut well-balanced feerlings, thus allowing the reflecting powers to have undisturbed action.
Covsciougness is the knowledge which the mind has of its own existence and operntions, whether these last aro nffective or intellectual ; lint as it does not reveal the existence or nature of the powers themselves which think and feel, it was an error in the metaphymsians to attempi to discover these powers by reflecting on their own cons' sciousness. As they could hare, by this means, no ac cess to know the conscionsmess of othirs, they fell into the error of supposing all men constituted alike.

Attention is not a faculty, hut the streteh, applica. tion, or tension, of any or all of the intellectinal faculties

Association is that succession of ideas in the minit each secming to call up that which succeeds; so that, in our waking hours, the mind is never without an idea rassing through it. This is a state or condition of the faculties, not a faculty. The metaphysicians have endenvoured to discover laws by which, in every mind, this succession is regulated. 'This uttempt is utterly vainn. ${ }^{\text {a }}$ vain as to sobject the succession of the tleeting clouda or fittul breczes to regular laws. 'The uniform associatine powers, according to the old notions, are resemblance, contignity in time and place, and contrast; yet any one who think on the subject, commot fuil to he wrinsible that there are many connecting links of thought which cannot be reduced to any of there three. 'The phrenological view is, that the predominant faculties in each mind create the assoriations, It is in the philosuplly of Ar. Stowart that Association is made to play a phirt most disproportioned to its aetoul nature. He even holds that Assomiation produces now primeiples of action, and nsmes Atarice (which phrenology proves to be the abuse of a primitive faculty enlled Acquisitiveness) as one of them. Assoriation is a very important principle in mental science. There in a motual influence of the organs, which prow daces assuciations; a mutural association batween certsin evterual objects and certain facolties; and artilicial associations may be formed hetwcen olyjerts and faculties For ixample, long exercise of a particular organ or organa in parforming certain actis, renders those arts casy, by the rapial astociation of the ithens aeressary to their performance. I'rofessional wkill, in all its varictios, is thus accounted for. Mutual artion of the faculties atises from the herutiful arrangement or grouging which we have
 sicts with ideas, with well-known rapidity. Aruticial Memory, or Memonics as it is called, avails itself of our most casy nod natural asociations. which will always be regulated by our organization. Due person will connect his idens with forms, suther with colnurs, unel many do so with phucr. Projudiecs are associations of false ideas with the ferelinge. In short, to arrive at any thing like lave of asseciation, we must mot look to the ideas themselves, but the faculties that fom them.

Pasoun is any taculty in encess. 'Thus, there are an muny passions as lacoltios. Lone is the paspint ot Anativeness in union with Vermeration; avorice of Acquis. tiveness; rage of Wertructiveness.

Pifanine and Pasy also helong to cach firulty, according as it is aspreatly or disagreeably athicted.
 of errtain eambinations of tarolters. 'l'hus. thenevolence, Veneralion, Ilope, Conmeientionsines, atal l'irmatess, with noderate Se!f-Fistorm, problace a guict, meek, resigned, and patient spirit. Apathy is quite dilferent, ahough often confounded with latiane; it arimes from lymphatis temprament, or defiecent frain. On the other hand, Sid-listerill, Conhativenarss, un! Destrmetioness when larger than Benevolence, Conscientiousuess, and Venemtion, will be inpationt of contradiction. Learge Time and 'Tunc give impatience of bad a usic.
Jox and Gaixp arise from agreeahle and disagreeable
affections of t Wealth, pow Self-Eatcem, other hand, diveness with

Srmpatily fecling with law which r nat :0 of thi it occurs. 'I mind natural the theatre, li m d auffering namely, that ticulur fecling tal language of Self-Este in those wh them. On natural lang Wonder, too thize with th structiveness by Conscient thise with detect a mix duces, such symputhy le In cducation of Bencvoler in the treat:m and imperiou

Hanit m thing well b done at all, awkwardly. faculty by i ing skilfuily tion. Mr. for poetry, I formed by These phren tise powers

Tiste: w acquired by the result o Bad taste is propensitics, Destructiver him to sin bad taste in much Com taste in val tiousness, \& it is turpitue has been w qualities of This were hy appealins and harmo highest po good taste, well-hualane or these last ot reveal the which think is to attemp: eir own concans, no ace hey fell into Fike. tch, npplicawal faculties in the minth ; so that, in out an iuca dition of the us have eny mind, this terly vain-. eting clouds rm associatresemblance, yet any one Nensible that hich cannot hrenological each mind ojliny of Mr . a part most on holds that a, and nsmes c ahme of a ane of them. mal science. , which ween certsia rititial asso nd faculties an or organs casy, ly the eir peiform , is thus son ntisey from ch we have o ussociateg

Arliticial iterlf of our Il always be will conmect al many do if fulse illeas y thing like ideas themthere are an ins of A ara of Acyuisi ich filtulty, thected, y lhe treult henevolunce, miness, with ek, resigned, it. allhough an lomphatic other hand, chioss when and Vionerslarge Tims
affections of the facultics by causen of considernble power. Wealth, power, and praise, give joy to Acquisltivenesm, Self-Esteem, and Love of Approbation; while, on the other hand, the desth of a heloved relative affeets Adhesiveness with grief.

Brmpatir, as its name (from the Greck) eignifies, is feeling with another, or partaking of his emotions. The laws which rogulate the nclivity of the facultics show the nat of of this affection and the circunstances in which f occurs. Two individuals of similar constitution of mind naturally feel alike. This ia the sympathy felt in the theatre, listening to elonjuence, or witnessing distress and suffering. But there is another kind of sympnthy, nsmely, that which is callel up by the activity of a particular feeling in nother's mind, manifested by the natural language of the active faculty; thus, the huaghty air of Self-Esterm instantly calls up a defensive Self-Esteem in those who witness it, if the faculty be powerful in them. On the other hand, Benevolence, with its kind natural language, excites the snme fecling in nnother. Wonder, too, sprenals rapidly ; and so on. We syıopathize with the animal fecling of Combativeness nnd Destructiveness unly when they are awakened and guided by Conscientiousness and Benevolence. But we sympathise with Benevolence directly, provided we do not detect a mixture of a relfish ferling in the actions it produces, such ne vanity or love of gain. The doctrine of sympathy leals to valuable practical connequences in lite. In cducation, for example, it explains the greater power of Benovelenco than of Silf-Fsteem and Destructivencas in the treatment of the young-of kindness than of harsh and imperious commands and punishments.

Hanle may le defined ns the power of doing nny thing well hy frequently doing it. But before it can be done at all, there must be the faculty to do it, however awkwardly. Habit, then, is the acquired strength of the faculty by its repeated exerise. The act of performing skilfully on a musical instrument is the best illustration. Mr. Newart erred when he held that "a genius for poetry, painting, music, or mathematios, is produally formed by particular hatits of atudy or of business. These phrenology shows to he the reaults of original primitive powers which halit does not form, but only juproves.

T'iste was held by Mr. Stewart to be a faculty, and acquired by habit. Phrenology holds that good taste is the result of a harmonious nction of nll the faculties. Bad taste is evinced when particulsr faculties, especinlly propensities, break out lnyond due limits. Iord Ityron's Destructiveness and other animal facultics often prompted hias to sin asainst goobl taste. Too much Causality is bad taste in l'oetry; whiln Homer and Moore hove too much Comparison. Sorial converse is injured by hai taste in various ways-by disphays of vanity, disputatiousness, de. Bud morality is had taste; but it is more, it is turpitude. A stambard of taste, nhont which so much has been writuen, is mot a decision of certain olyects or qualities of ohjects as benutiful or perfect to all men. This were a vain atlempt ; lut it may be approximuted, ly appesling to the tate al intividuals of very favourable and harmonious organization, which has received the bighest possible culture. It cannot fail to strike that good tante, souml juilgment, and good morals, all repuire well-halanced lacultics.

For other conditions of mind, which may appear to require explanation, we must refer to the works of the phrenologists.*

[boors on phrenology.

The writings of Ginll and spurzheim will alwnyg be entitled to respect on account of the discoveries of those eminent phrenulogists. Other writers have heen successful in enlarging the science, giving it greater exactness, and making it popular. Among these Mr. George Combe has been one of the most industrious and best known. He hus published "Elements of I'hrenology," " Lcetures on I'hrenology," and a phrenological "Tinur in the United States." These works are written with great ability, and are particularly valunble on account of the great mass of facts and illustrations hearing upon the sulject which they present. His work on tho Constitution of Man also contuins many important facts connected with phrenology. A small book entitled "Uncle Sam's Recommendations of Plarenology," is a familiar exposition of the leading prineiples of the science, intended for young peoplo and beginners.
"Foneler'a Phenology" is an excelle:.t popular view of tho subject. 'Ithere are several phremological kurnals published in Europe and the United States, to winich the student who wishes to devote himself to a thorough investigation of the subject will have recoursc.--Am, Eil.]

[^28]elementary works on phaevology.
Gull on the Anatomy and lhystology of the Nervous System nutl linan, in Freneh, wath nn Allas of 1ew Engravings. This work has been ransinted nt Boston. Enited Smbes. Spuraheim's 1'hrenology, l'lulosophient l'rine ples of threnology, Hyysiognomical system. Plurenologs in Comnection with 1'hysiognomy,
Ontines of Phrenotogy, nid Anatonv of the 13rain and NerOntines of Phrenology, nud Anatonny of the Brain and Ner-
vons Sysum. George Combe's Ontines. Flenurus. Systein

 (inorge Mnekentie's Illusirntions of I'hrendogy; Vimonis Hunga and tompmrative Plirenology the Marenology of the Hus-rior Anmais); Scolt's Plurenology, as uffording a syste. matrior Ammats); colts view of heman nnure: Deville's Mannal; Caldwell's Mutic view of hemman nhmre: Deville s Mambal; Caldwells logy, with Notes; Maenish out J'hrenology; Sidney Smiti's I'ry, with Notes; Maemsh oll Mrenology; Tolduey Smili's hinties of Jhrenology: Noble on Fistinnting Clinracter Sthe hatien of Phrenoligy; Noble on Fishminning Character; the Five Volumes of the snme.
works on tife \triangle prlications of phaenolohy.
Generally to Itumm Life.-Spurzheim's Sketeh of the Natural Laws of Man: Compers fonstitution of Man, Moral Phlosophy, and Notes on the United stites.
To E/hrution.-spurdhenis Principles; Combe's Lectures; Poole on Phbeation: Smpson's Y hilosoply of Edueaton; Caltwelf on hys:cu
 sology ot Digstion, mid Tratment of maney; sir Georgo Suskenpes Ohservitions on Whtuention; the smme nuthor on

To manaty.-Sprhem on Insamy, Dr. A. Combe on Mental bunugement: W. A. F. Browne on Insanty and Asylums. Th Treatment of Crimimnts-Simpson's Treatise on Criminal
 the first detion of his work on National Educution: his Trea. tise on Capital Puniahment or Murder. in Candon Monthly

Also. he Phromolog ent Jomrunl. on nll these applications.
 sintyons simisties of phrenolugical und eleven antu-phitenological pub-
ished works.

PRINCIPLES OF CIVIL GOVERNMENT.

INTRODUCTORY.

It is .mpossible to imagine man, such as we know nim, existing out of society. Man is a boing who, from his birth to hia death, is continually undergoing changes from weakness to atrength, and from strengeh to weaknesa. Without the aid of othera, the chidd could not live to become a man. Again, nay one man's powers of observation would le quite insdequate to procure for him any thing like the amount of knowledye which a number of men. imparting their information to each other, and disputing about $i t$, store up by means of this co-operation. Lastly, the wishes, fears, likings, and dislikings, in which a man halitually iudulges, and the actions which they prompt bim to undertake, and the opposition which he meets with from others, contrilute to form what we call his peculiar character. 'I'hese feelzings could not be excited to the extent they are, without the sympathy and antipathy of heings tike himself, nor could he anywhere meet with opposition to his wishes so strong as what he experiences from the rivalry of his follow-men. In short, man is, during a great part of his life, dependent upon the assistance of others for th:s preservation of his existunce; the passions which spur hin on to art are excited, or at least strengthened, by the sympathy or opposition of men feeling like himself; his knowledse is increased, and his wits are sharpened by conversation with other men. It is hardy posaible to inasyine a creature of flesh and bood, with a thinking principle like our own, living in uteer solitude; and such a being, could it exist, would ditfer widely from man, mado what he is by living among creatures like himself.

Agaid, government of some kind or another seems necessary to the very existence of society. Two men cannet he long tegether, but there will be a chance of their both desiring to take possession of the samo ohject, or one of them wishing the other to give up some pursuit in which the tatter is engaged, in order to assist him in his. The stronger, or the cleverer of the two, contrives to force or persibule his companion to comply with his wish; in other words, he governs hin. Among all rude prople, we find women and children old enough to le able to work, in short, the weaker members of society, governed ly the strong-made to do what the strong want them. In societies a little more advanced, We find individuals not possessed of much bollily strength, making up for the want ly cunning, by winning manners, or hy reasoning, or by a mixture of all these. 'The kind of government whirh, as a socirty advances in civilization, immedigely succeeds that which savage trities call the "fighting-men," is that of the priests. Priestly government, in its rudest form, is found in the fristieg of the Negre nations, and the "great medicines" of the red Indians of America. It is a proof of n narrow mind, when a man can see nothing hit What is bad, eren in thear (9 o nas) Indicrous instances of prieatly govermment. The priest-ruler is generally tnere uf a thinking leine than the m"re" fighting-man." Ife mut have evperienced the influener of devotional foclige-orulde as his nwn cucultivated mind, hat sube statially the same rovating emotion which atds such a digntity to the mose colierherned minds-or he would art her capable of havime plans to work upen that froling in the mime of whars. 150 is not neenssarity altozether or mabionely seltints for hintory has many wamplos evert of the jugaterpriont playing off tricks mpon his dupea in order to frighten them into good hehaviour. Mont governments that the world has sech. lave been a
compoind of the governnient of the "fightio gemen" and the priests-an alliance between thene two elanke, each acknowledging the power of the other, and giving up something to securo its ussistance. 'The few whose strength und courage, or whose ambition and talents enable them to hecome warrior chiefs or priests, were stimulated, some by desire of laxury, some ly desiro of weulth, some ly desiro of power, seme by desire of doing good. Even the merely selfish among them weve ohliged to do good to some, in order to proeure faithfal aervants. The govermbent of the wise (the word ure is used here comparntively-they were wiser than those they governed) and the strong was yicllded to by sotne, becanse they were all wad ly their rulers, by the rest, becanso experience taught them that the wettled condition of a sociaty in which there is a recomuised govern. ment, is better than the irregular condition of a society in which the ruler of to-day may be the slave of tomorrow. When a government has existed for a considerable time, a number of the persons living under it must have heen born under it ; it was a government at the carlicst time of which they have any recollection, and is a government still. As in every thing else, men jump at the conclusion in this matter, that because they cin remember no other state of alliais, there can hava been no other. They come to look upion the governmeat under which they live as something that becessarily exista, that cannot be otherwise. It is in this way of thinking that we mast aeck the oricin of those notions regarding the rights of royal and moble families, which, combined with men's sense of the power of the wartion castes, have, from the time that histury leggins down to a viry recent period, made up most men's eonceptions of a govermment.

Some of our readers may think that it was not necessary to take up so much time and toom as we have hestowed upon the two preeeding paragruphs, in order to prove that mon have always lived in socicty, and that society has always had a government of some kind or snother. It can, however, easily he shown, that the detail into which we have entercil is not useless. Men need, more often than they confess or are aware of, to be told over aguin what is not new to them. It is not enough to licar a thing, moless some eflort is made to understand it, and keep it in mind. Our object in laying so much stress upon so modentiahle a fact, as that wh know nothing of man but as he has bern made by society, is to impress uron the reader's mind, so that the Iruth shall be constantly present to him, the fax that to live in society is as necessary and unalterable a cond. tion of our existence as to lireathe. I man, by bring ing some of his neighbours to think with him, and hy subjecting them to his power, may prokluce a sinall, very sinall change, in the condition of that part of socicty which is within his reach; but, in return, socigty makes him almost all that he is. Socicty is not a thing that man can make, but the result of matural tendencies. It has assmmed, in every civilized eountry, the character it bears, from the matural operation of the meatal and phy sical constitution of man-we tind in all a varicty of profiscions and pursuits, some of high and others ot inferior intellectual embowment, and, from a concurrence of causes, one class leisurely and westhy, and another more constanty emplusuland depondine more for sulsiatence on fresonal crertion. That eren in the leat organized soricties there nre fandes, no obe denies; the in as far as any anch are inconsiaterit with man's metatal faculties, they uro sus. cordingly be remedicd as tho swicty advances in mentad
viture. Viev mon have, on ganizo mociety tonal principl filal. Effor equality of co as to banish come to naugh tible with the which are the statices, in, ove have set out be reconstruc have hitherto dewn to thos an impossibili

Further, th vernment was upon the read the fact, that man, such as from the exi are met togrt good or bad, ment of some be ill every others-to m gome who ar those who ar amonr those who unite to them to attai who seek to unon the sup persuading o what is good propensities : men to aspir ship with the the lead, are help having ments of ou sities to cat use of their so contrel 1 ments for the whole h sary to teact wondered at ception of it the last two knowledged stood by a after visitins of great thi of time, rev has been st tuuched the sace for the acconut of in pratice versie's, and to convinct blats. may lie con thais it has solvad the

These r
tioduction
mivi-me
nature of t olject of braces tiv In what ut
malture. Viewing these faults in too gloomy a spirit, mon have, on various occasiona, endeavoured to reorganize mociety on new, and, as they believed, more radonal principlea; but all auch attempts have aignally filal. Efforta, for exsmple, to establish univeraal equality of condition, with community of goods, as well as to banish religioua belief, have in every instance come to nanght, becanse they were absolutely incompatible with the fundamental principlea of human nature, which are the same, only slightly varied by circumstatces, in, every age and country. All reformers who have set out with the opinion that society must and can be reconstructed upon other principles than those that have hitherto held it together, from the days of Phato dewn to those of Rotert Owen, have been attempting an impossilility and throwing away their habour.
Further, the detailed exposition of the nuture of govermaert was entered inta for the purpose of impressiug upon the reader's mind, in a lively ond lasting manner, the fact, that as society is necessary to the existence of man, such as we know him, government is inseparahle from the existe:ce of society. Wherever two or three are met together, there must be government; it may be good or bad, wise or foolish government, but government of some kind there will be. There will always be in every society some who have a desiro to rule over others-to make othera work out their purposes-and some who are satisfied to submit to the domination of those who are moro ambitious. There will always be anong those who are ambitions of gevernment some who unite to the desire, the talents necessary to eunhle them to attain their ends, and others who do not; some who seck to faund their power upon their own fores, or upon the superstition of others, or upon their power of persuading or convincing men that they know better what is good for them than they do themselves. The propensities and faculties which induce and ennlle some men to napire to le leaders, others to contest the leaderblip with them, and others, again, contentedly to follow the lead, are implanted in them by nature ; they cannot help having or exercising them. But it is with these elements of our nature as it is with our instinctive propensities to eat and drink, to love or hato; ly the proper use of their knowing and reflecting powers, men may so control mald direct them as to render them instriments for producing great good nud happiness to the whole human race. A long experience wns necessary to teach men this truth; it is, therfore, not to be wondered at that nothing approaching to a clear conception of it dawned apon the minds of men till within the hast two centuries, or that even yet it should be acknowledged ly comparatively few, and rightly understood liy a still smaller number. The idea, however. after visiting, with less and less of ohscurity, the minds of great thinkers in ditferent ages, has, it the progress of time, revealed itself with considerable clrarness, and has her'n spoken aloud, and has fallen on the cars and twuched the hearts of men. The history of the European race for the last humdred years, is litto more than an account of men's elfiots to apprelemed aright, and apply in practice this important truth-of errors, and controvesies, and unteasomable getting angry, and attempting to convince carh other, not ly arguments but hy hard Whws. Sorinty has berome consinced that govermment may be converted into an instrument of gratur good than it hai ever yet proved, and will not rest till it has colved the problem.
Theue remarks have nppeared to us a meressary in-
 mext-ucensays, in order to phace in a elear lieht the nature of the thing proposed to be inguired into, and the olject of the inguiry. The study of gowermment embraces two distinct questions-What is govemument? In what marner ran governaneut be made productive of
the greatest amount of good; or in what ninnner can any mischievoua tendencies it may have be noat effeetively neutralized! Government is simply the oxercise of power by one person or by many associated peraons The inquiry into the nature of government is therefore an inquiry into tho aource of its power. Its power must he derived from aome pocularities in the characters of those who obtain and excrcise it, on the ono hand, and from some preculiarities in the characters of those over whom it is exercised, on the other. The inquiry into the facultica and propensities which make aome men governors and others sulyjecta, exhnusta the inquiry into the nature of govermment. This investigation, it is clear, must preeede the inquiry, hov government can be most effectively rendered productive of gool, or prevented from doing harm. Having arrived at a distinct notion of what constitutes a govemment, of wherein consists its power, the second, the practical question thus subdivides itself-In what cases is the interference of a government likely to be productive of good to the great body of society? In what cases is its interference likely to be productive of evil? By what moans can government be rendered capalle of producing the greatest possible amount of good, in cases where its intelference i.s of use? By what means can government he kept from meddling where its interference is likely to do harm?

The answers to these tivo clasees of questions constitute the principles of civil government, or the theory of civil govermment. The reader camot fail to have of served that they imply, on the put of the person able to salve them. some acquaintance with the constitution of man. There are few persons of this class tikely to take an interest in these pages, who can lie entirely ignorant of the nature of man: they may not have an aecurnte or systematic knowledge of it, but by reading and conversing, they must have pieked up a sufficiency of floating notions regarding it to cmable them, with or dinary nttention, to follow us when ver we may have to touch upon that brameh of knowledge. At tho aane time, it is right to tell them that their understanding of the priaciples of goverument will he rendered much casier and much more correct, hy a careful perusal of some look or treatise giving a elear and concise account of the constitution of man. Mr. Grorge Combe's work bearing that title, is what wo would recommend aa the best.

A theoretical knowledge of the principles of government is not, however. enough: or, we would rather say, that the mere study of a syst matic explanation of those princijles is not enough to colable a man to mase ter them to any good or practical purpose. You cannot get a right knowlodge of any thing ly looking at it from one point of view only. If you want to have a currect knowledge of a country, it will not do to atick close to the high road, though that will earry you noo casily through it. You must turn into by-lanes, to the richt and to tho left. Yon must aseend hills to ottain bird's-erye views and you must seramhle through vallevs to git a notion of the shape, size, and position of hills. Aqain, if any man womb have a correet judgment of what human life srally is, and what its value, he munt not hastily decide, when in youth or carly manhood he sees the imtraselled path at eteded out before him: he must wain thll he has at least attained the midway heights of lime and can law bark on the ascent ho has climbed, forward upon the desern before him. Amd so, wherer would thorough'y romprobnd tho primeiples of civil povermment-who womblathain such a pratical mastery of them, that he shall the abe to make then a rule of action-must sorls to look at inem from differmit points of view. Ife mot acrostom thimself, on the one hand, from sulh a stuly of the nature of government, nud the means of turaing it to the bent
eccoult, ne we have just chnlked an outline of, to proo vide himself with a standard wherthy to judge the ectione of government. And then, agnin, ho must accustom himelf to read the history of past ages and other countrios, nud to keep a dispusaionate wnteh over what in going forward in his own, with a view to find in these obarvations practical lessons regarding the mature and operation of government, that may modify and render more arcurate his abstract opinions, or merve an illustration and "xplanations to enable hion to understand them more thoroughly.
In accordance with these views, we propose to antdivide this tract into twe sections. In the first, we will treat of the principles or theory of civil government, according to the glan that has been already laid down; in the second, we will annlye the constitution of our own conntry, in order to point ont the actual working of these principles, and to furnish the reader with illustrations of the primeiptes stated in the first section, and an experimental test of their truth. The first of theso eections is cutitled Tusonf of Civin Govenvment; the econd, Guvilivinivt as at actically exints.

Any thing that a mere man can teach another, must be meceswarily incomplete-the partial knowlodge of a limited, a finite mind. When a man has done lis best to make a subject clear, he must, if his oljeet be to disseminnte grath, fest his hope of suceess, in mo smatl degree, on his perwer of stimulating those he addresses to think and intpuire for themselves. It is on this account that we carturatly wish that avery one of these our tracts may inspire our readers with a resolution to inguire farther into the matiers they treat of. We hoper, for example, that we shall le able to give such a foretaste of the important and interesting study to which this number is devoten, as will induce them, when they have leisure, to comsilt different autiors who have treated of it-to compres or contrast their opinions with ours, and with one another. In the hope that some at least may do this, we have aded a third mection, containing a very short list of the principal authors. It bas been the practice of some writers to prefix a history of their sejence to their systematice explanations of it. 'lo ua, on the other hand, a distinct conception of the nature and sphere of the inpuiry, such as can only he obtained from entering upno it, is requisite, to enable us to de rive advantage from a record of the succersive rellirts which bave brought it to the stare of advancement in which we find it. Every ecience, however, and most of all a praction sejence like the theory of govermment, has hght reflected upen it ly tracing it from the undeveloped form in which it firs presented jtself to mon's minels, through the varions efliorts and casuatios which have bronght it to tho condition in which we dind it. But the only way to master the history of a spienee, is to read the works of tire great hen who have treated of it one after another, and tu note how each, taking the wulsject up where his jridecessor left it, has been enabled to advance it. And it is impossible to ercape minunderstanting anthors, unters, hy atodying the hisiory of their seience, we know the premonerptions which they entertained, and the practionl objects they hat immediately in view in writing, inasmonh as them meressarily warped their jodgrasut, and hed them to alopt their peculiar forma of expression.

SECTION I-THEORY OF CIVH, GOVIRNMENT.

I What in Government?

Many writers upou sovermment, aone of theon of no moan note, have thought it necesmary to start with a definition of wat they mean by the word goternment. This affectation of severe exact thinking in copied from the forms of demonstration alopted by malimaticians, but in out of place in reawnings about thinge which
exist independent of the reasoner. The mnthematiciay may deflne his circle, because part of his procese in to construct hla circle t hut the reusoner on governmens does not make government; he find it exinting before him.

We une the word government in its common, it may be unscientifie, but perfectly intelligible, appliention When we talk of a government, wo mean the samme thing as when we talk of the British govermment or the Chinese government. We mean simply that man or body of men who govern, or, in other words, exerciog power over a nation. So long as anch a man or hody of men possess power over a mation, are ohryed by it so long are they a govermment; when they craso to le oheyed, they cease to be a government. Ilay may le an unjust govermment, and continue to reign, or they may lie umjustly deposed; that does not altor the state of the fact. The holders and excreisers of power a:e n government, by whatever means they exercise that power, or whether they exercise it for goom or evil.

The goverumsont of a nation is the mun or body of men possessing and exercising jower over the rext of the commonity. By pover, we monn what was poo messed by the conturion, who snid to our Saviour, "l say to ome man, go, and he goeth; and to another, come, and be conctla; and to my servant, do this, und he doeth it." r'ower, as was intimuted in the introductiry part of this essay, may be acquired by diflerent means A strong man puloshe's a weak man for not oheying his commands; and the weak man, convinerd that similar disobedience will ndways draw down upon lima similar punishment, olsys him ever after. A cumnimg man presinades a foolish man, that he fressesses superuntural powers-that his prayers and invorations con call down blessings or curses upon others; and the dupe oheys hin, in order to ohtain the one and esenpe the othro. A wise man convinces a man of good understindiag that le understands what is for their common advantage, and thus perstumles bim to follow his advire, which is a more polite way of expressing-to ohry him. When a certain number of individuals have, by the use of one or more of these means, secured the olledicne of a certain number of fallowers or deperadents, mother, in the same manner, accures their olodirnce (and with that of all their retainors) to himself. In this manner sinall states were first formed, which, in prowess of time, by the operation of ware, nlliamere, and other means, were melted together into great ones. Wut the greatest and most rivilized states, whon clowely examined, will be found to be still held tugether by the sane means which were originally instromental in forming small ghes. A man who has much wealth, has indluence with a certain number of his fellow-citizens. A man who does muchs goorl, has influence with another portion of them. A man who is lelieved in any way to haw it in his power to do good or harm to otlors, posmesses similar influmere. 'T'wo or more of the furtions (ussesting such influence, form a party, and choowe or are gaind by a leader; and the man or assweintion of mem who, by this complicated process, command the mervice's of a de cilod majority of the citizens, are the govertmont.
'Ihis is the case in every nation that has a grivern ment, whatever the external mame ond form of that government may be. In an enlightened romatry like our own, in which men have acquired a habit of oleying the laws. the process is carried on in conformity with the forms of law. In countries less advanced in civilization (as was the case among ons own ancestor.), the meduivition of power, and its transference from one party to another, is effected by means of vinlence. Hut in both instances the fuct remains unalterech, that the man, or combination of men, who pewserss the largest amount of stored-up capital, the greatest quantity of practical talent for managing mer., and by those meana

A1s zerrices resolute mi Indirectly, other jerso

It in clet politicnl po which all n in their isein - \mid en to \mid tremthant by which atalie and I body of the their happi have suhmi umelies of closer exam real or im: people in si of looking 1 arrangemet and comfor the momen sure at a fit lightenet t can easily, pleasures, and when content, pu own numbte A frew capa check a 1 In engine of a portion of They may gain is, " 1 ratively hio been seen case in Fra will be fot vanity of 1 sook for ste selves into evils of w were more or internal themalves acted upon

Having in answer tion, we n volved in merans the increased tendencics These qu division of
2. th what
view tur "
Contrary
In attril la it of so kul.ty qu tix: W man's form -his pow lis own arent. govemame mand or sulyects choice de
b) serrices of the greatent number of the atrong and renolute men of a country, always exercise, directly or indirectly, in their own names or in the name of some other persons, the soverelgn power in that country.

It in clear from thia analyais that the mource of all political power is intellectunl ability; that the means by which all numerous bodies of men are kept in otredienee, is their being led to believe In the ability of their rulera -led to beheve that it ia more for their alvantage to oboy them than to resist them. In other worla, the only meana by which a government can establish itn power upon a wahle and permanont foundation, ia, by making the great holy of the prople feel or believe that it contributen to their huppiness. We certainly read of nations whirh have sulimitted to the exuctions, oppreasions, and conumelies of despots and powerful nristocracies, but on closer examination wo will aee that even their benefits, renl or inaginury, were the infuences which kept the peopte in subjection. The uncivilized man is ineapable of looking beyond the necessities of the day-of making arrancements with a view to provide for the serurity and comfort of years-of sacrificing the gratification of the moment to ensure a greater and more lasting pleasure at a future tine. A class of men a littlo more enlightened than the rude crew wo lave been describing, can casily, hy conferring upon them cheap immedinte phasures, incline them to subinit to lasting sacrifices; and when a portion of them experience a passing discontent, put them down with the aid of those of their own number who hapien to be satisfied at the monent. A few capable of making combinutions can thus hold in cheek a multitude less enlightened. But still their ehief engine of authority is their ahility to persuade at least a portion of their subjects that they are kind to them. T'uey may eheat them in the bargain; but still the bargain is, "Do us good, and rule over us." But compnratively highly civilized nations, it will be said, have been sern tamely submitting to tyranny, as was the case in France lefore the revolution. In such enses, it will be found, either that the rulers have flattered the vanity of the people, pait them in fulse coin which they book for sterling, or that the people have thrown themoctues into the arms of a despotison as a refuge from evils of which, having experimental knowirdge, they wers more afraid-invasions, it may be, hy foreigners, or internal anarchy. Still, the prospect of advantuge to themelves was the source of the subjects' alleginnce; they acted upon the principlo -0 two evils, choose the least.
Having thus attemptel to show what government is, in answer to the first question proposed in the introduction, we now proced to try to solve the questions involvel in the second branch of our inquiry :-By what means the theneficinl tendencies of government may be increased to the greatest extent, and any misehievous tendencies it may have most effectively neutralized! These questions constitute the next two heads of this division of our subject.
3. In what Cases is the Iaterference of a Govermment, with a view io rontrol its Subjects' laberty ot Action, culculated to tie trouturtive of Good to the great Body of Soc.ety, or the Contrary?

I/I attributing "lilerty of netion" to individunl memIn ra of society, we do not preteml to decide upon the knoty question of the liberty or necessity of human nctinis We use the word literty merely to express a nun's freedom from physical control exercised by others -his power of netion in conformity to the dietates of Ins own wilh, whether that will bo a free or n necessary arent. We find, on louking to the practice of different gevermments, that some have been accustomed to command or prolibit netions, which others have left their su'jects free to perform or leave undune as their own rhotee determined. 'I'he laws of China are said to preacribe the very forms of domeatic mourning for the loss
of relations-matters which with un are lef to the dio cretion of individuala or to the vague unauthoritative lnws of fashion. On the other hand, the imperfect regulations of the old fendal governments of Europe allowed a latitude of action to the powerful harona, which scems to un incompatible with the exintence of an eflicient government or the necurity of private citizens Again, eome govermments leave the mjeculationn of commerce to bo regulated by the judgment of the merchant; others take upon them to teuch him which channela of trade are most advantageous, and to order him to abstain from some and embark ir 'hers. All nations, however, have practically declared thero ought to be limits placed to a government's rigu. or power of controlling its suljecta' actions. We are now about to inquire whether this opinion be well founded, and what actions ought to be left free, what sulijected to regulation

Among the actions over which alnost all govemmente have attempted to exercise a contrul, are those actiona or operations of the mind by meuns of which men's opinions are formed. Peunlties have been nttuched to the svowal of certain opinions; nay, tribunals have heen established (as, for example, the Spmaish Inquisition) with a view, by cunningly devised questions, and even hy the appliention of torture, to exturt from men confessions that they entertained opinions which they had jenlously conceuled from all the world. It is not probable that any person who peruses these pares will requirs any argument to show the impossibility of preventing men from forming opinions. Opinions are not matter of choice; a man cannot think or believe what he pleases; punishment cannot deter him from forming opinions, which come upon him whether he will or not. Agnin, opinions kept to a man's self do larm to no one. If they are of a nature to incline him to commit dishonest actions, these actions aro punishable, and that punishment is a sufficient snfeguard ayninst his depraved inclinations. Penalties attached to the secret ontertaining of obnoxious opinions are, therciore, at once unocessary and inenpable of producing any effect. To punish men for holding opinions, the utterance of which can only te wrung from them by deceit and cruclty, is to inflict sullering on human beings for no purpose-it is a wanton wiste of eruelty. The ease of individuals who not only entertain but openly nvow their opinions, and seek to gain converts to them, is somewhat dillerent. It is possible to deter men from uttering certain opinions; and it ia possible that men may seck to disseminate opinions, which, if acted upon, must do harm. Even in this case, however, serious dillieulties present themselves. Who are to decide what opinions are dangerous? In punishment an efficient method of checking opinions admitted to have a bad tendency? History furnishes us with numerous examples to show that it is unsafe to lenve to government the determination as to what opinions are dangerous. Bad and unjust govermments necessarily think or pretend all opinions misehievous which have a tendency to make their actions nppear in their true colours. Again, most men are afruid of novelty of any kind in matters of thought, and realy to condemn an opinion an dangerons, merely becnuse it is contrary to some that they entertain. Socrates, and a grenter still, are nut the only persons who have suffered for teaching truths with benevolent intentions, in consequence of rulers taking upon themselves to punish men for uttering opinions which they thought, or pretended to think, lungerons 'ro place in uny human hunds a power of pumishing the promulgators of opinion, is a step quite ns likely to repress truc and uscful opinions as those which aro false and dangerous. Again, no opinion was ever put down otherwise than by fair argument. Punishments may have impeded the progress of un opinion, but they have nore frequently, by raising up murtyrs, given it a more rapid currency. The reign of error is necessarily of
short duration, and it has nover heen abrilged by penalties: the reign of truth, once catablished, is eternulf it has beun postponed, but never hantened, by the operation of penal laws, Lawa commanding the puniwhinent of avowed opinions, aro quite an unavailing as those which command the punishment of concealed onew. The only possible effect of either in to nake martyrs or hypoeritea. Here, then, we hava a broal and marked limitation of the power of government. Whencver government interferes to repress freo thought, or the frec utteranee of opinhous, it doee harm. What the lawyers call "overt arts"-arcions in the common acceptation of the term, physical actions, or woride which may injure the reputation and frelings of others-are the only legitimate oljucta of government control.

Turning our atteation bext to actiona, properly so called, we thad that, with regard to some even of them, there has always existed in men'm minils a jombonsy of thes interferonce of governinent. Is that jublousy well or ill foundel? and in what cases ! 'Ilw power of government, wo bave wen, is derived from the conviction "ntertained by the subjects, that they dorive benctit from being andjected to its control. There are some netions, egarding which it is at once appurent to dispuxsionate minds that all have and interest in governument interfering to prevent them. Illus, when two men guarrel, aud proceed to blongs, it is clear that if one of them he dangerously or fatally wounded, it would have inest for his udvantage had goverament interfered to prevent their fighting. But as a general rule, every person has nu interest in quermarat preventing thyhting unomig its anhjects; for it is more for a man's nolvantage to be necured from the damer of heing lart and kibled, than it is to retain the power of hurting nad killing otheres. It is clearly for the goosl of all, that government shoulal interfere to prevent nay one of its aubjects from hurting, or killing, or committiag any injury ponn the prerom of any other. In the same way, it might be shown that every body will derivo benetit from governuent interfire lag to prevent any one of its subjects depriving any other of him property ly force or framl. In a virthons nud highly eivilized emmmunity, the clastity of its whaen, and the purity of hoth sexpes, no so clearly reeognised to be advantages of which the owners ought not to be forcefully or framduhintly diapossessod, that the enforce. ment of laws forthidting such offences is acknowledued by all to be genera!!y bencticial. A man's (or woman's) reputation for interity, is not only an ohject of commendable pride, and thorefore a prosmemion the lows of which must occasion pain, lut a valuable propurty for all who are engagel in business. There is, therefore, n univerwal asent given to the laws which iuflict punishment upon those who defane their neighbours. 'Thin brief retroppert is sulfirient to show that the whole community will twe benefied by goverument intertioring to prevent any one citizen injuring another-in permon, property, or repatation; and to ollige him who has inflicted an injury upon his neiphhour, in these respects, to make anomds as fir as he can. It is evidently for the alvantage of the criminal, that his punishment, and the reparation he is to make, shall he decided by nn impar. tial third party, not ly the preson injured; and lut little reflection is reiguired to show that even the party injured will derive benefit from such an arrangement, inasmuch as, where no man is allowed to take the law into his own hands, there can be no colounble excuse invointed for tho agsresaion made upon him, while he is, nt the kame thae, secure from the after dangers incurrol by all in him position in those countries where retaliation is tolerated by the government.

An opinion has been very commonly entertained, that government can benctit society, not only by prohibiting men from doing injury to one another, but by ohliging them to du grod to one another. The faltaciousmew of
this opinion can be canily demonatrated. The aggregate happiness of the community cannot bo ineresmed by any mun deing good to another at the expenne of injuring hisnmelf. It camot even be lincreanel by any mation, the tendency of which is to increase the hapo pineam ot the peraon receiving the benefit, in a lean dogree than it diminishea the huppinem of the permon conterring it. 'I'hese are intricate and delicnte questions regarding which oven the purties mentioned ean mearerly aserertain the truth, much leso any third party, mid leat of all ngovermment encombered with a multipheity of diantracting colla upon ita athention. The wafest way for the government in to leavn the performance of hehevo lent nutions to the consciences of its sulijects: by trying to onforce the perfurnance of them, it is cuite an likely to crente undappiness as the reverse.
'There renuina a numerous clown of netiona wheh contemplate neither good nor harin to a mim's moigh. hourn. I'o thin belong alf pursuite of cujoy nent by means which injure no man-all attenits to incrense q man'a fortuns by perfectly just and honest means, though without any reforence to the alvintage of othets. It might aplener an unnecessary affivtetion of omitting soos thing, to atate that government ought in no way to biter. fore with artions of thin chass, to himber, pronnte, of dirert then; and yet the sheer love of moditing, wo strong in some men, has conetantly led govermumats to transuress this law of common seose, It the humer ufter flonasure, by means which harm no onn, seek it where it is not to be found, it is only his own lows: no one can say positively that another cannot find jleasura in certain pussuits, for no one can know how mother's mind is constitnted; and therefore t" preweribe to him that he shall abotuin from such and suci aursuits, is to run the risk of diminishing his happinks. It is alno, on the part of tho government, wasting time tat might he better employed. In the pursuit of werlth hy homent industry und cuterprise, a man's whole attention is generally severoly taskel; the government, earumbered with other aflairs, in not likely to dinerover what he, whowe cyex are sharpened hy nelf-interest, has overlanked. The meddting of governments with the meremulile sperulations of their sulypets, has its origin in the absura notint that what is one man's gain must be anotheis losso-in forgetfulnese of the truth, that the wenith of the whole commonity is siorely the stim of the tortunes of all the individuala comporiage it, and that to inipeds he gains of any one is to diminish the total increane.

It oppears sufficiently, from these cousuherubuns, that the inturference of government with the comburt of its suljeets one to another, onglit to be catuously guarded, in order to secure their prosperity and happiness. It ought to le restricted almost exclusively to what is, in the technical language of the laws of England, called "preserving the preace," 'This opinion does nut neres sarily imply what imnginative enthusiasts would rall low and narrow views of the Capacity amd destiny of man. To say that security in person, property, and reputation, is the highest hemeft that can lie hest wod up on man through the instrumentality of a govermment, is not to nay that these are the uthont herafits man is eapable of receiving. (Government camot make a man wise: that must he accomplished by the exertion of his own intellectual fucnlties. Gioverninent ramur make a man goonl ; that must fe the conseyucuer of the hatintual regulation und eontrol of his fowlings and artions. by the uffirts of his own will, directed by hiv own reason. (ioo vermment ramot make a man rich (execot ly making others poorer) : that muxt be the result of his own sagarious and jersevering imlustry, Hut thouch government cannot make any man wealthy, wise, aud uood, it may render it more easy for the great boily of its citizens to become all three, by eatablishing pecurity of person, progerty, and reputation. for all who uet bouestly and
pesccably, ninilnishin an. 1 heaviry - industric and virtue.

What h governmen own auljec happineAA. their pros the hands watch the precaution cipline ifs their proted pursinit of foreign eon country fro to a limite of time, in greater de when the were taker of thin mor dis'usaion nion of our
3. Hy what

Aecompili
nost Eifier
A gover
foelings of and liable, nature, to lecting to the dutice cied of the only do mi thhuess, ill mation. 'I' in ly instru as to what nisling th which may average cal creds its onderly anul

The gem ment. lutid aulli ient to are the dut my, at nuy nght, or go ment is ne awn persol l's membe assisted in ordinate off is onc-to security in these depar tribute to th roiling and not clash 1 people knor verament, they can m negligent defulters, 8) clearly

In watel

ment has t

from violet
vinlence oll
are not its
feseraily, and this removing temptation to do wrong, ainuinhhing the dangers againat which men muat guard, on.d having them a greater amount of leiaure to dovote a induatrious purauits, or to the cultivation of wimion and virtue.

What has nlready leen sald, hes inchuded both what government must do anil abstain from, in so far at ita own auljecta are conerned, in order to promotw their hajpine日. It has almo in ita grower to rontribute to their prosperity, by guardiug them agninat Injuriea at the hands of thone who nro not ita auljecta. It can wateh the npproach of danger fron without, and take precnution to avert it. It can organizo, arm, mul dianepline its sulydrets, to ilefond their homes, or to extend their protection to their lillow-eitizens engaged in the pursuit of their hanest induatry on tho orcan or in forcign countrics. With a view to the lefence of tho country from lorcign magression, the goverument may, to a limitad exterat, and generally for a limited prriod of tine, interfere with the actions of its citizens, in a greater degree than could with propricty be conceded, when the intornal relations of rulers and molijects alone wern taken into consideration. 'Ihe nature and limits of this more extembed intertirence will apmar from the disuasion of the topice which occur under the next division of our wulgiect.
3. Hy what Shans can fovernment he Rendered Capatite of Arcomplistisut the frempest foss:hle Ambunt of fiomt, and nobi Fifectually Provented rom doing thurm?
A govermment is an associntion of null with all the fedinge of other men. 'l'hey are possersad of power, and liable, in conserpuruen of the propensities of human nature, to ahuve it in two wiys:-lly indolence, or neglecting (1) une their power-that in, hy not performing the duties af thirir station; by excessive or wrong exerche of their pown-that is, by meddling where they an only to miselhat, or lis meting, with a short-Nighted selfwhiess, in a manare injurinas to the great body of tho nation. 'rlor onty way of gharding aqainat hese abuses, is hy instracting the people, in the first place, accurately as to what are the dutien of government; nad ly furnishing them, in the seromel plaee, with some plun, Which may the masily molorstoad, and worked by men of avange chpatity, for chacking government when it exoreds its powers, or urging it on when it is lazy, by orderly mud hegitimate theans.

Ihe general abistract view of the principhes of governe ment. Wait down in the preceding he:ad, will not he foumd authicient for tho purpose of informing the people what are the duties uf govermment, so as to cuable thern to my, at any given tine, government is doing what is rizht, or government is excoulinus its powers, or government is neglecting its duty. No one man can, in his own proson, exerute all the finctions of government. I's members must takn different departments, and be assisted in them by a number of elerks and other sulsordinate othicers. Wht as the great end of govermment is one-to protect its subjects in the full enjoyment of serurity in presson, property, and reputation-and as all these departments are only of use in so fire an they eontribute to that end, there innat be one master-mind confroling and direntins then all, taking care that they do not clash w oh or comuteract ench other. It is only when people know what are the dilfipent departmente of goveranent, and what is the proper tavk of ench, that they can mark the exact points in which government is negligent or oprosesive, liy the hane upon the real defmiters, and thus mohe sibh applications for redress,

In watehing over the seartrity of its anbjeets, povernment has to gharel it nasinst nttarky from two quartersfrom violence odered by one citizen to another; from vindence offered to one or mare citizens hy persont who are wot its su jecte-by foreigners. Ithe diselarge of
the former duty belongig tos. partment or dimasatic. FTh. depuitment. The green "nq) premerves mecurity of | ratm, if wriy, it rejustariom to ita subjecta, in wo fur as tho oile ateried lis live pinter nmong themelven, is the ! 'Ito the pri tion of a gook natl etficient hoily of I w there are requ tofirst, the leghlater, or law-maku the person who derlares in wi the pernon who dedares in whut maner the cueral preceptes of the law apply to particulur cases; thurd, the exeentive power, which enturces the deciston of the judge when the party against whon it in given proven contunncious. 'I'he menns by which government defenda ita sulyjecta againat aggromion from foreignera, or procures them redresa for injurien done by, foreigners are twofold. 'They are either praceulde, thint in, by the way of representation, persunaion, and argument; or thry are forcille, that in, hy the way of war. The mas mugenent of the former mule of averting or redremping injury, belonge to the diphomutic; the latten, to the was depurtment. 'The lusiness of government, like all othes kiuds of busibess, requres monsy to defray its expensea und this remors necessary another depmotiment-that of finame, It appars from thin review that the great matural departmenter among which the husinem of government fills to he distrihuted, are us liblown:-

The IIome Depantmpat, which resolves itself inte the Ipgislatire, Judicial, nuel E:reet we Departmente.

Tho Foblion Depantmext, which resoltan imelf into the Diplomatic and lliar Departmenta.

The Finavcial. Dipantment.
These pmbrace all the necossary, essential functons of a govermment. Even in rude tribes, nomong whom one ruler takes upon him the whole task of government, nud linds it too lietle to occupy the whole of his time, he must, in a serambling way, dischargs all the oflicen of these departments, though he never thinks of distinguishing and rassifying thom. He must leal or send out the warriors of his tribo to drive away intrulers upon their honting-grounds; he must treat with the anderins of neighbouring tribes, when the hatchet is to be luried or dug up; he mast dovise laws. decido betwen litigants, and enforce his own decision; he munt levy his "ways and means"-the duty least seldom neglected. Fiven among highly civilized atatos. limited in point of territory and population-alhough, for the satic of order and the facility it gives in the tranaretion of husiness, the oflices of these departments and their records will be kejt separate-it will sometimes be fomol, for the sake of economy, or becmuse there is not enough of lmsiness in any one of them to occupy a mun's whole time, that the duties of more than one are discharged by the same person. On the other hand, in large and powerful states like our own, it is found neceswary still further to sublivide them. Thus, instead of a simple war dopartment, we have an aimiralty, a secretary-at-war with the Horme Gunrds, and an orde nance inpartment. Tho number of offices, of departments (of burca"r, to adopt the French phraseology), is compuratively noimportant ; the great matter is to have the husiness of govermment so distributed that every man, knowing exactly what he has to do, may set nbout it with the least possible degree of confusion and embarrasmment, and that all men knowing what he has to do, the firce of pullic opinion may more easily be brought to bear upon him if he execed his powers or nedeet his duty. Some of these deparimente, however, from tho pecenliar mature of their dhaies, mught never to be in. rusted to the same individual. For example, the office of making the laws ought never to he intrusted to the prevon who has the charge of explaining and nppling them; and neither task ought to lw intrusted to him who is called upon to enforce them. When the julde is not the law-maker, he will interpret the tuw according to its
opparent tenor| lint if the luw-maker le juige, he may may, I means an and as, and explain it in a way nolooly ever anguected. If tho julyse in law-maker, he may take upon him to mepily delletenclea in the law on the suur of the muntent, nul thas expone chizens to the injuntice of being tread lyy a law not in eximence at the time they ere mid to lave oflomded. The qualitien requireai in a good executive or pelico mimimer arn quite dilferont from those reyuired in the judge of lawgiver, alul rarely combined with then in the ane promon. Alwoe nil, bowever, the functione of thance mininter ought never, In whole or in part, to lie intrinted to the mininter of eny other departiment. The prowtere which previnite in many governments, of allowing white-learera to pay themselves, and futruating the collection of ditherent branchen of the reverine to various degartherite of giovernment, in aure to leut to extortion and preculation, to profigate wanto of money, and oppredsion of the mibject.
Theme are the easential departinente of a goverminent -their dutien are thome which, however rudely or confusedly, must be disharged whenever there in any sovernment at all. l'here aro othor departments, not certamly of lewe importance, lint without with many governments have fava carried on; and the dutien of which have inen discharged by private exertionm, lat which may with advantage be diachatged by the general governawit. The departimente to which we allute are thow which have the charge of nutional education asm the provinion for the poor.

The rifermatance of the state or governament takimg upon it do direet the edacation of the whole proples, las twerl lirought alous, in point af lact, ly a varicty of contradictory conses. Among lenthen pe ople it was owinge W) the ntrenk inthence acypirel, at a very early stace of civilization, by the pristathons; the continuame of the power of a priculy raste delended ugnen the people continuing to lelieve in their pretemaions to mipermatural puwer and more thana ordimary virtue. 'I'le mont matufal way to kepp up this beliof was by graving it decply on the minds of the young. In the monall matem of Grece, an they udvanced in civiliation, the meculor atateamen cmancipated themselves from the alliance of the priesta; and, in consequence, we find the inthence of the latter as toachors naperseded to a great extent, enpecially it Atherna, and in the manall (ireck kingdons erected out of the frameneats of Alexambers empire, by phitosophers in the prys of the government. In the great Romen empirr, which incorporated info itsiIf al! thone (ireck und many other minor heathen statem, both the philosopheres and the prients cemed to to the muthorized immediate agents of a government education, thongh it the provines they continued to teach. The fonnders of the dhrintian religion dinclained nuch connection with the state an lial bean maintained loy the priests who preceded them; acculental circumatances, however, connected with the derline of the Roman empire, united again, in the persons of the diqnitaries of the Cloristian church, the nflices of tonchers and rulere. In the countries throughout which the Mohammedan religiongained the ascendency, that monlitieation of the Christianity of the time has lwconm, as among heathen nations, all engive of govermment. Among the natiatis of Burope, and thowe which havo been planted in different parts of the world within the fow last centuries by Euroreans, the progrem of seitene has produced an effect amalosous w) that mentioned as havins twen produced ty it mmong the small Gireck staten of antiquity. It has mhaken, not tho belief in the Christian religion, but the opinion of the benefit derived from making it, like the old heathen religions, an engine of government. It the anme tine, the opinion of the inportance of civiliz. ing the whole body of the preople ly the influence of education, has led nen to inguire whether government
could not with mivantage undectake the tamk of ellu cating them. 'The bigoted advocates of dominam church fear weeular education, he ealsulnted to encourage a mpirit of free inquiry insoumintent with implicit belief III a atato creed. Many mivernter of aecular eduention, irritnted by thif opponition, wee in the ewtabliwhed rlergy nothing lut a borly of mon whow would pat down all lis atruction excopt what is calculated to inuremen inelfice. uhly the laeliof of their pectulior dugemas on the Infant mind. 'The diencumion regarding the utility of a mational syaten of vilueatoon, nul the leat kime of mational adu. eation, hum hithefto leven conductid with fens esclumive a refierence to the partisan viewa of theno oppouing purties.
'I'hin hintorical retronpect las leen introduced for the purpone of placing the present state of the controverny III u rleur light. It nust le argued ditiorently if wo are to arrive at a true and practical rompluxian. 'I'he auce cerne of state religionn, in ditliusing abela a gemeral know. Iodge of their dogman anomis the comaranie as in reo gusite to enable men to conform to then: ill outward "psarance, is a proof that wis organized government ponsemsem sreat powera for the ditlinion at information. Ily intriating the miserintembence of mational inatrietion to theprarate board, them witl lse mo interference whth, or olmbiction of, the dimelatge of the other duties of govermmett. Arrangement.s fir prosidiag a wमply
 us on a krander wate, mowe etlichont, an they will at the
 of prisate individuala. so fir the alvanture of a na-
 is here: harm is done wheneser government intesferea with the free formation and expresime of opinion, and it in difficult to toach without giviog a ins to opinionr.
 dorived from siewing the question in mother point of vin's. It is part of the essential duties of a government to take care that its lawn are mado known to all who are ralled ujen to olwy them, and that compertent ollocers are intrasted with the matogethent of the detaile of go seroment. 'The insontion of printing cmalies governmett to multiply to nyy evtom the ropios of its laws: hut this is not rebugh, umlese that the presoms among whom these copies ure distritnited are able to read and understand thems. I'he nim!ert mode by which a government can onsure the complete pultication of ita laws is by ponching ull the proply the clomentary brancher of knowledge-ronding, writing, and the grammar of their mative langugere. Again, witla a view to wecure cllicient ollicers of govesmment, they mast the alucated for their amploymonts: no one ought to be -mplosed in any otlice waler Lenermment tho camot shaw that he puesesses the refuinte knowledge. High sebiouls or mbiversitices, sujperted ont of the mational fumds, will be boum the chemest mathod of putimg the menne of mopliting this knowledge whin the reach of the able mad aspirime of all elasaen. 'There the lawyer, the soldier, the diphomatint, the lawgiser, the timanere, the remmenary whoohmantr. baty prowere the deeper meicutitic learning necessary to the right diselonege of thers respertion dutiex, in the dibghent portection and at the Irast evperase. At these institutions, the young clergy of ell churdes might mequire their literary and modentific inntruction: their pectuliar theobory mishat be taumat thern at institutions stuphorted by their respective wecte, \therefore compertent number of such chomentary erhools nad universitios, tearhing whly those branchosi of kumpedge in which there is no sectariani mm , would he for the advantaze of all seete, and would intertere with the ferce liar views of nobe. 'I'ley are of the class of institutions which government lus a right to establish, and neglectes its duty if it dues not.
'he proprety of governument tahing upon it to rain

- at Histrib of helne m uan weer is what it iv, tute phorin fenpurtio indolent, th aion, will pi payprisulis to may thant commercint that it mway duitler athli mit of emp thoirs. live green of or fr m hiluhly from the th left lı casum be Insulficies don of иแリ! whish "11! The busw fiee llut v.gmment the prupers, is 1 of humanity tion temding property, I hulence, vio chisses who fool to rili marazen are aliade of nigh lie exciteme ated muls. encendereit to time ntrik ment, in itm dien of ita nil class lese da (t) dishonest alpuaid denti whole comm

When in mont hase grated, antlal al attarhe 1 to lieing nul!jeer ment, whose cedlimes, to to appoint to step lias twon goverament. vrrument ha pointed out discharging per to guard love to have any purposesure common the Freuch tion spirit. triest oppose w their borly. the love of e to all men, government parries us, h inguiry unde? vertment is :

4 fannol h svery govern Hiemsilves:

Vol. 1,-4

- ad distribete findin for the mpport of the poor, almite of heine more hifiefly Illuat ated. In all coustriem there nas per faen, and as long an human nature contibura what it is, there aver will he, a certain number of dentitate $\mathrm{p}^{\text {noor-ol }}$ - panpern ; ind thin number will be greater
 indolont, the weak-minded, the slaves of nensual pane mion, will remain in native poverty, or drift town into pauperimin from a more aflluent condition. It is in vain to auy that it la their own fault. IThe revolutions of a commerclal mystem like ourn, we mighty and complicatoid that it nwny thom involved in it blindfuld hither numi sither amin! ite waven, uffen throw thonmandes at once mit of employment and bread, without any finlt of Anoirs. Biven the riswolnte and imberile have their dee areca of criminality-ther suift of omismion, varying from hilaly culpahbe to venial. Human mature revolt from the thought of denying them relief; but if it bo Ift to casusl charity to pelieve them, tha domationa will he inaumeinat to maply the wants of alf; wad the burdon of mupproting thes cucumbrences upon the publice whin fupgeita it-relf, will he 'mequally dintributed. The luanas will he oppressed, while the callous pasa fice Hut the main argument for inumsing upongor vemment the charer of nujllying the wante of the prupers, is tha fact, that, mpart from all considerations of humanity, the nolisef of their necessitien is a prowattion tembing to give additional mecority to persons and property. It is want that is the chief prompter to thrhulenee, violence, and diabonesty. It is atmons the chasen who are iepermdent upon a precarinus mpply of foal to rulicve their daily necesaition, that the halfo navagen wre found, who proisl, in quict tinser, under the shade of uight, in seareh of plander, ame, in times of pullic excitement, rusls from their hilling-phees as infuriated molos. It is umong their syualid hamate that are engendered the pextilemere and diseasea which from tiane os time atrike whole nationm. It is the dity of government, in its office of promerver of the lives num propire Wen of its aubjertn, to take mensures for radering thim clase lewn dangeroms, hy diminishang their tomptations to dinhonesty, and reliexing them from that state of eluntid destitution which endangors the lseatel of the whole community.

When in any conntry the different fubours of sovernmont have leren parcolled out in the manner foere nuggented, and allotted to different functionarien, coch having ntached to limen mufievent atull of asmistants, emeh teing subjected to whe recognised hend of the government, whase lusiness it is to wateh over all their proredinge, to urge on the indulent, to cherk the crring, to appoint to varmacies, and remove oflembers, a grent step has lexen takron towards securing a just nad ciliobient govermancit. The peruliar and timited duties of goveroment have been imbicated to all, and the persons pointed out upon whon devolve the reaponsilitity of discharging them. There remains, however, this dunpar to guard against. All men love ease, and all men love to have thrir own way. Again, men united for any purpose-the pursuit of either a husiness or a plessure common to them all-immedintely contract what the Freuch rall esprit to corps-n elannish or corporntion spirit. They aet and feel as having a common intriest opposed to the interests of all who do not trlong hitheir budy. 'This / luye or moterie mpirit, nuimaied by the love of ense, and the self-will more or less matural to all mon, has a tomdency to convert every organized governinent into a knot of oppreshors. This reflection carniss us, by a natural transition, to the remaining inguiry under the prement heul-By what meana a government is to low kept in the the of its proper dutios.
It cannot lave ercaped the notice of the realden, that every govermment nets upon its stibjects iny means of Unmselvers; it employs ita mulyects to kecp its subjects

Vul. I.-41
in obectience. The consequence of this is, that in evers conntry, and in all ages, tho mont secming deapotic goo vermment in kept in cheek hy the opinlonn of ita mubjectas No governoment has ever with limpunity net at defianee the opiniuns, be they well grounded or be they prejus dicen, morul nud religiona, of ites nubjects. The Otto man nuthun, at the time when him prower wan greatest inever dared to ane eontrary to the law of the Kioran. Ifenry II. of England was obliged to humble himelf before thy religious wentiments of his age, outraged in the pernon of 'thomatod-llecket. Thoman Moure, in his Talikes fur the thly ollii ince, han ludicrously but aptily illustrated this truth, by giguring the andicen kept on foot by the menurclio of tho Holy Alliance, an extinguinhera made of combustible materiak, ans the military inaurrection which brought alout the Apmnish revalution of 1821, en theme extinguisitern aet on fire by the lighte they were meant to put out. Thin in no ntatement of what rwght or ought nof to bre; it in a ntate. ment of what 18 -a fact that exints whether men atlirme or deny it. Civil government-pmliticat action-in hir man ingenuity working ly human merans. It in thie mecomsity under which every government lien, of governing ita ablygets by ita subjecte, which pute the whole community in ponsoanion of an engine, hy the proper appitiation of which, aovermment may be ohliged to work fie the generni goenl.
Wo have already pointed out what is necessary to enalife the government to make justice and the good of the community itm nim: it in to orgmize the governnuent no na to render its action eany and powerful, and to cullighten it as to ita dutios. The mame procesn in to be followed with the community, in order to enuble it to wet as a check upon the government when it is inclined to go wrong, and to organize the community if warl) a mamer that its opiniona and wishes may be brotggit to opernte eusily, powerfully, and, by consoquenef, tranquilly upon the government. There is another oljgert to legained hy thun entightening and organizing the propte, benides that of making them an eflicient check upon government when it goen wrong; it is only by enlichtening and organizing the peoplo that they ran lie rendered capable of lending due force to the operations of government, when these are what they ought to le. An unenlightened people is quite as likely to entertain mistaken notions of what is for its good as correct ones; it is quite as likely to oppose government when it tries to do what is right, and to support it when it tries to do what is wrong, sa the reverwe. Govern ment was in the right when, about the yeur 1780, it re penled aome of tho worst enactmenta agninat the Cotholien; but the prople wereso far from beartily npprow iug of this net of justice, that Lord George Gordon'n riots in Loondon, and the rabling of Catholic hapele in Edinlurgh, had nearly frightened government out of ite good intentions.

The first atep, then, in making such arrasmements an are neressary for keeping government in its just and uneful line of uction, is to enlighten the people. There goes mure towards anlightening the people than mereity nohoolmantering them. It in not enough that the tencher tell whint he knows, requat line upon line and precept apon presept, or even make his pupil repeat what he has toll him, to whow that ho remembers it. The pupil must himself he active, and make exertion to cuth the true meaning of what he is taught; and in this he will not :lways, in spife of his lest effiotes, suce ceal ot first. Fivery purson who has exerted himself to taster any branch of knowledge, must remember instaners of this kind, where he has pered for humes, day atter day, ipon mome dark prasege in a bouk-some step in the reasoming whirh he munt understand, or all that tiollowed would be dark-and yet could not get at ite meuning, till some time, when he was thinking of n
lhing leis, taking a walk, and looking at trees or tho runbing stream, or engaged in atriking a hargain, some chanco word or stray thought has recalled the puazling passage to his mind, and all at once a light has broke in upon him. His previous reflections lind not been so useless as they seemed; they bad been gradually opening his mind, and had so far succecded, that nothing but an accidental impulse from without was wanting to make him see his way. It is knowledge gained after this fashion that really instrnets and forms the mind : information thus carned, we may say, in the sweat of a man's brow, is too deeply graven on his memory ever to be forgotten, and the rude exereise his struggles to understand hase given his mind, strongthens and invigorates it for future excriens. All that tenchers can do in the way of instruction, is to show their pupi? what is to be leariod, to telt him how to set abon learning, and to watch over him, nud, by motives either of pain or plesuare, to stimulate him to perseverance in the work. All the rest muat be his own doing. Hence it is that some pass through the hands of a tencher and leara less than those who, from joverty and strong desire of leaming, have been drisen to teach thomselves, with no other assistance than ocetsional hints. Hence it is, as mont men who have received a regular education and made gool use of it must he aware, that the most important part of their education is that which they have given thenselves after leaving shool, availing themselves of what they rememberal of their teapher's precopta to enable thein to acquire a complete madorstandjug of what they hat only reprated like parrots, and hombdialely in a groat measure forgoten.

Our ohject in this seeming digression is to make as clear as we can that mere communication of instruction, which is all onc human heing c.un do for another, is not enough to eulighten and discipline a man's mind; that many receise it without being tourh the fetter, and that many make considerable progress in acyuiring knowledge without having the lemefit of it. There is nn enlightemondita practical training, and a whoring of the minds of men with knowledge-that must in all cases complete what the teacher has begun, and that ofen carries men a good way without the aid of a teachur. It is the colucation which man's natural curiosity, cooperating with the observations forced upon him, and the exestions necessary to keep him ative, gs it were, furce upon him. 'The great source of men's amusement, that which is more or hess within the reach of all, is convermation, which, even in its rudest and mont stupid, or weakest and silliest form, i a giving and recejving of information more or less valuable. The rulest process by utich the mere savage procures his daily food, involvex an exeritur of design or forethought. He resolvis, it may be, to go to the sea-mhore, and pick up shell-indi: he pians out beforminnd what he in going tos do, and he exerutes his intention. The changing of the seatons forcing hian to procure foos by diffirent means at ditferent times, or by making him experience want suggesting the advantage of laying; in a store beforelinud, gives fresh exercise to what Dr. Revel has callod "the active powers" of his mind. Acting in concert with others, dolating what is the lest phan of attaining thetr common whect. getting angry and loing swotherk, or mouthing another who gets 'mereasonable, defending his own whare fron a phanderes, or trying to outwit his asseciuts-avery action of a man's lifi, even in the rudext stages of socinty, is a penrt of education. in the society slvances in wrulth, it advances in the arquireal knowlenge and will of its members. 'I'his is a process quite independent of design on tle part of inen, which is carried a great length lefore tenching, as we understand it, is ever thought of. Men twoone reaenermatmat what is rightor wrong, practueal politicians, whilui mechanits, projecting merchants, lawgivers, aid
lawyers, nfter n fnshion, long before they give these por suits their different mames, or dream of theories, and science, and teachers. 'This is what wo call riviiization which means the intelligenee, a d akill, and polish of mamuers which men acyuire by living and acting in mmerous and wealthy society. Men nover think of teaching or being taught until the aociety in which they live has made consilernble ndvances in civitization This is the kind of enlightennent which must prepare any people for aequiring a good govermment.

We camot carry back onr inquiries to the first origin of socicty, and show that it has advanced from rudeness to eivilization in the way here demerihed. But we know from history that a part at loast of the procese tas been gone through lyy all civilized nations; und we know from the observation of travellers, that even in our own day there are tribes in different parts of the enrth which are still in the mere rudiments of civilization. But there is a still more curious fact, which, for the purposes of the inquiry now in hand, it is movt neressary to know, and in ali our seasonings to make allowance for. In the same society or mation, especially if it be large, there may le, there almost always is, a proat varicty in the degrees of civilization whicl: ditarent classes of its citizons have attained; nome may have reachod a very high ermede, whilst others remain as low as human beinga have ever been fouml. 'Illis has lwen the case in every comitry where there has been a jrisestly cusec-in old Babylon, Firypt, and Ilindostan. I'his was still more strikingly the rase in Rome, and is so at present in the slave-holiding states of tho European race. One frequent cause of this inequality of civilization in members of the same socicty, has hem the establishment of great empires by conguest, by whith means many different races have been brought unlor the mime government It is in this inequality of civilization that the instituthon of slavery has hal its orisin. The relation between master and slave could onty he estallished where there existed a great lisparity of intellectual culture between the goweraing and the foverned class. Shawry must be admitted to be a becessnry institution in such stages of society, althemph it has the disadvantage of ferpetuating, and even of increasing, the ineyuality whidh gives rive to it, to say nothing at present of its other ilisulvantages lat it is not nerely where it presants itsolf in this start liue form that inequality of civilization exists among different clesines of society. Wherever we find great in"ynalits of power nut privilege prevailing, we find thin inergatity of pivilization giving risa to it. An aristo cracy, a class of privileged nobles, has its orizin in the cincumstance that greater skill, enterprise, intelligeture, and proseverance, ut first threw a comparatively great anount of wealth and power into the hands of a few fanitics; that the management of that wealth, mul the evercise of the power and intluence, were oceupathons calculated to give a greater practical development to the pronensitice and fuculties of their descebitants, than the routine Irmigery of those who earned their diaily fors by theit daily lahbur. We have no lesire to parthate the evite of aristanatic govermment. 'That degrece of entightene ment which chables men to lord it were otbers, is not necessarily accomponiod by that highor culightenment which tomehes the lsonty ard utility of sedferontentand the expraise of justice the nil. Hat we must not, therofore, shat our eyes to the fact, that aristoreatic governmont is one of the warres through which all societien must gase in their way to monething latter ; that socicty molvances as man walks, by butting one part if the bedy foremost and drapging the rest up to it; that the love of power, and whill in acquiring mad exereting it, must le realized in the few, in order to excite the degire of a whare of it in all. That inequality of civilizaton, whide gives rise to aristorratic power and intluener, exista th many different forms and modificatious E ien in ons
own country
tunate class the lowest k offices and of the victim In a rude which is nee the power of its dutics. which somo ization, whil -only a por this controt. tage, neglec most freyuen the impulso guarantee mu pouer to exs is knowledge civilization diffised throt is an ignoran are weak, the
But this I government geace, must is true, on th instructed anc men, csn be the purpose o But it is also do associate, the labour (thay never strong ; hut 1 assemblies mo the persons w tent when opl power whicli possess of cho circumstnace that has been can only enfo ing the organi decited major rommands of Fomplling ot their follow-ei except unter to terms with great looly of they have suc sion of these heing. It wa when they ret patricians to in this manne the yoke of 1 , that the Swis. of Austria. of Religion w of Europe. lution in 168

We are no occasions-tla are stating termpted, with as man conti fivermment drive them to ciently advan of their wron obtaining redt
partite have miization polish of cting in - think of which they ivilization st prepare first origin n rudeness t we know is las heen we know ill our own arth which . But there mirposes of y to know, ce for. If large, there icty in the of its citia very high nan being we in every is 8^{\prime}-in old still more cesnt in the - Onc froin numbers cut of great by different government e institution on betwern where there ure between ery must be -h stages of "rpetuating, gives rise to salvantages in this starn xists among ind great inwe find this An aristo in in the ciro lligenec, and yreat amount frow families; c axercise of calcutated to - propensitice the routine foont by theiz hite the evila of calightenn!urs, is not ulightenment If-curtrol and it not, them ratic govern1 atl socicties ; that soriety of the bedy that the love twiug it, must ne desire of a 7at on. whid ner, exists is Eisen in ons
own country an uncivilized class is found-that unfortunate class which supplies the precarious demand for the lowest kinds of unskilled tabour, and fills our policeoffices and other courts of justice with the greater part of the victims to the security of socicty.

In a rude socidty, thero is wanting that enlightenment which is necessary to confer upon the suljects or citizens the power of keeping their government in the path of its dutics. In a partially civilized socicty-a society in which some classes are considernbly advanced in civilization, while others are still rude, helpless, and ignorant -only a portion of the citizens will be able to exercise this control. They will oxercise it to their own advantage, negleeting the interests of the powerless classes, most frequently from thoughtlessness, but sometimes at the impulso of motives still less excusable. The only guarante men can have for gool government, is their power to exset it, nud the fountation of that power is knowledge or intelligence-intelligence imparted by civilization and heightened by teaching-knowledge diffised through all ranks of society. Wherever there is an ignorant class, it will he weak; and wherever men are weak, they will be oppressed.
But this power which the subjects or citizens of a government or state derive from knowledge and intelligeace, must be rendered available by organization. It is truc, on the one fand, that none but civilized, that is instructed and intelligent (we do not mean book-learned) men, can be organized, or ean organize themselves, for the purpose of making their government do them justice. But it is also true, on the other hand, that unless men do associute, and each take upon him a certain part of the labour (which is what is meant by orgamization), they never can attain their end. Public opinion is stroag; but unless public opinion is iubodied in publie assemblies met to discharge certain business, or to choose the persons who are to tlischarge it for them, it is impotent when opposed to an organized government. The pawer which the citizens, meeting in publie assemblies, possess of checking the government, is derived from a cirennstance in the very constitution of government that has been noticed alove-the fact that govermenent ean only enforce the ohedience of its subjects by employing the organized force of a portion of themselves. If a decided majority of the citizens resolve not to ohey the comands of govermment, not to become its agents in fompelling others to obey it, and not to allow any of therir follow-citizens to enforce obedinnee from the rest, escept under certain comditions. government must come to terms with them. Whenever, in nny eomntry, the great boly of the inhabitants lave diseovered this truth, they have succeded at intervals in averting the oppression of these who excrised the government for the time heing. It was in this mamer that the Roman plebeians, when they retired to the "Sacred Mount," obliged the patricians to abstain from tyrannizing over them. It was ia this manner that the Duteh relicved themselves from the yoke of Philip. II. of Epain. It was in this manner thit the Swiss emancipatel themselves from the house of Austria. It was in this manner that the Reformation of Religion was offerterl in all the Protestant countries of Europe. It was in this manner that onr own Revolution in 1689 was effected.

We are not stating what ought to be done on such occasions-that misht he mere matter of opition: wo are stating what has on all such ocensions been attempted, with more or less suceress, and what, so long ts man continues to be man, will be attempted. If n korernment persist in oppressing the people, it will drive them to revolt ngainst it. If the people are sufficiently advanced in civilization to estimate the amonat of their wrongs, and to devise some rationnl menme of obtaining redre'ss, their revolt must be successfit. All partice have an inherest in preventing matters from
coming is this pvereme. The members of government rink the possession of tho power and profit which their subjects, for the sake of a tranquil and secure life, would glatly allow them. The great body of the people have their industrious pursuits interrupted, their property diminished, perhaps their personal security endongered. Whenever resistance is thus offered to a government, it is as the least of two evils-it is always in itself an pevil, thuugh it may be a necessary one. A conviction of this truth has, on more than one occasion, induced both governors and governet, while the evils of a strugglo between them were yc' 'resh in their inemory, to attempt to prevent its recurrenco by some permanent arrangement. The Roman plebecinus, for this purpose, obtained from their rulers, at difierent times, tribunes invested with power to guard their rights, the right of electing one of their own number to be consul, anci various other concessions, which st the time appeared to them to be sufficient to assure them of just govermment in time to come. In ouf own country, Magna Charta and the Bill of Rights were bargains struck between the gevernors and the governed, for the same purpose. All these arrangements, whether well mapted to promote the end in view or not, are what are called constitutions, or constitutional governments. They are bargains struck lietween the government and the people at targe, nwarding to each party ecrtain powers or 1 rivileges, which the other becomes bound to respect. The ohject in view is to render it possible to check those evils at the very ontset, which, if nillowed to go on, lead to revolts and revolutions; to enable the people, by keeping a steady watch over the motions of their rulers, to mark their first aberrationa from the right, to remonstrate in time-to prevent injuse tice instend of revenging it.

Constitutions of government have been devised and adopted, as various as the habits, opinions, amount of wealth and knowhedge, und distribution of them nmong the people whe have devised them. Our own will be exsminel in the second section, nnd will serve as an illustration. Our oljeet nt present is to point out what the knowledge or opinions which prevail in Europe lend us to helieve is the most efficient kind of constitution. A constitution is alopted in the belief, that it will secure the enjoyannt of their just rights, alike to the governors and the governed. If it effect this, men will rest contented with it ; if it do not, they will look about for a better. 'The only thing that has ever convinced a people that their constitution worked ill, has been experience. No people have ever changed their constitution in consequence of a mere abstract demonstration that the new one proposed to them was calculated to work well: no people have remained quiet under a constitution that worked ill. Any constitution, however imperfect, is legitimate, and onght to be oheyed, so long as the people ore satisfied with it. The only use in trying to discover the most perfect and efficient constitution that can be adopted, is with a view to insure its permanerncy, to prevelit the necessity of having recourse to the evil of a change. 'The plan of organizing society for the purpose of keeping government in the line of its duty-the constitution about to be traced-is not held out ins recommendutle or possible to our own or any nation nt nuy given time: it is an attempt to imbody principles which ought never to be left out of view : it oupht to be approached as nearly as circumatancen almit.

It has been shown above, that opinion is, after all, the eugine by which stable, permment governments are maintained. The existebec of a govermment is a proof that the great majarity of the people are satisfied with it, or that it is the common belicf that they are satisfied with it; and therefcre any attempt to resist it is hope less. Civil wars, except in a few eases where a rimorithave been rendered derpurate by oppression, and hare
ruwhed on denth rnther than continue to suffer, have been promoted by the uncertainty whether tho supporters or the alversaries of the existing government were the more numerous and powerful. The object of a constitution is to provide the menna of asccrtaining which pasty is the more numerous, in order that the less numerous may ace the necesaity of autmitting, without heing forced to do so by actual suffering. The only way in which this ran be done in by coming to a vote. All monstitutions, taking the word in the senae in which it in generally used in molern Furope, when investigated, are menns of ascertaining by whom the prople wish to be governed. They are adopted in the beliefthat the people wish to be well governed, that is, that when the mujority of the people are comfintable, they will not seek for change ; nud that when the majority are uncomfortable, they will seek for change; and that the minority who believe the choice of the injority to the wrong, will the more willingly submit, if they see that, should it be in their power to bring over a majority to their opinion, they can alter the decision. When a nation has got the habit of acting in this way, the ronduct of government necesaarily comes to the mare narrowly scrutinized. The incessant envilling of the discontented minarity, provokes arguments in defence from the majority, and not an action of their rulers escapes diserussion. Experience, if mothing olse, tearhes the government that this ineessmet disputation may, unless it is particularly guarded, loosen the hold it has on the opinions of the majority, nod makes it more gunrded in its proceedings; or if i: misconduct itself, disregarding this hazard, its own bimmealde condmet diminislies the number of its supporters, until they berome a minority. The object of a conatitution being to afford a means of Warking out this process penceahly, it is clear that the firat and most important requisite in a government-in a constitution-is a method of aseertaiuing heyond doubt to whom the majority of the people wish to intrust the charge of governing them.
The problem, then, is, How are we to ascertain the wishes of the whole people-their renl, their nineere wishes? There is only one way, by nllowing puery one of them to declare who it is they wish should govern thens. and allowing them to do this free from frar of the consequences. In states which consist, like those of the old Grecinns, of a single city, the ballot-box and a convocation of all the ritizens was nufficient for this purpose. In whates which. like Great Britain, France, or the Vnited States of North America, extend over a large tract of country, the voten munt be taken by distriets: otherwise many would be prevented from voting by loss of time and the expense of travelling, and thus the opinion of an unquestionable majority could not be obtained, and the election would oceupy a dnngerous length of time. The rule to be observed, in dividing the country into voting districta, is, that they shinlf he Rulficiently anall to admit of perry pitizen giving his vote at the expense of a very trifing lose of time and gersonal inconrenience; and that they shall at the sane time be aufficiently large to contain such a number as shall prevent secret voting leing merely nominal.
The next requisite in a consutution is, that care be taken to prevent confuxion in the discharge of the dififerent functions of government, and to ensure the grentest powsible amount of fiturss for their respertive duties in the jersons elected. It has leeen shown above, that it is \checkmark great conserpuence that the haw-makers, and the lawexjlainers (judgen), and the law-enforcers (exerntive government), should all he ditlerent persons, itselepeadent of each other. It is therefore advisable that the people should directly elect all these separate functimuariek, with the exprese umberstanding that each is to confine himself in his own particular fich. There is thix diffierence beween the firnt of thesec clases of functionaries and the
other two, that its office is deliherntive, while the officee of the others are to net. "In a mulitude of coungeinots there is soffty:" it is desirable that the deliberative, tha law-making body, ahould be numerous. On the othet hand, experience teaches that, where action is required, the controlling power ought to be veated in an frw as possible. Hence it is ndvissble that, in clections of executive governors and judges, the vates of oll the districts ought to be addel, as only a smatl number are required; liut that, in clections of legislators, as tho number required would be no numerous as to render it inconvenient for each district to vote upon all, each distriet should be allowed to send n certain number of legislaters to the general asembly. By thin means greeter variety of character and opinion will he introdured into that boly, which, though destructive of action, promotes discussion.

For the same purpose-the kreping the different functionaries of government indepentent of each other, and preventing as fur as possible collusion nimong then, with a view to promote their own ends instead of the pullic gond-it is desirnalis that each district nhould elect those loenl functionaries who are required to be resident within it. In a large eountry, it is necessory to have judryes within reach of every man; and it is necessary to have one supreme julge, whose decisions shall preserte uniformity among all those ditlierent ourts, and to whom those who are dissatistied with the decision of their own court may spply to have it reconsidered. So, while tho crintral exccutive goverument takey care of the whole nation. there are many little details to be nttended to in every locality, which are best dischurged by persons residing on the spot, which could not he so well managed ly the enntral coverament, and would occupy nn undue share of its time. These ollicinals ought to he elected it the inhmhitants of the district over which they preside, in the same manner as the great tunctionaries nre by the whole nution. By this means alone can security bo given that they will be chown solely for their fitness, mot with a virw to serure intereated supporters of the centrat government, which, were they nominated by it, they would infallihy tecone.
The lant essential point in. that the elections of the functionaries of government should recur at brief stated intervals. The use of a constitution is to keep government in the line of its duty, ly making it fed that it holls its power only so long as it retnins the coutidence of the people, and by enabling the prople to change a government which it finds incerrigille. I'nlese the members of government are elected at first for a dethite limited period, with a common understanding that the process of efection is to the gone through at the expiry of a certain time, the olject of traming a constitution will not tre obtaincd. There will be no menns of asertaining when the whole country think it advisable to proceed to a change : the minarity will pretend that the proper time for election has nut come, and abeent themselves, in orler to have a pretext for denying that the result showa the opinion of the majority. The elections must therrfore be ordained to take place at atuted intervals, and these intervala must be calculated with a view to two ensidera. tions-they must not le so far npart an to nllow a government time to do much misehief melherked; they must net be so bear as to prevent the government from teveloping in practice the system on which it intends to act-they
 ivelated actions hut liy its georrul poliry. At the same time, care must be tuhen to matitute nuch arrangelofite resperting the perimel bor which the elected whould smere, as will concilate and werure men of resper tuble standing in son"ty-men, in lint, who may be supposed to be phared Inyoul the nuapicion of merving tor marely selinat jurpowes, and who are in the hatit of taking enlarged views of ascial organization.

TORMS OF
In the firs vey a distinct accomplished the nature of government t
The use of test or atund oxtent uny ac of what it ou when circum any improve govermbent. other human those who are to take up a eo nt once tive positions
But such g ledge of pract we not at ul men to decide The precedin is an outline its features th has ever exim practical lesso gencral truths the peculiar exist and ope allow himself dilections or forms of go amount and of them by t chies and If words about been wisted. government, 1 that are of i persons and with their fre do not injure it encourages bigh moral a! tion is such a permaneatly the name or good one ; ut that its goods tude of its ur ment-lhat judicind, sud place, to circl suljeret to the
It must a! the great maj as upon, indi mdividuals n than those w gotenument woriety. An quence, that forms of gev estalishts ant community. ypon a nonthat the gove not ouly ul than the inh give themsel trins of goo the hierurch

fORMS OF GOVERNMFXT ACTYALILY EXISTING.

In the first scetion an attempt has been made to convey a distinct general notion of the ende proposed to be sccomplished by government, and of the means by which the nature of man and society render it necessary for government to accomplish these ends.
The use of such general notions is to servo men as a or standard whereby to ascertain how and to what oxtent any actual government approaches to or falls short of what it ought to he, and as a chart by which to work when eircumstances ulfer an opportunity of introducing any improvements into the machinery of any existing government. In uffairs of practical polities, as in all other human transactions, it is of great advantage to those who are called upon to act, to have it in their power to take up a prosition beforchand, from which they can see ut once the whole fied of operations, and the relative positions and hearings of all its parts.
But such genernl notions, if not combined with knowledge of practical details, ure at times apt to mislead, and are not at any time sufficient of themselves to enable anen to decide on any occasion what is best to le done. The preceding analysis of the elements of government is an outine of what exists in reatity, but so gelueral in its features that it is ipplieable to every government that has ever existed. Whoever would avail himself of tho practical lessons that may fuirly be deduced from those gencral truths, must first of all apply himself to nscertain the peculiar form under which those general principles exist and operate in his own country. He must not allow himself to be misled by vague sentiments-by predilections or antipathies for particular names or even forms of govermment, hut endeavour to discover the amount and kiud of the effects they produce, and judge of them by their efleets. Laberty and loyalty-monarchies and repulfics, aristocratical or democratical-are words about which much argument and much blood has been wasted. And yet, aller all, it is not the mane of a government, nor even the external forms of its framework, that are of importance. If a govermment protects the persons and properties of its suljects, without interfering with their fretelom of thought and action so long as they do not injure their noightours; if, by example and precept, it encouragee industry and intellectual development, and bigh moral and religious sentiment; and it its constitution is soch as to atlord a guarantec for its action loeing permanently (not by fits and starts; thus benefictat-be the name or form of that government what it will, it is a good one; and on further investigation it will be found that its goolness is owing, in the first place, to the aptitade of its organization for etliecting the ends of govern-ment-that is, to the skilful organization of legislutive, judicial, and executive functionarics; and in the second phace, to circumstances which render these functionaries sulyect to the eontrol of public opinion.
It must always be kept in minel, that government, in the great majority of casess, must lne exereised by, as well as upon, individuats of the mation in which it exists, ty individuals not materially wiser or bettor, in the average, than those whose imperfections render the control of a government necessary to preserve prenee and justice in society. And it follows from this, ns a merosiary ronsequance, that at differnt stages of civilization, different foras of govermment may bee not only the most rasy to estallish and support, but the most bencficial for the commonity. With th the defects necersarily attemdant upon a nom-resident government, there can tre litte doutt that the gevernment of the Hhitish Eatht India Company is not only a hetter than India ever hat luffore, hat a better than the inhabitants of Hindortan eould at this moment give themselvex, if left to their free choice. 'The frulat onns of govermment in Europe during the midhlle ages, the hierurchy of 'Thibet or amcient Egyjt, the monarchy
of Charlemagne, have all been in turn the lest for the particular triles subject to them at the particular period.

The mutual adaptation of governments and nations is a point that cannot with safety be left out of account, in cases where the shades of difference are much moro deliente and difficult to detect than in those which we have selected for the sako of illustration. A difference in the kind as well as in the degree of civilization of two diffarent nations, ean render the govermment which works well in the one impracticable in the other. A nation is what we have attempted to show a govenment to le, more a necessary product of human instincts than a creation of conscious design. Governmenta and nations are the creatures of human intellect and will-but of whole races and generations, not of individusts, or even of the collective men of one uge. There goes time, long time, to the making of both. They grew up together; they are inseparalle but by the destruction of both; the capiacity and peculiar charaeter of the nation determine the kind of government fitted for it. Every nation must work out its own happiness-in consonance, it is true, with the universal general laws of human nature-but, at the same time, in hamony with all those minor differences which characterize, and throughout its history have characterized it as differing from all other natione.

despotisms.

At the present time, the greater proportion of the governments throughout the world are of the character of desporisms, and compacatively few possess what are called coistitutions. If the multifarious class of despotisms which exist among barbarous nations, it is here necolless to saty any thing; for the question of form of government only lecomes interesting when upplied to a wholly or partially civilized people.
Russiun Guvcrument.-The most powerful desnotism in Europe is that of Russia, which, in virtue of heretlitary right, is governed by a monarch with the title of Emperor. No restraint can be imposed on the Emperor's government, except voluntarily; and, either from henevolence or fear, the Emperors have partially qualified their unlimited power, which is further moderated ly rights and privileges enjoyed in certain parts of the empire, on which no monarch could infringe with impunity. (See article (isominaflux.) Russia is chiedly distinguished as a great military power. Within the fast seventy ar cighty years, it has, by military rapine, acquired territorics containing upwards of twenty-three millions of subjocts; this extent of acquisition, however, is much less than that of Great Brituin in India during the same period of time. A severe censorship of the press; the existence of seignorial rights of serfs (a kind of alavery) ; a widely ramitied police spy-system; restriction of persemat locomotion ly passports; and, in short, a completo absence of all tokens of eivil liberty, mark the Russian government as a pure despotism. 'I he despotism of Austria is scarcely more liberal; the only qualifying features are the establishment of a national system of elementary culucation, and science is not persecuted.
l'ressecten Concrwheut.-Prussia at present offers the remarkable spectacle of great inprovement in intellectual and sucial coondition, with ample protection of life and property, and gat with a form of govermment very little removel from that of a pure despotism. As little is poper larly known respecting the Prusian government, und as it is the best example we can give of its class, we shall go a little into detail on the subject.

Prussia has inereased from the contition of a dutchy that of Brandenhurg-to a large kingdom, within lers the two conturies. A liberab reception of persecuted religionixts, and military conquest, have been the chief hasis of ite greataces. I'rotestants flying from presecution in the Netherlands in the sixtecnth crntury, found a refuge in Brandenhurg; anil great monbens of the Frenct

IIuguenots, who fled from their country on the revochtion of the edict of Nantz, were encouraged to settlo there; both classea of immigrants, hy the example of their akill and industry, richly repaid the retreat afforded them. The Brandenburg territories wero the focus of the desoluting activity of the 'Thirty Yeara' War; but the destruction thus occasioned, operating upon an industriuus and erergetic race, a large proportion of whose anceators were martyrs for conscience' sake, only stimulated them to redoubled exertions when peace was restored. I'he last prince of the country, who bore the title of elector, Frederiek. Willimen the Grent, who reigned from 1040 to 1688 , was of a character similar to that of his suljects: he found his country a wate when he assmmed the reins of government; ho introduced a degre of civil and military organization, that remdered it, long before his death, not only the most powerful division of the German empire, but a state, the allinnce of which was courted by the moat peserful princes in Europe. From the time the sovercign of this atate assumed the kingly title, down to the dissolution of the empire, its history has been little more than the development of the organization begun by Frederick. William, under the anspiores of a line of princes, all of them possessing more than average talent, and one of them unguestionably a man of genius. Prussia continucd, as before, a place of retuge for all who fled from oppression of my hind. The vietime of the devastation of the Palatimate by Loois XW. Found a home here; the objects of religious persecution in Switacthand, Silaburg, and Bohemia. came in successive flocks to Prussia-in one instance 20,000 at a time; and all were welcomed. The peculiar relation of Prusmia to the rmpire seens to have exercised a favourable inflatner on the policy of its monarcha: possessed of all the power of indeperdent sovereigns, they were not embarrassed in their internal covarmment by forvigu interference; abd at the same time, nominolly subjects, they were encouraged in a tarte for the hotnely household management of their terriorios. The narrow limits within which the Brandenburg territory, the nucleus of the state, was contaiserd, rendered it more manageable ; the complrte organization was easily extended to later arquisitions. The circmonstances attendant on the dissolution of the empire in 1806, were such as th innpress a severe lesson of conomy on the sovercign of the in every reapect independent state; and the necessity of entering into a death-struggle against the conqueror of Europe for the preservation of that independence, gave the finiahing touch to its organization. Prussia is crery way an anomaly-an oncontrolled monarchy, with a highly educated population, every mlult sonle of which has heen trained to the use of amm-a monarchy, in evers public department of which as severe an economy prevails $2 s$ in the demorratic remblic of North America.

The government of Prussia is a hereditary unlimited monarchy; the state is one and indivisible. The King exercises generally, by his ininisters, the suprome legisho tive and exceutive authority, and appoints the judres. All laws bear to be framed by the King alowe ; but in fact they are prepared by the Council of stato. (Irer Stantarath). This body (eatablished liy royal ordinance of 20 th March, 1817) consists of -1 . The princes of the royal family, who have eompleted their cightenth year; 2. Officere of state, who are erenficte memeres of the Council. namely, the President of the (Gommit, the fiedd. marshals, the Cobinet miniaters, the Prexident of the Supreme Court, the I'rexident of the Chamber of Ac* counta, privy-councillons, and (lor military athines) ro. porting adjutionts-general, the Prosiderat of the National Welnt Otlice, the Exretary of Stato, the wewrals come manding provinces, and the presidente of prosincers what in Iherlin; 3. Oificets of state speriadly appmintad hy the King. The Council moets regnlarly on uppointed days for riae montha of the year; fithern members, exclusive of the royal princes, being required to form a yuиrum.

During June, July, and August, it meets anly in the event of pressing emergencies. Tho busines of the Council is to deliberate upon questions of policy regard ing which the ministers are not authorized by the constitution to decide; the establishment of principles for the guilance of. the exccutive authorities; tho preparation of laws; tho organization of the different departmenta of atate; the settlement of contested juriselictions between ministers; and, in addition to these, the serutiny of any question subnitted to them by the King. Six commit. tees are oppointed to put any business to he submitied to tho Council into shape, beforo it is discussed in full ossembly ; numely, the Committees of Forcign, Military Jndicial, Financinl, Domestic, and Educational Affaire, Each of these conmitters is composed of five councillors not holding executive ollices in the department of state, the lusiness of which is submitted to their review: tha president from time to time appoints individuals who do not ledong to the council-government otlicials, scientific or meronatile men, or landed proprietora-to attend the sittings of tho committers, for the purpose of giving in formation. The minister of depurtonent suljeeted to the inspection of cach committer, must be persent at its sittings cither personally or ly deputy, for the purpose of giving all necessary information, hot is not allowed a deliberative voice. Matters of business, thus brought into proper torm, are discussed in the general meetings of the council. After the report of the committee has been read, any membre of it wha dissents from the report is heard in support of his perouliar views. The minister to whose department the hisiness lowhges, is nest heard to sprak. Any other members of Conncil who wish to be heard, intimate their desire lo the president, who calls upon them in the orider in which they stand in the list of members. When all who desire to he heard have lee a heard, the referembary prepares ain abatract of the opinions expresend by each, and the president takes the vote. A simple majority derides; mad, in the event of an equality, the president has a custing vote. After a decision has been come to, with or without disconssion and a vote, the resolution or dranglat of o law, together with a repurt of the proccedings, is lain! leflire the ling, who approves, rejects, or monlifies it. Resolntions, laws, and ordinances of the Comncil, have no suthority until they receive the royal sanction. All representations from the provincial assemblies are submitted to the Conncil through the ministers of departments. 'The bosiness of the committeres proweds uninterrapted during the annual vaca. tions. The sectetary of State has the charge of prepuring all protorols and draughts of hass, and supsrintending the signature of worh as are approved. Fach committe has in establishment of clerks. 'The touncil has a library, which contains the laws of the monarchy and all its provinees, nud all the haws of the states of the Germanie: Inion that have been printed.

The supreme julicial organization is very perfect, and so, likewisp, is that of the prosinees and inferion divisions. With respect to the centrul executive, it is conducted by ministers appointed to the diffircut departments, incluiling a minister for spiritunl, educational, sind medical atfairs. 'I'he exerentive is charged with the duty of sumervinins the proxhets of the press, carle minimen exercising a rensorship ower prblications rehating to the cobrerns of his own department.

The maturally stringent quatity of despotic role is somewhat modified hy the perolige orgaization of the prowincial pecoutive ; in juint of Cact, certain popularly appunted lowat councits or municipulitics restrain the netion of the central dexpotion. 'The' cight provinces of the monarchy are disided into gosornments, these into circles, and these again into commonalties. 1. At the lual of each province is a llich l'resident. (who, when in Borlim, has a witat in the ('macil of state,) to whom: are atlachicd a comecil, an sectetary, and several suberdi

gafl officials.

 of provincial achool and the represent ments with t! prevince; he in tho provin the Cabinct centrol over ment of his the province act in name can be rece there is a ry (etats prowin which "call clares that p tion, and tha all classes of consists of n nollemen, or tives of kno iective voice, tivaturs of Rhite Provi elacted by towns, distri distinct itea derived from of suljects," tration have Pomerania, presentation deliberates, ters, what lo crown reser quest, or c province is of which is of departme executive d and church demesnes, specitic dep weight is 1 athirs of la brionging t cors of a : the council on the rew treasurer :a tion of the circles inta minaged u vinciai gov assistance circle. 'Th of equestri delegates, represental each circl manayed 1 mayistrate burgomast intrusted manages finmec.jutice (evercise village ju control of is whirh

Althou sill ut a
maln officials. The High President presides in meetings of provincial consistorics, and the commissioners of achool and inedical affairs; be tranmacts business with the representatives of the province; he makes arrangements with the gencrals commanding the troops of the province ; he exercises the censorship of all putbications in the province, with the exception of some reserved for the Cabinet ministers; he exercises superintendence and control over the executive authorities in each government of his provinee; ho controls the tax-collectors of the province; and, in energencies, be is anthorized to act in name of the central government until directiona can be received from the capital. In each province there is n representative hody celled the Land-Siamele (ctats provinciaux). The general edict of the year 1823, which "called these bolies into active existence," declares that property in land is the hasis of the representition, and that the Stinde is "the constitutional oryan of all classes of subjects in each province." The stande consists of noblemen having a right to appear in person, noblenen, or grat landowners appearing as representatives of knots of five, six or soven, who have a "collective voice," and representatives of towns and of eultivators of the soil. In Sixony, Westphaliai, and the Bhire Province, the representatives of the commons are elocted by districts; in the other four provinces, by wwas, districts of towns, and rural districts. A more distinei idea of the functions of the Stande, than can be derived from the vague expression "organ of all elasses of satjects," is conveyrd thy the fact that courts of arbitration lave been established in Prussia, Brandenlourg, Ponerania, Silesia, ant saxony, in consequence of reprosentations from those borlies. The Stande meets and deliberates, and represents to the crown, through ministers, what legislative or tinancial reforms they wish, the cown reserving to itself the power of refusing the request, or complying with it in its own way. Every province is divided into governments, at the heal if each of which is a president and council, composed of heads of departments; nambly, the councillor at the head of the executive tlepartanent, tho superintendenee of sehools and ehurches, and the management of diret taxes, demesnes, and forests; several councillons who bave no specitic department; and somo assessors. Ilasiness of weight is transacted ly moetings of the whole council; aflairs of less inportance in meetings of the conncilfor.; belonging to specitie departments, The exacutive oflicors of a govermand are appointed by the president; the councillors and assessors are apponted toy ministers, an the revomanendation of the president; the govermment treasurer and some other othicials, on the recommendittion of the whole council. 'The publie besiness of the circles iuto which every government is divided, is mumatel under the direct shperintendence of the provincisi government, by a conncillor in each, with the assistance of a council composed of the stinde of the circle. The members of the hast body are all proprietors of cquestrian lands, (or, under certain restrictious, their delegates,) the roprescmatives of the towns, and the representatives of the peasantry. The commonaltics in each tirelc are either tiswn or rural. The towns are managed by town-councils, elected by the burgesses, and maristrates chosen (with the exception of the principal burgonaster) by the council. To the magistrates is intrasted the care of the exceutive police: the council manages the town property, and all matters of local finance. At the head of every rural district is a village
 evercise a limited anthority in matters of pulice. 'The village judgo and the magistraey of towns are under the control of the executive department of the government in which they ars situated.

Although the nation generally may be desoribed as sill un a rude condition, and perhaps not able for self-
govermment, grent advances are making to give the whole population intelligence, which is tho basis of all true lilecrty. I'he state, in many respects, exercises a paternal and kinelly sway. It has established national educution on the broadest possible foundation; for each child is legally compelled to receive elementary instruction at school, and it is considered a disyrace to remain ignorsnt of letters. The state also takes charge of all tho public highways, and keeps then in the best condition. It protects travellers from imposition, ly regulations affecting posting, innkeepers, \&c. It restrains idleness and drunkennoss, by compelling all men to support their families; and places barriers in the way of that source of many evils-too carly marriages. It gives perfeet toleration to all religions and forms of worship; and the security it allords to persons and property is quite equal to that afforded in England. I'he wersi of its features is the censorship, of tho press, which strikes at the root of constitutional frecdom. The people, ulso, cannot meet publicly to discuss political atlairs personal locomotion is restricted by passports; the towns are walled and garrisoned; every able-hodied mate mast serve for a time in the army-all which cirenmstances tend to show that the nation, with all its social improvements, is still in the infancy of civil liberty.

constitetional monarchies.

A ronstifution is a legal and fixed compact hetween governors and governed, that the 'just rights of all slanl! be respected; and therefore implies a liheral concession. of the governing party to the opinions, wants, and wishes of the community. Europe abounds in constitutional govemments, but many of them are seareely entitled to the name. Surdinia, Saxony, Sweden, Hamburg, and all the smaller Geitain states, have constitutions of one kind or other; that is to say, the king, grand-lake, chicfruler, or hy whatever title he is called, is restricted in his desigus liy estates composed of delegates from different orders of the prople. We should consider it quite useless to present detailed explanations of these constitutions, because all, or neariy so, are little better than a mockery. The reigning monarch can either directly neatralize the will of the estates, or he and they, together or separately, ure under the influence of armed intervention. 'The King of IIanover, for example, has lately trampled on the constitution of that country, and yet le is protected by the other states of Germany, In point of tart, the whole of central Europe is at the nicrey of Prussia and Austria, whose armies can be marched to sny finint where constitutional freedom has the appearunce of starting into life. The Dutch have a constitution, but thy lave no right of public meeting for politieal oljeets. their press is under a censorship; all must carry $\boldsymbol{1}^{m s i s}{ }^{n}=;$ and every citizen, in any kind of trade or profession, is required to pay for a license. The infunt and still lisorganized constitutions of Spain and Portngal it is whecessary to notice.

The constitution of France, since the Revolution of July, 1830, has been greatly liberalized; but, from the occurrence of recent events, it appears that the press is liable to oppression, without legal remedy; that citizens can he treated as the vilest criminals before trial, and mercly on suspicion; nad that the people have not the liberty of meeting for political discussion. Passports are required, a number of the large towns are walled and controlled ly garisons, and the very capital (January, 1812) is in the courso of lieing placed under the guns of formidable batteries. Constitutional frece dom is thacrefore either not yet understood or appreciated in France, and future disasters, doubtless, await that maturally fine country.

Iritish ('onshtution.-From the rav and ill-regulated constitutions of most continental uations, we ascend to the old-established and well-grarantied constitution of
the Uiited Kinglorn of Gerat Britain and Ircland. The government of this large empiro (whirh we need not here particidarize, ns it has been fully trented of in our article Constitution anb Rbaguevs of the haitish Empines) is a perfect snomaly, and, though frequently initated, hus never, in a monarelical form, been excelled. The legislature, as is well known, comsists of a hereditury covereign (king or queen, as the case may be), a hereditary House of l'eers, and an elected House of Commons. A l'utinment is the term used to express the collective lodies of King, Jords, nud Commons. Electors of members of the House of Commons must le native or naturdized subjects, males of twenty-one years or upwards, of same nind, not concerned in the management or collection of the revenue, not holding any otlice in the metropolitan police, and not legnlly comvieted of perjury, subomation of perjury, or bribery. In counties, an elector must be possessed of property in perpetuity or liferent to the value of $\delta 10$ yently, or lands held at a yearly rent of $\mathbf{E 5 0}$. In cities or horoughs lie must be proprietor of a house or shop, valued, ulong with the land attached to it, at $£ 10$ yearly, and upwards; or must occupy premises for which he pays a rent of at least $£ 10$ per annum.

Such, with certain modifications, is the principle on which members are elected. In practice it is found that the great bulk of the elective privilege is exercised ly, or under the intluence of, the landed gentry, in which we include the titled aristocracy of the country. At no time have what are called the lower or working chasses possessed the vestige of the elective privilege: and it bas only lwen since the passing of the Reform Act that the middle classes (shopkerpers, master tradesimen, manufacturers, farmers, \&ce.) have had the semblanee of direct representation. With this slteration. hweser, it cannot se said that the legislature lins undergone any sensitle improvement. In the main, the members are till nominers of the landed gentry, or of corgorations; and so much time is usually spent in electoral intrigu's, parliancotary debates which lead to nothing, as well ns the concilistion of parties, that the business of the nation is continually thllong behind, or improperly exereuted.

In whichever way it is riewed, the hegislature of the United Kingdom is essentially the reflex of the landed gentry and aristocracy, and consequently the interests of these clases are uniformly the chicf matter for consideration. 'Ibe next great interest carred for is the West ladia interest; next the shippiny interest; next the military and maval interesta; und, lastly, the commereial interest, and the interest of the people. The executive, reposed in the hanals of a responsible ministry, takes its character from these competing interests. The expection of any project of haw or government is, to all appearance, rarely a result of principle, bint in almost ewry case an immediate consupuence of tempsrary expodinney. Power is attaincal by skill in gmining \star number of supporters, nad retained by skill in keepine them tozether. So much of the 13ritish statesman's efforts. luring his apprendiceship io power, and his exercise of power, are devoted to the getting and keeping of poover. that he is necessarily deficient in matural and aequired alministrative talent. The manner in which the administrative functions of govermment are executiol, tepends upon the industry and honesty of ofiricials not msponsible to publie upinion, not liable to be dismismel antess ronvicterl of grons derelictim of duty, and of whom their chideask little more than sumfeiont attention and will to save then from succeswfal criminations by opprasition. 'This kind of orgamization wenkens the direct preseure of pullic opinion upon ndministration; and, at the same time, by encouragite personal eanvassIng for political support, and the cultivation of innprese \& 70 oratary diverts pmblic attention from the dry busisem of government, t sy mpathize with jersonal squab-
hles, and attention to great alastrnet queations, mere imposing lint less inmodiately important than prathuas details. The consequence is, that the British goverise ment, more than any other in Europe, hins been characterized by the aimless expenditure of immense eacrgy with very disproportionnte results.

Whether my further introluction of the demoeratic principle (lowering the elective tranchise) into tha constitution would improve its qualities, is extremply doubt. ful. 'I'he people, taken in the mass, are s.ill finr ; on being instructed. A vast number can neither rend nor write: and such is the distressing state of poverty nal wretehedness of lnege comnnunities in towns, that, with their small knowledge of puhlic alfairs, mul linhility to bo corrupted, it is to be feared they wouk nppoint men of interior gualifications, or whoever paid them most liberally. The freemen voters (working men) of Norwich nad mome other towns, make a regular sale of their votes on the oreasion of election. In this strang:ly complicated condition of affairs, with great elass interests to be protected, the only renl restraint on government is the uction of public opinion, expressed through the modinm of the newspaper press and palalic mectings. Without these two gualifying elemente, the govermment and legislature would be, not only in mane but in character, a prowerfin oligarehy. As the case is. the restruint, though elumsy, is on the whole etlicacious; and, therefore, with all its errors and anomalies, the constitution is one of the most favonmble to.civil liberty. 'I'se very wenkness of the executive, as respects the means of kecping its place, and its obligation to conciliate parties, is highly favourable to popular froedon. In no monarely on the face of the earth is the executive so liberal -that iss, interferes so little with private conduct. Vider its administration, the following importani conditions aro accored :-Liberty of speeh within constitutional limits; a similar limerty of the press in all its deprorments (newspisprs, however, requiring to be stumped); liberty of persobal locomotion, no passjurts heing required; liberty of carrging on almont every lorath of trade without infuiry or licenae; librery of meeting in massa to le instructed by lectures on political or other subjecte; liberty of meeting to discouss any political topice, menera or |real; libarty of presenting pretitions to parliament and memorials to the crown; religious toleration. and liberty for the performance of all forms of worshis lingry of sedting up schools to instruct pupils in nuy brameh of leaming ; protection from the law to life and property, without respeet of person ; privilege of trial hy fury, and of forcing on a trial for any alleced oftence privilege of being held as innocent till proved to hes cuily ; incorrnptibility of judges, these heing no way "xposell to intimidation either from power or popular projochice. 'I'o these great bulwarks of civil liberty may In aded the absence of military ce useription; the nonevistence of fortified or walled tow the ; the promptitude with which riotons proceedings are guarhed and the wate preserved; and the absence of any restriction to prewent the most hunble individual from rising to the highest rank and consideration. 'I'he drawlancks on all these aivantages may be conprised in the following circhanstances:-The existence of a set of laws so complex as to \ln e unintelligible, andi so rexasise in administration. that logal redress, ns far as private interests ne conerment, is alhont besond the rearh of the lower rlassers ; the most onlions reatriction on free commercial interoourse with foreign nations; the ton prevailing treathent of all sreat questions in Parliament with reference to clasmes instead of to the whole puple, and consequently the impontion of burelens, in an irregular mamer, difficult to lwe borne by the poorer orders of the community ; and, lastly, the abernee of a mational ayis tem of education, which might in time clevate the minds and morals of the jeople, and altogether produce a more
whelesome soci tunces aro all and they will, public opinion, bear upon them

A republic o in which the p re acknowled direct appointı executive. T in cxistence. in Europe, n which is a terr size, and inhul engaged in hy great propertie ad gentry. merchants in lation are a h seen nbove legislative nn ccordanee w are contempt exhibit-such ing, and to p strangers: lin dom of trad republics, cen greatly under natchies, by tolerated onl country is in invasion. A tion into Fra the cutastro pauperism.

On the eo been founde of Europe. America, no qlluded to Desraiperio intention of form of the of Eugland President a sovereign, functionarie The countr pach stite ! internal m: the Sintes, House of a Congres posed of people of are require alectors of hature. R mereral sta numbers, number of for a term three-fiftlis sentatives sona in ear enumerati tell years. bas not e seara a when ele chescn.

Vol

ons, more prasturul h goveris- en clarac. se excrigy

lemocratic othe corn ely doult. 1 far ; on r read nor werty ant that, with linbility to bint men lam most 1) of Norlle of their strang ly s interests rament is rough the martings wermment it in cha? restraint, and, thers mstitution The very means of ite purties, "11 nis mo - so liberal it. linder ditions are mal limits: "pirtments l) ; likerty required; of trade in masw 9 r suljerett: IC. Lenera nerliament ation. and worshir
Is in any
a life anc of trial ly I offince ral to bee ; 10 way r jopular n.ty may the nos. mptitude and the ivinn to is to the is on sll following so com1 admin. restis are if lower amercial revailing rit with ple, and rreçular s of tho a minila a more
whelasome mocial condition. Fortunately, these circummances are all of a nuture which adinits of amendment, and they will, ss a matter of course, be minended, as public opinion, enlightened by knowledge, is brought to bear upon them.

Republican governments.

A republic or commonvealth is a form of government in which the people, or at least a large portion of them, are arknowledgedly the source of power, and have the direct appoistment of the officers of the legishature and axecutive. There are few of this class of governments in existence. The only republies worthy of the name in Europe, are those of the Swiss cantons; each of which is a territory of generally n few aquare miles in size, and inhabited hy a few thousands of peopte, chiefly engaged in hushandry. In these cantons there are no great properties, and no fannilies equivalent to our landed gentry. 'There are some wealthy und intelligent merchants in the large towns; but the bulk of the population are a hard-toiling race of small farmers, and little is seen above a condition of mean medioerity. The legishative and exerutive functions are conducted in accordance with this state of things. Some of the laws are contemptible, from the narronv-minded views they exhibit-surh as luws in some cantons to prevent dancing, and to prevent the purchase of housea or land by strangers ; hut other enartments, particularly as to frecdom of trade, are mueli to be ce: mended. 'These republies, centering in a general dic or congress, are greatly uniter the influence of Austria and other monarchies, by which, indeed, they are in n great measure tolerated only from mutual jealousy, and because the country is in some places nimost inaceessible to hostile invasion. A eonstant drainage of the overplus population into Frabee and to North America, helps to nvert the catastrophe of a universal degradation to semipauperism.
On the continent of America, various republies have been founded on the wreck of the colonial institutions of Europe. 'The prineipal is the Enited States of North Anerica, now upwards of half a century ohd. We have blluded to this great modern repullie in the article Descaiperey of the l'viten Scates, and have no intention of going decply into the suljeet here. The Grm of the legishature and executive is wery nearly that of England; the moin diflerence being an thertive President as chief maristrato, insteat of a bereditary sovereign, atd the appointment of judicial and other functionaries by the peophe, instead of liy the crown. The eountry is not ons but an ageregation of republies; pach state lieing independent of the others as respects internal mamagement. 'The power of legivlation for the States, in their united character, is vested in a House of iieprosentatives and a Somate, jointly forming a Congress. The Honse of Representatives is composed of members chosen every second year by the peoplo of the l nited States. The electoss in each state sre required to have the qualifications requisite in the electors of the most numerous branch of the state legishature. Ropresentatives are apportioned among the everal states of the Trion necording to their respective numbers, which are determined by adding to the whole number of free persons (including those hound to serve for a term of years, and exeluding Inlians not taxed) threc-fifths of all other persons. 'The House of Representatives consiats of one member for every 77,700 persons in earh state, estimated according to this rule: the enumeration is made by a general census taken overy ten years. No person is eligible as representative who bas not completed his twenty-fifth year, and been seven jears a citizen of tho United States, and who is not, when elected, resident in the state for which he is chescn. The Sonate of the United States is composed
of two senators from each state, elected by tho legislature thereof for six years. One-third of the Senste goes out and ia replaced by a now election every two years A senator must be thirty yeara of age, nine yeara a citizen, and resident in the wtate for which he is clected. All members, both of the general and state legislatures are paid for their services.
'Tho President is elected ly the whole people, for a term of four ycars: at the close of that period he may be re-flected; and, with the exception of three, all the presidents of the United States have been re-clected for a second term. Each state appoints a certain number of clectors, who meet in their respective states, to vote for President and Vice-President, ono of whom, at least, whall not be an inhahitant of the state. In Delaware, South Carolina, and Teunessee, the legislaturo chooses the clectors; in Maine and Maryland, electors are chosen by the people voting for ono or moro in each dintrict ; in all the rest of the states, they are chosen by a "general ticket," upon which the whole of the electors vote. The electors transmit acaled lists of all the persons voted for as President, and all those voted for an Vice-President, to the president of the Senate, who opens the lists and counts the votes, in the presence of the Sonate nud House of Representatives. If for the person having the greateat nomber of votes for President, minjority of the whole electors have voted, he is declared President ; if fewer, the House of Representatives elects by ballot one of the three who stand highest an the list. If for the person having the most votes for Vice-President, a majority of all the electors have voted, le is declared Vice-President; if not, the Senate names one of the two who stands highest on the list. 'The I'resident and Vice-President must be natural-born citizens, thirty five years of age, and fourteen years resident within the United States. 'J'he principle of electing representatives to the state legislatures, is almost that of universal suffrago; in most instnnees, overy male citizen above twenty-one ycara of age, who las resided a year in the state, is an elector.

With an immensely farge unoccupied territory, and genernl thinness of population, it is impossible to draw uny just inference as to the stability of this still comparatively raw and untried republican government. It is suitable to the present condition of the couatry, but whether it will maintain this character alter its jopulation has become as dense us that of England, and great diversities of wealth and intelligence have nrisen, is a question which time only caus settle. In the meanwhile, the general character of the executive is tecble. The prople, in a seuse, are masters of the law, and have it in thair power (in virtue of clective privileges) to intimidate its oflicers, or absolutely to set them at defiance. In the middle and enstern wtates, the efficiency of govermuent for the repression of crimes is about the same as in Great Britain; but in the western states neither life nor property is safe from popular outbreak. The prevalence of slavery in the southern states aggravatea this evil: personal security in New Orleans is at a lower ebb than in Italy or Madrid. Still, with these drawharks, the Thited States is a great nation, it which civil fredom is on a gland scale, and is worthy of the enlightened community which has established and supports it.

general remarks.

The three great classes of governments which nave been cnumerated, among which Yrus:ia is the most favourable type of a despotism, Great Britain of a constitutional monarely, and the United States of a republic, require a word of concluding comment. Each of these nations las reached pretty nearly the same grate of civilization. The educated class of citizens in all of them will be found pretty nearly equal in respect to ge
Vol. 1.- 42
meral information, induatrial akill, enterprise, and mililary courage. If the froo citizens of the linited Ntates posecss a areater numount of political power than thome of Great Britain or I'nasuia, in neither of the two latter do wa find a elasa of personal alaves. If the possession of the politional franchise in Great 13 ritain lends a greater degree of energy and self-respeet to the middlo classes of Britain than are possessed hy thone of D'russia, we will look in vain in the latter comntry for a elass suffering surh privitions as the peasantry of Irelanil, or the unakilled labourers of our der. . ly peopled manufacturing districts. In America, the amber of inhabitants wha have received a common school edueation is greater than in either of the otherg but the proportion which have received a university ellucation is much lower. In Pruasia, the direction given to the higher atudies by the goverament, has pheed the average scientific community far in alvanee of (ireat Britain: there has nothing heen done in this country for the last twenty years to rompare with what has been efferted in history, geography, and acienee, en masse, in Jerlin. On the other hand, British geniss, developed uncontrolled by the school disciphine, and encouraged by tho demand of a weathy commonity, hat in indivilual ensen soared to a hicher piech of invention. The moratity of the three nas'ans is mueh upon a level; as utso the efticiency of their governments for repressing crime. The higher price paid by Great l3ritain for the services of govermuent, is largely avelled hy the anomint of poor-rates: it is a romperte sating principte, redressing the less egual distributions of property which prevails in this conntry than in either the United states or Irossia. The price puid by Irus eisus for the serviece of goveroment is greater than what is paid by Amoriems; hut, in return, the orgimization of govermment over a large portion of America is more imperfeet, and the protection it ultords to person and property less complete. The seeret of the high pitch of excellence to which government has heen carried in all these countries, is, on the one hand, the power exercised by pulilie opinion over the government ; on the other, the power prossessed by the state of availing itself of talent wherever it is to be found. Public opinion
worka direetly upon governn ent in the I nited Stare through the periodical elections; more indirectly in Ena land, through the power of the press, Hid the House of Commons; moro indirectly still in Pruesia, Itrough the truining of the whole population to arma, and the constitution of the army. The universality of the elective principhe in the Vhited States, thrown open the offers of state to al! who are ambitions and cipahle. 'l'ha forms of the British constitution ohlige those possessed of political power to molist the norvices of talent wherever they enn find it. And in I'rusela, the universities, and the appointment only of presouns whin have studied und undergone a severe examination, therether with the ordet of promotion both in the civil and military surviere, open a career to the tallent of all ranks. (ioveranent is well conducted in all these comntrios, in proportion as its duties are diselarged as " matter of husiness, not of mere show or parade. Tho superstitious regard for tha lurelitary power of a monareh in Prussin, of an aristoeracy in Great Britain, somewhat dimininh the utility of govermoent. On the other hand, the almos: exelisive nttention puid in Amerien and (ireat Britiin to guarling the individual rights of citizens, hus !oft the organization of their sxecutive government more noverly. The executive of Irussia is more completely and skilfully organized: the iodividuals composing tho excentive gosermmenta of the United states and (irent Britain evince, on the whole, greater rohustuces mal energy of intellect; and we tind in hoth these connatrice, what is found uowhere in eontinental lurope-na ability of selfgovernment in loealitica far alaof from the centrel ex. Cutive. On the whole, the revies we have laken of the organization of these states, powerfully eorroborates the conclusion arrived at in our theoretiral section:That good government, although it cartainly promotes the civilization of a country, is much more its conse. yuence than its cunse; and that attention to the ronduct and constitution of government, although a duty of the eitizen, is only one of many public duties not less impurtant and necessary, both tu the general well-being of society and the happiness of the individual

LANGUAGE.

Laxoviar, in the largest mense of the term, may be defined as be means by which thought it expressed. Thought, as is well known, may be expressed by means of mute sigos, as frowns, sigha, kind looks, gestures of the berly; or by inarticulate mouble, as groane, eries, solns, langhter. The first are usually ealled natural lingatag, mat the socond inartimalate language; anc these means of expression partly lerlong to the lower animals. Finalls, there is artandate lanesurke, preobliar to man alore, and consisting of a multitude of sounds, each of which reprosentes a distinet idea. To this last mote of exprossion. Lomerally hawn by the simple torm languge, our athemon is for the presint to be directed.
omginal. furdiation uf tanguage.
Oserlooking the controversios which have taken place ane tha frims, :ant from the revival of which no gotal conlit lue especterl, we are unxious on the present occaann to limit sarsulves to the consideration of the hypotereis adocated by Dugald sitewart and others, that the formation of language is an etfort within the scope of the
faculties which man has received from his Maker, it may, we think, be cansidered under two points of vipm First, it in suflicicatly elear that the vocal organe of men are constituted with a view to his expressing limbself ly speceh. Tre larynx, epighttis, pharynx, tongue, palate, and lips, are all of them framed in such a m.mner as to show incontestably that they were designed for producing such sonnils as we employ in nrtienlate language. It is scarcely less obvions that there is a distinct faculty of the nind for language. fome have prowets of expression alove nll other intollectual pudowments, se as to the cario sidered as merely men of words. Otbers have sookl geveral powers of inind, tut want adequate phwers of expression, mo that their sifta lecome of comparatively little ue th their fellow-creatucce. These diversities scem to shew that language is an intellectual farulty independent of all whers. If, then, we consider that it is the nature of all faculties to be active we cun be at no lows to concive how a variety of :human beings, in a primitive comblitu, would begin to form language. They could not, inderd, be together, without beginning to use both their vaicea
and mental gif wurk of time espremaivo of would a.so he named by wo them, as the w iLa lowiug, an probably one of nuels deacr atill sprak of rooks. 'The note of the hi anguages. I talian.
The other plate the hyp the procedine expressing th that of inartic acreama when wnder mothe by the fune o frat indicatio wociety ; and commanicale taks the nex wis the parson dence us to uncicty; yet nonts which are called la lips, the wor languages, \mathbf{c} The rtrong words in dill ties, is also ther is
Em Anu am Madr
Mant
Mlifter
Matide
Here
Children
next step
nally applis come to be If a child, father m^{m}, ward with into its pre Suith men hnow the dinar. It name for i any ather in nis nc.e vilual oli niver, wus a river? if any of be apllied near by, would con berame a cave. A cuamples for water of rivers ly the C and lsis Buvaris,
Russia.
Gram
ted Stana $y \ln$ Eng House of rough the I the con. he elective the offices chile. I'le possersed t wherever ruition, and nolied and - the order rvice, oprn nht is well tion as its Nes, not of ard for the Dn arino. cutility of exclusiva gharliug rganization aly. The d skilfully excentive 'ut Britain energy of res, what is lity of selfcentrel ex. - taken of orrolvoraters section :-- promitea its const. 0 the rousgha a duty ien not less well-ising
and mental gife in a gabble, from whieh it would be but owork of time to remolve certain conventional sounds, as expreasive of particular licas. The imitative faculty woull' s.m lielp to form languago, Olijects would be named by words formed from sounda connected with them, as the wind from ita whistling noise, the cow from ita lowing, sud so on. The Celtic language, which is probatly one of the first that existed upon earth, is fult of such deacriptive words. In our own langunge, we still sprak of tho meving of the cat and the canving of rooks. 'The word cuckoo, so exactly dencriptive of the pote of the birl thus designated, ramifies through several languages. It is spelt coucon in French, and ruculo in Italian.

The other point of view in which wo may contemplate the lyypothesis, is that furnished by obse ".
n of the prosecdinge of children and of uneducated persons in exprensing their idens. The first languago of a child is that of inarticulate nounda; it criea when it ia hungry, ecceans $\boldsymbol{N}^{\text {lenen }}$ it is angry, moans when it is in pain. A wnder mother can tell the state of feeling of her infant by the tone of its voice. Similar to these would be the first indications of feding in the members of a primitive society; and by such neena, minquestionably, they would communicate their sensations to each other. As clildren taks the next step in language hy imitation of the speech of the persons around them, they furnish us with no evidence as to tho first formation of words in a primitive weiety; yet it is remarkable that, while the first consonats which children learn to articulate are those which are called labials, becouse formed by a meeting of the lips, the words denoting futher and mother are, in mosi languages, composed of that very class of consonants. The strong resemblance which subsists between the words in tifferent languages expressive of the first mocial ties, is also worthy of observation. Thus, the word mother is

Em Rau am	in telirew and Arabic.	Moner in Anglo. Suls
Madr.	-.prersian.	Minfer -.swedisih
shir	-. Saascril.	Moiler . Damsh.
Meler	-.Grrik.	Mhefer -. hateh.
Maser	\cdots -	Mlutter . Cierman
Madre	- Lialian.	Mater . Huss aa
merere	. French.	Slathair - Celtic.

Chilitren and uninstructed persons ahow us how the next step would be taken-namely, how a word, originally applied to an individual or single object, would come to be applied to a whole apecies of similar objects. If a child, for instance, hus been aceustomed to coll its father m, it invariably, till it learns better, ures the same word with regard to any male stranger who may cone intoits presence. It considers that person as a po. Adam simith mentions that he had known a clown who did not Lnow the proper name of the river which ran by his own dior. It was the riber, he said, and he knew no other name for it. His experience had not led him to ohserve any other river. The general word river, tharefore, was, in nis ac eptation of it, a proper name signifying an individual obiect. If this persom had been carried to another niver, would he not, says Dr. Sinith, have readily called it a river! We can thus ree how, in a primitive socicty, if any of the chance soumels of their first jargon came in be applical to a matural ohjoet, such as a certain mountain near by, or a cave in which they took shelter, that somul would come to have a general application wherever they berame acquainted with another mountain or another cave. And, in point of fact, we have still in existence evamples of such primitive applications. liash, the Coltic for water. is the original of the names of a vast nuthber of rivers throughout the wide territories originally peopled by the Celts: for instance, the Esk in Scothanl, the Tuse and lsis in England, the Ouse in Holland, the Aisch in Buvaria, the Esker in T'urkey, and the Uskas in Southern Russia.

Grammarians hawe been struck by the remarkable faet,
that the imperative mood in in mont languagen the simple form of the verb, For inatance, in Latin, the Imperative moods of the verha, dicere, to say, eonore, to sound, ri'cre, to live, are dic, sona, vive. When, in latin, the syllable bam ia added to the imperative, it forms, in an irnmenue number of inatances, the limperfiet of the indicative thus, sona-ham, I did nound; vive-ham, I did live. 'This hna suggested to philosophical inguirers into the origin of language, thot entreutien and commanda, expressions of the necessitica and unregulated passions of primitive men, were the first form of the verb which they used, and that sll other forms proceeded from these. Some even go so fint as to say that this form of the verb must have preceded the formation of names of things. It is, how ever, generally admitted, that names of objeets or nouns, and verts, or words expressive of the motion and state of being of ohjects, were most probably tho parts of ajeceh firat formed; and next to these, propowitions, or that clans of words which define the motion of verbs and show the relation of oljects. "The noun and verh," says an eminent writef, "had each its archetype in matter and motion; and the proposition that marked local relstion, and the termination or auxiliary that denoted the tensee of a verb, had each its origimal in apace and time long anterior to the appearance of man upon earth."

Words expressive of the plỵsical qualities of oljects would probably be next introduced. Then words expreskive of the nature, manner, quality, or intensity of the motions of those objects. The latter class of words graminariana have named adverbs.

The zocial freclings must have speedily given rise to the posseasive pronoun; for it is natural to suppose that men would early leann to say $m y$ father, my brother, my danghter. When division of property began to lee instituted, the selfishness and acquisitiveness which form such active principles in human nature, would lend to the freyuent use of the possessive pronoun, and to the odious distinction between " mine nad thine" (meum et iumis), which will ereute so much disturbance amongst us.

When man began to compare the qualities of surrounding objects. and to form consecutive sentences, another set of words, called by grammarians conjunctions, would necessarily be introducel. The word conjunction is derived from con, with, and juengo, I join, hecause it joins sentences together.
Interjections, or words intended to rouse the atter.tion of the hearer, or to express the excitement of the spenker, would be uned in the very curlicst stages of soriety. The article, or worl which is used to point out the noun, was njparently the last part of apecech which was added to language:

The words used by the primitive nembers of society seem to have 'seen all simple and uncompounded. What we now call compound words were, in many instances, originally composed of two distinet words, which. in process of time, have become inseparably jeined. The two words which were mited to form n third, were definitions of the object designated. Analogy and order can be traced in the construction of most primitive words: and it is probable that no word was originolly formed trom mere caprice. Even proper numes, which now seenu so destitute of signification, were orizimally indicative of eome circomstance respectine the irdin iduals or nations whom they designated. Ilhus, the Kiug of the Goths, who was engaged in the destruction of the Roman empire, lerived his name (Alarie) from two words signifying univosal hing. The name Ariovistus is compounded of two words which mean much honiervert The names of natuns, conntries, rivera, lakes, and mommains, were orj ginally compounded on the same primeiples; no that the proper names of locntities in ditferent countrios atill serve as a sign to indicate by what primifive race the regions so maned were inhabited in past centuries.

Language, after being first concrete, and then mote
phor'cal, necame, in procena of time, abmitract. There are two kinde of inetuphor which pervade all language. The first ktind of metuphor is ush. when the name of any objert, in which a partieular quality predominatea, is diverted from its original signifiration to denote a similar quality in wone other noun. For inntance, the nume for was applied to men noted for their craftinesan A king of England was called Corur do Lion, that is, heart of a lion, on account of his courageous deeda. The mame Eind of metaphor in used when we aprak of the " nilver moon." All languagen nhound with similar expressions. When the natives of Otaheite first anw honsea, they called them "mighty hogs." 'The Freuch call jotatives pommes de cerre, literally, "apples of the carth."

The other kind of motophor ia naed when we milopt a term originally applied to some physical object to denote eome metapliysical abatraction. It has luen observed that a mort of naturul amalogy existe betwern what comea within the reoge of the selow's and the abstract conceptiona of the mind. Hence the metaphors of all mations, in every stage of civilization, are aimilar. No mation has yet been known to rall iruth darkness, or error light. Among all trites, the word leart has leren used metaphorically to expreas alliection, the word rock to denote merurity, and sleיp to signify death.

When the primition men, advancing from early neceasitios and simple tanцjble idens, fonnd it necessary to have words to represent the alstractions of the mind, they atill procereded necording to the dietaten and ana, bogies of naturs. Wre have some trave of the course whirh they followed, in the histoly of the words which have been used to coxprese the intinaterial part of man. They filt that there was something within their corporeal frames whirh gave these impulece and dipection, and they natarally formed the idea that this something was of an incurpareal nature. 'They also felt in the wind a something prossessing strength and force, but whick was impalpuable to the sight. 'The wind, therefore, became at once a fitting emblem to deserites the innsterial primejple or soul of man. Hence, the latin animu, the soul, in derived from the Sanserit an, the wind. The Greek pryche, the aoul, is connected with, and probatly derived from, psychos, wold nir. 'I'he tircek puenmor, a apirit (whence porumatology, mental acience), is from pined, to blow. Ont worl spirit is from xpere, to breathe or blow. The Hobrew word fur spirit significm nir or breath. Our worl ghowt or ghaist, a spirit, is of Sayon origin, and the same with gust, a blast of wind. These thinge evidently are so ly virtue of a law of the mitul, causing it everyshere fo form the same iheas respecting the same things, and everywhere to pursue the same line of operations under cortaill circumstances.

The first framere of lameruage purnued a amilar course whenever they wanted a word to express any cunception of the mind. In all languagen, every term expressive of mental ofrerations in lerrowed from the material world. Some of the terma thus applied are xignally approprinte. For instance, the word reflection nignifies, primarily, the throwing or bending back of light; bit, when applided metaphorically, it simnifies, ways looke, "the bending back of the mind to tahe a view of its own operations." The same may le said of the verb to rominate, which, in its original accephation, means the artion of an animal in chewing the cud; bot, metaphorically, it sigaifies the action of the mind in recalling and meditating upon the knowledge (or mental fiond) presiously acyuired. Adjectives are constantly and tamiliarly used in a metaphorical mense. 'Ilhus we yay "a warm heart," " a кunarior mind;" the adjective superior is simply a derivative from the latin adjective suprerus, high. Prepositinna are frequently used to convey metaphymical ideras. 'The worls wbore, below, under. benenth, were originally applied to expresa the rellition of natural oljecta. The primitive members of aciety, perceiving that the rain and the sunthine, the
thunder and the lightning, proceeded from above, probably npptied words gynonymonn with above to exprem what they adminal and venerated in mental charseter. An brlaw is the oplonite to above, their hlean of whin is degraded and vicious were exprenmed liy terma aynonymima with belunf: hence thome common fhrases-a he is abive deception," she in under a mintake."

In the prewent atage of linguage we have licome ac habituated to the nue of terma applied metnphorically, that we seldom reflect on their original import. There nee many jnstances in which the mitaphorical word re maina, when its primary signification has heen forgotten. For instance, the word capricious doea not кuggest the iten of a gont, although it in Ifrived from the I atin ciper, a goat, to denote the character of a person who bouthls from sulyject to sulyect, without paying due attention to uny: like a gont, which bomale from rock to rock, with. out wettling foug in any one apot.

During one periokl of tho world's history, the only lanzunge may le suid to have leen that of metaphor Ifintory, religion, aysteme of philonophy and of morality, were all wrapt up in allegory and metuphor. This in atill areoliarly the langunge of the Eantorn nations; perhaps it is mainly nttributable to their inaginative an! bextic tomperament. 'The language of poetry, in every clime, is almost exclusively that of metaphor.

diverirnce of tanditaoe.

The remarkuble divergence in the languages of different mations is in part atributable to the following emmen:First, it is an ascertained fact, that fow languages have any chain to be considered an the primitive dialect of any oni race. Must languages ntlord iudimutable tracen of having bern derived from nome other language. It ko many vallknown operations in chemistry, by whirh the mion of two or more substances proxlures a compeand ditherent in its propertios and in its aplearance from any one of its constituent parts, No, in many instances, several langunges have contributed to form a bew languge, dif. fremer in its structure ncoording to the propurtion in which its constituent elomonts have been combined, and yot possexsing diatinctive churacteristica of its own. 'These characterintics freguently vary according to wight beruliaritios in the natomical etructure of the vocol organs of the intividuals by when it is apoken. It is well known that naty $\mathrm{p}^{\text {mopll }}$ le lind it diffeult, and in some caser intursible te pronounce cortain consorin?s A formaner has great dibiculty in articulating the Ginglioh th in such words as thine, thee, and that. "The English, on the other hand, whllow sucterd in giving the right promumeiation to the guttural somul th, which is of surh frepuent occurrenee in the (Beman honguage, nod which is daily promomed hy the mativer of scotland, in such words an loch, light, and many others. Nany jetsons are said to lexp, Wecoume they cannot pronomate the found sh. The Ephraimites forlitited their lives from their incapacity of pronouncing this sound. If the (irecks hid Bren at the fords of Jordan, they would likewise have fonmd themselves in a similar predicament, for the syllable sh does not oceur in the (irrek language. The word shiblohth means an ear of corn, and in the Septuarint it is rendered by the word orxxur (stachus), which in (ircek has the same xignitication as the Jebrew shibholeth; hut no tireck word could be found to express the sound sh; therefore in the saptuagint the marrative is impurfict The nativer of Otshoite could not be tanght to saly Cap tain Conk. 'J'hey always called him Topham Toot. 'I'he letter c daes not occur in their alphabet.

It is impossible, at this distance of time, to calculata the amount of intucnee which this incapacity of articulating certain sounds must have had during the firat periods of the world's history, in occasioning the present divergences of tanguagen. It is a matter of daily ohserva tion, that claldren have great diliculty in articulating
ertain son Grat of pro eshilith thr worus in w? not the dial manner ha in in time or entirely ertain con trulatly th ganic aflin Dubid. T hence, the south are which comp Thus, in A in the nam and Ten \mathbf{N} retained, bu mountain called Pean tained in 1 thare are word has four differe Alom. 10 ing v for u

It meems to retain yery freque from the churrh and (kuriön on word denti daxamo (di (galukto:),

Larte
Latle
Leite

In all the omitted, at tained.

The pri posed.
always sa brsh inste the latin erthugrapl varitions comsilered cither read who died could not ignorance. methores
words. I assigned a

A diale West Indi philologist all langun been $f e:=$ dialect. cumblines
Whan a
ditituculty
ae intre:
occur; 2
consmbant
peculiarit?
for instan
bakka is
wine; ${ }^{n}$
much En

LANGUAGE.

prolnably ene what cter, A1 hut in deo ronym, una e is above

recome a

 horically, 1. There word reforgotten. gigest the itin cupor, (o) bounds cration to ock, with.
the only

 metaphor morality,This in nationa: native an! ; in every

pf different

callase:ages lave leert of any traces of which tho compcalad from any -en, neveral ghage, dif. prertion in binel, and its own. If to slighe the vocal ken. It is ilt, ant in onsers sats be Enc!ixh (Enslish, the right is of such and which l, in such ny jersonthe the enund n their inirecks had wise have he syllable The word ptuagint it hin Cireck roleth; lout sound \times, ; imprerlect. say lap Towl. 'The

- calculata

 of articuthe fires the present Iy observa irticulatineertain mounda every child han mome particutar way at frat of prorou :ing certain congonantt, and uniformly eshibits the antene peculiarity in the pronunclation of all worus in which those particular connonanta occur. Might not the dispersing children of a primitive oociety in thin manner have curried nway varietiea of pronunciation, to be in time modified no fur that reaemblance was nearly or entirely loat It aecms natural to some ment to sink ertain consonants and to sulstitute othera; this in partoularly the enme with thowe letters which have an organic affinity ; thus, the IIcbrew name Darid is in Gruek plabid. The Celtic worl pen signifies an elevation; hence, the mountains which traverse Ituly from north to south are called the Apennines. Ilut the conmonants which compose the worl pen vary in different langungea, Thus, in Scothand, we find the tetter p converted into b fin the names of mountains, as Fen Lomond, Den Inwers, and lien Novia. In Spain, the conaronanta p and n are retained, but g is Inserted; thus, in Biscay, there is a nountain callet l'cgna Cerrada, and another in Iceon is called Peqnut te San Romano. The Celtic word still retaned in the Welth lagguage for a flow of water is atron: there sre eight familtar instances in which the w in this word has treen changed into v; for the name given to four different rivers in Wales, and to four in Englond, is Avon. Londoners make a constant practice of substituting v for w nnd w for r.
It seems matural, also, to sink one part of a word and to retain mother. Instances of these albreviations are rery frequent. Thus the monosyllable priest is Ilerived
 church and kirk linth come from the two worls nugev easise (kurion ortoss), literally, "the husse of the Iard." "The word dearon is derived from a word of Sour syllubles, dixanoc (di-akionons). From the Gircn!. word zanenter (galuktos), milk, the following words have sprung:-

$$
\begin{aligned}
& \begin{array}{l}
\text { Lacte in Latin. } \\
\text { J.atle } \cdot \text { halinat }
\end{array} \\
& \begin{array}{l}
\text { Jatle : hulian. } \\
\text { Leite } \cdot \text {. Dortugue }
\end{array} \\
& \begin{array}{l}
\text { Leche in Spanish. } \\
\text { Dharth } \because \text { Wetsh. } \\
\text { Laut }
\end{array} \\
& \text { Lite - I'ortugireme. }
\end{aligned}
$$

tr. all these words the first syllable of the original is omitted, and . nly part of the remsining syllables retained.
The principal mounds in a word are frequently transposed. The natives of Somersetshire, for instance, dirays say clops instead of clasp, "pes instend of asp. birsh instead of hrush. The word garnet is derived from the latingrona'us, and purpon' from propositus, False orthgrapliy may also have heen the cause of some varitions in langages. A few centuries ago, it was considered marvellous when a gentlemnn or lady could cither read or write. Du Gioeselin, Constable of France, who died tuwards the close of the lintententh century, conld not sign his own name. During these periods of ignorance, many changes must have been made in the methods of spelling, and consequently of pronouncing words. Inatention and the love of novelty may nlso be assigned as causes of many divergenees in languages.

A dinlect is now in the process of formation in the West Indies, which has grently attracted the attention of philologist, because it dovelopis the principle upon which all lamguages at present existing are presumed to have benn fe:med. It is culled the Talker-talkice, or Negro dialect. Its hasis is the modern English, with which it combines many Dutch, Dortuguese, and Spanish phrases. When a Negro attempts to speak Einglish, he finds a diftir ulty in pronouncing the sound $t h$, and sulstitutes d; ne intr-ijces vowels, even where they do not properly occur; and softens the langunge by omitting the harsh consonants, frequently substituting linuid ones. All these peculiarities are of course found in this new language; for instance, drie is threo in 'lalkec-talkee; dem is thein; bukkn is back; holi is hold; bruiloft is bridal; uilni is wine; morro io more. The language still retains so much English, that our countrymen in the colonies can
generally underatand it. A repalon of twe Bcripturen ta thim language has been inaued hy the Bible Boclaty, Many ohjectiona were made to thin vernion. Thowe who contemplated tho future emancipation of the Negro, comtended that, hy giving wtnbility to a mere barbarous and fluctuating jargon, it was shutting up the avenue to future improvement; and that, thoughs it might be advantageous to place the Scriptures within the comprehension of the Negro, yet that this version would render glt the literaturs of England nud of the world inaccemaible to him, unleen it could the posmible to convey it in tho barbarous 'Talkeetalkec. Time only can mhow whether the Talkec-talkeo is deatinel to hold a higher place than it doen at present in the acnle of languages, A poitod might ine mentioned when the English language was in a mimilar ntate of digaonnnce and incongruity. It is, an we aball hereafter require to mention, composed, like tho Talkec-talkee, of a iectorogeneous medley of langungea; but its jarring elements are now amalgamuted, and it la univerually admitted to be ono of the most prolinhed languages of the world.

The political history and government of a country have considrable influence upon its lunguage. In an enlightened community, in which a jujicions attention is paid to the rlementary calucation of the vholo people on a uniform plan, varicties of dialect must in tino almost ccune, and a common stylo of speerh be used. But where litte attention is poid to this sulject, or where no uniform primeiple is pursued, all kinds of jargona and dialects will ubound. (ireat Brituin is at present in the latter condition; the diadects of Yorkshire, Lancushire, Nomersetshire, Cornwali, and somo nther counties, bear little renemblance to a pure Liaglish spech. A uniform system of education, communicated by teachern sent forth from a central institution, along with a greater intercourse by means of travelling, might be expected in time to eradicate this unscemly diversity.

chassification and analogiks of languages.

We are mainly indebted to tho Germar, critics for whatever advance may have been made in the comparative study of langunges. Adelung, a German, was among the first who awakened the attention of Europe to this important study, and he bas been followed by his countrymen Grimm, Bopp, and others whom it is needless to mesition. It appears that the result of an extenxive study of tanguages, is the conviction that two sorts of analogy prevail annong them: first, a resemblance in words ; and, secondly, in grammaticul structure. Three different grammatical systems secin to prevail among Janguages; that is to say, the formation of parts of speech, and of the intlections lrom the primitives of the language, may be effected in three dilferent ways-namely, first, by chunges in tho letters which compose the roots; second, by the addition of tomative syllathes to the root; and, third, by the use of seprarate words, insteud of intlecting the roots. Which of these systems is the most ancient, is a question which has created much dispute. Humboldt. Bopp, nad also Adam Smith, contend that the second method was the first adopted. It appears, from the history of languages, that, with the remarkuble exception of the Chinesie, in which the relations of syntax supply the place of inflected words, a gradual progress of simplification has heen going on in all fanguages. Thun the Gireck and most of the Oriental languagea have a passive form of the verb, inflected cases of the noun, and a dual form. 'Tho Latio, which probably was [artly derived trom the Greck, retained the passivo verb and inflected derlensions, but rejerted the dual form. The Italian and French, which wero derived fiom the Latin, rejected both the passive form of the verb and the intlected capes of the notn. The remaining step of aimplification was, to substitute the natural distinctiona of gender for thow previously in use, which were formod
on artitary phowiplem, depemiligg chictly on the termimation, and to do away with the neernaity of making the adjectivn auree with the noun in gender and monber. Thim wan thiected by the Einglinh. I'the whole hintory of tha proveda reminda na of that of miny mechaniend finentons, which at firat were connplex in the extreme, but whth by degroes were mamle to pirt firnt with one unnevemary wheel, and then with mother, thon becoming more and mone vimple in their structure, and jerhapa more availatle for the purpowea for whith they were de aigrod. As granmatical sy stemm are thus fobind to vary in process of time, and in languagen, tom, which are evidently derived from the anme root, languages are chasmithed more with regard to their vocublatary than aceording to the atructure of their grammar. In the bent aystens of chasmitheation, particular attention ham been puid to the agreement in nound of thome worta which are used in the first atages of aociety. When crime expresmive of hunger, thirst, the sull, thoon, whar, are found nearly alike in neveral languages, it is niparent that the mationa by which they are umed lelonged, in bygone centuriea, to the mane trile, and migrated from the mane dastrict. The ntudy of hanguages when mablew un w trace the origin of nations, whon ali other avenues of information are lows in obseurity and fable, and it ia hence, in other wordm, the studly of man's hintory.

The number of languagen mad dialecte, aneient and modern, har heen computed by Aelelung to be 3004 : namely -

It would take more space than our limita permit, to give - tabular viow of all langonges: the following summary contains the prineipat faniles, and the classed in which they are generally flaced:-
I. Monosyllabic Clasn-CChincse, Siamese, Avanest, Japanese.
II. Shrmetir or Somrtic Clagn-Aramean (Chaldeo Byriac), Hebrew, Phoenician, Aratic.
III. Iuthotiuripean or Indo-Girmunic Chas,-Nanscrit, Celtic, 'rutonic or Cothic, Pelangic or Circeo-lation, Sclavonic, Hongauian, Partarian or 'l'urkish.
IV. The bolynesian Cleas, consixting of the dialects mpoken in the Indian archipeago and islandm of the bouth Seas.
V. The -Ifrican Clasm-Remains of the ancient I.yhian in the north; Soosoo and Foblalh (hetween the rivera Selngal and (iambia): Ashantere: Amaric, apoken in parts of Abyssinia; Hothentot, in the south; Cuffer, exteruling from the south along the eust conent as far as Delagoa Bay.
VI. I'dysynthetic Clar, exterading from north to mouth of both continents of America, und comprising Chilian, Peruvian, Ilrazilian, Mexicen, Western dialects of North America, lloreal diatects of North America, \&c.

The contrant between the tirnt and the last of these dassen, presente an apparent anomaly. 'The Chineme languager have exinted among a perlishoud prople from very remote antipuity, and y't are an rude and simple an if they had lewen just devised tor the use of a nation but recently emorgod from barhariam; wherenn the languages in common use among the wild tribw of Anerica, ase comples and dilfucult in their strueture, and serm an if they had been invented by a jeophe who lame male great advancea in civilization. It has conmequently been wupmimal that Ancerica was u: one time the residence of a carilized jeople, of whom the Indian luiben are the degeneruted remains.

Written language.

The first origin of writtes lankuage may be traced to a derire. appratenty natural wam, to preppetuate a record
of him actions, thoughta, and feelinga, heyond the narrem Nopn of his own exintence: he knows that the past in ne longer hia, that the grewent in funt tlecting away, and theres fore he areka to the in ame way comected with the future. Eiven anragea devine meana of Irammisting to thwir children'm children a record of themolvem. I'ha Ancriean Imdiana at thia day curve ugon the han llew of their tomahawke figuren of warfiors without heals, to donote how many of their enemies they have mealpasio 'The Mexiran pieture-writing upparn to have heeen equally simple. Whern the Spanimia firse invaded Moxico, this nativer puinted an exact reprewentation of the Npanish dhip ipmen cloth, which they arnt an expresmen to the if emperor, Montezinma. The recorila of lieir tifpire were delinented in the wame manmer, A conguered down was repreminted ty a house, gencrally with mome endiona ane nexed, to whow what partieular town was me'ant. Nome of these printinge, which may well be commileted as the moxt curioun apecimena of urt which have yet la'en dia covered in America, arn carefully gremerved in the Holloinn Library at Oxford. 'I'lo reprementation of naturat objecta meema to have In'en the tirnt atep whith was taken in the art of writing. 'I'he next ntep wan prohally the delineation of invinible iteas liy nymbolic repremontations: such, for instaner, aa atrongth, which was repusemted by the figure of a lion, on arrount of the great atrensth of that unimul. As civilization alvanced, more 'itue wa devoled to writing, aud it was then discovered that part of on object would reprement an liden an well anthe whole. Thus, a mepetre was made to repreaint a king. Smoka amemiling, nymbolized fire. A battle wan represented by two handm, one holding, a bow and the other a shichd, Hy tegrees, there signa became conventional; that is to say, it became a matter of agreement thot certain ideas should be represented by certain nigns. 'Ihis kind of symbric writing was much in use anong the begptians It has been proved ly Champellion, who devotel twouty yenrs to the invertigation of the wulject, that the nymbolic charmetorm which they used were limited to stid, which the has arranged under the following eighteen clasmea:

Culustis! tionties	,
tumata figuren in varama position	1:0
tlumen hmbas tuken sejprately	10
Will ¢ ¢adrupeita	24
Jhanestic qumitrupeds	19
t.imba of atimma.	α
dicela citiere whole or in paria	
Finturn.	III
Itrptiles ether whole or in parth	0
truects - - -	14
Veruthiles, tlowers, ard from	
Ind himus	4
Furnture - -	
Cowertike for fret nid lega, hewidy	мен. weupons,
	4
Tools nendinstrumeats	
Vases mut cups .	:10
	(4)
F'antastic torms -	30
Tolat	- - . -

The reason of this Jimitation is very ol vious. As all natural olyects might be used as symboln, the number of characters might have been multiplied ad infmum, unlese respulations had been male the restriat the moriters. Hy dogrece, an these charactorn hecame universully known as tived and permanont nigus of the intun thry repremonted, bess trouble was tuken in their accurate dedinene tion, so that they were nate less like the visulbe olyget of which thry were originally the imuge. At leugth, all troeres of resemblance were lowt, hut the character, it ite abridged and mutilated form, ntill continued ta la corventionally recognised an the wign of the same idea of which it was originally the symbol. This is tho exact stute in which the written languge of China now atande The elementary Chineso characters are 214 in number, and are called keys. These keys are morely formed by the varioua combinations of six struight and varioualy
atimy Jinea. which nre ge are formad.
a word; unl blance to an that, it nome Bigypian hier jects in natur
Much lahr of the Risyp Champollion. were comman
I. Tlue It wactol," and at first Indieve only to tho pros oljecta, und tiona.
IJ. If:kna culte име! which have this kind of of inazers.
III. IE © you the peopilo," aloo callecl to nul, from $ク x$ the charabter kind of writit tim of the ot metherl.
Nothing w of the Esylt fint at Rowett itour, which thins; one is ienutic char inseription cree it contan rackets; hau the countery, mation, .in. Greck, in il Oher dorum the meaning is still justly mystry.

By degree becime mor that the balm auch syminul Netmerital mer
wers in one w the number character hi there was "I the dement: and a partic the prigin dently the c alphabetic racter, like
Trultion a in the fillew are not to lo

Heskaw
tid the nartow the prat is no ay, anil thero wits the fuinsmittugg to Inelvers, I'he lue ham lien of out hearla, to have mealpest "hren requally (1) Mexiro, thio the spanish conmen to their toplire were red town was cemblem an iremit. Nome widerid an the yet lawn dis it in the llaxt. pon of atural ich was taken proluably the presentationat cherental by at strosth of 10re) tinue we cred that part Ins lice whole. king. Nmoke reprerented by other as shieche mal; that in to certains idean 'lhis kind of Che Figyptians evotel twaty that the nyor mitel to shit, ving eighteen urate indinetavisilte object At length, all haracter, it it ad to t_{n} coro same idea of is the cratt as bow standa 14 in number ely formed by aod vartouny
numl lines. From thewe key, the other charactern ${ }_{1}$ whifh are gencrally reckoned to be 80,0 oro in number, are formod. Eisch charmeter repremente, not a letter hut a word; nut though the churnetera have now no rememblance to any purticular ohject, yet there th littlo donlit that, at nomo remite pariod, they were, like the ancient Figyptian hieroglyphics, accurute tranacripts of nome ohpeta in matlere.
Nuch faluor han hately been beatowed upon the atady of the Eifyptian evritiog, particularly by Young aud Champollion. It a|dnonre that three kinds of writing were common among the Eigyptiana.
I. The Hienomeirime, mo called from ikor (hidros),
 at first inlieved that this kind of writing was intelligitile unly to the priests. It eonsiated of the imagen of vinible oljecta, mal was chiefly used in monumental inseriptiunt.
II. Hinnaric, alno from inge (hierds), "holy," lecouve uned by the priesta, Sime of the manuserip:s which have liees found attached to munmies, consint of this kinh of writion, which was merely the rinde outlino of inageres.
 the peoplu," becanso it was ill common use. It was
 sul, from nxaper (righ heriza), "of the country," becaune the characters were difterent from those of tirecec. 'I'his kind of writing wian a still fiuther redurtion or mimplitiontion of the others, approaching very nemply to the Chinese methose.
Nothing was known in Europe reasecting the meaning of the Esyptian writing, until the French, in digging a firt at Rosedta, liund an irregular block of basalt. 'I'his itone, which is nanooth on one side, has three inseriptions; one in hirronlyphics, the second in enchorial or vematic chararters, winl the thirif in (irvek. 'Sho tireok inseription conclucter with the information, that the deeree it contains was to to cargenved in three ditiorent chasraters; namely, in the marred letters, in the letters of the country, wid in the (irrek. Protiting by thia intormation, II. Thampollion succected, by means of the Grove in deriphering part of tho other inseriptions. Other do *unutat have recently thrown more light upon the ineaning of bisyptian writings; bot the Rosetta stome is still justly considered to have been the key to the whole mistery.
By degrets, as krowiedge inerestend, and as writing became toone buld more resorted to il was dincovered that the latour would ho greatly ammad hy making euch aymbol reprement, not a werd or idera, hut a simple demental mound. 'l'his inceraval the number of characwors in onw worl, and it the mane tume greatly diminished the number in the lanewace; tior prevously only one rharacter had repriwnented a word, athd for each word there was a distinct chararter; but by this arrangement the clemental sounds of the tangunge were annlyzed, and a partieular chatacter appropriated to ouch. This is the origin of alphatsetie writing. Tho Hebrew is evidently the connectugg link lnetween the symbolic and the uphabetic anales of writing. It appors that each chas. racer, like the 'Chinese, ongimally represente' a word. Tratition aseri!e'n a meaning to each letter, ns is shown in the fillewing thble; these words are now obsolete, and are are to las found un ny lexicon:

IImatw l.jutraus
Nase.
Aleph.
leth.
(inne!.
Daleth.
He.
Vau.
Zayin.
Cheth.

[^29]Thin tablo might be oxtended thronghont the whola Hebrew alphates, but the forvgoing exumplea will muflive to mow tho tranmition from the aymbolis: of beroglyphe to our prement aymem of alphatatie writing.
'The mimilarity in the nanes and original mignification of mome of tho (Break charactern, groved that they were derived either from the Helrew of from mome of tha cogmate dialeets. 'I'he mont ancient methoul of reading und writing manong the (iretky wan that cullodi Auezes ender (bournopheilo"), "ploughed by oxen." beculue tha custom was to read backwurde and forwards, his the anme way that an ox drawn the plonigh: thus, one line was rend from right to len, nod the next from lett to right Cadnus intralued from the Pant mily mistewn lettera and it has long tren a matter of conjoriure as to when the other characters were adiled. 'rhe hiserntion of font adilitional letters is uncrited to Pahameden, nobut IIEA years $\mathrm{n} . \mathrm{c}$.
'I'he urt of writing seema to have bren known at a very early perion, but after all the resemeluen that havo been male, it is not yet pasailhe to may with certainty to what mution we owe she invention of this neatin art ; su that the poet's question still remains unsolved-
"Whenes dids the wondrons mymie art aris9
If printing aprecel nnd spruking to the eyeng
How to invody and to culour tharghth,"

Inacriptions, of which it is imponsible to fix the deten have tren tound at Babylon nud nt I'ermepolis, which bave created much conjocture among the lewrued. 'I'he che racters found at hoth placen seem to lae ewentially the wame, making due allowame for the ditlerence of the material; the Permegolitan charmeters laing finely sculptured on marhle, while the Babylunitn ane rulve'y carved upon bricks. They are commonly I mown liy the name of the arrom-shaped clararters, on wesount of their genee ral reamblance to nrow-heads.
'The art of writing must have heen discovered before
 in the hintory of their journey through the wilderness, many nllusions aro mule to writing, as if it wero an art well known to them. See Exodus xvii. 14-" Write this tor a menorial in a book," \&c. Also, Deuteronomy chap, vi. 9 ; xi. 20 ; x vii. 14 ; xxiv. 1 ; xxvii. 3,8 . It is ant extablisherd liact that Homes wrote a great part of the P'ontatench himself. Many have nupposed that the book of Job was writters at a still sarlier previod. The rharacters used by the Jews before the Babylonish captivity were those which we now call the samaritan. 'This nppears to have leen the rasi', from some coins which were struck beforo the revolt of the tell trikes, of whirh the inseriptions are in Samaritan characters While the Jews were in Batyon, they became accustomed to use the characters of that empire, so that their own, from disume, lweame purtially forgotten. It was on this necount that Ezra copied ont the books of the law into the spuare letters of the Chalder's. These are the characters which constitute what wo call the Hebrcte alphabet.

It in very diflicult to ascertain at what period alphaIntical writing was first practised in Europe. We are twhl that Ciadmas introluced it into Girece about 1519 years $\mathrm{A}, \mathrm{r} \cdot$; but it has leen conjectured that it was previously known to some of the other European nutione Odin, or Woath, who lived at sin remote a periond that his bustory is almost lont in fable, is said to inne intro duced the Rusic aphabet into Scandanavia. 'Pradition relntes that he brought it fiom the kast. It contanned only sixtecn tettery, which scems to have been the number of all the primitive alphatets. The liunme characters were nsed by all the Giothic nations, and were applica by the priests or hards to magial incartations. They pretended to lave, by means of these characters, the
[owa ' of "calling down the moon and stars from heaven, of alresting the course of the most rapid rivers, of quenshing fire, of bursting asunder the gates of death, and of calling departed spirita from the deep." After the introduction of Christianity, many attempts were made to prevent the use of these claaracters, which had gradually becomo perverted to the worst of purposes. They were ordered to be suppressed by the council of Toledo in the year 1116.

There is a striking resemblance between the Welah and tho Runic alphaiets. They were both evidently contrived for a peoplo who had no materials or implements for writing but wood and a pointed flint or stone. The early events of history in England were recorled an songs hy the bards or Druide, and thus handed down from father to son. Various inscriptions have been found in Ireland, which prove that the Irish were in possession of the art of writing at an earlier jeriod than in generally supposed. Like the Romans, who, at an early perion of their history, wrote upon wood, tho Irish made ure of the wood of the beech; hence the letters thereselves received the name of Feadia or woods. Besides the alplabet in common use, the Irish had an occult form of writing, called $\mathrm{Og}_{\mathrm{g}} \mathrm{m}$ or Ogma, apparemily of very high antiquity. The derivation of the term ogam was long unknown; it has but very lately been discovered that it is a primitivo Celtic word signifying the secret of letiers. There are some letters atill carefilly preserved in the Harkian Library, written in these occult characters by Charlea I. to the Enrl of Glamorgen. Tise alphubet is formed of a perpendicular line, from wheme latural scrntches diverge to tho right and left. Tiase ecratchea are never more than five on each side, answering to the number of fingers. They aro very similar to those found in Egypt ly Mr. Hammer, and to those which were used ly the Manchew Tartars. It has been conjectured that this alphabet was originally used by the Chinese, whe atill vrite from top to bottom. The method of communication called tho (Quipoz, used by the Peruvians, was by knotted cords, each knot representing an idea or sound. The invention of printing, which took place about the midille of the fifteenth century, forme quite a new cra in the history of language and of man. It is utterly impossible to estimate tho effects of this invention in the diffision of knowledge and in the development of the human mind. A written language has heen devised also for the blincl. The alphabet consists of emnossed letters. Sometimes the Roman characters are used, but more frequently, perhaps, different moditications of tiangles are found available. The sense of touch is made to compensate for the loss of sight ; the itlea is conveyed almost instantaneously from the written sign to the mind by the melium of the hand, and thus a vast accession of pleasure and of consolation is ohtained by this afllicted portinn of our race. There is another kiad of writing well known in England ealled stenagraphy, from *Te:s (stenos), "short," and zeapon (grapho), "I write;" it is designed to lessen the labruer of writing by substituting more quiekly formed characters for those in general use. Anotser urt had lately bren adhed to the various Corme of abbreviated writing, which werms far nore availshle tban any which have listherto been invented. It is called phenogruphy, or, literally, uriting by sounil-thnt is, writing cach word exnelly as it is pronouncel. It does away alugether with the tedious method of spelling, for it has distinct signs for all the sounds of the human voice. It in applicalde to all languager. We have before un a book containing part of the Scriptures in English, French, (ierman, Chinese, and Hebrew, all written in the phonogrsphic character. Nothing has yet leeen uvented which comen so uear to the "universal character" no much deaired by Ilishop Wilkins. If gencrally introduced, it would be a very valuable acquisiton to the deaf and dumb, enabling them to exprem
their thoughts with almost as mush rapidity as we eas do by specch.

monosyllabic class of lanovagrs.

Tho name given to this clase arises from the circumstance, that every word in the langunges strictly belang. ing to it consiat only of one syllable. To express a complex jdea, two of these syllables are put together, in the asme way that we eay, in English, book-cure, snuft box. The Chinese language, although consisting of very few radical words, appears extrensely difficutt to a Eurnpean, on account of the different meaning given to cach word by the various inflections of the voice. One word is often ausceptible of five distinct meanings, according to the tone of voice in which it is uttered; so that, though there are only 328 primitives, these different intonations of voice grently allgment tho number of words. It would require the labour of a whole life to becone acquainted with all the words in the language, but those which are in conmon use are comparatively of easy acquirement. All that is required of their mandarins, or learned men, is mercly to be uble to read and write 2000 of their characters. 'I'ho language of China has continued in a stationary atate for nany centurics I'his may le nscribed not only to their confined and isolated josition, secluded by o jealous policy from intercourse with other nations, but also to the early introduc. tion of a singuiar sect among them, who inculente that total quietism or inactivity is the only way to perfection. A nother rect taught that "the nearer they approached to the perfect innction of inanimate bodies, the more they resembled the Deity." 'raking into account the infloence of these pernicious maxims, and the tyrannical despor ism of the government, it ceares to be a matter of surprise that the languago of Chion should, century ofter century, remain unchanged and unimproved. There is no doult but that the Chinese, at semo very remote period, had intercourse with the Egyptians; this scems evident from tho affinity between the written languages of the two bations. There aro several reasons which might lead us to suppose thet the Chinese and Egyptions originally constituted but one peojle; but this a subject which is much involved in conjecture. Ethnography, or the study of nations and languages, may alnost be said to be yet in its infancy. As the science advances, more light will no doubt be thrown upon this most inten resting subjuct. An analogy lias alreaily lsen traced be tween the pronominal alfixes nud sulfixes of the Coptic or modern Espyptian and thoes of the Helorew. An allinity has also been found to exist between some of the Chinese and Hebrew characters. Perhaps it may be proved that the Helrew is a comecting link between the Clinese and Egyption languages.

the shemetic class of lanutaghs.

This class is usually divided into three principal branches-namely, the Areincan, the Hebrew, and the Arabic. The Median or Persian is liy many classed among the ludo-Eurojean languages; liut its close connection with the Arabic scems to justify its heing placed in the Shenetic class. Clardin relates that the Persians study the Arabic sranmar and syntax in order te make thenselves acquainted with their own language; the only difference between the construttion of the two langanges being, that tine Persians lave no dual form.

Uf all the Shemetic languages, the Arabic is the noot widely extended. It is still the vulgar language in Egypt, Ly bia, the shores of Africa, as well as in Aralis and Palestine. In Turkoy, Annenia, Mesopotamia, P'ersia, India, and I'artary, it is extensively culivited, and used as the vehicle of communication between dif. ferent nations. Most of the other Shemeuc dialecta sre either extinet or spoken in districts of ematl extent The etructure of all the shenuctic languages is sery
impla. T graminatica suffixes. '] prune have of case; bu expressing cave. Mos forning $t w$ letters. Tr pounda inar
The Heb and energv. portant ${ }^{\text {par }}$ others. In jacere, to th distinct con nected in si of conjugat jugated by or adding noun, for e ent from th Europenn cecure an case; thus," express the of these pr
as to form
rifies a wor talii) signifi hava killed

When H correct mod To remedy invented, nenth the \mathbf{c} be combing stand. 'Th much dispy were inven hundred ye

No writi Bible. 'Th compounde quite a neu allied to th Babylon. Bible. Th and is still Christians opia, or, as The Arabic language. pent, 1000 words rend that he ha suage of I the book not include and his th: sible to con of Job wit of Arabia written, by quered trib it in the g, tercourge is taught I Latin is tas langue of wa divide
Vut. I.

vguagrs.

from the circumes atrietly belong. . To express a e put together, in , book-cuare, snuff consisting of very ifficult to a Eum ing given to each voiec. One word eanings, according uttered; so that es, these diffictent the nomber of of a whole life to a in the language, are comparatively red of their man able to read and anguage of China - many centurica veir confiued and policy from inter the early introduc. ho inculcate that way to perfection. they approached lies, the more they account the infle tyrannical despot e a matter of surculd, century sfter mproved. There some very remote atians; this secma written lariguages ral reasons which tese and Egyptien but this a sulject re. Ethoography, es, may almoat be science advances, pont this most intewly luen traced be ixes of the Ceptic elirew. An athinity one of the Chinese any be proved that wren the Chinese
incheages.
o three principal Hebrew, and the a by many elassed ; lout its close confy its being placed ates that the Pernyutax in order to ir owil language; ruction of the two ve no dusil form. Aralic is the most lhar language in 3 well as in Arulia nis, Мекороtsmia, asively cultivuted, ation between dif emetue dislects are of small extent languages is rery
emple. Thny are wntten from right to left. Their grammetical connectione are formed by prefixes and uuffixes. They have no form of comparison: The pnuns have two genders; no terminations or inflexions of rase; but a peculiar form called the construct, for expressing the -alation of the peasessive or genitive case. Most of the idical words consist of three letters forning two syllables, though some consist of only two letters. The words are generally shert, and the compounds inartificial.
The Hebrew is distinguished fer its simplicity, purity, and energv. The verb is in this language the most important part of apeech, and the root of most of the others. In all the western langusges, such verbs as jacere, to throw, and jacere, to lie, form separate and distinct conjugntions. Buc in Hebrew, verbs thus connected in signification are also connected in the method of conjugation, and are regularly and analogically conjugated by varying one of the vowels or by doubling or adding letters. The inflexion of the persomal jronown, for expressing the relation of case, is alao different from the inflexions of pronouns in any of the IndoEuropean languages. The peraonal pronoun nover cccurs as a separate word, except in the nominative ase; thus, ${ }^{\prime 2 M}$ (ani) signifies I, and Nin (hu) he; lut to express the genitive, or other oblique cases, fragments of these pronouns are subjoined to the noun or verb, so as to form but one word; for instance, 7 (davar) sig-
 tali) aignifice I have killed, and ainhop (ketaltihu) I have killed him.

When Hebrew ceased to be a spoken language, the correct mode of pronuncintion was gradually forgotten. To remedy this inconvenience, the vowel points were invented, which ure merely atrokes or dots placed beneath the consonants, to denote what vowel sound is to be combined with the consonants under which they stand. The antiquity of the vowel points has created much dispute; but it is generally supposed that they were invented by the Jewish rablins about five or aix hundred years after Christ.

No writings in purc Hebrew are extent excent the Bible. The modern or rabbinical Hebrew is so much compounded with other languagea, that it has become quite a new dialect. The Chaldee language was closely allied to the Hebrew, and was early introduced into Babylon. There are 268 verses of pure Chaldee in the Bible. The ancient Syriac was another cognate dialect, and is still cultivated by the Nestorian and Maronite Christians in the East. The ancient language of Ethiopia, or, as it is now called, Abyssinia, was Chaldee. The Arabic may in some respects be called a copious language. It has 500 names for a lion, 200 for a serpent, 1000 for a sword. The multitude of synonymous words renders it so difficult, that Mahomet preiended that he had been taught by the angel Gabriel the language of Islimael. There are many Arabic idioms in the book of Joh. The country in which Job lived, if not included in Arabia, was situated on its very borders; and his three friends were Arabion. It is scarcely possible to comprehend the depth of meaning in the book of Joh without a knowledge of Arahic. The language of Arabia has been much corrupted since the Kornn was written, by almixture with other tongues. 'The uneonquered tribes anong the high lands of Yemen preserve it in the greateat purity, because they have had loss inkercourse with strangers. The language of the Koran In taught in colleges at Mecca with the same care that Latin is tasught at Rome. It is now, in fact, the learned bugue of the country. The ancient Persinn language Was divided into two branchea-Dori, which was spoken VuL. I. -43
at court, and Pahlavi, the language of the learned. There was, besides, a third dialect, but so obscure aod abstruse, that it was accessible only to priests and philosophers: only one book was written in this dialect 1 it consists of religious precepts; the letters in it are called zend, and the languago avesta. Of all the Peraisn dialects the Deri wis the most soft and harinonioua; so that it became a common saying, "that God delivered his stern commands in the rapid accents of Arabic, and his milder mandates in the delicate secents of the Deri." 'The modern Persian is very different from the ancient, and the Arabic characters are now generally adopted.

Such were the principal languages of the Shemetio elass. They all agree in grammatical structure, and in a remarkable stilinese of construction, arising from the want of particles and of forms for expressing the varioun selations of things. They had not sufficient scope to admit of much philosophical or metaphysical reasoning. The character of a people, as well as their literature, may be always inferred from the genius of their language; for language in but a mirror in which the ideas of the soul are retlected and made visible. Therefore, as might be expected from their language, the Shemetic nations made few advances in mathematical or philosophical science. Their attainments in tho liberal arta were but limited, and they made few valuable discoveries. The invention of lotters liza been attributed to the Phoenicians; but this regts on very doubtful authority, and all that now remsins of their language is the inscriptions on a few coins. The science of astronomy has, in the same way, been supposed to have originated with the Chaldeans; but it is evident, from all their writings, that their notions on this subject were very obscure and confused. For instance, they thought that the shape of the earth was that of a boat, and that, when all the planess meet in Cancer, it will be destroyed by fire; and when they meet in Capricorn, it will be owept away by an inundation. Several booka were written about the time of the Christian ora, which, the authors pretended, were the production of the ancient Chaldeans and Persians; and as it is not always very easy to detect the Sorgery, much eaution is requisite in inveatigating the subject. The writings of the encient Shemetic farnily, which are knt on to be genuine, contain but little real philosophy. The object of the soo called wise men among them was to excite wonder rather than to disseminate the truth. The little they knew was imparted only to the few, and concealed from the vulgar by etudied mysticism of language.

THE INDO-EUROPEAN CLABS OF LANGUAGES.

The langusges belonging to this class are spoken in the greater part of Europe and in part of Asia-from the island of Ceylon to the sheres of Iceland. They atill form a connecting link between nations who now resemble each other but little in form or colour, and whose religion, government, and institutions are widely different. The Sanscrit is one of the moat ancient of languages. Its name imports the language of perfection It contains the roote of the Latin, Greek, Celtic, German, and Slavonic langunges. It is more easy in this language than in any other to analyze compound words, and reduce them to their primitive radicals. It contains many compound words; some conaists of no less than twenty syllables. The grammar is complex and difficult. There are, as in Hebrew, Chaldee, Arabic, anil Greek, three numhers-singular, dual, and plural. A distinguished scholar, Sir William Jones, has said, that "Sanscrit is more copious than the latin, more perfert than the Greek, and more exquisitely refinel than either; yet that it hears to each of them a stronger aftinity, both in the roots of verbs and in the form of grammar, than could possibly have been produced bv accimar, than could possibly ${ }_{2} \mathrm{~F}$

23

ient." It appeare that Sanecrit was once the current language of India; now, it is shut up in the librarien of the brahmins or priests of the country, invested with mysterious sanctity, and used alone fer religious purposes. It is cultivated only by the learned, so that it now takes its place among the dead langunges. The namea of objects in all primitive languages are descriptive and often highly poetical. Thia is eminontly the case in Sanserit. The name given to

A fro	signifies, literally,	The leaner.
An otephant,	..	The handy one.
A bee,	- $\because \quad \because$	The flower drinker.
A bird,	-	The frequinler of the sky
Rice,	-	Tun-growing.
A cloud,	Waler-giver.*

Another respect in which the Sanscrit closely resembles the Greek, is in the use of the a privitive. Thus, cartnmm signifies to do, but acarm aignifies a crime, or, litezally, that which should not be done. Almost all the languages which are spoken In India, are merely dialects of the Sanscrit, and inmediately derived from it. The Sanserit funily is therefore a very large one. The dialect callod Bali, or Mazudha, that is mired, ia spoken beyond the Ganges; Bengalee is spoken in and about Calcutta; the Hindee or Hinduvee, about Agra; Hindustance prevails in Lower Hindostan. The Afghen dialect contains more Hebrew words than any of the above. A Persian trudition relates, that the Afghans came from the north about two theusand years ago, and that they are the deseendanta of King Saul. The Multan dislec*, which is spoken to the north of Sindh, conthins a great many Persian words and idioms. The language apoken among the Gipries nuproximates more to this dialect of the Bangerit than to any other; so that it is probable they originally emigrated trom this pert of Asia. They are known in various countries ly the namo of Bohemiang, Gitunoe, Zigani. \&c.; but in every part of the world, they invariably style themselves and their dialect Rnmany, from a word signifying husband. The Celtic family is also of Asiatic origin. Eitrope has been auccessively occupied by different tides of population, which poured in from the Enst. The Celts appenr to have heen the first settlers in Europe. They were compelled to move more and mare westward, to make room for the other Asiatic tribes who uucceasively invaded Europe. The Celts, or Celte, as they were then called, thus irresistibly impelled westward, of length reached Gaul, whence they are aupposed to have crossed the sea to Britain, whose first inhahitants they are lelieved to have been. If this was the case, the first language apoken there was, of course, the Celtic. The Celte were not allowed, however, to remain in quiet possession of Britain; the successive invasions of the Romana, Baxons, and Danes, drove them to the north and western parts of the island, where their descendants are still found, and where dialects of their banguage are still apoken. The Celtic langunge now comprises the following dialects:-1. Garlic, spoken in the Hightands of Acotland; 2. Erme or Irish, apoken in Ireland; 3. Welsh, spoken in Wales; 4. Manka, apoken in Isle of Man: 5. Cernish, spmen in Cornwall; 6. Armorican, spoken in Bretagne or Brittany. Hintory affirms that, at a very early perios?, the Phonicians traded with the first inhabitants of Britain for tin. If this be true, it may account. in wome degree, for the words of Faatern origin which exist in the Celtic dialecta. The ainnity, however, which they still retain to the Sanserit, Whough their ntructure has hern consinlerably altered foy the lapse of centuries, clearly proves them to be of sernate origin.
it is not known exactly at what period the Celte be-

- Fire Itymotoginal Romareties, by J. Townsead, M.A Bagster, ceadoh.
came tirat settled in Ireland. The Highlanders of Senn land are descendod from a colony of thene Irish Celia, who, about the beginning of the sixth century, migrated to the west of Scotland, bringing with them the diseat of the Celtic which was then spoken in Ireland, and the name of Scuite or Scots.

The Weleh, Cornish, and Armorican dialecte, are formed from thai branch of the Celtic family which we culled tho Cymbric. The frequent changea of the initial letters of the radical words, in the formation of cases and numhers, are the characteristics of all the Celtic dialects. In Welsh, there are nine nutable injtial letters, called litere umbrntiles, from the Latin wmbra a shadow, because they change and vanisi like a aha, dow: for instance, $t a d$ is father, ei that d is her father; ei liad his father; and fy nhadd, my father. M also ia frequently converted into f; this mam is mother, and i fum, his mothc..

The Basque language is a dialect of the old Spanish or Iberian. It la epoken in Bischy and Navarre in Spain, and in Lower Navarre and Soule in France. In some words it resembles the Celtic fanily ; thus, father is aita in the Basque, and in Irish aldir. The celebrated travellor Huniboldt aftirmed that he discovered a atrong resemblance between tho Basque language and that of the American Indians.

The Teutome or Gothic Family.
The second tide of population which poured into Europe from the East, consisted of the Germanic triben: they are generally called the Teutons, or Gotha, in his tory. In this family wo are more especially interested, as it is from the 'Teutonic branch that the principal portion of the present inlahitants of Great Britain ore do. scended

The languages of the Gothic tribes parted into two main branches. The firat, called tho German or Tevtonic Buanch, gave rise to two sub-brancheg-from one of which originated the Anglo-Saxon, Fricsic, and Old Saxon; from the Anglo-Saxon came the modern Engliah, and from tho Friesic and old Saxon caine the Low (icrman or Dutch, and the Flemish, spoken in Belgium. From the other aub-branels sprang the Mows Gothic, the Alemannic and Frankic; and from a unica of theso three originated the High Dutch or Germanproper. The ecrond great lyanch is comprehensively called the Seavormaviax. If wa; the language of the ancient Scandinavians, spoken in Denmark, Norwsy, Sweden, Iceland, Greeniand, Feroes, and the Shetland and Orkney Islands. From it have aprung two distinct branches, one of which in the modern Icelandic, and the other is that comprehenting tho modern Danish, Swe dish, Norwegian, and the dialect called Lowhum Scotch.

German language.-The Hoch Dewtach, or, as it is called by us, the German language, is apoken in the various countries on the Upper Rhine (Haden, Nassau, and many other atates), in Prussia, Austia, part of Switzerland, and various countrins on the Bahic, including part of Russia. To an Englishman it appears harsh, and at first very disacreceable ; hut it improves on acquaintance, and is found to te expressive and copioum It in said to consiat of at least 80,000 words, or inore than double the nuinber in the French or English las gunges. Driginally consisting of virious dialecta, including thowe of the More-Goths and Franks, it bae Interly, hy the progress of literature and ivlucation, bepn extablished in the diatinct form in which it appears in German literature. Luther's Bible, of which the firs edition was issued in 1545, was principally instrumental in the establishment and dissemination of this peculiar combination of dialects. The German language sinoe that jeriod has had few if any chonces; the German of 1811, compared with that of 1545, will be found 4 ditter shicfly in orthography. In German, as in Enf
it, there a bat the defi moes of the for the thre substantive ninc, or nev Both articl German is to denute signifies the mination is the custom ber hugbanc die rectorinn Egnifies the t tr's wife. conjugating and to be:-

IND
leh habe,
Du hast,
ir (sie, es) ho
Wir haben,
hir haben
ch hatte,
Da halteat,
Er halle,
Wir hallen,
lhe hallet,
Sis hatlen,
m ו

Ich bla.
Du bill,
Fit (sis, es) ist
Wir sind
the selu.
Se am!

IdI: wast Du warest, Du waresh
Er war, Erwar,
Wir wares, Thit waren,
lhr varet, Ihr varel,
Sie waren,

It may if . the cardina. paring them

Eise
Zwel
Drei
Zuve
Drei
Yiey.
Yiey
Puaf
Sieter
Achl
Ach
Neas
Zehn
Eilf (elf)
Filf (elf)
Zwdif
Dreizehn
Veriehn
Finfzehn
Sechspehn
Siebzehs
Aehizeinn
Neнnzehn
Zwanzig -
Unfortun
city to an 0
brt, by whid
is in eome
is similar t
$\mathfrak{a}, \mathbf{z s}, \mathbb{C}, \mathbf{Z}$
Dutch Ea
pokien or

hlanders of Sench

 thome Iriah Celte century, migrated them the dialect a Ireland, and thecan dialsets, are fanily which wae nangos of the inithe formation of ristics of sll the nine mutable inithe Jatin umbra, anisis liko a ohaind is her father; ather. M also is is mother, and i
the old Spanish Navarre in Spain, France. In some thus, father is aita he celebrated traiscovered a strong ruage and that of

nily.

hich poured mo Germanic tribe: , or Gothe, in his pecially interested, the principal porat Britain are do
parted into two Ciehman or Tru-ab-branches-from laxon, Friceic, and came the modern d Saxon came the ish, spoken in Bej sprane the Mowand from a unica Jutels or Germancomprehensively e lansuage of the enmark, Norway, and the Shetland primg two distinet Icelandic, and the dern Danish. Swod Jowland Acotch fu'seh, or, as it is , is epoken in the e (Baden, Nassan, , Austica, part of The Baltic, includishman it appear hut it improves on essive and copious 000 worils, or more ach or English lanarious dinlecte, inand Franks, it has nul colucation, been hich it appears in of which the first cipally iastrumental on of this peculiar ran language dinee en : the German of , will be found to Cermall, as in Ent
and, there are two articles, the definite and the indefinite, bot the definite article has a plural, and in all the various bus of the aingular number it has distinct torminations for the three genders; so that it denotes whether the subatantive before which it stands is masculine, feminiac, or neuter, and also whether it is singular or plural. Both articles have four cases. One peculiarity of the German is the frequent addition of the termination inn to denute the feminine gender. For instance, der ldute signifies the lion, and die löuinn the lioness. This termination is also used to exprese a fomalo title, it being the custom in Germany for a wife to share the title of her husband. Thus, der rector significs the rector, and die rectorina the rectoress or rector's wife. Die professorinn rignifies the professor's wife, und die doctorinn the docir's wife. The following are specimens of the mode of conjugating the two important auxiliary verbe to have and to be:-
rature of the pcople of that country, has never made eny progrees elaewhere. In speaking of this language, in h work on Batavian Anthology, Dr. Bowring remarks, that " the Dutch is not soft or murical, but it is sonorous and emphatic. it has not the besuties of the vowelled idioms of the south, but it has beauties the; can never possess; and especially in the variety and grace of its diminutives (a quality in which our own language is singularly deficient), it may be compared with the richest among them. It may be atudied in ita perfection, in that beautiful and emphatic version of the Bible which owes its axistence to the Synod of 1618-19; to the expreasion of devout and dignified emotion it is particularly adapted, and a high tone of religivus feeling pervades all its literaturc." Believing that the language is already perfect, the Dutch are most scrupuloum about admitting terma from any other language; when any new word is required, as in ecience, they form compound for the purpose. Thus, astronomy is called sterrekunde, from ster, a star, and kunde, knowledge. Another term for the same science is hemelloopkunde, from hemel, heaven, loop, a course, and kunde, knowledge Grammar is tanlkunde, from taal, language, and kundt, knowledge; literally aignifying the knowledge or science of language. Occasionally this plan may be advantngeous, but it produces inelegance, and is adverse to improvement. The Flemish language has borrowed niany worda from the French, but it is very similar to the Dutch. It is chiefly distinguished by a more nasal pronunciation, white the Dutch is rather a guttural langunge. The orthography of the two languages differs; for the Flemish writers have devised a different method of spelling those words which agree in sound but not in signi ication. Thus, wagen, is to hazard, and waegen to weig'; leve.s is life, and leeven is to live. Another language is spoken in the Netherlands, which is neither Dutch nor Flemish. It is the popular language in Hainatlt, Namur, Liege, and part of Limbourg, and is called the Walloon; it is a kind of corrupt French. In Brussela, the people in the lower city apeak Flemish, and in the upper city Walloon. Of these languages, the Dutch most closcly resemblea our own. It aimblaxity to English is shown by the following Dutch proverb, coupled with a literal translation:-
> "Ale de wyn ia in de man,
> ls de wysheid in de kan."
> "When the wine is in the man, Is the wisdom in the can."-Bowring.

Aa all classes of persons above those in the humbleat ranks, both in Holland and Belgium, spesk French, and as the bulk of the literature is in that language, it a not unlikely that the native vernacular will in course of time sink to tho character of provincial dialectswhich, indeed, they have already reached in the Flemish districts.

The English Language.-This language, as already mentioned, is based on the Anglo-Sazon, "the language of the Angles, one of the tribes of that Baxon confederacy which, about the beginning of the sixth century, supplanted the Celtic inhabitants of Britain, and drove them into the mountains of Wales and Scotland. 'The incuraions of the Danes into England, and their settloment in several parts, made little alteration on the An-glo-Saxon, as the Danish tribes were kindred with the Saxon, being descendants of the aame great Gothic or Teutonic family. In the elcventh century, the Normnns, or North-men, another kindred triie, who had, two centuries before, seized and possessed that part of France since called Normandy, subdued England. They brought with them the Fres.ch largunge, which, in the course of time, they had adopted from the peojlo monongt whom they had been settled. This they continuet. in England, to use in common discourse, and in schools and courts of law, for moro than w_{0} celituries
after the Conqueet. Yet as they were not eo numerous * the Saxon population, the old language finally prevailed; and though many French words found their way into the English, the bulk of the language continued to be Saxon.
"The French tongue being founded on the Lettin, its introduction caused the infusion of a great number of Latin words into our language; aftervards, aa Roman literature was studied, a great number of other Latin terms were introduced into English. It is in some measure possible to distinguish the Latin introduced through the French, by the words being morn changed in their form than the other latin terma which were adopted directly by the learnod. From the aldition of eo many Latin worde, a apecies of double language hae been formed-the Saxon English, which wo commonly employ in conversation, and the Latinized English, which is principrlly employed in learned composition. Mixed, however, , the two are, each language preserves an idiomac; character; for, with few exceptions, the prefives and affixes of the one cannot be conjoined with the words of the other.
"A further addition has been made to the English by the introduction of Greek words. This has been going on since the commencement of the study of Greck literature in the sixwenth century. As wo had Latin through the French, we had unconsciously many Greek worda through the Latin, which may be regarded as a variety of the Greek. The words which wo have received iminediately from the Greek are comparatively few, with the exception of tern:s of art and acience, which are now extensively taken from that language.
"When we look back to the early history of our language, it may be said that we see it approaching our country in two great but unequal streains; one of which comes from the shores of the Baltic, while the other, leaving Greece, passes along the shores of the Mediterranean, and finally reaches $1:$: through France. Though the Celtic lnhabitants, or Eritons, are maid to have been expelled by the Saxons, none of their words have been left in our language. The namea of rivera, mountains, and other natural otjects, in England as well as in Scectiand, are generally Celtic, and the narm: of many places are founded on terms in the same lanpuage. As in the case of the Latin passing into the Euglinh through the French, we have words of Celtic orisin through the isench, France having beeti at ene time widely inhatited by Celtie tribes. In many of the names of placen in France, 8pain, and Ítaly, the Celtic is also atill dimernible."*
The language of England-proper is now spoten over the whole Bitianh islanda, and has been fixed at a atandand by the diffosion of literature and the labours of Johnson and other lexicographers. In the common apech of the people, however, there are, as we preriounly noticed, numerous dialects differing less or more from pure English. The mont remarkahle of these dialects is that spoken by the humbler clanses in the Lowlands of Ecoland, of which we have apecimens in the poctry of Ramany and Burna, and the prose fictions of scott. A controversy has existed reablecting the origin of this dialect. By nome it has been considered only an unimproved Enatish, auch an was appoken and written generally in Fingland three of fiur centuries ago; by others, it has been defined as a distinct branch of the original Teutonic, through the Bcandinavian branch; and this, in our opinion, is the true riew of the matter. Wo now, then, have ujon our :iand two branches of an origina! (iothic tongue, of which has taken the leal in literature, while the
other has continued es a local vernacular, and must is the course of time disappear.

The English language, as finally established, consints of about 38,000 words, of which about 29.000, or nearly five-eighths, are Anglo-3exon. Many words, hcwever, may be said to be in a state of disuse, particularly thoso from tho Latin introducid hy a fantastic mode of writing in the sixteenth and sovententh centuries. Possessing all the force and bluntness of the Anglo-Saxon, with ${ }_{3}$ due ahare of the polish and dignity of the Roman tongue, the English is powerful, copious, and lapted to expross the most refined emotions of feeling, as well as the complex doctrines of an enlightened philomo. phy. For honesty and sincerity it has no equal-. a paculiurity distinctly referable to the upright cha racter of the English. One of the chief peculiarilins of the language is its slight dependence on inflection, and the abundant use of articlea, preponitions, \& $\&$, such as u, on, the, of, to, with, by ; also, shall, will, may, might, corld, would, shosld, \&c. (all Anglo-Saxon), the meaning of which is usually provided for in languages of Latin origin by the various terminationt of the verbs or main words in the nentence. Tha rules of English orthography are exceedingly indecisivo, partly from the want of any authoritative academy to lay dowr a law on the subject, and partly frum the diffidence of gramnarians in attempting any clange This irregularity in the adeptation of spelling to pronunciation, and the constant shifting of sounda in the letters a, c, and g, without any appareat rule, rendel the language difficult of acquisition by foreigners. The sound expressed by th, as in the, month, pathos, equiva. lent to the sound of the letter thria in Greek, is olso rarely mastered hy natives of France or Gcrinany who cone to reside amonget us.
In writing English, some authors adhere mors closely to Anglo-8axnon roots than others; but the best English is that in which no particular rule on this ribjeet is followed. To show what difference may sist in styles, according an the Anglo-Saxon or Latio are followed, wo prisent the following apecinens; those worda not Anglo-Saxon being in Italirs. The first in from the authorized version of the Bible, which has fer Lutin worls.
"In the ieginning ford ereated the heaven and the carth. Atd the rarth was withoul fotm, and roid; And darkness whin und the face of the decp: and the Spiris of Goot moved upon the foe of the waters. And Cod asid, , et there be light; and there was iqhi. And God snw the tight. that it was gond: and tiot dirifel the light from the darkness. And Cind colled the light Day, ablit the darkness he called Night. And the evening and the morning were the first day:"-Gienesia, i. i-h.
"And is came to pass, that when Inase was ohd, and hin eyre

 here ain I. And ho anid, Hefold now. I min ohd. I kuow not tha
day of my denth. Now thesefore take. I pruy thre, thy wee. pona. thy guver and thy bow, and go oul to the field, and asko me some ivniom; nul make me savoury meat, such nal !ove, and hring it to me, that I may eat; that my soul nay blean thee before 1 die. And Rebekah hened when Innace unake to Fissy
 liting 1. Anil hebekah spoke - alo Jacel, ber son, saying. Ho holid. I henril thy father spenk untu Fissil thy brother, sayng, litug tme renionn, and innke me samory mout, that I may eas, nont bless thee before the lora before my death."-Gensin, xxvil. $\mathrm{t}-\mathrm{z}$.

The and apecimen ia from Robertson, showing an ahundathe of Latin roots:-
"This greal emperor, in the plenitwife of his potrer. nnd in pw-
 the exirnorfinary rescution to reven lua kimglong. nnd to with draw enfirely from nuy ronsers in hun tress or then affairs of that world. in ordee that he in! ght apent the gmaninder of his days in refirenont And solifute. Dincotian Is perhops the only prast, capuble of halding the reins of gournment, who ever mangel then from dediberate chnice, and who corsinned during many yeara to evoy the tranquillify of refirmionf, withour leteting one penitol s'gh. nr msting lanek one look of desira lownrds the gover of dig núy which he liad abandonel."

For further details respecting the Englinh lang age. we zefer to the article on Enolish Giamvan.

The first and seem to the early lise

The Gree guage. It from the pe different par in orthogra] sidered the sublivid. " in the old A The histaria Sophocles, a also Plato of comedy. of comedy, the Attic dis which it ori nence of the rendered it is distinguisl dialect uses verbs. It is by the histo and by Anac lects were m The Doric quently subs has no dual Latin more 'l'estament w in it instanes busisms or H
We have aystema follo sists in the may bricfly These aro case is, as it the inflectiv is inflected f ders, and nt middle, and tenser in tho also a form persons, call perfect of t arike, appea

1. irvero
(etupton)
I wha atrik,
 We were ser
The mol ancient lant terms have tween tho illustrated, 1 same write of John's \mathbf{G}

A xely
Ep dpxh ; Moyos itp $\pi \rho$ oris inn ${ }^{2} \dot{d}$ En avehe Theos on ho ha

The Lati

ar, and muat is

 blished, conmista 8,000 , or nearly words, hcwever, articularly those mode of writing ies. Possessing o-Saxon, with of the Roman 3, and alapted to fceling, as well ghtened philownhas mo equal-. 1e upright chs hief peculiaritina ce on inflection, repositions, \& c_{7}, shall, will, may, Anglo-Saxon), vided for in lan. pus terminations aentence. The cedingly indeci. ritative acadomy partly from the ing any change spelling to proof sounds in the tr rule, render the forcigners. The , pathos, equiva. in Greek, is slso or Germany whors adhere mora cers ; but the best rule on this reb ference may sxist con or Latin are specimens; those ics. The first is le, which has few
and the earth. Aud dark ness was upon moved upon the foem ight ; and there was good : and tiod diGod called the light and the evening and t-A.
 led Pisnus, his eldeat
idel uno him, thethnd ise unto him, thehold olli. I know not tha pray there thy wer neat. Auch as I love, neal. Auch as fove,
soul may bless theo nune spake in Fina it for cenimen. and to her son, sayilli. Be hyy tirnther. Raying Mut. that I may eat ny death."-Gmesia
rtson, alowing en
is potred, nad in paw 1י. hirnrt of man. (mand lusidenn. nid to withor the nffairs of tho ainder of his days in In' the only ponts mever resignel then uring many yeara to feerlang one peniump crds the poter or dig

Englinh lang age, AAMvAR.

The Pelasgian or Geco-Luen Famlly.
The firat inhabitants of Greece were called the Pelasgi, and seem to have been the ancestors of the Greeks ; b it the early listory of these nations is lost in fable.
The Greek is a most powerful and expressive language. It is divided into four dialects, which arose from the peculiar pronunciation of the inhabitants in different parts of the country, thus occasioning a change n orthography. I'he Attic dialect is generally cinsidered tho most polished and the most classical; it is sublivid " ints tho old, mildle, and new. Solon wrote in the old Aidic, which is almost the same as the Ionic. The historian Thucydides, the tragic writers AEschylus, Bophocles, and Euripides, used the middle style, as did giso Plato and Xenophon, and Aristophanes, the writer of comedy. Demosthenes, and later orators and writers of comedy, adopted the new Attic style. The nane of the Attic dialect is derived from Attica, the country in which it originated ; the political and literary pre-eminence of the Atheniane, or people of Attica, eventually rendered it almost the universal dialect of Grecce. It is distinguished by its contraction of vowels. The Ionic dislect uses the contracted inflections of nouns and verbs. It is smeoth and harmonious, and was adopted by the historian Herodotus, Hippocrates the physician, and by Anacreon the poet. The Doric and Eolic dialects were more harsh and unpolished than the others. The Doric has a very broad pronunciation, and frequently substitutes a for the other voivels. The Eolic has no dual form, and, in other points, resembles the Latin more strongly than the other dialects. The New T'estament was originally written in Gicek. We find in it instances of all the four dialects, and several Hebaisins or Hebrew idioms,

We have scen that one of the laaling grammatical gytems followed in the structure of all languages, consists in the niddition of syllables to the root, or, as we may briefly deacribe it, in a varicty of terminations. These aro called inflertions, because the word in this ease is, as it were, bent or turned. In the Greek, we see the inflective system in its greatest extent. The noun is inflected for the expreseion of the various cases, genders, and numbers. The verb is inflected for active, midlle, and passive voice, and all the usial variety of tenses in the first, second, and third persons. There is also a form of the verb for use with reference to two persoas, called thereforo the dual form. Thus, the imperfect of the indicative of the verb тúnтw (tupto), I arike, appears in the following aricty of forms:-

1. Etverov (etupton),	Sinollar. 2. Trimet (etuptes),	3. $\begin{aligned} \text { tormte }\end{aligned}$ (etupte). Pe was atriking
1 was st	Thon wert striking. Dual (tuo persors). 2. itútreton (esuptcton),	3. $і$ іит $\tau \ell \tau \eta v$ (esupteton),

$$
\begin{aligned}
& \text { We were atriking. Ye were striking. They (etupton), } \begin{array}{c}
\text { (etupheter striking }
\end{array}
\end{aligned}
$$

The modern Greek derives most of its worils from the uncient language, but a great many Italiun and 'Turkish terms have been introduced. Perhaps the difference hesween the nocient and modern Greck cunnot he lotter illustrated, than by comparing parnllel pasanges from the same writer. The passage selceted is the 1 st chapter of Johu's Gospel, 1st verse:--

Axcherr Ciserk.
Romaic or Monfrn Cigeex.
 Noyos inv mpds rove Ocöry all

En grehe es ho logos. kai ho bgos om pros ton Theon, kai Theose on ho firg:

The Lati y_{1} or language of ancient Rome, nay be re-
garded an a composition at the early languagen spoken in central Italy, particularly the Etrurian, and of the Groek, brought to the same country by colonists, and by the study of Greek literature among the Romans, after they had attained a certain degree of civilization. It has been remarked that the Eolian, more than any othet varicty of the Greek, has contributed to the formation of Latin. The Latin, in its grammatical structure, followa tho Greek, but dispensea with the dual form of the verb. We shall here more particularly illustrate the inflective system, for the sako of those whose studies have not embraced any language beside their own. For example, while the Latin word for a speech, in tho nominative case, ie serno, our ideas of a sperch, to a speerh, with a specch, are expressed respectively by the wordz sermonis, sermoni, sermone. Tho verb presents a great variety of terminations for the two voices, the various moode, tenses, and persoas, \&c. Thus, for example, white I love (ectivo voice) is expressed by amn, I ain loved (passive voice) is amor. While I had loved (pluperfect of indicative mood) is amaveram, I might have loved (pluperfect of a bjunctive mood) is amavissen. The whole of the last tense is-
ginoular.
2. Amavissem,
2. Amnvissea, Imight or couth have loved.
3. Amavieset, the might nr muld have have loved.

Amnvisaêmus, we mightor or
2. Amaviscétis,
3. Amavissent,
he mighe nr muld have loved.
they might or could have loved.
It may be remarked, for the sake of an unlenrned clase of readers, thnt there are various forms for the termination of nouns, called declensions. A large class, in which the nominative ends in a as in penne, a pen, cle, a wing, are of the first declension, and these are generally of the femuine gender. Two other large classes in which the nominative ends either in us or in uni, as dominus, a lord, regutm, a kingdom, belong to the second declension. There are in all five declensions, all ineluding nouns of peculiar terminations. The singular of dominus appears as follows, under its various cases:-

minatire	Dominus,	a
	Inomini,	of a lord.
Datire. Acresatire.	lomino, Dominum,	to a lurd.
Accrisatice. Voratice.	Dominum, Ilomine,	$\begin{aligned} & \text { a lord. } \\ & \text { o lord. } \end{aligned}$
Ablatit	Domino,	with

The conjugations of verbs are analogous to the declensions of nouns. Amo is an example of a class in which the imperfect of the indicative always ends in abam, the future in abo, and in which all the other tenses take certain termirations in like manner. This class of verbs are said to be of the first conjugation. There is another class in which the present of the indicative alivays ends in co: thus, moneo, I advise, moveo, I more; and in which the imperfect of the indicative always ende in ebam, the future in elio, \&c. These constitute the second conjugation. The othey two conjugations, for there are four, all observe certain rulea as to the formation of the various parts of the verb; in other words, all the vacious parts of the various verbs of the Latin languare are formed after four schemes or modes, these being called conjugations.

In the dyntux of the Latin language, there is one principle carrid to an unusual extreme, namely, the transposition of worls. Generally, the verb was anong the last words placed in a sentenec. The specinans of eurly Roman writers whith are pret ved, show the lan guare in a rude state, as the Engliah was nhont the thistecuth century. The lenguage was afterwards polishet, und became remarkable for its smoothness und harmony. Of the leautiful literature of which, like the Gireck infore it, it became the honoured vehicte, this is not the place to menk.

Italina, Spanish, anl Portugurse langwayss_Whes - the empire of R_{t} sue sank, as it were, trencath tho weigh

4 -2
of ite own greatnem, the different tribes by whom it wat dismembered introduced a complote change into the language. Not only were new worde introduced, but the very structure of the graminar was altered. The barbarians, probably finding a difficulty in remombering tho various forme of the passive voice, nubatituted the use of an auxiliary with a participle throughout the verbs, and introduced prepositions to expross the variour relatime of nouna, inatead of the otd ayatem of declension. The language was thua rendered more aimple and flexible It is probable that many of these changea first sprang up among the Latina themselvea, and that they were originally conventionally uaed by the vulgar in provincie ${ }^{\text {t }}$ diatricts. It would be very interesting if we could trace, step by atep. the process of the conversion of the Latin language into the Italinu. But this, like the history of the tranamutation of the ancient into the modern Greek, in a subject upon which little satisfactory information ean be gained. One characteriatic in Italian, is the little use that in made of the letter h. "Not worth on h," is a familiar saying in Italy. The only office of h in the language, is to indicate when c is to be pronounced like k; as for instance, in such worda as cheto, ed., which is pronounced keto.
"Italian, says Metastasio, is "nusica ntrsea" (music itself). It is a language of great compass and varicty, well adiapted to express passion and cmotion. There are many dialects in Italy; with respect to these, a commen proverb says, "Lingun Tosenna in bocca Romana," meaning that the Tuscan dialect is the moat clasical and the Roman pronunciation the purest.
There are other languages besides the Italian which aue derived from the Latin. Of these the Sparish preurves the atrongeat resemblance to the geniun and atructure of the Latin. It is almost equally pompous and solemn. The Spanish character is likewise akin to that of the ancient Romans, both nationa being conspieuoun for their prowese end dignity of mind. A great many Latill worls may be traced in the Spanish, partieularly if it be remembered that the c of the Latin language always becomes g in the S panish; for instance, Dico becomea Digo: and that t is changed into d, no that the Latin word totus is disecrnible in the Spmnish form todo. The Romans occupied spain between six and cight hundred years. About 416 , the Gothe entered th, and effocted some little change in the languare, which was then called Langue romance, locause derived from the Roman or Latin. Abouf a. n. 741, spain was again invaded by the Arabs, who gave an oriental tinctare to the langunge. Onf peculiarity in the spanish language, is the conatant nccurrence of 11 at the commencement of a word; for instance, llamar, to rall; llanesa, equality ; llare, a key; llegar, to arrive; llevir, to carry ; Huriu, to rain. The sound given to these double consonants is nimilar to the $a l$ of the Italian, in figlio, non; to the th of the Portuguene, in filho, non; and also to the II of the French, in fille, dauglater. There is another diatinguishing sound in the Spanish, which is connected in pronunciation with the French. The Spanish n is pronounced like the French gne in Bretagne; so that such words an senor, sir, mumn, dexterity, and mamana, to-morrow, are to le real as if writcon regnor, magna, fic.
The Portuguese lankuage has not on clone an affinity with the Spanish as might have beren expected from the peographical posizion of the two countrics. The l'orthguese attracted but little attention in the rest of Europe hefore the appearance of the Lusithl. Derivativea are in this language very numerous; thus, from the root peiria, a atome, we get the following derivatives:-perfregal, a stony place ; pedrcgilha, gravel; peirezoso, stony ; bedicyra or petiéyro, a stone-cutter; peirndi, a how with astene. By the aimple aldition of the termineciul cuda, many wordo are formol, which in other lan-
guages could not be expressed without circumloct, won thua, panrada, a low with a atick or club; rutilada, cut with a aword; ctocuda, a stab with a sword or dog. ger. The Portuguese, like the French and Italians. have no aljectives of a triple form, as in Latin. Eome of their adjectives mark the distinction in gender of the nouns which they qualify, as formose, furmosa, beauti. ful; alto, alta, high; and othcre are unchangeable; than, tempo breve, a sloort time; manhda breve, a short saorning; cavallo forte, a atrong horse; egoa forte, ; strong mare.

French Language--This iangunge is also, in a great meamure, a broken and re-orgnnized latin. It originated in the following manner:-"The Celtic, remnauts of which were long preserved in Brittany, was the language of the Gauls. After the conquest of the country by the Romans under Juliua Casar, Lat:n becume the predo. minant language. On the overtirow of the Western Roman empire, this lang"age was corrupted partly in its pronunciation by Tectonic organs, and partly by the mixture of words and expressions orizinally Frankish Burgundian, Ostrogoth it or Visigothic. This corupt langunge was called the Romanre, and was divided into two branches. They are denominated from their tespective ter.na for expressing yes-the aouthern, or Langue do Or (dialect of Oc, Orcitanic dialect), and the northern, spoken north of the Lnire, or Laygue "Oui or d'Oil, from the latter of which the modes French language is derived. In the hegiming of the twelfh rentury, Raymond de St. Gilles, Ccunt of Provence, united the sinuth of France uniler one govectament, and gave the whole the name of Prorence. From that period the two dialects were callecl the Prorencell and the French. The former, thuugh much changexl, is still the dialect of the comman people in I'rovence, languo dor, Catalonia, Yalencin, Majora, Minorea, and sar dinia. In the thirteenth century, the northern, or Norman French dialect, which was much more prosaic than the former, gained the nacendency, This was partly owing to the intluence of the Contrury. who roamed into all parts of the country ; but chictly to the circumstance that Paris became the centre of refinement philosophy, nnd literature, for all France. The Iavgut d^{\prime} 'hoi was deficicnt, from its origin, in that rhythm which exists in the Italian and S_{p} anish lauguages. It was formed ralker ly an albreviation than by a harmouious transformation of the latin. The Franke and Normans deprived the Latin words of their charracte:istic terminations, substituting in their stend the ohscure German vowel, which was afterwards entirely dropped in conversation, and retained only in singing and orthography. With tho exception of these differences, the French Romance dialect was formed on the same grammatical model as the Italian, Spaniah, and Portugurse A regular accentuation of syllable es, according to their quantity, was int first preserved; but the metricalcharace ter of the language was gradually lost. The Freurh thun became more accustomed to a riatorical measure than to peetical forms. 'I'te nature of the langusgo itadf led them to elopluence rather than peetry, and their nataral liveliness e netributed esesentially to encourave nice dialectics. Fruncis I. eatablished a proftosoroship of the French lnugugge at Paris in 1539, nud banished Latin from the courts of justice and pullic documenta Cardinal Richelien, by establishing the Acaleny in 1035, carried the language to a highor digree of perffe. tion. The I uch academy lerame the supreme tritumal hoth for the language and literature. It put on end to the arbitrary power of usage, and fixed the standard of pure French; but it depriveal gening of its prerogative of extenting the dominion of the 1 ind over the language. Nothing was approved by the acadeny unless it was recoived at rourt, and nothing sto colerohd by the public which had not leen sametion I by the act
tem. Th mevilion, a longuage o pablo of co on characte dions ol ci Itu adoptio pean coun The wo mounded ly the Jatin ; and peculit Teutonic to dantive, in degree of c could never in the term roundabout also defecti overy thing - poculiari widy of ita two words, por-it is phrase, it n that in ape unpleasint counds ang

The Sla lation whir planted the Buhemia, now gyoke The Slavo sected will ance with Bla renic Tte chief alin, whic Great 11 amilar to among his. ters previd course wit attention I Russia, fo blance to navia, tor The oldes treaty of Greek En ring, "ha arength are elome future ex inferior tu language. are simita called the tive. Th bothis Is
The 1 plicity of barinoms Lipon th brought progrcis conexider Pouiatov wo such 8 narisa, which h
circumloct tion club; rwilada, a sword or dag. eh and Italiana in Latin. Some in gender of the formosa, beauti. unchangeable; da breve, a thort se; egoa forte,
is also, in a great tin. It originated Itic, remnants of was the language he country by the ecame the predo. of the Western irrupted partly in and partly by the iginally Frankish,
'This conupi I was divided into fd from their rethe sonthern, of - dialect), and the , or Lavgue d'O ${ }_{4 i}$ e modeap French ing of the twelfh unt of Provence, goverament, and ence. From that the Provencel and (11 changirl), is still rrowenes, langue linorca, and Sarnorthern, or N_{or}. theh more prosaic lency. This wes he Contrurs. who but clictly to the ntre of refinement ief. The Iangu , in that rhythm ish languages. It thun hy a harmo. The Franks and of their characte:-- stend the obscurt 4 entirely dropped winging and orthowe differences, the on the same gram. 1, and Portuguese. necording to their he metrical charace ost. The Freach hetorical measure of the languago poctry, and their ally to encouraze d a professorship 639, and banished pullic documenta the Academy in - degree of perffe. he supreme tribure. It put in end fixed the standard us of its preroga. ae if ind over tha the acadeny uning rtis iolernad tion I by the ace
tem\%. The lanpuage now nequired the most admirahle provilion, and thus recommended itself, not only es the franguage of aclence and diplomacy, but of society, capatie of conveying the moat diseriminating observations on character and mannera, and the moat delleate expresdore of civility, which involvo no obligation. Henco its adoption, as the court langrage, in so many European countriea."-Conversations Lexicon

The worda in the French languag e much leas sounded ly vowela than the other tor founded on the Latin; they also abound in rilent levers, contractions, and peculiar accents. While in the Engliah, ns other Teutonic tongues, the edjective is placed before the aubstantive, in French it is the reverse. 'This producen a degree of circumlocution which tho English as a people could never tolerate; thus, while we at onee go to the point in the term steambont, the French express the idea in the roundabout form of ba'cati at vapeur. 'The French is also defective in its genders, of which it has only two; overy thing is either masculine or feanlnine-he or she-a poculiarity which throws considerable difficulty in the Way of ita acquisition. A nother peculiarity is the use of two words, ne and pas, to ixpress a negative, as, il n'est par-it is not, or, as we should literally rranslate tho phraso, it not is not. It has been remarked hy foreignt:s, that in spetking Euslish the hissing sound of s has an unpleasant frequency of recurrence; in Freach, the nasal counds ung and ong similarly predominate.

The Savone Family.

The Slavonians formed the thirl great tide of population which rolled from Central Asia into Europe, and planted their language in Kussia, Servia, Croatin, Poland, Buhemia, Dalmatia, in id some other countries, where it is now ajoken in difierent dinlects by the common people. The Shavonic to fue ia understood to be romotely consected with the Sh., scrit, and aa Latin has a similar alliance rith that language, is happens that a number of tho Biarenic trrms resemble words of Greek and Latin. Tbr ahief dialect or variety of the Slavonic is the Russun, which attained a standard in the reign of Peter the Great. In 1704, Peter insented a set of writuen letters, vimilar to the Roman alphaiet, and introduced thetn among his countrymen in place of the cumbrous characters previously in use, in order to facilitate their iniercourse with the other Huropean nations. Of late, nuch attention has heen paid to the old songs nad traditions of Russia, for it is thought that they bear in strong resemblance to the old hallads of Eingland, Spain, and Scandinavia, torning a connected series of pupular traditions. The oldest documeats in the Russian language ere Oleg's treaty of peace in A. w. 912 , and Igor's treaty with the Greek Emperor in 945. "The literature," saya Dr. Bowring, " had its birth but yesterday, and certuinly its present atrength and beauty give far hope tor to-morrow: in it are elements of improvement, and buds and blowsoms of future expectation." The Russian prose is at present inferior to the poctry. It is a flexible and harmonious language. The nouns have seven cases, of which tive are similar to those of other languages. 'The sirth is called the instrumentat, and agrees with the latin ablative. 'I'he seventh is called prepositive, and is peculiar to this language.
'Ihe Polish language is characterized loy the multiplicity of its consonants: it is generally considered nore hariounous and flexille than the other Slavonic dialects. Dpon the introduction of Christianity in 465 , Latin was brought into use as the only written lunguage. Thus tho progrem and improvement of the Potish language were conuderably tetarded; but, during the reign of Stanishua Poniatowski, it made such rapid advances, and attained in auch strength und vigour, that it has continued to 4 wriwh, uninjured, among all the sturms and convulsiona whith have arased Poland from the map of Europe. I'he
llterature of Poland in eminently natlonal and patrioto. It contains few philomophical or scientific treatiees, hui aboand in historical and poetical productions.

The Hungarian language can mearcely be called a Elavonic dialect, and yet it seema difficult to know where else to place it. Some curious affinities have lately been discovered between it and the Finnish, Laplandish, and Esthonian languages; such, for inatance, as that the verb to have is wanting in all, ao that possession is indicated by an expression equivalent to the words to be to. There are many different opinions respecting the origin of the Hungarians. Some have asserted that they are deacended from the Egyptiana. The word by which they deaignate themselves and their language, is Magyar. This is * torm of Mogul extraction, and signifiea foreigner or atranger. The most remarkable feature of the Hungarian language, is the division of the vowels linto two genders; aou are called masculine, and eiofare considered feminine. A masculine or feminine affix is used accorling to whether the vord terminates'with a masculine or feminine vowel; this of course produces a singular uniformity of sound. About the thitecenth century, the Komans, a Turkish race, wero compelled, hy the disaatera of war, to take refugo in Hungary. Here, being separated from the reak of their race, they soon forgot their language, and adopted that of the Hungarians. Hence it ia that eo many Turkish worcis are found in the language of the Magyara,

Tha Tartarian or Turkiah Famity.

The inhabitants of Central Asia are known in Europe by the general name of Tartars. They occupy the great elevated regions of Asia, from the Northern Ocenn to the contines of Persia, India, and China. One language prevsils throughout this vast oxtent of country, which is also frequently used in Egypt, Barbary, the Levant, part of Persia, and on all the shores of Atrica. It comprisea ten dialecta, of which the prixipal is the Osmonlis, or that which ia spoken in European Turkey. Thr Osmurs derive their name from one of their leaders. They left Turkratan in A. n. 545, and conquered Persia. In A. n. 1543, they eatablished themselves in Constantinople, where they atill remain, and are known to the Furopeana by the nanie of 'lurks. 'Their dialect prevails more or less in Bownia, Illyria, Servia, Bulgaria, and in the Morea; but the purity, swentness, and elegance of the language can only be learned at Constintinople. It has been obsarved of the Osmanli, that they have made the nearest appronch towards uniting the genius of the two hemispheres Situated ooth in Europe and in Asia, it is probable the thev will one day combine in their literature the meta
ical imaginative style of the enstern hemisphere with
manly simplicity of the western. It is a very mistaken notion, that Mohammedan nations aro precluded by their religion from making advances in literature or science. "Scek knowledge," snid Mahomet, "were it even to China." The 'Turka of Europe lanve now many works on ustronomy and mathematies, but they have iittle knowledge of experimental science. 'Ithe beat and nost numerous worka in the Turkish language are those on moral philosephy; thia science tic y eall "Adeb;" with them it is a system of ethics counched in a series of anusing tales and fables,* which contain many beautiea of thought and of language. The nouns in the Turkish language have five declensions, which are formed by retaining the nominative throughout and udding terminutions. No language contains more inversion of phra-seology-not even the Latin. Prepositions are subjoined instead of leing prefixed to nouns; and in all parts of speech the governed precedes the governing. I'he Jagaturian dialect of the Turkish is spoken in the grester part of Bokharia and of Independent Thartary. Many words, now obsolete in Constantinople, atill exiat in this

Nialeet. In the same way, ohmerven Davide, that the name Tartar has heen applied indiscriminately to the nation. so the tern Mongol has been givon to the literature. The Gamoun Tesikat Timar, or Comnentarias of T'arour, generally called a Mongol production, is really w.atten in the Jagntarian dialect.
Halbi, the grographer, han given the name of AuntroSiberian to the varioun 'Turkinh dialecte apoken in part of Siberia. Thewe dialects are much compounded with ather languacen.

THE POLYAESTAN CLAAS.

It has been proved hat all the languages apoken in the South Sea Islauds and Lhulian archipelago, are hut dialects of onn primitive language.* This is ovident from to sinilarity which submiets betweent them. It ecems mpossible to discover with certainty the language from which these have aprun. i'ho difference in pronunciation ia so great in various alanila, that the inhabitanta cannot understand one another. The change of dialect meems to correspond with the names of the ivlauds. Thus, in Tahiti the nspirate aboundn. At Ai-tu-tak-i the language has the addition of the letter k. At Roro-tongs the language is characterized by the namal sound rg , which is also the case at New Zealend. Tho Thahimn rocabulary ahounds with obsolite words, which was eaused by the following cunous circumstance: when, any word had a kound similar to that which was ronta: aed in the kiug's name, the word was instantly rhangrd. A similar custom prevails in China. Many of the olsolete Tahitian worde are found in the language of the Sandwich Ialunds. In New South Wales, tribes who livo within a hundred miles of each other are not ahlla to converwe together. Thia arises not only from the difference of pronunciation. but from neveral names bxing given to one olject. Thua, thry have distinct names for the Kangaroo, according to its age, sex, size, and the district in which it is found.

The claracteristic of all the Polynesian thatects is the fequency of the vowel sounte. The Polyisesian languages hare likewise a terdency to a monosyllatic form. Their moues of conjugating vertis are sinilar to the Helirew. They have the dual of the Grovk, and alno a form of the dual peculiar to these islands, which is no constantly in use that no conversntion can be carried on without it, and they have peculiar forms to ex vese it; thus, buli. we two. Lna, ye two, bulo, they two, de.
The Papuas or Eastern Neqfoes i.thatit the wild and mountainous parts of New Gininea. They are also foand in the Philippines, where the Spaniurds call them. Negritoa del monte. There are ateo mountainous rekions in the continent of India inhabited ly savages evidently of the same stock. Little is known concerning their latsguage; the Malays compare it to the chattering of birds. The Malaya who inhatit Malieen and the consts of the adjacent iclands, speak a languaze possessing some nunlogy to the Sanserit ; it is soff and harmonious in sound, and has on that account been called the Italian of the East. Nearly all its literature consista of pexiry, which is, however, characterized ly monotony and repectition.

the aprican clabs,

Litte, enmparatively, is yet known respreetia:g the languagen ajocken in Ifrica. There is a very foor Arabic: dialect spoken in Abyssinia calted Gierz, which has lwen improperly confounded with the Ethiopian. The wellknown version of Scripture, erroncously ralled the Filhiopic, is really in the Geez dialect. To the went of the river 'I monase, the language chirfly spoken is the Amaric, or Modern Abyssinian, now called Lesan Arghus, that is, soyal idum, because it is the language of the court at Bondar.

There are acatered trihes in the north, who aro atrongly suapected to be the descenilanta of the ancient Lybians The old Guanchee language, once spuken in the Cumary Islands, but now almost extinct, aeenis to belong to the saine stock as the Lybian! but so litue is known mapect ing either language, that this is mere conjecture. Turkish and Aralicicidiomn prevail in tho nea-shoreas of Africa but distinet and peecliar dialeets previsi in the finterior, and of these the Boosoo in perhaps tho mont extensively used. On the lvory or Tooth Const, between Cape Pai tuas and Cape Three Points, a singular iliglect is foumb, which is called (luaqur, these being the words with whit b the nativos salute each other when they meet.

The South of Africa ia ocrupied by two raten-the Hot tentots and the Caffres. Tho Hotentot languago is im. mediately known from all others, by its extraordinary clipping sonnds, produced by a quick action of tha tongua upon the palate.

the polysyntietic chass.

The languages spoken by the Indian triten of Anerica, have receved from Mr. Du Pouceau, an able investigator into the subject, the name of polysyuhthetir, from the matner in which worda are abbreviated and combined to express ideas. This formis a most remarkuble class of languages; and wo shall best convey a wotion of ito peculiarities by the following extract from the Convers.|tim, Leriron, foundell on Du Poncran's investigations. The great distinction of these languages from those of other races of mankind is the ugglutination of wuida. "One example, from the Delavire language, will ronvey a clear idea of the process of compounding; 'and I have chosen,' saya Mr. Da Poncean, 'this word for the sake of its euphony, to which even the most de.icate Italian car will not ohject. When a Delaware woman is playing with a little dog or at, or some other young animal, slue will oftom any to it, Kulgutarhas, which 1 would tramsate into English-Ciire me your prety liths purf, or, lihat a pretty litte junc yon hevel This word is compounded thus; k in the inserparable pronoun of the second person, and may be rendered thon or thy, according to the context; wh (pronounced colle,) is part of the word rublt, which siguities handenme or pretty: it han also other meanings, which need bot be hare mpeified; gat is part of the word wirhgat, which signities a lig or $p^{\prime a n e}$; schis (pronouned shere) is a diminutive twimino tion, and conseys the idea os htileacss: thus, in me word, the Iudian wonan says thy prefly hetle $p \cdot w$: aml, ast rorling to the geiture which she maker, cither calls upon it tu present its frot, or simply expressers her fording adnimaion. In the same namarer. phipre, a youth, is formed from pilsif, chaste, inuocom, und lenepr, a manh It is diflicult to find a more elcgant combination of ideas, in a siugle word, of any rxisting idiom. I do not know of any langagge, out of this part of the world, to which words are compounded in this manner. The process consista in putting together partions of dillerent worde, no an to awaken, at the same time, in the mind of tha hearer, the various idene which they meparately exprese But this in out the only mamarer in which the Americao Indians combine their idean iato words, I'hey huse ale many of the forms of the bangunges which we so mact:
 mixed with others perularly their own. Ladecd, tha muititude of ideas which in their languares ace combined wihtheir verim, has justly attrat ted the attentum of the lramed in all parts of the wordd.
It is not their trassitive conjugation, expresesing, at the sanue time, the idea of the persom acting, and that acted usm, that have excited no much antonishment. These are found aloo, though not with the ranes rith varicty of fermas, in the Helnew and other Oriental languages. But when two verls, with intermediate ideas, are combined eogether into one, as is the Delaware n'schngiryoma, I
do $1 x$ x like to declares to exi
do not winh to wonder, partiss of these longu mind ita kindrell cani have arimer human speech aceessory ideas languages ; it Take the adve is frequently mean to say, maltatsch g / y_{2} matta is the mi of the future, meque is the me tive mood, of neturn. In thi by this sentens mood slows it of the future time not yet The Latin phr ings ; but the ri hous ne terne precision. Tl uubjunctive fo in the Euglieb there is nothir tion. And n crery thing \mathbf{w} five, which y Mr. Du Pon graminatical fo This sery cur Indian langur least convinct method has pi
Mr. Du P of his lahori American la from Greenla a 1. That the worls and in pintated cons rgularity pri which I call languagea, fro forine apicear cient and mo These exp tologists of time contro pears beyon. barous India any tongue conatruction raders who wrutions L

Longua F Eurnpean particularly English, Ita the Lingua corrupt Itsli not be said As the Tur bas been na
Romanse calleal the - Tyiol,
hn ore atrongly cient lybjent In the Cinnary belong to the nown rempect cture. Turk tores of Africe in the interior, ost extensively cen Cape Pab fleet is founh rels with which ret.
nees-the H_{t} anguage is imextruordinary of the tougue
en of A.neria, le incestigutor ctir, from the d combined to thable class of nution of its the Converrerh's investigauguages from glatimation of are language, compounding; all, 'this word the most de.ta Delaware or some other rulachrs, which our pureity lithe I This word mronoun of the or thy, accord. is part of the protity: it hay 3re: specified; gnifies a leg or ative terminum s, in one word, , we and, acher calls upon her fordling , a youth, is cmupr, a man tion of ideas, do not know orld, in which The process therent words, c mind of tha ately express the Xuerican lisy have alac , we so muck. whic, deIndered, the are conbined cution of the

- ersing, at the ind that acted went. Thene ch variety of guages. But ure combined liguryoma, I
do nf like to ept with him, which the Abbe Molina also declaren to exiat in the idiom of (Whili-iduanclorlavin, I do not winh to eat with him-thers is aufficient caume to wonder, particularly when we compare the complication of these languages with the aimplicity of the thinese and itu kindred dialecta in the aucient world. Whence can have arimen such a marked diveraity in the forms of human speech? Nor is it only with the verbs that acessory jdeas are curionsly combined in the Indian tangunges ; it is ao likewise with the other parts of speech. Take the adverb, for instance. The abstract iden of time is frequently annexel to it . Thus, if the Delawares mean to any, if you $n 9$ not relurn, they will exprean it by mattatach gluppirecque, which may be thun construed: matta in the negutive ativerb no; tsch (or tsh) is the sign of the future, with which the adverb is inflected; glyppiareque in the second person plural, present tense, subjunctive mood, of the verb gluppicchton, to turn stout, or return. In this inanner, every iden meant to be conveyed by this sentence, is clearly understood. The autijunctive mood abows the uncertninty of the action; and the sign of the future tense, coupled with the adverb, points to a time not yot come, when it may or may not take place. The Latin plarase nisi reucris expressea all these meanings ; but the English if you do not come, and the French si vous ne venez pas, have by no means the name elegant precision. The :iru with, in Delaware and Latin, the mbjunctive form directly conveys, is leff to be gathered, in the English und Fronch, from the worls if and si, and there ia nothing elao to point out the futurity of the action. And where the twin former languages express esery thing with two words, each of the latter requires five, which yet represent a maller nu :over of ideas." Mr. Du Pon ean then justly aska, to whicia of all these graminatical forms is tha epithet iarh. ous to he applied? This very cursory view of the geacral atructure of the Indian languages, exemplified by the Delaware, will at least convince us that a consideraole degree of art and method has presided over their formution.
Mr. Du Ponceau has summed up the gencral resulte of his laborious and extensive iuvestigations of the American languagea, including the whole contineut, from Greenland to Cnje Horn, in three propositionsa 1. That the American langungea in gencral are rich in wonls and in grammatical forms, and that, in their complicated construction, the grentest order, method, and regularity prevail; 2. That these complicated forms, which 1 call pulysyn/hetic, appear to exist in alt those languages, from Greeuland to Cape Horn; 3. That these forma spenear to differ esventially from those of the aneient and mokern langunges of the old hemisphere."

These explanations of Ju Ponceau surprised the phibologists of Europe; and his statements were for some time controverted nad ricliculed. It now, however, ajpears beyond a loult that the languages of these barbarous Indiar. trikes are among the most expressive of eny tongue dead or living, and that the principle of their construction is moat ingenious and pertect. We refer readers who may be curious on the arliject to the Conwriations Lexicon, article Inlian Lavguasse.

brokrn lanauabrs.

Langua Franca.- 1 long the consts of the Levant and European 'lurkey, the natives of a superior class, and particularly merchauts, hold intercousse with the French, English, Italions, and other foreigners, in a dialect called the Lingua Francu. It is a jargon composed chiefly of corrupt Italiun with Trurkish and other words, and cannot be said to aspire to a grammar or any regular form. As the 'Iurks cull all Europeans Franks, thia language bas been nained from them.

Romanach Language.-In that part of Switzerland called the Grisons, and the neighbouring alpino region a Tyiol, the inhabitants of which, according to local

VoLe I.-44
tradition, are the demeendants of some fugitives driven from Lower Itsly by the Gauls, a corrupted Latin le npok ${ }^{\text {nn, }}$, upposed to rememble the vernncular of the Roman peasantry, and called the Lingun Romanacha. Of thin Romanach there are neveral dialects, and in one of them n nowupajer is publishod at Coire.

Chinese-Finglish.-We have alrendy noticed the broken English apoken by the Negroes of the Britiah West Indien, known by the name of the Talkee-talkee. A similarly broken English is in use at Cantou, in China, by which an intercourse is carried on lictween English and native tradeamen. This Chlnese-Eingliah, imposed of English worde, witis a few terms from the Portuguese, but altered to auit the powere of pronunciation of the Chinese, in a harharous jargon, governed by no rulea of grammar. The word "rhange" is pronouneed cheeneche; "dirty" in tah-tce; " wife" is ui-foo; "three," te-le; "four," faw; " five," f_{i} " six," sili-she, and so on. OI the worla from the Portuguese, "great" ia kah-lan-tee, a corruption of grande; "orange" is loo-lan-che, for laranga; "to know" is sha-pe, for salie (French, suwoir), to knowa term also common in the Talkee-talkee of the West India Negroes. This Chincse gibberish also includen a fow expreasions from the native language of Chins; as chin-chin, for "if you please;" chou-chow, for "dinner," \&cc. At Mncoo there is a similar lingo, formed principally from Portuguese and some Chinese words.

CONCLUDING OBEERVATIONE

From what has been stated, it appears that some hundreds, if not thousantls, of languages, are spoken over the globe, the whole, however, divided into certain leading classes, and lyy far the greater proportion being dialects or altered varietica of original roots. The predominance of any individual Innguage by no meane correaponds with either its valuable qualities or its antiquity. The Celti, for example, the oldest language of most European countries, is now confined to a few unimportant localities; the Hebrew, following the fale of the people to whom it belouged, is not spoker as a vernacular by any nation; the ancient Greek has been modernized or altered as a spoken tongue; and the lignified and sonoroun Jatin, ouce spoken by the learned oratore of ancient Rome, is also numbered with the dead languages.

Out of the wreck of ancient tongues, certain new languages, as has been observed in the preceding pngea, have arisen and taken a lead in the civilized world. Of these the French was the first which attained general estimation. It was spoken at courta, became the language of iliplomacy, and still is the melium of converso among all refined classes of persons throughout continental Furope. Except, however, in tivo or three of the Wwiss cantons, and part of Helgium (also in the remaina of Frunch colonies abroal), it is nowhere the vernacular heyond the confines of France. In short, with all its superficial dissemination, it is limited in its aphere, and is nos making new conquesta among either barbarous or civilized races. I'he Italian, though rich and harmonious, is only a local tonguc. The Spanish, by means of conyursta in Ceatral and South America, has been widely extended; but its progress has heen arrested. The Spanish colonics, founded on the most odious oppreasion, and perpetuated with a disregard to any principles of rationas ndvancement, have in every instance revolted, and the people, to all nppearance incapable of civilized rule or independent support, will in all likelihood sink before the external prese tre of the Anglo-Spxon repulilicans; if so, the Spanish tongue will disappear from the American continent.

The next great language of modenn Enrope ia the German, which, as already mention d, is spoken over a vast extent of country, and is diatinguished for the great riches of its litersture. Yet, this eloyuent and copioun tungue is alro no making aggressions on new domains,
not becoming univeranl-a eircumotance arising from that Sxity of hubite in ite people, which proventen them from pualing inta new meenen of enterprime. The Duteh, Awediah, Norweglon, aul other branches of the Teutonic, are all aubatantially eonfinel each to its own little apot, from which it does not appear likely that they will evor the extended.

The Englinh language, which, aa wo have seen, in litle else than Sason tinged with Latin, neemn to have been reeerved for a ningulap deatiny, in no reapect foreecon at the perioxd of ita formation. First apreating over the Britiah iulands, and puahing out several varieties of Celtie, th has been conducted hy national enterprine to the American continent and inlands, where it ia now the leading form of aprech of eivilized men, everywhere overwhelming the native and tranaplaneed tongues. By oimilar processen of colonization, it han been planted in the great Asiatic peninnula (Indin) nud itn ishands, in Auntralia, Van Diomen'a Land, Now Zemand, the southo orn extremity and vnrioun partn of the weatern const of Africa, benidea other posememona of Britain in different parts of the world. Perhaps the moat extranplinary incilent in its eventfill progress has been its plantation in Liberia, on the conat of Africa, by a mocicty of AugloAmerienn colenimss, and where it now formn the vernacular of a Negro race, the intelligent deacendanta of liherated alavea. Thus, whito momt tonguea have been confined, by the forre of circumatancen, to the place of their birth, the Englids has gone forward in the van of civilization to almest all acceswible prort of the halituble earth; and. preserved from detection hy a common siandard literacrore, will in all probmbility lweome a univerwal langnage.
The ntuly of languaven, with a view to philosonllie comparisons nud conclusions, and alao with the design of throwing light on man's social progress, hat in recent cumen assumed the chararter of a diatinet branch of learning, under the name of Pheloligy. and annong the patient echolarn of Germiny the aluly has leen pursued to a great and honourable extent. France han likewine attained celchirity for ita linguints. Except by the publication of Polyglott hibles, Eugland has done little comprehensively in this clypariment of Iettern, and few men have distinguished themselvea as linguists, a facility in ecquining languages 1 not falling appe:ently within the ecope of the national mind and hatits. The late Sir William Jones, who conquered all difficulties by his perseverance, was a remarkuble exception. Ho was acquainted with twenty-right languagres, The method of atudy which he pursued, and which he tecommenda to othere, wan that which has been culled doubic tramalation. It was his custom, after he had trannlated a prassage into Englinh from some foreign author, to reatore him own tranalation to the language of the author, and then to compare this retranslation with the original. By thia means, ho was cnailicil to dotect hia uwn errors, and to acquire the pereuliar style and idioms of each language. It han frequentiy been found highly advantageous to read the name work in ditferent languagen. By comparing the words. grammatical siructure, and idioma of ench language, the powers of comparison and refection are called into artise exercise, and the facta more atrongly umprinted on the memory.

apECIMENS OF LANGUAOES.

With the view of atfordin; the unlearned reader in den of the appearnate of some of the principal lanauages, deal and living, we nipmend the paanages from the Now Tostatuent corapusing lise Loordis Prayer, in

Oreck, Latin, Italian, Spanish, French, German, sututh and Fuglinh-for the maka of clearnems, the Greek io printed int the Roman alphabet, the aupirate of the beginning of certnin worla being repromented by the letter h. T'he realer in culled en to ohserve the differmes betwren the Greek and latin worily, and how evidenty the Latin la the parent of tho Itulinu, Epanimiti, and Prenefi, the latter, however, powesoning the leant remennhlance in orthography and errangement tu ita original, He widl aloo have an opportunity of comparing the Gerioan with its kindred tongue the Dutch, nind liwh with their rela tion to the Anglo-Saxion or Eiuglish.

GREEK.

Payen uryon ho en tois ouratola, haginathelo to onotis mon
 ourand, 女al epi les geb. 'Tonl arluns hemdn ton ephusion do bemus semeron. Kai nghen hernin to oplimbemme lumbin, hob
 bes liemus eis je'trushon. alla rusal hellas noo toa ponerou; hoti sou cisub he bisaileia, kai he dumamis kat he dozs, bien lou ailnas. Amen.

batin

Pates xoerea. qua es in co s, sunctificetur nomen tuum
 Ierra. l'ane m noatrum quatidamum da mohia hodic. Fil remus trubio debita nostra, sicui et hos rim thanum deliforitus nosits.

italian.

 Il tho regho vengn. In tha valonid nin fatin in terrn cothe in euclo. Dnect ugki if nontro phate fotilhtho. I: rumentici inastin
 indures in tenmatom, ma hireruci inal malixno. Jereioche tua - il regno, o la potena, o la gloria, in шemphterio Amen.

OPANIAK,

PadKe neenta, que calan en loy cielos, sing anetificadon notulere. Vtga tu reyno; see hecha tha volp, d, cotno en en
 dunio. V'shelenos unesisos deudus, conir binlién nosotroe ooltumos a ismestros deadures. Y' no nos beta' en tentacion
 fa glorsu, por todos los siglor. Atmen.

TRENCH,

NotaE Pene quiles nux cicux, ton nom smit anctufe. To regue vieline ; ta volonte soit laite wur in lerte, comme auciel Donne-tuse auourilhus motre juif quotidien. Partonie-nous пиs jéchés, connuc uassi nous puriombons à cetix qui nous oud offensés. Vit ne mous atantomme po:nt a la trutation. misa
 sanee, el lagloire, àmais. Jilien.

GERMAN.

Unopa Vatra in tem llimmel, doin Nemtu werde geteither

 ama unsere schalifell, wie wir unsern Nebaltigere vergaben E'ind Thire una nicht in Veranchung, somberr flope uns von detin tieliel. Ji'mn dein iet tlas lteich, und dies larelt, and de lerrlichkejt, in Jiwagkeis. Amen.

DUTCAt.

Onze Vaper. die In de tlemelen tijt, uw namm worde gehes ligd. Uw Koningtijk kome. U'w wil geve ebpede, fielljk in dea lituel. Zuo ook op de an rite. Gicef our l edru ons dageljkech lirood. Fin vergeef ohs onse sehulilen. (Tehijk ook wij vergeves onsen achuldenaren. Ein leid ons n.es in verforking. Mast verlos ons van ten boope. Want Ux is het koningryk, Eia do krachi, en de heerlijkheid, In de eeawigheid. Amen.

ENGLISH.

Org Faynea which ari in heaven, hallowed be thy hume Thy kingtom come. Thy will be done in perith, as it in in henven. (i:ve us thes duy nur dusly bread. And forgye ut our trespases, as we forgive them that trearnef against ja And tead us not into vemplation. lut deliver ua froce evil. Poi thine is the kingdom, the power, and uie ghery, tor aver ond ever. Amen.

Guanm, a ith lary meiers to th The pul dinilar cla of every P overywher eircuinstan leas or mot men, in al correaponit themselves ce tangibl diatinct n mid, one \mathbf{c} form acta; kidn daure. They see tirsa. 'I coamion I the laugua refleed dis bibit the n comlinatio conmurie
In the peculiaritis varielies of arrangel, peculiaritis dent. Gir tiea. He which rela of all lang cular tone Latin gra Our prese et forth, structus
There mara, Ont
Oatho and grap teaches 1 method o

Раоно of a wor the laws
On bol principall effectuall, us relate been ass young give fari to Proan mere lux municali to by 10 on graun
This niably c these wo
In Et which w
of ituelt

German, aruter Wen, the Greek io aspirate at the premented by the erve the diffierence and how evidently minht, and French at remenblance ia priginal. He will the German with It with their rela

Theto to onotia mon retuma mu, ไốs en a tols eproumion do demina lhemen, hbi Kili the ersmerig. (${ }^{1}$ kis tou poneron. wai lie doxa, ois lous
cellie nomen luam - Matul al colo. et in is hodie. Fir remith debitoribua nosita ra nos a malo. Tiba mphternum. Anen
ificato It tuo nome. Ith lit terra cume a t: rumentici i rostri wiri iletitori. Fi not kin. I'ereioche tho biefno Amen.
, eqnetificado tu voif ed. entro en a y hurs ro pan quot. or la misien nosolzal lise'd en tentacion, ejane, y la poneran
soll manenfie. Ton erre. comine au ciel. en. I'ardonne herus a crus qui nous old A la lentation, mis ent lo rigro, is piat
th werite geceidg\% Ruf Lirtn'1 We m lealle. I'In verg of huldigera rergation leor. tope uns von di din $\mathrm{J}_{2} \mathrm{I}_{\mathrm{s}} \mathrm{l}_{\text {, }}$ und da
nuam worte gehela blede, lielijk if dea hell ous atagedjlses jk ook wij vergeven verrorking. Maat el kuningrije, tin de Aisen.
iwed to thy thume carth. as it is in d. And forg ve ut rewrese againat ja. He frore evil. Fot sher, tor ever end
shar

ENGLISH GRAMMAR.

INTRODUCTION.

Gramman (from the Greek word gramma, a letter, is, m itw largent senee, that branch of knowledge which meiers to the component parta c.. language.
The purpose of language in to expreme our hileas. Bimilar claswes of ideas necessarily arimen in the mindu of every portion of the human family; for the mind is overywhere the name, in kind if not in degree, and the circumatances and desires of mankind are every where less or more alike. 'To express thene classen of idens, men, in all countriea and in all stagen of nociety, use correnponding clasmes of wordu, although the words may themselven he different. For example, men everywhere we tangible oljects around then. To these they apply distinct numes or appellations, which form, it may be mid, one class of words-Nouns. They nee things perform acts; an, for instance, they nee cattle browse and kida daure. Thus arises another elase of worda-V arabs. They see u hite cattle and bluck cattle; hence Arasctriss. These and ollier kinda of words, or, to nse the cosinion phrase, parts of specrh, are found equally in the langunge of the North Anerican Indian and in the refined discourme of the European philosopher. To exbilit the nature and power of words, taken singly and in conlinntion, viewed ax a vehicle of thought or a medium of communication, is the first and highent olject of grummar.
In the apeceh of every nation there are also many peculiarities, both in the formation of worils to express vareties of seuse, and in the way in which words are arrangel, these lheing partly the result of intellectual peculiarities of the people, and partly the effect of accidrnt. Grammar also takes cognisance of such peculiaritien. Hence, there is not only universal grammar, which relates to whatever is common to the structure of all language, but likewise a grammar for each particular tongue; as, for instance, the Gireek grammar, the Jatin grammar, the French and the English grammars. Our present business is with English gramumar, or in *et forth, as'well as we can, within a amall comprun, the aructure and the usagea of tine Englinh language.
There are four parta in English, as in other granmars, Othography, Eitymulogy, Syntn.e, and Iroootly.
Oatnounafir, from the Greek works, orthos, right, and gruphr, a writing, is that part of grammar which teaches the nature and jowers of letters, and the junt method of spelling words.
Panonix, from the Greek word probodia, the arcent of a word, treats of the pronunciation of words, and of the laws of versification.
On both these departinenta wo mean to say nothing, principally lecause, as we apprehend, they can only be effectually taught by the living voice; liesides, as far as relates to Orthography, so fow generul rules have been ascertained, that tiney afford little help to the young or inexperienced stindent. Practice alme can give facility and correctness in apelling. With regard to Prosody, we may further remark, that it relates to a mere laxury of language; hecpuse, to the effirtunl communication of thanght, metrical arrangement of hampage ts by no menns necessary, and, in an elemmary work on granmar, it may, without impropriety, be omittril.
This leaves us Etymology and Syntax, which uatc-niably constitute the clief parts of grammar ; and of these we shall tre at as fully as our limits permit.
In Eirsmoloer we shall be guided by thix primeiple, which we hold to be established, that every word has of inell a diatinst office to perform, and we shall be
|careful to exhibit the foree and aignifican o if words taken aingly.

In Sxntax we ahall not attempt to lay lown nuke, an they are called, for every mode of exp.umalon, bof rather to exhibit a few of the lealing principlea of our language, the complete underatanding of which will sujersede the necessity of minute observation on our part, na will enable the atudent to make them for himself.
We cannot approve of the exhauntive ayatem of teuching Syntax-framing a rile fir every peculiarity that the language contains; much better is it to conduct the atudent at once to the principles, which are, as it were, the fountain heads of rules. In the one way, we ahould but exhilit to him every thing by our torrh-light; hut, in the other, we kinulle his own, and, having pointed out the road in which he in to travel, leave him to himself. When the student is familiar with the principles, it may be desirable to exercise hinself on minute details, and a school-grammar ahnula provide exercines on the minuteat peculiaritice of the language.

ETYMOLOGY.

Etrmolooy, from the two Gruek worla, etumon, the roos of a worl, and logon, a diseoorse, is that part of grammar which trents of the various clasies into which worde are arranged, of the dillerent moditicationa they undergo to express difforence of meaning, and of their origin and history. .

f. classification.

Words are the symbols of ileas, and they are clasniticd and named, not from their torm, but from the nature of the iden that they represent or atand for. The class of any particular worl is only to be uscertained by olserving the oflice which it performa, What it does, alone indicates what it is.
It would he quite impossille to say, previous to actual inspection, how many sorts of words, or, as they are generally callod, parts of aperch, exist in any language; bat, upon exnmination, it is ascretained that all worda used in the English language may be arranged under cight heads.
The eight parts of speech are-Nown, Adjective, Prononn, Verb, Advert, \mathbf{I}^{\prime} reposition, Conjunction, and Interjection.

A delinition of each of these classes of words ougbe to point out the characteristic or specific idea by which it is distinguished from all the others; and every individinal word, brought under any of the cight heads, must ugree with the definition, if it is adequate-that in, neither too extensive nor too limited.

THE NOUN.

A Noers. from the Latin word nomen, a name, is the name of any person, place, thing, quantity, or principle; or, more generally, it is the name of whatever can be an olject of contemplation or suljeret of distourse.

The characterivtic of the nom is this: it gives of itsilf a distiet idea or oljeet of thought; thon, of the words, to, pren, just, alas! he. terrily, and! whip, the only ones that prevent a picture to the "mind's cye" are pen mul ship. These, theretore, we call noms; but the others do not belong to this clusis.

It should be carefully ohservel, that every proposition, or sentence that asserts any thing, must contain ot least a noun and a verb-the noun to express the thing spokeo
about, and the verb to ir ficatn what in affirmed concorning it.
Nouna are divided into two great elasces, Proper and Common,
Proper nouna are auch an are applied to individual persone or thinge only; such as Victoria, Britain, Edinhowoh.
Common Nouns are applieable to whole clamen of persona or oljectis: an, quefer, ishtimi, city. Common Nouna are hy mome divited into three nub-linawes, called Abwtract, Coltective, and Virthen; by which arrangement the elass of Cammon Nouna, in the limited acceptation of the term, inclunea only the namen of thinge olvioun to nome of the five ennea.
An abstruct uoun is the naine of a quality thought of apart from all cousideration of the antostance in which the quality reailen. The tern beara reference to nn act of the minal, called atstration, hy which we fir our attention on oue property of an object, leaving the others out of view. Suow, chalk, and writing-paper, are white, and, foun this quality, are oppreasive to the eyea. Ahatracting the junality from the mubutance, wo may "Whitenemi is oppremive to the eyes." Whitenss thun tecomes an absurset noun." An almetract noun may almo be a mane indicating the want of a quality, as unmowthiners. Compreliensively, nlwtract noune are the namen of immut ral eriternef, arts, or athits.
Collective Nouns are thome whirh, though ningular in form, may suggent the idea of phurality. Thay are euch ex, army, ole cky, crourd.
The iuperfect participle of a verb (which will le created of afterwarids), when used as the name of an action, is culted a Verbal Noun. In the mentence. "The eye in nut satisfied with sceing, nor the ear filled with heariog," the word occing and hearing are called Verbal Nouns.

THE ADJRCTIVR.

An Anjective in a word that qualifies a noun, that In, marke it out from other thingy that bear the wame naine.
The characterintic of the adjective i, that it linita the application of the noun: thus, the tern island in applicablo to cevery pertion of land nurrounhed liy water; but if the adjective firrile the affixed to it, all islanda not distinguished by the property of fertility are excluded from our conaideration.

Thia part of susech neerna to have reccived its name from an arridental circumatunce, and not from any thing eamential to itw nature. In the latin lamguage, it was uaunl to place the word molifying tho noun after it, thus, tahala longi, while we prefix it, and say, a long table ; the Latingrammarians, therefore, called thin clasa of words aiferiurs, from alf, to, and jermen, thrown, an? wo retain the tern, although our moxlifying word goea tirat. If the student has lrarnol to recognime the noun, he will feel no ditfeculty in knowing the andjective. because its oflice is to proint out some peouliarity which diatinguishes the noun.
"Nouns adjective are the worle which repress quality convidered ax qualifying, or, as the schoolmen say, in concrete with some particular milject. Thus, the word green exprecsen a certain quality considered an qualifying, or as in concrete with the purticular suliject to which it is applicel. Words of this kind, it in evident, may serve to distinguish particular objecte from othern

[^30]comprehended under the name genera, appeliation. The wordu green tree, for example, might merve to dintinguiab a particular tree from othern that were withered on blated." ${ }^{\text {"4 }}$

Adjectiven are generally divided into two great clamen Atributive and Numeral, or thome which denote quality and those which refer to number.
The wortha or un (two slififerent forma of the adme word) and the, are reckoned by monie grammarians a erparate part of apeech, and receive the conunon name of .Irticlt-a or an leing ealled the indsfinite, and tho, the deffinite article! but, an they in all reapecta come under the definition of the adjective, it tio unuecenary, ma well an improper, to rank them an a clase ty themelvea

In aiguifention, a or an is equivalent to the numera nuljective one, and the to the demanatrative aljective that: and the ouly difference between themin, that a, an, and the, convey the iidea leese emphatically than ous and that. Whoever reada Dr. Cromatic'n remarks mo the "Artiele," must he convinced of the nlwurdity of reekoming it a distinet part of speech.
Various other words, generally arranged under the head of Pronoun, weens moro properly to belong to the adjective. For instance, the eight wordm, $m y$, thy, his, her, is, our, your, their, correaponding exactly in office with the defluition of the aljective; but an thy are do rived frow, and answer to, the perional promiuns, they may he called $\nu^{\text {to onominal atljeetives with more propriety }}$ than paseenxire pronsum. If they ever ntasul alowe, they do not exactly muply the place of a nom, lut werely have it understoond, anil so, as will preseratly appear, do not eome under the definition of pronuoun. In like manner, the worda thin and thet, with their plurala thres and phow, by muny called ticmonatratice pronouns: and nato the four words rach, elefy, either, unil wither, named distributive pronouna-must in atrict propricty be considered an miljectives, in na mach an they looth precedo and deaignate nouns, but never supply their place

the pronoun.

A panoces is a word that rupplife the ptace of a noun.
Pronouna may be divided into lerroonsl, helitite, and Interrogitire.
The Premanal Pronouna are three in nunbler- I, thon, and lie, sher, or it.
I in ased when the person npraking refera to himelf; thou, when he refiers to the perwon midressed; and he, ahe, or L , when he speaky of mome other perwin or thing. In a work equally interesting to the gramuarian and the $\boldsymbol{p}^{\text {hidowopher, we fini the following arcount of the }}$ Persumal Pronoma, and we confidently revommend it to the uttention of our reulers:-" In all mweel there is an npeuker: there is soner perion spenken to; and thefe is mome persou or theng apoken of. Thewe oljecta constitute three clatesen, marky of which are perpwtuilly required. Any urinice, therefore, to alriulge the une uf marks of such frequent occurrence, was highly to be dexirect. One expectient offered itaelf obviounly, as likely to prove of the highest utility. Speckern constitited one clasa, with numerous nanien ; persona spoken to, a mecond clans ; premens und things apuben of, a third. A generical name might be invented for each clase-s nume which woold inelude all of a clase, and which singly might be used an the substitute of many. You this end were ther pernonal pronouns incentel, uad av'rb in their charracter and office. 'I' is the generical mark which iucl ules all marke of the clase opruke ": 'thon' is a generical nark which ineluder all marky of the clasa persons spuken to ; 'the.' ' whe,' 'it,' are warks which it clude all markn of the clana persons or thinga swoken of." \dagger

- Adillil Amath. Ansia of the Ifuman Minif, vol. i.p. 142

All ponou whly goeen beff maty come an In the cane n ohviouna an Reiative, by that, and as. person: which ether to persoc The literre omed to ank qu When what name of Som trecff the ide affive nie wh methe things:
The inwerp the Reriprocn sent of the

Self in aldd pose that one bat to exprens with my own any wher per out heles

AVinn is

 The charac moeed, in con but this in ace attribuce and word, sa in th may be seppar attilute and "The naul is dectrine of th after weighin and Mr, MillOn attemli ented by ve differ in this action which thing diffiret note no actic linited to the and the seen dider with at repeata, with the table," " orseeming t tive and an
We have mark will ju the thing pp , concerning cammunical worda by wl by the apple necessarily towards the be expressecs never speuk thing either event, or thi aifrmation,

Ansov * another Asades jectionable the word d
rellation. The to distinguish withered

great elaneras

 flenote qualityIn of the same rummarian a ounmon name finite, and the, reaprete come mecemary, ma hy themelves o the numers tive adjectiva remila, that a, ieally than one 'a remarks on n almurdity of red under the belons to the $m, m y$, thy, his, actly in offic an they are de proneuns, they more propricty mid nlone, they in, hut mesely ntly appear, do

In like man. lurale these ond ouns ; mull a,so ncither, named opriety be coney Inoth precedo eir place
the place of a if, holutive, and umber-I, thoth forn to himself; ressed ; sud he, pexsom or thing. ramburian and account of the recommend it I1 greech there in to : and there ate olyjecth conperpetually relge the ure of is highly to the olviously, a Speakers constiperaons spiaken oken of, a thind. reucb class-a usw, and which of many. F'or entel, and an 'h generical matk wkets: ' 'thon' is Wh of the clase untin which iar nge spuken of.' \dagger

All ponouns refer to anme noun, which, as it generally goes before, gets the name of antecedent, but as it nal came after, omrrelitive woull sppear a better term. In the cave of ona clama of pronouns, the reference is on obvious and immediate, that they have been calied Relative by way of diatinetion. These are, who, whirh, that, and as. Who is uned when the reference is to a person: which, when it in to a thing i that and as refer cither to prersonn or to thinge.

The Interrogative Pronourn, en called becaume they are and to ank queations, are who, which, what, and whether. When rehat in not umed to aak a queation, it gets the name of Gompound Relative Pronoun, as it inciules in turif the ideas of beth correlative and relative; thus, "Give me what is in your hand" in equivalent to "Give we the thing which is in your hamd."
The inveprabile word self, with ite plural crlves, is calied the Rreiprocal Pronoun, and denotes that the object and gent of the verb are the same.
Self is added to prermonal pronouns for the mame purpoes that ourn in affixed to pronominal arljectiven; that in to exprean emphanis or oppomition. Thus, "I did it mith my own hand $i^{\prime \prime}$ that $i a$, without the amintance of any "ther perwon : "He did it all himeelf;" that is, without hely

The Virb.

A Vina in a word that affirmanomething of a noun.
The eharacterintic of the verh lis affirmation; it may, indeed, in common with the adjective, denote a grality; but this in accidental, and not easential to it nature. The atiribute and the assertion are often conjoined in one word, an in the mentence "The man rejoires;" hut they may be separatud, and then an adjective will slenote the attribute and a verb will indicate the sasertion; thus, "The man is joyful." It is but fair to add, that thia doetrine of the verb in not univeranally received, although, sfter weighing the adverse arguments of Horne Tooke and Mr. Mill, wo are inclined to consider it well foundet.
On attending carefully to the nature of the Idea presented by verb, we find that, white they all asnert, they differ in this respeet, that some of them express a sort of sction which affects or operates upon some person or thing different from the agent, and that others either donote no action at all, or else a mort of action which is linited to tho actor. The first class is called Transitive, and the reennd Intranaitive Verbs. If the atudent consider will attention the ntate of his own mind when he repeats, with intelligenee, the mentencen, "Jamea strikes the tahle," "James uulks," he will bave no dilliculty in anceming the dintinction that oxists between a 'Pransitive ond an Intranaitive Verb.

We have alreaily atated, but the importance of the remark will juntify its repetition, that as the noun denotes the thing spoken of, so the verb indicates what we affirm concerning it. Without affirmation there conld be no communication of sentiment ; and hence tho claes of words by which affirmation is mado has twen dignified by the appellation of vena, or the uoril. "Verbe muat necessurily have been coeval with the very firat attempts twards the formation of language, No nffirmation can be expressed without the assistance of aume verb. We never speak but in order to express our opinion that something either in or in not. But the word denoting this event, or this matter of fact, which is the subject of our wimation, mast always be a verb." "

The Adverb.
An Aovern is a word that qualifies a verb, edjective, an another adverb.
As a description of a fact in grammar, thia is unobjectionahle; but it cannot be received as a definition, since the word defined is malle une of in the dofinition. Its
application may he thus explained. If we wiah to modify the noun of suljeet of a mentence, "we must uma an adjeco tive ; but if the predicale is to be modified, or any adalt tional modification to he pus on a word airealy qualifyine it, the verb then used muat be an adverb: thue, in the sentence, "The sun mhines," we have a nimple aubject, "sun," and a simphe predicate "whinen." If we wiah to expreme sty quality of the auliject, wo sulut ume on adjeetive: and if the predicate is to be molified, we muat bring in an selverb: thun, "The bounteows sun shines," and "The sun shines equally on all."

Adverina may be divided Into four great clamea :-

1. Adverbs of Mrnner; as well, ill, juatiy, wisely.
2. Adverbe of Time; now, then, eoon, when.
3. Adverls of Plure; as here, hesce, there, where.
4. Adverbs of Quantily; as much, conaiderably.

The adverb, it may be olmerved, if an ahbreviated mode of expremion, and the idea coukl in all cunes ine conveyed hy the use of two or more words. They have a cloes affinity to adjectiven, not ouly in Engliah, but in moat other tongues. Ruliliman juntly mayn, "That adverbs seem orlginally to have been contrived to exprese comIendiouxly in one word what must otherwine have required two or more." The truth of thin doctrine will appear by an inspection of tho following table of Adverbe of Place:-

A Phapontrion ia a word that contieete two worda togethor, in suchs a manner as to indieato tho relation which the things or ldeas signified by hem bear to each other.
'This part of apeech, hise the adj ${ }^{*}$ (ve, which :' esemblew in other respecta, has received its namo from an aceides icircumatance. It generally goes immertint y vefore the olject related to the other thing nanied. Wes the eas sence of the preponition, it should be carefuliy observed, is to signify relative position.

- We subjoin a liet of the prep sitiut in moat common use, and we recommend tho stu ant ts exercise himself in putting them all, one after the other, into sentencem In this way he will learn to apprehend their reai nifnificancy; and, instead of calting a word a preponition because it is so named in a compendium of grammar, be will recogniee it from ita function. Doubtless, by ecos mitting the liat to memory, a practice as common an it is mischicvoua, he nught be suon able to parse; but his knowledge would te mere deception, and he himself would be but "us sounding brasu and a tinklins cy mbel."

LSST OY PAEPOATTIONS,			
Above	Between	In	Till
Atous	flelwixt	tnto	Tmil
Anter	lleyond	Near	'To $\}$
Ageinst	Hejore	Nigh	Unto
Among \}	!ehind	Oi	'Toward
Amongal $\}$	i. euth	$\mathrm{OH}^{\text {a }}$	Towardal
Amit!	\% ww	Over	Unter
Almidat	lsadem	OH_{11}	Undernenth
	Jiy	Upon	Up
Round $\}$	Down	Since	With
At	For From	$\left.\begin{array}{l}\text { 'Ilirough } \\ \text { 'lisroughoul }\end{array}\right\}$	Vilhin Without

Thn lollowing remarks on this part of speech by Adar Ansirh, and his acarcely less illustrious disciple, Mr. Mill will amply repay an uttentive examination :-
"Prepositions are the words which express relation considered in concrete with the correlative otjeet. Thum, the prepositions of, to, for, with, by, obove, below, \&ze, denote some relation subsisting between the objects expressed by the worda between which the prepositiond are placed; and they denote that this relation is considered in conercte with the correlative object. Worda of this kind serve to diatinguish particular objects from other of the same species, when those particular chjects 2 G
eannot be se properly marked out by any peculiar qualjHies of their own. When wo say 'The green tree of tho meadow,' for example, we diatinguish a particular tree, not only by the quality wlich kelong to it, but by the relation which it atanda in to another object." And again, $«$ Every preposition denotes some relation considered in concrete with the correlative object. The preposition above, for example, denotes the relation of superioritynot in abstract, as it is expressed by the word superiority, but in concrete with some corzelative object. In this phrase, for oxample, 'The tree above the cave,' the word aiove expresses a certain relation between the tree and the cave, and it expreases this relation in concrete with the correlativc object, the cave. A preposition alweys jequires, in orde. to complete the sense, some other word to come after it, as inay be observed in this particular ntance." ${ }^{\text {" }}$

To the aame purpose Mill anyo-u It is easy to see n what manner prepositions are employed to abridén thu process of discourse. They render us the same service which, we have seen, is renilered by adjectives, in affording the means of naming minor classes, taken cut of larger, with a great economy of names. * * Prepositions always stand beforo some word of the class called by grammarians nouna substantive. And these nouns substantive they connect with other nouns sabstantive, with adjectives, or with verbs." \dagger

The Conjuaction

A Conjexerion is a word used to join words and propositions agether.

Conjunctions are of two sorts, Copulative and Disjunctive. The Copulative not only join the words, hut indicate that the things are to be united; while it is the office of the Digjunctive to unite tho worde but keep eeparate tho thinga. Tho youngest child cannot fail to perceive tho difference between these two sentences: "Will you havo an apple and an orange !" and "Will you have an apple or an range !" In the first case, he is to get both things-we therefore use a copulative conjunction; in the second, he is to have one oniy-we therefire use a disjunctive conjunction.

In one rcaprect the preposition and conjunction agree -they both connect words ; but each class does something not done by the other. The preposition indicate the nature of the connection, which the conjunction does rot; and, on the other hand, the conjunction can consect not merely singlu words but clausca or sentences. If I say, "Give me a knifo and the book," you may preaent the oljjects named reparately or together-tho knife being under the book, in the book, or on it, and in each case my request will have been complied with: but if ! say, "Give nue n knife in tho book," the relative position of the objects is fixed, and there is only oue viay of complying with my demand.

We have asserted that the conjunction couples indivadual words as well as propesitions ; but, an in thin wo go against authorities so respectable as Ruddiman, Harris, and Mill, we intas take mome pains to make good our position. Rudiliman says, "A conjunction is an indeclinable word, that joins sentences together, and thereby show their depenilence upois one another;" and, in a note to his rule of syntar-a Conjunctions couple like cames and moorls"-he tells us, that "the resson of this construction is, because the words so coupleal depend all upon the same word, which is expressed to one of them and understood to tho other." To much the same purpose Mr. Mill anys-an "The conjunctionen e diatinguisbed from the prepositions ly conner*ing predications, while the prepositions connect only words. There are seemfor exceptions, however, to this deseription, the nature of which ought to be underntood. They are all of one

- Adaca thritb

t Anelysin, ke., vol. I. p. 148.
kind; they all belong to those casen of predication is Which either the aubject or predicate consists of emmmerated particulars, and in which the conjunction in employed to mark the enumeration. Thus, we eay, ' Four and four, and two, are ten.' Here the aubject of the prodication consiats of three enumerated particulare, and the conjunction ceems to connect words and not predicationa." We do not think that Mr. Mill's argus ment is conclusive. There is no seeming about the mas ter. We wish it, however, to be distinctly undertood that we do not charge his doctrine with being altogether erroneous; it is only not complete. It is right so far as it goes; what we maintain is, that it is too limited.
Ruddiman is corroct in maintaining, that in the ex. ample, "Honour thy father and thy mother," the word " honour" is again underatood belore mother; but this will not do in every case. Tho sentence, "Charlcs and John rode to town," may certainly be remolved into two clauses, "Charles rode to town" and "John rode to town." But can the sentence "Charles and John carried fitty pounds," be resolved into the two, "Charle carricd fify pounds," and "John carried fifty pounds !" Obviously not. The conjunction and, in that case, connects the two words "Charlen" and " John," and show: that conjointly they are the subject of the predirate "car ried." In like manncr, in the sentence, "The man of piety and virtuo securcs the favour of God," it is not implied that "the man of piety" secures the favour of God, and that "the man of virtue" mecures the same; but that the man uniting the two qualities, the marks of which are united by the conjunction and, secures it. Mr. Mill himself, indeed, would appear not to have felt quito satisficd as to the conclusiveness of the mode of reasoning whi-h we have been animadvorting on, for he immediatery shifts his ground, and arguea that, because in such a sentence as "His bag was full of harea and phoasants and partridges," we may substitute the preposition with, and read, "His bag was full of hares, with pheasants, with partridges," the word and is properly to he considered a preposition. To this extraordinay specimen of reasoning it is sulficient to any, that by a similar proress we might ennclude, to use a homely illustration brought forward by Dugald Stewart on a like occasion, that because peoplo can "supply the want of forks by their firgers, that therefore a finger and afork are the same thing." On the whole, we consider that nothing can well be clearer than that theme great grammarians have taken up a wrang position ; but perhaps we have said as much alrcady as the importance of the subject warrants.

The Interjeotion.

An Intsinection is a word used to cxpress emotion of excitement of mind.

Pure interjections are mere inatinctive emisations of the voice, fow in number and unimportant in character; and, as to other parts of speech used interjectirely, the expression is, we apprehend, elliptical ; but thia circumstance cannot properly change the nature and character of a word. Horne Tooko considers that "interjections have no more claim to be called parts of epeech than the ucighing of a horse or the lowing of ac.sw;" but as there are words in the language which express mental emotion and nothing elue, we nust have a name for them, and it would the dificult to find a better than the one in univen sal umo.

parsimg.

The siadent should now be able to analyze, or pare, the it is generally called by English grammarians, any sentence submitted to him. Various artificial rules have been deviwed to enable one to know what part of speech sny word helongs to; but these we mean not to mentina, being inlly persuaded that much helps are altogethes "from tho purpowe" of grammar, inamuch as they reo-
der thougl peron cal mand, and no difflecult to which it dea sugg with the d must be fay be ascertai soggestel class, being their ident But not to ent the a mple :-
"A mant loat no time
Ais an adj man.
Man la s
Is is a ver
Young in
Every adjec
In is a pri
"yeari" has
Yonn is a
Hay is a
S_{S} in a ve
Oldis an
In is a prt
Hours is a
8. A A co
young in ye
$Y_{\text {he lias lost }}$
dition on wh
in is called
He is a pe
Has is a v
Lust is a
of the veft
Xo is on a
But is a
n $*: 2$ fime i
Mr: Mint fre
wier it is in
ochlled a d
That is a
ondrereool.
Happeneth
thing."
Raredy in a
A! an ad
a stanza ff
Love," con
the three c two, prone three adve ful analysi be consiste
"llaii! we
How wond
The wearie
dhore,
Than 1 wor. ${ }^{\text {When }}$
To the
quit Etym
the a'tent
put on wo

Any eh
called its hurder, its.
or aimply
${ }^{6}$ It mum mind to ap preposition With p hysio warda liece lence it is but much reved hy vieral. $\%$

predication in

 consiats of ena. conjunction in Thus, we y_{1} e the subject of ated partienulare, worda and net Mr. Mill's argu s about the mat actly understood being altogether 8 right so for an 00 limited.that in the ex. ther," the word notiser; but thin 1, "Charlca and roolved into two " John rodo to and John cartwo, "Charles d fifty pounds ?" n that case, conohn," and shown e predicate "car, "'lhe man of od," it is not imhe favour of God, e same; but that 3 narks of which secures it. Mr. to have felt quito node of reasoning or he immediatery se in such a senad pheasants and position with, and pheasante, with o be considered a imen of reasoning process we might ought forward by t because people ingers, that there thiug." On the Il be clearer than aken up a winng I much alrcady as
xpress emotion or 3 emissions of the n character ; and, tircly, the expres. this circumstance d eharacter of interjectiona havo ch than the ueighbut as thete are mental emotion e. for them, and it the one in uaivern
analyze, or pars, yraınmariana, any rtificial rules hare lat part of speech on not to mentina, ps are altogether wach as they reb
der thought first unnecessary and then impowible. No penon can parme a sentence which he doen not underonnd, and, when he does so understand it, he can have as difficulty in referring each individual word to the clase 10 which it belongs. All he has to do is to compare the des suggented in his mind by the word to be parsed With the definitions of the various classes with which he must be familiar; and by this mantal effort it will soon be ascertained to what ciass the word belonge. The idea suggeaterl by any word, and the characteristic idea of a class, being brought before the mind at the same time, their identity or difference must be at once apparent. But not to deal in general reasoning more, we shall preent the analysis of a short sentence by way of ex-ample:-
"A man that in young In yeare may be old in hours, if ho has lon no titne; but hat happeneth rarely."-Bacon's Essays.
Ais an adjective, because it limits the aignification of the noun

- Man la a noun. becaure it is the name of a clasn of beinga. That is a relative pronoun; its correlative is man.
Is is s verb, becanse it asserts something (existence.)
Young is an adjective, qualifying the noun man underatood. Every adjectiva must have a noun understood or expressed. In is a preposition, inasmueh as it pointe out the redation tha "yearc" hise to "ynung man."
Years is a nomn, being the name of a portion of time.
Hay lis a verl), asserting something (power) of the noun man. So in a verb, asserting or dennting existence.
old is an ndjective, qualifying the noun man understood. In is a preposition, ar above.
Houn ir a noun. being the name of a division of time.
\$ an in conjunction. connecting the clause, "A man that In young in years miny be old in hours," to the following clansa, Wha lias lost no time." As if in such cases points out the condition 3 which the ansertion going before 11 is to be received it is called by meny grammarians a conditional conjunction.
He is a peroonal pronoun. staniling inatead of tite noon man
Has is a verb. asserting something (possession.)
Lust ia a verh indicating an act. On the nature of thim part of the vefb we ahall huve more to say after wurds.
Yo is an adjecive, qualifying the noun time.
but ja a conjunction it connects the two clauses, and nt the a cea lime indicates, or, to ndopt the apt expreasion of which Mi: Mill frequently makes uace connotes that the clause coming urier it is in opposition to the nne going before, and therefore it : salled a disjunctiva conjunction.
That is n demonstrative adjective, qualifying the noun thing anderatoot.
Happencth is a varb, assering something of ite subject, "that thing.
Rarely is an adverl, of time, mollifying the verb happenct.
A 0 an additional cxercise in parsing, we ahnll transcribe - stanza from Camplell'a* beautifol ode, "Farewell to Leve," containing, according to our view, ten of each of the three classes, nouns, adjectivea, and verbs; five of the two, pronouna nud prepositiona; two conjunctiona, and three adverbs. The student is requested to make a carcful analysis for himself, and see how far our enumeration be consistent with his own :-
"Hail! weicome tide of life, when no tumultuous billows roll; llow wondrous to inyself appents this halcyon calm of soul! The wearied hird blown o'er the deep would sooner quil its mhore,
Than I would crose the gulf again that time bas brought mo o'er.
To the subject of parsing we shall return before we quit Etymology; but for the present wo wish to direct the attention of the reader to the various morlifications put on words to express a difference of meaning.

11. INFLECTION.

Any change made upon the termination of a word is called its urcident or infection; thus, the words, boy's, hurder, its, lored, and moncr, are caid to be inflected forms, or simply inflections of the words boy, hard, it, lure, and

[^31]soon. Of the eight parts of speech, five unly-the noun, adjective, pronoun, verb, and adverb-are declinable, tha is, capable of being inflected; while the remaining three -preposition, conjunction, and interjection-are indeclinable, that is, cannot be varied in such a way as to express any modification in meaning.

Inflection of Nobns.
The noun is varied in three ways-Number, Gender, and Case.
Numasr ahows whether one or more than one thing is neant hy the noun.
There are two Numbers, the Singular and the Plural The singular expresses one of a class; as river, horse. The plurol denotee more than one; as rivers, horses I'the plural ia generally formed from the aingular, by adding the letter 8 ; thos, table, tables; book, books; pen, pens. But nouns ending in any of the five following terminations, $s, s h, c h$ (when pronounced eoft), x, and o (impurc, that is, preceded by a consonant), form their plural by adding es to the singular; thus, bruah, brusbes, church, churches ; box, boxes ; hero, heroes.

When $c h$ is pronounced hard, and when u vis preceded by a vowel, the plural ia formed by adding s; thuas monarch, monarchs ; folio, folios.
When a noun ending in y is to be formed into the plural, s ia added if the y is preceded by a vow 3 ; bet if a coluanant goes before the y, then the y is cranged ate ies ; thus, in hoy, there is a vowel before the y, we therefore add s, boys; but in duty there is a consonant before the y, the plural therefore ia dutics.

Nouna ending in f or f e, generally form the plural by changing the f or f c into ves; thus, loaf, loarcs; knife, knives.

Nouns derived from dead or foreign tonguea, for the most part retain their original plurals; thus,
From the Latin we have-

From the Latin we have-		From the Greek come-	
sinaulat.	Plutal.	atwaular.	plural.
Etfluvium	Eilluvia	Plienomichon	Plenomena
Radius	Radii	Crials	Crises
Larva	Larva	Hypotheais	liypothewar
Vortex	Vorticen	Cruterion	Criteria
Axis	Axes	Automaton	Automata
Genus	Genera	Thess	Thesas
Mngus	Magi	Elipsis	Elipaen
Mediura	Media	Meranorphosis	Mietuinorphoses
Onsia	Onata	Basia.	Basem.
Nebula	Nebula		

The Hebrew worde cherub and seraph form their plurals cherubim and serophim; and the French beou and momsicur form their plurals beaux and messieurs, which last io contracted into messre.

A few nouns, in very common use, form their plurale quite anomalously; thus,

aixgelar.	plratm
Mant	Men
Fool	Feel

Gxnner.-Gender is that accident of a noun which points out the sex ar the absence of sex. Every existence is either male or female, or neither the one nor the other. The Masculine Gender includes all mslea, the Feminine, all femslea; and the Neuter, all things destitute of sex, or animals when the sex is not regarded.

Adam Smith remarks, that, "in many languages, the qualitice both of wex and of the want of sex are expressed by different terminations in the substantive which denote oljects so qualified." After showing that, in Latin, certain terminations were appropriated to expressing certain gendera, he adid, "The quality [of eex] appears in nature as a modification of the aubrtanceand as it is thus expressed in language by a modification of the noun subatantivo which denotes that aubstance, the quality and the subject are, in this case, blended together, if I may say ao, in the expreasion, in the same manner as they appear to be in the obiect and the ineo

Hence the origin of the masculine, feminine, and neuter genders, in all the ancient languages."

Adiniting the truth as well an the ingenuity of this opeculation, as far as regards ancient languages, it doea not appear to be the gerius of the English language to asaign any particular termination (an we find in the Istin) to the different genders; there, are, however, some cases in which gender may be recognised, from the mere termination of the noun, will appear from the following table:-
magcelise
Aetor
Governor
Ileir
Liinn
Dinaler

TEMMNTE
 Actrens
 Governeas
 Heireas
 I, ioness.

Mistresa.
In some cases, difference of sex is expressed by a totally different word, and the gender cannot be known lut by knowing the exact idea attached to the word. Of this sort are the following:-

Sometimes the same word is applied to males and famales indiscriminalely; and when we wish to distinguish the sex, we prefix another word. Thus, the word ervant signifies either a mate or female; but if we desire to notify which, we can use the compound words manserrant or maid-scriant. Of the same kind are he-goat alid she-goat, cock-sparrow and hen-sparrow, and many others.

Case. Case is that accident of a noun which points out the relation which it bears to other parts of the antence.

Nouns have three Cases-Nominative, Posscssive, and Shjective.

The noun is ssid to be in the Nominative, when it is the subject of discourse, and represents the person or thing of whom or which some assertion is made. Thus, In the sentence, "John resds," the proper noun John is said to be in the nominative, because it names the person of whom the assertion reads is made.

The possessive represents a vast variety of relations, but the principsl one is that of ownership or possession. Thus, "John's book is lost," where John's is in the poscessive, because it names the owner of the book."

The inflection of the Posessive Case (the only case in English that has an inflection) corresponds exactly in import to the preposition of. In the line,
"An angel's virtues and a woman'a love,"
we could easily diapense with the possessive, and introduce the preposition, where the whole meaning would be preserved; thus,

The virtues of an angel and the love of a woman.
Adam Smith asserta that inflectiona woulil probally be made before prepostions were invented: observing very

- Concerning the origin of the possesive cesc. Fingliah eramguariens end critice are not agreet. Some maintain linat it is What we may call indigenoun io the language, correpponding. they affirm. to all inflection of the won noun: hut we raither incline to the opinon of Alditwon. whoo thinks liat the possenas. ive lerminalion in onty a eontrachon for the protibuth has. ceivable that the tranalatore of the Bille would have used such an expreasion as " Asa his heart was perfeet. It han bern ingenously otjeeted to Adrimon'e explanation. thal while it is very easy to see how "the king his erown" mi th have been eonirneted or corrupted into "the king's erown.' it is impons. Lle ompracted or corrupted into "the king' errown. "hituponsime to imagive that " the queen her erown" or "the chitdres thent
bresd" eould have heen antijected in the same conireetina. But
 Tanience of the conirecuon wat seen in the ease of siligular sounn maeculune, it might very enaily be tranaferred to nouta 6 minine and plural. We would not ho understood, however, poneanaive wandenty on the joint; and in whaterer way the ponseadive wat, inimolued, it
justly, that it requires much less abstractoon to expwim the nature of tho rolation that subsists between two sbjects by a change on the name denoting one of them, than to call into use a class of words expressing relation and nothing else. "To express relation by a variation \ln the name of the correlative object, requiring neither abstrae tion ner generslization, nor comparison of any kind, would al first be much more natural and easy than to express it by those general words called prepositione, of which the first invention muat have demanded some de gree of all these operations."

This spectuation is exceedingly ingenious; but whethen it he true in gencral is, to say the leags; doubtful; and at far as the possesaive of the English noun goes, it muat be allowed, we think, to be wide of the truth.

The noun is in the Objective Case-1st, when it name the object on which the action expressed by a transitive verb operates; and, 2d, when it names the thing shoten to he related to aomething else by a preposition. In tho sentence, "John destroyed bis book," book is expressing the object on which the verhal action operates; it is there fore said to be in the objective case. Again, in tha sentence, "The sloud rises over the bill," hill is in the oljective, because it is the word shown to be related to rloud by the preposition over.

The Nominntive and Objective of nouns are slike in form; and it is only by ohserving how the noun stands related to other words that we can sny when it is in the one and when in the other. 'l'o decide on the case of a noun, we must " look before and after." The Possessive, however, may be recognised by its form, as well as by itu function, as it for the most part ends with's in the singur lar, and' nfter the s in the plural.

A noun is thus declined:-

	sinotlat	Plv
Nominatice.	Brothe	Brothers,
Paseentice.	Hrmber's	Brothers'.
Objertite.	Brolher	Brothers.

When the plural does not end in s, the Possessive $\frac{1}{2}$ formed in the same way as the singular; thur,

	eivoelar	perchat.
Nominativ.	Mnn	Mra
Pasiessure.	Man's	Men's
Ofpectice.	Man.	Men.

Infection of Adjectiven.
In many langusgen, the Adjective is changed in termsnetion to correspond with the noun which it yuatifics; but in the English $1:!$:rive there is no such modification; and here, as in inany other respects, our language seeme superior in metajhyseal propriety to mont others, becsuse the secident of gender caninot properly belong to a quality which is itself but an accilent and no selferexsting thing. " (iender, it is to be obecred, cannut properly belong to a noun siljective, the agnification of which is nlways precisely the sane, to whatuver aproies of substantives it is applied. When we aay 'a grent man,' 'a great woman,' the word rerat has preciecly the same meaning in looth csses, and the difference of the sex in the suijects to which it may be spflied makes no nort of difference in itn aignification. Mognus, magno, magnums, in the sme manwer, are wordn which express precisely the ama quatity, and the change of the termination is accompan nied with no sort of variation in the meaning. Sex and gender are ijualities that belong to substunees, but cannot belong to the quabities of sulviances."
Hut while the nature of the thing which the adjective is employad to express cannol tee vatiod, yet it may cxist in different proportions; and hence the atjectave is varid to exprens different degrees of the quality indicated loy in and these variations are called Degrees of Comparison. When the simple quality in dersted, the adjective ie said to be in the Positive Degrec. When a higher
serres ie si and when t 30 in the the positive be compara that it is lof mountaine; it is rapid, make a con We conside tial differenc in addition tuon that the expressed by degree than belongs to o of the rest. $A-$ - is that both lin A has more drawn betwe Latire Thu way, speakin is the harder a jron, stont ul say, " Ir Tha whole very nature, positive ; and is to be obset wluch may e compared: f by the words words as chic hended by th it will be see nature to ad flect on this, rules aboul th he will see at al by the wo nution.
The Comp tive, if it cud in the vawel
Adjectiven pular; but s their degrees gular. The use :-

> ponrive Good Bad harte Much or

Sometimes adverb to the of soying jure therefore to b f fues\% We
r inextricin
w. .erb in the und the two : profixing of called a varint
A few adju demonstrative thore: ona otin by number of

The Pronel and fose.
lus. 1.-4s

Itson to expme

 between two sb ne of them, than ng relation and variation in the neither abstrse n of any kind, and easy then to prepositiona, ot randed some dojus; but whethen louhtful; and as an goes, it must trith.
ut, when it namea d by a transitivo the thing shoren position. In the ook is expresing rates ; it is there Again, in the ill," hill ia in the to be related to
ouns are alike in , the noun stands when it is in the on the case of a The Posesesive, , as well us by ita th's in the singur
the Possemive r; thus,
changed in termb ch it qualifies: bul molification; sud r language seema out others, hecnuse brelong to a quality velf-existing thing. properly belong to hich is always pref sulstrnutives it is ' 'a great woman,' meaning in both in the suijects to ort of difference in anum, in the sume recisely the same ation is accompareaning. Sex and tuneces, but cannot
lhich the odjective d, yet it may exist adjertwe is varied ity indicated hy in es of tomparison d, the aljective io When a higher
enree ir signified, the adjective is in the Comparative; and when the highuat degreo is expressed, it is anid to x in the Superiative. Logienlly considered, indeed, the positive involves the idea of comparison as much as be comparative: thus, when we atfirm of a mountain that it is lofty, we must have a tacit reference to other mountains; when we affirm of any particular river that it is rapil, we (unconsciously, perbaps, but yet actually) make a comparison between it and sotne other rivers. We consider it, therefore, impossible to state any essencial difference between the degrees of comparison; but, in addition to what we hnve' already said, we may menuon that the comparative degree denotes that the quality expressed by it lelongs to one of two objects in a greater drgree than to the other; and the superlative, that it belongs to one of several in a greater degree than to any of the rest. For example, when we say that the line A- - is longer than the line B - , the meaniag is, that both lines have a certain quality-length, but that A has more of it than B. When the comprison is drawn between more things than two, wo use the superlatirt. Thbus, wo any of the lines A-, B-, $\mathrm{C}-\mathrm{D}-\mathrm{D}$, that C is the longest. In the same way, apeaking of stone and wood, we might say, "Stone is the harder body of the two;" but if we are dixeoursing of iron, stone, and wood, we must use the superlative, un soy, "Iron is the hurvitest body of the threc."
The whole class of Numeral Adjectives, from their very nature, cannot he in any other degree than the positive ; and, with respect to Attrilutivo Adjectives, it is to be observed that those ouly which express a quality which may exist in grenter or less proportions, can the compared: for instance, if the exact ideas represented by the words, circular, squarc, triangulur, and also such words ss chicf, extreme, unirersal, and eternal, be apprehended by the mind, by the very act of apprehension it will be seen that it would lie contradictory to their nature to adinit of any increase. Let the student reAict on this, and then he will be :'Jle to dispense with mules about the uso of chiff, perpendicular, \&c., because he will see at onee, from the nature of the idea suggestad hy the word, whether it admits of increase or diminution.
The Comparative is formed by adding er to the Positive, if it end with a consonant, and r simply, if it end in the vowel e; thus, hard, harder; large, larger.
Adjectives compared in this manner aro called Regular; but some aljectives follow no rule in forming theit degrees of comparison, and these are called Irregulsr. The following are those most conmonly in use:-

positive	compamativg.	buperiative
Good	13 -tler	Best
13at	Worse	Worst
I,itde	I.ess	1,eant
Mtuchor many.	More.	N'osi.

Sometimes the snme idea is conveyed ly prefixing an adverb to the aljective in its simple state: thus, instend of saying juster, we might say more just : but it is not therefore to be inferred that nore just is the comparison (f 'mo', Were this principle almitted, we should soon

- inextricable confusion. In such cases morr is an mierb in the comparative, quilifying the adjective just, and the two words should te parsed separately. The prixing of an allverb camnot, with any justice, be alled a variation of the adjective.
A few adjectives have a plural form, particularly the demanstrative, this and thut: in the plural, these and thre: ont other, and another, are also sometimes varied by number or case.

Infirction of Prmnouns.

Tha Pronoun is varied by tiender, Number, Person, and r'ase.
lut. I.-45

The Personal Pronouns are thus de lined -

	Sinoular Number.		
	nomimative.	possiselve.	objictival
1at J'erson,	1	Mine	Me
"d "	They	Thine	Thee
id ${ }^{\text {d }}$	He, she, it .	His, hera, its.	IImm, her.

Plumal Numagr.			
	nomimative.	poseessive.	obseosiv*
1 1st Person,	We	Ours	
$2{ }^{2 d}$	Ye or you	Y 4 ¢rs	You
36	'They	Theirs	Them.

By inspecting the two following lines, the student will understand what we meant. by saying, that the Possessive Pronouns, or, as we prefer calling them, Pronominal Adjectives, were derived from, and corresponded with, the Personal Pronouns.
1
mine thou he she it we
his hers its ours yours thgy.
heirs:
The Relative and Interrogative Pronouns, who and whith, are alike in both numbers, and are thus do-clined:-

	Who.	Which.
Nominative, Who	Which	
Prscestire.	Whose	Whose
Objerfice.	Whonn.	Which.

That and us are indectinable.

Inflection of Verbs.

The Verb is varied in four way-Number, Person, Meol, and Tense.

There are two Numbers, Singular and Plural, at in the case of the noun; and three persons, as in the pronouns.

The Moods are generally reckoned five in numberthe Indicative, the Subjunctive, the Potential, the Imperative, and the Infinitive. But it may well be questioned if there is any real ground for such distinction, as far at least as the Suhjunctive and Potential are concerned. Tho Subjunctive, as it is called, is merely an elliptical mode of expression, and the Poténtial is made up of two or more verbs, and therefore it can with no propriety be called an inflection of any one of them.
This leaves us the Indicative, by which simple asser tions are thade; the Imperative, by which command are issued; and the Infinitive, which is neither more nor less than the naino of the verb, and in use corre aponds exactly to a noun.
The Tenses are two in number-tho Present and the Past: the Future is not expressed by ony inflection of the verb in English, as it is in Latin, French, and othor languages, but by the help of another verb; and it is surely absurd to force a distinction upen the English verb, inerely because it exists in Latin."
The Participles of the verb are likewise two in num-ber-the Perfect and the Imperfect. They are eftem cailed the Present and Past, but in themselves they have no reference to time, and merely indicate the completion or non-compleiton of an action.

Aecording to this view of the verb-the only consistent one-it has no such thing as a passive voice. What is called the passive voice is not formed by any variety of termination, and so cannot be ncknowledged as an inflection, without opening n door to all manner of confusion.
"The English verb," says Crombie, "has only one voice, namely, the active. Dr. Lowth, and most other grammarians, have assigned it two voices-active and

[^32]2 © 2
passive. Lowth has, in this instance, not only violated the simplicity of our language, but hee also advanced an opinion inconeistent with his own principles. For, if he ha justly excluded from tho number of casee in noune, and moode in verbe, those which aro not formed by inflection, but by the addition of prepoaitione and auxiliary verbs, there in equal reason for rejecting a passive voice, if it be not formed by variety of termination. Were I to ask him why he denies from a ling to be an eblativo case, or I may love to be the potential mood, he would unswer, and very truly, that thome only can be jumtly regarded as cases or moole whict., by a different form of the noun or verb, express a diffierent relation or a different mode of existence. If this answer be atisfactory, thero can be no good reason for assigning to our language a passive voice, when that voice is formed not by inflection but hy an auxiiiary verb. Doccor [being an inflection of the word doceof ia sruly a passive voice; but I am taught cannot, without impropriety, be conmidered as: such."*
By conjugating a verb, is meant mentioning the preent aind past tenses and the perfect participle.
The past tense and perfect participle are formed from tise present tense by adding od, if it end in a consonant, as rain, rained, and aimply d if it end in a vowel, as Mange, changed.
If these ?arts are formed in eny other wny, the verb in called Itcogular; and if it wants any of these, it is said to be Defcetive.
We subjoin a few of the Irregular Verbs in moat frequent use, or in which mistakee are spt to arise:-

PRESENT.	Rast.	PERYPCT PAEtICIPLEL
Am	was	heen
A wako	a woko	awaled
liear	bore	lorn
Beseech	begought	bersought
Bereavo	berett	bereft
Hid	bade	bid
Choose	chose	chosen
Cleava	cledi, clava	eleth, cloven
Clothe	elothed	elothed, ciad
Crow	erew	*rowed
Deal	denlt	dealt
Drint	drant	druck, drunken
Ifat	aty	Patell
Fly	flew	flown
llang	hung	hung
fisy (lo deposit)	laid ${ }^{\text {d }}$	In ${ }^{\text {d }}$
1,16 (es on mbed)	lay	lain
Bive	read	Tiven
Run	ran	run
Strink	bhtia**	, hrunk
Elica	shod	shou!
8ink	slunk	$310 n k$
Srit	npit	
Tread	troul	trodiea
Wiu	won	won

The Regular Verb is thus inflected:-
To Love.

The verb To Write is irregular, and is thus conjugated and declined :-

To White.

Preant Timese Write.	Past Tense. IV rote.	Peffect Participle. Written.

- The Eitymolory and Syntur of the Engiobh Languago. p. 04

Tho Irragelar Verbs, Be, Do, Have, and the Defectio Verbs, Shal!, Will, May, Can, from their irequent occur. rence, ought to be carefully examined. T'abice of then are here presented:-

To Be.

Present Tenso. Am.	Pas Tense. Was.	Pefect Participle Вееи.

simaulaz 1. I min 4. Thow art 3. He is.

3. Thon art
4. Ile is.
5. We ${ }_{\text {PLU }}^{\text {PLe }}$
bengulaz.
PABT TENAY.
6. Engula
7. Thon wat
8. We were
9. He was
10. Ye or yoll

Imperatite, Be. Infinitice, To Be.
partictiles.
Emperfeet, Being. Perfect, Been.
The verb To Be has a peculia: infection, to expreas contingency or conditionality, which we here subjoin It may be called the Conditional or Subjunctive Miod In the case of other verbs, this form is elliptical.
connitional tengi of tur verin $T_{1)} B_{B_{0}}$

mixoutan.	plitask.
1. I were	1. We wero
2. 'flhon wer!	2. Yo игre
3. Ile were.	3. 'Ihey wero

To Do.
Present Tense
Do.
Past Tense. Did.
sxt TEME
mnorlas.

1. I Ho
2. Thou docst or dont
3. He does or doth.
$!$
4. Yivealo
5. Thou doest or dost
. He does or doth
6. Jivactare
7. Ye do

PABT TEMER

2 Thon dida
1
3. Ilo did.

Imprative, Do.' Infinitive, To Io
panticirles.
Imperfect, Doing. Peffect, Dotia.
To Have.
Present Tense
Heve.
Past Tense.

Had.
Peffert Parturym

PRESEXT TKMAE

matcle.	plemal.	minorear.	m.crab
1. 1 have	1. We have	1. ! hatl	1. We liod
2. Tiwn hust	2. Ye have	2. Thoulistst	2. Ye had
3. He lins.	3. 'They have.	3. He hind	3 They hat

Imperatice, llave Infintice, Tohave.

participles.

Imperfet, Haring. Prefect, Ilad.

Stalu.

PREAEST TENBE
 3. llo thall. \quad 3. Thes chall. ${ }^{2}$. He ahould. 5. Thes shoul

Adverbs,
m inflection tives.
sume art
positivi
Goite
Selit
Dthers 8
poatriv
Bad
Saill
Muc
Muc

The stut mentiouing is, but wh stands relat ehall parse

[^33]
wo mange

Yo or you
They you wrik
plotal
We wrole
Ye or you wrote
They wrole. ieg, To write.
8. Written.
$u v e$, and the Defective their irequent occus. ned. 'I'ables of then

Perfert Participla
Been.

Plician
Ve were
Ye or you wer
They were.
iev, To Be.

et, Been.

inflection, to exprem ieh we here subjoin or Suhjunctive M.ood m is ellijtical.
z vern Tobre
eltaal.

1. Wewero
2. M Nere

Perfeet Partiond
Done.

Pr.CEAL

1. Wed
2. Yedn
3. The da do.

Pli:hat
2. Ye d'd
3. "ree y did.
v, T'o Io.
eet, Dune.

Pefferl Proteryon
Had.
PAST TEXAE
 e had i They hat
tice, To have.
ofect, Itsd.

FAAT TENOB.
 pu momitat a. It an wo保

Must is a verb, asserting something of the pronoun to. It as an the present tenae, and third person gingular.
First is an adverh of sime, qualifying the verb fin.
Fill is a verb in the infinitioe, ta heing understood after muet. in the same way es it was afer will, in the former partof tha senlence.
\boldsymbol{A}, numeral adjective, ot ludefinite article, dnyignatiog the pood.
Pool, a noun, singular, neuter, and ohiectiva casa, being the thing affected by hio transitive verb fill.

Additional Remarks,Before quitting this division of our aubject, we inust inforin the reader, that the same word is frequently used in different ways, and consequently belongs to differingt parts of speech. Nothing can be more certain that every word must have been originally signifieant of only one idea; but in the progress of language other ideas sttach theingelves to it, and the grammarian must not resist this extenaion of meaning, but carefully observe it. To discover, then, wha, class of words any word belongs to, we must "look before and after;" but a few examples will illus trate our meaning beat.
"Come out of the wet." Here wet is a noun, because it is a name expressive of a certain atate of the elements "John threw off his uet elothes." Here wel is an adjeetive, because it qualifies the noun clothes. "A shower came on snd wet the ground." Here wet is a verb, because it expresses an action. The shower did some-thing-" wet the ground."

On tho following examples let the atuitent exercise himself, in satisfying himself as to the justness of our assertions with regard to tho class of those words which may belong to one or more.

1. The sun is the great source of light (noun). Feathera are light (ndjee.)
2. Heloved, let ue loce (verb) one another; for lots (noun) is of 3. Then he arose and rebuked the winds and the som, and there was a greal calm (noun).

> Thy brow is caln (adjec.) and bright,

Wearing no trace of sorrow or of sin.
To aill the pang that conseience can impart. Aixl calm (verb) the resiless pulses of the heart.
4. Hlow often have 1 loite red o'er thy green (noun), Where hungle happiness endear'd eaet scene.
Yel wandering, I found. on my risinous walk By the dial-stone aged end green (adjec.)
5. Thy nightly (edjec.) viaits to my chamber made.

When the blue wave rolls nightly (adverb) On deep Galilee
6. Yes! there are charine that (rel. pron.) acorn the spenke time.
Blensed aro those,
Vhose blood and judgrent are so well commingled,
That (eonjune.) they are not a pipe for fortune's finger
To sound whal stop she pleasea. Give me that (dennon. ndjee.) man
That (rel. pron.) is not passion's slave, and I will wear him In my liearl's eore.
7. The common still (noun) can only be employed, to. Hope quickene the still (adjec.) parts of lice.
Is this the Telbol so mich feared abroad,
That with hia naine the mothers still (verb) their baboul
It hath been anciently \mathbf{r} (quiled, and is still (adverb) roceived, \&c.
John has been very foolisit, sthe (conjunc.) I will not dismise him.
Let the atudent further exercise himself in what reapeets one part of speech resembles ansther, and wherein it differs. He will find that the noun and pronoun, adjective and adverb, preposition and conjuaction, resetmble each other in some reejpeets, but that they yet are quite diatinet

We conclude wis subject with two bric arsacte from Locke:-"Besides words which are name in deam in the mind, there are a great many others that are made use of to signify the c mnection that the mind given to ideas or propositions one with another. The mind, in communicating its thought to others, doen not
whily need signs of the ideas it has then hefore it, but other also, to phow or intimate some particular action of ith if n , at that time, relating to those ideas. This if does reveral ways; as is and is not are the general markn of the mint . Tirming or denying. But, besidea afirmation or negat/in, without which there ia in words no truth or falseboon, the mind does, in declaring its sentimentes to othera, connect net only the parte of propositions, but whole centenees, one to ancties, with their everal relations and dependenciea, to nimio a coherent discourse."
"Though propositiona and conjunction are namen well known in grammar, and the partirlea contained under them carefully ranked inte their distinct subdivisions, yet he who would show the right use of particlea, and what aignificancy and force they have, musi take a little more pains, enter into his own thouchts, and ohsorve nicely the several posturea of his nitid in discours-ing."-Human ['nderstanding, book iii. chap. 7.

Whoever wishen really to unilerstand the nature and use of words, ahould atudy cayetilly tho third book of locke's invaluable essay.

tel.-bEsitation.

Jherivation is that part of Eitymology which traces Wreds to their original form and signitication.

The ideas attached to words are pusely arbilimry and onventional; there being no reason, for inntance, why tho anond represented by the combination of letters fire, dhould auggest the illen of heat, while that of ice, wion'd sive the netion of cold. From this principe it follows that the real import of any word can be ancerwined onty by in in wing, that ia, by observing the common iders which :i muthes'e in evary different position thet it may orrups. Neme, is. level, bave aftimed, that in order to ascertatit with fre twin the pholosophical imprert of a werd, it ia ncos*ary ', thace its progress historically, thrgush sill th; turemente mannitige it has been erapidyed so courspy, for the monent that it was firat introiluced info the jonguage; anit others, not rontont with thas, prosecute thir ctymological research till they arrive at tio literal and primitive sense of the sont frem which it uprings. Hut it may well be toubted if wuch a course of prccedure is followed hy any aubstan. cial henefit at all proportionate to the lahour which it imposes on the student; and on thing is certain, that en appea! to ei.;alogy from use is altogether nugntory, and dipplave an utter ignorance of the nature and funcEton of words. The derivation or pedigree of a word will by no meana universally leat to its rowd meaming.
 wor? ea in tracing worda to their sourers, and with wondiesful sumens; but their apecclations. however interentink in nome reapects, are alinost uselesa, as far as the grainmar of our language is concerned; snd certainly, thuugh that achuol of philologista should succeed to their utnont desire in chasing every word now in use up to nome lerlandic or Gothic origin, it would in no way interfere with the present atructure of the Englirh tomguc. It may be very interesting to trace our language from the period when it wad only the rule jargon of svandering hordes of savages, down to the proment tme, when it is capabie of expressing with precision the minutest distinctions of the metaphysician or the seote glowing eonceptions of the poct; but it belongs rather to the philologist to enter on such investigitions than the grammarian. Still, some ground is coinron to both, and it in necessary to way a few words on the eubject.

Wordn are divided into two clases, Primitins and Deriontive.

A Primitive word is one : lerived frem any other Ford in the language: at, m.... mool .

4 Danvatuve word ts eith ivpounded of two ang.
nificant words in the language, or of one significan word and some termination that modities ito meaning as, achoolman, scholar.
The bulk of the English language ls Arglo-Sexon, and so are the forma of its grammar. A considerable number of ita worda, however, are from the Latin, and not a few from the Greek, both an entire werds, and as parts of worda or prefixer ${ }^{4}$. The following it a lis of these Prefixes, together with examples of the manae in which they enter into combination with other words

LATIN PREFIXRS.

A, ab, or abs, from; as averl, to turn from; obsolve, io loom from; abstracl, to traw fromi.
$A m$, round ahout ; as, ambition, titerslly, a going round abom Anta, belore; as, anteceden:
Circum. tound; as circumnavipste.
Con, together; as, conjoin, evalvoks.
Conira. egainst as, montratict.
The. down; ne. destroy, frliobinin,
Dior dis, assunder; an divert. dis, ivt
\boldsymbol{E} or $\boldsymbol{e r}$, oul of; as, evolve. eritur i.
Ertra, beyond ;o as, extronortinary.
I_{n} in, or inte: Ar, inject.
Inter, brwe iw As, interve: 1 .
Intm, within. sa, introths' e .
Jurth, nigh 10; As, juxiaposition.
(.b, 1tit tie way of: an, obstevt:

fose stier ; as, pu prom.
fos, wher; as, pon "M".
fto. lumed of; an, pronouna.
Frefe, i, eyoni; 3s, presernatural.
hie, back: \mathbf{a}, rallice.
Rebro, back was: (imply':y, motion); an reiogrames.
Se, nive: as, recedf.
Sub, usth r; вж athlunary.

Tans, acrnes: as, t ansporl, irarsathantu

GRERE PRELSEE.

A. without ; as, anonatous, athorphous.

Amphi, bolli; as. amphinous.
Ana, up, through: Ap, anatomy.
Anti. againal; as, Antichrial.
Apo, from, awny; hs. apostale.
Catn, down; as, cols.apople.
1hin, through; na, thákonat.
Epi, upon: as, cpiloptue, opidemle.
Myper, overmuch: as hypercrucal.
Mhpor, under ; as. hypucrite.
Mrca, chnnee : an, nctancorphosin.
Para. urarto: os, par, phriase.
Peri, round alout, a* primeler.
Sys, lugether; \&s, synot syuagogue.

Afixes.

It is nut ao easy to trace the Affixes to their rigus meaning, as they now foliom retain any aignification when taken by themselven, hut are used merely to nodif other vords. We shall present a few of them, witi examples, but wo are far from thinking that the list is complete.
affixis poaming motns.

"mentil
All words ng , but subse iny significati ing to fixed la asse of rach inferteld from norls with wl
A very lar primary atenif thing, are ap stimagine, a insull disgust. refe, foresight, non, deliberati ecention of thi of the logician draw our slise

Britit. fro pris, a puttir which shows Elymoligy, hancugge, indi Spatax to prois ngecther, so a meant a numb that is, to dect: - The city of canse thry de of Elinhlurgh serertion is ma perce.
We must h mult contain n jert being the acion or state
When the the word whic the sentence, allyed of dise bing the thin ebjective case.

A verb agre en ; as, I reta
This rule is lerstood in others that a It may be ex] number and auac the that phe, in the se singular, and wertiore 1 is Arain, in :u chthect, Joino one, and on ti ifwould havo
: of one signifionn odities its meaning Ige ia Arglo-Sexoin rar. A consideratio from the Latin, and - entire words, and 18 following in a lis nples of the mannes in with other words
rom ; obrolve, to loon
y, s going reund choo

refingionte

nus
14
ixes to their migning ain any aignification ased merely to nodify a few of them, will king that the list is
gedian, historian
mants combusiant.
plar, Liar.
nkord. dotard.
ersary, scluary, nheer, auctionetr. herent. correspoadenn. uner, believer. logist, clastist. or, creator ister, spiastet.

```
TMN
```

ther: sureasthm.
fy. elarffy
lise, equalise.
Hate, znssssmitiair
CTIVYS.
fod, beant ful.
fut heans. jlemeronus.
 tirfle hoinery.
uibesumber toilion nlthy. miglaty. nithy, miglay.
nocratical, muth noeratical, mothudina
pensire, insiruetion

Laxataik, ia this work

All words munt originaliy have had only one meanng, but subsequently they come to have various recondivy Ugniflcations. Themo are attached to them acenrding to fixed laws of the associntion of illeas; but in the anse of each individual word, the signification must be inferel from the relation which it bears to the othe: pords with whicls it stands connected.
A very larige and injortant class of words, whose primary signitication refers to the operation of senaible things, are applied secondarily to modes of thinking; as imagine apprehend, comprehend, adhere, cosceive, insil. disgust, disturbance, tranquillity, abstraction, sinrepe, foresight, penctration. acutencse, inclingtion, avernon, delineration, magacity, attention, \&c. But the propertion of this suljeet falls more within the province of the logicinn than the grimmarian, and here we may daw our sliservations on derivation to a close.

SYNTAX.

Erveit. from two Grepk worls, syn, together, and furis, a putisig o: placing, is that part of grammar which shows how worls are connected and arranged.
Etymolugy, we have seen, treats of the materials of angagge, individual words; but it is the business of Spatar to point out by what rules these words are put thgether, so as to form senteaces. By a sentence, is meani a number of werds so united as to make sense; that is, to dechare or affirm something: thus, the words, "The rity of Edinburgh," do not form a gentence, because they declare nothing; but if we say," The city of Edinhurgh is the rapital of scotland," a distinct assertion is made, and therefore the words form a senterre.
We must here reminil the reader, that every sentence must coulain at least a sulbject and a predicate, the subjert being the thing spoken of, and the predicate the action or state of being affirmed of it.
When the verb forming the predieate is transitive, the word which it mitrects is calleal the object: thus, in the sutence, "John learns his lesson," Jahn, being the allject of discourse, is in the nominative, and tesson, bing the thing affected by the predicate learns, is in the ohjective cave.

zules en syentax.

Rule I .-Nominntive and Verb:
A verb agrees with its nominative in number and perwin; as, I read. he leurns.
This rale is of very extensive application, and if undettaod in its full inport, it will remer usele'ss many athers that are commonly vit down ly grammarians. It may be expremed in more general terms, thus: "he nuinter and frroon of the sislject of a sentence deter-

 sugular, suid ? dill ne:1hs, of the third persoti; we serfore tas shird person simgular ot te verb, runs. Again, in :te sentence "John and James resd," the sabject, Joina and Jamer, expresses an iden of more than one, and on the verb must be plural, rewh, not reads, an it would have been had only one name been mentioned. In thin wentenca "John on Jaures intends to accompany
mo," it is obvious, from the very nsture of the conjunc tion or, that intention is predicated or asserted only of one of the persons, and therefore the verb ie in the sin gular, intends.

As collective nouns, though singular in form, may yet suggeat the idea of plurality, they are joined eitlier tc e singular or a plural verb, according as the idea sug geated is that of unity or plurality. Thua, when we: say, "The army is on its march," we seem to lose sight of the individuals composing the ldes represented by the word army, and spesk of it as one mass; but if we say, "The peasantry go barefooted," this mode of expression seems to give us an idea of a number of people existing separately, and we therefore put the verb in the plural. With respect to the collective noun, the only thing further to be observed is, that if in one part of a sentence it is made to stand as singular, it ought not in another to be used as plural.

A noun is sometimes put in the nominative, even when it is not the sulject of the sentence, lub merely stands connected with a participle; thus, in these lines of Cowper-
"'Thou, as a gatlam 'sark from Albion's coast The stoms ull weather'd and the occan eross'd)
Shoots fito port," de.
The worls storms and ocran, joined to the participles weathered and crossed, are neither the nominatives to any verb, nor are they the object affected by a transitive verh or a preposition. Still they are in the nominative; and this construction is krown among grammarians as the nominative absolule. Some grammarians, indesd, contend, and not without reason, that there is an ubeslute case, quite distinct from the nominative; and that to speak of the " nominative absolute" involves a contradiction of ideas. It must at once be conceded, that the noun conveys very different ideas in the two cases referred to, and we cannot well deny that they ought to have separate names, in the same manner as we give 1:ferent names to the nominative and objective, altheugh they are the same in form.

In every case, the ilea represented by the subijot must he carefully noticed, and then the pralicate be conformed to it.

To each rule, we shall subjoin a few examples of erroneous construction, being persuaded, in common with Crombic, of the truth of Lowth's remark, that a good way "of teaching right, is to show what ia wrong."

1. This murse of lecture were delivered tasl spring,
2. In the human species. the influence of reason and insunet ore gיnerally assisled by the lessons of experience.
3. Wis yu presem th the meeting?

Thure are abundance of treatises on that subject.
5. At this nise the Howse of Commons were of tinle weight.
6. Etery one of these theories are muounded.
7. Was the muster nud his scholars there?

Rnte If.-Possessive Cass.

When the relation of ownership is to be pointed out the Possessive Case of the noun denoting the owner ia used : thus, "This is Joln's hat." Here the relation of ownership is to be declared as existing between the person John and the thing hat, and consequently the namber of the pusse'ssor is put in the possessive case.

If the name of the owner be a compound name, the last of the compronent parts only receives the sign of the possessive: thus, "The Queen of Grest Britain's prerogative: also when there are two separate nemea, as, "Robertson and Reid's office."

1. This is John Thompson his book.
2. Chantes is a mentuer of Hot Mechanicu Institution
3. lave jon read Chamber's Journal.

Rule Ili:-Objective Case.

Active transitive verhs and prepositiona take the Ob jective Case after them: thus, "Do justioc love neriy
and walk humbly with God." In thin aentence, justice and merry are in the objective, being affected by the verhs do and love respectively; and God is alao in tho oljective, beling the object of the relation pointed out by the preposition with.

Some active transitive verbs appear to take two objective cases after them; hut it is much more consistent with the analogy of the language to underatand a preposition : thus, "He sent me the book," whero me and look are both in the objective. It is quito clear that book is tho thing immediately affected by.itt verb sent, it therefore must be in the objective; but to me, it seema most natural to underatand the preposition to, when the sentence would be, "He sent the book to me." Ellipsen of this sort are quite common, and it is atogether unnecessary to bring in any new rule or principle to account for idionntic expressions thus producet.

Uuler this rule we may further observe, that all words denoting measure, whether of time or apuce, are ce;nble of being put in the objective, a preposition buing understool. 'Thus, in the sentences, "The wall is seven fee' high," "I was three diys in the country," the words ficl and days are in the objective, the preposition for ur during being understool. As, however, the nominative and objective of all nouns in Englinh are alike, this remaik must be allowed to be of limited utility.

1. I ind we that I woutd comn.
2. Who whould I lore, if nol my faber!
3. 1he you know who ynu appink to?

He that and doubt whether he he sny ling or not, I sp:ak so.-Locke.

Rate IV.-Pronouna.

Pronouns agree in gender, number, person, end case with the nouns for whirh they stand, and arf, in all reapecta to be treated as the nouns wouid hare tifen had they been used. In the sentence, "The mester instricts his pupils," the pronoun supplies the plece of the poazecssive case of the noun, muster, which is of the singular ammer, third person, and mascuitine gender; we therefore use his, which corresponils :o all this. Ag.in, "John and James learn their leasoa:" here their stands for two nouns, and so must be plural.

1. -Thnu thate also make a laver of lirass. and his fomt nteo of bracs.
2 For tny name ant memory. I mave if to meri's chartathe
 pot them on Jacoth.
2. 1 naw the whole specie detivered from their sorrows. - AbDEsov.
s. Thone are the birds whom we call gregarious.

Rule \mathbf{V}.-The !ufinitive.
One verb governs mother in the Infinitive: as, " Hc loves to study," where fo stuly is the object of the vert boes.

Hefore the verb denoting the ohject of the predieating verb, the preposition to is genernliy put; and it is in this case ealled the sign of the infindirc. But as we alremly saw that the infinitive is nothing but a noun, the utility of this rule may well be questioned.
Tho sign to is ountted after the following verts:Bid, can, dare, feei, hear, iel, make, may, must, need, shall, ere, and will. We do not say, "IIf barle the to go," but, "He lade me go." The infinitive of a verb thay also cone sfer a noun or an aljuective, as well as after anothor verl.

3. I desirnt him eall in the evenulig.
5. Goud matheth the trouble yourseli on my wecount.
5. God maleth the sun to rise on the evit and on the gond.

Rule $\mathbf{V i}$-Apposition.

Nounn and pronouns added iz other nouna and proaxtas to exphein them, are pu. in the wane cave; thum,
"Edllnhurgh, the capital of Scotland, in celrbrated on Its university." Here Edinburgh, being the sulyject of the sentence, is in the nominative; and the noun cap. $t a l$, with It a aljumet of Scollund, being added to exploin it is in the nominative aleo. The two words in casee of this kind, are said by grammarians to be in apposition.
"Brutua killed Cemar in the Capitol; him who had been his friend." Here Casar in in the objective, gum verned lyy the verb killed; and an the succeeding pra noun refers to it, it must be in the objectivo too. If ih wers h, there would be no violation of sany rule in grammar, but a miscepresentation of a historicul fart as it would lead us to helieve that Brutus befriemded Cosnr, whereas it was Cessar that had befriended Brutus.
There acema to be an exception to this rule in much expressions an a I called nt smith's the loakseller," where Smich's and bookscller are cvidently marks of the name :icien, but yet the one has the nigh of the possessive ('s), which the other has not. An far as the poseseserve rase (кo called) is concurues, it is in most instances awkward to add any explanatury word to it; and the senterace rons murh more smouthly if wa tase the pro poxition of,: thus, "I culled at the shopl of Snith the hookseller," where both words are obviously in the obe jestive.

1. Your frient, him whom you introdured to me yeaterday, very anon ite purted.
2. Why do you irent Mary tun mo darahly, she who has al
wasa bern affrenonte?

3 'The lenten was trinen, him who defiut the law
4. I min going to see ing frients In the country; they whom we net at the ferry.

Rile Vil.--Tin Vert To Be.

The verb To Be has the same case after it as it has hefore it: thus, ". "l/red was a good king." Here the wook hing, eoming after the verb uras, is in the nomins. eve, luerause it is deseriptive of Ilfrod, the subject of the sentence. "She, ruppsing him to te the yardener, anith unto him." Here gardener is to be considered in the objective, hecause him, going before the verh to be, is in the objectie, governed by the verb, supposing.

It requires very little penctration to perceive that this seventh rule is included in the sith, for the verb to o does nothing moos, in such eases, than mark that the two nouns between which it is put are ditlierent namet for the ame thing. On this subjiert, Mr. Mill reason, with his usual acutencess. In showing how the name of a clnss cones to be used for the name of an indib vidual, he says, " 1 hase the name of the individual, John, and the name of the class man; and I can wt down my two natnes John, num, in juxtaposition. But this is not sutficient to affert the communication I tee sire, unmely, that the wrod man is a mark of the same infen of which Juhn in a mark, anal a mark of other iden along with it ; those, to wit, of whish James, Thoms, Ace, are marks. To complete my contrivance, I inven. a mark which, placed loetween my marka John and mow fixes the idera, 1 mean to convey, that man is anothes mark to that idea of which Johic is a mark, while it is a mark of other ideas of which Jnmer, Thomande, are marks. For this purpose, we use in English the mark in. By help of this, my oljeet is immediately at tained."

T'hose rapable of understaudeng this dieserntion, mi. immorliately see the virthal identity of our sixth an eeventh rules; lint here, as in other casew, we have lye anxiora not to depart irom the common doctrine, and repe tition of the rule, while it may be useful to a me.a do harm to nobe.

1. You iselieve if in the he.

2 It was nol mi who anid mo
3. It appearrit io $1, \quad y$ who earried on the businese 4 Thuugh I was blanked, is conld not have been ma.
*Analys of : \% i. p. ti\%.

Them and by the will be en molence. harly Cromt diven many dictator of rage hass in construct a few ini midt the nam 1. Every preased or u "Aus
overy adjecti in this,
the noun me
We have the indefinitit is this ditlert words beg n annad of $\mathrm{ln}, 0$ -hici hergin a man, but mach; is un 2. The cither, and m tributive Ailj from thrir always the jo
Each mea Cowper, in perly-
"U
Every refers
individually:
mparation of

Either mean either, not th words is see

Milton make
3. In Ens pencally int cees of oon exceptions. and that, w thow: thus, those maps.
4. It is no
nerb or annet reb. We, mila uell," "l am myse "In geti" un was qualiti ceived as th considerend can qualify means a in

ENGLISH GRAMMAR.

id, in celebrated fus tring the sulject of und the noun cap. ng adtled to explain no words in cases of to be in apposition. pitol ; him who had in the objective, gov the succeeding pro oljective too. If it tion of any rule in of a historical farth at Bratun befriended What had befrieaded a to this rule in such h's the hookseller," vidently marks of the sign of the jossersive far as the posesssive is in most instances word to it ; and tha ly if wo use tho pro e shop of Snith the olviously in the ob-
muced to we yeskerlay, ineshly, she who lias al.
fied the luw. the country; they whom

To le.
case after it as in has ood king." Here the ras, is in the nominafred, the subject of the to be the gardener is to be considered ir wefore the verlo to be, verb supposing.
no to perceive that this xth, for the verb to th 's, than mark that the ut are ditterent names bjoct, Mr. Mill reasons lowing how the name the name of an indr. me of the individuath 38 mon ; and 1 can sel in juxtaposition. But e communication I te is a mark of the sanie d s mark of other ideal shich James, Thoma, y contrivance, I inven y marka John and mim y , that man is anothe is a mark, while it Jame's, Thomas, \& we use in English tha bject ia immediately
ge this dissertation, wi utity of our sixth an her casew, we have line mmon doctrinc, and ay be useful to sue. a
it on ilie basiness not liave beca mo.
i. p. 117,

Theme we to the the grent leading principlen on which the Syntax of the Euglish language in founded, and by the thorough understanding of which, the student will be enalied to see the construction of almost any mptence. Many grammariana, some of whom-particumily Crombie and M COnlocia-we highly resprect, have given many more; but we adlsero to the decision of the dictator ai conglish literature, who says, that "our lanpage has so little inflection or variety of terminations that tu construction neither requires nor admits any rules."* A few miscellancous reinarks (we cannot dignify them rith the name of rules) will conclude this part of our sulsect.

1. Every adjective must qualify a noun, either expresed or understoorl: thun, in the lines-
"Auspieious thope 1 in thy swees garden grow
V. realis for each loil, a charmin for ecery wo,"
every adjective is immelintely followed by its noun. But in this,

"Fetr shall parl where many meat,"

the noun men is ohviously understoon.
We have alrady seen that a and an (commonly called the indsfinite article) are inlentional in menning; but there is this difference in their npplication, that a is prefixed to words beg nning with the sound of n consonant, the long annd of n, and vowels sounding like w : ond an, to words mbict begin, with the sound of a vowel. 'I'hus, we nay, a man, but an ox; a house, hut an hoapital; a one-horse soach; is unicorn; an easterly wind, \&se.
2. The exatt import of the four words, sach, rery, nither, and weither, whieh are known by the nume of Distributive Adjectives, ought to be carcfully attended to, and, from their very menning, it will appenr that they mast always he joined to a noun in the singular.
Ench means the one and the other of two: thus, Cowper, in his ode, "'lhe Lily and the Rose," says pro-perly-

> "Untit a third (hower] sirgass you both, let ench be deemet a queen."

Erery refers to any number more than two, considered individually: thus, Byron, referring to the untiotunate equatation of himself and Lady Byron, gayo-
" Both shall live, but every morrow
Wake us from a widow'd bed."
Either menns the one or the other of two; neither, not either, nut the one nor the other of two. The use of both pords is seens in these lines-
-" Te epitus Butters both,
Of both is thatered: but he weither loven,
Nor either cares for him."-Shansteane.
Milton makes a wrong use of either in these lines-

> But silconty a we elbecrd, From either cye."
3. In Eaclish, as already noticed, the ndjective is not genorally intlected for why purpose except to express degee ot somparison; but to this remurk there are two exreptions. These are the Denonstrativo Atljectives this md that, which have corresponding plursis, these and those: thus, we sny, this man, hut these men; that map, but those maps.
4. It is not the office of an ndjective to qualify cither n erboi another neljective; this must be done by an adre.t. We do not say, "James reads geos," But " James mods well." "1 ani mysulf infefferent honern" shauld be, "I am uysalf inleffereally honest."
"In gen"ral, nia quality, when considered in concrete, us quatifining some particular sulject, can itsolf be concaived as the suhject of any other quality, though, when considered in ubstra-? it may. No ndjective, t'erefore, an qualify any "ice lijetive. A great guot man, acans a man vi: ais in ch great and good. Both the

- Dr. Iohar cat. I'refue to Dictionary.
sdjectives qualify the sulstantive; they de nc* n. it one another."-Alam Smith.

That this is the genius of our language, sulmit', not of reasonable doubt; but there arc peyezal exceptisna. We apeak of a thing as belng of a florid red colopr, and of iron an being red hot. We eay, "a greal many were prement;" "the doors were wide quen;" Byron speake of the "pale ulise sky ;"-in all which ensen it is intite clear that the first adjective, in some degree, modifies the secench Whether this idiom in capuble of leing metephysically defended agninst the reasoning of Smith, or whether auch expression nre to be regurded as, to use the worda of Johnson, "spots impressed so deep in tho English langunge, that criticisin can never wash them away," is a queation into the diacuasion of which we shall net enter. About the authority of the expressions thero can be no disputo.
It was alrendy pointed out that certain adjectives, from their very nature, do not admit of compnison; and it should now be ohserved that, for the aame reason, many of them, such as universal, ommipotent, und others, whose signnification cannot be increased, onght not to be qualifisl by any adverh.
5. Tautological expressions ought to he avoided, and no word should he introduced into e aentence which has not some distinct function to perform.
"From whence came he ?'should be, "Whence canse he ?" thecause, as we alrendy saw, whence, in itself, meana "froen what place." Again, in the sentence, "I doult not but that he will come," it is obvious, on a little refleco tion, that the iden intended would be completely conveyed by ${ }^{\text {bis }}$ form if urpession- -1 doubt not that he will come," and the insertion of but serves no useful purpese. By reversing the sentence, this may be more obvious"He will come, I doubt not that (thing)"

In this sentence, taken from Goldsmith's History of Englund-"The New Enghanders were determined to attuck the royal forces ns aoon as cever they Ahould march out of Boshon"-the word ever is of no use, and conesquently should be omitted.

Perhaps under the same remark might be included the following, whith, however, from its extensive application, we shall keep repurate.
6. Two n"gutives ought not to be used, unless affirmation is meant.

In thin respect Bacon, Shakspeare, and Locke, and indec. wi our early writers, frequently on'md. Usage was in their times divided; but it has now betunce. wist $\mathrm{d}_{\text {, }}$ and that on the side of nicta; hygienl propriety.

Bucon says-a The joys of parenta are secre., a:miso are their gricis and fears; they cannot utter the one, nor will they not utter the other." Shukspeare says-
"Be nos too taine neither."

And again,

"Nor do not saw he air too much."
Goldsmith, too, has viohated the idion of the English tongue in this respect, although be hris offended in good company: "Never was a theet more completely equipped, nor zuter had the nation more sanguine hopes of succeas." Never should be cver. "He is not unjuet" is right, if we mean to express nuch the same idea as is conveyed by the words, "He is just." By some it , .in. i wived that this mokle of expression strengthets, the anti wathon, and cortainly it may do so in spoken language; hut in writing it serves only to introduce ambiguity, and so ought to be avoided.
7. Certain conjunctions go in pairs: thms, both, and; cither, or: neither, nor; though or although, yet; whether, or; so, that; not ouly or not merely, but also; so, as; as, as; such, as. Most of these words are conjunetiona, but not all.
"l wiil neither come or send" is wrong; brause of in not the correlative of neither ; it ought to be, "I will cith eome or send," or, "I will neither come nor sench."
R. Deriva ive worla generally take the same preposiUuna after them an their primitives.
Goldmmith offenda again in saying, "Cntiline was inmatiable of wealth;" lecaune we do not may to natinte (the primitive of insatiable) a permon of wealth, but with wealth.
9. Certain prepmatuona are appropriated to certaln wurda and pliramea
We do not may, "To have faith to a person," liut "in - personi" " To find a difficulty uith doing a thing," hut "in duing it;" "To differ uith a person," but "from a permon."
Surih idiomatic expreasiona are only to be made famiHar hy an extennive and well-lirected courme of atuly; or, an Milton has it_{t} "hy a well-centinued and julicious converning nmong pure authors."

10. After the comparative degree. i.

 or adverting and the adjective ction, the co..g whan thin in uned: thus, "Better is a lithe vith fo, heoousnese, then great revenues without right:" "Chin im nowe other thin the honse of God." Shakpprare has offeraded against this idiom -
"The sun no mmer shalt the mountaing touch,
 Bitl we will ship him hence."

Bot ought in be thath. "Scarcely had Auntria twen crushed, than it was announced," \&ec.-Golpswirn. Thein oughe to low when.
11. I'he l'erfert Participte, and not the Pant Tense. ia used after the verbe hure and be.

This iema ik requires to be atteniled to in uning irregular verbs, but in ertas that are regulnr, no mistake can arise, as buth pata are the same. In nothing, we venture in remark. doe defertive schollarship sooner hetray itaelf than in n wrous conjugation of the irregulur verthe.
Δ They hod from the leginning begun to emaliace opposite systems."-(iolinmiri. Began ought to be begun.

"Yom muan mot think,

That we are nate of Artiff sol flat and tatle.
Thut we ran let oar ", "arit be shook with thager."
Shook should lise shaken.
12. Adverise ourht to blio placed so as to leave no druth What word is affected by them.

- The negroves are til appear at church only in bexite." By this position of only, it appeare that the negrocs were nut to come to church unless i" in honts," or wih mothiug else but thots; but the meaning intended was that they should apprear at church, and no where clese, in lesests. Tha sentence sloulld therefore have stomel thas:- "The negroes are to apikear only at church in thots." "Pomppey played a dexpicinlle pmit conough betwivt thome" Emingh mucht to be immediately nfter despicalle "Caraor oo turned the fate of the die, that the lantarianes were olmont cut off to a man." It ought to be, " were cat of almost to a man."

EXERCISES.

To all these remarks. we whall uljoin a few misercllaneoun examples, on whirh the student mey exercise hime *elf. We alall refer to the Rule or Remins violated as we go on.
 merk 3 :

 mark 7.1
5. These new divinen offrered salvation ugmeneacer turi

6. There is nothing more phases us an to have our periormmeren prasests ittemark th.
is Whay lect the way dirart io faly, (Itemark f)
 amorn them no prolection-Romairsor (Riln iv frinarh ?

iv. Durine the rest of his consular year. Ribulue cond oalv
eseape ontrage hy not only avoidine ail asternblina of tha pos
 Histiry of Rumeo (abinet Cychporfín. | Remark 12.)
1t. Inever itid repent for foing grod.
Nor shath not now. - Nitakarpallk. (Remarka A and 0.)
 Their grouthesa, or iteropatint to their saffieiency, to rely apon counapl, - Ilacor'a Enanym. (Itemark ©)
07. The hostilitips which twice inkerripted the progresy of ing comminity, neither aremed lo oriminate In any mparativa elaitr of numipna! hosour or advantage.- Wane's Bnimh Ha rory. (Itemark= 12 aml 7.)
il. It whathenerveil io the, that in thila rouniry no nimil wo is alle to work need in gn supperiess io lued. 'this lar ho watod the iert.-Comme'n Nofas on Amerira. (late V. Rusaark ti)
 power which they place in lifa lisnds of the inagisisate. toongar llabis. (Rulo (V.)
16. The leatiors of the tleel ent the army hegnis mat:anlity wo

17. Ithy at proclammonena conimurd as omuppotent ns in the precedug relan- - Wabr.
Tw 'Tliere have bern threr riote in Fingland of late. pach of which have been tevelled agafant dismputers.-lloakirat Itall (1 l -1uark 12.)

The atudent nhould now be no fansiliar with the Rubes of Syuter, which are nothing hot geloralizel fista reo garding the customary moder of unitiog wards and sentences together, thut he will be able to commit hie thoughts to nppropriate language; that is nuch an shall convey to others the exnct meaning he has in his own mind. 'To do this, however, not merely with nerumary Int : $\quad . \quad$, besinton ntteruling to the rulet of gyntax, he munt take care, lics, that all the worils he usea belung to the English tongae; und, secomily, that they he enr ployed in their unmal und recognimel atceptation.

A word not Einglish in tergad a burborrsm, und when used in a sunse different from its ewtablished one, an impropinty; buth ahould twe equally avoided, vither in writing or mjeaking.

Punctuation,

Punctuation, or the insertion of pointa in written langhage, is usually considered a part of grumunar, and knowledge of its principles is desirable fur correet literary compowition. Tho introluction of peints in said to be uncfol to mark phaces at which a patuse of a lesser or greater longth whonld the made in realing. This definitinn is not altogether wrone, but punctuation has muen higher olijects in view. Points nfi meceseary fir mark. ing the parts or sertions into whirl. contences and pars. graphe are divided, se that the exart menning or sense onay twe opprebemded, and perfect reaumatity preserved 'The' rral use of points, therefore. is to cut off and sepa rate single worlf, or groups of words, from enth other. E, metimes the weparation need only ter slight, and for this the proint called the comm, is sullicient. For instance, "Providence las, I think, displayed a tenderness for mankimul." Here there is a comma before and atier "I think." heratase theree two worde express something firnit into the senterner, which slould las kept in mome the: asure distinct. 'The semicolon; is used to mark a
 serforner into two or mure purts, one of which has a veferenee to the other. Thus, " Eeconomy in mosisqrace; for it is luetter to live of a little than to matione a greas dus." Here the gentence is in two sections, the sumculon nowhing the looundary of arparation. 'The colon: sugnibies a still wider weparation in t? 4 words of a sentenee; but in yuslitivations nre so itulistinct, and so liable t. L imonerption, that in priutber it is now almost entirely slisum'd, and the perved or full stope - is employed in its valent.

IV ather marks uned in written language are as fob lown -'lise mark of intervogation t, whith is put after words atking a question; the mark of admeratonal, put after any exclamation of surprise, lathentation, of ncorn; the dush -, which is sometines amployed insteal of a memisonlon, or for any kindred purpose; and the parentiunia (), lor enclosing a word or portion of a mentence forega to the tenor of the mense. Good wrikers endenvour to

noold requin of which in

 don.We have
© the Eing! in drawing out reader been endea gone along be surprised man knowle of very valu of a sentenc its sense, a connected ; modification rangements firence of th facuitien, an wanted, a ju
The motrer aid in the ! already pein wo much the Rather let 1 make up for by accuntor tpression 1 of gramumen ralued-if rought on tralition or mg this plat reproduce t we thei: ert deserve wel we shall ha pointe wher the way to the pupil c fore, only jecta as be thuald lowi
ethol of
act the part we cannot to frerget th
they are on
of ijleas.

- Words a are the sol thought, or "end unto none be things

The rel carcely, w ating some prununciat the country bave been and are ge effect of may recei 'os any e in be thus barbaris,n tude; for

cenbline of the pow

 ring of the senate. Cmarks A snd B. (i) winy diminution to iciency, to rely upand the prameses of the it any imparnsive - Wane's Brituh His
muntry no ninh who v^{\prime} Thim line he onded V. llumarli i.f it in llet wimtiom bes
at ins rnasiata the magistrate. v. liegsu matually 0 - 8.1 (msiputent as in the 'sod of Inta, alach of

liar with the Rules neralized facta re LK words and senle to commit his t is nuch as shall ne has ins hix own dly with accurary ac rules of syntan, rols he uwes belung , that thry lee car creptation.
burism, and when wablished one, an avoided, cithet in
th in written lam if gramume, and a fur correct literary ints is said to be tuse of a lesser θ ling. This defniluation has murn resknity for mark. ntenees and parameaning or sense ufrity preserved cilt of anil sppa from each other, slight, nud for this ut. For instance, a temerness for th fire and atier express sermething lx' kept in mome unard to mark a sencral, it suts a of which has a my in midiwgrace: to outtion a gerat utctions, hie semition. The colon: is wordi of a sentince, wald nol liablio d how almant eno is employed in
chaige ate os fot hich is pot aftes admirattosis, put intation, or scorn; yed intrial of a ind the pare ntiunis - sentenuef foraga ers endeuvour 1
arodil requiving elther parenthetic markn or dashem, both of which indicate irregulanites of thought and expree doon.

concluatom.

We have now explained the Etymolngy nnel Syntax d the Englishl congue, no far as our limith permit ; and, in drawing to a close, we may be allowed to impress on our maters the value of the selence which we have been endeavouring to expound. If they have intelligently gone along with us in our various remark, they will not be aurprised when we ansert that thie department of human knowledge, if skilfully cultivated, will be productive of very valuathe results. To understand the grammar of a wentence, is nothing more or lean than to understand its sense, and to seo clearly how its varioun parts are connected; while in learning to recognine the different molifications that words undergo, and the different arnangenents of which they are sumceptille, to exprens diffrence of thought, we have exercised many of the mental facuitere, and in ao far laid the foundation of what ia much wanted, a just system of Logic.
The nources whence the student will derive offectual mid in the prosecution of this interenting aubject, we have adeedy pointed out incidentally; hat let no one lament wo much though be whould not have access to them. Rather let hith, by alditional thought on his own part, make up for the deficiency, und he may rest assured that, by uccustoming himeself to mark the different modea of ripression hu meets with in reputalle auihorn, " syatem of grammar will croble itsalf, which will be all the more palued-if we may not say valuable-that it has been arought out by his own exertions, nad not received hy talition or passively from the hands of another. Followung this phan, the real method of induction, he will either reproduce the rules which we have set before him, or else *e thei: etroneousness. So that, in either tame, we shall dereve well of him; for, if we are right in any thing, we shall have nerved us a guide to him; and in thome points where we have erred, we shall have put him on Lie way to find out our criors. We know very well that the pupil canaut see with our eyes, and wo have, therefore, only endeavoured to direct his attention to such objecta as he may sue with hin own. So fur as he sees, he thould ledieve, mul ros tarther. To dogmatize ia the ethod of a grammatist, but our ambition has been to ect the part of a philosophical grammarian, and, as such, we ramot conctude without warning our readera never to forget that woris in themmelvea are nothing, and that they are mly valuable in on far as they are the nymbols of idean. Heautifilly and juatly has Johnson ainid, - Worda are the taughters of earth, and things only are the sons of beasen." Language is but a veliele if thought, or, at hest its instrument, and to :iew it as an "end unto itself," is the vain humour of a perdant. Let none be so taken up with worda as to forget solid things.

COMMON ERIRORS CORRECTED

The remaining apace of the present article could aucely, we think, be letter employed than in enumerating some exampler of the most common errora in the pranunciation and selection of words. In every part of the country there are some peculiar vices of apeech, which bave been handed down from one generation to another, and are generally so inveterato in most minds, from tho effect of enrly hahit, that no cultivation which the mind may receive in mature life altogether onliterates them. To: any one who has occasion to mix in refined socity in be thus lialle at every moment to the use of mome batbarisn of rpeech, is a misfortune of some magnitude; fur nothing tenda so much to convey a mean ius-
Vol. I. - 46
preasion of hin education and habite of life. The mond heautiful young female, who, silent, appears a hind ut divinity, la redued at once to common earth when we hear a few inelegant worda fall from her mouth. Coleo ridge nomewhere telle that he was once much prepoe seaved in fivour of an individual whom he met at a dim-ner-teble, and who appeared a dignified and reaprectabile remon, until, wome kind of fruit being introluced, he
nul hin excluim, "Oh, them'n the jockien for mel" Words are the exponenta of conclitions of mind, and, when mean onen are uned, we unavidably suppose th condition of mind to be mean.

errore ix phonunclation,

The interchange of w for v and v foe w, and the putting of the aound of A hefore wordn whire it in inappropriate, and taking it away where it ought to bo. Ex-"mplen-l'llt you vait to get some vine and weictuala 1 An 'ard boiled hegg.
The nound k instead of g at the enily of words. Ex-amples-8omethink, nothink.
The addition of r at the ends of worda ending in vowela, Exumples-Idear, windor, Elizar.

Changing the termination en or ain into ing ; an garding for garden, founting for fountain.

UNGRAMMATICAL FORMS.

Between you and I, there is a great want of conscientiousness in most partisuns. C'orrcetion-Detween you and me, \&c.

1 am not so proud an him. Cor.-An he.
You will do it better than her. (or.-Than ahe.
May thou as well an me, be meek, patient, and forgiving. Cor:-As well as I, \&e.

While the houne was being built. Cor.-While the house wan in the courme of heing built.

He don't go to town to-day. C'or.-He does not go to town today.

I ralher think he is out of town. Cor.-I believe he is out of town.

I had hetter go myself. Cor.-It were better that I should go myself.

I hall ollige to go. Cor.-I was obliged to go.
John is tall in comparikon to James. Cor.-John is tall in compurison with James.

He is a rery rising man. Cor.-He is rising very rapidty.
She readird n dish for us. Cor.-She cooked, a pros pared, a dish for us.
She was a amparior woman, or, She was a most superior woman. Cor.-Superior can ouly the used with regard to sonnthing else which is at the same time expressed; thus, She was a woman much sujerior to the generality of her sex.
Short-lived, long-lived. Cer.-Short-lifed, long-lifed.
-The then Earl of Winchelsea; the then Mrs. Bennet. Cor.-'The Earl of Winchetsea of that time; the Mrs Bemert then tiving.

ILe laya aslecp in the cabin. Cor.-He liea asleep in the eatin.

Itis health was drank. Corme..llis heath was drunk. The dinner was all eat up. Cer.-The dinner was all enten up.

I went to table and eat very heartily. Cor,-I went to table and nte very heartity.

A corple of shillinga. Cor.-Couple can only be properly applied to ohjecte in connection; as, a married couple, a couple of poisters.
John, Jaincs, and Robert, were aober workmen, the lutter particularly as c'or.-The last partleularly so (the objects enumerated being more than two).

The Manchester Guardian is a well-adrertised papermenning a paper which usually contains many ndver tisements. Cor.-The Manchester Guardian usually 2 II
conalaina mony alvertinements, or-enjoys a large naze of the petronage of advortimers.

I could not give him credit, whow he changes hil behaviour. C'or,-I could not giva hin credit, unlews he changes his behaviour.

I will go, exrept I ahould be III. Cur_Unlews I should be III.

I saw them all, unless iwo or three. Cor.-I saw them ell, except two or three.

1 wok anme cream into a bowl. Cor,-I took aune cream in a bowl.

I amgoing fire to do it. Cor,-I am going to do It .
Ife was a tievoted nntigmisian all his dayn. Cor.-
He was a devoted antiquary all his dayn. (Autiquarian is the adjective.)

Jannes is guing to be a medicul man. Cor.-James b* going to be phymician, wurgeon, of medical practitioner.

He is offener wrong than right. Cor--Jle is moro frequently wrong than rigit.

Ihave no rish to pay thin tax. I have no righ to be dineresand by that man's conduct. ('or.-I ain under no obligation to pay this tax. I ann not obliged to surfier from that man's conduct.

You will the meressi'ated to subnit. Cor, You will be obliged to suhunit.
Don't talk of theve aort of thinge to me. Cor,-Don't talk of that mort of things to mo. sort of things in a neran and objectionable exprensisu. "Things of that kind" is more elegant us well as correct.
The castle is seated by the Giarome. Cor.-The casthe is suated heside the Garome.

Lord Byron wat horn at London. There have been destructive tires al Fillnhurgh. C'or.-Loorl Byrun was horn in landon. There have been destructive fires in Edinhurgit. (.lt is only proper with reapect to a small town.)

I met him on the street. Cor, I met him in the atreet.

I don't know, hut I will inquire at my friend. Cor. -Of my frient.

Oh. I will fall, and noholy shall help mo. Cor.—Oh, I shall fall, and nobody will help me.
I have leent to lomhen, and an now going for liverpool. Cor.-I have been in Londors, and am now going to Jiverpool.

They were some distance from home when the accident happened. Cor.-At some distance, \&c.

He lives opponite the Royal Exchanges Cor-Opor site to, \&c.
The performance wan approved of by all who underdood it. Cor.-The performante wan approved by all.

They attacked Northumiserland's houme, whom they put wdeath. ('or.-Ihey attacherl the hotise of Northumberland (or tho Duke (if Northomberland), whom they put to death.

It is true what he nays, but it tin not applicable to the painh. Cor.- What he say *in true, \&c.

Together with the nationui debt, the greatent national advantages are also transmitted to succeeding generations. Cor.-Ale ia aupreflunuм.

Failing in hiw eflort, ho ngain repeated it Cor$\boldsymbol{A}_{\text {R }}$ (tha is auperfluons.

He is mo nay thy inforior, and in this instance is no wery is harae. Cor. -lle is in no wise thy inferior, and in thia instrence is net at all to hlame.

He chargeai ine: wih want of resolution, in which he wan greatly mintanch. Co:-lle charged nue with want of resolution, but in this censure he was greatly miscaken.

No less than two hunirel anolars have boen edveated In that mehool. Gor-No fower, \&c.
It Ia alove a gar since the time that I len achood. Cor.-It to more than a yeur sinue I left mehool.

He wan guiley of such atrocione confluet, that he wa deserted by hin friends for good sud ali. C'or- H_{s} wa guilty of conluct so atrocious, that ho was entirely de serted by his frienda.

OBSOLETE, AWKWARD; AND MEAN TORMS,
I had as liff do it mymelf an perauado another h_{1} do it Corr-I would as readily, \&ec.
Ite convinced his opponent by sheer dint of argument Cor.-Etintirely by foree of argument.
He is not a whis bether than thome whon he ma liberally comilemns. Cor.-He fo not in any degree, \&c.
Ite stetnils upon the lionl, and will not atrate a jot of lifa clainn. Cor.-Ito insists on the strict thermas of the bontl, and will not in the least alate his chinn.

Gomal matin, I tuki is, is considerably superior to com mon milk. Cor.-I presume.

I'olitics too oflon sele men by the rars. When they come to words, and fall out, reanon in gernerally lost sighty of. I whould not wonder but on this orcasion there might the broken hrods going. ('or.-Dolities two ofter cauwes yuarrela. When men enter into controveray and ditler violdutly, reason is generally lost sight of. 1 ahould not womeler but on this occasion they might commit some violence on euch other.

We shall have a reguhar brrak-up in the miniatry Cor.-Wo mall have a dismolution of the miniatry.

If wan very dexterous in smelling out the denigne of his neighboura. ('or.-In pensetruting, \&e.

Ho is a thorough-pared knave. Cor,- Ho la a great khave.

Hereloforr Itannibal had carried all lefore him; whero fore he had lecone very proud, listening to no advice wh'soever: whereas scipio invariably took counse! from the mont nagneious of his ollicors,-'lise words in Italics are all obnole te and objectionable.

He uist not what to do. Cor.-Me knew not what to do.

Ife little mots of the atorm that ja brewing. Cor-he is uot aware, sce.

Top:sy-fury, pell-mall, hurly-burly, having a month's misud for a thing, rurrying faroner with a person, dancrag aitendincr on cuntomers.-All otjectionable, from their meauness.

We are at one on the alave question.
I hapien to have a litule leisure upor my hunds.
He might lave perceived it with half an aye.
We ahould always be glad to put virrseltes about is our neighbonss. Cor.-'To put unselven to a lith.e inconvenience.

My father left this morning by the mail. Cor,-My father went away this morning, sce. "When are yan to leare ?" is, in like manner, vicious. The place er thing left shouhl alwaya be stated.

Slang plirasea of all kinds should be recrived warily. The least objectionable are those which merely augges comical ideas; thoec which tend to present light and jucular viewa of moral error arv particularly detestable It will be the aim of a well-bred and judicioum permon to make his cliscourse neither too nice and formal, nor tuo loose and homely, hut un far as possible to preserve a medium betweon the select language amployal in litern ture, and the familiar and perhapas temperary pliraseolosg which prevails in ordinary asociety.

It in gene and more th in a mianed quaration ari prolmilly be manuer, so other; but anne anger,
 so cloan a lis ingw, that al is involued or at least vinced that fength lieen bistory of in usemblics: and give a view of the that clear re and the bil What is it t sipwar order confu*iva! seeving math in which the the trath of thing will h thing, and st such a subje in it, seeing which they tired, withe conclusion.
It lase In mind in all courses, lew cay, certain to it, and 1 always. I terms have nisable-ju have beell ance in all fat as reasi into a scien - part of the applied to:
'I'he are allowed the circumast:11. They rijo take a prot theip varion same jown muries of in an earl logic as a ol visusly in; praces. pricernen's, which lie grther, on Lustant wl part, and ofros in o

bren educatal

I I len achool. choul. Ct, that he wa Cor, - He wha as entirely do

Porme,

nother ko to it
nt of argument
a he so liberully ce, \&e. abate a jot of t termin of the claim.
uperior to com
When they erally loat sigha occasion there blitica too often controveray and pht of. Ishould lit commit some
n the ministry b ministry. t the designa of se.

- Ilo is a greal
fore him; where os to no adicica ok counse! from worda in Italics
knew not whas

ImTHODUCTOMY

It in generally olservalile that nome men form cleaper and more intional ideas upon noout nubjects than otherm. In a nimecllaneoua company, alomid any complicaterl queation arise, a consideralile number of the party will probulily las found to treat it in a confused or partial guanare, no an to have no effect in convincing each ather; but ufter a greak denl of wrangling, antil prefhapw anne anger, it may lee that mome one who has not an yet ope will hia mouth, rises up and mets the whole matter in coclem a light, showing an well the whole of ith trearing, that all the connegucucen likely to arine from what in involvel in it, that the atorm is silencend at onee-all, of at leant a large portion, of the compuny, being romviaced that a correet and juat view of tha matter has at fingth heen placed• hefore them. Surh la exactly the biatory of many yuestiona that come before delilereative sweullies: all is confusion, untif some leader atanda up and gives a more than usually compreheusive and luchil view of the case, which carrica the convirtion of so many, that elvir remolutiona nfe formel, a mensure is armaged, and the luaincas of the house is allowed to ailvanice. What is it thast enablen particular men thua to make nill nipwar orler where nthera could loring forth mothing hut confusion! It is nimply their possessiug miuds which, meing many parts of a sulject at ouce, detect the order in whirh they lie, the maring they have upon cuch other, the truth of this, the fallary of that, what effect nuch a thing will huve, how far there in juatiee in such another thing, and so forth; while othern, when called to consider such a sulject, are, to use a comnon phrase, quite at wns in it, seeng nothing of it but some of its external parts, which they may fasten upon and diseum till they are tirch, without ever advancing one atep towards a wise conclusion.
It has leen found, by attentive observation, that the miad in atl these oferations goes through certain defined courses, lealing either to truth or error. It has, we moy ssy, certain establishacd moles of aetion, which are naturil ω it, and which must accordingly have characteriwed it always. To all of these males of artion appropriate terms have lieen given, in order that they may lar recog-nivalle-junt as such words as noun, verl, case, tense, thase bern given to certain forms of speech which are the mane in all languages. Tho operations of the mind, as fas as reasoning is concerned, have thus lwen redured into a sciene ; in other words, methotically described ats a part of the great selicme of nature. Looic is the name applied to this acience.
"Ihe see of this secience is casily shown. It is readily allowed that many men reuson very clearly, in ordinary circunstances, without having been much instructed. They anjoy a notural s:macity which ruahles them to take a pretty large view of most sulbjects, and to convider their various parts with a gensl deal of precision. The same power canbles then to steer clene of the ordinary murces of error. 'I'lis class of men would be the first, in all early state of aceicty, to make advances towarids logic us a scientitic system. But ceven these men are olvously liable to derive great advantuge, in their prasoning prosesma, from a knowledge of distinct terms for those pricesers, as well na for all the kinds and monles of arror which lie along their way. The thing mul the lem togrecher, oare implanted in their minds, they know in an ustant what to embrace and what to avoil on their own part, and also how to deteet und render apparent the effor in others, when it occurs. it is clear that, under
favour of nuch knowiedge, argument muat be areath facilitated, nad much tedioun contention avorled. With those who are not maturally powerful of clear reamonera, the wame knowledge is calculated to be of infinitely greater une. We may fairly presume that, if auch men were so well nequulatell with the aciunce of logic, that of any course their minda were taking they couid nay at once to thenimelven whethor it was one of a legitimate kind, or one notorioun for leading to error, they would be cuabled, almost merhanically, to keep. In right intebectual pathas.
Thus logic la, in the firm place, a acience, or the doo meription of a dephatment of nature. In the aecond place, it triconees an art, of menns of teaching right moden of reanoning. For ita value in the latter cluracter, we have a goxal urgument in the preface to the maxterly work of Archisishop Whately. "Many," he sayn, "who allow the use of aystematic principles in other things, are acecuntoned to ery up common nense ay the sulficient and only safe guide in reanoning. Now, by common mense is meant, I apprehend (when the term is ased with any distinct meaning), all exercise of the judgment unaided ty art or any system of rules-auch an exercise na we must necessmily employ in numberless caser of daily occurrence, which, having no established primeiplen to guida Un--no line of procedure, on it were, distinetly chalked out-we must needs sat on the best extemporaneoue conjectures we ran form. He who is eminently akilful in doing thin, is said to proseses a supx-rior degree of common mense. But that common senoo in ouly our accondbrst guide-that the rules of art, if judiciously framed, are nlwaya dexirulle when they can be hul-is an assertion for the truth of which I may appeal to the teatimeny of munkind in general; which is so much the more valuable, inasmuch as it may be necounted the teatimony of adtrrsarices. For the generality have a strong prediLection in tavour of common sense, except in those points in which they respectivily posnesa the knowledge of a system of rulea; but in those points they deride any one who trusts to unaided conmon sense. A sailor, for example, witl perhaps despise the preteusions of medical men, onl prefer trating a disease by common sense; but ho would ridicule the proposal of navigating a ship by common sense, without regard to the maxime of nautica! art. A plysician, again, will perhaps contemn system: of political economy, of logic, or metuphysics, und insi. . on the supurior wiedon of trusting to common sense in such mitters; but ho would never npprove of : we "s ti) common acuse in the treatment of discasea. agnin, would the areliteet recommend a rela na common sense alone in building, nor the musician is music, to the neglect of those systems of rules which, t, their rewpective arts, have been deluced from scientific reasoning, aided by experience. And the inductior. migh lee extended to every department of practice. Since, therefore, ench gives the preference to unassisted common sense only in those cases where he timself has nothing Mlse to trust to, and invariably riscict. to the rules of art wharever he possesses the knowledge of them, it of plain that mankind miversally lear thair testimony, though unconscionsly and often unwillingly. th the preference of systematic knowlalge to conjectural judgments."

investigation.

Investigation, or the art of inquiring into the nature of causes and their operation, is a lealing characteristis of remson, and may be detined as one of the essentua distinctions leetween man and the lower unimals. Lh363
vestigation implica three things-Observation, Hypothrsis, and Experiment. Observation is the act of noticing circumstances evident to the sensea, for the purpose of acquiring a knowledge respecting them and their causea. Hypothesis ia a supposition or conjecture relating to the enuse of an effect. Experiment is putting in operation, or trying what will be the result of certain oupposed causes.

The first step in the process, it will be perceived, is to observe. Powers of olservation lic nt the foundation of all excellence in art or seience. All men who have attained mineuce in literature have been close observers. They have noticed circumstances and treasured remembrances which commoli minda would have neglected. The Inte Sir Walter Scott observed all thnt passed under his eye; no expression escaped him, if it bore on the illustration of character. Reasoning from the first efforts of observation may be exemplified as follows:-

An agriculturist ofscrued that a certain spot in one of his fields produced more graas than any other portion. He recollected that a certain quantity of rubbish liad lain for aome time on that spot; and suppased that the rablish had been the cause of the greater fertility. To asecrtuin whether his hypothesis or conjecture waa correct, he covered another spot with sand, but no auch effect folnowed. He infered, therefore, that the mere cowering of the spot had net leen the cause. He then suppused that some portion of the rulbish had posermed peculiar cualities, the mature of which he wished to discover. A protion of each ingredient of the rulbish was therefore deposited in selarate places; and after some time it was 'ound that in one of the places a similar degree of tertility prevailel. This experment determined his hypothesis. He acquired a knowledge of what ingredient is usetiol in conferring fertility. This may be called following out a train of reasoning on ohserved circumstances to its proper results.

POWER, CAUBE, AND EFFECT.

In Logic, Pourer is the relation of circumstances to each other in time. Cone is the invariable antecedent or thing going beforc. Fiffir is the immediate invarialle consequent, or the change produced by power. No effect can take place withmit a cause.
There are immorliate or proximate causes, nad also remote or final causes. It is of great importance that these should not le confounded with each other: neglect on this point has led to all manner of superstitions and errors First, of proximate causen: When we pour water on salt, the salt melts. Wuter is thereforere the enuse of the melting; in other words, water ponserses the pourer of eausing salt to melt. The melting is the effert. Again: Atmonpheric air is necersary for the growth of plants; it is one of the esseretial causes of the vepretation. Buch are iustances of the action of immediate causer, quite undeniable, fur they have tween determined hy experiment. But the eristence of immediate causes does not prechude the existence of remote canser. Thus, " remote cause of vegetatle growth from atmonpheric air is the nature of the air, and a more remote cause still, is the Being who mate the air-the Great First Cause of all created thinge Pursuing an inguiry of this kind is called tra-ing events or circumstances to their final catrea-hoing lrack, step ly step, till we reach, as we must invariahly do, that Being who not only designed rut sustains all by his Provilence.
The Sign. - We nust guard against the error of contounding signs with causes. Smoke accompanies the combuntion of monst wool. 'Tlue smoke is not the canse If the compuntion; it is only a nizn that there is combustion. The falling of meicury in the barometer does not eause rain: it is on'y a sign the atnosphere is in that condition which in likely to lead to rain.
Imaginary C'usasor-in deternining what are tho
causea of events, it is of importance, in the hrst place, te ascertain that the supposed causea exist. A king onet called a number of men of acience around him, and said "How should it be, that when I fit up a halancen with two scalea, each of which bears a basin uf water of equal weight, and I put a live fish into the basin in one of the acnles, thnt scalo doea not preponderate?" The causo of this aecming wonder was immediately sought for, and created somo little altercetion, till une of the men, moro ready-witted than the others, said boldly out that he dis puted the fact; and the king, laughing, owned that he wha in the right, and that his question was a joke. Hero we have an instance of frying to discover the cause of a thing which was not founded in truth. It is clear that causes assigned for any such unproved and improbarbe circumstances must he imaginary.
Imaginary causea may also be such na persons are willing to conaider true without investigation. A storm risea at sea and wrecks several veasels. Witches raiso Htorms. An aged and poor woman is residing in a lonely cottige at no great distance on the shore. That old womm ia a witch. She caused the atorm which wrecked the vessels. Here we have a trin of reasoning, auch ns has sent hundreds of aged femulea to tho atake, but which rests on no solid foundation. Before proseceling to accuse the woman of witcheraft, it would he necesery to settle whether there were surh beings an witches at all Having provel this, which would be impossiblle, the next step would consist in determining whether this old woman, in particular, was a witel. And, last of all, whether sho actually was concerned in rnising the storm in question.
Confounding Canse with Fiffect.-Causes and eflicta are sometimes mintaken for earh other, for want of a close examination of facte. It is not unusual to hear a person axy that a shower hrings a change of wind, whereas the wind is the cause of the shower. The appearance of small-pox on the outer surface of the hooly is ly ignorimt persons supposed to be the capse of the illness in that disense, whereas the external marka are no effect of an internal cause. The richness of certain woils is not an effect of the flouristling of certain vege tithes upon them, but the cause of the thourishir". Much money circulating in a comitry is not the ratuse lint the effert of wealth. In rommon speech, the mistak. ing of eflieet for cause is called "puating the cant lefore the horse."

Intuetion.
Haviug established the reality of a cause, and that, if certain circumstances be given, certain results will follow, we have furnished the mind with a sufficient degree of experience to know that when the same cause and circumstancer are ayain produced, the same consequences will ensuc. 'This in drawing an inference from ascertained truths, and in Lagic is known by the term intuction, which significs the lringing in of valid conclusians Wic haw learned, by indieputable experienee, that when a spark of fire falls on gumpowder, the gunpowdar will explode. 'Therefore, when we see a spark is alout to fall on any quantity of gumpowder near us, we infer, and justly, that an explowion will lex the consequence.
Thus, induction is an inference from facts that have been estahlished ly ohservation, hypothesia, numl experiment. If the observation lias hern defiective, or not suf. ficiently extensive, the sulsegucint hypothesis will, in all prohalifity, be defective also, and we may urive at wrema conclusions. Should a traveller, on vixiting a foreagn country, mee only a frow poople and thow have ted hair, he would not be warranted, on returning home, th say that all the prople of that country were red haired. His indurtion would not be fair ; it would le founded on limited oherrvation, and lialhe to le dispund by others twither acquasinted with the comatry.
In mome subjecte, it is much casier to draw a just m. ference than in others; but in all cases, jodgnent and
caution ar leat year; cees is thir is sbout to ician con sufficient dasion.

In refer nimals, tv jutify con differ no mi fuence of a very exto a persoon dr he is said often of Paing-tahin deaths whic ages of tho inference a lation who deaths as aflords an been collcc onity for on usted on wouid not deducing go true ; and,

A theory explain cert rest on rule true or proba we require rannot actua the senses. syitern, as phenomena clucling our conjectural. et fall on th vitation in body could though uns buly ever w would be th other cases eept of the an their e concilable w cone cannot Without th a feeble gui

Analysis then takine rately; in the simple. takins, first ndividually
When a for the pur ntes the d the content ingredientp tagether to synthetical tion as a w 4 prove
frrat place, 䚡 A king onet imm, and ssid, balance with vater of equal in one of the

The cause ought for, and ho men, mon ut that he dia wned that he whs a joko. over the cause h. It is clear 1 and improba
(s persons are ion. A storm Witches raiso ing in a lonely pre. That old which wrecked casoning, such the stake, but ore procealing the the necessary 8 witches at all psillle, the next this ofll woman all, whether she rm in question. ases and cflicto , for want of nusual to hear a nange of wind, ower. The ap face of the boly he carse of the cernal matks are hness of certain of certain vege the flourishir... s not the cause eech, the mastak; the calt hefore
lose, and that, if esulte will follow, ficient denree of o cuuse and cirme consequences from ascertained , larm induction, alid conclusions ricence, that when : gunpowder will park is aloot to 11 N, we infer, and (x'puence,
n fiuts that have hesis, and expericteive, or not suf. othesiy will, in all wy arrive at wrona vixiting a foregs I these have red returaing hone, ountry were redo fair ; it would le the to be dispoted untry,
to drave a just in. a's, jodgument and
eaution are reyulred. A physician saw a caec of fever lea year; he saw another last month; and when he cose a third similar case, he infers that another person is sbout to have the same feven The skill of the physictan consista in judging whether he has examined a sufficient number of cases of fever to justify auch a cond asion.

General Principles.

In reference to inanimate substances and the lower aimals, two or three cases are generally sufficient to justify conclusions; but, in regard to mankind, who differ mo much from one anothor, and are under the influence of so many externa! and various circumstances, a very extensive collection of facts ia necessary. When a person draws conclusions from a large array of facts, he is said to deduce gencral principles, and these are often of great importance in regulating ixcial life. Paing-taking men, by collecting a record of all the deaths which occur year after ycsr in a country, and the ages of the persons at death, are able to form a correct inference as to the number per hundred out of the population who will die per annum, and also tho ratio of deathes respects the nges of the individuals. This affords an instance of fair induction. If the facts had been collected only from a single town or parish, and oniy for onc or two ycars, the inference would have rested on too narrow a foundation, and consequently wouid not have been fair. The rules to be observed in dedacing general principles are-1at, that the cases be true; snd, 2 d , that the facts be universal.

Theory.

A theory is a precise system of rules, iniended to explain certain facts. The theory, to be correct, must rest on rules foundicd on a rigorous induction of things true or probable. In some instances, in forming theories, we require to take truths as being proved, although we cannot actually measure these troths ly the evidence of the senses. The Newtonian theory of the planetary system, as sustained $b ;$ contending forces, explains the phenomena and moveiucuts of the heavenly bodies, inclading oor enrth. But this theory, after all, is only conjectural. For instance, it is stated that all bodies let fall on the surface of our earth aro attracted by gravitation in the dircetion of its centre; and that, if a boly could get to the centre, there it would remain, cyen though unsopported by nny tangible object. Now nobudy ever was at the centre of the carth to see that this would be the case. Wo can only, in this as in many other cases in which personal experience is limited, aceept of the reasonable inferences of learned men, tounded on their exnmination of a wide arrsy of farts, and reconcilable with all known phenomena. Hence, experience cannot stand in opposition to well-established theory. Without throry or general principles, experience is bat a feeble guide.

ANALYSIS AND SYNTHEStS,

. Analysis is taking any subject, first as a whole, and then taking it to picces and viewing each part sepa. mately; in other words, proceeding from the complex to the simple. Synthesis is the reverse of this, and implies takins, first the eeparate parts, and after treating each nlividually, proceeding to the whole in combination.
When a chemist taked quantity of mineral water for the prorpse of discovering its ingredients, he sepantes the different elements, and is thus said to analyze the contents of the water. When, knowing the different ingreliente, he forms each artificially, and puts them tugether to furm a whute, he may lie said to proceed syntheticully. We may sperak of the British constituton as a whole, and then unalyze its component parts th prove the truth of our assertions; or we may first
speak of each part scparately, and then refer to them all in a united form. When a clergyman illustrates a doctrine by separate texts, he treats hia sut ject analytically; whon he reassembles the texts or heads of his discourse into an aggregate form, he treats the subject aynthetically. The analysis and synthesis must agrie. The same conclusion must be arrived at in both casen.

In delineating human character, gencral notions are resolved into individual parts. We begin with the more. conspicuous traits of the charncter, and gratually deseend to the more hidden principlea of action and passion, and we may afterwarda present the cnaracter synthętically, with a unity of appearance. In all aabjecta the mind follows the same plan. Analysis ohould be carried to that yo at whin the truth of the general principle we wip', to find is ascertained.

Philosophical Arrangement,-TThe memory derives aid from philosophical arrangement; becauso knowledge so hrranged is casily applied to use, in the same manner as goods put up in small parcels are more readily and advantageously handled than if their contents were lying in a state of confusion. It enables us also to ascertain the troths which may be deduced from general principles. For instence, lives are insured by fair inferences from philosophically arranged facta.

DISCOVERY AND INVENTION.

Discovery is finding out something alrealy existing. Inrention expresses the annlogies of objects censidered as means in reference to a particular end. Finding out the polarity of the magnet was a disiovery; but the application of that discovery to the purposes of navigation was an invention. The mechanical powers are beautifial instances of invention. The lower animals do not invent; they betake themselves to the shelter of rocks doring a storm, but they are never found to construct a building for shelter. Newton is said tu have discovered the binomisl theorem, because he only brought to light a truth formerly unknown; but he is said to have invented the method of fluxions, because he contrived a new method of discovering truth.

Invention facilitated.-Invention is facilitated by referring particular truths to general principles, or concen trating the attention to one subject.

hRT AND SCIENCE.

Art is a knowledge convertible to practical purposes Srience is a knowledge ci the principles of art. The oliject of art is to produce certain eflects hy the action of hodies upon each other; that of the latter ia to ascertain the uniform relations of substances. All ort must be founded upon science, becnuse art implies knowledge acquired. The man who prescribes for discuse, without having made a fair induction, is a mero empirit.

Difference of the Sriencrs.-The seiences differ only in their matter, or the nature of their truths. In the physical sciences, the relations we trace are wiliform. Polarity, or torning towards the north, is a universal property of the magnet. But in those sciencea in which we have to deal with the powers of living bodica, or mental operations, the true relations are not only difficult to discover, hat even ater wo know them we ang frequently be disappointed in the result we wish to produce. New canses intervene which sometines clude ohservation. The constitutions and halits of human beings are difierent. A motive which inluences one merson fails to influeuce nnother.

But, by extensive observation, we can trace a remartable uniliormity in the great operations of nature. The changes of the moon seem to he irregular to one whose observation is limited. Haman life is motrean as regards individuals, but certuin as recards a mumber. Men, too, are possessed of certain uniform priaciples, whica
can be actel upon by certain moral truths, when they are brought into circumstances necessary for the due operation of those truths.

The Object of all Science.-It is the object of all ecience to ascertain facts, and to trace their relations. We know, for example, that a certain substance is a medicine, and we know that it acts upon the okin. These are two facts. With this knowlelge, if nothing mors can be ascertained, we must be satisfied. It is sufficient for all practical purposes.

EVIDENCE.
Demons'rative evidence is employed about all subjects which ran be expressed by numbers; but the subjects of moral evidence are matters of fact.
Proof.-The term pronf should not be confined to demonstration ; because a proposition for which sufficinnt probable evidence has been advanced is considered to be finirly proved. It cannot be demonstrated that the Romans had heen in this island; but it is proved by the testimony of historians, the Roman camps and roads, the remains of Roman buildings, the coins, urns, \&e.

Tuo kinds of Moral Eridence.-The two kinds of moral evidenco are Expcrience and Testimony. We have the evidence of certainty for personal experience.
In reference to thinge that are various, as the direction of the wind and the effects of inedicine, condusiona are drawn from general experience by collecting all those instances in which we have found them to exist in one way, and all those in which we have perceived them to exist in another, and then determining the ratio which those instances lear to ench other. Thus if the bumber of instances in which a certain fruit had proved harmless were equal to those in which it had proved hurtful, it would be uncertain whether it would hurt a person that was going to eat of it. If more had lwen hurt by it than not, it would proluthly hurt him; if very few who had eaten of it escaped injury, it is highty probable that it would hnrt him.
Testimony.-Dircet testimony is that which is professedly given. Incidental testimony is that which is cesually introduced on one subject in the course of an cridence delivered on another. The later has greater weight than the former, because it is less susceptible of delibrate intention to deceive.

Whes all the persons through whom the information passen are known, the testimony is remote; but when they are not known, the evidence is termed report.

Mixed Eviuence.

Mixed testimony is that by which we learn from others the general conclusions which they have drawn. It in termed mixed, hecause it posessers piartly the nature of personal ol:servation, and partly the nature of testimony. The deare of evidence to te attrihuted to mixed eubjects depends. 1st, On the nature of the subjectmome subjects are capable of more accurate observation than others ; 2ll, On the character of the observer-his ability must le considered in scientific subiect-his hones'y in commion natters; 30, On the number of our informers-suteral persons are less likely to te mistaken in the conclusions they have drawn than one persen.

A thing believed ly all men, as far as we can know, is a matter of erneral notoriely.

Traditina in the relation of a fact or event which wan not commitell to writing by any person who ohserved it, hut was communicated from one to snother for a cerhin priod of time. It is very uncertain, because the defects of memory ate supplied hy invention.

Intermal Fividence.

The preceling species of evidence are termedexternal menause they ate drawn from some external sourep. The following nre nament in'craul, hecause they arise foon the sutyerets themwhes:-

Analogi:a.:-- When it is inferred from the resemblanoe which the subject in question hears to some other known
subject, that they are likely to produce similar effecten the evidence is termed anelogicul? Froin the resemblanct which a disease in a certain patient bears to other dieases which he has observed, the physician ascertaina its nature, and prescribes for its cure. The credtr due to this species of evidence is ascertained by finding whether the resemblance holds good in regard to the point under consideration.
Presumptions.-Positive proof ia the evidence of men on oath, or of writings or recorda. Presumptions ane probable infercnces. These inferences are of greater or less weight according as it is more or less prohalle that tho facts established would not have existed unless the fact which is inferred had exiated nlso. Thus, Jamees was found dend, with a bleeding wound, in a house; Thomas was ohserved rumning out of the house, and there was no other person found on tho spot; therefore, he was the murderer.

The Degrec of Probability.-The degree of probabiity is calcutated as followa :-OI' 100 persons who had eaten of a certain fruit, 75 were hurt hy $i t$; and of every 16 who had eaten of it, 4 died. Henee the prothability of safety in eating of it is $\}$, and the prolubility of surviv. ing the eating of it is ?

direct and indirect belief.

Belicf is ascent produced by apparent erclibility. It is direct when a proposition, without regard to nny former proposition, is admitted; but indirert when a promesition is admitted in consequence of the admision of some former proposition.
The intuitive principtes of belief are-1st, A conric. tion of our own existence; 2d, A contidence in the evidence of our senses; 3d, In our mental operations; 4th In our mental identity; 5 th, In the confornity of th oprerations of nature.
In julging of the eredibility of a statement, we must often extend our views beyond our oum expurience. The King of Siam would not liwlieve that water froze in Bri. tain, berause he had never seen water berome solid. If the king had proceeded upon the knowledge which he had arquired of the properties of boties, he would hase recollected that he had sees various fluids rendered solid by the abstraction of hent, and hence inferred that weter might become solid in a low temperature.

truth.

Truth is that which admits of proof. It may be proved to be true by the evidence of the senses, hiv investigat tion, hypothesis, and experiment, or by a fair trin of imduction founded on these preliminaries. Some piessong are so incredulous, that they will believe in the truth of nothing which they cannot jrove ly the eridunce of the sensera and a certain degree of expericuce. But, under the heal of theory, we have seen that it is perfectly ressonable to accept of inferences founded on the imestio gution and experience of others, provided the inferences are recoucilalise with known phenomena.
Too great credulity is na erroneous as too great incredulity. A person may make himself ridiculous in la lieving even that which the senses seem to prove to le true. An ignorant prason sees a juggler, as he thinks, cateli a hullet fired from a gun, and lurlicees that the juggler artually performen this frat; whereak the tullet is not tired at all, but is hold in the juggler's hand. To julge of truth, therefore, the mind must he eultiratel, the expericure extensive, and the induction just. Ia Logie, Truth is anid to be the agreement of prepositions with the notions conceruing which an affruation a made. 'Truth does not exist unless the terms emplayed are underationd in the same spuse ly the spuaker and the person auldressed. The chief causes that preven
the dise 1
is Hasty
General arives at e may be de boree, a sh they resemt differ in m
A marh rounc: but third is fras Indis-rul they have the foree th Genersili Wance. Al tremblance things: 1st emilitance the mind; of partial re

A genera Thus, the 8 notion of res shecp, stag,
To axnly which it em
Passion e haste.
Peevishne to the innoc
Manslaug
Nurder is
The analy caracy of th not leing ab genteman la thst Sherid day with a towards him As soon as seen a cettai Sherilsn w gntleman mod," answ i (eye) out ancedote rel : there was hours, mind when they upart, age disputants : moned by th ference, cor askel thom In the samu: i, a letter at wondered h dout a mat
Impirinn
is greatly
The procese protuon as Hence the oure time o timu A sh 3 shilful te clusions u dewervedly

Men are similar effecte, he resemblance rs to other dician ascertains 'The credit due ed by finding 1 regard to tha

vidence of men

 resumptions are re of greater cy ${ }^{2}$ probablo that isted unless the'Thus, Janes ad, in a house; the house, and spot ; thercfore, is who had eaten and of every 18 c probability of ability of surviv
, EFF.
I eredibility, It egard to my forrert when a the admission of
e-list, A convic. idence in the evi1 operations; 4th conformity of th
atement, we must experience. The vater froze in Bro become solid. If owledge which be es, he would have dids rembered solid anferred that water ure.

- It may he proved onese, by investige by a fair train of ries. Some persong "ve" in the truth of the evidence of the ience. But, unles t it is perfectly res. ded on the iurestiided the inferences ena.
as too great incre If ridiculous tey fac neem to prove to te agher, as be thinks, a helieves that the ; whereas the bultet juggler's hand. To must be cultiratel, indurtion just. In nent of proposition an affirmation a the terms emploved loy the spasket and causes that prosen
the dise wery of truth are-1st, Ambiguou language; is Hasty inluctrons; 3d, Prejudice

GENERALIZATION.

Generalization is that process by which the mind arives at a whole class, expressed by a general term. It may be defined ss the notion of partial resemblance. A horse, a sheep, and a stag, are named quadrupeds, because they resemthle one another in having four legs, though they differ in many other respects.
A marble, an spple, sn orange, agree in form-they are round: but the first is hard, the second is pulpy, sud the third is fragrant.
Indis-rubber, steel, air, the gases, are elastic, that is, they have the power to resume their former shane when the fore that diminished it is withlrawn.

Gencralization, then, is traring certain points of resemHance. Abstraction is fixing the mind on the point of remembance in one body. Gencralization implies thres things: 1st. An object that gives rise to the notion of remiblance in the mind; 2 d , The rise of that netion in the mind; and, 3d, The name to express that notion of partial resemblance.

ANALYSIG OF TERMS.

A general term expresses a notion of partial similarity. Thus, the general term quadruped expresses the partial notion of resemblance that is felt when we regard a horse, sherp, stag, \&c.
To anolyze a general term is to mention every notion which it embrnces.
Passion embraces two notions: that of displearure and baste.

Peevishness is transferring displeasure from the guilty to the innocent.
Manalaughter is killing accidentally, or without malice. Murder is killing with mulice aforethought.
The analysis of complex terms is indispensable to accaracy of thought. Many hot disputes arise from men not heine able to analyze the language they employ. A gentlenain lately related the following anecdote to show that Sheridan was a wit. Sheridan was walking one day with a friend, when he observed a person coming bowards him who was very affected in his pronunciation. As soon as he met Sheridian, he asked him if he had sem a certain great curosity which was then exhibiting. Sheridan walked on, and his friend olserved, "That gentleman does murder the English language." "Not so edl," answered Sheridan, "he has only knocked an i (eye) ont." Some of the company who heard this anedute rilated, pronounced it witty, others atfirmed that there was no wit in it. They disputed more than two hours, and seemed then farther from agreement than when they begun. Fortunately, just as they were about w part, a genteman requested to know whether all the disputants wculd admit that " ferling of light mirth, ofectmonel by the nemerted diservery of resemblance with difference, comstituted wett. All agreed that it did. We then asked them if there was not in this instance a resemblance In the sount-i_eye, with a difference in the meaningi , a letter of the alphatset. Po: his, too, all assented, and wondered how they could possibly have disputed so long about n matter that was so simple.

Impartiture of lieurrat Trims.-The progress of society is greatly winge to the iniroduction of general terms. The process of stuly is abridued nore and more in proporton as the truthe to be aryuired increase in number. Hence the elementary truthe of science, which were at one time orcult, herome the subjects of common education A shant period employed at the present time, under a skilful teacher, will carry the student heyond the conclusions which limited the inguiries of those who were dexeredly reputed eminent philosophersan ageor two ago.

Men are apt to fail into two great extremes. The one
arises from too minute an attention to particulars, the other from habits of generalization carried to an axcess. When theoreticsl knowledge and practical skill are happily combined in the same person, then the intellectual power of man sppears in its full perfection.

predicables.

A term is said to be common when it belongs to a whole elass slike; as, Horses sre quadrupeds.
The horse is a quadruperl. A term is named a pre dicable when it may be affirmed of the class, or of any one of the class.
Predicables have been reduced to five classes-genus, species, difference, property, arcident.

The genus expresses the common part of the essence of several objects.

The sperific expresses that which is essential to the notion of an olject.
The difference expresses the distinguishing part, or characteristic.
'I'he property expresses what belongs to every indi vidual of the sprecies.

The arrident expresses whst belongs to some indiv duals only of the species.

The following are examples of predicables:-
Man is an animal. Animal is the genus.
Man is a ratimal being. Rational is the difference.
Man possesseg the proporty of speech. The property.
Man is toll, learned, iunorunt, \&e. Accidents.
Rational being, or snimal, is the specirs. The species with the difference is equivalent to the genus,

The qualities necessary to the existence of a subject constitute its essence.

Msn is slso distinguished from other maimsls by the capacity of religion, making exchonges, using fire to dress his food.

A logical or universal whole is termed a genus when its parts are also wholes or species; as man, beast, bird, finh, insect, are specirs of animal.

A whole is termed a species when its parts are individuals; ns John, James, \&c., are men.

A genus that is not considered as a species of any hing is termed tho sumbum or the highrst genus.
'The procimum genus is the lowest genus that can be predieated of a subject.

Man is an animal. Here animal is a genus in relation to mam. An nnimal is a substance. Animul is a specics in relation to substunce. Geaus and specics are only notions of resemblance. We may, therefore, generalize differently, and refer the sance individual to any of scveral different species, and the same splecies to several genera, as suits our purpose.

Man rady he classed politically, physiologically, th.oretio cally, or esographically; as-
The man is a farmer, a merchant, a manufacturer, \&o The man is a negre, a white mat, \&c.
The man is a pagan, a Christian, a Mohammedan, \&e
The man i a Europenn, an American, an Atrican, \&co
And the property of an object may appear differcatly to diffrent men: for the notion which is most important in reference to one art may not be regamed so in another. The sailor considers polari'y the property of the magnet; hut those mantufacturers whouse magnets for shiclaing their faces in grinding needtes, fix on the notion of attraction

The predicables sre clative, becanse the same notion or quality may be considered in various relations. Thue Rel is a genus in relation to sciarlet.
Red is a propiry in telation to blood.
Rod is the difference in relation to a rose.
Rod is an arrident in relation to a cup.
The term species in natural history is npplied to anm mals which "resemble one another as much as thom of the same stock do." Hence it is said that the Afrn can elpphant is of the samir succies as the Asiatic one

Drvision.

Loginal division is the distinct enumeration of eeveral thinga by one common name. The highest genus la the whole, the species is the parts into which it is divided. Thua,

An onk is a trce. An elm is a tree. A fir is a tree.
Physiral division is separating the conatituent parts of any thing; but in a logival division each of the parts 3xpresses the riffercnce as well as the general notion. A tree is divided physically into trunk, brunches, leaves, \&c

Tho rulea of division are threc:-

1. Each of the parts, or any of them lese than the whole, must contain less than the thing divided. 'To divide hird into vertebracd, wediug, rapacious, would vio lite this rule, for all hirds nre vertebrated.
2. All the purts torether must be exactly equal to the thing divided. To divide bird into the sparrove tribe, rapacius, and wading, would be erroneous, because some birds are climbing, \&e.
3. The members nust not be containel in one another. Book cannot be divided into gtarto, French, Latin, for the same book may be both quarto and French.

The principle of division with which we begin must be kept in riew. To divide book partly according to size, paitly according to language, would le a cross division. One mode of dividing may be most suitahle for one purpose. and another morle for another. A bookseller would ivide book into octavo, quarto, \&c.; but a plilologist would divide book into Latin, French, \&c.

Classification.-In classifying, we separate olject: acording to certain differences, or continue to gensealize until a dilference can no longer be found. In cla sificntion, one net of gencralization follows another. Thus, according to Lin rous, animals that suckle their yonng form the elo- mumenaha; birds form a second class; amphitious animals a third elass; fishes a fonth; insects a fift ; worms a sixth. The mammalia are classified into seven orders. Each order is divided into four gencra. Each genus has differcht species, of which there are momy varietiel. Cuvier classifica thua: Individual, species, kind, fanily, order, class, division.

depinitions.

Definition is fixing in a single word or phrase the marticular circumstunce of resemblance of varoous ohjects. A sheep is a ruminating animal; it resembles those minmals which chew their fored twice. The attribute which we obtain, common to all the oljects, is the definition. The proximate genus with the specific differonce is the logical defmition. Rational animal is the logical definiion of man.
Detinitiona nee diviled into nominal and real: because the olject in siew may be either to explain the meannig of the term or the nalure of the thing.
The nominal explains the meaning of the term; as, decalogue, the ten commandments. The real detimum, explains the nature of the thing; as, gold is that metal which is yellow, fusille, malleable, heavy, pret ioun, \&c.

And real deffitions have been divided into physiral, arridental, and losicol becsure a definition may be employed to enumerate the propertics and arriden/s, of the physical or me'nphystal parts of the essence.
An accidental definition or description enumerates the properties and arcidents; as, Bonaparte was a native of Corsica, who was conquered at Waterloo.
The nominal and real definitions are the same in all atrict miences; because in them the meaning of the word and the nature of the thing are the same. Cold may posceas many qualitiea not implied in the meaning of the curm; but all the properties of a triangle, or of a circle, may be defluced from its dufinition.
Such terma, too, an virtue, vice, obligation, right, \&c., are capable of a real definition an well an of a logical; and the n minal defumtun coinciden with the real. "V Vir-
tue is that lenevolence which epringa from love io frod and min."

Rutes for Definition.

The rulea for definition are threc:-

1. The definition must be adegquate. To define fin ex an animal that han an air-hladder, is too norrow, for many fish have not an air-bladder.
2. The definition must he plainer than the thing de fined. Dr. Johnann's definition of netroork is not so.
3. The definition must be neither too brief nor too prolix. When it is tautological, we are left to auppose what ie nth true. Circumstances must not be introduced which are true generally, but not always; lecause waci dental cireunstances may be mistaken for real. Clouda are cloomy vapourn. This definition is tr only in certain circumstane:es.

Importance of Definit an.

i. To guard our meaning agie', st mistake, we must define the terms we cuploy, if we to not use thew in their common acceptation. If we employ, without defi. nition, the term virtue to express foriiulf, some persons may sup; ose that we mean justicr.
2. We must understand the terms used by others in the sense in which they detine them; and if a definition has not been given, wo must understand then according to common use.
3. We must distinguish verbal from real difference. John affirns that the ancient Gicrmans wero scrages James denirs the assertion. They diapute long and violently. They are asked to define the term sorage. John defines it, "a person unacquainted with agriculture". James defines it, "an illiterate person." Hence the dispute is verbal, for James admits all thai John contendr fir. Jolm does not include in his detinition the notion illiterate. James docs not deny that the ancieat Gero mans were unacquainted with ngroculture. If he had denied this, the dispute would have lwen real. The one would have denied that which the other affitmed to be true.

propobition.

A propmsition is an net of judgment expreseed in lan guage. Judgment is the notion of relation which arnse upon the parception or conreption of two or more chjectas or of two or more affections of our mime. We perceive the distiant mountain, we consider its relation in position to the hill that is nearer. A notion of relation arises in the mind: the inill is juiged to be nenere than the mountain.
Eivery propusition expresses the relation of a whole to its parts. Noow is white, cold, isc.; that is, cuch of those qualitios forms a part of the subject anow.

Teims of a Proposilien.
Every propovition has tuo terms: the sulject, or that which is spoken of; sad the producute, or that which is said of the sulject.

Sul jeet.	Copula.	t'redicate.
Stuw	is	white
Siuw	is not	black.

The mpula alfirms or denica the predirute of the subjers. It is prolable that wone ships have beon lost. That ume ships hare bren lust is the subiject; potudle is tha prodicate. Kings reign. King is the sutject; (are) reigning is 'he predicate.

When the predicate is emphatic, it is plared before the subject; as, fircut is Diana of the Biphesmus.

A Quatifend Sulject in l'redumbe.

The man in wise who speaks little. The eubject is not man only, but mann limited ly the words uho speaks cithe; whe in the predicate.
The asilor ia happy in having reached the alore. The preslicete in not happy, hut happy limited or çualifed by the worls in havong reached the thore

Ia compoune wabject or Lifa and dea the two sulyject and reterend ar
Comporend I guage in whic of his hand, is tinn; because
Nither Cese ralent to-Ces conjunctive pro propositiona in and niches are sery to salvatio

It ia cilher da puitions. 1. . nighth 4. It is does not conta in eviher sumn gutumn.

Com
A comparativ degren is false, tion P , as, Rich
A causal jro propositions is All events are fite; Tamerlan ocerpio.

Tiefini
A definitive
false; as, Cessa
Rone, by those
Cesar wus jut
If this man
is fulse; it is no

Propositions into true and f
Propositions into categorical
Propositions into affirnative
Propositions intw univernal
A categorica
Now is white.
A hypotheti amditional.
The followin
Dogs are rat
It is false.
Dogs are fai
It is rategorical
Horses ave
it is unitereal.
Horms are
mate. H is $\mu^{\prime \prime}$
than horses.
Harsea are q
we quadruperil
Some theli
sign nime ludic
Cireles are t
not expressed.

Twa ргоряа
Ve2. 1.-47 left to suppose be introduced ; hecause arcireal. Clouds only in certain

Sake, we must t use thene in , without def. ; bome person
d by others is if n definition them according
real differenes were scrages. e long and vioh savage. John h agriculture." Henee the dis John contend ition the notion e ancient Ger are. If he had renl. The one affirmed to be
rpresmerd in law on which artsee or more chjects, 1. We perceive ation in position ion ariseg in the n the mountain. n of a whole to is, each of those
suliject, or that r that which is
redirate.
white.
barc.
,
e of the subjer. ren lost. That polulile is the sutject; (are)
a placed before hergans.

The sulyject in not cho xpats .tile;
he whore. The or cqualified by

Compound Pronositions.
In componnd propositions there is either more than anaubject or onc predicate.
Life sind death are in his hand. Life and death are the two suljects. Holy and reverend is his name. Holy and reverend are the two predicates.
Compound propositiona are distinguished by the language in which they are clothed. Life und death are a his hand, is named a conjunctive or copulative proposidu ; because and is a copulative conjunction.
Sicher Ceasar nor Pompey loved his cuuntry, is equiralent to-Cesar did not love; Pompe, uid not love. A conjunctive proposition ia false when one or both of the prupositions into which it is resolvable is false. Virtue gnid niches are neeessury to salvation. Virtue ia necesery to solvation, but riches are not.

Disjunctive Proposilions.
It is eilher day or night, is resolvable into four propesitions. 1. It is duy. 2. It is not night. 3. It is night. 4. It is not day. A disjunctive is false when it does not contain the true member or proposition. It in aiher summer or winter. It may be apring or gutumn.

Comprative and Cranal Proposilions.
A comparative proposition is false when the higher degreo is false, or the positive is not true in both proposifing, as, Riches are betlor thuy virtuc.
A causal proposition is also false when either of the propositions is false, or the cause is falsely assigned; as, All events are necessary, liecause they were decreed by fre; Tancrlane vas cruel, liecause he was born under ocerpio.

Thefinitive and Conditional Propositions.
A definitive is false when. any of the propositions is false; as, Cexar was put to death in the 610^{\prime} h yeur of Rone, by those whose lives he spared when eonquered. Cesar was put to death in the 7loth year of Rome.
If this man is sick, he has a fever. This proposition is false; it is not true that whoever is sick hus a fever.

The I'roperty of a Proposition.

Propositions are divided, according to their property, into true and false.
Propositions are divided, according to their suostance, into categorical and hypothetical.
Propositions are divided, according to tincir qualuy, into affirmative and negative.
Propositions are divided, according to their guantity, inw univernal and particular, or partial.
A categorical proposition is a simple proposition; as, fuw is white.
A hypothetical proposition is either a disionctive or a amitional.
The following may be taken as illustrations:-
Dogs are rational. The property of the propssition. this false.
Doga are failhful. The substance of the projosition. It is categerical.
Horsee are quadrupeds. The quantity of the sulject. 't is universal.
Horks are quairupeds. The quantity of the prediate. It is purial; because there aro otler quadrupeds than horses.
Horses are quadrupeds, is niversal ; leccsuse all horses we quadrupeds.
Some men are not virihons, is partial; because the agu sime fidicata that the proposition is particular.
Circles are round, is molefinte; because the sign all is not expressed.

Opposition of 1'ropositions.
Two propmancins are said to be opposed to cach other, $V_{\text {wL. }}$ I. -47
when, having the same aubject and predicato, they diffo in quantity or quality, or both.

A universal negative and a universal affirmotive on termed ontraries; as, All horaes are quadrupeds: me horse is rational.

A universal affirmative and a particular affirmative are termed sulinllerns, and also a universal negative and a partieular negative; as, $A l l$ horsea are quadrupeds: sone horses are quadrupeds, No horse ia rational; some horses are not rational.
A particular aflirmative and a particular negrative, are terined subrontraries; as, Some horses are black; some horsea are not black.

A univeral affirmative and a particular ncgative, or a universal negative and a particular affirnative, are termed contradiciories; as. All horses are quadrupeds; some horses are not black: λ_{0} horsc is rational; some horses are black.

Contraries differ in quality. Subalterns differ in quantity. Subcontraries differ in $r_{i} u$ ality. Controdictories differ in loth quantity and quality.

Contraries cannot be both true; for if it is true that all men are mortal, it must be false that u man is mortal. Subcontraries canot be both false ; for it must either be true that some men are white, or that some men are not white.

Subalterns may be woth truc or both false. Allmen are liable to mistukes, Some men are liable to mistakea, are both true. No man is liable to mistakea, Some men are not liable to mistakes, are both false.

In contradictories, if the one is true the other is false, and vire rerga. If it is Irue that sorae men are not white, it is false that all men are white.

Conversion of Propositions.

A proposition is said to bo converted when its terma are transposed; as, Some cor"ards are boasters; some loustirs are curvieds.

A universal negative and a particular affirmative are converted simply; as, No Christion is impious; no impious man is a chrostian.

In converting a aniversal affirmative, we must limit jts quantily ; as, $11 l$ birds are animals; some animals are birds.

In converting a particular negative, we must regard it as a particular sflirmative; as, Some nembers of the university are rot learned; sone not learned are members of the university.

reaboning.

Reason is a series of consccutive judgments, and reasoning is a scries of related propositions, or a continued analysis of our thought. Thus, Man is fallible; he who ia fallible may err; he who may err ought not to wonder at others differing from him in opinion; therefore, man ought not to wonder at nthers differing trom him in opinion. The last proposition is contained in the first as much ns of the intervening propositions; but the relation intween the first proposition and the Inst is not seen till the unfolling of proposition after proposition.

Jingical Inference.

Logical inference is of two kinds: it procecds cithen from the parts to the whole, or from the whole to the [arts. Thus, A cow, a leer, a shecp. ruminate ; a cow, a leer, a sheep, represent all homed animals; therefore, all horned animsls ruminate. This is inductive reas soning.

Dedretire reasoning is proceding from the whole to the parts; an, All horncd animals ruminate; a cov is a horned animal; therefore a cow raminates.

All hormet atimals is the class or whole; the parts are, - eow, a deer, a sheep; what is affirmed of the whole may be affirmed of cuel of the parts, or of all the par*s. The rule for indurtive reasoning is- What is affirmed of
the parts may be affi ined of the wiole. The property wbich belongs to the parts is admitted to belong to the whole, or class.

What is denied of the whole may be denied of the parts.

Aratyzis of Reasoning.

Every conclusion is deduced from other twon proposifions, termed premizes ; as-Premiss 1, or mojor propovition, All horized mimale ruminate; Premiss 2, of winor proposition, A sheep is a horned mimal; Conclusion, Thorefore, a sheep ruminaten. Shecp is named the minor term, because it is less extensive than tuninating, which is therefore termed the major. Horned animals in the midlle or mean term, or pronf. It is also the wholc.

In the major proposition wo find the midtlle and major terms; and in the minor propesition, the middle and minor terms.

The third proposition is named the conclusion, because it concludes, or shuts up in one, the major and minor propositions. The first two propositions nee bermed the premises, because they premwe, or go beforc, the conclusion.

Entiymeme.

Enthymeme is reasoning from signs (language) or probabilities, because it has one of the premises suppressed. Thus, IIe is mus industriuus man; therefore, he will nequire wealth. The m.jor proposition is here sup-pressed-Fivery industrions man acquires wealth, which is thlse. Therefore, the conclusion is only probablebe may neyuire wealth. All gool men are happy; therefore, John is happy. The minor premiss, Juhn is e good man, is suppressed.

Hypothetical Rensoming.

A disjunctive proposition states an altermative, or imwe that some one of the eaterorical propations is true. Wealth must eifler be spent or hoarded; it is net hoarded; therefore, it is spent. The rason is not romelusive, loreanse a proposition or member is wanting; for wralth mny be neither spent nor boariled; it may be laid out or omployed in produeing more wealth.

Dilemuna.

The dilemma is a compler conditional reasoning, in whirh either one of the an'ecretents must loe admitted, or one of the conseyuents must be tenied.

If Eachines joined in the pulitie rejoicings, he is ineonsistent; if he did not join, he is unpuatriotic; but he either joined or did not join; therefore (one of the consequents must follow), he is ether inconsistent or unpatriotic.

We mpeak of the horns of a dilemma, because the nome implies a taking hohl of both whys; if a person is not caught by the one antecedent or cons quent, he must be caught by the other.

If it is apring, you are to hame for not sowing; if it is nutumn, you are to blame for not reaping; but it is either spring or nutumn ; therefore, yon are to lhame for either not sowing of not reaping. It is not conclusive. The enumeration of the parts is not complete; it may be cummer or winter.

Soritors.

The morites rensiate of a number of dependent propeditiona, in which the predicate of every preceding propevition becomes the subiert of every surecedina proposition, till the suljert of the first is found to agree in the condusion with the predicate of the last. Thus, A mieer covets much; he that covets much wants much; he that wants much is miseralle; therefore, a miser is maserahle. There are here as many acts of reasonitig as there are intermediate propsxitions.

F gure.

The fiswrs of reasoning are only lifferent frms of
etating it. We have seen that the same acs of rea soning may be expressed either cintagonieally or hypo theticully. It will now be shown that the same of reasoning may bo expronsed in each of the fow figures.

First Figure.

No lover of pleasure in a true philosopher;
The Epicurenns were lovers of pleasure ;
They were not true philosophers.

Sccond Figure.

No true philosopher is a lover of pleasure;
'The Epicureans were lovers of pleasule;
They wero not true philosophers.

Thiril Figure.

No lover of plensure is a true philosopher ; Lovers of pleasuro were Epicureans;
The Epicureans were not true philosophera,
Funth Figure.
No trie philosopher is a lover of plessure; Lovers of pleasu e wero Epicuremos ;
The Epicureans were not true philosophers.
In the lirst fiyure, the middle term is the suhject and tho predicate of the minor. In the second figure, the middle term is the prediente of heth jremises. In the third ligure, the midille term is the suliject of both pre mises, In the fourth tigure, the midalle term is the promdicate of the major, and the moligut of the minor. The fourth is the opposite of the lirst, and the third of the werond. Ther birst figure is used when we are reasoning with a permon who wishes insiruction; the second in provine to one who objects; the third in showing that a universal conclusion has lecen drawn when a partial conclusion is the legidimate one.

Reductio all Inqussibile.

In reluctio ad impossibile or ad! absicrilum, it in proved, not that the original conclusion is true, hut that an atsurdity would follow from the supposicion of its luring false. 'Thus, All gold is yellow ; some metal is not yollow; some metnl is not goh. If this conclusion is not true, the pontradictory-All metal is yellow, mun the true: All gold is yellow: All metal is gold; all metal is yellow. The major premise is true, being origingly gratited; therefore the falsity mast be in the mine premise, whith is the contradictory of the origind conclusion; therefore the original conclusion must io true.

Faltury.
Fallary is falser or inconclusive reasoning. When the fallary is in the form of expression, it is termed formul Otherwise it is named meteriol.

Money is wetalth ; corn is not money ; thercfore it in not wealth. Whatever is athirmod or deniod of the athe may le athirmesl or denied of any of the yart:. But here nothing is mentioned as belonging to the elass, mones; corn is txeluded from it. Now, though we may alifen of gold or silere, or of any part of the tren monog, what was alfirmed of the clase iterlf, we are not authoized to deny that what was atirmed of it can lie stfirned of unthing else. The following is a similar fallacy:Horsis ase animala; sherp are not loorse's; therefore sheep are not animals. Sherp are nomals as well ey horses: corn is wealth as well ne money. The terms onimal and woulth lave tren used protidly in the pro miser, but wn'matly in the conclusion.
\mathcal{F}° "llary of Jiqmenation--In this fallacy, the middo term is used in two senmes, or there nee tern clanes, not onc. 'I'hus, Wich d men abound in repentance; there fore they abound in what in good,
'Ihis act of reasoning or fallary is amplyed anform leprentitnce is a good thing;

Wieked men They abound In the maj ir pr ont in the min
Fallacy of Di net ; 3 and 2 at 3 and 2 are two two numbers. because the mi mijot premiss, allacy of compo two wholes or
The miracle have been the night have bre alance of the fal
rallury of $A r$ is used simply ir eettain accillent the fields; lonv losves of bread miss we eat is ta Fith its aeciden
A certain m thereforo it is I with its accident

This occurs truth of a prop The English In from the Saxon bacy to a great ful. Why is it bne eful and odion latin synonym ing in this way fol hecanse it is Why did you g other; Because at all.
Whately give huving sentimen firdom of speen tageous to the interests of the enjoy liberty, we trments." This reasorl:g.

When any 0 which is neith the question, or, pritio principii. be true from so disputed.

Some person own contradicti patisan will lise which prevent would injure known, from il enuntries poses of sending it, th iv little better position, in effe kind of reason legol jou dererri ars the defen contend that
obsurdum, it in on is truc, but that stpposicion of its w ; some metal is If this conclusion ctal is yellow, mun al is gahl ; all metas 1c, heing originally be in the minu y of the origina onclusion must bo
soning. Whan the It is termed formah
ney; therefore it in ridenied of the ehte he part s. Hut here o the closs, nower: ugh we ray alfin e term monsy, what re not authoized is an be attirmed of similar fillacy:Iorsers: therfore, animals as well 4 roney. The term 'ituilly in the pro on. fallacy, the middok are furo clases, not reperitance; thero
analyzed as follow

Wicked men abound in repeniance: They atound in what is gond.
In the major premiss repentance signifies genuine sorrow, out in the minor it signifies regret arising from pnin riplos.
Fallacy of Division and Composition.-5 5 is one numner; 3 and 2 are 5 ; therefore, 3 and 2 are one number. 3 and 2 are two numbers; 5 is 3 and 2 ; therefore, 5 is two numbers. The former is the fallacy of division, because the middle term 5 , is used collertively in tho mijor premiss, but dividedly, 3 and 2 , in the minor. Tho allacy of composilion is the reverse. In both thero are (o) wholes or classes.

The miracle of euring the man sick of the palsy might have loen the result of chance; therefore, all miracles might have been tho result of chance. 'I'his is an insunce of the fallacy of romposition.
rallary of Arrilents.-In this fallacy, the middle torm is used simply in one of the premises, but conjoined with cectain accidents in the other; as, What we eat grew in the tields; lonves of bread are what we cat; therefore, lasves of bread grew in the ficlds. In the major premiss we eat is taken simply, but in the minor it is taken with its acridents, baked, rooked, \&e.
A certain medicine, when taken improperly, hurts; therefors it is a bad medicine. It is bad when taken with its accidents, that is, improprrly.

Reasoning in a Circle.

This oreurs when a person pretends to determine the truth of a proposition by instancing the conclusion. The Englishs language, by being composed of words from the Saxon ned Latin languages, admits of this falbey to s great extent. A person saya, A thing is huteful. Why is it hateful? Because it is odimes. Now, hateful and odious mean the same thing; odi us being a latin synonym for the Saxoll worl hulefful. Reavoning in thin way is just as bad ns siylug a thing is hatefullecause it is hateful, or it is true berause it is truc. Why did you go to such a place? says one man to another; Because I went, is the reply. This is no answer stall.
Whately gives an instance of this fallacy in the following sentiment. "To allow every man an unbounded fromom of speech must nlways be, on the whole, advanhgeous to the state; for it is highly conducive to the interests of the community, that earh individual should eujoy liberte, perfectly unikmited, of expressing his sentiments." "This kind of rant often passes for sound reason ug.

Pctitio Principis

When any one reasons on the supposition of a fact which is netuer proved nor granted, he is said to beg the question, or, in the language of Lagie, to resort to tho petion principii. A proposition cannot be proved to be true from something which is equally uncertain and disputed.

Self-Contrntiction.

Some persons advance urguments which bear their own contradiction, nul therelore rome to nothing. A partisan will the heard to sny, "The removal of tho Inws which prevent the free importation of forcign corn roold injure the home agriculturiats; hut it is well known, from the nost ample investigation, that foreign countries posenss so little overplus of corn, or the means of sending it, that any expectation of supplies from abron. 1 is little teter than a delusion." Here the second proposition, in effect, contradicts the first. This fallacious kitul of reasoning is only sorpassed by the following legal for d"esprit:-"I'luere are three points in this came"," us: the Ifefondants counsel. " $h_{\text {n }}$ the firat plare, we whend that the kettle was eracket when we borrowed
it; secondly that it was whole w^{\prime} an 179 returned it; and thirdly, that we never had it 4.11 .

Ignoratio Elenchi.

Ignoratio elenchi, or irrelovant condision, is whet various kinds of propositions are substituted, aecording to the occasion, for the one that ought to be proved. The fine arts plense the imagination, and adorn and polish life. Hut the fine arts are the parents of luxury. This does not prove the original conclusion, namely, that the line arts are a frivolous amusement; besides, it mistakea the effect for the cause. 'I'he fine arts are the offapring of wealth, not the parent of luxury, for they can lie encouraged only by a people who possess as much wealth, nt least, ns enables them to devote a portion of their time to the cultivation of the mind.

Argumentum ad Ifominem.

This signifies the argument directed puint blank to the jerson spoken to, or a reference to something in the person's own condition which proves the truth of tho argument. There is fine instance of the legitimate use of tho argumentum an hominem in Luke's Gospel chap. xiv. v. 5. The Pharisces, allecting to be scandalized by Christ doing works of mercy on tho Sabbath, he adlressed them as follows:-_" Which of you shall have an ass or an ox fullen into a pit, and will not straightway pull him out on the Sabbath day ?" This direct appeal was unanswerable.

The argamentum atd hominem is always used fairly when the conclusion established is not considered general but particular; that is to say, when it applies to the conJuct or prineiples of the person reasoned with, not with the prineiples of all mankin'. No man is entitled ta have his arguinent overturned ly the doings of othern.

Failacies of the Feelings.

The feclings may be said to be always lying in wait to set aside the etlorts of judginent. The class of fallacies of this natury are intimntely connected with interest, caprice, self-esteem, envy, jcalousy, disputation, complaisanee, outward appearance, leng-sounding words, infirring the motive from the effect, nuthority, maner, nwe of rank, fear, \&e. Bacon terins the fallacies or prejudices which militate against the discovery of truth whis. because men are apt to pay homage to them instead of regarding truth. He classes them as follows:-

The Ist class are called Idols of tho Tribe, because they are common to the whole race or tribe of mankind; the 2ll are termed Idols of the Ihen, because every man has his own particular den or character; the 3 d class, Idols of the Mariet, because they are accommodated to rommon nolions; and the 4th, Idols of the The atre, beeause many systems of philosophy are but stage* plays, which exlibit nothing: but theatrical worlds or visionary hypothesss.
'The first class are those prejudices which men ene tertain from their early notions, and from a love of hypothesis. Thus nin old woman who may havo recom mended some nostrum, which has been successful in ruring one discase, will consider it a remedy for all other disesses.

The second are those prejudices which arise from halits of thinking, the dispositions or the passions of men. A theologian who is of a violent temper, will represent the Deity as implarable. The pedantic mathomatician, who reasons on a subject, will not be convinced by prokable sonclusive reasoning, becanse it is not demonstrative.

The third are those which arise from the relations of human socicty, from the condition of men, from their diflerent stations. 'Tlur man of wit laugha at the philo sopher of whose spectuhtions he is ignorant.

The fourth are those prejudices which men entertain apan the authority of others. The zealous abettor of come favouite theory will never listen to any argumenta mgainat it.
'Ihe ? Allowing are illustrations of these varioun fallames. drawn from ditfirent circumatances.

Of Caprice.-There are persona who will not almit that those individunis whom they happen to distike are in any respect worthy of enteem. They seem to reason thua :-I like that man ; therefore, he in the best person in the world. I dialike that one; therefore, he is a worthless fellow.

Of Self-lave ond Self.Conceit.-Some individuala regard all men as irrational who differ from them in opinion : all who do not agree with them are opinionative. I nm a man of common sense; therefore, it is so. I have a right to tre displensed with you for not succumbing.

Of Envy and Jealoresy.-Some men eontradict with a mean malignity those of whem they are jenlonn. Their envy of a person begeta hatred of his opiniona. I did not way thet; therefore, it is false. I did not write that article; therefore, it is contemptible.

Of Dieputation,-Disputation, or meintaining an nssertion for the anke of contraliction, renders conviction ditficult, if not impossible. When some disputants find that a position is not to be defended, they trust to equivorstion; some affect contempt or molesty, so reproach thamselves in order to get rid of an adveraary; othern defend thenselves with the only weapons they can use 10 advantnge-the atrength of their voice and lungs.

Uf Interest-A difference of judgment not unfreguenty proceeds from interested motives. 1 ain a native of this country: therefore, I must believe that every interesting event recorded in its early hisorr. netually occurred. My interest is apparently damaced by a certain public menaure ; therefore. I must eppose it. I have nothing to do with tue effect which it may have on the country generally.

Of Comphasenre,-Some peraona either commend what is reprehensible, or more than is just, and therefore delude those that are so commended, and wrong those that really merit praise.

Of Cutreurd Appearance-There are some individuals who everrate the value of wharver at once captivates the senses; and who unde-valt whatever reguites oh. servation and thought to be duly appreciated. The colours of the painting are leautiful: therefore, the doeign is adnirable. That is a fire-lomking mati. What a fine orator! What a good mat lo in !

Of sounding Words,-Thereate hinlisliuals who never diacover the false statementir and the invalid rensming which are found in some tantelewly decurnted finmin" tion. The figures set them n-kaxilif: the profials tickle their ear: and the sound of the worls gllures them to thoughts so frivolous that a chid would rejeet them, if oxpremed in suitahle languge.

Of Inforring the Me've fivm the Fiffect.-There are not if fow men who regard every change of opinion as a sign of fichleneas; who dintinguish neither fortunate from prudent, nor unfortunate frem vicious IIe has chonsed his opinions in regard to pepoular educntion; therefore, be is in mere weathercork. He did not pay the: esspert to Mr. A. which was experted; therefore, he is proud and vain. He is of the parae opinion in regatel to geology as MI. C.; therefore, he in douhtlens as beretical in his opiniens. Nay, he is umpuentionahly an atheist. and something wores.

Of Aufhority and Manrer,- Some wen test the truth of an aspertion by authority which they have been led secidentally to revere. There are others, ngain, whu urn disjownd to test it by the manntr in which it in prowounded Their reasoning, tacitly and involuntarity, is -I'hir ir the opinion of Mr. A., the leader of my party ;
it in therefore correct ; I have no need whatever to ext mine it. T. in a man of no fortorne-what is his opis nion worth ? The apeaker had tine showy manner; it was quite imperailile to heer bin without remoning correctly, and feeling rightly. Sow cempletely ho demon lished his opponenta! His very manner showed that ho despined them all. It was quite aufficient that he proved a part only of what he was to prove, for he left his au.
dience to infer the rest. It may be true that he imputed dience to infer the rest. It may be true that he imputed to his opponents certain sentineuta which they uttery repudiate; but his nuthority and manner made good thin imputation. That many such soplisms as the abore are frequently to bo met with, muat occur to every sound observer who mixes with the word.

Dogmatizing.

This is but a hranch of the above. When a person utters his own opinions, and endeavaurs to force thera on his bearers, right or wrong, he is said to dogmatise, that in, lay down his dogimne or oginiens in an improper mamer. Few things ars mure common than this falla. cious mode of disputation, which clearly originates in excessive relf-esteem. What I any is right, for I hare atuilied the subjert, and I am a man of common sense. Persons of thiq turn of mind are always hurt at any one thinking diferently from thens, and look upon it as kind of personal insult, for it amounts to calling in ques tion their judgment.

Confusion of Ideat,

Fallacies in reasoning eften lurk under a coufusion of idens, and to proxluce this confusion in often the object of cunning and dishonest arguers. A tricky man went into the ghop of a ruther simple-minded pomsa, and asked for a penny lonf nid n penny glass of gin The articlesleing given, he drank the gin, and addresed the woman as follows :-" On sevosal thoughts, I will nm take the breal; therefore, I just give it back in payment for the gin." "Ihe woman, somewhint jrepplexed, ato nwered. "13ut you did not pay me for the hread." "Well," snid thir man, "I have not tnken it." "But where is the payment for the gin?" "My good sin man," replied the man, "haven't I told you alresdy that I have given hack the penny loaf for it." I'his piece of sophintry so conlused the inlens of the poor woman, that she allowed the villain to depart.

Viry simple questiona may in this manuer be mak to askume min nir of extraodinary dilliculty. A hering and a lual for three halfurnee, how many for elerenpewer! is a jocular quastion, which has preptezed taty at tirst sight.

Ruppreasio Vert.

Suppresstu peri, or the supprestion of the trith 181 amonon mat diabonear methot of rearaning on a quea tion. 'The thing is done in varions why, A prote unler examination hy a committer of the H onse of Cons
 to give "apecial religious instrution in solaols ?" Pr naswers that "he would not give ajsecial but general relis gious education in achools." An "Iponent sets tha answer in print, and in order to injure the reputation od the respondent, he nays that Mr. So-and-ki? "decaner that le would not give religiose churation in mehoila' Hire the truth is suppresmed; the word spectigh has heen ioft out. Ithis is called garblinz a sentence to suit had purpos.
'The following is an analogens mode of proceture. 1 statistical writer, after making an ehabornte investigation. publishes a statement of focts und figures to show that particular corporation is in a atate of innolvency. Hii infereucen, which are quite fair, are met, not hy sn on lysis and dieproval of his etatment, lat by an erpower of an error in his calculution, to the extent of tere
dillings and sixpe ypon made to Brin in tending ta ahow fnorant of arth me diogether wrong in dithonest reasoning mus of party. A p Wy of veing conce mosy, Another r mened is a noost wher and an excr sto the actual mer tap appeal to feelin cuiry on the sulyject Profesional spite nquivoration. Inste ment especting the is dragged forward bus nothing to do.
nys A. B does not bat annwers-"D Did of, "that he was brot wher observation eq

In analyzing a tra oncluding asscrtior salls, and ohserve h usertion will be a en mis; 4. Ascertain in andusive; 5 . Pu plan, uatil you arriv whole commences.
Any train of reaso ing or major premises lo some instances, it math in the reason Ansl or major premise lofarir arguers nre aj fr making him gral method of arguing Whasked question give up point ufter and then lie was at In Smith's Wralt Division of Labour, unalysis. The cone labour increases wen port of the "Issertion deterity of the wo gives rise to lisent proved-Because th chefly to one dejpit dontenty than one hhour. Ite who is Ihbur, does not iose Work to another. I mado hy those indivi Ittention cliefly to : major premiss of Whatever inereases fret kaves time iner wicrention increase

The Livision

Whatever promor
Whatever navew :
Whatewr gives
Whatever enalle
The division of
The division of
vhatever to els vhat is his opi ghowy manner; thout reasoning phetely he demo. showed that ho
ot that he proved t he ieft his an. that the impuled nieh they utterly or made gool the ne as the abore ar to cuery sound

When a person urs to force them raid to dogmolise is in an improper on than thie falla arly originates in right, for I hare ff coinmon refise. is hart at any one ook upon it as to callinj in ques
des n confusion d It often the objeet

A tricky man le-minted womsa xonny glass of gin gin, and adderseed houghts, I will am it back in pasmena hat perplexed, an. ce for the bread." taken it." "But
"My good no. Id you already that it." 'This piece ol a poor woman, that
is manner be mule licully. A herring many for elevent ans priglezed tany

I of the tmith, it 1 parnuing on a quas 18 ways. A prows - the House of Come if he thinks it tirts in schools!" Ho cial but cenecaletios olponent ares thas re the reputation of 4o.ondeno "dectares levation in shonles. ord spectat has been I sentence to mill
we of procelure. borate investigation. gures to show thut of insolvency. Fi met, not by an ant , but by an erpooen the extent of the
dillungs and sixpencel This trifling orror is them apon made to torm the foundation of a train of reasonpon lending to show that tho writer of the atatemeat is gorant of arth metic, that ho is rash in judginent, and joporather wrong in his caleulations. This speeiea of dinonent reasoning is common muong the warm alhernotu of party. A person ia open'ly accused in an arsemHy of weing conecrned in appropriating the public mocor. Another rises to refute the calumny; says the cured is a most estimable individual-he is a good कhet and an exemplary husband; but not one word whe the actual merits of the question; and by this clap rap appeal to feelings and the force of lauguase, all inquiry on the subject is prevented.
Professional spite, also, sonntimes takea the form of pruivoration. Insteat of meeting the truth of anv in teneat especting the qualifieation of a rival, 3 m ; ig dragged forward in reply, with which the argun. ut be nothing to do. "That man is an excellent la wis. mis A. B does not meet this witl a denial or approval, but answers-" Did you hear ho was once a bankrupt?" ot, "that he was brought up on charity?" or makes some ober observation equally aside from the question.

Logical Analysis.

In malyzing a train of rensoning-1. Begin with the concluding assertion; 2. Tritee the reasoning lackranks, and observe how that assertion is proved; 3. The wertion will be a conclusion, and the proof of it a premiss; 4, Ascertuin whether the reasoning thus ohtained is condusive; 5. Pursue with each preniss the same pla, until you arrive at the injses with which the whale commences.
Why train of reasonine, 1 refore, should contain leading or major premises, anu. inordinat? or minor premises. In some instances, it may be forma. Wat every step backnads in the reasoning is corrcet, till we orrive at the inal ar major premires, which reat on nor olicl founthtion. lofair argucrs are apt to act a plain person off his guard or making hinn grant certain premis's. The socratie wehod of arguing was of this nature. 'The oplonent wasked question after question, or, in ather words, to give uppoint after point, till he was lost in a labyrinth, and then lie was at the inerry of his enemy.
In Smith's Wealth of Nations, in the chapter on the Division of labour, we are afforded an example of fair matysis. The concluting assertion is-'The division of thbar incteases wralth. The proofs ndvaneed in suppart of the : asertion are- 1 st, Becanse it increases the Sonterity of the workman; 8d, It saves time; 3 dd , It gires rise to invention. And then thowe pronfs are proved-Because the man who confines his attention chefly to one department of lahour works with mure doterity than one who prosicuses different sorts of abeur, Ife who is constantly engaged at one kind of hanar, does not lose time in passing from one sort of work to mother, lasfu! inventions have generally bern made by those individhals who had oecasion to give their Htention clicfly to their own sort of emplo; wamt. The major premiss of the conchusions respectively oreWhater increases dextority inerenses wealth. Whatener sares time increnses wailth. Whatever gives rise wigrention increases wealth.

Chunate Conclusion.

The Division of Jabour increases Wealth.
Proved by-Vajor I'remisas.
Whatever promotes dexterity incrases wealth.
Whatever sovers time increnas wenlth.
Whatewr gives rise to invention increasers wealth.
Whatever enables one mon, \& c.

Atnor t'remiss

The division of lahour promotes dexterity.
The division of labour saves time.

The division of lutour givee rise to invontion.
The divisien of a ar onabjea one man, \& C.
Each of these mi wom premisea ia proved by an indue tion of particular fac .

The diviaion of inhour ia the diviaion of it into m number of braisches or departinenta Labour moans, 1st, Employment; 2d, The act of labouring; 3d, The result of labour. Wealth in that which is neecsearys usefui, or agre able to man, and ulso cxchangeable.

Analogy.

Annlogy is n consiatent reference of one thing to another ; and n want of this consistency leads to serioula crrors in reasoning; thus, it may be said-Birda swallow anall stones to nid digestion, therefore men ahould do so tho. No Christinn minister eught to marry, because St. Panl recommends celibacy. Wislth demoralizes a nation, because it demoralizes soms i dividuals. Here the proofs are ineonsistent or untruc. There is not such a degreo of resemblanco between the ste nach of a bird nall that of a man, as warrants us to affirm of the one what was affirmed of the other. St. Paul diasuailed the Chaistinn ministers of his time from marrying, because their families would have heen persecuted; but the famblies of elergymen in our time have no such thing to fear. Wealth has not the same effect on a nation that it has on an individuad. I ay render some individuals proud, indolent, and prone to luxury; but a wealthy nation ia industrious, and by no means comparatively proud.

DUQ'OINE OF SYLLOGISMB.- SOPHISTRY.
Frem the preceding definition of propositiona and prolicalies, it will appear that from truth nothing can renlly follow hit what is true; whensoever, therefore, we find a false conciusion drawn from premisea which secm to the true, there muat the some fault in the deduction or infirrnet, or else one of the premises is not true in tho sense in which it is used in the argument. When an argument carries the face of truth with it, and yet leade us into a mistake, it is a sophixm.
It heing of importane that every thing like aophistry or a memblance of truth without the reality, should lie avoided in procesics of rensoning, we ahall, at the risk of a little revaputibtion, explain the fundamental grounds of reasoming, uccurling to the doetrine of syllogisms.

When unathe to julge of the truth or falsehood of a propositica in an imnediate manner, by the mere contemplation ot its subjet and predicate, we are constranad to use a mediam, nad to compare each of them with some thi' ' itea. 'The three parts so formed sre u syllogism. F r ammple, we tako the following, given ly Wintts:-

Our Creator m:' ?e worshipped;
Gerl is our "reator:
'Ihereture, diod must be worshipped.
Here it may he observed that the third term or conMusion rexts on a foumbation afforded by the two preceding. "O ensure lruth in the conclusion, the premisea, hajor and minor, must le true, and strictly agree. We haver another xu uple, as follows:-

Fvery wich ot man is truly miserable;
All tyrants are wicked men;
'Iherefore, ait rants are truly miseruble.
In forming syllogisus, great eare requires to be taken to construct them in surb a manner that the first and second terms are amalogous, and not a mere play of words. 'revious to the method of reasoning from an induction from toblished facts, introduced by Bacon, it was usual to rason sophistically from premises presumedly trus, and consequently the enost filse conclusions were arrived at. I'te logie in vogue was that of the uncient fircek philotophe Arintote, which it was a eprecies of heresy to desy. "Men were everywhere taught to believe in mather, form, and prwation, as the
origin of all thingn; that the heavens were melleexistent, incorruptille and unchangealief nod that all the atara were whirled round the earth in aotill orba! Aristotle'n worke were the great text-hook of knowiedge, and hin logic was the oully weapwn of truth. Men'a minda, tnatead of simply studying nature, were in an cuilenn ferment alout occult qualitien and imaginary emsencen; little was talkel of but in'ention and remiscion, proporcion and degree, infinity, formality, quiddity, individuality, and innumerable other abetract nutions. The latin wigne, which was employed by the erholnaties, wan
 not have understooi; and in the end, the mowt see farian bitternens was produced. as utimes ombling in Mondy contents. In the min!s of the die diputes. Aristofle waw utill the grand authority. Cilristians, Jewn, nad Mos hammedans, united in profeming aserat to the great hawgiver of homas opinions: not Earope alose, but also Africa and Asia arknowledged his duminion; and while hia Greek originala were stulieol at Paris, trammations were read in Persia and Saumarcand. The rage for dith putation which now hegan to prevail in conmeguence of the apread of thin philosiphy, inalueced the council of Lateran, under Pope lanoevent III, to proclaim n prohibition of the use of the physices and metophysice of Arintote; lhut, awful as were then the thanders of the Vatican, they were not mighty enough to dethrone him from that denpotism over mu'n's minals which, by lons cuatom, hald now rendered itulf almant manipotent." " It was reservel firs laril Bacon to break the mighty power of Arindoth's philowerihy, and to subustitute that which in now in use. \dagger 'Ihe errors of the mophints, which it may le alvantageoun to examine, were of two louling ordens. The fault. in the first instance, may reside in the erpreseed "ryumen', or nyllogism, in which the conclavion does not follow from the premises it is apparently involved in ; or mecomlly, it may lark is: the ronseated proens of thouzht, dexterously suggested ly tho sophint, ly

[^34]menuan of which fulue premiwe are rigarded as provel and a fallee though iogically legitimate coneluainn io o d courne necencitated; or in a! ich a conclunlon, fikewing logically fair, and probuthly true an matter of fact, bue irrelevant, or ouly pmortinily relevant to the point at insuen is admitted an npplicalle and ilecisive. In the one ciem the link in wanting which sinould hind the inferencu to the previour powitions; in the other, that in alsent which shoulla comect either with the real sulyject of diypule A mophism, then, which is iusepratable from the form of the expression, may perthpis with proppriety be melied nyllogistir; whito one attariang to the aulbicet-manter mag fill to he trented an c.etriosyllogiatio. It in obviously as renpectes the later surt that the ohn mind is most open
 that hosie is here, where her aif in most essential, able to lend it hut in mennty menaure. The candid will, howe ever, remember that even the meanest mombicum of such servier is of value, mul will not qunrell with an art for fiilure whre olvolute auccess is painly unathanalle.

First, thrn, of syllognclic fullucires ; which, indeed, by excersive generalization, might in comprind nude the other clasa, since they are resolvabio into the indresemion that the mame or kimilar terme ure ulwayn ropresentatise of the same or similar isleas. It is much more convenient howewr, to consider ihmem separately.
Eirrors of this wsweription may proceed, in the firat in.
 Sometimes a word in usell buth in its grimary and in a transitise sonse. An instance in paint arevers in M, Burhe"s Essay on "Tust", predixed to his mombrated dis quisition on the Suldime aul Bemutiful. "It may pere. bupen n!lear," he observes, "that there is no material distination letween the wit und the judkment, an they lonth werm to result from dificrent operations of the same ficulty of comparing. But, in reality, wheller they ore or are not drwhlent on the same power of the mind, they diffir an viry materially in many pespects, that a perfore umion of "rit "unt judgment is une of the ratem things in the world." The worlm weit unil julkment have cach, it the alswe pasagere two distilut nignificationsthe powers thus demominated rexpertiocly, and the pros ducts of hoth in puruliarly lively exercime: The infereme, of course, thex net holl, and the oljection it is intended to mert remine unanwered.

Sometimes a metaphorical sense is slipyed in, in place of the litural. Wre have luand that a popular orator thu managed to turn to his own account the misfortune of a rival, ulsent, it serems, from delicate hacalth. "The gent themen has saill her cannot vertare himself in such an atmorphere, but this is the atmompluers in whirh I delight to brenthe." With an "excited crowd, thin tlimes artifice, we Indireve, sucreveled in prasuring for a stoui pair of lungs the apliaus due to distingushed patrintism.
Occanionally, the extemsion of a torm is changed Thus Ilune. in lim Emsny on Miracles, argues as if what is granted of ordianary were true of universal rpericince. Lhecanse events of thix oriler have not come under the otmersation of must persons, it is concluded that they could newer have come under the ofservation of any. A little ambiguity has sonetimes arisen from the vague application of autherity. Refiering to the writer has named, in his capacity of historian, we may think fit io proteonce hite an excellent authority; but unless the term the expressly guandrol, we may be represerned at intimating nue approval of his ethichl mul metiphysical speculations. By prophet we usually malerstand a pa
 the works of Mr. Carlyle, he is simply a man of cons. monding genius and vast practica power. My ery, formuly meanims nimply a tlius unk invarially a thing that cannot be knowa. The notoo popularly ultachell to weallh dilliers widely from the un of the term by writern un protical econmy; and nuca
pectical miechie Comitry in proap apecie. In them have been generes and unimprewellal in the variations tht samiles of me reulshe the nin asater lnecomes Beyond a certai abtue intellect thaurd, there forr waign a place to the pun may pur most hungry ma hungry ; therretion hungry;
iammedatrly lisul whlogism is "بqui dands for he:s wolved and laugh A second rlase mane generral ord bain differences b noule, tiken for nammon foot ot peech, whereat, become convilut fol, truckling, un would be mont chanced to to tho are ontated to ca fore a deversec. bise and primitiv arsilatle fir the would fail to detc pity to pitiful, a of principtex of which lell the 1 , b give justire in To this heal wee of mpruitogenerally, but 1 of distinction. indicate aspmey phrase intermin butter uflives me impression that interebangerahb milltanlers the aecessary to mi Let nis bow more tlingeroun tured to 小rom was descrilied of argurnent, 1 Sophismis, dil traccable t assumption of a great varicty Accilental atadish efficre, at the same and the other ке remectater breen was mot baly in the acred bull dent, the dewn thilious infires, death wan pro sure againt the causic of are hased the duald anl of

rided as proval

 conclusinn is of clunion, likewise itter of fact, bu ie point at isoue, In the one clane the inferenes to in nheent which liject of dinprute, rotn the form of priety ho atyled hiject-matter may t in obviously as find is mosa open time be allowed est ersentutial, able candiel will, how. modirom of auch 1 with in art for unattrinable. which, indeed, by primell unde: the o the impuession ya representative mare convenient,rid, in the first in - "f the sorme term prianary sad in a ut occurs in M_{t}, is cellebrated dis in. "It may per. is is material Mit'mes', bs they ations of the same whether they aro "rer of the mind, y respecth, that one of the ratem wul judkment have at rignificutionsvely, and the pm. c. The inferuce, tion it is intenved
lipled in, in place inpulat orator the ic mixfortune of 1 alth. "I'lie getr inself in such as in which I delight lis tlimsy artifice, I in atout pait of I patriotism. tim is changed argues as it what ivers.al erperience. come under the reluiled that they mervation of any, In from the vague o the writer hat may thimk fit to ; but unliss the in represented at whil metaphysical me'erstand a pero retell events; is ly a tam of comhower. Dyitery, iwn, now denoter wh. 'I'he notion lely from the un army ; and nuch
pactical mischief has reaulted from the heliff that a poontry is prosperous juat in proportion as it ainasien pecie. In theso cases and the like, merious mintakes bave heen generated, and rimen to the rank of eatabiasbred and unimpenchable principlem, through sheer inatiention to the variations of terms. The more closely, indeed, sin viadea of meaning blend with each other, the noro watese the aimilarity that nubsiats loetivern them, the av ser lecomes the dimisulty of detecting the froud. Beyond a certain point, inderel, of elidherence, the must oblume intellect will refuse to the imponed on. It in chaurd, therefore, in an enumeration of fullueles, to asign a plate to a glaring play upon words. 'I'lowuh the pun may puzzle, it can never minhoud. "Ife who in most hungry muls most; the who ents leant in most hungry; therefiore, lese who pats least pats inost." We uanelatily diserover that eats in the first inember of the gyllogimn is crpuivalent to rell ent, while in the mecomel it dands for hu:s enten: and the mpparent contratiction is colved and langhed over.
A accond clase of errors in renoming, belonging to the mane general order, may arise from the orersight of corsain diffornces betucen refocrd terms. It in often, for exsople, taken for granted that words apringing from a ammon raot ouly vary mong themselves an parts of spech, whereas, in fact, the radical meaning may have become consilurahly modified. Nehrmer denotes an artfol, truckling, mprincipled individual-qualities which it wolld be most unfair to aseribe to every man that chaured to be the antzor of a scheme. 'I'le two terms are relited to earh other, but a devout mon is not therefore a deatore. In some instanece, however, the derisiative and primitive difer too phanly for either to berome aralable for the purposes of sophistry. A mind that would fail to detret the tramsition from art to artful, from pity to pitigit, and the like, must he under the intluence of primeiples of asariaton mo less peculiar tham those which led thr Laird of Gillangowan, ill (iuy Mannering, w give justure imbolimest in a justice of the prace.
To this hemed we would also refor the disingernous use of premblo *ynonymes-that is, terms corresponding generally, but not aliko cxpressive of the required shade of distisetion. 'To marder, mul to put to death, both indicate ageney with a similar result; but the former phrase determines that arency to be crimimal, whide the latter ullives no such character to it. Many, mader the impression that the terms are perfertly eqgivalent and interchunguable, might be induced to ascribe to sour sulutallese the raronaised properties of bither. It is unaecessary to multiply examples.
let us now reviow brictly the more frequent and more d:mgeruss speries of falituces which we have ventured to demominate extrorsyllogistio. 'l'he fanat here was desrilied as uttarhing, not to the expressed proeeres of argument, but to the concomitant proverse of thought. Sophisus, ranging under this general category, are als traceable to two soureen, the first of which is the assumpion of donhtial premises. This error appears in a great variety of forms.
Accilental coinculonce is often assumed as sufficient to atalish efficient ommotion. 'Two events hapren mearly at the same time; therefore one is supposed the cause, and the other the efliet. Of this sort of fitse reasoning, we remenorer a notable instance in Prideaux. Cambyeen was mortally wounded by his sworil piereing his boly in the same part in which he luad stabled the wacred bull of the ligyptians. Th narrating this incident, the dran expresses his concurrence in their superations inference, wherving that the mole of the hing's death was prohahly desigued to mark the divine displenato againet his art of volence, as un inatut onlired to the canse of religion in gemeral. On the same error are hased the fictions of anrelogy. 'I'he tate of individoals and of nations hats been thought to be bound up
in the movementa and comjunctions of the alars s and se simple an event an the apprearance of a comet has ere now frightened Surope into petitence. Virgil, in hid first Georgie, hida the farmer confide in theme indications of the weather atforifed by tho anpeet of the aun, since that lumimary's olsscuration gnve faithful warning of the inmpuling doom of Cemar. On the mame principle, the docline of the Roman power was early ancribed to the apreal of Christianity. All our popular muperstitiona are to be similarly exptnined ; thono, fur inatune w, which finterpret as infolitile preluden of death or itiscord, the ehirping of an insect, the howling of a dog, or the spiliing of a little salt.

Clomoly allied to the preceding fallacy in that which consints in the assumption of a hypothetirat enuse. At this stumbling-bloek we find the fither of logic himseif tripping. "All the heavenly botien," mays Aristotle, in his physics, " must move in "ircles, hecanse a circle is the most perfect of all figures." The reason here assigund for a position, now known to he at variance with oxisting phenomena, is neither apprecinblo in itself nor mppliculse to the question. Des Cartes's hypothenis of animal spirits. Harlly's theory of vibrations, both framed to el then anmiasion of sensible imprea sione from the looth referatifo nition, nans, signed, tho

IV\%ut is
be true ahsoluid? f the nerves to the brain, are source of error-tise nuppo-- A a possible cause ham been at on heen diseovered.
lions, is frequently assumed to Deleterious drigs are always to he rejected ; opium is nlways to be rejected!" It is plaiu, hat a maxim which holda good, generally, of persons in health, is mot applicable esprecially to canes of divease. Thimmophism appors, perhaps, more frequently in the interrogative than in the categorical form. 'Ihe ohject of the disingenuous disputant, then, is to extort from his adveratry
 yuire it to be qualified. When the query in advanced in a hodd, trimmphant tone, with its real complexity desteronsly disguised, n timid and inexperienced debater will he easily silened by this expedient. Tt. yuestion, for example, "Is war detestable, or is it not ?" camot be answered directly and moconditionally. If we choose the affirmative, we concode the criminality of even difensive war; if we prefer the negative, we are dealt with as the advocaten of aggressive. We must explain and qualify, if we would avoid either horn of the dilhomal, it the risk, indecol, of being accused by our opponent of a wish to shuffle und prevaricate, and perرlex the diseussion. To this head, most cases of defective parallel may conveniently be reforred.

Again: W"e may assume, as exhtustive of all the alternatives of a giren rasf, what embraces only a partion of them. 'Tlus, in one of Iucian's Dialogues of the Dend, Menippus chooses to take for granted that the misery of 'l'antalus only arises from toar that he may die of thirst ; and proceeds, necordingly, in sarcastic vein, to provo the mprehension groundless. "You say you are punished with thirst; but why is that deadfal to you? Fir I see no region hestdes this Hades, nor any second death in nother guartes." "Thas, tos, the celohrated sophistical puzzle respecting motion. "Whatever body is in motion must move either in the place where it is, or in some place where it is not; neither of these altermatives is possible; therefore, there is no such thing as motion." Here it is assumed, that there is no surh third alternative an is convesed by the prepositiona from and to, the others involving manifestly a contra. diction in terms.

Next may be mentioned the error of assuming that what is true of a whole is true of a part. Critics, on this priaciple, have conceised themselves bound to vir, dicate, or puft into beauties. even the nost tlagrant

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

23 WEST MAIN STRFET

WEBSTER, N.Y. 14580

(176) 822.4503
fulte of atandard writers; and have aeldom struck the medium between unqualifiad censure and extravagant praiso. How often are meritorious individuals subjected to the odium, attaching, perhapu justly, to the majority of a class to which they chance to belong! How often are salutary inatitutions and customs noglected or decried, just because they have a common origin with others that are noxious and blameworthy 1 To reverse the illustration: How ofter are particular periods chanacterized as enlightened and prosperous, simply from a partial survey of the aspect of affiairs ! Take the era of Elizabeth. "There was, perhaps, a learned and vigorous monarch, and there were Cecils and Walsinghams, and Shakspeare's and Spensers. and Sidneys and Raleighs, with many other powerful thinkers and actors, to render it the proudest age of our national glory. And we thoughtlesely adinit on our imagination thia splendid exhibition as in some measure involving or inplying the collecive state of the people in that age."* And how much pernicious error has, in like mannar, resulted from admitting the impression that every wise man has been slways wise, every great man always great, and every good man always good.

It may be assumed that a position must be fulse because of certain consequences supposed to follow from it. These consequences may not follow. The truth of Galileo's astronomical theory did not infer the falsehood of the Scriptures, but merely the falsehood of the received interpretation of them. Or they may follow, and the position still be tenable. To have alleged that Gulilee's theory was inconsistent with the Ptolemaic system of the universe, would have been true, but nugatory.

The above is not oicred as a complete list of all the eases which we think resolvable into the fallacy of assumption, but merely as an index to its more common varicties. An edroit sophist will sonetimes, without recourse to any other disguise than that of well-feigned perplexity, palm upon us, wholly unsuspicious of decepion, a statement which, but for this artifice, had been the first to be tested.

The fallacy of irrelevant conclusions appears in two chupes.

First, A position may be proved, altogether different from that which ought to be establishcd, although the cophist designs it to be mistaken for the other. Thus, Horne Tooke, in the Diversions of Purley, would have us infer the falsity of our common notions respecting the first principles of morals, by showing that the terms right, just, truc, only point, if their etymology be consulted, to what is ordered, commanded, troved. But to prove this is by no means tantamount to proving that there are no such things as immutable morality and cternal truth. Byron is reported to have said that "he had met with so many whose conduct differed from the prineiples they professed, and who seemed to profess those principles either because they were paid to do so, or from some other motive which an intinate acquaintance with their character would enable one to detect-that altogether he had ween few, if any, whom he could rely upon as truly and conscientiously helieving the Scriptures." \dagger Was not this conclusion intended to be taken as equivalent to another-namely, that there uere few persons in the world sincerely entertaining these convictions?

Secondly, The proof of part of a position may be subatituted for proof of the whole. Thus, if an inst:fficient argument, accompanied by several valid ones, he detached frou the rest, and refuted singly, the sophist may plaugibly insinuate that he has done enough to destroy the antire body of evidence.)r, again, to prove that certain meonveniences attach to a particular system, or that mertain defecta arhere to a particular inntitution, may
with many minds pass as equivalent to the posilion twa the system should be abandoned and the institution aboliahed. Instancea of such artifices must occur readily to every one.

RHETORIC.

Rhetoric, in the wense used by logicians, in the in culty of percoivlng and employing what is best adaptet to persuasion, and is therefore the adaptation of Logie to oratory. The object of the rhetorician is to convince and persuade: the former comprelends instruction and convirtion; the latter exhortation, or, tho influencing of the will.
We confine ourselves to the following leading points in persuasive oratory.

Persussion.

Persuasion, or influencing the will, depends en proof and exhortation; the former proves the expediency of the means proposed, and the latter excitea men to adopt these means by representing the end as deairable Pronf is necessary, because the judgment must be comvinred; and exhortation is also necessary, because the feelings must he influenced. To make one believe, it suf. fices to convince; but to make one act, it is necessary to show that the action will gratify aome feeling in one's mind. It is, therefore, as necessary for the orator to awaken those feelings which will lead to action, as to satisfy the understanding that the conduct to which he would persuade will tend to gratify the emotions that are raied.

The Address to the Understanding.
The address to the understanding nay be direct, becaum it is under the immediate control of the will; but the address to the frelings nust be indirect, because they are not under the same control. The emotion of anger or gratitude is not to be raised in the mind by thiaking about it, but by filling the mind with such thoughts as are calculated to produce a change in the feelinga. Wa can produce a change in the circulation of the blood by taking a medicine that will affect it; but we cannot produce a change in it by mercly willing.

Some speakers fail to persuade by only showing the sudicnce how they ought to feel, and telling them that they ought to feel. They speak only to the reazon of their hearers. Some speakers fail to persuade by only proving ; others by only exhorting.

Improper Motives.-Refutation.
Some orators excite improper inotives, because they strive to excite certain emotions when circumatances do not require them. There is not unfrequently s want of skill shown in attempting to allay an improper feeling that has been excited in the audience. An improper fecling is to be allayed by exciting an opposite one. If hatred is to be allayed, then the audience must he ked to dwell upon a subject which kindles benevolence.
A string of vague abuse has often the effect of a train of sound reasoning, because the exrited feclings of the hearers blind their judgment, and caure them to low sight of the conclusion to be provel.
In arguing, a reapondent should begin by refuting the ohjections of his opponent, when the audience has re cived them favourably.
When the objections to be refuted are ridiculow, in direct or ironical refutation should be employed.

- haus Probandi, or Burden of Proof.

The burgen of proof rests with him who would dispuw any point in favour of which there is a presumption The burden of proof rests now with him who woild disprove the principle of gravitation or ary other gent rally allowed truth.

Treating a Proposition.

Propositions may generally be trested in four parts
ent to the position mas d and the institution cea must occur readily
y logicians, in the fn g what is best adaptet e adaptation of Logio etorician is to convince ehends inatruction and or tho infiuencing of
dlowing leading points
will, depends on proof vea the expediency of er excites men to adopt the end as desirabio. judgment must be comnecessary, because the nake one believe, it suf. ne act, it is necessary y aome feeling in one' ssary for the orater to 1 lead to action, as to e conduct to which be fy the emotions that are

derstanding.

g nay be direct, becaum ol of the will; but the indirect, because they The emotion of anger n the mind by thinking with such thoughts as ge in the feelings. We ulation of the blood by et $i t$; but we cannot willing.
a by only showing the 1, and telling them that : only to the reason of ail to persuade by only

Refutation.
e motives, because they when circumstancea do ot unfrequently a went llay an inproper feeling adience. An improper ng an opposite one. If audience must be led indles benevolence. a often the effect of a se the exrited feclings of , and caure them to lom vel.
ld hegin by refuting tise n the audience has ro
efuted are ridiculous, io ld be employed.
den of Proof.
him who would dispute there is a presumption w with him who woul ation or any other gent
rostion. e trested in four parte

En Exoraium or Introduction; the Narration or Exporition ; the Diviaion ; the Concluaion.
In the Introduction, such topics are to be introduced es tond to render the hearers attentive and docile, and \rightarrow rase the hope of something interesting.
The Narration is an explicit cuclaration of the subjut of discourse, and ought to terminate in the propocition to be explained
The Division ought to exhauat the subject, and not comprehend any thing besidcs. See Division.
In the Conclusion it is generally proper to begin with a brief recapitulation of the articles discussed, and to end mith an address to the affectiona.
Some writera treat a proposition as followa:-1. The Introduction. 2. They explain the terme of the propontion, thow what is granted and what disputed on each ide, and then state the point of controversy. 3. They examine objections, and eatablish their own proposition. 4. They refute objections, and expose fallacies. 5. They make some observationa naturally auggested by the aubject.

Example.-Enthusiasm is a species of madness.

1. This is a term which is zeldom underatood by thoee who use it most frequently. It may, therefore, bs useful to show what enthusiasm is.
2. Some derive it from en thusia (Greek), in' sacrifice, because many of the enthusiasts of old were affected in a violent manner during the time of sacrifice. At this doy different persons understand it in different senses, quite inconsistent with each other. It is hare used to exprese a sort of madness arising from some falsely imagined divine influence.
3. There are various kinds of enthusiasm. Some enthusiasts imsgine that they have gifts which they do not poseses; some think to obtain the end without using the means; othere think that some things are owing to divine interposition, which really are not.
4. It is a kind of madness to suppose that we have the gults which we do not possess; for our prenises are ialse, though our reasoning may be conclusive. Some men are misled by pride and a warm imagination to asacibe to the Deity certain impulses which are sltogether unworthy of him. The man who imagines limself the peculiar favourite of Heaven, is fortifying himself against the advice of man and the grace of God.
5. Letusbeware that we do not run with the common berd of enthusiasts, fancying that we sre Christians when we are not; hoping to gain the end without using the means. Let ua make use of every meana which are conducive to our intellectual and moral improvement, and then we may expect a daily growth in that holy religion, which never can truly be termed enthusiasm.

concludina observations.

The preceding definitions of the moles of reasoning, and their application to persuasive orotory, may be of use in directing the comparatively unlearned how to detect Callacics in the argements of opponents, and what metods may be best employed to sif and arrive at the truth. We should, however, fail in our duty, if we did not add, that, without the hahit of clearly arranging our Weas, and acquiring the power of grasping a subject both in its details snd general features, the mere instrumental part of logic will not he of essential scrvice in reasoning. An observation of the following rulea is recommended by Watt, as servicesble in these reapects:-
"I. Rule.-Accustom yourselves to clear and distinct Ideas, to evident propositions, to strong and convincing arguments Converse much with those friends, and those books, and thowe parts of learning, where you meet with the greatest clearness of thought and force of reaonning. The mathematical sciences, and particularly anithmetic, geometry, and mechanics, abound with these advantagea: and if there were nothing valuable in them
VoL. L. -48
for the uses of human life, yet the very speculatlve parts of this sort of learning are well worth our study ; for by perpetual examples they teach us to conceive with clearness, to connect our ideas and propositiona in train of dependence, to reason with atrength ond demonstration, and to distinguish between truth and falsehood. Bomething of these sciences should he atudiad by every man who pretends to learning, and that (as Mr. Locke expresses it) not so much to make ua mathematicians, wheck make us reasonable creaturea.

We should gain such a familiarity with evidence of perception and force of reasoning, and get such a habit of discerning clear truth, that the mind may be soon offended with ohscurity and confusion: then we shall (se it were) naturally und with ease restrain our minds from rash judgment, before we attain just evidence of the proposition which is offered to us; and we shall with the ssme esse, and (as it were) naturally, seize and ombrace every truth that is proposed with just evidence.

This habit of conceiving clearly, of judging justly, and of reosoning well, ia not to be attained merely by the happiness of constitution, the brightness of genina, the best natural parts, or the best collection of logical precepts. It is cuatom and practice that must form and establish this habit. We must apply ourselvea to it till we perform all this resdily, and without reflecting on rules. A coherent thinker or a strict reasoner is not to be made at once by a $\begin{aligned} & \text { act of rules, any more than a }\end{aligned}$ good painter or musician may be formed extempore by an excellent lecture on music or painting. It is of infinite importance, therefore, in our younger years, to bo tanght both the value and the prsctice of concriving clearly and ressoning right; for when we are grown to the middle of lifo, or past it, it is no wonder that we should not learn good reasoning, any more than an ignorant clown ahould not he able to learn fine languuge, daucing, or a courtly behoviour, when his rustic aira hnve grown up with him till the age of forty.

For want of this care, some persons of rank and edpcation dwell all their daya among obscure ideas; they conceive and judge alwsys in confusion, they take weak argumenta for demonstration, they are led away with the disguisea and shadows of truth. Now, if such peraons happen to have a bright imagination, a volubility of speech, and a copiousnesa of language, they not only impose many errora npon their own understandings, hut they stamp the image of their own mistakes upon their neighbours also, and spread their errnrs abroad.

It is a motter of just lamentation and pity to consider the weakness of the common multitude of mankind in this respect, how they receive any thing into their assent upon the most trifling grounds. True reasoning hath very little share in forming their opiniona. They resist the most convincing arguments by an obstinate adherence to their prejudices, and belicve the most improbable thing with the greatest assurance. They talk of the abstrusent mysteries, and determine upon them with the utmost confidence, and without just evidence either from reasen or revelation. A confused heap of dark and inconsistent ideas makes up a good part of their knowledge in matters of philosophy as well as religion, having never been tanght the use and value of clear and just reasoning.
Yet it must be still confessed that there are anme myeteries in religion, both naturnl and revealed, as well as some abstruse points in philesophy, whervin the wise an well ua the unwise must be content with nhecure ideas. There are seversl things, especially relating to the invisihle world, which are unsearchable in our present state, and therefore we must believe what revelation plainly dictatea, though the ideas may be obscure. Reason itself demands this of un; but we should seek for the brightest evidence both of ideas and of the connection of them wheresoever it is sttainable.
II. Rule.-Enlarge your general arquaintar co with 212
things daily, in o:der to attain a rich furniture of toples, Ce middle terms, whereby thowe propositions which occur masy be either proved or disproved; but eupecially meditate and inquire with great diligence and exactnese into the nature, propertien, circumstancem, and relations of the particular subject about which you judge or argue. Consider Its cnusea, effecta, consequences, adjuncts, oppositea, aignn, \&ce, so far ns is needful to your present purpose. Tou ahould survey the question round about, and on all sides, and extend your views, as far as possible, to evely thing that has a connection with it. This practics has many advantages in it, at-

1. It will be a means to suggest to your mind proper copica for argument about any proposition that relates to the same subject.
2. It will enable you, with greater readiness and justneme of thought to give an answer to any audden question upon that subject, whether it arise in your own mind or be proposed by others.
3. This will Instruct you to give a plainer and speodier colution of any difficulties that may attend the theme of your discourse, and to refute the objectiona of those who have espoused a contrary opinion.
4. By auch a large survey of the whole subject in all ite propertiea and relations, you will be better secured from inconsistencies, that is, from asserting or denying any thing in one place which contradicts what you have saserted or denied in another; and to attain these ends, an extenaiveneas of underatanding and a large memory are of so unspcaksble service.

One would be ready to wonder sometimes how easily great and wise and learned men are led into assertiona in nome parts of the same treatise, which are found to to ecarce consistent with what they have asserted in other places; but the true reason is the narrowness of the mind of man, that it cannot take in all the innumerable properties and relations of one subject with a single view; and therefore, whilst they are intent on one particular part of their theme, they bend all their force of thought to prove or diaprove some propesition that relates to that part, without a sufficient sttention to the consequences which may Bow from it, and which may unhappily affect another part of the same subject; and by this megns they aro eometi nes led to say things which are inconcistent. In auch a case, the great dealers in dispute and controversy the pleasure to cast nonsense and self-contradiction on their antagonist, with huze and hateful reproaches. For my part, I rather choose to pity human nature, whose necessary narrowness of understanding exposes un all to some degreen of this fraily. But the most extensive murrey pomible of our whole subject is the hest remedy againat it. It is our judging and arguing upon a partial view of things that exposes ua to mistakce, and pushea us into absurdities, or at leant to the very borders of them.
III. Rule.-In searching the knowledge of things, elways keep the precise point of the present question in your eye. Take heed that you add nothing to it while you are arguing, nor omit any part of it. Watch carefully leat any new idean slide in, to mingle themselvea either with the subject or predicate. See that the question is not altered by the ambiguity of any word taken in diffierent senses, nor let sny secret prejudices of your own, or the nophistical arts of others, cheat your understanding by changing the queation, or shuffling in any th' gg cles in its room.

And for this end it is useful to keep the precise matter of inquiry as simple as may be, and disengaged from a empplication of idens which do not necessarily belung to it. By adnitting a complication of idean, and taking too many chings at ince into one question, the mind is sotietimen dazaled an I lewildered, and the truth is loat in auch a variety and confuvion of ideas; whercas, by limiting and narrowing the queation, you tuke a fuller survey of the whole of it.

By keeping the slngle point of inquiry in ot r a mamat view, we shall be zecured from audden, rash, ani impent nent reaponses and deterninatlona, which some have ob, truded inatead of solutions and solid answe. 8 , hy fore they perfectly know the queations.
IV. Rule.-When yot have exactly considered the precise points of inquiry, or what ia unknown in the question, then ionsider what and how much you know already of this question, or of the ideaa and termes of which it is composed. It is by a comparison of the known and unknown parts of the question together, tbat you may find what reference the part known hath unto, or what connection it hath with, the thing that in sought; those ideas wherehy the known and unknown parts of the question are connected, will furnish you with midale terma or arguments whereby the thing propooed may be proved or disproved.
In thin part of your work, namely, comparing ideas together, taka due time, and be not too hasty to come to a determination, especially in pointa of importance. Some men, when they see a little agreement or disagreement between ideas, presume a great deal, and so jump into the conclusion. This is a short way to fancy, opinion, and conceit ; but a moat unsafe and uncertsin way to true knowledge and wisdom.
V. Rule.-In choosing your middle terms or argumeats to prove any queation, always take such topica as aro surest and least tallible, and which carry the greateat evidence and strength with them. Be not so solicitoun about the number as the weight of your argumenta, especially in proving any proposition which admits of natural certainty or of complete demonatration. Many times we do injury to a cavae by dwelling upon trifing arguments. Wo amuse nur hearera with uncertaintie, by multiplying the number of feeble reasonings, before wo mention those which are more substantial, conclusiva, and convincing. And too often we yield up our own assent to mere probable argunents, where certain proof may be ohtained.
VI. Rule.-Prove your ennclusion (aa far as pomible) by eome propositions that are in themselves more plain, evident, and certain, than the conclusion; or at leas such as are more known and more intelligible to the per son whom you would convince. If we neglect this rule, we shall endravour to enlighten that which is obsecus by nomething equally of more obscure, and to confinm that which is doubtful by aomething equally or aom uncertain. Conms -nse dietates to all men, that it is impossihle to eatai $\quad y$ truth, and to conviace othen of it, but by soir.
that is better known to them than that truth in.
VII. Rule.-I, alour, in all your arguinge, to enlighten the understanding, as well as to conquer and captivato the judgment. Argue in such a manner as may give natural, distinct, and solid knowledge of things to you is arers, as well as to force their assent by a mere prool of the question. Now, to attuin this end, the chief topia or medium of your demonstration should be feched, m much as possible, from the nature of the thing to bu proved, or from thowe thinga which are moat naturally connected with it.
VIII. Rule-Though arguments should give light to the subject, an well as constrain the assent, yet you mud learn to dintinguish well between an explication and an argument; and neithcr inpose upon yourselves, non suffer yournelves to be impowed upon by othera, by mis taking a mere illustration for a consincing reason.

Axioma themelves, or aelf-evident proprositions, may want an explication or illustration, though they are nod to be proved by reasoning.
Similitudes and allusions have oftentines a very happy influence to explain sonve difficule truth, and to render the idea of it familiur and enay. Where the resemblance is juat and accurate, the influence of a simile may pro
cond mo quextion; proof of they have amilitude two extor hie inquir Illustration though he argument
Yet let noed by a true eense draw not which it Rev. iii. 3 plainly pro appearane dignify an IX. Rui your minc follow Enlis a party sp atop or av true know
When maintain a on both ai lance them a frequent ments onl entirely to side. If on both aic and abuse When we through t intereat, or only to sur duty to Go chance if proferment or Maker
iry in or r e mamatan rash, anil imperib ich some have ob aswe., , ha fore they
Iy considered the unknown in the , much you know cas and terme of comparison of the stion together, tbat part known buth i, the thing that is wn and unknown 11 furnish you with he thing proponed
r , comparing ideas too hasty to come nte of importance. ement or disagreedeal, and so jump ort way to fancy, eafe end uncertsin
terma or arguments such topics as aro ry the greatent evinot so solicitous your argumeath, which admits of constration. Many elling upon trifing with uncertantien, casonings, before wo stantial, conclusive, yield up our own here certain proofi
(as far as powithe) melvea more plain, lusion; or at leuk telligible to the per. xe neglect this rule at which is obrecur re, and to confim ig equally or mon o all men, that it is to convince othem cr known to them
guings, to enlighten iquer und captivalu anner as may give e of things to you all by a mero prool end, the chief topia nould be fetched, an of the thing to m are most naturally
should give light to issent, yet you mut 1 explication and an on yourselves, no a hy othere, by mis ucing tesson. it propositions, may hough thcy are not
antimes a very happy ruth, and to reader acro the rewemblanot of a aimilo may pro
abues one of his richent giftn, if we busely yleld it up to be led astray by any of the meaner powert of nature, the perishing interents of this life."

- [works on loglu.

Within a few years many works have appeared, purporting to treat of the powers and of the operations of the mind, though few of them sttempt to present a ayo tem of Logic fit for those who would atudy it as a science, unincumbered with scholastic subtleties and umeless dish tinctions. Moat of the treatises which, until of late yeara, were in common use, had been formed on the mode of ancient syatems, and contained of useful information little more than a description of the syllogism and a few general principles of demonstrative reasoning. Collard and Condillac aimplified and improved the acience of Logic, and all the subjecte which properly fall within ita procincts were amply discussed by Doctor Richard Kirwan, in "An Essay on the Elements, Principles, and different Modes of Reasoning." Prolixity and a fondness for detail, however, obscure the merite of this author. We may speak in high terma of the concise and admirable work of Dr. Hedge, of Harvard University, whose Elementa of Logic is perhaps better than any other fitted for general use. Another valuable work, bearing the same title, has been issued by Dr. Whately, arclibishop of Dublin: it ia more comprehensive than that of Dr. Hedge, and may be cunfidently recommended to those desirous of acquiring an accurate knowledge of the principles of this important science.
'The etudent ehould not confine hinself to either of the above works howevor, but should read in councetion and with reference to them, Locke's Essays on the Understanding, Reid's Essays on the 'Intellectual Powers, Btewart's Elements of the Philosophy of the Mind, Upham' Mental Philooophy, Campbell's Philosophy of Rhetoric, Gambicr's Introduction to Moral Evidence, Beattie's Essay on Trath, Scott's Elemente of Intellectual Pluilosophy, and the works on the subject by Watt \& KirwanAm. Ed.]

EDUCATION.

Tils withir the lant fow years, the idea commonly antertained with respect to general elementary education comprehended only certain branches of instruction familiarly known by the terme, reading, writing, and arithmetic. A " liberal" education added ancient and modern languages and mathematics. Such formed the entire round of accomplishments which were supposed, with the accident-directed moral trnining of the domestic circle, to be sufficient to fit the youth, of even the highent classee, for entering upon the varied duties of life. Nor was this scanty education thought requiaite for all. A vast class was allowed to oxist without the leant tincture of school learning of any kind, as not being supposed to require any knowledge beyond that which immediately fitted them for the leborious duties by which they earned their bread.
The active period whlch has elapsed since the conclusion of the lant war (1815), has been distinguished by nothing more than by the enlargement of our orilinary ideas with reapect to education. It masy be asid to be now universally acknowledged that all-sill, from the peer to the peasant-ought to he educated, howover there may atill be differences of opinion as to the menns of cducating, and what education should ronsist of. It is also generally admitted that recting, weriting, and arithme $i c$, even when effectually taught, conntitute but a branch of eiducation, being merely nstrumentary accomplishments, the acquirement and cultivation of which tend in a certain degree in improve the intellect. The atudy of the sncient classical lancuagea, whilo still admitted by candid persons to be also a means of improving the intellect, is now no longer upheld, excepting by a few, an the grand instrument of liberal education, the character in which it was generully regarded a few yeara ago. It in now scen that this stady gives to the youth of the middle and uplar clasees but a portion, and, in many inatances, the lenst requisite portion, of what they should know on entering the world. The old elements of education may therefore be said to have sunk from their former character of all-sufficiency, and to have now taken their place as only parts of a complete education.

PRINCIPLES OP EDUCATION.

The primary meaning of the term educate, from the Latin educare, to lead or bring out, does not ill express the first great principle of the science. It may be held to asoume that the human being is naturally in a comparatively rude and inert condition, and that external forces must be applied to draw forth his faculties into their full activity and power, and bring them to their higheat degree of refinement and nicety of applisation. This is, in reality, a large part of the business of education, taking even the widest view of its purposes. 'A full definition would further include the regulation and discipline of those moral feelings on which our actions are mainly dependent, and also the communication of sach parts of knowledge an the circumstances and prospecte of individuals may render necessary.

Before correct views can be entertained with regard to education, or proper steps can be taken for working it out in practice, it is obvious that a distinet notion ought to be attained as to the character of the being to be educated. Mon is this being; but the question "what is man!" is one to which acience does not yet enable us to give an answer which all would acknowledge an riglt. For this reason it is totally impossible for any writer to present a theory of sducation which
would be generally received as a perfoct acience. TM subject must neede partake of the obseurity and uncer. tainty which as yet reat upon at least the mental chs racter of man; and it will only advance in clearnem and precision, in proportion as progreas is made in a correct eystem of mental philosophy.
While fully acknowledglng the difficulty under which overy candid writer on education muat lie, the prosent would humbly endeavour to inake the neareat approach to a correct system which his views of the natural chas. racter of the human being will admit of. He conaider the race as oxhibiting a definite mental conatitution, in oll its parts harmonizing with the surrounding univerva He considers this constitution as embracing a variety of faculties, for mensation and action, which it is the business of the educator to awaken, strengthen, and regulate, so that each person may arrive st the best condition of which his character is susceptible, and inomt thoroughly fulfil the design of his being in all its various respects. He views, in the firat place, the facultiou of the physical frame as requiring to be duly exerciad so as to hring them to the utmost limit of their native power and heslth. Of the mental system, he viewa those faculties which constitute the intellectual powera as requiring to be drawn out, exercised, and instructed, *o that they may operate reedily and efficiently for all the various purposes which thoy are designed to merre; and those, again, which constitute the moral feelings a calling for the exertion upon them of all external moral influences-at the head of which stands the revealed will of God with regard to human destiny-in order that the best possible state of feeling may be attained with regard both to the affairs of the present and to a future state of existence. Upon there views of man's character a scheme of education may be founded, which rational persons, as yet unprepossessed by other notions, will, he thinks, generally acknowledge as accordant with common sense, however unprepared they may to to trace it to its foundation. He will, therefore, with out further preface, proceed to deacribe such a acheme, sdopting the appropriate divisions into physiral, mornl, and intellectual, and combining, as far as his space permita, practical directions with what may bo called the philosophy of the subject.

physical education.

The object of physical education is to ensure, as far as possible, that sound end vigorous frame of body which, while all must feel it to be one of the greatest of hessings, appears to be an essential concomitant of a sound condition of the mind itself. Physical education comes into operation before any other department, for one of its first concerne is to take care that the human bieing shall be brought into the world in the enjoyment of a perfect organization. The mother is here the educator. She is required, during pregnancy, to order her life, with respect to food, dress, and all other habita, according to certain rules, found to be conducive to the welfare of her future offspring. Judicious medical mes recommend, thst, at this time, the food taken ahould not greatly differ from what is taken at other times The dress should be loose and cany. Moderate exercise should be regularly, as far as possible, indulged in; and it is of tho greatest consequence of all, that, while ordinary duties are attended to, a quiet, checrful, and eary atate of mind should be maintained. Departure from these rules, indulgence in late or otherwise irregula hours, and exposure to the excitemonts produced br

Nolere pasmons, or the frivolitiee of ferhionahle life, are calculatid to oceacion deplorable effecter on the being yet o the brought into the world.
Infanct.-The physical nducation of an infant involves simply the ineans of keeping it in health. For thin purpose nature has made one signal provision, in the tonderness which she has infused into the female heart-a feeling which insures an unfailing kindnese mwaris the young. But momething besides kindness i mquired to rear children successfully. It is necessary tnat those who have the duty of nursing the young whether mothers or substitutes for mothers, should have some knowlodge of the physiology of the infant body, a at lesat be acquainted with the rules of manegemen which result from such a knowledge. The aad effects of ignorance on this subject are sufficiently conspicuous for we cannot doubt that, of tho great mortality of the young (four-tenthe of them dying under five yeare of age), mueh is owing to erroneous methods pursued in the nursery.
Here the leading rule only can be indicated. An infant ahould never be plunged intw cold water, or exposed in any other way to cold, because, the circulation being comparatively languid in the infant subject, he can less endure cold than grown-up persons; and an attempt to produce hardiness may only undermine health. It ia of the greateat consequence that an infant should be kept constantly clean and dry, that ite houre de early and regular, and itself be as far as possible habituated to a periodic recurrence of all its wants. The mother's milk is the most appropriate food; next, that of a nurse about the same time confined; next, cow's milk warmed and diluted. Farinaceous or any other Find of aolid food, is unsuitable to the atomach of en infant under six months old. A child ought, if posrible, to be nursed about eight months, and somowhat longor if weakly, or when the period of eight monthe torminates in the dead of winter. After weaning, the food should be farinaceous-that is, of substances composed of grain, potatoes, arrow-root, \&ec. Animal food should be avoided till the period of infancy may be considered as nearly at an end, and even then it should be of the tenderest fibre, and administered in very aimplo forms and modarate quuntities.

The food and gensral habits of the nurse are of great and direct importance. The child is immediately dependent in all respects upon tho person who suckles it; thrives with that person, and also declines with her; suffers when she suffers, and is well when she is well. So remarkably is thia the case, that an act so simple on her part as the taking of a hasty draught of cold water, will probably give the infant a stomseh-ache within two hours. It is therefore of the greateat consequence to the welfare of the young that those from whom they lraw their sustenance should observe all the rules proper to their condition. A nurse should live a quiet but not inactive life, using aimple wholesome diet, avoiding stimulating drinks, and preserving, as far as possible, a cheerful mind. Fermented liquors, as porter and ale, are only to be resorted to when her strength would otherwise aink under exhaustion of her system. In fair health, elight beer is perhaps the moet suitable beyerage.

For the due development of the muscular system of on infant, its dress should eit light and easy upon its person and its limbs should be allowed free play on all possible occasions. The reatless moveinents of an infant, the tosaing sbout of ita head, arms, and limbs, are ti be considored as merely impulses of nature, directing it to exercise, and consequently strengthen, its muscular syatem. These movemants should therefore be rather ontouraged than repressed. Care should be taken that It is not too soon allowed to bear ite own weight, as the asural consequence is bending the as get eof bones of
the legs, which may thus hecome deformed for life. Whenever achild of proper age is unable to hear ite own weight, or walk without this effect following, we may be sure that its general health is defective: and it is a more immediate and pressing duty to taks meanuree for remodying this defect, then to attempt to keep the limbs atraight by mechanical appliancen.

The general health of an infant may be deacribed, in a word, as to be secured (supposing a goorl constitution at first) by food appropriate to its organs, warmth, clcanliness, regulerity in sleep and other wants, a welfalred nurmery, and occasional walks out of doon, proo tection from all injuries through the medium of the nurse and otherwise, and the muscular exercise of which its aystem is capable.(1)*

Chilinuood, Youtu, and Manuoun-Phyaical eda. cation ought to be continued till the body is brought to the utmont degree of perfection, in sll its functions, of which it is capable. The improvement of all the symtems and functions of the body may be called the education of theee systems and functions; hence recent writers on the subject spesk of the education of the skin, the education of tho lungs, of the digestive organs, of the muscular frame, of the brain.

In a aubsequent article of thie work, that on the Pre servation or Hzalth, most of the mattera which fall under Physical Education are carefully treated. By reverting to that paper, the reader will find of how much importance must be the formation of habits of bodily cleanliness, seeing that the skiu is a aystem which only can have a healthy function when it is thoroughly free from impurities, and thet nothing is more indispensable for general soundness than the particular health of this part of our frame. In the same paper, the volue of a due supply of pure air for the health of the respiratory organs is insisted on; as also the proper regulation of the appetite for food. The edncation of the muscular system implies a competent knowledge of the structure, attachment, and conditions of action, of the musclen; the operation of arterial blood and nervous influence on the muscles, and other matters, for which we refor to our article entitled Account of the Human Body.

Under thia branch of physical education falls all the science of exercise-walking, riding, running, lesping, swinging, ekating, dancing, fencing, cricket, ball-pley, \&c. The importance of these to health, in the full development of the muscles and improvement of the frame, has long been known, and by some nations steadily practised. The perfect forms of the Greek and Peraians were the result of this branch of education receiving a large share of national attention. Ample provision for such exercisen should be made in all seminaries of education, infant and more advanced. What are atrictly called gymnastica, are more violent and try. ing than any we have mentioned, consisting of climbing poles, lesping bars, swinging by the hands, and maintaining difficult positions. These require much caution in the watchful educator, and should not be allowed in slender and weakly boys. They ought not to be overdone by any youth whatever, seeing that, oven in the robuat, atrains and ruptures have been occasioned by them

MORAL EDUCATION.

The training of our moral mature for the due performance of our part as mombers of society, is that branch of education which the great majority of those who have reflected on the subject conaider as by far the most important. It is a great mistake to suppose that this is a

[^35]oranch which the adrocaten of improvemente in educaon ha ro generally overlooked. Aa fur as wo have oberved, all but a amall seet of thla cisen of philanthropinta alknowiedge its paramountcy. Thin in tho part of education which, in a national aystem, would call for the mont attention, because, while degrees of intellectual attainment are proper for different clamea of men, there is no clase of whoin it can be aaid, that a right and perfect moral development in not of the utmost consequence both to themselvea and the nociety of which they forma a part Beaides auch a benefit, that of an acquaintance with the mere elements of literature sinks into insignificanco. There is no need, howover, to exalt any dojartment of education at the expense of another. It may be true, that intellectual development in not oxpremely moral development ; but it munt be clear to every candid person, that the refinement and expannion of mind obtained from intellectual culture, are favourable to the moral nature. A thinking man is not on that cccount likely to be the leas a virtuous man; else, much of our common observations of life must be a delusion. We would therefore say, let no department of education be considered as calling for exclusive or disproportionate cultivation ; but let all go on in harmony together.
Moral education can have no definition from us but the development and regimen of the moral nature of thowe who are to be educated. Of the perplexity which attends this part of our leing, it is unnecessary to opeak. Let un only see if we can settle upon any principlea by which it may be benefeially affected. It appears to include a variety of native feelings, of various strength and terulency to activity in every different peraon, yet all of them liable to be acted upon by appropriate external means, to good as well ae to evil. In a mind totally untrained, the good dispositione are not without come energy ; but, generally, where there is a want of reguiation of the feelings, and of certain principlea to which the character of emotions and actions may be referred an to a standard, the moral being is a scenc of deplorable confusion-the more so, of course, in inotances where there is a considerable natural endowment of the inferior feelingm. We have then the coarme, sensual, and selfish conduct which has been the mark of the rude throughout all agea, On the other hand, we cannot doubt that inany natures, not originally of a high ceat, thrown under infuences which tended to check the lomen worthy tendencien, to atrengthen the good, and to induce regularity over all, muat huve been thereby enabled to pasa through life in a creditable manner, if not with nome higher reault leas open to observation.
One principle thus atrikea un at the outset as of very great consequence, namely, the circumstances, or, wo to speak; the moral atmosphere, in which the being to be oducated is placed. It is but matter of every-day obcorvation, that a child reared amidst gross acenes, where no restraint is inposed upon any of the feelings by thowe around him, will prove, in all likelihood, a very different being from one brought up amidst virtuoua and gentle people. Such a difference, we cannot doult, would exist e:pn where no attempt had been made by the iatter partica to fashion the moral character of the young creature committed to their charge. It is exnetly - difference of this nature which exista between the youth native to the vale of the Missouri (or those of the not leas savage classes which social circumstances produce in most great citiey) and those of civilized countriea in general: cirçunstances decide tho one set to be barbarians, and the other to be tolerably wellbehaved persons. This education of circumstances, though © powerful, in unfortunstely not always within the command of well-meaning parenta. Individuala are mere generally able to do little of themselves, if the percona by whon they are necessarily surrounded be not of the charactar that is desirable. Thus, it often happens
that a poor though well-dieponed man is ohliged io lim in a part of a eity where his children can only brenthe moral contamination; and we can acarcely Imagine greater hardship. Yet these are juat reasona why every effort ahould be made to promote universal improve ment of society; and it must rarely happen that nome arrangements cannot be made, of a character likely to operate favourably on the young perions who are the objecta of cere.
We would here imprese the importance of removing temptation as much aa poosible out of the way of young persona. There is a notion amongat nome, that a little temptation ia not emiss, an a meens of training the young to withatand greater asmaulta. But this is, wo are convinced, an ill-founded doctrino, and unost fotat policy. It is of the nature of every one of our feelings to be awakened into activity by the presentation of tha appropriate object ; and it is the equally natural revolh that the frequent activity promotes tho power and the tendency to activity of those feelinga. By presenting, then, what are called temptations, wo are taking a dired meana of educating end atrengthening the inclination towards error. On the contrary, a feeling, allowed ts lie dormant, losea in power, and becomes alwaya lem and less liable to act. There is perhape a coufusion of ideas at the bottom of the objectionible theory. The true plan scema to be to remove all actual temptation, but to give the intellect and the moral feelings prager warning against all auch dangera, and thus prepare them for resistance when the time of unavoidable trial errives We would any, then, do not allow the young to mee touch evil things, or oven to be in company where such things are to be apoken lightly of, from an ides that they are thus to be hardened agalnat teinptation. Be content to inspire a ealutary horror of such things by your own report: if you only are so fortunate as te to ablo to keep your young charge exempt from posityo contact with what ia discommeadable. An error may of course he committed in speaking too strongly againt what you disapprove of, in which case, the young porson no sooner discovera the exaggeration, than, from a principle of contradiction, he is inclined to embrece the vice. But discretion will save from this mistake. Upon the whole, it may be set down as a most important ruio in education, to reduce temptation to the smallest poonhe hounds.

Nearly connected with the education of circuintancose is tho education of example. Here personal conduct in the educating party is all in all. Children are remark. ably disposed to imitation. They imitate instinctively, without having necessarily any discrimination of the character of the act which they ase imitating. The general nature of their conduct is therofore ruled very mueh by the nature of the conduct presented to their observation. So much is this the case, that, if a child be carefully watched, he will be obeerved to contract a tendency to scolding and beating, from that very discipline by which, most erroneoualy, an endeavour in made to correct his errors. It must obviously, then, be of the greateat importance that the demeannur and general actions of the educator, and of the fanily in which a child io reared, should be models of all thet is -proper. Just the inore amiable and correct in all respecta that this conduct ia, so will the young be the more likely to form those habita which their best friends could wish. Wo will not pause to consider the effect which a positively vicioun course of life is esleulated to have on such of the young as witness it . The kind of had example which we have hero a chance of helping to nbolish, is that which shows itself in acts far within the circle of ponitive vice. Such are the use of offensive and uncivil languaga wranglinga, domineering, low and nordid habits of all kinds. If parenta and the other grown-up members of a funily do not restrain themelves from all such acta in

an is obliged in live en can only breath ecarcely lmegine o at reasons why every a universal improve y happen that nome - character likely to persona who are the
ortance of removing of the way of young got nome, that a little ane of training the Its. But this in, wo trine, and inoat fatal y one of our feeling te presentation of ith qually natural reaulh, the power and the ngs. By presenting, ve are taking a dired ning the inclinations a feeling, sllowed th becomes always lem arhapa a coufusion of able theory. The true etual temptation, but feelinga proper warn1 thus prepare them avoidable trial arrive \checkmark the young to wee company where suct of, from an idea that inat temptation. Be ror of such things by so fortanate as tc ho exempt from positiss able. An crror may g too strongly againa case, the young perngeration, than, from a elined to embrace the in this mistake. Upon a most important rulo to the amallest pond
ation of circuinstances - personal conduct in Children are remartimitate instinctively, dincrimination of the aso imitating. The s therefora rulcd very uct presented to their - case, that, if a child bbserved to contract a g , from that very disally, an endeavour in ast obvioualy, then, bo demeanour and genethe fannily in which a of all that is propes. in all reapecta that this the more likely to form nde could wish. We Fect which a poesitively to have on such of the of bad exaniple which ing to nbolish, is thet in the circle of pomitive e and uncivil languaga nd cordid habits of all grown-up members of co from all such actu is

- purence of children, there cannot be a doubt that to children will likewive he addicted to them. It may Wa somawhat atartling doctrine, but we neverthelena declare our full conviction that there is not the leant noud for over using, in the presence of or towards chisdron; any language which might not be addressed by a a wellbbred person to a perfict equal. All ordering, dagooning, scolding, and, much more, all violence, exatod for the purpone of managing or punishing a child, are uumitigated crrors and evils. A child has feclinga to be wounded and rouaed up into contradiction by handh uaage, an well an any grown-up person; and it in well known that auch means aro not serviceable for gaining any end with our fellow-creaturen. A civil requeat, if reasonnble, will succeed with a child as with a man. Gentle and respectful language gain aa mueh upon an uncorruptell cluill's nature as upon a man's. Such trestment can have no chance of apoiling a young person: it will only proinote his being made a rational, well-bred being, instead of a wrangler or tyrant.
The preceptive part of moral education, though the hrest in power, is not to be overlooked. A good maxim or a sound advice, well-timed, and made thoroughly intelligible and thoroughly acceptable, will rarely fail to have a good effect. Even supposing it to be little reguded at the time, it may remain in the memory, and come into plny on aome future occasion, when perhaps sore necessary than now. In auch moral seeds, there in a ritality like that of the seede of plants, which may have been buried too deep fer germination for thousands of yeara, and yet, when placed in the proper circumotences, visited by sap and hent, will eend up ss goodly opecimens of their kind ns if they had heen shed from aprent stem of last year's growth. It will therefore be proper, from time to time, to inculcate moral lessona, appropriate to the cupacity of the child. This may be doue directly, by giving good maxims to be learned by heart; but it will be done better by means of nurratives dowing the virtues in action. This is because a child murh more readily apprelhenda a series of incidents than an abstract truth. It will also be well to nllow the «mple narration, in the first place, to be received into hin nind, and then to ullow himself, if possiblo, to make out the maral. Csill his own moral feelings, as far as may be, into judgment upon the case, and only tell him whether he in right or wreng, till he fully enmprehends it in all its hearings. Thus his own good feelings, ns well as his judgment, are brought into exereise, and thum a far deeper impression is made than if the whole case, fincluding the moral, were merely related to him. $(8)^{*}$ It is a duty of preceptive education to warn against and check evil, as well as to inculeate good. When any thing wrong is done, we but imperfectly correct it by asying, "Don't do that," or inflicting censure or punishment. It is necessnry that we should convince the understanding nnd move the feclings of the child to a sense of the impropriety of his conduct. This may be done by mild argument and illustrstion, calling upon hinself ultimately to say whether such conduct is commendsble or not, and whether it ought to be repeated ot avoided. He thus becomes judge upon his own ase, ano is forced to condenn himself, where, if condemned by others, his opposive feelings might have only presentrd resistance and defiance. At some schools, includiug those for infants, it has been found possible ω imprese such lessons ly means of a kind of trial, the achool-fellows being the jury. The case is atated to tho assembled children: they are asked to say if auch conduct is right or wrong. They invariably give a sound decision, and the effect is nost powerful. Obdurate

The Moral Clses-1Hook, here referred to, suppises a variety of usicalives showing the virlues in aetion. logether with a colsetion of moral maxima irom Scripture and other sources.
naturea, to which a reprimand from mastes or paroas would at the moment be as nothing or worse, are foumd unable to resist the force of the public opini n of their own soriely-an is every day found to be the came wilh grown-up people, auch boing, in fact, a law of humaa nature.

Circumstances, example, precept, are ull inforior in effect to Training, which is more particularly the novel fenture of modern education. This principle may be sald to have its natural basia in the law of habit. It io indicated in the text, "Train up a child in the way he ahould go, and when he is old he will not depart from It $;$ " and in the maxim, "Just as the twig ia hent, the tree is inclined." Wo are, so constituted, that, when accuatomed to do any thing, we do it almost without the governance of our will or judgment. We do it easily, and generally well. If accustoned, for inatance, to a particular closs of intellectual operations, we acquire a fucility in going through them, which generally strikes othern with wonder. If accustomed to the exercise of a pnrticular class of feelinga, be they good or bad, they in time awake in ua unprompted, nnd we become their almost passive instruments. To hahituate the feelinge to the excrcise and regulation which is productive of the best reaulta, is inoral training.

The feelinga are of very various character. Proceoding upon Dr. Gall's description of then, which seema to us to be the beat, we find the first class described ma selfish, yet necessary for the preservation of the indirt dual and the species; others ditected to objecte apart from self, yet as lisble also to misdirection and abuse. It is altogether a strangely mingled web, yet not without a certain definiteness of constitutional arrangement and of purpose. Here it may be st once admitted, as a fact not less clear from philosophical inquiry tnan from revelation, that perfection in the complicated operationa of our moral nature is not to be looked for. But it is equally certain that there are influences which may act advantageously in reguluting, directing, and harmonizing there operations.
The selfish or lower feelings are the first in the individual to call for attention, and they may therefore be first treated in this place. 'That early developed instinet which regards food, is so lisble to be over-indulged by a mistaken kindness, that we feel particularly called upon to give a warning with regard to it. The unsvoidable effect of auch over-indulgence ia to produce pampering and fastidious habits, equally degrading to the moral as they are dangerous to the physicul system. The food of the young should never be otherwise than simple, if we were merely to regard their health; still more should it be so, if we wild preserve in them manly sud hardy halits. On uiv rate occesione when a little trent is aflorded, care shol d of course be taken that it is of a nature in all respects harmless. Comfite should be few and far between, if ever given at all; and rewards and punishments should never hava reference to edible things. As to liquor of any kind, such as men are themselves but too much accustomed to indulge in, certainly one drop should never enter the lipe of a young person on any pretext whatever. There are few aighte more distressing to a reflecting mind, than that of porents launding the so fatal wine-cup to their childrem. The quantity of food given to the young should nover be atinted from penurious or ascetic motives; but it is very certain that great errers are committed in giving too much and too frequently. Eating is altogether much a matter of habit, and that with regard to quantity as well sf quality. The smount actually required for the efficient support of the system is, under natural circumstances, not great : it is generally much exceeded. There is therefure room for a judicious restriction, within the range of common practice. It is but a m ault of the general law, that a systematic moderation
at this period of life will leal to an eacaily malntainad comperance in future daye, and thus be productive of the greateat blessing.
The combative and deatructive dispositions of children are also early manifusted. The great activity of theme faculties in toys is particularly remarkable, being ahown sa much in a wild apirit of ad venture, for innocent ohjects, but often learling into danger, at in any direct form of violence. The superabundant vitality of thin jeriod of life meems to be cause, or at leant a necessary sceompaniment, of the energy of these faculties. No peril intimidates; little componction is felt in dealing with either man or beank. In ail thin thero is no doult - grod end in view ; but it atiil remains for the educntor to regalate thene diapmeitions. The contendative apirit may be directed to the overcoming of difficult tank the taking of energetic exercies, and the viniting of places and objects the examination of which may be uneful. "The other feeling, instess of being ailowed to ahow itself in rage, pasaion, and resentment, to infict pain on harmlese animais, to torture or opprems companions, or take delight in deficing or deatraying inanimate and perhape orimmental or usefui objecta, may be trained to reserve actual manifentations of its energy for oljecte clearly noxious. It in to be lamented that elveation, an heretofore and till in many places conducted, rather tenda to foster than to regulate or moderate this propensity. The old notion that to be able to fight ie essential to a youth, still, we ferr, in some measure guides lifrectors of education, at least eo far es to induce their taking little painn to prevent scenee of outrage where only youthful good humour and kindnem ahould prevail. The oppressive aystem of fugging is aleo atill, to the diagrace of our age, allowed in come of our public seminuries. It is well, no doubt, that the who is to find life a thorny and difficult path, should not entor it with too gentle or timid diapositions; but surely it is not impossible to draw a distinction between quarrele, blows, and tyranny, and the encouragement of - apirit sufficiently manly and energetic for all the common needs of our life.

The first object of the educator with regard to these foelings, ought to be to impress the leseon that their exercise is good or bad just as they have grod or bad objects in view-that they must, in all cases, le under the guidance of the mural zentiments and judgment. The pupibs ahould be trained to check every impulse of these foelings which they are conscioua hua not a legitimate object in view, and only to allow them any frectom when careful reficction has antisfied them that auch a course is entitied to the entire sanction of the moral law. Particular regard ahould be paid to the auppression of the epirit of wanton cruelty, of malice, of revenge, of uncharitableness. And one important means of working out thewe ends will be to allow no example of harshness, cruelty, or quarrelsomenena, ever to appear before the eyes of the young. It is very desirabie that thoee who conduct echoois in which the children of the bumbier clasecs are educated, should aidress themselves particularly to the formation of habits favourable to humanity. Large sections of the humbler clames, particular! y those who have any thing to do with animala, are hibitually cruel. Much might be done to mitigate this distreasing characteristic, by carefully impressing at achool the wickednees invoived in every deacription of cruelty ω animala.

The eecretive disponition calls for a large share of attention from thoee who would bring up a child well. This tandency of our nature appeara to have a legitimate operation in dictating anch a resorve as may be necemary for the restraint of our ordinary feelinga, where their expreasion would be disagreenble or mitchicvous; but it is liable to great abuace, and particuarly amongut the young. The first impulse of all unregulated minde, young and old, is to conceal the truth,

If auch expedient neem calculated to mave tham any bration or inconvenience. It in only when the grealer ovil a lying is thoroughly underctood, that this tendeney camam It becounes, therefore, of greal coneequence to chack the firat instances that are observed in the young of a diapo aition to conceal the truth for selfiah or hase purpoman and to aeek to entubliah principies and habite of a cons trary character. For thin end nothing in so necomary as a mild and juat treatment of chiidren under all circom atances, meeing that when severity or injuatice is to bo apprehended, a direct and far too great temptation io givoa for secretive conduct.

It is difikeult to legisiate between the evils of blabbing and the equally notorious evils of a halitual aystem of conapiring for the concealment of truthe which conscientiousuess would direct being toid. There can bo littie doubt that the "don't tell" practices of the nurwery and schonl are calculated to implant and foster tho meeds of lisingenuousuese in the youtliful mind. Yet it is not lean true, that to encourage a tale-bearing habit would be destructive to all manly and honourablo feciing. Here caution, judgment, and a careful discrimination of cames, munt be the chief guides of the educator. We would, for our part, deem it a duty to lean an much as pomiblo to the principle of having the truth toid at all hazaride The elucator may do much by a rigid aystem of inspee tion, and omitting no opportunity of breaking up all confederaciea against the truth. As he never will allow shirking, if ho can help it, so aiso be will never, on his own part, be guilty of the meansess of winking. The more open and candid his own conduct in all his rele tionn towards his pupils, the better will it be for them There exista a school on inproved principles, where the mont lively mutual confidence exista between the masten and their pupils, and on the part of the pupils towarde each other, with the best effects on all hauds. Honour in thus so halitually observed, that tha deaks containing the litte propirty, letters, \&c., of the pupils, need no locks. There in much evil in fanilices from childrea being brought up in non-confldential hulita with thein parents and with each other. The family pariour and table ahould be a scene where all can unfold their oilinary thoughts, without fear of censure or ridicule. Itio the best meane of insuring that the young people will act with the concurrence of their parents, when they come to take any of the more serious atcps of life.

T'he acquisitive feeling requires inuch inore educational care than it has unually received. Wo need noe detoin the reader with an exposition of the legitumate use of this fuculty, which prompts man to accumulate and atore up the goods of life, for regular ingtead of precarious une To this impulse capital owes its existence, without which there could be no civilization. The Author of oun leing has atamped importance on this fuculty, by the strength of the propensity. None more requirea modifi cation, regulation, and right direction. It is ofen to, strong for conscientiousness, and is tho source of hy fu the largest smount of crime. But, besidea this, it is ever with the honeet too much manifested in alluse. Ita ob jects are made the paramount pursuit of life, and in its intense welfinmese it withers to dust every generoua and kindly feeling of the heart. In a cumniercial countr, like our own, it deeply degradea a large proportion of the community, and leade to much individual and aocial ous fering.

These evila are the consequences of the natural strength of this feeling, the absence of regulating education, and the presence of poitive niareducation. Selfinh and er clusive appropriation of desirable thinga, either to eat on hoard, is a lewwon taught the youngeat, both by precept and example; and there is none more easily learned Here bribery operates, till infaint morality becomes men matter of barter, and good conduct and attentive alwy are eatimated by the infant merchant by what they will
mex.

* the une trala ne engosin paceusto Win not to ybe 100 lous regar zne which thas they wer is the Belfent andened they are a dure of ed ant to keel belinge. that conific necesary gand to th wuch effor of caprice liulbe. It
mga, at fa ond in m norld, tut w) much we wurld' ta the pro ble as ine ood (that aurprising
thowe pur prizen, med doubted th of fosterin, those unid divubly a wame mode
dell mark helasviour of individu
dis own p may hope right footin the whole rewarde an while we condiag to ing them inilerior, an influences.
Cautiou w prompt thagenes, bu calls for a mans, it is cbjuctes, an Thus thoi huren the meat to be ceses when aquencea An enligh wiy kind the feelin canc, he a agement so caution tur leseon ancounter undertake
2y it.
perilling
mave them any hete the grealer onll thio tendency cemem quence to check the he young of a diapo h or base purponean and hublta of a com aing is 50 necemary ren under all circum or injustice is to be at tomptation io givon
the evilis of blabbang habitual syatom of truths which contold. There can be ctices of the nurwery t and forter the seedo mind. Yet it is not caring habit would be arable feeling. Here werimination of casen, ducator. We nould, - an much an poasiblo told at all hazarla igid system of inspec d breaking up all conhe never will allow he will never, on hie ess of winking. The mduet in all him rels. will it be for them. principles, where the between the masten of tho pupils towarde all hands. Honous the deaks containing the pupila, need no cunities from children rtial halits with their the family parlour and an unfold their oilio sure or ridicule. It in eyoung people will ad ents, when they coon ps of life.
nuch more educational We need not detain the legitimste une of , accumulate and atoro ptead of precarious une dintence, without which The Author of our on this faculty, by the more requires modif. ction. It is often tor is the source of by for t, besides this, it is ever sted in abuse. Its ob rsuit of life, and in its ust every generous ano a commercial country, large proportion of the dividual and social ur
s of the natural strengt gulnting edocatios, and tation. Selfiah ander things, cither to eat or ungest, both by precept se more casily learned. morality becomes men ent and attentive audy aunt by what they will
max. Porhape we err in so soon introducing children the we of money ; it is at least desirable that they - ala not be eccuatomed too soon, or at any time, to an groaing aence of ita value and importance. It in well becenatom theus to take care of any thing that in their own, Wut nof to set too great store by their littie posesalons, or ybe to0 extlusive in the uee of them. A halit of acrupulous regard to the diatinction between mine and thine, is mo which cannot be too early formed, at the anme time that they are accuntumed to make a generoue use of whatwer in their own.
Selfeateem and love of praise or approbation are enriy walened feelings, and the more call for regulation that they are wo liable to he called into exercine by the proceJure of education iteelf. Here it is purticularly important to keep in mind what are the legitimate anes of these colings. A well regulated eelfentecm obviously givea that confidence in ourselven and our powere which is necensary for ull our cillorts in lifo; while a moderate regadd to the opinions of others is uneful ln prompting to such efforta, and in restraining us from many displays of caprice and absurdity to which we mould otherwise be lible. It will of courne be well to encourage these feelmgg, as far as they tend to give necessary contilence, and in maintain a decent regard for character in the world, tut no further. 'Iheir vices, pride and vanity, wo mich relianco uponself, and too abject a regard to the world's opinion, sre to be aedulously goardel against. In the procedure of education, thoy are so rendily availthe as means of atimulating to exertion and encouraging grod (that is, not troublesinne) behaviour, that It is not surprising that they are so extensively made use of for thowe purposea. I'he whola system of place-taking, prixes, medals, \&ce., is founded on thom. It cannot be doubted that educators are thus guilty, in many instances, of fortering invidious and even deatructive ferlings in those under their charge; the whole system is anjuestivuably a selfish one. Fecling strongly these objectione, wome modera educutionists advocate the entiro abolition d all marks of emulatively comparative proficiency or good behaviour at achool, retaining only an accorato register of individual advancement, to enuble the pupil to mark in own progress. Theoretically this is right; and we may hope that, when education is fully organized on a right footing and supported by an improved adult society, the whole systern of competition, including every kind of remade and punishmenta, will be dispensed with. Meanwhile we must leave educatore to act on these points accondiag to their best discretion, only strongly recommending them to dispense as far se pumable with all these inferior, and, to a ccrtain extent, deysuding and corrupting unfluences.
Cuutiousness-a feeling intended, in I a right direction, ω prompt to foresight and the avoidance of unnecessary dagen, hut, in its axcese, posillaninity and cowrelicecalls for a carcful treatment. Among unthinkisif: persoas, it is mere sport to frighten children with narratives, ebjects, and exclamations, calculated to inspire terror. I'hus their imaginations are filled with bugbears, which huras thenn constantly, and make it the severest puniahment to be left at any time alone, or to be in the dark. In caves where a predisposition exista, the mont serious conmqueaces sometimes flow from this irrational treatment. An enlightened educator nover allows an ideal terror of any kind to enter the mind of his child or pupil. As the feeling muy te strong or weak in the purticular cusw, be seeks to moderato or to foster it, giving encouagement and stimulus if it be defective, and prompting \$o caution if it be otherwise. Ho carefolly implesees tow lesson that danger and hazard may be laudably ancouncered for a good ubject, but that it is fifly to undertake the leant risk when no end is to be gained y it. For example, he wrould mpprove of hie pupil prilling his own life to ase a friend from drowining,
Vol. 1. $\rightarrow 19$
but not of hio going acrow a lake thinly frozen, meroly to ohow his courage.

The velfish feelinga appear in a natural mubordination to tho *e which are usuaily called "higher." and sometimus, by axcelience, "the moral contimentu." Theme are what mainly give the characteriatic, "goolnew," to an individasi, and mo rule the eocial machine, that general moverienta are umually of a virtuous chameter, nad vice in obliged to remain in nooka and comern, or put on the garb of virtue when she appears. It in to the proper training and regulation of this clam of feelings that the educntor ehiefly looks for the result he alme at-namely, the right formation of character.

Conacientiounneas, the consciance, the moral mense, or by whatever other name it is called, is that innate feeling which gives the dipposition to follow right and arold wrong in all circumntances. To bring thin feeling inte its full force, it in necemanry to train it with the ald of inteliect to lend it diacrimination. The pupll must be accustomed to observe its rules, as to the property of others, their reputation, their comfort, and happhews, the right decision of "every question in which their interests are concerned, nud almo with regard to tho truth in all things. He thus becomes fixed in equitable, disinterested, and ingenuoun lanbits, beyond all the powern of ordinary temptation. It will be no exercise to this sentiment, to tell the young to avoid certain acts, because thoy are mean and only jractised by the vile, or becaume they will procure univerail oclium. That is an sppeal to love of approbation, not to conaclentiousness, to the development of which it will bo rather unfavourable than otherwiso. To fortify conscientiouaness againat what in wrong, we munt directly address itself, by an cndeavour to show the actual unjustuess or baseness of any particular course of conduct, or the integrity ahd purity of the opposito; taking crre to induce an act positively conscientious on all possible occuaions, ay in tho acting upon a eentiment do tho means of improving it chiefly lie.

So, also, with benevolence. Wo must not content ourselven with presenting ideal pictures of the listressem of our fellow-creatures to the minde of the young, thinking that to excite their commiseration is enough. Wo must endeavour to induce them to perform acto of kindneas and charity-we must endeavour to make them give, from their own means, or at some expense of selfdenial, succour to the unfortunate; and for this reason it will be proper that they are occasionally brought to witnese cases of actual auffering, and made to administer relief with their own hands. It was a beantiful old custom of Christian princes and princesses, to have a number of poor persons occasionally brought before them. that they might administer to their relief' and comfort by washing their feet with their nwn hands. It was ite least good effect to humble rank to the level of mortality : the better one was to give activity to the aentiment of benovolence, too apt in euch persons to become dormant, from their very elevation sbove all spheres in which humati suffiering exists. Benevolence is also to be shown in what is called an obliging disposition, a readinese to sacritice ourselves and take some troublo whenever our doing so can at all promote the happiness of our fellowcreatures. It is likewise shown in mercy towards the weak, including animals, and in a fergiving placalle temper. "Teach your children never to wound n person'm feelings because he is poor, becanfe he is detormed, because he ls unfortunate, because he bolde an humble ata tion in life, becauso he is poorly clad, because he is weak in body and nind, because be is awkward, or becaum the God of nuture has bestowed upon him a darker skem than theirs."

Justice and kindness to others have a worthy anociate

- Goodrich's Fireside Edacauoa
$2 K$

INFORMATION FOIE THF: PROPLF.

In reapect in vencration for others who are of superior worth, and for muperior ehjecte in meneral, incluring the ebjectn of religious frith. This is almo a native mentieneat of the mind, and one which mende a beautiful light throughout the werld. The scofling and undervaluing propenaity is ita opponite, a diapomition rarely found anmociated with cotimable qualition. The mentiment of veneration is that on which all aocial grodew clepend ; it is the egirit of auhorilina ion iteelf. It is a folly when exercined with regard to mere artificial mank unattended by worthy qualitie: ; but with regard to promons elevated wither by their sative good qualities, of the function whirh has heen intruated to them to excente, it in an nuth due an in our pi.y and sucer, ar for the unfortunate. It is perhap thie feeling which chiefly givee n regard for tho feelinge of others; for we muat think nur fellow-ercuturen of aome coniequence, before we will be dispowed to go out of our way on their account. The feeling, therefire, ominently demerves the care of the edmeator ; hut grent pains must be taken to give is right direction. We must leach the young to dimeriminate judicjonsly an to ohjecta mally entitled to their reverence. Il may here be remarked, that the feeling of veneration is one which may prove of great importance in certain contingencies to which the educator is liable. When a child has been Indulged or min-trained to such an extent that the defies all the reina to which he bas been accuatomed, it will generally be found that removing him to a new scene, and into the charge of indiviluals who, whetiser from their charactef or from the force of novelty, excite the vene ration of the young delinquent. is altended with a good effect, which it only require firnusw, dincretion, and tindnes in the now teacher to follow up, for a complete reformation.
The abdive may be said to be the natural means of ewlivating and forming the moral character of those intrumted to our hands. And these natural meana are of great consequence, and entiled to all the respert we can give them; for they are in reality means of divine appointment, denigned to serve in the great work of mutual improvement. But the mont powerfui menns of modifying human character is that other revelation which has come to us in a more direct manner, and which is fully disclosed in the pages of Scripture. As soon as this can le made inteiligible to the young, it should be imparted, not under those rudely faniliur circumatancea which too often attend religions education in the schoolroon and at home, where the child is conseious of little besides a struggle to commit certain texts and dogmas to memory, but in the quiet of confidential converse, when the thoughts are called home, and the soul in open to awe, iove, hope, and all the gentler emotions of our nature. Then may we hope to convey some just imprescions of the grand yet tender relation in whith man atands to hin Creator, his destiny on earth, and the appointments for the future. Then only may we hope to impart just feelings with regard to the inacrutable scheme on which the weal or wo of an cternity depends. It is ebvious that, if we aucceed in these things, we must awaken in the moral nature a self-sustaining influence infinitely more powerful than precept, exansple, training, and sill the other nntural machinery of a moral edneation. Yet it should never be lost sight of, that neither meave will singly lie operative. Ipon a minil which has licen left rude and unregulated, the efforts which ultimately take the nane of religions education can make litule impression. The worda which have been learned will probably remain only as worda, without producing any real religioun feeling, much less any improvemont of conduct. Indeed, both the morala and the intellect inust be cultivated to a considerable extent, lofore religion can be any thing but a passiug sound. There must le a prepured intellect to understand it, and prepared morul *elings to give it a reverontial reception, und entertain
ita hwheats in the apirit dse to them, not to apeak n a ing upon its prespphs.

To recapitulate-the moral nurture of the young ith in he accompliabed hy a varicly of meana 1 firat, by placing them in pure moral atmosibere, prewenting what good and nothing evil of human conduct lefore thet alght, fruniliarizing them with every nound precept, and giving their varioun frelings due regulation, exercine, and training! next, by imboing them, under the elrcumatancen most calculated to lee effertive, with thowe religioun truth which mo infinitely tennecend all others in inportanm In onler to impreas our lewons atill suore peintedy, mon log to add mosse expresm direetions, which we think may ise alvantageounly followed in the management of the young, more particularly thone at the infint ange.

Anticipate and prevent fretfulnean and illotemper, keeping the child in good health, case, and comiort Never quiet with giving to eat, of is bribing in ang way, still leas hy opiates. For the firnt few monthe aveld lond and harnh sounds in the hearing of chidimen or violent lights in their might: nuluress them in sof tonew; do nothing to fighten thems and nover jerhor roughly hnndie them. Avoid ansry worda ned violeno both to child and in its presence, by which meana naturally violent child will tre trained to gentlenem Molerate any propensity of a child, auch as anger, vin lence, greedinems for fool, cunsing, \&e., which appoan too active. Show him no example of these. Let the mother be, and let her select arevants, auch as che wiahee the child to hre. The youngent child in affected by the comduct of thone in whone ariss he lives. Cultivate and express benevolence and checrfilneas; in such an at mosphere a child muxt hecomo benovolent and cheerful Inet a mother frel as whe ought, and she will lonk as th forls. Much of a child's carlient moral training is by lookn and gestures. When necessary, exhibit firmnea and authority, nlway with perfect temper, componure and milf-ponsersion. Nevar give the child that which it crios for ; and avoid being too mealy in answering chil dien's demands, else they become impatient of refime and aclfinh. When the chill is most violent, the mother should bo nost colm and alent. Out-merenining a scream ing chill is us useleas as it is mischiovous. Stenty denial of the ohject morenined for is the best cure far screaming. In such contests, witnesses should withernm and lonve mother and child alnne. A child is very rendy to lowok round nad attrset the aid of foreizn sympathy in ite little reloflions. Never promise to give when the child leaves off crying: Wt the crying ine the reason to not giving. Constant warnings, reproofs, threath, and ontreaties-as, let that alou-he quiet-hour noughty you are, de., all uttered in haste mad irritation, are most pes nicious. No fixed or definite noral imprevement, bai the reverse, results from this too conmon practica Watch demtractiveness, shown in fly and insect killing and smashing and breaking, quartelling, atriking, te Never encournga revenge. Never allow a child u wit ness the killing of animals. Counterwork sectetivenew by exposing its manceuvres. Regulate notions of pmo perty-one's own and another's. Never strike a child and never teach it to strike agnin. Nover tell a chidd to leat or threaten any animal or object. Corporal corec tion may be avoiled by judicious sulvetitutes. Set an example of cleanliness, orler, punctuality, delicacy, po liteness, and proper ease of mannier. This is better than teurhing manaers, as it is called. Inculento estly, and maniferst in yourself, a dilicate regard for the righte of others and their ferlings, is contrust with selfinh ranity, arrogance, and excluwive attention to one's own eate, comfort, and gratification. Prevent ali indelicacies and slovenly habits at table-touching the utensils, stretching for what is wanted, sitting awk wardly, \&c. Study early to gain a chidd's confidence by juilicious nympathy in ib joyn and sorrows. Have no conccalment with it

Gamm ra love, arilibren govarme druetie. Neve and beach. The unuli, juatice, an them in yourmelf to run into ohst agravate the fiee yourselfi and hy neitir. ${ }^{\text {a }}$ the chif the object, and and reacun. Nev threats of habgo injariova in their covered to be fiula
We beg to co mmarkn from D mamgement of acious error in n ural emotions ruults of intelle apline will sulfic taken notion, p plused with a ch mpropricty of the curence of the t before. I have k im, lecture, and every way to cor for mankind, how more wolid found erring intellect. in the wry natur aultivation or neg and their real st meognised, till th mordance with eriemal senses, their appropriate and in doing jus athin their prope true authority in mod the first hou eytematically not io necure at all ti y rung. To do quirex, on the pr ful activity, good and unfailing ki otten to be met w we ahsil make a n than if we rest occurs. It is la theme mothers, leava the entire fied attendant, an कions of anger o juriously upon th ourselves, but ev children to becotn If wa wish them apright, and true qualities as regul these qualities a facultice in the pawiona, but at hindnes and at our caprice or de pect to gather g as to develop mo them. It is vain leet is feeble, it c practise. The perfectly distinct

the young in

 frut, by placing meuting what uet before thet ind precept, and on, expicine, at.d. he circumitaneen - religious troth min inportanm mo jointedly, wo th we think may lagement of the frint atige. nid ill-temper, by en, anul' comiont \checkmark kribing In any Init few month aring of chiddren, pen them in mot nd never jert on rils and violenea which meana d to gentlenma ch as suger, vio *, which appenn - these. Let the wh as she winhea is alfected by theCultivate and in anch on ab ent and cheerfol e will lnok at she al training is by , exhilst firmne mper, composura liled that which is n answering chil antient of refivel, iolevit, the mother reausing a acrearar hiovons. Steady he best cure fre should withdraw, thild is very ready eign sympathy in o give when the be the reawn lot oofs, tireata, and -howe naughty you ion, are most per improvement, bol ounmon practica and insect killing ing, atriking, tce ow a child $t \mathrm{t}$ wis vork sectetivenem e notions of pm er atrike child ever tell a child to Corpural corme bestitutes. Set an ality, delicacy, po This is betier than culcate carly, and for the rights of rith sellish vanity, , one's own ease 11 indelicacies and uteusils, stretching sec. Study earty 16 sympathy in ib cealment with is

Gnoman iv low, and not by fitart the contrant hetween coilimen governed hy the one and the others in truly indructice. Never forget that t ndnese is power with man and beact. The Arab never atrikes his horse. Cultivate nulli, juatice, and candour in the child, and manifeat them in yourwif. With a chilil whoee firmnew is apt to run into ohatinacy, never contend; in toing mo, you mgravate the feeling by manifesting the wame feeling in gourself; and hy further mhowing your combativenems, sectin. the child'm oppoition. Divert the child from tha ohject, suil) put in activity its benevalence, juintice, and reason. Nover frighten to obtain a child's oberlience: thresta of hobgollina, and all falne terrors, are most injartou in their direct effiects, and, being genernily diswered to be falsehoodm, operate mont inmorally
We beg to conclude the mection with the following marka from Dr. Combe'n excellent manual for the muagenent of infancy: -4 It a common and pernicious error in modern eduration, that the pasaions and aumil emotions implanted in the human mind are the mults of inteliectual enltivation; that intellectual disripline will sulfice to regulate them. Under this mintaken notion, parents are often disappointod end displomed with a child, when, after a full explanation of the mpropriety of the fueling of pasion, it still, on the rearrence of the temptation, givea way to it as much as befiure. I have known a father, under this false impresmon, lecture, and threaten, and punish hin chlld, and take enery way to correct it but the right one. Fortunstely for mankind, however, norality and religion have a much more solid faundation than a mere deduction from an aring iutedect. 'l'icy are based on feelings implanted in the wery nature of man, and which mere intellectual euttivation or neglect can neitiser generate nor destroy and their real strength and authority will not he fully meopnined, till they are cherished and developed in strict curdance with their natural constitution. like the rriemal senses, they must be hahitually exercised upon heir appropriate objects-in worshipping the true God, and in doing justice, and loving mercy-before they can atain their proper infiuence over the character, and their true authority in regulating limman conduct. From almost the first hour of existence, this principie should be artematicully acted upon, and the utinoxt care be taken io secure at all times a heslthy moral atmosphere for the yrang. To do perfect juatice to the infant, there is recuiral, on the part of the mother, a combination of cheerful activity, gool mense, knowledge, rcadiness of resource, and unfailing kiuluess and imprartiality, which is not otten to be met with. But by aituing at a high standard, we hall make a nearer approximation to what is repuired, than if we reat satiafied in inditlerence with whatevor accurs. It is lamentable to retlect how numerous are thuse mothers, who, from indolence or other causes, keave the entire control of their offipuring to an unqualiGied attendant, and even thenselves give way to expressions of anger or caprice, which cannot fail to act injuinously upon the infant mind. Let us, then, not deceive ourielves, but ever bear in mind, that what we desire our children to become, we muat cudeavour to be before them. If we wish them to grow up kind, gentle, affiectionate, oprigbt, and true, we must habitually exhihit the same qualitien as regulating principles in our conduct, because these qualities act as so many atimuli to the respective faculties in the chill. If we cannot restrain our own pasions, but at one tinso overwhelm the young with kindurss and at noother surprise and confound them by our caprice or deceit, we may with as much reason ex. pect to gather graper from thistles, or figs from thorns, us to develop moral furity and simplicity of character in them. It is vain to argue that, because the infant intellect is feeble, it cannot detect the inconsistency which we practise. The feelings ant reasoning, faculties being perfectly distinct from each other, may, and sometimes
do, wet independently; and the feeling at onee condemn aithough the Judgment may be unable to assign a reamon for doing mo. Here in another of the many ailmirnhie jroofe which we meet with in the animal economy of the harmony and beauty which pervade ail the works of Cloch and which render it imposailile to purnue a right course. without almo doing collatural gnod, or to pursue a wrong courme without producing collateral evil. If the mother, for exsniple, controls her own temyer for the anke of hen child, and endeavours myntematically to acek tho guidance of her higher and pure feelings in her general conduct the gool which reanlis is not limited to the consequent improvement of the child. Whe hernelf hecomea henithier and happier, and every day adils to the pleasure of auc cems. If the mother, on the other hand, gives way to tits of pausion, selfishnesa, caprice, and injustice, the ovis is by no means limited to the suffering which ahe bringe upon hermelf. Her child elso auffers, both in disposition and in happluems; and while the mother secures, in the one came, the love and regard of all who cone into com munication with her, she rouses, in the other, only their fear or disalace."

intrllectual educatiox.

By intellectual education we hold it to be implied thet the human intelect, originally a mere instrument ready to be exerted, requires, for the full development of to powers, and sulsequently, for the ready use of thome powers, the application of ecttain external stimuli, and the force and regulation of a certain discipline; aleo, that the intellect, besiles being thus improved in itn own clutracter and energien, requires to be possensed of certain knowledge and certain accomplahments, in order to a proper performance of the various duties of life. We shall not stop to make a nice investigation an the various powers of the intellect and their modes of acing, but at once assume that, with sensea serving as media for the access of impressions from the external world, it inc:ludes powers which can tuke cognianance of thinga, or perceive, and powers which can compare thinga, and trace their connection in cause and effect (reffecting); these having vanous moies of action recognised, as memory, association, \&c.; nal that these varioun media, powera, and modes of operation, may all be improved by use and exercise.

Intellectual education properly begine with the firx symptoms of cousciousness in the infant-the first indications that the monses and intermal observing powers, the germs of which exist in the youngeat infant, are beginning to act.

The senses require the earliest attention of the nurse. Sight, hearing, and touch, are, in a vec, short timo after birth, in obvious activity; but they requiro at first to be very delicately treated. Exposure to bright lights and suddes loud sounds, has produced blindness and deafness for life. Both senses should be brought on gradually. These, as well as touch, should then be juchiciously exercised upon their own object, placed at different and ircreasing audible and visible distances, till at great distancee objects can be neen and slight sounda heard. Objecte should also lse touched blindfold, and diacriminated. Amell and taste aro improvable by similar ineana. It would form en extremely interesting occupation to an intelligeut nurse, for many a moment of ennui which ahe now endures, in her care of an infant, to exercise its senzes on their appropriate objects. When nothing is done, or when the chilil is shut up in a small room with no range of vision, not only ia no progress made, but there is great danger of short-sightedness being eitnet induced or aggravated.

Leaving the external senses, and advancing to the atternal facultics of the mind-the powers of feeling, ubserving, and thinking-we muy remark that the brant which is as much the instrument of these powers as tre
oyen and cars are of their respective extornal sensea, is at birth, and for some time after it, too imperfect and delicate in its substance for active manifestation. The deaire of food, and sensibility to bodily pain, alone appear, and are, indeed, all that are then necessary. But tho more delicate the brain, the more delicately ought it to be treated; for an injury to it may produce idiocy or Imbecility for life. In the exercise and cultivation of the intellectual organe, it has been found, from experionce, that great caution is required. It is here that the brain is most apt to be overworked; and it is here that that prematurs activity, talled precocity, appeara. Under the head Precocity, Mrs. Barwell gives the following emphatic counsel :-" When a child appears to be over-intclligent, or too rlever or wise for its age, this is a symptom of unnatural development of the brain; it is a kind of disease, which offen ends fatally. A void, therefore, exercising the child's ability; treat it as an animal, with nutritive tood, muscular out-door exercise, and plenty of sleep; and do this, and this only, for some years." Wo allude to the auljeet of prococity thus early, in treating of intellectual training, because its indications often appear in very early infancy, and erroneous treatment cumnot te too soon avoided.
Before two yeara of age, much important intellectual education is going on. It is not the education of books; it is gradual introduction to surrounding oljects. How ourly the eyes are used to gaze at, and the hands atretched out to grasp and become familiar with, every thing presented or observed, need not be here insisted on. A judicious nurse will direct this impulse of mn ture and inuch assist this self-education, so that the earlieat impressions may be made by such objects aa form the materials of existence, and their qualitics, never to be effaced in after life; while the observing faculties will have a healthier growth, by means of an easy and pleasingly directed exercise. Modern educationists have often complained of a prevalent want, in people of all ages, f what may be cenled obscroativeness-the power or rather habit of noticing what is before and around us. Multitudes pass through life, of whon it may lee said that they have missed four objects in five which came in their way. This could be met in carly infancy by taking the proper means of establishing habits of observation. "Look here;" "see this ;" " feel that;" " weigh the other thing;" "what beautiful colours;" " smell that flower," abuuld be the simple and constant lessons of the nurse; and ahe would find both the intellect and dispositions of the child improved by such exercise. 'The contrast, in stier life, between children so trained, and those who never olserve any thing, would be both striking and instructive. (${ }^{\text {(}}$)

Fhom Two to 8ix Yaars ot Age.-Intellectually peppared by the nurse up to the point at which we have arrived-when the child has reaclued the age of two years, and when, if it can by any means be so arranged, be or she should join an infantachool-the intellectual ellucation will, so to sjeak, take a i...ure scholastic form. The leasons will be somewhat more systematic, and muited for the simultaneoun attention of numbers. But atill the caution will never be lost sight of, that, from two to six, the intellectual exercises should be light and attructive, and never long continued at one nime; sir, 'rercise, and play, regularly alternating with instruction The paramount object at that period of life, let it never be fergotten, is mural training; to which ohject compsnions of the same age, in considerable number, are as - wesertial as light is to the exercise of the eyes, or air to that of the lunga. Benevolence, truth, justice, honesty, aluashent, all imply companions. Athough, at that use, the intellectual training is econdary, when conpared with the moral, yet without tasking the infant hecultien, without giving to the pursuits any character an attractive than regulated play, a great degree of

Intellectual acquisition and improvement may be a alized.
The introduction which the child has recoived in the nursery to the material world, will forn a stage in hin progress for the more systematic tesching from two to six years of age. Objects will atill be the materiel of his atudies; but they will be so arranged and classed as to conduct him through e completo knowledge of the ex ternal features, qualities, and uses-short of their cha mical composition-of nearly all the objects with which ordiaury lifo is conversant;-simple objects, parts of objects, objects natural and artificial, mineral, vegetable animal, with therr parts, conditiona, differences, agree ments, manufucture, and abstract qualities, and clasilicu tion of objects by resemblances and differences. in these excrecises several hundred useful ideas may be im. parted; all of them made real by the connection of each with some muterial type.
Simultancously and incidentally, the words expressing the objects and their qualities, \&c., will be given, and, in connection with the object, will never be forgotten. In cidentally, too, the word will be exhibited printed, and so read as well as pronounced, and likewise apelled. The letters of the alphabet will be separately tsught a objects. Thisa lesming of things and words together will be found beneficial as to both. When the senses are explained, which we assume has been done, the ex. ercise will be easy and improving which connects the objects with each sense, or with several at a tine; in other words, whether the pupil has seen, hesrd, touched, mmelled, tasted, or weighed, the object or its quality. Thus, without a task, slimost insensibly, and as it were at play, the child, in four years, will have attained a sum of knowledge of great extent and value, which will form the basis of an enlarged mind in after life, and prepare for the future acquisitions of science and plitosophy. The rule should be rigidly observed, that no olject in nature or nrt should ever be spoken of to a child without an endeavour being made to present it to him rither in renlity, model, or drawing, and this practice ahonid be rontinued till the ohject has beceme familiar to hinn
Between two and six, besides the acquisition of know. ledge of objects, much elementary knowledge may be gradually, casily, and almost insensibly, imparted;-the simpler geography-srithmetic by mesas of Wilderspin' ball-frame, or arithmetion-the pence-table-weighta and measures-lettres, syllahiles, words, lessons en pico tures of animals, \&c.-lessons on maxims moral and prudential-ancedotes and stories with a moral and im. proving tendency, told elliptically, that is, by worh being left out for the children to supply, \&c. At this age the vocal powera and musical ear should be exer. cised, which is both amusing and instructive to the chilliren; many of the lessons may be sung. Murh knowledge of common and useful thinga, connected with life and manners, may he communicated at this age, with an impression that will never lee efficed. Lessens too, connected with exercise in the practice, may be given on the benefits of cleanliness, ventilntion, tempe rance, with all the evil effects of their contraries; while prejudices, fallacies, tyrannies, cruelties, unfaimeses selfishncsses, bnd hnbits, \&c., all of which operate so mischic vously on society. may be met by anticipation in .rssons and colluter-practice, so as to be avoided in aften life. It is phain that the moral and intellectual training must proccepl hand in hand.(2)

Fiam Six to Fucatera Yeahe of Afx.-In riphtily arrunged nud complete course of elementary in. tellectual education, it is presumed that the period foom two to six yeare of age has been apent in an infinn achool. The effect which such a preparation has on fucilitating the suharquent operations of the teacher in on grent, that every eflort should be made to give childen the advantage of it.

Prom ilx to fo aboule. This ides having thei ure to be introd which are necess nhich includea ment of the intel uxbits of intellect
The two great und how are we t of reading it, acq lure, and with th power of compos certainly entitled tree modes of to intructing thild shether they evel blle of it, or are of it Second, w practised in tho 1 obber seminarice, pupils have some under their notice hat they understa which adds to oth pusible cases, the least presenting d otherwise. Consi pared for the abst imprlse, they gra: ay that the last n diantage ahould
The first step m Le cunsonants, both at the beginr lection of monox: hould be taken, refer to coarse and rowels being thus arance to words we esemplified; b0. ${ }^{3}$) The lesso tences of such a nation and illustra mud by sensible of 1. Names of thi howing the obje the children to to Their own simple 2. Names of $q 4$ ojects that hove dep-"Tell me a bare been nauncd3. Names of act or descriting it hy bow precticnlly
Thene suggesti and childish, but meall will show povement by th dients, of ty etyn oitions.(1)
Gmimmar will the form of parail methes much aul rjject and its q munced, written ur read and parse poliug, actuully a tious cxtension of me of the most i rduation. Leur wa waste of tim oaly when we w
pent may be to s received in the in a stage in hin fing from two to the matericl of hin and classed as to ledge of the ex port of their che bjects with which objecta, parts ol nineral, vegetable, differences, sgree. iea, and classificu. differenceg. In ideas may be im. onnection of each
words expressing I be given, and, in be forgotten. In bited printed, and likewise spelled parately tsught as d worda togethet When the sensed peen done, the ex. hich connects the ral at a tine; in n, heard, touched, ect or its qualify. ly, and as it were I have attained I value, which will in after life, and science and philoobserved, that ne poken of to a child present it to him this practice should e familiar to him quisition of know: nowledge msy be ly, imparted;-the na of Wilderspin's ace-table-weights ls, lessons on picaxime moral and li a moral and im. that is, by words ply, \&ce. At this r should be exer. instructive to the be sung. Much igo, eonnected with cated at this age, effnced. Lessens practice, may be ventilation, tempe - contraries; while tien, unfaimesses, which operate so by anticipation in lee avoided in ater tullectual trainis:
s of Afe. $-\ln$ a of elementary in. th the period fiom pent in sn infunt ireparation has in of the teacher in on e to give childrea

Prmaly to fourteen is the period of the elementary chouls. This is the time during whieh children, beidet having their moral education carried on efficiently, wee to be introduced to those branchee of inetruction which are necessary for tho business of lifo-a process which includes within itself the exercise sna development of the intellectual facultice, and the formation of mebits of intellectual application and taste.
The two great questions are, what is to be taught; and how are we to teach it? Mother tongue-the power of reading it, acqusintance with its grammatical atructure, and with the exact meanings of its words, and the power of composing it with fluency und eleganco-ia certainly entitled to the first attention. There aro thre modes of teaching it. First, the old practice of instructing children in it by roto, without regarding whether they ever thoroughly comprehend a single aylbhte of it, or are ultimately ablo to make the least use of it Second, what is called the Explanntory Method, practised in the Edinburgh Sessional School and many pracer seminarics, whereby it is at least secured that the
other pupila have soma aynonyin for every term that comes onder their notice, so as to give some reason to believe that they underatand it. Third, the Exhibitory Method, which adds to other expedients thiat of showing, in all pusible cases, the ohjects referred to in lessons, or at peast presenting drawings of them on a black board or stherwise. Cousidering how little the young are prepared for the abatrazt, and how engerly, under a natural impulse, they grasp at the tangible, we need scarcely ay that the last method appears to us as one of which duantage ahould be taken as far as possihle.

The first step may be a regular series of leasona on the cunsonants, single and compound, as they oceur both at the beginnings and enda of words. In the selection of monosyllalic words for this purjose, care bhould be taken, for obvious reasona, to avoid such as refer to coarse and inean ideas. Tho powers of single rewcla being thus alao taught, it will be propia next to suance to words in which double vowela or digraphs are exemplified; and so on, as in the work here referred w. ${ }^{(3)}$ The lessons for practice should consist of sentences of such a nature as to admit of amusing explanation and illustration by sketches on the black board, and by sensible oljeets.

1. Names of things will perhaps be best explained hy bhawing the object itself, or its picture, and by asking the children to tell whant they know about the olject. Their own simple definitions are very often the best.
2. Names of qualities, by requesting children to name objects that have the quality. For exnmple, to explain dep-a Tell me any thing that is diep." The following hare been named-"The sen, a well, a coal-pit, a cannl."
3. Nantes of actions, by performing tho action named, or describing it by aome interesting anecdote, so as to show practically the neeaning of the worl.
These suggestions may by some be considered trifling and childish, but a proper trial is requested, and the result will ahow whether children make more real improvement by the above simplo and obvious expedienta, ot ty etymological crudities and dictionnry defioitions.(4)
Grunmar will incidentally accompany the reading, in the form of parsing. By what is enlled the incilental mothed much advantage is gained; knowledge of an shject and its qualitics is oltained: its nome is promoneed, written down, nad remd; while itm description is rend and parsed ; nll which exercises, inatend of impoling, actually aid und facilitate ench other. A juditious extension of the incidental method may be made one of the most importnat means of advancing popular iducation. Learning to spell orally columus of a book, sa wnate of time und nin irksome lahour. We spell only when we write; and the wower is reallv not at.
tained by the old sehool exercise of apelling, tat by reading ; the words become familiar to the eye as specific forms. No one who reads much can remain a bad orthographer; and no one write much who hue not previously read much more.

Simple Lessons in Reading.-The child may now make a atep forward in the art of reading and spelling, and be prepared for more methodical intellectual culture. At the amne time, in order to amuse, and induce reading for the pleasure it communicates, the sulyjects of the lesaona ahould be of that apecies of narrative which delights tho infant mind, bearing, in each case, a reference to the perceptions of the pupil, or tending to encourage in him a love of the beautiful in maturc. Inatead of the old unprofitable reading and spelling in achools, the improved plan of instruction in English consists of-First, Correct reading, dividing and apelling of words; menaing by spelling, not the laborious and useless cominittal to memory of whole columna of spelled words, but, 1 , naming letters singly ly their powera, grouping them into syllables, and these again into words, so as to read a language; 2, putting down lettera on paper, in proper number, order, \&ce, so as to prorluce a combination expressive of sound, and thus write a langusge. Spelling ia acquired by conatant practice in reading, writing from dictation, copying pieces from good authors, composing and correcting originad essays, and performing systematic grammatical exercises. Second, Understanding what ia read -proved by searching examination, and. illuatratively aided by real objects. What is called the elliptical Lethod is here much used, the child aupplying the aitted words, and receiving, sccording to the skill and infr rmation of the teacher, much collateral information. Very aimple ideas only ought to be culled up, and such matters alluded to as may be aupposed to interest and encourage the dawning facultica. We cannot too earnestly reconmend the practice of illuatration by pieturea and sensible objects. The blark bourd and chalk should be in constant use, and every teacher should qualify himself to draw ready off-hand sketches. The rudest outline done on the spot excites more interest than the finest engraving. 'I'he lessons thenselves, in detail, are given in the work here referred to.(5) The curiosity of young persons is necessarily first excited by the things which lie most immediately around them, and the circumstances and procedure of familiar lifo. These aro the suljeets of their earliest inquiries, and it is extremely desirable that clear. distinct, and correct ex. planations of them should be invarinbly given. Most parents of intelligent aud well-regulated ininds take eare that such should be the nature of the answers given to the first inquiries of children; but it is needless to point out, that ninny persona who have children under their cnre, either possess not the ability, or have not the nem cessary leisure, or will not be at the pains, to give correct nnd satisfactory answers. Lessons ahould be given which ain strictly at an explanation of external appearances in the natural and social world. Principle: are for subsequent study. The subjecta may be suct. as the following:-Of Goc and the works of creation; of animuted creatures; of mankind; of the country; processes of husbandry; inmimate objects of all common kinds.(i)

In elementary eduention, after some progress has been made in the powet of rending, the different conditions of a child at ahout seven, and at from ten to fourteen yenrs of age, suggest the necessity of two series or courses of instruction-one of a simple, primer-like character, the other more advnined, lint both going over nurly the same gromid. "his is tho more necessary, as so many ehildren nre tiken from schoul about ten years of age. In the construction of a series of scheor books. already more that once quited, we havo pro
$2 k 2$
coeded so far upon this arrangement, most of the volt:mes of the advanced course being foreahadowed in that which may be called the preliminary. We observe the same arrangement on the present occasion.

Preliminary.

Introduction to Geography.-The pupil having, is the infant school, had some instruction in the simplest elements of geography, may, in his seventh or eighth year, pursue the atudy more regularly. Lessons may now lo given which will auit those whose education allows hut a small portion of time for geography-lossons calculated to impresa a fair measure of thnt most uaeful knowlelge even on the future manual labourer. These need not give copions lists of localities, capes, bays, districts, and towns, it being presumed that the learner has maps before him on which he will be exerciacd. He cannot, moreover, be introduced too carly to the glone, for the apherical as well as relative position of its great diviaiona, with their latitude and longitule. Proportion should also be impressed upon him; this is apt to be confused by maps of different sizes. The relative situation of countrics need not be much adverted to, that being best learned on the maps. The chicf attention should be devoted to the characters, physical and political, of the countries. The plan ahoull be followed of treating, gencrally, in the first place, of the plants, animals, and races of men, in the different regions; and, in the second, of the most inportant particulars peculiar to each country, which cannot he hrought under general heals. With the maps nud globe always before the pupil, much ureful information may by this method be conveyed. (9)

Uriting.-This is entirely an art, to le nequired by practice, with the assistance, first of a skilled teacher, to train to the mode of sitting, of holding the pen, \&e.; and, second, of auitable exemplars of the various kinds of writing. A free and bold practice with chalk upon a black board would probably form a good introduction to the art of writing. It was by such means, under the guidance of hia father, that the celebratel Porson acquired that accompliahment of aingularly elegant writing, for which he was scarcely lese remarkalle than for his extraordinary attainments in classica! literature.

Introduction ta Arithmetic-The simpleat elements of arithmetic are presumed also to have bern taught in the infant school, by means of the instrunent called Arithmeticon. In this carly school perioul, it may be pursued by means of regular exercises wrought upon slates, according ω the rules presented in an appropriate book. An active teacher may also do much for this part of school education by conducting mental exercises, or excrcises in which no senaible figures are used. It is found an excellent discipline for giving habits of attention and concentration.
Introduction to English Compnsition.--The pupil may be, at this early period, introduced to English composition. We recommend the modern plan of teaching the rules last. Let the pupil auccessively compose and write down nouna; then their qualities, or adjectives; then the action or change, nr verbs. He has been a composer from the timment he beijan as a child to prattle. Let him go on, and he will insensilly infer the essential laws of language, by his own experience and his teacher's hints, more rationally and more thoroughly than from a syatem of grammatical rules, necessarily dry, irksome, and repulsive In giving these lessons on composition, the following suggertiona will be attendec $w:-1$. It is suggested that, previously to a pupil's entering on composition, he ah ald spend a ferw weeks in copying, with great accuracy, short piccea in prose from some good author. This will give the hatit of neatness and exactuess in the use of ponts, capitals, \&c., anul, if carefully managed, will form an excellent preliminary exercise. 2. Each pupil should be provided with a quantity of common paper for
the sctell cepy, an excreise-book for transeribing, and this text-book. 3. Lem the teacher place fifteen or twenty familiar ohjects on a table or deak before the claes, and requeg' the pupila to comply with the direction in the first leaeen, oy writing on the apot the chames of the articles; and se on with the othcr lessone, in order. 4. When the liats are finished, they ahould be exchanged, and each pupil ahould correct the spelling, \&c., of hia neighbour' work. 5. This done, the papers may be returned to theit owners, for the purpose of their reviewing the criticisma; and all should be encouraged to protest againgt false con rections. 6. The teacher should then pass round tha class, deciding disputed points, explaining the ground of each decision, questioning the pupils, and allowing them frely to question him. 7. The acroll-copy, thus cerrected, ahould be taken home by its owner, neatly transcribed into the exercise-book, which, duly dated, sheuld be handed to the teacher next day. 8. Tho tracher may then mark the errora in the transeript, asking the papily to show the cause of each correction. 9. The exercise book should then be returned to the owner, with a mum. ber (in the teacher's handwriting) indicating the rank of the exercise. 10. At the end of cach lesson, the pupils should be questinued 'on the parts of specch employed, meaning of worls, knowletlge gainel, \&e. 11. The pupils should use blurk ink in writing the exercise, and red in correcting. The teacher's criticisms, remarks, and numbers, should the in lisue ink. These distinctions, though apparently trilling, will be found important, 12. Three or four lessons mny be given weekly, ncearding to circumstances. Less than half an hour will suffice for writing each exercise, and little more than that time aill be requirell for correction. The lessons will proceed fiom objects to qualitics and nctions, each embracing a sery wide field of excreise. The derivation of words from other langauges, or stryotoor, both simple and compound, may, at the same time, be an incidental exercise. (10)

Introduction to the Sriences. The pupil lias hitherto been conversant with the external features of ohjecte, and the ordinary uses to which they are put. At the age of nine or ten he may he gradually introduced to philosophical prinriples-tos a connected and systematic view of nature, the most obvious parts of which it is composed, and the laws by which it is governed. The subjects rill be-the extent of the material world; the stars, the edal system, the carth as a plsuct, the moon, eclipees, masen of matter-their attractions and motions; the earth-its geners! supprficia! features, its structure; the soil, the atmosplere, heat, light, electricity, and magnetism; erapo. ration, clouds, rair, frost, ice, snow, the winds; element of matter-their combinations; the vegetahle creation; animal creation ; man-his general charncter and history, his bocily nuture, his mental nature.(7)

Rudiments of Music.-About this stage of cducation, the pupil may be introluced to the principles and miles of vocal musie. This is invariably a branch of education in several continental countries, snd is attracting makel attention in Britain. In the infant school we have at ready recommended simplo singing by the esr ; the papil may now not ouly study musical rules, but learn to sing from untes."

- Wr are far from heing satisfied with the meane yet prac lised for lesching vocal masie in schools. Very encourag progers. is making in lomilon hy Mr. Hillah. under the eye of De Kay. The able nad excellemisteretary of the Commite of
 ployed by. Nr. Hultah is the synthetce her thot no M. Withrmis work, publimhed in l'atia under the sunction of the Minasterof Yublic Instruction. 'I'tu' meshat is sarcessialy prurlased t the school for trachers at thatersen, entall ispod mat n mat exclusurely suppurtell by Dr. Kay; aud a sing ut sehool ion leachers, ntl that methoti. ngproved by the commatiee, hax bra
 first part of a Minnual; fad one of their minules tevotes eirvea octaro pagea in a in. nate deacription of the argamant on of ois ing schools on the Wultem meihot. We murh apmane of he syonem, mad irust it may lead to the enivernal mitudation of good vocal music into education
(${ }^{2}$ ography nond the tleo geography in manner. Ta conntrias, he general detai physical geog coil, and vege cariosities ; n markable ovc ncluding its ecclesiaetical national char manufacture ograply of μ maps is nect and the nam bere eteferred Arithmetic pursued on an investigation mer stands b compositiontered, as tech business of li
Drawing, méting, less mire attentio may be acqu in many circ taught by th oljects shoul thiags, begin lioce, and $\mu \mathrm{rr}$ post, a houss ments, flowe board, the ch on the slate, stage of the show foregr firat notions rendering un mou abjects, concealed; efforts fir sh
Tha pupil drawing ane nature.(12) explained to thing more sector, visua spective, sla Black-lead p shatc, and ketching fr tha rules for plain to and his efforts. of general mind that fereat indiv ences must the pupil p Sccul jes. yond tha sit of ether bro Natural edvancing no the clen thought too sist ; seeing even natura It is a ques
for transeribing, wid slace fifieen or tweuly before the clase, and e direction in the firxt tames of the articles; order. 4. When the exchanged, and each ce., of his neighlibon', y be returned to theit jewing the criticisma thest against false cor. then pase round tho laining the grousd of is, and allowing them l-copy, thus corrected, er, neatly transcribed ly dated, should be 8. The teacher may ipt, asking the pupils
nn . 9. The ex - 9. The exerise e owner, with a mum. ndicating the rank of ch levson, the pupils of speech rmployed, d, \&e. 11. The puthe exercise, and red icisme, remarks, and Throse distinctions, oe found important in hour will sultice for re than that time will ons will proceed from ch embracing a very n of worls from nthet mple and rompmund, utal exercise, (10) e pupil has hithenc catures of abjects, and put. At the sge ol ntroduced to phileso did systemstic xiew of which it is composed, d. The subjects will 1 ; the stars, the solau 100n, eclipese, msseet tions: the earth-is ucture ; the soil, the d magnetism; crapothe winds; element vegetable creation; haracter and bistory, (7)
* stnge of elucation, principles sad rule - branch of elucation is attrseting marke t echool we hase al y the ear ; the pupid les, but learn to sing
the meane yel pros la. very encourag llah, uniter the eye o? Yo of the Conmmitre of Lter. The methou emather of M Wham's
tion of the Winatere thon of he Whater of
censtully pract.end ? censtuly pratemet vind) slual ant a'mut n simg nk school lot "r crimmitee, has beca dee have puldigued the
Innulea decotes eiprea

 vernal introdation of

Advanced

Gegraphy. A year or two after tho pupil has masmad tha licographical Primer, he may proceed to study coography in a more enlarged and generally informing manner. Taking Fingland as the first of a series of manntries. he will study its situation, extent, division, and connenal detail of localities; after whjch will come its physical geography, including superfici. ?ntures, climate, poil, snd vegetalile productions, ini. e. eimals, natural wallositios ; next, its historical geog. markable everta antiquitics. its aratical including retncluding its civil state, revenue, array and navy, and acclesiastical state; its acial geography, including its nationsl chararter, language, literature, arts and sciences, manufactures and commerce. In thus stadying the geography of particular countries, a constnnt reference to mape is necessary. By having these sufficiently large, and the naurral features strongly marked, as in the series here esferred to (sii), a whole class can learn at once.
Arithmetic and Grammar.-These branches are now pursued on more comprehensive plars, and with a decper investigation of principles. In connection with the former stunils book-keeping; with the latter, etymology and composition-onll of which will now be thoroughly mastered, as tecenicalities of the greatest importance for the business of lifo.
Drawing.-This is an art, of the same chararter as witing, less imperatively necessary, hut yet entited to mire attention than is gencrally paid to it. Its elements msy be acquired by all, and are calculated to be useful in many cireunstances throughout life. These may he taught by the uso of chalk upon n Hack hoard. The oljects ahould be the simplest delineations of common things, beginning with practice in atraight and curved liaes, and proceeding to a paling, a wall, a gate, a guidepost, a house, a rustic lriedge. utensils, tools, and implements, flowers, patterns, and animals. On the black board, the chalk, compasses, and role, may he employed; on the slate, only the hand and eye should be used at this sage of the young pupil's progress. Deeper lines will show (oregrounds-lighter, barkgrounds; and thus the first notions may be given of aërial perspective. By rendering universal some instruction in trawing of common objects, real talrot, where it exists, will never ba concealed; while much pleasure will he derived from offors far short of thase of the higher order of genius. (11)
Thes pupil will in dise time advance to the elements of drawing and perspective, and the art of sketrhing from mature.(12) Turms in the art of perspuective should be explained to him, and figures delinented, which are nothing more than the simple geometrical diagrams. The sector, visual rays, points of sight, all the rules of perspective, should he phinly and intelligilly hid down. Black-leal pencil drawing, characters of foliage, light and shasle, and tinting; styles and modes of treatment in ketching frem nature, hoth laulscipes and figures, with the rules for arrangement anul effect, should nill he made plain to and practised by the pupil, the tencher guiding his efforts. We may remak here, and the olservation is of general application, that the teucher must keep in mind that the intellectual powers are bestowed on different individuals in different degrees; and such differeaces must be allowed for. It will soon be seen whether the pupil possesses powerfully the drawing or pictorial feculies. If he dees not, he shoulil never be pushed leyond the simflest elements of the art. The sume is true of other branches of study.
Nutural or Mrehanical Philosophy.-The pupil, now draucing to his eleventh and twelfith your, may proeesed to the elements of mechnnical philosiphy, by custom, though too extensively, called natural philusophy or physis: secing that, under that denomination, chemistry nul even natural history have an good a claim to le ranked. It is a quention whether this brauch of physical scicues.
or chemistry, should be atadied firat, We think they may, in their elements, proceed together; but if aingly, it seems rather more natural to attend to the more nsible and tangible propertics and powers of matter, unchanged in its substance, than to those that require a change in the constitution of matter, often its destructive analysis, to ascertain its composition. All ohould be familiar with the laws of matter and motion-with matter's inpenetrability, extension, figure, divisibility, inertia, attraction cohesion, capillary attraction, chemical attraction, magnetic attraction, gravitation, repulsion, heat, evaporation, contraction, ignition, density, specific gravity, compressibility, elasticity, dilatability ; with motion and forces, weight in falling lndies, centre of gravity, pendulum, centrifugal force, projectiles, action and reaction, motion in elastic borlies, reflected motion, composition of motion and of forces.(${ }^{\text {t }}$)

Mechanics and Machinery.-The pupil, after having attained a competent knowledge of the ahove particulare may proceed to study the mechanical powers, and theit philosophy-the lever pulloy, and inclined plane, which are the primary mechnnical powers; while from the lever and inctined plane come the other three, or secoudary mechanical powars-the wheel and axle from the lever and the wellge and the screw from the inclined plane The combinations of mechanical powers, friction, human talour, horse-power, draught, water-power, and steam power, and all the science of machinery, will naturally follow. (${ }^{16}$)
Hydrostatics, Hydraulics, and Pneumatics, will next in order engage the pupil's attention; and he should not be suffered to proceed without having mastered, by the teat of strict and searching examination, the previoua subjects, which form a series.
When be has become familiar with the mechanics of solids, he will proceed to the study of the lawe of fluids, including the aeriform fluids. The hydrostatical part emlraces pressure of water, levels, specific gravity, fluid support, \&c. Under hydraulics-the hydratic press aqueducts, fountains, friction betwen fluids and solids, action of water in rivers, waves, change of tempcrature, \&c.
Under pueumatics are comprised-the atmosntere, laws of air, pressure of air, the air-pump, pressure of air on solids and liquids, on mercury; the barometer, pump, siphons, steam, latent heat, winds, sen and land breezes, ventilation, diving-bell, buoyant property of aëriform tluitte, balloens.(17)
op'irs, Aroustics, and Astronomy, will completo a course of natural philosophy.
('hemistry, - It will now be time to lay a foundation for the pupil's future progress in chemical science, and at the snme time impart to lim a practical knowledge of the chemical laws and operations which are at work around him in daily life.(14) Nuch are respiration, combustion, heat, light, water, poisonous gases; these are all matters upon which comfort, health, and life itself, may depend. The teacher should begin with sloowing experimente, and should be possessed of a muscum of substances and chemical agents, with an apparatus.

Animal Physiology.-Tho important purpose served by incluting this sulject in juvenile education, is the preservation of health, not its restoration when lost; the prrvention of discass, not its curc, with which last the ignorant cannut te trusted. It ought to be impressed am a inaxim, that although we ought not to be our own doctors, we need not be our own destroyers. We ourselves can bear testimony to the successful and gratifying introduction of this study in a Scottish parish school in F'alkirk, under the care of Mr. Downic; and to the intorest taken by the pupils of both sexes, from nine to twelve years of age, in the lessons, which are illustrated, as they ought always to be, by diagrams.(${ }^{13}$)
Men'al lhilosophy.-'This is a depatment of science which it is the fashion of our age to overlook. L'et winat
saln be mam important than a knowledge of that wonderfail nower by which we thlnk and act, nnd which more empecially connects ue with the thinge above and beyond thin humble and transitory scene? No serviceable manual as yet existe for imparting a knowledge of mind in schoola; but an intelligent master has it in his power to do much by ornl inatruction.

Mathematice-Thia important branch of study cannot be omilted in elementary education. In its widest sense, it is that science which treats of measurnble quantity, in magnitude and in number. Geometry is the branch of mathematice which treate of that speciea of quantity called magnitude, both theoretically and practically. Theoretical geometry investigates the relations and properties of magnitudes ln three dimensiong-as lines, surfaces, and solids. Although magnitudes have no material existence, they may be represented by diagrams, That branch of geometry which relates to magnitudes described on a plane, ia called Plane Geometry. This requires six elementary bookn-a book on the quadra. ture and rectification of the clrele, a book on geonvetrical maxima and minima, an exposition of the method of geometrical analysia, and an additional second and fith book. The basis of the first six books should the the Elements of Evelid, as given in the very correct edition by Simpson, with the improved fift trook by Playfair, and tho other improvements of the latter geonectrician contained in his original edition of Euclid's Flemen/s. The pupil will proceed with the definitions, postulater, and axioma. (ts). Solid and spiterical geometry and conic rections (${ }^{19}$) wili next engage the pupil; and, finally, the elements of algebra.(20)

Elorution may be the next pursuit of the pupit. In thia branch of study, the sulgiecta of articutation, inflection, molulation, and the measure of speech, will be familiarly explained.(${ }^{25}$)

History, \&c.-History and biography are importont branches of information, of which it is well to acquiro the elements at school. The history of the mother country, its literature, and great men, has the moat immediste claim upon attention, after which come the histories of the countries to which geographical and political circumstances, or any other cause, have given importance in our estimation.(2t 222324)

Natural His*ory.-As a study for the last two years of the fourteon, ought to be resserved nataral history, which is hetter understood, nind more leneficially acquired, after than before the study of the clements of chemistry and mechanical philosophy. The pupil, in this branch, will learn to distinguish the animal, vegetable, and mineral kingloms; the atmosphere and its phenomena; the winds, the ocenn with its tiles and currents; the discoverien of geology; the nature of nnimals and planta, \&ce.

Political Enonomy.-A pupil who has enterad his fourteenth year, with his mind stored with the knowledge and strengthened by the exercise of the educntion we have described, should be introluced to the elementary principles of political economy. Society sullers in its vital interests from the prevalence of ignorance and prejudice in this great ficld of apeculation and action.

Iogic,-The clements of logie appear to us to form the appropriate conclusion to our practical elementary course from six to fourteen. All that preceiles it is knowledge, and as such chicfly ardressed to the knom ang faculties of the mind. But man has also mfferling faculties; and it constitutes the chief end nul olject of our knowledge to furnish these with matcrials for their exercise, which is called reasoning. This, the highest operation of mind, is regulated by lawe in the nature of tomes, whieh right reason looth discovers and obeys. These uaw a syatematized constitute the science, prnctially the art. of logic. The papil, while ho matera
its princir.es, should be weil exercised in their applica
tion.
Religion.-The first prinelples of religinn are unden atood to have been imparted under the circumstaneen indicated in our section on moral education. In a school-course, due provision must be made to carry out thla all-important dopartment. Looking only to what the principles of education ask from us on thia point we would direct, first, the continuntion of the method formerly descrihed ; next, daily scripture reading; nexh a subjection of the indivilual pupils to the ageney of the ordinary means of diffusing religious knowledge and maintaining religious impressions.*

Langu'gex,-Though it ia a great error to regard the acquirement of one or two ancient lnngunges, and a school study of a few of the books written in them, as constituting a liberal education, unquestionahly a liberal education ought to include that acquirement and that study. The commencement of a classical course, as it is called, may be made during the latter part of the elementary peried; but it should mainly be postponed till after fourteen, when the comparative ripeness of the mind ennbles a pupil to nequire more of this kind of knowledge, and that more effectually, in one year, than in three or four at an earlier stage. The atidy of the classical languages ia a special educntion, required by those whose occupationa afe to be of a philosophical ot literary character. In an expressly literary education, they would always form a conspicuous element. And the refining effect which the admirable productions of the Grecian and Roman writers is calculated to hava upon the minds of all munt be at once admitted. The abuse of these languages in education has been eolely in their being made the sum and substance of all education, and, though in a less degrec, in their being taught at a period of life when it is impossible to experienco their aoftening and improving influence.

MECHANISM FOR EDUCATION.

The mechanism for education may be said to be of two kinds-that which is furnished in the family circle, and that which is furuished by public establishments.
The inother is an educntor of nature's appointment, and the tirst. T'o her falls the duty of securing the sound organization of the infant ns far ns it can be dona ly otwedicuce to nature'a rules before and nfler his birth She hats the duty of draving his senses and intellectua faculties into that gentle exereise which gives them viva. city without being attended by danger, and that of enis. blishing the basis of regular nud correct moral habita For all these purposes she is in a pasition of great inthacher ; for her infant, accustomed to look chiefly and

- Cumamern's Edecational Cotiser

1. Infum Treatment ander Two yenrs of Age.
2. Thant Einucation irom Two to Six lears of Age.
3. First lkwik of Repling.
4. Som thok of Reniling.
5. Simine l.essomis in thending.
6. Rud mans of Knowledge.
7. Throllartion to the sciencen.

- The Moral Clams-lank.

10. A (imonamphimen i'riner.
11. Antroluchion to Vinglisis Composition
12. Firsi hook of brawiog.
t2. Seemillhok ot Drawing.
13. An ma! Plys ahogy.
it Rodhments of Cheminary.
tis Nutaral lhilosophy, First look.
14. Naturat Phitusophy, Sicond thok.
15. Xanal Philowophy Third Ihoik

16. Solid wind Spher:ral Geometry
17. Fitheremes of Algelien.
18. Dis:ory hif I'risernt Sinu of the British Emipirs.
19. Fix+mjlary and Instruclive Bingraphy.
20. Hintory of the linglibh Language and Lateraturs.
21. lliatory of (iperec.
2.5. Trumeiples of Elocution.
in Sidjoil moon Mats of Jingtand, Irelnad. Sccilani Furope Asin, Jmirntine, North America, swath Americs, Airies, Ane the Ilemispheres.
man Immedin wny comfort Hat veneratio Sho is, as has and nothing b prevent ber fro gulation of th during the firs
So far as m on moral atm exemple, the chanism of ect the period of so ather, it atill co The formation religious feclin these respects serve as aids which they h they may do m ing for that Second, they n by paging him objects, the me to be learned trifle. There in the admissio they often take time, for rensor pleasure. It is down upon ter them, in no ver of a fatal chara mecianism in s
A child beco public establish ge till six, he s?
The infunt-sis part of educatio approved of thro in Pritain, Fran Itaiy. It is, w upon a large se in company ins they may be rea stances, instead of a publir stre drea of the $p o$ to become a m well for children fint-achools, as of many of the An infant-scl alnut 100 , or n Two teachers, 1 his wife), are r and the other rentilated, and ax or seven tie ments for the v disposed on the fumished with and a black boas rise be provide tial, that no es considered as al horders, which places of conve are inculeated. amusement an chilliren; and wooden prisme may engage in erructures, acco
Vol. I.-50
be said to be of le family'circle, tablishments.
's appointment, of securing the s it can be dona after his birth and intellectua rives them vive. nd that of esta ct moral habita. ion of great in. ook chicfly and
```
war.
```

of Age.
inipirs.
erature.
and Immedintely to her for protection, kindness, and any comfort, is unavoidably dispowed to pay to her that veneration on which genuins influence depends. Sho in, as has been well said, the derty of the child, and nothing hut a sad miause of her own feelings can prevent her from being all-powerful over him for the recultion of the whole economy of his boing, at least daring the first two or three years of his life.
So far as mornl education dopends, as we have shown, on moral atmosphere, and the influence of immediate cxample, the importance of home as a part of tho meshaniwin of educntion muat be acknowledged. Before the period of school attendance, homo is all in all: thereater, it still continues to bear a great share in the duty. The formation of moral habits, and the development of religious feelings, will depend much on what is done in these respeets in the family circle. Parenta may even eerve sa aids to the business of school, to a degree of which they have in general little conception. First, they may do much in the way of enforcing and providing for that important requisite, regular attendance. Second, they may strengthen the hands of the teacher by paying him proper reapact. Compared with these ofjects, the mere superintendence of lessons given out to be learned nt home, la, though itself important, a trifle. There is a tendency in parents to be over-easy in the admission of excuses for attending school ; and they often take arvay their children for a considerable time, for reasons affecting their own conveniency and pleasure. It is also not uncommon for them to look down upon teachers, and speak of them, and even to them, in no very respectful terms. All these are errors of a fital character, seeing that they weaken the school necianism in some of its most important requisites.
A child becomes a fit suhject for the education of public eatablishments at two years of age. From this uge till six, he should, if possible, atterd an infant-achool.
The infantaschool, although a modern invention, is a part of edueational mechanism which is now generally approved of throughout Europe, being in veguo not only in Pritain, France, Holland, and Germany, but even in Itaiy. It is, when rightly constituted, only a nursery upon a large senle-a place where infants may be reared in company insteml of heing kept in solitude-where they may be reared in pure and well regulated circumstances, instead of heing exposed to the contaminations of a public street. It is pecuider! esucntial for the children of the poorer classes, who zin otherwise so liahle to become a mere infantine canaille; but it might be well for children of every grade to he brought up in in-fant-schools, as society is essential to the working out of nany of the problems of educntion.
An infant-school should generally be calculatell for alout 100, or not more than 140 pupils, of both sexes. Two teachers, male and female (if possible, a man and his wife), are required, the one to nuperintend the beys, sud the other the girls. The school should be woll rentilated, nul fitted up with a long gallery containing as of seven ticrs of seats, and divided into two departments for the various sexes, the younger children heing dipposed on the lowest forms. The walls should be fumished with drawings of natural and other oljects: snd s black bourd and arithmetic-ball frame ahould likewise be provided. A piece of play-ground is so essential, that no establishment without one is entitled to he considered as an infant-sehool. It should have flowerborders, which the children are trained to respect, and places of couvenience where clcanly and delicate habits are inculeated. A circular swing is required for the anusement and to promote the physical health of the chillren; and it will be well to have a quantity of woolen prisins, of the form of bricka, with which they may engage in the buililing of houses, towers, and other eructures, according to fancy.
$V_{\text {VL }}$ I. -50

The intellectual edncation of an infant school in limited to the learning of little hymne and knowledge rhymes, the atudy of simple geometrical forms, and of the mereat elements of arithmetic, exercisen npon narrative passages of Scripture, the propertics of objects, the characters of animals, the names of countries and cities, \&cc. In soins, reading and gramıar have been introduced to atisfy prejudiced parents; but these are departures from the right character of the institution. Most of the lessons are metrical, and aung to simple airs. The monsl department, confessedly the chief, consista in the learning of good precepts, scriptural and otherwise, the fostering of kindly, and gentle, and the restraint of angry and malevolent feelings, the formation of conscientious, polite, and delicate habits. It is remarknble how far a good infant-school teacher can accomplish these objecte, and how quickly nny new pupil ia brought into harmony with the apirit of the place.

An infant-school teacher requirea a union of qualifi cations which is not often attainalle. He should pos sesa a gentle and affectionate charneter, with an on limited patience, yet have that intellectual activity and vivacity which are necessary for sustaining attention in young children. He muat both be a well-informed man and capable of making what he knows intelligible to those who know nothing : he must both he firm and diacreet in management, and possessed of manners of almoat infantine playfulness. A knowledge of musio and a good voice are among the qualifications which he requires.

The elementary achools following upon the infant seminaries (where these exist, or, othervise, being the firat schools), are different in different countries, not only in the materials and modes of instruction, but in the extent to which they carry on pupils. In Britain, they are generally in a state considerably inferior to what is found in Holland and Prussia. In a rightly constituted system, there would be two seminaries be tween the infant-school and the university, the first ot primary school being devoted to those branchea of inatruction in which all should participate, and the second or secondary school affording continued and more advanced instruction to those destined for professions and for the more important places in society, and as such being preparatory to the university. The parish-school and the grammar school of a amall Scottisli burgh may he considered as an arrnngement approaching to what is required in this respect.

The primary school is applicable to the ages between six and ten or eleven. In a country under a national system of education, one would he required for every gronp of population nhove a thousond in number, as the attendance would then probably be from a hundred to a hundred and fifty. Reading, grammar, arithmetic, the elements of geography, history, and seience, and moral training, would form the chief features of the business of a primary school. And to this extent all should be educated. It follows that infant and primary schools ought to be specinl sulbjects of state provision and care. Society is expressly interested in secing all children trained and instructed thus farp that they may becone a mornl and intelligent population. So strongly is this regardel in Prussia, that education, up to the point in question, is erforced by law. Certainly, it is at least well to encourage parents, by all menns consistent with the spirit of a free country, to have their children educated to this extent. While the atate, then, regulates the education of infant and primary schools, the state should also furnish it gratuitously, or all but gratuitously, thus removing all difficulty which may be felt by indi gent individuals, the very class whose children are apn to become most dangerous if left uneducated. It has 1 often been oljected to the idea of gratutous educarion,
that what is oltained for nothing in not valued; but the education furnished ly the atuto (or, as an alternative, by local assessment) would not be really gratuitous. Every parent would know that he contributed to the fund by which the school was mupported, and that thia was much the aane thing as paying fees.

In order to cnsure a aupply of well-qualified teachers, as well as for the anke of uniformity of methods, the infant and primary schools would each require district normal whools. T'eaching is an art. It is one of considerabie nieety, requiring both natural and acquired gifts of no ordinary kind. Without a due npprenticeship to it, no man can be expected to antinty the demande of the modern educationist. There is a large mount of detail, loth in the methode of procedure nad in the material of iustruction, which a candidute for this employment must have thoroughly mastered lofore he can duly teach. There is also an aptuess and facility for the duty which nothing but practice con give. For all of these reasous, sehools for the training of teachers, or normal schools [an called from norma (latin), a rule.] are indispensuble. We have not room here to enter fully into the details of a well-constituted normal achool of any kind. but may panse for a moment to indicute the important priaciple, that it in not auflicient for a young imni to sit ly, olserving the procedure of a wellconducted school; he must enter personally into the ousiness, and be aecustomed to act as teacher himself, in order to attain the right qualifications.

We have considered the infant and primary schools es comprehending the education required by all the children of a state, and es therefore calling for atate support and tegulation. For thia reason, we have indicated a conclusion to the primary school period aomewhat later than what is practienlly the case in achools answering more or leas to this description. Generally, the primary echool poriad may be soidl to end at nine years of nge, at which time a lioy, for example. is considered as fitted to commence n cloasical course in a higher sehool. While the material of intellectual education remaine gonerally as it is. this arrangement will be appropriate; vut if we consider some branchen of general knowledge a necessary for all, we must postpone the concluaion of the primary period to ten or pleven. At that age, the shildren of the humbler classes would be fitted to commence the active life to which they are unually deatined, while others would he equally ready to go forward into dvanced schools.
The necondary sebool-answoring to the grammar echools and academios of Britain, the colleges nad $p \pi-$ wions of France, the gymnasin of Switzerland and the German states-is the firat sehool appropriate chiefly to the middle and upper classes. As its benefits are not universal, it should he supported solely by those who take alvantage of its instructions, although the state may extend to it protection and regulation. The higher intelligence required of the middle and upper classes, and the apecial cducation ripuired for the professions which many of there classea are called to follow, constitute the necesnity for secondary achools. They ate introductory to a university couree for those who are to follow law, medieine, divinity, or any of those other occupations which are now rising into the aane mank with the "professions;" those otherwise destined here obtain thet compratively liberal education which is required in the middle waiks of life. The course of inatruction proper to a secondary school corresponds with what lis treen pointed out in the preceding section as the manamed departinent of intellectial education. It may here le proper to semark, that, when we speak of eartain classes of the community attending this advanced order of whiools, we do not mest that theso are to be esnducted on exclusive piliciples. Iet their fees be as moderate as poamible, and let all who can afford at-
tend. In wuch eircumatances, it would often happen that children of the humbler classes, whe nhowed an aptitude for a superier education, would obtain it, and be therehy enahled to make an advance in life suitande to their faculties.

Religious inatruction is preamsed, as formerly inds cated, to be imparted, throughout the whole period of elementary education, in sehoola. Hero a ditfieulty as to arrangement unfortunately arisea from the various viewn which are taken oul doctrinul points. 'I'he teaching of doctrine according to the views of any one denomination, necessarily precludes from the school whero it is done, the children of those who disent from tho views in queation. On the other haid, if doctrine hos excluded, those who are most enger for the inculcation of particular doctrines or for the maintenance of pari cular religious institutions, are oflende]. To obviate the difliculty as far as possibie, a particular arrangement has been mado in Holland, in the Jrish national schools, nud some others; Scripture reading is there confined to such parta as include to controverted dee. trines, und to a general refercuce to the Bible on pre ceptive points, and all else is tauglit to the pupils, at extra hours, ly their particulat pastors. It is thua thought possible to teach religion as efliciently as by any other plan, while the school is allowed to he a common good to all classes of the community, and a mean of liringing up the children of religious parties in has mony together.

industrial education.

The mingling of indastrial arts with ecucation, ita a idea of modern times. One of the tirnt examples of it by which general attention was attracted, originated at Hofwyl in Switzerland, in 1806, under the care of a man of fortune still living, M. de Fellenherg. Here the olject was to teach furming on improved principles, while general educntion was conducted on an almost incidental plan, at intervals, by the superior of the extablishmeat. Schools of this kind have since been planted in other parts of the contincnt, and in the United King dom. Latterly, industrial education has been extended from agriculture to handierafls.

As a apecimen of a purely "agricultural school," we aelect that of Templemoyle, near Iandonderry, which appears to le conducted in on etlicient mamber. Esta blished in 1827 by the Noath-Went of Ireland Agricul tural Society, for the purpose of giving young men "s phain English cducation mad a knowledge of the prim ciples and practice of agriculture," it lately contained sisty-six pupils, for each of whom a smatl payment wa made. The superiors are a teachang farace and a schoolmaster, bencath whom is a matron to superintend the donnestic establishment.
"At half-past five the pupila rise, arrange their rooms say their prayere, and, in two divisions, which altemata on ditferent days, are engaged matil eight in sthdy or in work; half the pupils are with the farmur, and half undet the schoolmanter, except un extriondiuary occasiong when the nervicea of all are required for the farm, or the season relenses them from their agricultural duties. At cight they breakfast, and are free until nine; work and attend school in alternate divisions, from uine until ope, Dine at one, and have recreation unil two. Frem riwe to six, are at work and in sehool nltornately. Fromsin to seven, sup and have recreation. From seven to nise. prepare the lessons for the nest diny, have prayens, nod retire ut nine. On, Sundays thry attend their nespec tive places of worahip, mif iserpy a part of the remaib der of the day in religious reading.
"The intellectual iostruction consist" in apelling, reating, granmar, grography, aritlmetic, writing, and bockkeeping, with some olementary and praction geonetry and trigonometry. The farmer gives lecturea also in
the evenir: conded to in chomistry.
a'The pro ander the eattle, the 1 inciduntal a or agricultu tural mante the work in opportunitice which he is the committ of the ploug nal, the qui them, the t farming atoc rotation of vanicties of improving improvemen takes those and age to b the sale of t
"The pup of which has or ten boys. the control o arranyes wit an accomit labour, and farm, in such intendence. it. rotation.
"The firn ecres," of wh land. It is most approvi the same seri The whole is to the Scottis ent fences kinds." \dagger
Industrial of Ealing, ab a bencvolent blishing this carls acquire be ocymainta connection! have intellis objects by w sentiments, should receis cupation is connected wi being resurve auldivided in work in the sation in pro The sceond produce as t market price dispose of it lowed to unt work for otht are sometime tageous cult:

- A plot of

 b) offe of the: p of the arrangy oonstruct:on The cluss. t Bache's Ileald often lappen who ahowed an ld obtain it, and ce in life suitade
as formerly indb whole period ol ro a ditficulty at from the various ilts. The teachof nony one denothe sehool where dissent from tho dd, if doctrine l or the inculcation itenance of parti leJ. To obviate articular arrange. the Irish national reading is there controverted doc. he Bible on pre to the pupils, at sturs. It is than ; etticiently as by wed to be a com nity, nnd a meana us parties in has.

N.

h ecucation, is on rst examples of it, ctesl, originated at der the care of Felleuberg. Here uproved principles, ted on an almost nerior of the estasince been planted the Dhited King lins been extended

Itural school," пе ondonderry, which 1t mamner. Esta of Ireland Agricur oug young men"s ledge of the prime t lately contained mall payment wa ang fitmer and ron to superintend range their rooms is, which oltemate phet in study or in her. and half ander dinary occasions, or the farm, ot the iltural dutics. At il nine ; work and om uine until apa I two. From two nately. From ais rom saven to nitue, have pringers, and tend their respec. part of the remaib

In in spelling, reat writing, and bookpratical geometry a lectures ulso in
ne evenite upon the theory of agriculture. It is intonded to introduce lectures on botany and agricultural chemiatry.
μ The practice includes all the operations of farming, ander the different approved syatema; the rearing of catte, the managoment of a dairy, and, in general, the inciduntal as well as the direct occupations of tho farmer or ugricultural labourer. The head farmer, or agriculfural master, is expected to explain the principles of the work in which the pupila are engaged, and to taka opportunities for incidental instruction. The operations wilich he is specially called upon, in tho regulations of the committeo, to teach, aro, ploughing and the setting of the plough, the uas of farining instruments in genepal, the qualities of atock and modes of recognising them, the treatment and managenent of dairy and farming stock, the making and repairing of fences, the potation of eropa and those best adapted to different ranictics of aoils, tha modes of draining, reelaiming, and improving fands, nud the most recent inventions and improvements in agricultural inplements. Tho farmer lakes those who are sufficiently advanced in knowledgo and age to be lenefited therehy, to the fairs, to apaist in the sale of the products of the farm and stock.
"The pupils are divided, for work, into sections, earh of which has its monitor, or chief, and consists of eight or ten loys. The head monitor, or superintendent, has the control of them, in the absence of the master, and artanges with him the distribution of their time, takes an actount of the stock, and of the products of the labour, and alvigee with the master in regard to the farm, in such ia way as to prepare himself for actunl superintendence. This place is occupied by the elder pupils is rotation.
"The firm consists of one hundred and thirty-three acres," of which one hundred and twenty-five are arable land. It is worked ao as to present exaniples of the most approvid rotation of crops, the fields embraced in the same series of shifts lying adjacent to one another. The whole is drained by underground drains, according to the Scottish system, and is well enclosed with different fences as opecimena, and trials of the various kinus." \dagger

Industrial village schools are well exemplified in that of Ealing, alout five miles from Lonion, established by a benevolent lady. The principles held in view in establishing this seminary were, that the children should early acquire habits of patient industry ; that they should be aequainted with the value of labour, and know the connection between it and property ; that they should bave intelligrnce, skill, and an acquaintance with the oljects by which they are surrounded; that the higher sentiments, the social and moral part of their being, should receive a full developuent. The industrial orcupation is gardening, pursued in n piece of ground connected with the seliool. "It is divided, one portion being reserved for the use of the school, another being madivided into small gardens for the boys. The pupils work in the first under monitors, and receive a compensation in proportion to the useful results of their labour. The sccond they hire at fixed rates, and dispose of the produce as they plense, always receiving, however, the market prise for it from the school, if they choose to dispose of it there. The younger children are not allowed to undertake gardens on their own necount, but work for othres or for the estuljishment. Partnershipes ore sometimes formed nunong the for for the more advantageous culi: ation of larger pieces of ground. An account

[^36]current with each pupil in kept, in which he is charged with the rent of his ground, and the seeds end planta which he has purehaaed from the atock, and credited with the produce which he has sold to the school."
In-door occupations aro leas deairable in alternation with school inatruction than these healthy out-of-loor fabours, but must have the effeet of training to ateady and persevering habits, not to apeak of the actual skill contorred by them. As an example of a achool in which such occupations are puraued, wo eelect that of the Royal Military Asylum at Chelsea, whero 600 children of non-commissioned officers are reared. Those above eleven are here taught handicrafts, about four bourn a-day of threa days of the week locing thus deroted. "Rather less than a lunndred boys work as tailors; fifty each day alternately: about the aame number are omployed in a similar manner, as shoemakers, capmakers, and in covering and repairing their old schoolbooka; besides which, there are two sets or companies of knitters and of shirt-makers, and others who are engaged as portera, gardeners, kitehen-work, \&cc. Every thing is done by those who work at the trades except the cutting-out. This branch, requiring more experience, is managed by the old regimental shoemakers. tailors, se., who, with aged sergeants ond corporala, and their wives, manage the eoncerns of the institution. The system of monitors and teachers to overlook the other boys ht work is generally adopted; while, in addition to the various branches of industry mentioned, the school furnishes a company of drummers and fifers, and on excellent band of music; the players necessarily devoting a considerable part of their timo to the practice of their instruments." \dagger Though there are aoma defects, the asyluin is allowed to be "an eviclence that a greater dogree of progress may be mnde in reading, writing, and arithnetic, and in other branches of learno ing, than is attained in the great majority of schools, and yet that the boys may be taught music, gymnastic exercises, and various useful trades; thus improving their health, increasing their means of enjoyment, and promoting their future interests, much more ellectually than by the prevaiting methods." \ddagger

Industrial education is practised with marked success in various institutions for the reform of young eriminals, as in Parkhurst Penitentiary, Isle of Wight, and the Warwick County Asylum; in several for the refuge of destitute persons, as in that at Hoxton, and the Guemsey Hospitul; and in various schools for orphan and paaper chiddren under the New Poor-Law Act, of whien that at Norwood is a most interesting example. It is not as an improvement, which may or may not bo alopted, that industrinl education is here to be advocated: it is called for as something absolutely necessary, to counteract on inherent tendency of all asylums for the maintenance and education of ehildren to become monastic institutions. The children are kept opart from external nature. From human society, and from many or most of the common operations of life. They come out as helpless nearly as they went in. Industrial cducation presents itself as almost the only conceivable means of fitting such children for entering the world in any thing like the same condition as other children. It is not essential that my one child be made a proliciont in any one art; the great end is to make them generally nepuainted with the arts of life, and to prepare them by habits of industry for earning their own bread when they grow up. From the attention which the Poor-Law Commissioners are giving to the aubjects we have no douht that in a short time we shall see tho whole or the forty-five thousaud orphan and paupes

- Bnche's Revort on Eituration in Furope.
+ Report of Nationnl s hool tomitly.
 Sceond Pablication of tus Central Socicty of Edueation. P 180
childsen of England educsted in thla wholesome manner. In the late reports of the commisaloners there are sone excellent hints thrown out. Different arrangementa are recommended for different districta. It la augenatod, that in an agricultural distriet there ought to be a large garden which tha children should be taught to cultivate, in order to become sequainted with those dutien which they will probably be called to perform when they aro sent out Into the world. They should also be taught to erect shed or outhouses, to make wheelbarrows and other simple utensils, and to fashion deske and forms for the sehool. Thus, ss farm-nervants, they will be able to execute a number of little johs in carpentry, which would otherwise require the interference of the proper tradeamn. To evahle them to contribute to their own perwonal comfort and that of their household, without an expenditure of their earninga, they ahould be taught to make and mend their own clothes and shoes, to plait atraw hats, to make straw mattresses, and whitewash walls. In a manufacturing district, the employments should bear a similur relation to the trades of the neighbourhood, and in or near a neaport, the arts connected with maritime life should be taught. Such, in brief, are the views of the Commissioners respecting the boys: they recommend that the girle should be trainal to the household duties of cooking, cleaning, and washing clothes, aewing and knitting, by having to perform those dutics as far as required in the workhouse. It ie worthy of remark, that in the Marylebone charity for girls, this plan has been for
many yeara acted upon with excellent reanita, There the girla aro accuatomed to make their own beda, io clean their own knives, forks, and shoes, and to be scres pulously clean In their dreas. "Their chief eniployment In needle-work; but they are employed in rotation to ncour the achool-roomm, the play-rooma, and the wab ing-rooma, the tahles, formm, and atairs, as well as wo prepare and remove the ineals of the reat of the acholare, and to walt upon the domestic superintendent and officers." "

The reporter of these circumatancea sida, and we fully aoneur in his sentiments-ruc The value of charities of this description is too obvious to require particulas comment. By establishing good habia, they doubtlem accomplish more than can ever be effected by mere precept; and they not only tond to make useful servantes but provident, neat, and intolligent wiver and mothers. If it wero possible to engraft some part of such a syatem on the mational and other achoola, these advantages would become generally diffused, and the consequence would le a great increase in the comfort of the houses of the poor, and an accompanying contentment, productive of the lest resulte on the character, among young married men of the working-classes, whom the extrave. gance or mismanagement of untidy and ignorant part ners often drives to alehousen, and other resorts of idle. ness and dissipation."

* Quepterly Journal of Education, i. 283

DRAWING AND PERSPECTIVE.

Dnawing is an imitative art, by which the forms, positions and relations of objects are represented on a flat aurface. The facultics cmployed in this ss in other initative arts, are possessed in a rertain degree by all persons. Some possess these faculties in so high a degree, as to become fitted to exercise them as a profession, for the grutitication of mankind at large. In others, they are manifented so moilerately, that a protracted effort to make such persons become tolernhle draughtsmen would only be labour thrown away. The majority, howeves, are so far endowed, as to be able, when instructed, to delineate any simple object, and to enjoy much pleasure from higlier delineutions produced liy others.

The practice of elementary drawing at school, hitherto greatly overlooked, in calculated to produce the most beneficial results. As regards those who posess the faculties for denign in a high degrec of excellence, early practice will awaken those faculties, and, furnishing them with stimulants to progress, secure the bencfit of their ultimate exercise for the community. Lesser degreea of excellence will also be developred-such as would in vain perhapa essay excellence in the higher walke of art, but might become of incaleulahle value in connection with certain branches of manufacture.
As a means of elevating tastea and desircs, and thereby embellishing what might be othervise a routine of commonplace existence, drawing appears in its most interesting iight. The person who has acquired a knowiedge of botany feels a new pleasnice in cxamining the parts of a hitherto unscen plant; he who has acquired a knowledge of geology is interested in passing along a road, the side of which displays a decp section
of rock, or from which he may view various granitio elevations; he who has acquainted himself with the principles of machinery experiences an enjoyment in contemplating the intricacies of some great engisa, which another knows nothing of; and in the same masner he who has studied the art of drawing discovers a source of new and innocent gratification in the innume rahle forms and tinta of external nature. Things for merly passed with a carcless cyo and a vacant mind, then assume a character which arrests attention and awnkens thought. Those faculties of the mind which percrive and nppreciate the figure, colour, and arrangements of olyjects, and trace in all a natural and appropriate trall'y, spring up from a dormancy which might have otherwise known no interruption; a new ansocistion of our mysterions being with the physical world sround us is practically established; and the value of existence becomes by just so much enhanced. Not vurely that it is desirable that an aboorbing interest shonld be created in all minde respecting the outwand aspect of nature, to the neglect of the more serious affira of life. All that can be contended for is, that an many as possible should be rendered capable of looking with pleasure, insteat of indifference, upon the heautice of nature, so that they may realize the benefit of this part of the intellectual and sentimental powers which have been conferred upon them: a prortion of their na. ture which, like others, may be abused, but, i in ts moderate use, is not only a source of innocent pleasure, hut may become the means of anticipating and supplanting many pursuits of a less worthy character. Nor, while the art is perhape chimy scynired with these vieks, may it be without some results of a more directly useful
tind. In me own, or roamin jects of whleh memorandum, would be suffic time. And ye drawing, many of informing th abjecta, or, at t which a profesa athpe-a shape tion is not to be ing takes its plo being, like it, is recasionally be though certainl
Referring to rional Couna oul design on t) lat view of what persons to acq perspective, wh delineation. It our observation pupil.

Drawing is Nark-Jend, or col of a simple kin π Bristol hoard in which case th cay uns. Comr ense of hatd, al its disterent evol with chalk on a Bither, therefore with a pencil, le curved, or a mor more beautiful is exmparison with ia this waving the heading of of rivers, and the You may bes other drawings; rake you famil awer the purgo the art, you inus bare to druw djects in nature taught to aley t example, we see wrve its shape all ather parts rending the mi ry to define all hoard. The mo direction of the ahiject, so will details.
The pupil, the whole power of an object, when On this, indeed, principle of delir possibly attain e not, less or inore on the mind, and junction with it. ment emplayed nothing uaefol will. Accomplis ort in which des on this fundames
manlen Thom own beda 10 and to be verem ef employment in rotation wo and the nub as well u n of the echolarim intendent and
adds, and me uc of eharitien uire particula they doultilem 1 by mere proefful servanter and mother, nuch a aystem ce advantager - consequence of the houree tment, produc among young on the extrave ignorant parth reaurt of itho great elugis, the same cass ng diseovers in the innume . Things for a vaennt mind, nttention and he mind which r, and arrangeral and approy which might a new assccia. physical world dite value of hanced. Not rling interes g the outwand - more serious 1 for is, that m ntle of looking on the beatict benefit of this powera whirh on of their na. wt, in its mole. it pleasure, but nd sulplisnting r. Nor, while h these vienth - direetly nefal

Und. In many ailtuationn-when wandering in our Umm. or roaming in foreign countrito-we may nee objetes of which we would be glad to cearry away some memorandum, and of which the alighteat pencil aketch mould be suffieient: raken a recollection at any other time. And yet, for wos of a few eiementary leseons in drewing, many of eveut those who trivel for the purpose of informing the public, are unable to commemorate auch ajjefte, or, at the best, can give only a few serateher, which a profestionna artint hne aferwarda to fanaion into mhise- -a thape, of eourse, in whlch correct repreeentadion ia not to so looked for. In this point of view, draw. hing tukes its place, as a useful art, by the aide of writing, being, llke it, a meana of deacription, and one which may xecaionully be oven more sorviceable than that art, wough certainly not capabie of mo goneral an npplication.
Referring to tho volumes on Drawing in our Enveatrovat Counar for a metholic meriea of inntructions, our Jesigo out the prevent oceasion is to present a populur view of what may be done by comparatively unlearned perona to acquire a knowledge of the art, including perspective, which is the foundation of all pictoria! delineation. It will be understool, then, that in all our observationa we addrosa oureelves directly to the pupil.

DRAWINO.

Drawing is effected by various materials, as chalk, Nack.lend, or colloured pencile, Indian ink, \&e. Drawings va a simple kind are made prineipolly on white paper n Britel bourd, but also sometimes on tinted papers, in which case the lightor parts are brought out by white cay mas. Connmence a study of the art by acquiring amis of hand, autl in fict learn what the hand can do by its diliternt evolutions. For this purpose, drawing linea gith chalk on a black board is perliapa the best exercise. Either, thereffore, on a board with chalk, or on paper mith a pencil, learn to make drawings of lines, atraight, cured, or a modification of cither. Ohserve how much more lesutifal is tho nppearnnce ond effect of a curve in emparixon with a straight line, and how naturo delighta in thia waving of forme, of which we hato examplea in the hending of boughs in trees, the serpentino winding of fivers, sud tho curvilinear forms of animals.
You may begin the drawing of oljecta by copying other drawings; but this species of exercise can only unke you farmiliar with the manner in which lines answer the purpose of representation. To lie master of the art, you must throw anido all drawiugs or copiea, und karn to draw by your own inconvity from tnagible djects in nature and ort. In this study, the hnnd is tught to obey the conceptions of the mind. When, for ersaple, we see a clanir standing on the floor, we obwre its shape or figure, its line of back, seat, lega, and all ather parts alout it. We then take a pencil, nad cending the mind intensely on the form of the chair, to wo define all the lines of the object on the paper or burrd. The more perfectly that the hund can obey the direction of the mind, while bent in thought on the djject, so will the drawing be more true in all its decalle.
The pupil, therefore, muat be taught to call up the rhale power of his mind respecting the appenrance of an object, when he wishes fo represent it by a drawing. On this, indeed, may be aaid to rest the fundamenta! principle of delineation in nll ite beanchen. No one can pnusibly attuin even a mediocrity in the art, who does mot, leas or more, possess this power of recalling inages On the mind, and of training his hand to act in strict conjunction with its dictates. The haud is only the instruneent employed by the initative faculy, and ean do notting usfful without the strong concurrence of the mill. Accompliehment in penmanahip, and every other on in which design or tigure is an element, is founded on this fiurdamental basis.

In theno elementary lossona an idea of perapeective will be unconscioualy gained. It will be noticed that atrong outlinen mark the objecte ur parts of objectir near ant the eye or in the foreground ; while, to make parte rotire, or have an appoarance of being at a greator dimtance, the lines muat be made light, and the reprenentotions amalier. It ie a matter of first consequerce to bring out eifects on a broad scalo, not by repeated amall markinge, but by a comparatively fow bold linera of greater and lomer thickneas. You will observe that an objoct may be represented in two way-Arrat, hy mero outlines deneribing ite figure ; and, second, by introducing atrong ahades among the outlince. T'ako, for illumtration, agure 1. Here the bladen of a plant are re

Fig. 1.
presentod by a fow thin and thick lines properly due posed, and by a little shading being thrown in to bring out the effect.

Fig. 2.
A juat ides of tho value of lights and ehader may be aaid to be the beginning of all excellence in pictoria delineation; nnd you are recommended to lose no opportunity of aequiring it. The most eimple objects afford examplea. In fig. 2 we have a group of this nature, being a stone, a piece of broken wood, and the leavea of a tall grassy plant, such as may be observed in a field or by the roadside.

Mr. D. R. Hay, in hia excellent work, "The Lswa of Harmonious colouring," has the following practical obgervations on the method to be followed by young men in gaining a knowledge of drawing, with referenco to patterns, decorations, and ornamental designs:-~T The course of study I am ahout to point out is within the reach of all-even those in the most humble aituation of lifo. They will find it of easy acquirement, and a source of continusl enjoyment, in the improved medium through which it will lead them to viow the moat ordinary productions of nature. She shall be their instructor; for nll that I can pretend to do is to point out to them a practical mode of receiving her lessons. To the uninitiated I therefore address inyseif; and let them not be dissuaded from beginning, by having no predilection for the atudy-the more they persevere the more they will love it.
" In the first place, your attempts ought to be of the most simple nature, and on as ingee a scale a you can conveniently adopt: thereîore, hegin by procuring a black painted board or sinte of from two to three feet square, and with white chalk practise the drawing of 2 L

information for the people.a

muarea circles, and ovala, without any gulde to your hand. You may muke yourself copien of these figurea by the ordinary rules. When you ara tolerably perfect at these, upon the proper combination of which depends all linear harmony, you may practime in the aame way trianglea, hexagona, octagons, and euch other figures tharise from the various combluations of the straight line. Noxt, by your circular and oval linea, you may form crescents, circular and flattencd volutes, regular undulations, and other figures, which arise out of their various combhnations, firat making an accurate copy to yourself of each figuro by measurement, and continuing to practive until you can form it hy the eye with perfint ense. Avoil forming your figures by little hits at - time; do each lino as much na ponsible by one sweep of the hand. When you find youraelf pretty perfert in this kind of practice, I would recommend you ot onco th draw from nature. You may take for your firat subject a cabliage leaf, the larger the better, and persevere in copying it, full size, until you can represent it sccurately in outlino, with ite princijal flbres. Yon may then vary your practice by ot'ier simple subjects of a dinitar kind, until you find you can do them all with case.
"Before endeavouring to draw more than one leaf at a tine, you must know a little of perspective. The most simple mode by which you will attain such knowledge of this art as will lo most useful for your prement purpose, in to hung a circular object, anch as a hoop, between you and the window; set it a-moving gently round, recedo a littlo from it, and you will find that, as one side of it retires and the other comes forivard, the circle which it deseribea becones narrower and narrower, until it dimppears altogether, and leaven nothing but a dark line, as if a stick instead of a hoop were hanging before gou. I recommend you to do this between you and the window, because the hoop will nppear like a diark line, and you will thereby be hetter able to mark the change that takes place in the shape of the circle. Fix it in varioun positions, and draw from it, and observe that it is a different figure from an oval. You may now hang up your cabbage leaf, or that of any other large and well-developed vegetable, and you will obsurve the aame chnnge in its figuro as it turns round. Make an outline of its ahnpe while its front is half turned from you, thess bring it from between you and the light, and place it where the light will fall upon it, with its face half turned from you, ss when it hung befors the window. Take your outline, and within it draw the priscipal fibres as you see them. To do this properly, will require a great deal of practice, but it will pavo the way to your being able to draw the most complete groups of flowers and foliage that can be placed twefore you. You may now hang before you a small hranch of any tree or plant, with two or more leaves upon it-the larger the leaves are the better-and endeavour to make outlines oi them, varying their ahape according to their perspective, as nlready described; be particular on this point, for a great deal dependx upon it.
"You may now lay aside your chalk and slate, and proride yourself with a few sheets of common cartridgo-paper, and soine picces of common charcoal-that made from lime-tree is the best. Stretch a whole shect of your cartridge-paper upon your board by a wafer or a little paste at each corner. Place before you a cabbage, cauljflower. stalk of dock-blades, or any such lapge vegetable, and they will be more picturesque if the outer leaves are hanging lonac. Copy these carefully in outline, using your charcoal gently, that any inaecuracy may be casily dusted ofi. A large thistle with its foliage is likewise an excellent example, hut more difficult. Indeed you cannot go wrong in your choice-hemlock, fern, nettle, are all wurthy of your study. From these the richeat and mest effective of Gothic ornaments were taken by our
forotathers. The more you atudy auch nubjects, the som beanty and grace you will find in their forma."

When a considerable advance has been made in tha elementary department of draking. it will ho proper to on to the higher atoge of persurective drawing, in exact io. cordance with the rules on the subject. For thin you will require tho following

Jiequiailea for Draning--Among the varioue artiele required in aystematic drawing, tho flrat place may bo given to a wooden honrd of convenient gizu, or alout two feet in length by eighteen inchea in brendth; it should tee perfectly amooth and perfecily mquared. Ont thla boand the paper on which the drawing is to lie oxecuted mhould be properly fastened. Ithis is done by damping the surface of the paper with a wat aponge, and nfter it ham fusly expanded, fastoning it down with a little thin glope round the edgea; it should be laid on the board ovenly, and len to dry in the air.

The next requisite in a fiat rule called a T-aquare; this ia a thin straight-edge, or rulo, attaehed ot right angles to a short piece of wood much thicker, so that when the croms-piece in moved along any side of the beard, the rule will projeet acrose the pmope, and by in edgo pencil lines may be drawn straight from lett to right and from top in hottom. To test the accuracy of the sguare, let other limes be made from the opposite sides of the boarl; and if they agree with the former lines, hy being parallel to ench other, all is right. On this the cor. rectness of tho drawings will menterially depend.
'T'o these must be ndded a pair of compusses-an in. strument no well known, that it is only necessary to remork, that the points should le just ao sharp as to hold on the paper without piercing it. 'I'he compassenshould be lield lightly by two fingers and the thunib, and moved with the least pressure which the operation may requira

These ainple implements will be sutlicient, until a knowledge of the urt suggeats the necensity for a cass of mathematical instruments

Paper may be purchased of all quolities; for early practice, it ia sufficient for it to to what is called hard, that in, able to enduro leing written upon with pen and ink.

Black-lead pencils are of various qualities: a soft percil gives off the lead too freely, and will not retain its point ; a hard pencil wounds the aurface of the paper, and cumnot be casily obliterated; therefore the medium pencil is best for drawing perspective. The wood should be carcfully cut from its point, and the lead sharpened by being gently rubbed on a file, which produces a better point thum can be formed with a knife.

Indian-rubler, or a clenn crumb of bread, to take cut lines incornctly drawn, is also necessary.

Esery stulent of drawing is supposed to he acquainted with the form of acute, obtuse, and right angles, circlea, ellipses, and other simple innthematical figures, and there fore wo need occupy no time here in describing them: those who wish to refresh their memory on these matten are referred to our articlo Geometry.

ferspective drawing.

The study of perapective is commenced by arquiring a knowledge of certain principles, and the technical ap pellationa by which they are dencribed. The tirst thing which you will attend to is the existence in all correct perapective drawings of a horizontal hite. 'Ilar borizontsl line is always the beight of the rpectator's eyc, and, of course, fielde or hills may be above this imaginary line in a picture. In the following diagrams, the horizontal line ia alwaya marked H. There is a certain point on the horizontal line to whict the eye is directed; this is called the point of sight, and in the following diggramsin marked P.

Aa noticed in our article Orrics, the arparent mogni tude of any olject ia influenced by its distance frum the

If near, if is, then, drawing, to eording w the Wa have ag abjecte as the which a long is further ext anakilled in general directi na paper of t dininich, as, f matical wicue need trust to scouracy. W we illustrato bllow.
Figuro 3 re AB is the buse

- llimd of the h mental line. 0 pint of sight, n in proportion as anted ly the t ruw of posts E servation.
The horizont lates some impo be placed ligh gulated in its rl drawn. If plac of aky, and pron placed near the the prapartion horizontal line s height of the pi fired at pleasur the centre town centre, the perisp

When an obj bance parallel to faces pan be see mecder accordine Phace a hox as melliately in fro $A B$ is its bottor EF is the farth top. $A B$, the b : allol to the hori the point of sigh and the visual upper corners centre in P , bec in in front, and ject. Any alt parition of the 1 - corrpsponding

Pace the box
matiacely in fro

peets, the mone

 ma." made in the he proper to ge ng , in exact to For thin youvarioua articlea place may bo w, or about tom with; it ahould On thin boand xecuted mhould mping the sur. nd after it has little thin gluo e board avenly,
ed a T-square; tached ot right thicker, so that any side of the yer, and by iu rom lelt to right accurary of the Iprosite siles of former lines, by On this the cor. depend.
rpasses-an innecessmary ta re darp as to hold ompasser should unb, and moved inn may require Ilicient, until sity for a case of
dities; for carly 1 is called hard, on with pen and ities: a soft perill not retsin its of the paper, and he medium peacil wood should be pat slarpened by produces a better
read, to take out
y
to be requainted It angles, cireles, jgurres, und theredestribing them: on these matter
heed ly acquirine the technical ap The first thing hee in all correct The honizonal tor's eye, and, of imaginary linein the horizontal line tain puint on the directed; this in owing dingramsin
gei If vear, the ubject seema large, if remote, it in nmall. if is, then, mont impertant principle in perspective drawing, to regulate the wize of the objects merked acconting w the diatanee at which we wiah them to appear. We have a good example of thia gradual diminution of objects an they recedo from the oye, in the manner in which a loug avenue of treea neemn to clowe in a point at inf further extrenity. It would bo possible for a permon, undilled in the rolow of perspective, and nerely liy the general direction already given, to give a reprementation sa paper of the manner in which olyjects thus wem to lininish, an, for exaniple, a row of poath ; but an muthematieal mifience given exact rules on the sulject, no one need trust to chanse, but nppeal to prinelpley of unerring sccuracy. We crave attention to these principlea, whichs whuatrate by certain lines in the diagrams which cllow.
Figure 3 represents a quadrangular drawing, of which $A B$ is the base. Across the picture, at rather more than

Fig. 3.
a third of the height, in a line H, representing the horismotal line. On the horizontal lino, a point at P is the pint of sight, and to this point all oljecets aro diminished In proportion as they approach it. Thue, a road repreeneted ly the two lines CD tupers to a point at P, and a row of posts E diminish towards the same centro of observation.
The horizontal line, which, it will be perceived, reguIstes some inpportint points in pictorial delineation, may beplaced high or low, at plasure ; but it is generally regulated in ita elevation by the nature of the subject to be drawn. If placed high up, it leaves too small a proportion of sky, and pronluces what is called a bird'secyo view; if placed near the lase, unless the scene be mountainous, the prapartion of sky will twe ton great. In general, the burizontal line should be drawn at about one-third of the height of the picture. The puint of sight may also be fired at pleasure; but its best situation is removed from the centre towards one of the sides; if directly in the rentre, the perspectivo would have too formal an effect.
When an object baving angles, as a box, stands on a bace parallel to the horizon. and two of its sides or surGaces ean be sech, toat which is fartliest from the eye will nrede according to the situation of the point of aight. Phwe a box as in fig. 4, immeliately in front of the cye; $A B$ is its bottom or hase, and Ef' is the farther calgo of its top. $A B$, the base, twing parallol to the horizontal line H, the point of sight will he at P, and the visual rays from tho upper comers of the hox will ceatre in P , liccanse the cye in in front, and alove the object. Auy alteration of the
 ponition of the box, or the cye, will consequently repuire corresponding arrangement of the lawa of perspective.

Plare the box toward the farthes side of the talle, innmalinely in tront, and lower the eye till the horizus.tal
line in one-third down the hox, when the top will be low sight of; there let the cye be fixed, by reating the whin on any convenieut oljeet, and the front, or only one alde of the box, will le ween. Then let the box he moved to the left, in natraight line, the position of the eye being retalned, and a second aide of the box will come into sight ; ith receiling lines or visual rays will then be centered in the gitered polnt of sight, and the side in front will retain its form, because its have is parallel with the horizon. W'hen thin experiment has been made, und the situations of the box and the eye lave been confideredpresuming the box to have been a cule-procect to at certain the mode of representing this object nccording to the rulew of permpective, relifring to the natural appeas ance of the box occusionally, the more etfectually to fix the mutual resemblances in the mind. Fig. 5 will nhow the pocess by which all the particulara may be demenetrated. Presuming the paper is fastened down on the drawlig-hoard, the T-nequare and jencil ready, commence this: Apply the 'r-nquare and draw the bane line AB, and also the boundary of the pleture CD. Then draw the horizontal line H acrosm the paper; this may be fired at pleasure, but parallel to AB. Ihen find the half of the bame All, nnil iraw a perpendicular benenth the fioture to 0 , and on it phace the profiled anglo of 60 dogrees, just at that distance which, ly contiruing the siden of the angle, they will internect the extiemitice of the hase, and together form an equilatoral triangle, as AOB : this must be atrictly attented to. Now, ns before cbserved, the point of sight is better when removed from the centre of the picture; and taking a atation to the right, by a horizontal line from O to S , this liecomes the etation whenco the picture is seen, and the point of sight is therefore found by the perpendicular line from \mathbf{S} to \mathbf{P} on the horizontal line. Now, as a vnnishing point is required to determine the wilth of the receding side of the box, the profiled nngle of 90 degreces is to be placed at 8 on the perpendicular PS, nnd the side line continued until it intersects the horizontal line at V, which fixes the vanisluing point: this almon must be strictly attended to. It will he observed that the nugle at S is one of 45 degreen, being the half of the profiled angle of 90.

We now call attention to the situation of the eya. which is always on a level with the horizontal line; therefore, the true position of \mathbf{S} is immediately in front of \mathbf{P}, or, as if the perspectivo lines benenth the pieture could be raised up to the level of S , and fixed at that distance from the picture, to show the true situation of the eye when viewing the object. 'The front square shape of the box may then be drawn in, occupying less than half the base of the pieture, in order to show the perspertive, as ut fig. 3; then. from the neareat perjendieular of the box draw the visual rays from the top and the bottom of the spuare to P^{2}, which givo the diminutions. Now, a line drawn from the corner of the lox near A to the vanishing point V, will intersect the diminialing line, which gave the receding base of the box at I_{1}; aud n perpendicular line from I , to K on this intersection, will give the true representation of the square box ns seen in perspecs tive. If this were a cule of glass, the farther sides would be sarn, at ahown ly the tiner linea in the diagrain.

Repeat this atudy in different sizes, referring to tho matural appearance of the box, in order to feel, as rvella see, the coincidence between that and the object produced by the rules of linear perspective. It is of innportance that this diagram should be thoronghly understool, be cause many of the rules employed in it are trequently required.

The boundary of a picture, or the planc, may he of any proportions. The hase is marked in fig. 3, AB. The perpendiculor, from the nidde of this bosi line, aso sists in linding the situation for the angle of 60 degrese O, the width of the base, measured from the extremitios to the perpendicular O,forming an equilateral triangie

Fig. 6.
es AOB. This in a rulf, whatever may be the size of the pieture; It also showe the proper dintance at which a pieture shoult be vieved. This expanse of vision, at an angle of 60 degreen, ia marked in the diagram O, and placea the point of sight it the middle of the pirture, which ia very ofen otjectionatile; therofore, a line parailel with the base is ifrawn from 0 , and on thin line the better station is taken, which is marked in the diagrams s . Now, the horizuntal line It having been taken nt pleasure, n perpendicular drawn into it from 8 will give the point of eight at P, into which the vinual raya are drawn that regulate the rececting oile of the object. The vanishing point V is entirely distinct from the pmint of sight, of which there can be but one; but vanishing pointa may he numerous. 'Thin, merked in the diagram V, in of great consequence, for hy it is deternined the proper will th of the object, hy the line which intersecta the visual ray from the bnee of the hox A to V, as at Li; and here the perpendicular to K , which intersects the upper visual ray, completen the perspective form of the otjeet.

No oljectw better exemplify rulen in perapective than articlea of household furniture, such as boxes, chairs, tablen, and chente of drawers. We direct your attention to the following illuatrationa : Fig. 6 exhilits a parlour chair and a footstool. Observe thet the chair mands with the corner of ites seat nenrest to the apectutur, the point of sight being in tho middle of the pieture. Thas receding mines of the chair have their reapective parts regulatort hy diarponals wo their vanishing points. The footstool atands on a line parallel © the bane, and therefore its visual rayn tend to the point of sight in the centre of the picture. These may prepare the mind of the aulent to consider, that oljecta, when differently situated, have each their vanishing pointe regulated by the angle at which they are viewed.

We recommenily, you, ad occasione, to draw the horizntal finc so fir on either side, diat it will be intersected by the diago-
mala, wieh are to be drawn at an augle of eo degrees froun the atation, into the horimontal line, where they determine the vaniahing points Theree are only indieated in the diagrumis by the direction of thome lisea, and the wordm "to V1" or "to V2."

In fig. 6, the base line All ie drawn, the em. tre determined, and the perpendiculise drawn to 0 ; the angle of 60 degreea in thkent in agmee. ment with the bnee lines, making an equilatenis triasugle, and the print of wight " 'is lixed on the horizontal line II. The vaniabing pointe ate found by the angle of 00 deyrreer int 0 , projected on either side to $V 1$ on the lef, and V_{2} on the right, an before dewcribed. All the diminotionn of correspondling ornamenta on tim back and front legn of the chair are drawn to V ? while the aide of the chais in regulated by V 1 , The footstool in placed parallis to the hase on the line CD, and its diminution regulated by the ruy" EP and FP. The diugonal G itom the leg of the foostatool \mathbf{D}, to the vanishling point V 1 , would deternine the aquare of the abool, or the pusition of the farther lens, at the point where it intermected the ray CI.
Fig. 7 shows the peranectivo lines required to repreevent a writing-desk placed diagonally on "tanhe which atande on the lase line. The bago of the pirture in Jrawn as AB, the renire is taken, and a perpendicular drawn to 0 , ti, the angle of 60 degrees. The horizonal linn ho druwn at II. The parallel in ifriwn trom 0 io N , and there the perpundienlar to the larizontal line fixes the point of sight it P. Then the angle of bo degrece is taken at s, and the vilen Ixing projected to the horizoutal litie, gives the vanishing iwints $V 1$ on the lef, and $V 2$ on the right. Now, the ta'ile twing eeen in front, or on the bame line, the visual mysa from the legn and the top are drawn to the point of sighe P. The tulle lwing nuplosed to tw a parallelognam, ita side, seen in perapective, will be nhout half its width meen in front; therefore let half th apace aren in front be set off from the \log a the right ; and the dingonal from that half to r I will give the diminution of the nide of the tahle, where it interwecta the ray from the fiom leg to the point of sjght \mathbf{P}, at ${ }^{\prime} R$. A paraled line from this to the ray from the other frontleg will give the situation 'T' for the most distant leg. The writing-desk lwing presented with ita comer towards the apectator, hoth wides will requir their receding pointa, which nre determinei is the vanishing fointa V I and V 2. Rues familiar oljecta should be dunwn, by which the more readily to fix in the mind of the ntudent the leating priuciples of linear perspertive.

It will be seen that, when nin object has it bnes line parallet th the harizan, the point of sight is in the pi - wo hat it is arranged in aurrement with tha. ..t. .inet which the of ject is viewed. M1... 1 "object whic has four sides, , inn I tilus sides he imme diately in front of the eye, the visual rays mill be hiddent, breauso the point of sight is in or behind the olject. It will also lee men, that if the object the moved on either side, or the pows of eight le altered by a change of station, the vinoul raya determine the receding side of be object immediately on a second side being seen
If the base line of un object lwe removed from its parallel to the base line of a picture, the ongle under which the objeert is viened beoonit alkered in atrict conformity with itu changed po
dilien, the parl lag an alyere I Buppore a ob, 8 , and whil A. to be muvec

nject at that et of vision wiol dould h.
cins at dif.
whe de low puifn I diverar senpuatared 1 ? has objeret on it o.de, prapurtion Luxing tho se cot fort prese in lol buse of alie puella iug movenuents ton wa the reced lug point externd in pruportion un noments, and ols; ${ }^{3}$ parallel with t I was required, left, as perchaps while ${ }^{\prime} \mathbf{2}$ en th Any subse!puent augles for the re ways making an
Fig. 8 shows may le properly lyyuely. Draw the purpendiculn mine the horizon milar to 8 : find the vanishing j^{10} of the house C, thrir height and point V2; they
to V.

Vole 1.- SI_{1}
an anglo $\mathrm{N} \omega$ the horimontal ranialing diagrama by the werdin "to Vi"

drawn, ite cm

 lieculur drawn bo taken in agme Ig an equilateni P ix lixel on the thing pointe anm ma it 0 , projecered lent, and V_{1} on All the diminer ntw on tim brect a drawn to V : cguluted by V . To the limes on finn r"gulated by diagsonal G tion " vanuilbling point are of the tool "us, at the poineve liuen required reet diagamally en "line. The bue B, the rentre in awn to 0 , frat the horizontal lime fo drawn trom 0 b to the l.onizantal nt 1 '. Then the as is, and the siden tal liure, gives the - left, and $V 2$ on ing suru in from rays from the enfi point of sight P. wa parallelegnn, will tes athout half rfore let half th - from the $\operatorname{leg} a$ rom thus hast 105 of the sile of tom ruy from the freat at R. A paralled the otherf front thes he moset distant lesy terl with ite comen viden will requir are deterninei is V2. Suret fami by whirh the max of the mudent the wrypertive.
wn olject has its zon, the poind α at it is warcunged io - which the oh olject whik 4. xithe te imme re visual rayy mil of sight is in $u t$ so lwe werl, that if r wide, or the pem nee of tation, the cealing vide of 10se nd wille licing seas ct twe renoved from of a pircture be tis virwed heron:s fith its chunged po
ailoo, the particulam of which the atudent may anvertain lyy place rase on ulyect th the variona positione.
Euppore a chent of drawert, or a cube, to be pla cel and acelis an in aks, 3 , and whilo the neareat corner in to aet an a puiul, the coud near A. 0 be muved so an to caune a apace betwern the base line of the

Fig. 7.
wient at that end and the fixed bnee line of the picture, the angle of vision wall', "har: that the Imase and top linem of the olyoct dould h. I atim'ing printa. The objert could he moved
 walme de vewld bucwne the front, nall eath pomition would refuin a diasem; bint the mtudent is presumed to have become wenuation enth the finct, that, at each panme fis the movement of hisotjert on it pivet, there will lie exhihited a diminution on ono ade, prefurtionate to the increnser of the other aide; intil, hy contannag these otatory moveluents of the oligect, that mide which was at Frefrem int lohliquely, lseomes the frome, mod its lame parallel to the tase of tie pacture. 'I'he originat tront of the oljgect, by the revolve iug movencuts, will have brent loat or hidilen, exurtly in proportun es the ceceding nide ndvasied to the front. 'Ithus the vamishs. mag point extended an the advauming side lierome bore evident, just in propertion as the recoding side diministied. Make thene expe. minents, and oberse, on the firat change of powition deviating from 3 paralled with the lase of the pirture, that the vanishiug point V I was required, and wo far removed on the horizontal line on the left, as perhaps to require an anglo of sol degrees at the station, while I' 2 on the right would then require an nugle of 10 degrees. Any nuberefucut change of position in the objert will alter the augle for the respective vanishing pointa, and theso together always making an angle of 90 degrees.
fig. 8 shows the method by which the situntions of windows nay be properly drawn in the reprementation of a houre, neroll obliguely. Draw the hase line AB : find the nugle of 64 degrees on we perpendicular from the centre, and mark tho ntai.ons : determine the horizontal lines H, and the point of kight on it, perpendiculat to S : find the ungle of ninety degrees, und data ihe lineen to the vanishing pointa V 1 and V 2: draw the nearest : wopndicutar of the house C, und tix where the nearest wimlows are glacel. also thrir hright and width, DF: draw these dinconale to : 0 vanishing

windowsi draw also the corniee and the beas finew then draw a fine line F parallei to the herizon, and tourhing the jerpenilicular Ci theng with the comiluasuen, tuke the measure of the space letween the perpendientar \mathbf{O}, whieh is the comer of the houme, and the edge of the whinlow D, and mark it on the line F an at If then take the width of the window K, and mark it as at 2, It is befter to have a second pair of ecmupasaen to prevent mintake in the altermate ulteration that in requ!? rel, of the spiaca for the windown may to marked with the point of a needle on a jifece of writinge paper, and then marked oll "aurfilly on the lifs F; then the componsen will matk, the "prace belwepn the windown only. "The mimall projection which weparates the centre from the whing must be notired, fat at fi then the nence with comparses 4 , then the wintow 8 , then the npace 0 , then the wiratow 7 , thens the криee 8 , then the ivindow 9 , then the apace 10 , then the window 11 , then the spree 12, then the window 13, flem the aprace 14. This being the farther axternity of this centre of the hounc, the corremponding projection to (i) mumt be noticest, as heing no lutich of the next npace hidden behind tho projecting eantre; it will therefore the marked is, then the window 16, then the space 17. There compose tho spucea and widthe of the windowa an sern in the front of the house : and it romet be montioned, that the pointo which havo heen mule on the line F, mont be perfectly true on tho line, or tho truth of the diminutlon will be impaired. Now, anкume a point ntwout the middle of the hense, on the horizuntal liven, as at K, and draw diagonnla from u I the pointa made on the line F into the puint K, oldaerv. ling that the point of the peocil ruan inte both nt every line. A needle may he placed at K, against which the atraight-edge may be preseed, to assiat in drawing the diagram corrertly. Now, the diagonals which regulated the diminution in the height of there widowe, an drawn to V 2, will be intersected by the radii drawn from the point K inte the marke on the line F, and those intersections will show the diminution of wilth according ω the laws of linear perspective.
An this diagram may bo crowiled with lines, youl are recommiended to examine the intercections carefully, and mark the forms of the windows with hard persil, and then draw in all the perpendiculars as regulated by the radii on the difagonal lines. If in thes state of tho diagram there should appear any coufusion, it will he far better to commences another: and the larger the diawing is, the leas riak is there of dimappointment. The side of the building, that is, the wing and the tortion of the centre seen above, with the little projection at \mathbf{G}, ore drawn by diagonala to the vanishing point V 1 .

You are advised not to pasa this diagram without having ohtained a perfect knowledge of the priuciples by which the dimimationa are regulnted. Diflicult as this may apperar it ought by all menns to ln attempied, for if cannot be too strongly impresserd on the mind. that no perfection in drawing, no delicacy in finishing, nor boldness of effect, can atone for deticiency in perspective. When a little pro greas has been made in this, so that the judgment is prepared to understand the arrange4 L 2
mente which objects must undergo to be correctly represented on a flat surface, a acene in nature can be sketchec without any meteria: ditficulty.
Fig. 9 reprosents a method by which archwaya are put into perspective.

The base AB, the horizontal line H, and the point of aight P, are deterinined as in the preceding diagrams. In this it will be seen, that, if the point P had heen retained in the centre of the subject, the sides of each respective arch would have been alike; to obviate this, P is placed a little to the left of of the centre.
This is a aulject which may often be met with, and you ara advised to study such oljjects in nature, be they of one or more arches; ever romembering that the station must be preserved with the head tovarda the point of sight; the eyer only are to he turned from one part te unother. You will thus practically learn the distance at which to take a station for such studies. If it be taken too near, too little of the sulject will be seen. If it be caken too far off, then there will the more expansion than is required, and the sutyect will not show the minutize.
Suppose auch an object an fig. 9 to be in front of the draughtsman: the piers between the nreher should be sketched as perpendicularly as possible, and the arehea turned by hand: then the depth of the receding sides, as nearly us the jodgment may direct, and as much of the masonry as may point out the parspective of the subject : then, while all is fresh in the inemory, attach the sketch to the drawing-board, and by the 'T-square draw the base AB, the horizontal line H, the point of sight P, and the vanishing point $V 2$; then, by the T-quuare, correct all the perpendiculars and horizontals ; draw the line CC, which is the eliord of the smaller arcs, and DD , which is the chord of the large arc, and observe that the perpendiculars intersect the line \mathcal{C} nad those st the centre arc at D: then find the centre for the are M, and describe it correctly from one perpendicular into the other: do the same from their centres to the smaller arcs; and thus the superficies of the sulject will be definel : then draw the visual rays from the luase of all the perpendiculars E, and from the intersections on UC and DD, to the point of sight P, which give the receding lines for the visible siden of the archways. If the piers be aquare, a line drawn from the base of the perpendicular of the centre archway E, to the vanishing point V 2, will give the perspective width of the recrding parts. If the piers be one square in front, and two squames deep, mark off a square to the left of the perpendicular, as at G; and a diagonal drawn thence to V 2 will give the receding depth where it intersects the visual ray EP at K. At this internection draw the horizontal line 1 ; and where this intersecta the visual rays at EP, an at K, ruise the perpendiculars till they interse the visual rays CP and DP, as at LIL. 'Thus will the receding sides of the archwny be determined. To find the are at the farther end of the sulject, draw the horizontals L.I : and the visual ray MP, where these intersect at N, is the centre on which the arch may le described. The smaller arches are to be found hy a similar process.

Now, the correcting of anch a sketch by the application of the rulem of perspective, will show where the eye and hand have failed in giving a faithful representation of the object. Theretore, agnin visit the apot, taking a station otrictly in agrvernent with that in the drawing, and compare the corrected lines with those which nature will present. Let all be rugidly examined, and the result will not fail to le satisfactory.

We recommend that every opportunity should be aken to aketen auch subjects from nature; they furusn excellent atudies for limear perapective, and one

Fig. 9.
such study would convey more information than the colying of a dozen drawings or diagrama.

sKetciling from nature.

Having acquired a certain facility of hand, and mastered the principles of perspertive, you may procend to the more agrecable study of sketehing finm natural scenery. At first, do not attempt any difficolt or complex sulject. Select some nasenibtarge of ordjnary objects, such as may lo thought sareeable in themselves. and likely to be represented with ease and satisfaction. The scene aclected slaonld not contain more than three or four objects of dillerent kindssuch as a cottuge, ono or two treen, nad a small rustic paling, with perhaps the addition of a little glimpse of buckground. Fon will observe that an artist rarely over takes an object in its broadest and most regulat form: he never reprcsents a house, for instance, an if he had taken up hia position right in front of it, as in architect would do; nor would he paint a row of trea ut a right angle to his own position, secing that the effect of such representations would be trime and formal He ondeavours to catch the careless grace of nature as sho appears to casual observation. A house, pare ticularly, should always be viewed from a point a fitle aside from the front, so as to bring in us many of its ungularities as ponsible. A group of natural objeetu should be rupresented as if the dranghtsinan had jos by clance got hie eye upous it ; and yet the srlection of n point from which this effect may be obtained mus be a matter of study. For an early lesson in aketche ing from nature, it is enough that the oljpets be ouk lined; to fill in details, and give the full efliect of light and shate, must be left to a future period in the carem of a young artist.

As un example of the secues which mny be selected for early sketcheg from nature, fig. 10 is given, beirg simply a cottago backed by a fi.w trees, and having some broken ground in front, while a glimpse of the sea is olitained at the side of the picture. The station of the draughtsman is here at S, ju order that the rot tage may not njpear to have leen viewed formally, and that the trees hehind may give to the scoue its net pymmidal form, while the broken grounds in froot commanicate holdnesa of character, and the straight line of the sea at l' (which is the horizontal time)afiord a pleasing contrast to the other lines of the irawing.

It will be remarken! that the cottnge standx on a time parallel to the base AB, the point of sight 1 ' is perpon dicular to the atation S ; consequently, the rays the regulate the side of the chimney, tha upper and unier limes of the roof, and the window on that side of the cottage, all centre in P.
l'rovided with a sketch-hook, (meaxuring pethapa 10 inches long by 7 inches lirond,) the first thing to be done is to select a atation from which the drawing is to tre exeruted. A ditficulty may present italf apecting the size of the proposed drawing; bit the dimenvion may be dectriuiaed in a very aimple ato

ner. Hold up closel, and the is that which m the book is held When the extr may be gently l margin, merely particular featur tres. Then, mark the point be in haste, but nost prominent end of the cott them on the pla more dots for g relative distance br hetding the the agreement arrange these trouble in oblit in ketching to chimney ; that the base line, aketch book.
T'o prevent t] proceeds, comme Endeavour to sk or with what is very distinct fr let them be rat the general appe of folinge be sk dence that the c are made in v diflarent unduln rugreelly dashe eparation of pa In examining toresuing is cont for the cottage

formation than tha ;rsms.

TURE.

ility of hand, ard ive, you may proof sketching fimm ttempt any difficalt assembtsige of ordicouglit agrecable in nted with case and should not contain f ilillerent kindm s, and a amall rustic a little glimpse of lat an artist rssely st and most regolut , for instance, 88 if in front of it , se in paint a row of thes on, seeing that the be tame and formal less grsee of natura ion. A houst, pas from a point a fittlo a in as many of it of natural objectu ranghtsinan had jus 1 yet the selection of ay be obtained mus rly lesson in aketctir the objects be our he full eflect of tight period in the catee
nich may be selected a. 10 is given, beits w trees, and haring ile a glimpse of tha icture. The station 1 order that the row viewed formally, and - the scene its neal in gronnds in from er, and the straigh rorizontal line) affere es of the trawne ttage stands on a lime of sightit I' is perporis rently, the rays tha the upper and unila on that side of the
(measuring perbip) the first thing to x which the drawing ny present italf d drawing; but
a very aimple mom

Fig. 10.

Fig. 11.
net. Hold up the sketch-book in front, with one eye closed, snd the space in the seenc covered by the book in that which may be drawn ; of course, the farther off the hook is held, the less of tho subject will be covered. When the extent of the scene is arranged, the book may be gently lowered, and a few dots made on the top margin, merely to point out the relative situations of particular features, as the width of the cottage, and the tres IThen, remembering to preserve the station, mark the point of sight on the distant horizon. Do not be in haste, but judge of the relative distances of the most prominent parts, such, for instance as the galile end of the cottage and its length, and tenderly mark them on the places to he so occupied. When these or more dots for guides have been placed, examine their relative distances, and compare then with the objects, br hodding the sketch-book out in front so as to ree the agreement between them over the margin. To arrange these particulars well at firat, will save much trouble in obliterating falsely diawn lines. Bo eareful in shetching to preserve the perpendiculars of walls and chimney; that is, by placing them st right angles with the base line, which is now the lower edge of the iketch-book.
To prevent the linnd from injuring the aketch as it proceeds, commence on the left and proceed to the right. Endeavour to sketch the lines with a lightness of hand, or with what is called freedom, the effect of which is veŗ distinet from lines drawn by a straight-edge: let them be rather broken, or a little wavy, yet having the general appearance of straightness. Let the masses of foliage be sketched with the same euse and confidence that the capital letter \mathbf{E}, or the flourish of the \mathbf{D}, are made in writing. Sketch the grounds, in their different undulations, rather more angularly, or on if ruggelly dashed in, and strengthen the lines where eparation of parts seem to be required.
In examining the objects of which a scene like the toreguing is enmposal, you will observe that the lines fr the coltage have one character, the linew for the
trees another, and the llnes for the ground a third charaeter, which detach the objects from each other. A simple outline of these three forma is sufficient to be aimed at, for the Intro duction of more markings or acparations would only tend to confuas carly atudias.

If the linea, on first attempt, be not all which could be expected, they furnish a proof that the mind is in advance of the hand, and ahould operate as a stimulus to exertion. In - few atudies you may discover, that, by beginning with a cut point to the pencil, it grodually wears away, and gives an increasing thick nese of line: this is often very advantageoun, for, us the sketching advances to the foreground, the bolder lines of the pencil contribute to the separation of parts, to regulate distances, and give a more spirited effect to the subject. You will also discover, after a little practice, that, by a gentle twist of the pencil, a fresh point or surface will come in contact with the paper, and with it a finer line may be drawn. Occasionally, by pressing harder on the pencil, an increase of j ower will be communicated to such parts as may require separation or additional spirit, as on the rude line which forma the foreground in fig. 10 , and gradıally on the pathway to the cottage door.
Suppose a scene to consist of two or more plans, as the remains of a castle on an irregulaz surfice, with a mass of trees in front, and near it, as the principal or leading feature of the scene, an arm of the sea, and remote hille forming the background or distonce, and a rude foreground. We shall suppose that a scene of thi nature, as represented in fig. 11, can be conveniently visited. Commence by selecting a station that will present a variety of forms or opposition of character, such as lofty ohjects contrasted by small objects, which will prevent the appearance of equal heights or parallels, and also prevent the acene from being crowded or closed up. The castle towsrd one side of the picture, and the distance on the other, so as to form an irregnlar dingonal mass, are in hetter relief than if the building with the trees were more in the middla of the subject. The opposition of angular to circular forms produces a pleasing effect in a sketch, and should be ohserved. If the perpendiculars of a ruin be broken, the general appearance must he that of standing upright ; for however motilated towers or walls may be, there will still be evidences of their having been properly constructed. When these particulars shall have been considered, proceed to arrange the situation of the principal mass, by dotting on the elge of the sketch-book; and by faintly indicating the forms de. termine the horizontal line, observing that hills may appear far above; in fig. 11, it ia at \mathbf{H} on the extremity of the water, the station is at S , and cousequently the point of sight at P, into which are drawn the visual raya, or lines which regulate the receding sides of the towers. These and the perpendiculars being arranged, they mav be boldly sketched in, and the treen freely marked, in a character partaking of the semicircular; the fewer markings the better, for it is the useless separation of parts composing a mass that destroys the breadth snd boldness of a sketch. The distant hilla may be tenderly indicated with a fine point, and the foreground may be coarsely defined with a broadpointed pencil, in order to detach it from the parts more distant. Here and there an additional spot or touch of the bold pencil may be given, to assist in pre girving the gradations of distance.

The same olject in nature will often present many excellent subjects for the sketch-book; even moving to

- distance of fifty yarde may present a acene of increamed interest. Do rut therefore fail to take advantago of such stationa, and aketch an outline from each, in order to exercise tha judginent by comparing the subject aftorwards. It is also useful to ascertain how nearly the eye has determinod the truth, by applying the rules of linear persjective to every sketch at tho varlient convenience. Many advantages arise from two or threo studenta sketching the same scenes in company, for various valuable remarks are therehy elicited, tending to the mutual benefit of the party. The sketch-book should be preserved complete, as containing records of advance in judganent and correctness of delineation.
In drawing from nature, as in penmanship, every person may be said to possess a manner of his own. Some drav stifly, and others with remarkable freedom. You are recommended to eatel the tone of thoso who form their sketclies in a bold and freo style, hut by no means imitate any one. Your ohjert ought to be to draw scenes with natural trulh and bean'y, regardless of all manneriams. At first you can scarcely avoid drawing with a certain degree of formal stiffness, hut animated by a desire to excel, and expreising taste nnd judgment, your practice will improve, and your sketehes will not fail to ineet with approbation. Whatever be the difficulties you encounter, others whese works you admire were at tho outset equally embarrassed; for reat assured that in most cases in which great proficiency has been attained in the art of delincation, no simall degree of trouble bas been endured, and many failures have taken place, before the artist was finally successful.

Danwina Foliage.-To draw correctly the various kinds of trees, with their respective eharacters of foliage, requires the most careful study and frequent exercise from nature. In an elaborate work on landmeape Drawing, published by Leigh, London, the following remarks uecur on the characters of foliage:" When a tree is near the ege, the leaves are distinctly mparated from each other; their particular form, the insertion of their stems into the branch, the perfection of their locul colour, are all apparent. Remove this olject to the second plan, the foliago assumes masses, retaining the character, but the tone is altered; tho meparation of parts is no longer evident, yet it is recogmised as tho ohject previously inspected. Remove it still farther from the eye, the masses assume a uniform tone, relieved by indications of light and shade, softened by the intervention of atmosphere. Remove this olject atill more distant, it is sendered indistinet, and forms a portion of the mass of light or shade in which it may be situated. Nature presents these apprarances to every inquiring eya, and the mole of representing them
must depend on the perseverance of those whe dellight in transcribing them into their sketeh-books." This in so just, that the student might imagine the tree firm inspected retiring cradually into indistinctuess, and din playing, as it receded, the duo portions of aerinial effect It also teaches how tenderly the outline must be ex. pressed in extreme distance, how much more evident the marking may appear in the mid-distance, how much more defined tho form becomes by light, shave, and markings, on the second plan, and how distinet the cr. pression of character and power of teuch ought to be, as they approach the eye or the foreground.

Fig. 12. The willow has been represented by perper dicular markings, terminating in a point, to give the idra of its pendunt foliage. A broad mass of light is tisualy preserved, and an increase of markings is given to one side of each suthdivision of foliage, with considerable power of characteristic markings on the shade-side of the tree, besides an occusional repetition of touch for effert
The fir has been represented by short angular mask. ings conneeted with earh other, much like the zigersg scrateh with a pen to olliterate an incorrect word. These markings are continuel in agreement with the projections of the branches, are repeated with incrensed power on the shade-side cf the tree, and a few slight markinga ato given on the ex:cemities, and bencath the masees, to indicnte felinge or the farther side of the tree.
The elm has been represented by escalops in a semi. circular direction, so distributed as to give the idea of thick foliage; the masses are acparnted by detached markings, indicating the snme character, and their mo tundity given ly repetitions, with orcasional incrase of power. A few dots on the extremities will relieve the harshness of the outline, where the csealops are too eri. dent or regular.
The oak has leen represented, as in fig. 13, by a character which partakes of angular and broken circuar markings, interningled with dots and sharp touches The lighter parts are pencilled tenderly, and the sbade portions are repeated upon, with additional power given by sharp angular markings.

We mention these varieties for the purpose of showing that foliage is not to be represented by distinctly poor. traying every leaf, but by a bold grouping and superficial outlining; the purpose Leing served by merely a genead representation. Suppose a tree is to be selected for placiug in the foreground of a drawing, where its peculianitiey are required to be displayed. Let the growth of the branches le observed; a straight line is rarely to be seen, nor do they spring from each other with unifonnity; thero is usualy an undulating line, otten graceful, of a wild luxuriance, ever pleasing, in these supports to tha foliage. Let the effect of the leaves which may campuse a principal mass be indicated, not the outine of a leafor
karee, which w rean bs much b tho detail, but detroy it by pr nd gtack any funmity wilh me.e waving of the lroad point parance, but co Expecience thetch the extr grod effect, they nsponding corr belonging to t having duly con trated as a cel sprad towards simination as and then, by th ani touches, to erens but one ce a few triale, w will renove the in their varicty bijut and shade havis, because ut The light and sl fouch, and sus bigh degree of succeeding hint Cades of Indian had of the vend be free from grit duly is carporate will deposit no Flourv-Draw foliage and tree: practico of flowe ings or prints of of delincation in every thing clse we direct your a ticular manucr onamental desi doabt, examples great value in th jostly remarks your best pruct dom of executic in copsing the abbe kingdan, the use of wate dividual flower, acquirement of harmoniaus cold and arrange flo manner in regar muat have taug form.
"Dr. Ure say rated at Lyums thes covarity. criblten, min! muet uttention nucted with th Weavers may b luwers, and gri binations. Thu to their employ elczant puatterns remarkubly free ature with seis "All these f a
f those whe delight ch-books." Thin in agine the tree firk istinctress, and din ons of aerrial effect utline must be ex. much more evident -distance, how much y light, ahale, and how distinct the ex. touch ought to be, ground.
resented by perpels nint, to give the ider sh of light is is:ualy ngs is given to one e, with considerable the shatle-side of the of touch for effect short angular mark. uch like the zigrzeg correct word. Tliese with the projections incrensed power on slight markinga are cath the masses, 10 the tree.
escalopa in a semir to give the idea of narsted by detached acter, and their mo casional incresse of ities will relieve the escalops are too eri.
in fig. 13, by a cha. and broken circulat and sharp touches derly, and the shace litional power given
purpose of showing d by distinctly pour. aping and superficial by merely a genend e selected for placiug here its peculiarities the growth of the , is rately to be sene, er with unifornity; olten graceful, of a rese suipports to the which may compuse e outline of a leaf α

karee, which would prove lahour in vain, but what is wea as much by the imagination as the eye-that is, not mededail, but the effect. If too much regularity appear, destroy it by projecting a touch or two on the extremities, and drack any formality hy additiona! markings, in confomity with the character adopted. Oftentimea the mee waving of the pencil, or a powerfu! repetition with the lroad point, will not only remove a monotonous apparance, but conmmunicnte characteristic spirit and effect. Experience has shown, that, while students could whech the extremities of various branches of trees with god effect, they have felt enibarrassed in giving a cormsponding correctness to the inass, or masses of foliage, blonging to the same tree. This has arisen from not hasrigg daly considered that each mase required to be trested as a centre, from which the character should be ppral towards its respective boundary, with such dis timination as to obiviate all appearances of formality, ind then, by the intruluction of repetitions of markings and touches, to arrange the separate prats, so an to prereve but one central mass, however it might be situated. A few trials, with tho olservance of these particulars, Fill remove the difficuty. Sometimes the hues of nature in their variety may at a future time be added. The Gigh and shade in Indian-ink cannot be thus used as a hasis, because under colour itris injurious to transparency. The light and shaie in bistre is rich in mass, powerful in touch, and susceptible of giving transparency, with a bigh degree of finish. Either may be adopted, as the succeeding hints will apply to one as well as the other. Cakes of Indian-ink, of bistre, or of neutral tint, may bo bad of the venders of colours for artists. They should be free from grit; and when they were well ground, and duly is corporated with gum and white sugar-candy, they will deposit no sediment.
Flourr-Drawing.-In connection with the drawing of Golage and trees, we should partirularly reconmend the practice of flower-drawing. At first you may copy drawing ne prints of flowers, with a view to catching the mode of delineation in groups; nature, however, in this, as in erery thing else, must he your true school, and to that re direct your attention. We press this advice in a particular manner on young mechanies who are studying enamentsl design with regard to theit profession. No deubl, examples of ancient and modern ornament are of great value in this branch of drawing; but, as Mr. Hay justly renarks in lis work on Colouring, "flowers are your best practice, as you will now have obtained frecdom of execution. To those who huve gained a facility in copsing the benutiful forms which prevail in the vegeabble kinglon, and who have had such instructions in the use of water-colours an may enable them to copy individual flowers with ease, I would recommend the acguirement of a thorongh knowledge of the laws of harmonious colouring. They will then be able to group and arrange flowers in the most agrecable and effective manter in regard to colour, as their previous experience must have taught them to accomplish in conbination of form.
"Dr. Ute suys, that 'the modes in which tnste is cultirated at Lyme descreve particular study and imitation in dhs couniry. Anann the weavers of the place, the cindren, and ali presons busied in devising paterns, much attention is devoted to every thing in any way conacted with the heautiful, rither in figure or colour. Weavers may be seen in their holiday leisure grothering foures, sad grouphng them in the mast engaging combinations. They are continually suggesting new designs to their employers, and are thus the iruittul source of elegant patterns.' Hence the Frenen Sower-patterns are remarkably free from incongruities, being copied from nature with scientific precision.
"All these facilities for the improvenent of our fancy manuact res are w tluin the reach of the most hamble.

The pursuit of auch a course of atudy an I have endeavoured to point out, would not only augment their sources of innocent pleasure, but lead them to other instructive pursults The youth, in searehing for the most graceful and pictu resque plants in nature'a most profuse and wildest productions, would be naturally led to commence the stuly of botany, for he would then have some interest in the inquiry. And it may he casily imagined with what avility the more adsanced would add to his knowledge of that pleasing science, or the gratification he would derive from the study and practice of horticulture.
"I need scarcely (continues this writer) point out the advantages to bo dorived from the cultivation of flowers ly those engaged in designing ornnmental patterns. The productions of a well-managed flower-garden to such would be, in iny opinion, of more real utility, as objects of study, than the contents of the Louvre. In those productions of nature they will find the most exquisite beauty and elegance of form, and, even in single flowers, the most perfect combinations of colouring.
"In saying that the study of such subjects is of moro utility to the ornamental designer than that of those great works of art which have been tho admiration of ages, I do not mean to undervalue the benefit that any one, and especially the artist, may derive from studying work 3 of this description. I am aware that 'the eye has its principle of correspondence with what is just, beautifol, and elegant, and that it acquires, like the ear, an hahitual delicucy, and answers, with the same provisions, to the finest jupressions. Bcing therefore versed in the works of the best masters, it soon leams to distinguish true impressions from false, and grace from affectation. I have therefore not the lenst doubt that those who have risen to some degree of eminence as ornamental designers, would reap great benefit in attaining a knowledgo of the various styles and sultleties of colouring, by carefutly studying and copying, in masses of colour alone, the lest works of art to which they caii get access, and applying these arrangements to the particular figures of their patterns."

light and shade-tinting.

In every scene, during the presence of light, some parts fall immediately under the cffect of the light, whilo others are thrown into shade. In art, advantage is taken of this misture of light and durk parts, not ouly for tho facility with which it enables the draughtiman to separato the parts of a screne, but for the agrecable effects which may le proluced by the judicious association and distribution of the light and slade. In the representation of a round object, it in only by a careful disposition of the light upon the convex part, and the truth of the attendant reflected light and shadow, that the appearsnce of rumudness is communicated. The means by which the effeet of light and shade are to be produced by tints, are now to le described. First, with regard to the preparatory steps in the process.

Provide the hest hard drawing-paper, which may be had of various aize and suthstance. For subjects in which minute and fine delineation is required, the paper should tre smooth on the surface; lout when the subject is of a rural charater, in which oll the shagginess of nature is to be introduced. the paper should be of a rough description, for roughness of surface in such a case will sssist in giving truth to the repregentation. Drawing-papere have frequently a greasiness of surface, which presents a tint from being spread with evenness; the slightest infinsion of gall into the water with which the tint is mave, will remedy the defect; or the surface of the paper may be sponged with the gall and water before fastening it on the drawing-loard.

A few ranel-hair pencils must be provided; say two fut inch tins, to distrilute a tint over a large space; two secun-yuills, to wash in analler spaces; and two hen
quills, to prek in minute parts. The qualities of these denominationa of hair-pencila are various. A bad one la far worse than a bad pen; with thia it inay be posuible to write, but with a bad pencil every effort will be foiled. A proof of the quality masy be made in the following manuer, prior to purchase: When dipped in water, if it apring into a line with the quill, and retain ita point, select it; if it apread into two or more pointa, reject it; and ohserve, that it is not reyuisite for a pencil to be touched two or three timen on the edge of a vessel containing water, nor to be passed between tho lips, since these might give a point to a bed one. Provide also a few small delf saucers, in which to mix the tints, and two cups or glasses, to contain wnter; one to be preaerved pura, snd the other in which the pencils are to he washed.
The tints may be made according to taste : from Indianink, a black; bistre, a hrown; or neutral tint, a gray : they are alike capable of communicating smoothners and spirit. With reference to further advancement in the art, it is proper to state, that the light and slande of a landscape in the neutral tint, is a basis on which the hues of nature in their variety may at a future time bo ndded. The light and shade in bistre is rich in mass, powerful in touch, and susceptible of giving transparency with a high degree of finish.

Fig. 14.
It may be observed, that the relief of an objeet depends on the just arrangement of the light, the due management of the half-tint and shade, with the proper introduction of the shadow.

Fig. 14 represents three rude stones full in the light, the line A showing the direction in which it falls. The chade-side of two, and the end of the third, show a play of light toward the lower parts, whieh is to be observed in nature. The shadow is marked stronger bencath, while that which is cast on the inclined stone is atrongest at the base of the upright stone, and becomes lighter as it falls on the varying surfaces of tho othera.

Fig. 15 representa an scorn dislodged from its cup. The illumination ia from the lett, and falls on the rotundity of the acorn, the greatest light being on the moat prominent part. In this case, a slight portion of halftint is placed along the upper edge, while the under side gradually approaches shrough half-tint to shade, and then monens into reflected light on the lower edge', which contributes to the character of smooth roundnens, the power of the shadow beneath assisting in giving effect to the onjeet. The light operates in the same manner on the :ul, beis. cast on the advancing jart of the hollow; ite
shada is cast on the recoding part oppooel to the Jght, on the samo principle that the exterior of the cup in treated, while the shadow relieves the half-tint, an in the previous inatancs. These plain and circular ohjecti am introduced to call the student's attention to auch natura ohjects, in which it may be thero ohserved hos admirably the lights and shades are intermingled with halfainta 0 as to obviate all harshnesa or violent oppraition, whilk the shadows give a due eflieet, harmonizing the whole and rendering the minutime worthy of the closest investi. gation.

Suppose you have made a aketch of such an olject, nt least six times the size of fig. 14, and that it is forb ened down on the drawing-bonrd; a few amall saucern and two veasels contuining pure water, on sise right hapa near the pencils, with the window on the lein, so that the sunsline does not fall on the drawing-buard: Let a tint be made, according to the previnus directiona, from either of the cakes before mentioned, and of any strength the student may think proper. Mix it well with the pencil to be used, and always let that be rathet larger than might seem to be required-say, a aman. quill. The pencil is properly charged for uso when it has heen stirred into the tint and gently touched, of passed two or three times on the edge of the saucer. This must be done earefully, because, if the pencil con. tain too much sint, there is a difliculty in spreading it neatly, and the edges will be hard. If the prucil contain too small a quartity, it will be impossible to spread the tint. If the space be large, it will require a little erperienee to keep the pencil equally charged with the tint.

Whatever may be the tint choven, it must be washed over all the parts which do not receive the light. Thus, with the pencil clarged with tint, as before described, commence at the top of the perpendicular stone, fill in the form, and proceed by slow motions downwards, to as to keep the floating or lower edge of the tint constantly being acted upon by the pencil, while it is distro buting the tint nently to the shapes required. The perseil must not be retumed to repair omiasiona, as that would destroy the evemness of tint; the parts should te washed in with correctness at the first. The pencil may then be carried across the shadow to the shade of tho flat stone and its shadow on the ground, with atteation to the edges; then the upper surface of the diagonally. placed stone, with its shade and shadow. If these spaces he well washed in, they will appear of one uniform power of tint. When it is perfectly try, strengthen the tint in the saucer hy an addition of colour from the cale ' this incrense of power to the tint must le judged of by experience in ita appliention over the tint first washed in. If the sulject be exumined, it will appear to consist of three gradations of tint; that which has been spread in the first, as on the upper surface of the dingonally-placel stune; the second gradation of tint appears os all the other slasded parts; and the third gradation is confined to the shadows. It may he noticed, that, if too much colour is added to the first tint, it would produce a harsh effect; and if ton litte is alded, the effect woull be de. ficient : in either case, the due gradation would not he observed. Experiments may be made on a piece of paper, till the proper streusth of the tint has been ascytnined; it may then be applied to the slades and sha dows as loffore, lout onitting the upher surface of the dingonal stone. W'hen this is proffectly dry, the tint must be again strengthened to the third gradation of power, with the same precantions as lectioe; and with it wash in the shadows, kecping the edges of this tint rather within the houndaries of the preveding.

Mass, Half:Tint, and Shulf.-Snppose such a scens as fig. If to have boren aketched, and you are disposed to give effect to the outline hy a few tints. Considet under what circumstances of light it has bean wen in
enture, or un Imagine it all bebind the by these, on di secand plan: ing in water of a rude 1 With this on will perceive pal objects, 3 gire a charac be int half-tin gradually anl powerful, so and oppose t will be presel

Atteupt ecquainted w lagger, for im $a s$ in the pre tower, and P as to preservo masses of fuli tinue the was the pieces of telicre the n io dry, make over again t situated. ' I ' and wash or which were ! lights, and in ful not to let miscuous irn gedness of st of the first t hills; then re the epace for even tint is therefore, sho at the angle leaving such sionally touc pure water, : it approwhes well done, w the shy, tho tint, getting towards the
In this st: and mirht r may be sug atudent. A tion of the drawn again general pris and reflect to comprehe When the t at enme dist out the sur At this due the drawing will more c If the draw will tamely many trees intic markil on the tint or to seper these will tilion of wa and suay be went of the
opposel to the righ titerice of thes cup he hall- -1 int, as in in d cireular objects an ntion to such natura erved hor almirbly
 mouizing the whole of the closest inverat.
h of such an olject, 4, and that it is hant a few small seulema er, on the righ hana on the lent, 8 ot that drawing-loard: Lat previnus directiona, intioned, and of any roper. Mix it weil rys let thist he ratien xired-say, a вwan. rged for use when it gently touched, of edge of the saucer. e, if the pencil ens. ulty in spreading it If the prucil connain ossible to spread the require a little erly clarged with the

1, it must be wasted vo the light. Thuse as hefore described Idieular stene, fill in ious downward, ws dge of the tint cor. cil, while it is lustath. required. The penr omisisions, as that the parts should the t. The pencil my to the shade of tha sund, with attentior e of the diagonall. low. If these space sar of one uniform dry, strengllec the deur from the calke. ust le judged of by tint first washat in uppear to considt of has been spread is re dingonally-placel aplears ov all he he rudation is confinad 1 , that, if too much uld preduce a hamh ctfect would be le. lation would no le ade on a pirece of tint lias been sesery. he slaudes auld has pper surface of the fectly dry, the int thirirl gradution of as luffire ; and with ce ellges of this tiat reeveling. ppose such a semene 1 you are dispowed w tiuts. Consien it has been wen in
uture, or under what circumstances it might be seen. Imagine it an evening effist, the sun haviug descended xtinid the broad mass formed by the castle and trees; theee, on dilferent broken aurficees, constituting the menend plan; beyond which is a middlistance, terminat. fag in water and remote hills; the foreground composed of a rude aneg, with rock and buahes interspersed. With this outine you are presumed to be Camilior, and will perceive that, by placing the light behind the principal djjecta, an opposition will bo extablished that must fire a claructer to the wholo. Thus, the principal will to in half-tint ; the light brightest behind the castle, and gradually subduel along the distance; the forerground powerful, so as to relieve the half-tint of the priacipal, wid oppose tho distance ; thus the gradations or keeping will be preservel, and effict given to tho suliject.
Atteupt the subject first on a small scale to becone equaintel with the proeess, and afterwards on one much lunger, for improvement. With the first gradation of tint, y in the preceding cases, commenco at the top of tho toner, and proceed downwards by slow movements, so to to preserve the outline, sweeping the pencil round the masee of felisge, and covering all the second plan; continnue the wash over the foreground, except the edge where the pieces of rock are situnted; these may he onitted, to telieve the mass from tho second plan. When the tint id dry, make the second gradation of strength, and wasls orect again the treess and the ground on which they are dilutace. Then begin on tlor teft on tho foreground, end wash over the mass till withu a little of the lights which were left untouched with the first wasth. In these liahts, and in repectitions of wash towards them, be carefill not to let any perpendicular slapeses appear; any promiarnous irregularity of form will better express rusgednese of sulface. When this is dry, reduce a little of be first tint with water, and wash it in the distunt bills; then reduce the tint yet more, and with it wash in the epace for the sky. As this may represent clouds, an even tint is not of material censequence ; the peneil, herefore, should have less tint in it than usual. Begin at the angle on the left hand, and wnsh over the syace, learing such parts untonclied as fancy may select, occadionully touching tho extreme point of the pencil in the pure water, so that the tint may becone still weaker us fit approsectes the part just ubove the eastle. If this be well danc, whatever may le the forms left untouched in the sty, the applearance will be that of an light or tender tinh getting- gradually weaker in a diagonal direction cowirds the clief light thelind the castle.
In this state the drawing would extibit some effect, and might reeceive uny additioual washes or touclirs that taay the suggested by the tatte or the judgment of the suluent. After obtaining a knowledge of the tistribution of the tints in their gradntions, jet the sulyject be drawn aguin considerally larger, and now investigate the general prixciple which regulates the proposed effect, and reflect on eeeh particular prart of the process, so as to comprehend the motive for every application of tint. When tue tiints are wasled in, let the drawing be placed at snme distance, where it can all be seen at once, without the surrounding obiects noterierung wath the view. At this due renoval which is regutatet by the size of the drawing, the gradutions of distuluce, and the keeping, will more elearly show their cerrectness or inaccuracy. If the drawing te large, the flat tints on the sereond plan will tamely express masses of foliage, or the union of many trees; and the castte will require some characterimtic nurkings. The black-lead pencil muy be used upon the tint to indicate a variety of form on the buildiug, of to seprrate the mass into trees of various heightt, und thase will serve as guides for the introduction of repebition of wash or toucl. This proceeding implies finish, und luny be carried to the extent dictated by the judg, menlt of the atudent; but it must ever be borue in mind,
that breadth of effect is injured by every addition that disturba a masa. Variety may be introduced, so as to attack a monotonous space or mass, without destroying it. Whenever it appears that more is required to com plete the drawing, and the improvement is not suggested by a glance, desist immediately; put the drawing aside, and engsge in something else. In a few daya, on recurring to the subject, it will be seen with a fresh eye; new ideas will arise; a little will be added, or a little power will be reduced, so as to effeet an improvement which no straining of the faculties in the former instance could have produced. A drawing may thus be subjected to frequent revision, and retonched as an advance in taste shall direct.
Supposo such a suljeet as fig. 10 be sketched, for the purpose of study, in breadth of light, the opposite of the last effect: let a tiut be made less poworful than the first gradation-such a tint as might represent clouds that were not gloony-and with it wash over the space for the sky. preserving the forms of the trees, and aoftening of the tint in a diagonal direction, so as to leave the light along the horizon, with the greatest brealth on the right. When dry, repeat a few washes on the angle towarls the left and along the top, so as to produce n gradation of power from the top to the horizon, and it will give the effect of retiring or keeping. If the tint has not been washed in with evenness, endeavour to convert any conspicuous form into a cloud, by picking or filling in on its edges a corresponding tint, so as to make it form part of another moro appropriate shape. Then, with that power of tint, considered as the tirst gradation, commence at a part not so high as the gable of the cottuge, upon the trees, with an irregular forn, distinet from a struight line, and centinue the tint over the trees beneath, to the line of ground on which the cottago stands. Begin again at the lower part of the buse leneath the cottoge, and wash in the tint up to where the ground line before mentioned joins the bomndary of the subject, nad continue to wash in the tint, in agreement with the form of an indicated path to the cottage door, and so across to the muss of foreground ond bush on the right. When all is perfectly dry, make the second gradation of power in tint, and wash over the lower portion of the trees close to the cottage, with the space beforo washed in, obeerving not to let it approach the edges of the previously washed tint, lest the shapes should apprar harsh, particularly on the bush opposed to the light horizon. It must be observed, that the power which was required to sepurato masses in outline, ceases to he proper on the upplication of tint, as there is no tlecided outline in noture. With the tint of the second gradation, wash in the door, the window, the shade of the roof with its shadow, and the shade side of the chimmey. Then, with the third gradation of power, wash in the foreground and the lower part of the bush, with the precautions before mentioned. When dry. place the drawing at a due distance, according to its size; and observe, if the effect ho that of a cottage in a masa of light, that the gable end cannot properly receive the same degree of illumination as the roof and the sida where the window is; it will thereforc be proper to wash over it a tint that will keer it in its place. You must reflect, that, as the light is concentrated, by the illumination from the right being poured upon the cottage, ite relieving mass of half-tint will he lighter than on other occasions; therefore, a tint lighter than the clonds with be sulficient to detach it from the brighter side, without destroying the mass of light in which the cottage is placed. As in the case of the pieceding sulject, any repetition of wash or touch that may seem to be required should be alded, being careful to preserve the intended effect. A little practice will teact that the treen should be diversified with tender tints, so as not to destroy the mass of light; that the tistant sea should be
washed with a tint to relieve it from the horizon: that the ground on which the cottage standa may be broken or enriched with chatacterintic forms ; and that the foreground may be touched with a power that ahail judieiously di faeh it from the second plan.

In the exansination of drawings, during the progress of retouching, if a part appear too light, or another part too dark, so as to produce the effect of spottiness, cover anch part with the fingers, and imagino the appearance with any proposed alteration ; if an improvement bo auggeated, at once adopt it, and exmmino agnin; alwnya paying attention to preservation of the masses, on which both simplicity and effect depent. A drawing should be ascertained to have oue principal ligit, while the subordinate lights diminish in brillinncy, in proportion as they are removed from the principal. Masses of ohado should decrease in power of tint, conformable to their degreca of remotencss. 'I'hese are essential to kefping and effect. Making-out or marking more than the respectivo distances require. touches whish are inappropriate, or harshness of any description, are all departures from the principles of the art, and devintions from natural appearances. Although effects may be observed in nature at variance with these rules-such, for inatance, as light seattered equally on the toreground and the mid-listance, or the whole secto being heneath a glare of sunshine, or in whade by the clouled state of the atmosphere-yet these are effects unsuited for pictorial delineation, because they aro deticient in what constitute beanty and attraction in the art.

You may have olserved how essentinl a sky is in giving effert to a drowing. The great variety of forms, The hofight of a figure should be cight times that of its lights, half-tints, and shades, the storm, the distunt fall- head; half its height is ut the lower purt of the holy; a ing shower, and other incidental effects, which the atinoephere presents to the view, should always be regarded with attention. bot only because advantage may be taken of auch diversity fior powerful contrast, but beranse a well arranged aky is a benutiful portion of a landsenfe. The repetition of tender washes ower each other may he justitied only in the endeavour to obstain that tenderiuss and delicacy of tints which are conducive to faithful representation of clouls; for continuing to wash the same tint in successive appliestions, will produce an eflect that in termed woolly, from its treing deficient in that shitpvess or spirit which is ohtained hy a frow docided tints applied in juse gratations. Theso varisties may be adapted to the nature of the secne, and may, by their judicious contrasts of form and tint, contribute very materially to the general efteet of a sulject, as in a stormy eky, hright horizons, and heans of lipht. The eftict of moonlight may reatily be given by strong tints, softened? off in the circular dirertion of the moon, and repeated till the gradation is ohtalned; then give a wash over the whole uky. Tuke out the clonds to a half-tint by dialsbing, and fake out the moon to the clean paper. with crumbs of bread. A few cateling lights on the clowis. near the moon may be taken out, but male less bright than the moon.

human fiaures.

A knowledge of drawing the human ficure is to be gained by a careful stuty of the outlmes of the different parts composing the trmak, limba and memiera. All euch integral pertions of the humson tisure, if tione anl other circumstances permit, may be first sthdied from casta conveniently placed on the table, mo as to give a Geility to the hami in this department of sketching.* It must, however, he horne in mind, that exprcises of this

[^37]nature, under the guidnnce of a master, do not obvan the necessity for studying the human figure from lifo neither do they supersede the acquisition of a knowledgy of figurc-drawing on a amall acale, for the purpone of of numenting and giving effect to a acene fifm nature The introduction of human figuren is of cencileralle untuty in drawing a landscape, in order to verva as a scale by which a apectator may know the probable mea aurernents of ohjects near which the figures are situated figurea also givo animation to a scene, and, by the touches of light or of dark which they justifiably offer, communicate valuable relief to a masa, or assist in tha keeping of the subject.
'lhere are aeveral well-k nown rules with reapect to

Fig. 10. quarter of its height is at the knee. This division of the human figure con readily be put on the memory by the following method: Draw a perpendicular line, then divile it into cight equal parts; gise one for the head, and. phating dots at each part in succession, give a second part for the breast, a third part for the centre of the abulomen, a fourth part for the lower fortion of the body, " lith part for the midway of the thigh, a sixth part just beneath the knoc, a seventh part just beneath the calf of the lig, and the eighth part to the sole of the foot. The shoulders are two heads in wilth; the ellow is a hea und a half from the shoulder; and the arm, with straightencil fincers, is three heals und a half from the shouder: that is, the fingers will rearh down to the fifth division of the perpendieular. 'Ithe mensurements of the human fisure, according to the higheret standarts of art, are ex. cerdingly minute; bot such are not necessary where a mere sketeh of the form is required to culiven a landscare.

Fig. If exhilits the mode of ascertaining the heighty of tigures, wherever they may be pheed in a senee, according to the rules of perspertive. A is a figure on the base line: the eyes determine the height of the harizontal line H. Draw the visial rays from the head and fret of the figure A to the print of sight l, and the reeating diminntions are determined, supposing the space to be a level surfinee. Where the situation of a tigure in below the visual rays ns II, Iraw a parallel line from the tret of the tigure towards the ray, and raise the pependscular line B. Now, the meanurement between the visual ravs at B is the height of the figure required. When the situations of figures are ahove the reys, as at (; and D, draw the parallets and the jerpendiculans to their intersections bemeath the elevations, and the meanurements between the visual rays at C and D will give the resplective heights of the figures required. The ligure E being on a level with the base, a parallet lina drawn from the lower ray will determine the height of a tigure so situated.

Representatio gears been mad the canurn lur miniur and len ore therefrom trech-bouk. pature on the thr trouble of c by ingentous in lenghth the posw Panis in the m \#ns M. Daguer promens; and h ment for makin in the att, whice Drawing, or, n is, drawing ly t The materia! formed is a thit costed with sil trone delicacy, fine to tho fuils bee properly 1 the fumes of io fings, the plate and the focus ad bon to catch ting sun is shining, t catching and ret few minutes ge When taken fro plate, and it " allowed to f.tl tu jocted to funes lamp. The Sor The next oper the coating of i A saturated solu or, what is beti onda, not heate Warn distilled are the chicf n plate, when rel from the hoard the troughs, col taken not to to innelia: ely ren tion in the oth wards, is stirre hook. The ye when this is sec on an inclined filled water, ho All these oper t:0; and when dried rapidly h else stains will drawing canno tinued action of ln order to class is put When finished i_{3} exquisitely cannt be mul jerfect state fot with far moro orlinary drawi They show on by lighter part rerese of the o titioners of the rery beautiful YoL, i.-52
cr, do not obwato figure from lifa on of a knowledgu the purpose of ol . ene fism anture 8 of conkideratios ler to verve as the probable meaures are situated; ene, and, by the y justifiably offer, s, or assist in the
a with respect to re as follows:-

times that of ita rt of the hooly; a This division of the memory hy licular line, then me firs the head, ession, give a fe. the eentre of the tion of the loly, a sixth part just meath the calf of f the fort. The ellow is a bea m , with straight. om the slowider; he firith division Is of the human sof arl, are excessury where a enliven a land.
ring the heights in a scene, acit figure on the of the horizon. the liesd and $t P$, and the re oving the space II of a figure is el line from tha we the pirppendis t between the isure required. the rsys, as at erpundirulans to and the mea. mod D will give tequired. The a psrslife ling the height of

PhyTOGENTC DRAWING.

Representations of laudscape neenery have for many gears been made by mechnnical means, with the aid of ton ramera lurida, a species of box provided with a miliar and lens, in which the representations fall, and ,ire therefrom copied by an attending artist into his jeetchbook. The idea of fixing representations of this nature on the surface on which they fall, so as to save the treuble of copying, uppears to have been entertained by ngsonous men botis in France and Englaud; and at fength the possibility of doing so was mado known at Paris in the month of Janary, 1839. The discoverer was M. Daguerre, aided, however, by one or two other prosons; and ho was rewarded by the French governmant for making known the process which he pursued in the st, which was henceforth called Daguerreotype Draving, or, a* frequently, Photogenic Drawing (that is, draxing ly the action of light).
The material on which photogenic drnwing is performed is a thin and perfectly menoothed pioce of eopper costed widh silver, and its preparation is a matter of extreme delicacy, for the surface must be rendered sensitine to tho faintest shadows thrown upon it. Having thea properly prepured by means of a spirit-lamp and the fumes of iodine, to give the silvered face a golden ting, the phate is placed in the eamera. a darkened hox, and the focus adjusted. The caunera being set in a poxition to catch the rellection of the oljeet upion which the sun is shining, the aperture is opened, and the process of athing and retaining the reflection goes on of itself. A fis minutes generally serve to givo the representation. When taken from the cancria, nuthing is visible on the phate, and it must instantly, without any light being allused to fall upon it, be phaced in a box, and then subr fextel to funes from mirrury actel upon ly a spiritlanp. The formerly invixible tipures are now developed. The nest operation is to fix the images, by removing the canting of iodine, on which the light would still aet. A saturited solution of eommon sall, filtered and warmed, or, what is beter, a weak solution of hyposulphite of and, not heated, some cold distilled water, and some warn distilled water, with two (slicet copper) troughs, are the chief materi:t required in this process. The plate, whon removed from the mercurial box, is freed from the hoard uttarbed to it, and plunged into one of the troughs, containing cold distilled witer, care being aken not to touch the coutre of the plate. It is again wandeliaidy removed, and plunged into the saline solutinn in the other trough, and, being laid there face upward, is stirred about ly means of a little copper-wire book. The yellow tinge now leaves the plate; and when this is seen to have taken place, the plate is placed on an inclined plane (of japamed white iron), and distilled water, hot, but not boiling, poured freely over it. Ill these operations are but the work of a minute or two; and when the last is tinished, the plate must be died rapidly by blowing on $i t$, and moving it in the air, clee stains will be left on the drawing. After this, the crawing cannot be washed out; but rubhing, or the conLinued actien of vapours, would destroy it.
In order to preserve the sketches from vanishing, a ghas is put closely over them, and they are framed. When finished in a perfect way, the design on the plate is exquisitely beatitial, and though impressions of it canot be multiplied as from a graven plate, it is in a perfect state for the engraver to eopy, and he can do this with far more ease and correctness than in the case of ordinary drawiags. There are no coloura in the sketches. They show only a neutral tint, or dull shadea relieved by lighter parts. And all, as a matter of course, are the pwose of the original. There are now several able pracfitioners of the art in Londot ; and in Edinburgh, somo very beatiful specimens of photogenic drawing of street
acenes have been elfectod by Mr. Howe, minintare painter.

Various attempts have beev made to adapt photogenis drawing to the sketching of miniature portraita from lifo; but, though likenessea tro obtained, they have a dull, leaden huo, and the countenanco has a deati-like, unpleasant appearance. Busides, ns the slightest inovement of the hend, while sitting, or even the winking of the eyes, causes derangement in the action of the aun's rays, all representations from lifo haye less or more a muzzy or confused appearance. We have seen miniature likenesses taken on paper prepared for the purpose, instead of plates, hut they wanted the liveliness and force of likenesses exceuted with the pencil. .'To all appenrance, photogenic drawing will he linited in its utility to the taking of representations of buildings, or scenes in st !!l nature, to be afterwards copied at leisuro; the perfect faithfulness of the delineation being altogethes unapproachable by artistic skill.

STUDY OF PAINTING AND SCULPTURE.

Drawing with black-lead pencils, chalk, or crayona, and Indian ink, constitnte the first steps in a study of the fine arts. The more advanced stadies refor to drawing in water-colours, paintings in vil-colours, and aculp-ture-three sep.rate branches, individually followed an professions. It is not our intention to offer any inatructions in these advanced departments of art, but to aay only a fow words ns to the manner in which they are performed, and the advantages derivablo from a contemplation of their varied products.
Drawings in water-colours aro exccuted on thiek hard paper, the outlines being lightly sketched with black-lead pencil. The colours are prepared in small oblong eakes; when required, a portion is rubbed down with water in a small saucer, and applied with a camel-hair pencil. Great eare is neceasary in laying on the respective colours; for the nature of the material wrought upon, and the transpareney of the tints, prevent that freedom in rubling out or obliterating one colour by another, which may be resorted to in oil-painting. For directiona how to proceed, we refer to a small and aecessible work on Water-Colour Drawing, by Mr. John Clark. (W.S. Orr \& Co., London.)
Oil-puintings are exceuted on a varicty of materiala. but chictly eanvas, stretebed on a frame; less frequently on wood, eopper, and slate. The eanvas or other material requires to be prepared with a coat of paint, to give it a smooth surfice, and to prevent the absorption of the colours afterwards laid on. 'The colours are ground and prepared with fine nut, poppy, or linsee] oil, and are ordinarily purehnsed by painters in bladde biggs, in a state ready for use. For eonvenience in using, a small portion of each colour required in the piece is placed on a thin oval board, called a pallet, which ia held in the lef hand, ly passing the thumb through a hole at one extremity; the canvas frame is generally placed on a stand, called an easel, in front of the artist, and the colours are applied with brushes of tine elastic hair. The colours locing opajue, the painter has the opportunity of retouching his work, by putting one colour over nother, when the previous colour has been thoroughly dried. Oil-paintings are sometimes exeeuted on wrilis and the roofs of buildings; but paintings of water-colocrs on walls are the most ancient. These, known by the name of fresco painting, are done while the surface of the plaster is moist, and adnit of no retuuching when the plaster dries. Specimens of fresco painting have been tound in Herculaneum and Egypt, still, after thousands of years, maintaining their brilliant colouring.

The greater number of aculptures, ancient and modern, are executed in single blocks of white marble; a few nro in bronze. A sculptor commences ly drawing his design on paper; when satisfied with this, he pro-
eecde to form a model of hia proposed Agure in molst clay, aupporting it partly by irone and frame-work. Having, an he thinks, brought his model to perfection as reapects attitudo and aurface, it is ready to form a copy to work from; but a it ie a periabable material, he takes in cast from it in plaster, and this cast serves as a mould for a fac-simile model in plaster of Paris. The plaster cast being hard and durable, it is used as the permanont eopy by the different workinell. The first operative employed on it , by mean of a maehine, take* off the roughor parts of the marble, and gralually diminishes the hlock in the required directions. Tho next is an able assistant, who brings the figure atill nenrer in form to the copy; and it lustly passes under the hande of the sculptor, who gives that tastcful finish and spirit which the nature of the subject requires. Stutues in bronze arc cast in moulds taken from finished models.
With respect to the advantages derivable from a contomplation of the higher objects of art, they may be detined as the cducation of the cye and of taste, which is of particular importance to the draughtsman.

Addressing ourselves again to the papil-you will observe that mature, though truthful, is not alwaye conaistently benutiful or graceful. We see living human figure leas or more deforined, some tall and slender, others short and ungainly, and a third class out of proportion in the different parts of their person. Now, to set about copying figures possessing any of these defects, would be abaurd; and you must in all casea endeavour to insitate only what is allowed to be nearest to perliection. T'aking mankind in the gross, exceedingly few individuala como up to any thing like a perfect standard. Fashtons of dressing and habits of living, independently of original defiets of form, conmpire to throw the ligure out of just proportion; so that a perfect man or woman, in rempects budily form and carrisuc, is practically out of the reach of all ordinary stadents. In London and elsewhere, there are life acadensies, in which draughtamen study from the best-formed living figures that can tre hired to exhibit themselves: anll atudies of this kind are Indispensable for all who design fullowing out the higher walks of art. Studies from sculptured figures are, nevertheless, desirable, because these are formed upon the higheat ideality of grace, beady, and perfection; and a contemplation of their exquisite proportions is believed to refine and discipline the tasted of the student. It is on this account that we sppend the present observations on this branch of the art.

The figure which atlord a recognised standard of perfection, are firt the most part works of ancient Greciun art. The period in which the highest conceptions of personal perfection were formed, was during the administration of Periclea (about 440 years before the Christian era.) In this age flourished Phidias, the greatest aculptor of ancient or modern times, who raised art from a comparatively rude to a very high condition. With him commenced what is called the adeal style of sculpturc, in other words, a style aiming at an exalted conception of simple truth and grace. The religion of the Grecks, which was the idolizing of deified heroes and heroines, offered the utmont seope for these lofty conceptions. His masterpieces were the figures of lallas Athene and Jupiter, his Venus Vrania, his Nemesis in the temple ot Marathon, and his Amazon. He taught a number of others, among whom Alcatmenes of Attica, and Agoracrites of Jians, were his fabomite pupila. Both these eculptors esecuted several works which attained a high reputation. A contemporary was the famed Myron of Filutheris in Bootia, who represented highly finished abliftio forms. His Runner, his Slinger, and his Pancratints, :re celebratel. His ideal of Hercules completed this chask of forms. His Heifer and his Nea-monster, are Gomous among hix animal forms. But one thing was wanting to this greut seulptor-grace of expression; in

Apollo Belvidere.

this he was surpnased by a rival sculptor, who adnpted the undulating line of beauty, and first expressed tha sinewa and veins with accuracy. Ife created the ideal of A pollo in the position of an archer, who had just shot the serpent Python-the ligure indicating in its expres. sion a placid satisfaction and assurnace of virtory, This spleudid work of art was found at Antium, the modern Capo d'Anzo, at the end of the fifecenth century. It was purchamed by Iope Julins II., then a cardinal, and placed in that part of the Vatican called the Belvidere, whene it has heen commonly named the Apollo Belvidere. The fore part of the right arm and the left hand, which had been destroyed, were restored by Angelo da Montorsolh, a pupil of Michael Angelo. The ease of tha attitade and excellent proportions of the figure are universally admired. Oar small outline engraving atfords but an imperfect idea of the majertic otiginal.

After the ideal style of Phidias and his disciplea, suocceded the period in Grecian art distinguished for the bean:iful. Praxitcles and Scopas were the great leader of this improved style, in which ineauty was united with grace. The most celebrated works of Scopaa ara his furious Bacchante-the head bendiny backwards, uniting the highest benuty with Bacehanalian frenzy; hia Cupid, his Venus, and his Achilles, who is placed in a moumful attitude, contemplating as if lamenting the loss of hi friend Patroclus. Praxiteles, tho most fieling of all aculptors, created the perficet idesla of Diana and of Bacchus; the latter being desigued by him as a contrass to the satyrs and fauns, whose figures express rudeneso snd licentiousuess. The figure of Bacchus was soft and tember, without being effeminate, and expressed perpetual gayety and sport. Ie effected, also, the admired statuo of a, Satyr, and the ideal of Eros, or Cupid, which was thierf a playful boy. I'raxiteles was the first to reprosent Venus entirely naked, thus giving to the world a new ideal of the goxdess. His most celcitated works ase hat Venus of Cos and of Cnidos; the former covered from the hip downwards, the latter entirely naked, holding het garment with her left hand over the bath. The group of Niobe is also ascribed to this master.

To the epoch which followed that of Praxitelea is usually ascrited the statue of Venus, otyled the Venus de Medicis, from having lneen placed in the gallery of the Medici at Florence, after its discovery at Tivoli in 1695 , It is of pure white marble, and incasurea, accorling to onc authority, 4 feet 11 inches, and ucenrding to another 5 feet 2 inches, in stature. Nome suall purtions have been restored. It is not amcertained who was the sculp
wor of this axhibitz the n modern. It h Yenus cither of dressing be or an appearin test with Jun man?, the co leasi unoxpre boly have nev points of view Weal grace an In this latte erates, Apollon emineut Poly formed the cel great works 0 it Rome, to distinguished Among the thove alrenily tines, snd bee the following a naked manl oruken, and The Three (i autudes, cal in varions ${ }^{3}$ jwth, in a and execute Adonis, a fis Fenus Genet simplicity of mast elegant tating in a Gigures, ahov tho soth, str characteristic be colaceisen Hercules, a

After a la ture was re and other 1 diced variou he mention Herlin. D a fioure of mexpresaibl vt. It is

Achilles.

Venus de Medicin.

Jptor, who sdop!nd first expreseded the to created the ideal t, who hatd jubt thol ating in its expres ce of vistory. This intium, the modern th century. It was cardinal, and placed 3 Belvidere, whenoe llo Belvidere. The ft humd, whieh had gelo du Montorsoilh ase of the attitude te are universally ing affords but an
dhis disciplee, suc. atinguislled for the re the great leaden ty was united with of Scopsa are his backwards, uniting fienzy ; his Cupid, aced in a mounful ug the loss of hio roxt ficeling of and of Disna and of y him as a contras 8 express rudenes cehus wss soft and expressed perpetial lee aduired titatue Cupid, which was a the first to repreto the world a new rated works sel his mur covered from naked, holding het bath. The group

It of Praxitelcs is tyled the Tenus de the gallery of the at Tivoli in 1695. surea, accorrling to eroding to snother mall pertions have thu was the eulp
on the Mainc. Thorwalisen, Danish aculptor, han likewise produced aeveral workn of atriking grandeur and benuty; not the least imposiug of his deaigns in the colomasal figure of a lion carved in the nolid rork at lucerne in Switzerland. The nuimal is nupposed to be dying from the effects of a wound from a apear, und reclining over a mhield emblazoned with fleura do lias: it in a monument emblematic of the fidelity of the Swiss Guards who perished in defending their manter Louis XVL., on the 10th of August, 1702, from the brutality of the $\mathbf{P a}$. risian mol.

Canove, an Italian (born 1757, died 1822), 1. pen justly eateemed the reatorer of the graceful and lovely in sculpture. All his works displny a surprising degree of softnew and delicacy, ond will form admirable studies to the young artist. His Cupisl; Pryche, standing half dresaed, with a butterfly; tho repentant Magdalene; Hebe, amiling and animated; a Venus, partially draped; Beneficence (eveveral figures); Graces rising from the bath-ure only a few of the works by which Canuva gained his great reputation. Modern sculpture hus likewise been distinguished by various works executed in England, by Flaxman, Chantrey, Wostmacott, Baily, and others. Molern art has almost reached the ancient in the figure of Eve at the Fountain, which is conceived in a stylo of pure simplicity and grace, with somewhat more intellectuality in the features than is generally to be found in the Grecion sculpture of femaile figures.

F:ve at the Fountain.
Besides studying the manifold grnces of ancient and modern sculpture, with the view of improving the tante in reference to figures, you ate reconmended to study the styles and compositions of the more celebrated painters, as nothing could be moro suitable for imparting corrct ideas respecting drawing, disposal of groups of aljects, and colouring. Another great henefit will consist in making you feel your own defirieney, and how much you require to attain by diligent study. Painting, you will learn, has, ainee the revival of art, taken the character of schools, or peculiar styles, each of which has had its leaders and follewers; for example, there is the Florentine selioel, commenced ly Miehael Angelo Bnonaruti (born 1474, died 1564), who delighted in representations of the grand nud terrible. The Roman sehool, of whom Ruphuel (1483-1520) was the head. The great characteristics of this school are, truthful tepreseutntions of nature, a just expression of the passions, a chate nolleness of design, and correctucss of drawing The Venctiun nchool, headed by Titian (1477-1576j, the characteristies of which were the hammony of colous, delicary of tints, :nd a judicious contrast of light ard shade. This school was improved by Corregio and Tintortto. The German school, lod ly Albert Durer (14711528) and Holbein. The second Lomburd sechool, dis tinguished ly the works of the thre e C:iraeci ($\mathbf{1 5 5 5 - 1 6 0 9 \text {) }}$ The Freneh school, foundrd by Nichotas Poussin (1504. 1665), Vouct, and Charles Le Brur. The Flemink
echool was founded ly Peter Paul Rubena (1077-1840). whose dea!gn in dignifiel, hila drawing of anatomy and perapective correct, and his colouring brilliant. The only objection to anme of his figures la, that they are too heavy; and certninly they want the grace of thone of Raphacl. The Duteh wehool, et which the most prominent paintor la Rembrandt (1606 -1608), la lean distinguished for taste than the faithful adherence to Dature.

The worka of the eminent masters in these various schoola were chietty seriptural and historicul; und scenes of a misellaneous kimi, embracing landsenpes, flgures, simals, sen-pieces, architecture, and other suljects, were painted liy contempraty nrtintw, who followed no particuar wehool. Among these groat mastera may to named Claude Gelee of Lorrine (1600-1682), whose landerapea are excecdingly beautiful, his cobouring deliente, his tints tender, and his lights und shades unrivalled; Salvator Rosa (1615-1674), whose taste was for the will, rugged, and romasitic uspeets of nature; Gnapar Pousain (1613-1675), whowe pictures are grand, and remarknbly trus to nature. The sixteenth and seventeenth centurien protuced the following matern, all of whose works are esteemed:-Paul Veronese, Guido, Carlo Muratti, und Spagniolletto-historical; Murillo (Spanish)figures; Hohbima-laudsenpe; Canaletti-buildings; and De Wit-the interior of clumelies. Vernet, a Fromehman of the eigheeenth century, was celebrated for his sea-pieren and figures, In the course of the seventecnth century, Holland proluced, but camot be said to have encouraged, many distinguished painters. Among these are includel David 'T'miorn, celeltrated for his reprementations of doneatic and familiar scenca: Paul lopter, renowned for his cattle pieces, the most remarkuble of which is his picture of a bull; it is contained in the royal muscum at the Hague, and valued at $\mathrm{L} 50 \%$; Philip Wouvermans, noted for his landscapes, lecautiful ekies, and scrucs with groups of figures hunting, or otherwise engaged in field aports: Berghem, aiso noted for hia landscapes, his foliage, cattle finely drawn and coloured; the woolland serenes of this painter ure expuivitely finuhed and true to nature: Vandervelde, a painter of navat victories and sea-picces, all remarkahle firr riehteens of componition and elfect: Gerard Douw, like 'Ieniera, famed for his domestic scenss. Jacob Ruysdarl, who painted in the style of Berghem, but gained great celebrity for his representations of water.

All the eminent works of art, whether in sculpture or painting, sre now contained in a f.w great national musenma, or in the private collections of men of taste or opuleace. The prineipal muscums aro those of the

Vatican at Rome, the Gallery of the Medici at Plorencea the ruyal gallerien at Munich (now the head achool al painting and other fine ntta in Germany), the louvre al Purin, the British Muscum and National Gallery in Lon don, and the Royal Muncum ot the Hague. If ut all within the meana of young men denirous of pursuing profersxions in which taste in drawing in requiaite, wo atrongly recommend then to viait the mumeum of the Lousre, which is rich in anclent sculpture and modern. paintings; the sight of the many fine works of ant in Paris would acurcely fuil to inspire a high degree of rellincd taste. If unable to nccompliah this desirable object, we advie you to pry occasianal visits to any private collection to which you can gain admuision, and also to exhibitions and mumeuma open to the public. Anoug recent works of English art, generally accesilitle, the historical pieces of ILaydon and Hilton, the listorical and pathertic piecres of Allan, the grand architectural idenlities of Martin, the clurch and other architectura of Eotwerts, tho landsenjes of Gainshwrough, Caleoth, Mulreuly, Thompson, and the Nasmytha, the animaly of Landseer, the mea-views of Stanfietd, Turner, and Wibliams, and the faithful delineutions of humblo life by Wilkie, and many other works of art which might be mentioned, will afford much pure plenaure nad instruc. tion, and show what can be nccomplished by a cultivated observation, and a persevering deviro to excel.
In the course of your observations you will Ienm, that in the delineation of haman figures great care requires to be paid to historical costume and tho farhion of artig. cial oljecta represented. A person who livel in the eighteenth century, lor instance, should not "dresed as un ancient Roman ; not should the interibe of a house of the fifteenth le decorated like one of the sixtenh century. On this account, every student of the line aits requires to be well instructed in history, are haiology, aind wher hramelars of denaing. With respect to staties, it is so important to give on easy and gracefal effect, that a departure from exict contume is allowalle, so fur as io place a loose garment over or about tho pertaon. We have only to aid, that a due penception of the beautiful and truthful in pictorinl delineation must be in all cases a work of time. At list, the unprictined eye, or, proproly pperkiag, the untulored minel, will perhaps be nost clarmed with a gaudy a mo, and see in the finest work of art only a dull and vulueless mene. But the repeated contemplation of pictures, the comparison of one with unother, and the ronstant refierence to actual nature, will remove such impressiofis, und the work of true meit standing appurent, will receive the higheat meed of ap probation.

Is the pron made to cons nme knowled memmirement grent of difnet of each in ne will be gnine on the suliject of moderately

A recogniti the dawn of n conisiderablo reckouing ara tion adopted inambity to "o proof of med grase nation are found to 1 the hand most but any furth many fives, phrase, "a arr indiana, any of diatinctly sribed ly co in the same moald defino eos handful
On the first listion, it wo mame to each to descrile. hrge numbers ones, and to 1 what gavo ris in different a by teoss; tho aunted by alwaya be \dot{r} early periou, purious mole hands, as well wlopted this p and by thein

The repres unt grecrally formation of sizात of num tainly the ser was used by vau, zain, ch bers one, tw "he Grechs tirming their 4 delta. 5 cp wuth the Heb denote six: a Ildfore salopt aprobatily Gie by II (P C) (D) bein wone time a aluhabet into the numbers and m on

Medici at Morence he head achool of ny), the Louvre al val Ginllery in Lon Hague. If at all airous of purating ng in requinite, we le musecum of the Ipture and mollert. works of an in a high degree of lish this desiratio ional vieita to an uin admission, an pels to the publie enefally acressille ilton, the listurical rand arrhitectural other arelitectur whorough, Calcoth thes, the animaly of Turner, snd Wil. of humble life by rt which might be casure and instruc. lood by a cultivated o excel.
you will leam, that great tare require te faulhion of artifwho lived in the d not a dressed ar interios: of a house - of the sixtent ent of the line arts y are hainlogy, and espect to statues, it graceful elfect, that wahle, so far as to tho person. We is of the heantifal lust be in all cases utised cye, or, pro ill perhaps be moost in the finest work But the repested risoll of one with actual nature, wil cork of truc meri chest meed of ap

ARITHMETIC-ALGEBRA.

1. the prument and aucceeding article, an attempt is ande to convey to the comparatively unlearned mind mome knowledge of Mathematicul science, both an reganla meanurement by numbern (Anititmatic) and measurement of dimensione (Gromptir). The aketeh wo offer of each in neceasarily hrinf and imperfect ; but our end will be gained if we afford that amount of information wif the nubject which is generally possesued by pereone of moderately well-cultivated intellect.-Ed.

A recognition of the value of number is coeval with the dawn of mental cultivation in cvery community ; but cotmiderable progrean must be made before methods of reckening are reduced to a regnlar system, and a notation adopted to express large or complex quantities. An inamlity to reekon beyond a few numbera is alwaya a proof of mental ohseurity; and in this atate varions araze nations have been discovered by travellers Some are found to be able to count an far as five, the cligits of the band most likely familinisiang thein with that number; but any further quantity in either snid to consist of mo many fives, or is expressed by the more convenient phase, "a grent many." Among the North American Indisns, any great number which the mind is incnpable of distinctly recognising and naming is figuratively deenibed by comparing it to the leaves of the forest ; and in the saino manner, the untutored Negro of Atrien woulc dofine any quantity of vast amount by pointiog to a handful of sand of the desert.
On the' first advance of any early people towarda eiviligation, it would be found inpossible to give a acparate name to each arparate number which they had ocension b descriles. It would therefore be necessary to consider large numbers as only multiplications of certain emaller ones, and to wame them secordingly. This is, no doubt, what gave rise to classes ot numbers, which are dillicent in different conntries. For instanee, the Clainese connt by twos; the nacient Mexicans reekoned hy fours. Sinme ananted by fires, a number which the fingers would Nanys he ready to suggest. The Hebrews, from an early period, reckoned by tens, which would also be an drious mode, from the number of the fingers of the two hands, as well us of the toen of the two feet. The Grecks slopted this plan ; from the Cirecks it cane to the Romans, and by them was sprend over a large part of the world.

notation.

The representation of numbers by written signs is an art generally lulieved to have taken its rise after the formation of alphnbets. One of the carliext sets of witten signs of numbers of which wo have any notice, is certanly the series of letters of the Hebrew alphabet whis? was used by that jeople-Aleph, beth, gimel, dnleth, he, raa, zain, cheth, teth. standing resprotively for the numbers one, two, threo, four, five, six, seven, eight, niso. The Grechs directly adopted this plan from the Hebrews, firming their numbers thus:-1 alpha, 9 beta, 3 gamms, 4 delta, 5 epsilon-here having no letter corresponding with the Hebrew rau, they put in the words avismpis β au to drnotesix ; after which they proceed with 7 zeta, 8 eta, \&ec. Hefore adopting this jlan, they had indicated one by iota 4probsty because it was the smallest of their letters, Gu by $\Pi(P)$ being the first letter of pente, five; ten by A (b) bring the initial ol deki, ten. After having for sonie time adopted the Ilabrew plan, they divided their alphabet into three clumises; the first ten letters expressing the numbers from one to thin, whiie twenty, thirty, forty, and mo on up to a hundied, wero significa by the next
 pone, and reaembling the Arabic 5 inverted. The ree maining neven lettern expreased 200, 300, 400, 500, 600, 700,800 ; and for 900 there was another inverted Agure. Larger numbera were reprenented by letters acconted in various waya.
Tho Komana, from an eariy penod, had a plan of ox pressing numbers, which aeem to huve beon at firw independent of the alphabet. 'I'he following clear $20-$ count of it was given a few years ago by Profemeor Playfair:-"'To denote one, a simple upright stroke wall anaumed I; and the repetition of thls expressed two three, dec. Two crose strokes X marked the next atep in the acale of enumeration, or ten; and that symbol was repeated to signify twenty, thirty, \&c. Three atrokes, or an open aquare $[$, were employed to denote the hundred, or the third stage of enumeration; and four interwoven strokes M, sometimes incurved D , or even divided CIO , expressed a thouanal. Such nre all the charucters abwolately required in a very limited system of numeration. I'he necensary repptition of then, however, as ufton occasionally a nine times, wan soon found to be tedious and perplexing. Reduced or curtailed marks were theres fore employed to express the intermediate nultiplen of five; and this improvement must have taken place at a very early period. Thus, five itself was denoted by the upper half V, and sometimen the under half Λ_{0} of the character X for ten; L, or the half of \mathbb{C}, the mark for a hundred, came to ropresent fitty; and the incurved syubbol.(1) of (1), for a thousand was put into IO, to express five hunitred.

Theso important contractions having been edopted, nnother convenient abbreviation was introduced. To avoid the frequent repetition of a mark, it was prefixed to the prineipal choracter, nad denoted the elfeet by counting harkwards. 'I'hus, insteat of four strokes, it scemed preferable to write IV for eight and nine, tho syinhols were $I I X$ and $I X$; and nincty was expressed by X E. Ihis node of reckoning by the defect was peculiar to the Romams, and has evidently affected the composition of their numerical terms. Instenil of octoderem [cight and ten-for eigliteen], and novemdecem [nine and ten-for nineteen], it was leld more elegant, in the Jatin language, to use undeviginti [one from twenty], and duoderiginti [two from twenty].

But the alphahetical characters now lent their aid to numeration. The uniform broad strokes were dismissed, and those letters which most resembled the several combinations were adopted in their plare. The marks for one, five, ten, and filty, were respectively supplied by the letters I, V. K, nud L. The symbol for a huialred was aptly denoted by C, which had originally a squase shape, and happenct, besides, to be the initial of the very word centum. The letter D was very genernlly assumed as a near approximation to the symblel for tive humbred; and M not only represented the angular character for a thousand, but was likewise, though perhaps necidentally, the first letter of the word mille."- Edin. Lev, x viii. 193.
'The Hebrew, improved Grecinti, sud Roman numerals, were perhaps sullicient to express any single number with tolerable precision; but it is ensy to see that they must have been nearly unfitted for use in the process of arithmetic. The Greeks certainly contriwed to overcome many ohstaces in tho busin ?ss of calculation, and even could express frsetiong-though, from a practice of adiling fron left to right, and ignorancs of the plan of carrying tens to the higher places, their problems were at all timee awkward and complicated. The Romans, however, cart
trea of ofd ineonvenienees, were will more awkwarilly attunted than the Gremke, Int any reailer juat nuppome, for inutance, even en simple a question as the annount of XIVIII added to XXXIV! It is evilient that plaring the figurea below earh other, an we do with the Aentice nownerala, would serve little to facilitate surh a cealculadiom. In fuet, the Romana were obligen, whare mental eakulation would not merve, to rewort to a merchnnieral procene for performing prohlema in arithmetic. A hox of peibles cafled houlun, and a board called abarus, conatimutad their means of ealculation: and of theme every mehoolhoy, and many other presona, pospersed a wet. The word caleulntion rlaims no higher descent than from culsoless, a stone or pelblle. The hoard was divided from the right to the len hand hy upright columna, on which the pehiten were placel, to dennte unita, tenn, hundrecta, thoumandn, dec. The labour of rounting and arranging the pebblen wan afterwarda nenaibly abridged by drawing acreme the hoanl a horizontal line, above which earh single perbive had the power of five. In the progreas of toxury, tali, or dies made of ivory, were uned instead of pebblen; ond afterwarils the wholo aystem wan mado more convenient by subutituting beade atrung on partilled threaila, or pega atuokk along grooves; methoin of calcuIntion still umed in Russia and China, and found convenient in rertain departmenta of Roman Catholic devotion, ond in meveral fumiliar games in more civilized rountries. With such instruments, problems in addition null subtraction would not be very difficult; hut those in multiplication and division, not to apenk of the more compound rulen, must have treen extremely telious and irksome. Bodinagreable, iniled, was the whole labour, that the Romans generally left it to slaves and profesuinual calculators.
The numerala now in use, with the mode of rausing them hy peculiar nituation to expreas any number, and whereby the processes of arithmetic have beell remidered so highly convenient, have tirentofore been supposed to be of Indian origin, transmitted through the lervians to the Arabs, and by them introluced into Europe in the tenth emtury, when the Moors invaded and trecame masters of Eprin. Such in reality appears to have been in a great meanure the true history of the transmission of these numerals; but as it has been Intely found that the ancirnt hiernglyphical inmeriptions of Esypt contain meveral of theim, learned men are now agreed that they originnted in that eariy geat of knowlelge, between which and India there exists more pointe of resemblance, and innre traces of Intercourna, than is genefally supposed. In the rleventh century, Gerbert, a Benodistine monk of Fleary, and who afterwards ascended the papul throne under the deeignation of Sylvester 11. , travelled into Spain, and atudied for meveral years the scicnces there cultivated by the Moors. Among other acyuinitions, he gained from that singular people a knowletige of what ane now called the Arabic mumerals, and of the mode of arithmetic sounded on them, which he forthwith disclosed to the Christian world, by whom at firat hin learning caused bim to te accuswl of an allinnce with evil apirits. The knowledge of this new arithmetic wan about the name time extended, in consequence of the intereonres which the Cruaders opened between Europe and the Fans. For a long time, however, it made a very alow and obscure progreas. The characters themafiveg appear to havo seen loug considered in Europe as dark and mysterious, Deriving their whole efficacy from the use made of the cipher, so ealled from the Arahic word tanphira, denoting empty or mid, this terin came aftenvardm to exprese, in general, any secret mark. Hence, in mare troublous times tha:s the present, a mode of writing was practised, by means of marka previounly concerted, and called writing in ripher. The Arabic charactern occur in some arithmetical tracts composed in England during the Hirteenth and foumeenth centuriea, particularly in a work oy John of Halifnx, or De Bucrobosco; but another century elopsed betere they were generally adopted. They
do nut appear to have meftled intn thels present brme ut ahout the time of the iuvention of printing.

It would lo impomaibin to calculinte, even hy thelf im transceadent powern, the mervice which the Arahic nume rala have rendered to mankind.

nemeration.

The Arabie numerala take the following well-known forma:-1, 2, 3, 4, 5, 6, 7, A, 0,0 . The firws ning of thewe. ralled digits or digital mumbers, reproment, eent one of the unmbers tretween one and nine, and when thum employed to rupreaent aingle numbers, they are cousidered an unich. The laut (0), called a nerezht, nothing or ciphert in in reality, taken by itwelf, exprovenive of an abwenter of number, or nothing ; but, ifi counertion with other num bers, it meromes expreasive of number in a very remark. able manner.
The valuable pecularity of the Arabic notation ia the enlargenwint and variety of valuea which can be given to the figures by ansociating them. The number ten in expremed by ! and 0 put toyether-thua, 10 a and all the numbers from this up to n huadred can to expresased in like manner by the ansociation of two figurem-thues Iwenty, 20 ; thirty, 30 ; righty-five, 85 ; niucty-nine, 82 Theme are called ilecimal numbers, from iferem, Latin for ton. The numbers between a humblred and nine luudied and ninety onine inclumje, are in like manmer expressed by three flgures-thus, a humired, 100; five hunded 600; eight hundred and cighty-five, siss; nine hundred und ninety-nine, 999. Four figures expresen tlousanda five, tena of thousands; xix, huodreds of thousandis; meven, millions; and mo forth. Farll figure, in short put to the left hand of nonoties, of of several othera multiplies that one or more numbers by ten. (or if to any met of figures a nought (0) be added towarda the right hand, that addition multippliea the number by ten: thun, 999, with 0 added, beromes 9990 , bine thousand nine hundred and ninety. Thus it will be menen thas, in notution, the rank or place of any figure in a number io whet deternines the value which it bears. The figure thind from the right hatul is always one of the hundrods; that which atands seventh alwuys cxpreseat $1.234567,890$ millions; and so on. Aid whenever Hy
 as it wrre, a promotion, or is mab to expreses tell times ite former valua
A large number is thas expremet is the Arulic numerals, every set of the frou the rignt to the left hatul being divided by a comma for the sake of diatinctucss.
The nbove number is therefore one thousand two hundred and thisty-four millions, five hundred and sixy y-weren thousands, cight hondred and nurety. Hisher numben are expressed differently in Fraice and England. In the former country, the tenth figure expresses lilliuns, from which there is an advance to tens of billions, hundredn of billions, trillions, \&c. In our country, the elewenth figure expresses ten thousands of millions, the next humadreds of thousands of millions, the noxt billions, \&e. The twe plans will be clearly appreliended fron the following 2 -rangement:-

EMGLLSH METHOD.	Vhit mexcil mathod,
Tens.	Tens.
llimdreda.	thumireila.
Tlioctanits	Thoushath.
Tens of thousanita.	Tena of thousanda
glundreds of thousands.	Hundreds of thousaida.
Mulions.	Millions.
Tens of auillionm.	Tens of millina.
Itundrete of millions.	thanirede of milliona.
Thousnnits of mithons.	Hilliona.
Ten thousaiuls of millions.	Tens of Millions.
tlanitreds of thousands of mullions.	Itundredu of Billions. Trillions.
Bullions.	Tens of Irillons.
Terse of billions.	Itundredu ef trilions, de
It undrede of billiona, te.	,

Thew ane four Adalition, Multipl

Adalition is the bers for the purp ald nambers tog and 2 make 4 : numbers in aldd another, so that team, hundreels un no ald toggether ti and 875 ; we run win the margin, ning at the lowemt we say 5 and 2 are 18-18 and 7 ar We now write th sarry ot add the of the next colun the cipher go, it rank of the firs: therefore proceverd 14-14 and ifnn the 9 , we 1 1 , thus-1 and : Sismore figurex ne naw put dow found to be 11:15. numbers may be s poluina be in thre digure is to be put eext column. Fo be 12i. put down wich are 12 ; if
For the alake of denoted ly the firy $7+6$ mosins 7 ald num reaniting. the played, as $7+6=$

Nultiplication i ain citcumstamese: of twrive times th laplve rows of 57 shoter plan by w For accertainizig s 12 times 12 , Gullowing Valtipli of great valur, an

12	$3 \mid 4$			
${ }^{2} 4$	6\|8			
-	9			
$4{ }_{4} 812$				
$3\|10\| 15 ; 20 \mid$				
$6\|12\| 18,24 \mid$				
$\overline{7 \mid 14} 21\|28\|$				
9\16!2t\|:32				
$9\|18\| 27\|16\|$				
10\|20	30	40		
$11\|22\| 33\|44\|$				
$12\|24\| 3$	$36\|48\|$			

This table is sn tunus to erplair 6 multiplied by an mount is found in

vent brim of

liy theif ima Aralice nume

14 well-know first nine of eprusent, each Ind when theo are cousiderod hing or cipher, an atwence of ith other num. a vety remaik.
notation is the can be given number ton in 0 ; and all the ce expremead in figuren-thum, infty nine, 92 rem, latin for nite humbied lier expresued five lumdred, nine hundred cken thousamada, of thousandin: zure, in short, several other, ten. Ot is to d towarda the umbere by ten: uine thousand e ween that, in in a number in The figure thind hundreds; that wayn cxproesa And wheneret towarda the or set uttaing m , or is mab - firsuier valua ps expremed is ery set of tive fr hand being T the sake of santl wo hunInd sixly weven chler numben glanul. In the b lillious, frols x, hundreds of eleventh figure xt humdrede of ke. The two following u.
mathod.

Ida punsida.
ilions.
tions.

Ther are foup cleumntary department in arithmetioAddition, Mukiplication, Sublructlon, and Divimion.

Additioa.

Adlition is the adding or summing up of meveral numvens for the purpone of Anding their united amount. We waumbers together when we say, I and I make 2! and I make 4 ; and so on. The methind of writing numbera in addition, la to place the figunva under one another, mo that unlta will stand under unita, tena under tena, hundroila undre hunilreda, \&cc. Suppowe we wish to wid together the fillowing numbern-27, 5, 630, 352, and 275 ; we runge the m in columina one uniles the other. as in the margin, and drow a line undor the whole. Begiosaing at the lowest figure of the righe-bmind molunn, wemy 5 and 2 are $7-7$ and 6 are 13 - 18 and 5 are 19-18 and 7 are 25 ; timt is, 2 tenu and 6 units. We now write the 5 holow tho line of unita, and curry of alld the 2 tenn, or 20, to the loweat figure of the next colunn. In carrying thin 20, we let the cipher ge, it being implind liy the ponition or rank of the firs: tisure, and take only the 2; we therefive proceed this- 2 and 7 aro 9-9 and 5 are $14-1.4$ urnd $\boldsymbol{s}^{\text {ate }} 17-17$ and 2 are 19 . Writing diwn the 0 , we procemd with the third column, carrying 1 , thus-1 and 9 are $: 1-3$ and 3 are $6-6$ and 6 are 11 . Sis aore figures remaininus to le added, both these thgurea ne now put down, and the nmount or aum of them all is fruad to fre 1195 . Following thin plan, any quantity of numbera may be sommed up. Shonle the amount of any columa lov in three figures, still ouly the lant or right-hand Gqure ia to be put down, anil the other two earried to the pett voluma. For eximmile, if the amount of a column br 12", plat down the 7 anil carry the othme two figures, which are 12; it it le 234, put down the 4 nal carry 23.
Por the sake of hrevity in literature, nddition in often denoted ly the figure of a crons, of thin ahape + . I'hus, if 6 means 7 added to 6 ; and in order to express the rum reantinar, the sign $=$, which meana rqual to, is cmployed, us $7+0=13$; that in, 7 and 0 are cqual to 13 .

Muhtiplication.

Nutiplication is a aloort method of addition under cerain circumsthures. If we wish to ascertain the nonount of twitve times the uumber 57, instead of setting down twilve rows of 57, and adding thom together, wo nopto a thater plan ly which we come to the aame conclusion. For acertaniag the amount of all simple numbers as fint as 12 times 12 , young persmens commit to memory the fallowing Multiplication 'Table, a knowledge of which in of gerat value, and saver much trouble in after-life :-

1 21	4\|5	$6 \mid$	$7 \mid$	81	91	10	111	12	
2	$8\|10\|$	12	14	16\|	18	20\|	$22 \mid$	24	
3 6 9	12\|15	18	21	$24 \mid$	27	$30 \mid$	331	36	
$4_{1} 8,12$	$16 \mid 20$	21	28	321	36	40	41	8	
${ }^{3}\|10\| 15$	20\| 25	30	35	$40 \mid$	451	$50 \mid$	651	60	
${ }_{6 \mid 12118}$	$21 \mid 30$	36	42	48	54	611	66	72	
$7\|14\| 21$	25	42	49	\| 561	631	$70 \mid$	77	81	
$8110!21$	12	481	$56 \mid$	10.4	721	801	$88 \mid$	96	
$\overline{9\|18\| 27}$	$36 \mid 45$	\|5.1		$6.9 \mid$	72	$81 \mid$	901	991	108
10\| $20 \mid 30$	$40 \mid 50$	(b)	70	80		100	110	120	
11122\|33	4155	66	$77 \mid$	\|88		99	110	121	132
$12\|24\| 36 \mid$	$48 \mid 60$	78	81	90	108	120	132	144	

This tahlo is so woll known, that it is nlmost super. dunus to explain that, when any number in the top row W multiplied by any number in the left-hand aide row, the mount is found in the compartment or square beneath
the onm and oppoalfe the other. Thus 2 timen 2 are 4 , 5 timen 6 are 30: 12 timen 12 ara 144.

The multiplying of numbern beyond 12 timea if iw uaually eff.eted by proceus of calculation in writien Agurea The rule fa to write dnwn the fumber to be muitiplied, called the multiplienni/; then place unter ft, on the righe-hand eide, the ntimber which la to twe the mas tiplier, and sloaw a line under thesn. For example, to find the amount of 9 time 27, wo eet down the figure thus-

> 27 (Mult!plicand.) $\frac{0}{243}$ (Product.)

Heginning with the right-hand figure, we nay 9 timea 7 are f3; und putting down il wo rarry 6 , and may 9 timea 2 are 18 , and 0 which was curried makea 24 ; and writing down these figures next the 3 , the product is found to be 243.

When the multiplier conaista of two or mone figuren, place it so that itw sight-haul figure comen exactly under the right-hunel figure of the multiplicand; for instance, to multiply 5463 by 2185234 , we procred as here nhown. Here the nugb 16:389 her is multijlind, firat by the 4, the prodact of 185742 which loing written down, we proceed to mul tiply by 3 , unil the amount prodiced is placeal below the other, but one place further to the left. A line in then drawn, anil the two prodneta addel together, lifinging out the rewult of 1857.64. We may, in this nanner, multiply by three, four, five, or any number of figurea, alway placing tho product of one Agurs below the other, but slifting a place further to 4503
230,629
the len in each line. An eximplo io 38,421,6
307,372 here given in the muliplying of 76848 by 4503.

Multiplicution is denoted by a crose of thin shapw \times : thus, $3 \times 8=24$, aig nillea, that hy multiplying os by 3 , the product is 24. A number which is produced by the multiplication of two other numbera, an 30 by 5 and 6 , leaving nothing over, is called a composica ummber. 'The 5 and 6 , called the fartors (that in, workers or ngents), are said to be tho comporimt parts of 30 , and 311 is niso suid to be a multiple of either of these numhera. The equal parts into which a ummer can be reduces, an the twon in thirty, are called its aliq'ot parts. A number which cannot be produced by the multiplicwtion of two other numbrpa, in called a prime number, When the multiplicaud and muttiplier aro the some, that is, when a number is multiplied by itself once, the product is called the aquare of that number: 144 is the sypare of 12.

Subiraction.

Rubtraction la the deducting of a amnller number from n greater, to filld what remaine, or the dilferencr letween them. We subtract when we any, take 3 from 5 , and $\%$ remaine. T'o ascertain what remaios, nfter tating 325 from 837, we procend by writing the one under the other as here indiented, nod then subirneting. Connmencing at 5, the right-hand figuro of the Inwer and smaller number, we may, 5 from 7, and 637 2 remaina; setting down the 2 , we say nevt, 2 from 3, and 1 remains; and setting down the 1 , we say, 3 from 5 and 2 remair.s; thal remander, 212

To subtract n number of a higher value, involving the carrying of figures and mpplying of tros, wo proced as in the margin. Commenciog as liffore, we tind that 5 cannot le subtrneted from 2, and therrtore supply or leod 10 to the 2, making it 12 ; then we ray, 5 from 12, and 7 remains. Sutting down the 7, we take 1, being the decimal ligore of the number which wan borrowed, and give it to the I,

8432
6816
: 817
making it 2 , and taking 2 from 3 , we find that 1 re- \mid mains Setting down the 1 , wo go to tho 8 , and finding It eainat be takes from the 4 above it, we lend 10 to the 4. making it 14, and then we sny, 8 from 14, and 6 remains. In tho anme manner an before, aulding the first figure o: wie horrowed number (1) to tho 6 , wo say, 7 from 8, and 1 remains; thus the total remainder is found to be 1617. From these explanations, which apply to all calculations in subtraction, it will bo ohserved, that when the upper figure is less than the figure directly under it, 10 is to be addeci, and for this one ia cartied or added to the next under figure.

Suinraction is denoted by a small horizontal line, thus - between two figures; as, for example, $9-5=4$, which means, 5 subtracted from 9 , and 4 remaina.

Division.

Division is that process by which we discover hav often one number may be contained in another, or by which we fivide a given number into any proposed numiker of equal parta. By tho aid of the Multiplication Trable, we can ascertain without writing ligures how many times nuy number is contained in another, as far as 114 , or 12 times 12 ; beyond this point notation is emplayed. There are two modes of working questimen in division. one long and the other short. Let it he required to divide 69 by 3: according to the long method, wrue the figures 69 as annexed, with a line at each side, and the divisor, or 3, on the left. The question is wrought out by examuning how many times 3 is in 6, and finding it to be 2 times, we place 2 on the riyht side; then, placing 6 below 6, we draw a line and bring down the 9 , and proceed with it in the same mamer. The quotiont is found to be 23. But we take a more difticult question-the division of 7958 by. 6. In commencing we find that there is only one 6 in 7 , and 1 over; we therefore place the 6 lnelow the 7 , and subtract it. in order to bring out the 1 . The 1 being written, we bring down the 9 to it and this makes 19. There being 3 times 6 in 18, we place the 3 to the product (which in division is calted the quoticn, htorally, How many times?) and Is below the 19, leaving 1 over as before. To this 1 we bring down the 5 , and trying how many sixes there are in 15, it appears there are only 2 . We place 2 to the quatient, and it below the 15 . This leaves 3 over, and 1 ,ringing down 8 to the 3 , we have 34 , in which there are 6 sixes. Six sixes manke 36 ; therelise, placing 6 to the quotent, and 36 batow the 38 , we find that there are 2 oser. Itere the accomet termilates, it being foum that there are 1326 sixes in 795 s , with a remaimer of 2 over. In this question, 6 in called the divisor; the 79.8 is the diridend, and 1326 is the grotient.
skilful arithmeticians never alopt this long inethod of division: they pursue a plan of working out
pret of the question in the mind, called short division. They would, forexampie, treat the alove queation as here shown. The over
6) 7959

13:6-2 number of 1 from the 7 is curried in the inime to the 9, making 19; the 1 from 19 is in the mame manner carried to the 5 ; and the 3 from it ia carried to the 8 , leaving the overplur of 2 .

Division is denoted hy the following character \div; thus, $75 \div 25$, significs that 75 is to be divided by 25 .

These explanations conclude the subject of aimple or abotract numbers. On the substructure of the few rulea in Addition, Multiplicntion, Subtraction, and Division, which we lave given, whether in reference to whole numbera or fractions, every kind of conventional arithmetic is. orected, becaune thene rules are founded in immutuble
6) 7953 (1326
$\frac{6}{19}$
18
1.5
$\frac{12}{39}$
36
-
truths. Mankind may change their denaminations of monoy, weights, and measures, but they can make no nlteration in tho doctrine of abstract nunibers. Thm 4 and 2 are equal to 4 , is a truth yesterday, to day, and fa ever; but as to how many pence are in a shilling, or hom many inches in a foot, these are nltogether matters of an hitrary arrangement, and the trentment of them foring on inferior department of arithmetienl study, taking a different form in different countries: this local arithmetic, an wo may call it, is comprehended in the tern
compoumd nemaris on quavtities.
The calculation of the value of any number of atieles, or n summation of values, in relation to money, would be comparatively simple, if the sfate of money were constructed on a principle of decimals, or ndvancing by tena -as, for example, 10 farthings one pemyy, 10 pence shilling, 10 shillings 1 pound. By making hoth weights nall mensures on the same phan, as, 10 bunces 1 pound 10 poomds one stone, 10 stones 1 humiredweight; 10 inches 1 foot. 10 feet 1 yard. \&c.. ordinary calculation would be rendered exceedingly vasy. Thas, if an ouncg cost Id., a pound would cost is., and a hundredweight would cost 100 s. or $£ 10$; or, reversing the gucstion, if we wore asked 510 per humdredweight for any artide we should know in an instant that it was at the rate of Id. an ounce. In short, the greater number of arithmen tical calculations would be arcomplishad by little more than a monentary reflectiom, without the nid of pen or pencil.

This very convenient gystem of decimal arithnetic in established in France and Helgium, and it is there carried to a must envialle degree of pufection: as, for example, in money reckowing, the fram (equal th our 10.1.) is tha standard coin of arcoment, aidd is divided into 100 para callod centimes. 'There is an "qual simpliaty in thas money reck ming of the North American Union, in which the dollar (equat to our Is. 3d.) is divided into 100 eentimes; but as weights nad measures are not on the same decimal scale, the advantage is of cotaparatively small moment.
In the United Kingdom, the pound or kovereign is the stindard in money. It comsists of a series of inferion coins, wlvancing irregulnty froma farthing muards ; as, 2 farthings 1 halfuenny, iz halfpence or 4 farthings ! penny, 12 pence 1 shilling, 20 s!illings 1 pound. Whie, therefore, the French coinpute values in momey by franct and contimes, and the Americmoly dollarsand centimes we compute by pounds, shitlinge, nud fence; and to as certain the value of irregular quantitios in these irregular thenominations of money, there is a complex set of rules to be ohevel; indeed, it may les said that the principad p:ert of the time usually frent ly youth at secheol on anih metic, is consumed in learniag to work quastions in thin arlitrary and hocal dey rtment of the reience. We have orly room to give a few examples in thin species of conputation.

1. is the initial letter of the Latin word libra, a pound anel is used to denote pounds; sfrom the hatin word
 f s. d. are therefore respectively phaced over column of poumds, shillings, and pence. The mark tior a lallifwng is $\frac{1}{2}$, for a farthing $\frac{1}{4}$, antul for there farthings $\frac{1}{4}$ To find the number of f.rthings, pence, and stile liegs, in any number of pomady, we multiply by 20, which bringe the pounls into slidilings; neit by 12, which brings the shillings into perne ; and lastly by 4 , which hriugs the prove into fardingos. as, fir exnmple, Required the numbur of furthina in 5 '5-we proceed as in the margin. The resula is observed to be 4800 farthings.

Componal Adilitom.

In ordinary transactions of business, and making up of accounts, Compound Addition, thent is, the addition
of moreys, is in iccount of s dnn is to add ond arthings a and in doing so dings. Thus, are 6 , ard 2 ar farthing are 2 or ouc hallipenn i for tho lialf :to the punce wee 31 pencec, " wric down the lings column; nighthand side, ; are 9 , and 7 put down 2 asid tullings colum smounts to 7 ; liags, that in. under ".e shil carried to tiae l simple Achlition L20ul, 12s. 7 It. refering to Brit punner. We liuility in writin barn to call up without maming aying 2 and 2 4 iare 20, and 2 be figures in th

Queat.ons in C in the following nuaber to be min byest denomina He wish to mul We legn by m by the 6 ; this 4d. Setting do to the pence, si and 4 are 52 , wh lings and 4 penc he 4 shillings on which, added to tl $\omega 85$, so we set anount is 227 . fue $5227,0 \mathrm{~s}, 41$

Conpound Su bwing question E86, $14 \mathrm{~s}, 5$ tal., ${ }^{w}$ are called o 4 arthings or arrar a pemy, ns these to the He now take 3 wins, which is It is now nccessa owed penny, an onider the jeen nach less, or Ad Whe the mont on the laver lius", w in: 1 to 8 , in thi hithis cammot entalding that 1 9, there will rem The borrowed is making thus 18 t to this either, we
denominations if hey can mako to nunibers. That 9 lny, to-day, and fa 1 n shilling, or hon ther matters of so of them forins on - taking a different arithmetic, an wo in

AN'ritiss.

mumber of srticle, I to moncy, would ? money were coom advancing by tens pellily, 10 pence king both weights 0 ounces 1 pound undredweight; 10 dimary calculations Thus, if an ounce I a hundredweight Ig the question, is ght for any article, whe at the rate of umber of anteme hood by little more the aid of pen or
cimnl arithmetic in wh it is there carned 11: as, for example, (1) our 10d.) in the ided into 100 parts I simplicity in the in Union, in which viled into 100 cetr re not on the samo coruparatively small
or soveregn is the It seriss of inferio thing upwards; as, cor firthings a 1 pouncl. Whiie, ill lnoney by franc oll urs and centimes pence; and to as * in three irrogulat mhlex set of rule that the principal I at school onanith k purstions in this chence. We have his sprecies of cond
ond hera, a pound on the latin word "ircus, live pence: d over colomas of whe tor a halfurany there farthings
 ls, we multiply by nto shillings; nett us intop pace; and nee into farthings, filmber of farthin? argin. 'Ihe result
of moreys, ia principally required. In the margin is in iccount of sums to be reckoned up. Ilve irst thing $d x n$ is to sdd together the halipenco and ivthings on the right-hand sido;
£31 12 71 $73148 \frac{1}{2}$ 691751 sad in doing ao we throw all into fardings, Thus, 2 nat 1 are 3, mind 3 arthing are 2 pence, and 2 farthings, 871565 571233 or one talfuenny, over. Wo set tlown

53:0 1272 for the halfpeony, and carry the to the perice column; this loing added, wo find there ye 31 pence, which make 2 shillings and 7 penco. We wrie down the 7, nud carry the two shillings to the shitluys column; adding them to tho under figure at tho nighthand side, we reckon up thus- 2 and 2 are 4 , and 5 are 9 , and 7 are 16 , and 4 are 20 , and 2 are 22 ; wo put dows 2 aside, and carrying 2 to the second row of the stallings column, we find, on sumuning it up, that it gmounts to 7 ; this 7 und the 2 set aside make 72 shilLhas, that ist $\mathcal{L 3},[2 \mathrm{~s} \cdot$; 12, therefore, is written down under ".te shillings colum, mad the 3 pounds are arried to the pounds column, which is added up as in Saple Ablition, making 320 . Thus, the sum-total is 1320, 12s, $7 \frac{1}{2} d$. All itecounts in Compound Addition, refrring to British money, are performed in the sme mant. We recommend young persons to aequire bidify in witing; and it will save much time if they lan to eam up the columus liy a glance of the cye, wibout maning the numbers ; for instance, instead of aving 2 and 2 are 4, and 5 are 9 , and 7 are 16, and tare 20 , and 2 are 22 , acepuire the knack of summing the figures in the mind, thus- $2,4,5,9,16,20,22$.

Compound Mtutrplicaton.

Questonsin Compound Multiplication are determined In the following manner:-Maving written down the number to the nultiplied, place the multiplier under the bwest denomination, and proced as in this exmmple. He wish to multiply the sum of $£ 37,16 \mathrm{~s} .8$ did. by 6. He begin by muttiplying tho firthings by the 6 ; this makes 18 firthings, or 4id. Retting down the $\frac{1}{2}$, we carry the t to the pence, saying 6 times 8 are 48 , and 4 are 52, which is equal to 4 shit.
£37 16 8
£227 $04 \frac{1}{2}$ linas and 4 pence. Setting down the 4 pence, we carry the 4 ahillings onwards, and multiplying 16 by 6 find 06 , which, added to the 4 shillings, gives 100 . This is equal $\omega \pm 5$, so we set down 0 , and carry the 5 to the 37. 'I'he anount is 227. The answer of the question is therefore $£ 027,0 \mathrm{~s} .4$ hd.

Compouad subiraction.
Compound Subtraction is performed as in the fothwing question:-If we take $£^{227}, 17 \mathrm{~s} .8 \$ \mathrm{~d}$. from 596, 145 , $5 \frac{1}{2}$. . how much remains? The first thing We are called on to do, is to take 3 farthings from : farthings or $\frac{1}{2} d$., and as this cannot be done, we arron a penny, or 4 farthings, and add-

C36 14 5!
$27178 \frac{1}{5}$ He now take 3 from 6 , and lind that 3 eminins, which is theref,re written down. th:s now necessary to acount for the bor-
£8 168 ! nowed penny, and a means of doing this would be to onsiter the prove of the upper line of tigures ss so nach less, ar thl instead of 5 d . It is found, however, th the the mont eonvoniont phan to add 1 to the penee of the lower line, which comes to the sme thing. Addifol to 8 , in this case, we have 9 to subtract from 5 , th this ramot be donr, we horrow 1 s ., which is 1 Zd ., undalding that 12 to the 5 makes 17 , from which taking θ, there will remain 8 , which is phaced under the proner. The borrowed Is. is also repail by adding 1 to the 17 , araking thus 18 to be taken from 14 ; hut as we cannot !o this either, we borrow $\mathcal{L}^{\prime} 1$, which is 20s. Adding 20s.
to 14 makes 34 ; then 18 from 34 lenves 16. This is placed under the shillings, and 1 is carried to the lower amount of pounds, which are then subtracted as in Simple Subtraction; thus, 1 to 7 is 8 ; 8 from 6, csnnot, hut 8 from 16 , there remains 8 ; carry 1 to 2 is 3 , and 3 from 3 , nothing remains. Touli sum remaining, £8, 16s. $8 \underset{4}{ } \mathrm{~d}$.

Componat Division.

Compound Division is performed as fol- $\quad £$ s. d. lows:-We wish to divide £87, 14s, G:1. 1.79871498 into 7 cqual parts. Dividing 87 by 7, 99 in Sirple Division, the answer is 12 , and
$12108 \frac{1}{4}$ 3 remain, that is, 3 pounds are over. We set down the 12, and taking the 3 which is over, we reduce it to its equivalent in shillings, that is 60 ; we then add the (i) It 14, making 74, which leing divided by 7 givea 10 whillings, and 4 shillings over. Setting down the 10 , we carry forward the $4 ; 4$ shillings are 48 pence, which, ndded to 9 , makes 57 . This divided hy 7 gives 8 and 1 penny over; a penny 64 farthings; add to these the 3 in the dividend, thus making 7; 7 divided ly 7 gives 1 , that is $\frac{d d}{}$. The sum desired, then, is E12, 10s. Rtd.

If the divisor is a composite number-the product of (wo) numbers individnally not exceeding 12 -we can divide first by one and then by the other, as follows: Divide $\mathbf{2 3 7 6}$, Ils. Ifd. by 63: 63 is a composite number; its component parts are 7 and 0 (seven nines are 63). The given

f	8.	d
1) 876	11	13
9$) 53$	15	104
5	19	$6 \frac{1}{2}$

When the divisor is a prime number above 12, the work is in every respect similar to the former; but it in performed by long division, as in the sunexed ex-ample:- Divide $5484,19 \mathrm{~s}, 7$ ³d. by 73. 'Ihe amount being written down as in long division of simple numbers, the pounds are first divided by 73: the answer is 6 . The remainder 46 is reduced to shillings by muttiplying by 20 , and the 19 s . in the sum we are dividing lwing taken in, mnkes together 939 s., which, divided by 73, gives 12. nud 63 of a remainder. These 63 shillings are now reduced to pence by being multiplied by 12 , and the 7 being taken in, makea 763; this, divided by 73, gives 10 , and 3:1 over, which, being reduced
£ s. \quad d.
73) $48419 \quad 7 \stackrel{2}{4}$
$\frac{438}{46}$

7 | 20 |
| :---: |
| 73939 |
| $\frac{73}{209}$ |
| $\frac{146}{63}$ |
| $73) \frac{12}{763}(10$ |
| $\frac{73}{33}$ |
| $73) \frac{435}{73}$ |
| $\frac{73}{62}$ | to farthings ly being multiptied by 4 , and the three taken in, makes 135; and this divided by 73, gives one, and 62 over. The whole answe: is $56,12 \mathrm{~s} .10 \frac{1}{d}$, and a fraction $\frac{19}{9} \frac{3}{3}$ over.

British Weights nal Measures.

The working of accounts in weights nnd measures, as resjects addition, multipliention, sultraction, or division, procceds on principles simitar to those which have now heren esplained. The only real difference is that, for example, in reduction, instend of multiplying by 20. by 12, and by 4, to reluce a sum to farthines, if the question refor to ordinary wrights we multiply to bring wat the number of hundredweights, 112 for pounds, and 16 for ounces. Suppose wo wish to know how many ounces are in 15 tons: we multiply 15 ly 20 , and the risult is 300, that is, 300 hundredweights; a hundred weight is 112 pounds, so we now multiply 300 bv

1t2, and the result ia 33,600 pounds; this multiplicd by 16 , the number of ounces in a pound, gives 537,600 onnces. In the addition of qunatities, each denominatien is set down in its own column, ns in money, and the summation is made also as we udd money, with the difference, that we carry forward ounces, pounds, or whatever it may be, to the next eolumn. The mark cw!. is usually employed to indicate hundredweights, l. pounds, and $o=$. ounces.

The following are the principal tables of weights nud measures cstablished by law in the United Kingdom, and hence called imperial. That which is entited aroirdupois ucight is the table in use for all ordinary pur-bosed:-

The hand $=4$ inches; the Pinglish elt $=45$ inchus; the jace $=5$ deet; and the fathom $=0$ ceet. 'Ithe geograpiocal degree $=20$ nantical leagues, or $69,12 t$ miles. In lant measure, the ehain of tot links $=66$ feel.
 And 640 sctes make 1 sqaare mile.
 1. Solidity.

1709 cubic inches $=t$ cubic foot. The ton measarement $=8$ barrel bulk. or $4 v$ cubic feet. 2. Mensure for Liquids, Com, and Dry Guods.

4 pecks $=1$ bushed; 8 bushela $\Rightarrow 1$ quaricr.
The peck, bushet, and quarter, are uned fot dry goons only. TEve are, besides, the coomm 4 businc! 4 , the wey or load - Squarters; and the last $=2$ loads or 16 quarters.

According to the system introduced January 1, 1826. the inperial gallon contains 277,274 cuhic incles, or 10 ths, avoirdupoin of distilled water at 62° Fuhrenheit, the barometer being at 30 iuches. Heaped measures (formerly used for dry goods) were abolished in 1835.

This weight is used in weighing gold, silver, pilatuna, de. The fineness of gold is expressed in carats end grains, the pound or other weight being divited into 24 carata, and the earat into 4 grians. Thus the caiat pound is the 24th part of the troy pound, or 10 divts., and the caral grain the 96 th part, or 60 troy Brina

In Cecr Meisare, the barrel contains 4 fixing, ase gailons; and the hogshead $1 \frac{1}{2}$ harrel or 54 gallons.
In Hine Mcusure, besides the gallon and its sub. divisions, varions denominations are used, as the buth pilue, isc.; but these are now to be considered rather an the manes of casks than as expressing any definite num ber of gallons. The stundurd gauges in trades are m follows:-Pipe of port, 115 imp . galls. ; pipe of Listion, 117 do. ; pipe of Cape or Mudeira, 92 do. ; piple of 'Tene rifie, 100 do. ; butt of sherry, 108 do. ; hogslicad of claret 46 do. ; aum of hock, 30 do.
Herrings aro measured by the barrel of $26 \frac{3}{3}$, or cran of 371 gnllons.
. 2 putheraries' Weight,-20 troy grains make 1 scruple 3 scruples make 1 druchm, and 8 alrachums make 1 ounco The ounce and pound are tho same on in troy weight This weight is used in medieal presariptions onty.

The Scoutish acre, formerly a standard in Seotland, and now abolished, consisted of 51937.15 imperial nquare feet; 23 scots neres were very nearly equal to 29 imperial ncres. The Scotish choppin was very nearly the English wine quart, and the matehkin was rather more than the English pint. Previous to the Uniog with Enghand, the Scottish money pound wis equad to one shilling and rightyence Linglish. Hence ElGU Seuts was equal to the sum of $£ 8,6 \mathrm{~s}$, 8 d. in our present moncy.

French Weighes ont Mcasures.

As French weights and measures are now Irequentry referred to in literature, we think it proper to offer the following particulars on the subject.

The Fremeh system of weights and measures is esth. blished on a priuciple much more simple and unerring thnn that it ase in England-the former is of unicersal application, the latter can never be any thing hut loal The Frenth unity of length nad weight is based on an invarinthe dimension of the terrestrial glebe, which is on cognisable in alleometries. It is independent of at extringe notions, such os gravity and the arhitrary sublivisionsof duration, an udvantage which the length of a seconde pendulun certainly dows not present. The admeasure ment of a fourth of the earth's meridian-an ileal circh going round the glolve from pole to pole at right angle with the eyuator-constitutes the hasis of the Fronh sysm tem. 'The length of this fimurth of the me rillian is divided into $10,060,000$ purts: a single ten-millionth part is the me:re, or the unity of long measure. (A mete is equal to 39;' British incher.)
A syunre, meanuring on enela side 10 metrea, formsthe are, or the unity of the mensuration of surface. (40t ares ure mesrly chual to one britinh acre.)

A culn. measuring on carh of its sides one metre, cor stitutes the sere: : used for dry measure.

A culse, measuring on ench of ita sides the tenth part of a metre, is the maity of volume. A vessel grugitg such a cubre, is the unity of liquill measures, and is calind the hirc. (A litre is equal to about a pint and the quarters, or nearly n quart, British meakure.)

Ther wright of a euhe of water, measuring on each of its sides the leoth part of n metre, is the unity of weigh and is called the gramene. A thousiand grammes of pon
 thermometer), are of course equivalant to the litre. (a thousand grammes, forming I kilogramme, weigh abca 24 pounds Britinh.)
These unities ! wing often too grent or tho stmall bo common usc, they conatitute the baxis of new anitirs a the simple decimal principle. The names of these nea unities are formed from Greek und hatin worls, If 6 "apress multiptication of the original unity, Green in used; if to expresen division of the original unity, isia is uned, or words alightly madified from it. Thie Gined
wotus are de
and, and m deem lor ten These variou the pnncipal ten metres, mere ; the ho tatre is the dequal to a t the thonsandt The ronne will now he mitre; the lit gramme is the finum density
The currem cimal reckonir nfely averred more simple a now in use in

Hitherto w which in arith to treat of fract se broken. I rticle or mun number admit en ral parts. mas, from th mite vulgar one above the (on \cdot half), (one-cighlth non. In th number is cal , iler.
It may happ fe ent fractions al such questi tha frations int logether, we to ei, hhe we wav en 4, which t she plan is to sations.
lit is neesesar telths, or tho m.tic has provi prat exactness inlisprosible. ins coamon nu ton times as worls, we ase prevent us in th nity. This is lot after unity, whole number mens 1201 and the meaning is k, 31 parts in be diviten. If we make the fir 1:1:315, which parts.
Tatiles of spo may matters 0 mal fractions, renprehenel the In many eases. frexiops ay vul wite in rellucin hor it ullows of
ting 4 tioking, of se or 54 gallons allon and its sub used, as the butt :onsidered rather as g any definite num cs in trades are Is. ; pipe of Listor do. ; pipe of Tene ; hogslicad of claret
rel of $26 \frac{3}{3}$, or cran tins make I scruple chms make loune as in troy weight riptions only. udard in Scotland, $7 \cdot 15$ imperial square carly equal to 29 min was very nearly utchkin was rathet vious to the Union 4 pound was equal jixh. Hence flou s. 8d. in our present

asures.

are now Irequenth troper to olfer the
nd measures is esto :mple and unerring raner is of universal any thing but local cight is based on an al globe, which is to endent of allextrinace itrary subelivisions of lonigth of a secondos t. 'The admeasume dian-an incal circle - brole at right anglea sis of the Frouch sys 10 me ridiats is divided -millionth part is the
(A metre is equal

- 10 metres, forms the on of surface. (40t acre.)
sides one metre, con sure.
a sides the tenth pat A vessel gnaying rea- ures, and is called rut a pint and thre measire.)
measuring on each of is the unity of weinht and gramams of pan : 40°, ${ }^{\circ}$ Fohrenhett hernt to the litre. (a gramme, weigh abry
reat or too minall fon wis of new unitics on nunurg of these ne9 I Iatin words. If inal unity, Greel y origiual unily, I suiu from it. The Greet
worus are deka, for ten, hecto a hundred, kilo, a thouand, and myria ten thonsand. The Latin words are deem for ten, centum a hundred, and mille a thousand. T these various words nre placed before, or prefixed to, the pnocipal unity. thus, the derametre is equal to ten metres, and the decimetre is the tenth part of a metre; the hertolitre is equal to 100 litres, and the centeitre is the hundredth part of a litre; the kilogramme is equal to a thousand grammes, and the milligramme is, the thonsandth part of a gramme.
Ithe connection botween these weights and mensures will now he clearly seen. The are is the square decamatre; the litre is the cuhic decimetre; and the kilogramme is the weight of a litre of pure water at its maxinum density.
The currency of the country being assimilated by decimal reckoning to the weights and measures, it may be afiely averred that the whole world cannot produce a more simple and immutable plan of calculation than that now in use in France and in Belgium.

FRACtIONS.

Hitherto we have spoken only of whole numbers which in arithmetic are called intrgers. We have now to treat of frartions, or the parts into which integers may pe broken. The more ordinary fractions of nny single aticle or mumber are n half, third, quarter, \&e.; but a number simits of heing divided into any quantity of ennal parts. All such fractions are called mulear frarthas, from their being cominon. It is the practice to arile vulgar fractions with two or more small figures, one above the other, with a line between, as follows:$\frac{1}{2}$ (on -half), $\frac{1}{3}$ (one-thini), \ddagger (one-fourth or quarter), $\frac{1}{8}$ (ene-ciglith), ${ }_{5}$ (four-fifths), in (nine-tenths), nad o on. In these and all other inataneses, the urper number is called the numerator, the lowe: the denomia wer.
It may happen that it is necessary to add together diffeent fractions to make up whole numbers. In working all such questions, we must. in the first place, bring all hie frations into one kind; if we have to ndd $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{4}$ wasther, we make nll into righths, and see how many ei,hthe we have got; thus, $\frac{1}{2}$ is ${ }^{1}$; then $\frac{1}{}$ is ${ }^{2}$, that is 2 anil 4 , which make 6 , and $\frac{1}{3}$ makes a total of $\frac{7}{2}$. The sa ne plan is to be pursmed in the subtraction of culgar fartions.
It is neressary sometimes to sprak of the tonths, hunselths, or thonsm thes of n number, and for this arithmatic has provided a system of decimal fratione. Where prat exactness of expression is required, decinnla nre indispinsable. It has been already shown that, in writing conmon numbers, the value of a figure increases by tan times as we proced from right to left; in other worls, we ascelld by tens. Now, there is nothing to prevent us in tho same minner desending by tens from juity. This is done ly decimal fractions. We place a Sot after unty, or the unit figure, which dot ents off the Whole number from its fractional tenths; thus 120.3 medas 120 and 3-tenths of a whole ; if we write 120.31, the meaning is 120 and 31 -hundredths of n whole, that is, 31 parts in 100 into which a whole is supposed to be divilad. If we go on alding a tigure to the right, we make the fraction into thousands; as for instance, 103315 , which significs 120 and 315 out of a thousand parts.
Tables of specific gravities, population, mortality, nnd mny matters of statistics, aro greatly made up of decimal Gactions, ard therefore it is proper that all should cmprehend the principle on which they aro designed. In inany eases, it wonlid answer the purpose to write the frecious as vulgar fractions; but there is a great nedvnnwep in reducine all hroken parts to the decimal notation, for it allows of alding uy columns of decimals all of the
anme denomination. Their great excellence, indeed, consists in the uniformity which they give to calculation, and the casy methods which, ly these means, they prosent of pursuing fractional numbers to any degree of minutepess.

The method of reducing a vulgar to a decimal fraction is a simple question in division. For instance, to reduce $\frac{3}{4}$ to a decinal, we take the 3 , and putting two ciphers after it, divide by 4 , thus- $\frac{4 / 300}{.75}$; therefore, .78 is the decimal, or, what is the same thing, 75 -hundredth parts of a whole are equal to the three quarters of a whole.

SERIES AND RATIOS of numbers.

A series of numbers is a succession of numbers that increase or decrease aceording to some law. Of the two kinds of serics usually trented of in arithmetic, the simplor is one whose terms increase or decrease by some constant number culled the common difference. This cominon difference or rate of incrense is only one, when we say, $4,5,6,7,8$; it is tren, when we say 7,9 , 11,13 ; and four, when wo say $6,10,14,18$, and so on Every advancement of this niture, by which the same number is added at every step, is called ari'hmetical progression. There is a different species of advancement, by which the last number is always multiplied by given number, thus causing the scries to mount rapidly up. Suppose 4 is the musiplicr, and we begin at 2, the progression will be as follows:-2, 8, 32, $128,512,2048$, and so on. It is here observed, that multiplying the 2 by 4 we have 8 ; multiplying the 8 by 4 , we have 32 ; and multiplying the 32 by 4 , we have 128 , \&ce, till at the fifth remove we attain 2048, This kind of adyancement of numbers is called scometrienl progressina. The very great difference hetween the two kinds of progression is exemplified in the following two lines, the number 3 being added in the one case und being used as the multiplier in the other:-

5, 8, 11, 14, 17,-Arithmetical Progression.

5, 15, 45, 135, 405,-Geometrical Progression.
In the casc of nithmetical progression, as above or in any other manner exemplified, it mny he noticed that the amount of the first and last term is always the same as twice the amount of the middle term; thus, 5 and 17 hring 22, are equal to twice 11, or 22. The cause of this is, that as the numbers increase or decrease in equal degrees, the last number is just as much more as the first is less than the number in the middle; and the two being added, the amount must consequently be double the central number. The same rule holds good with respert to nuy two numbers at equal distances from the number in the middle. If the serics be an even number, and do not possess n middle term, then the two terms nearest the middle (called the mean terms) ninst be nolded together; thus in the natural series from 1 to 24, 12 and 13 are the two nearest the middle, and one being added to the other makes 25, the sum of the first and last term.

In geometricul progression, each term is a factor of all the numbers or terins that follow, and n produet of all that go befire, so that there is anharmonions ratio pervading the whole. Finch term bears an exact proportion to its predecessor, breause the multiplipr is the same. Supposines, as above, the multiplier to le 3 , the term 15 is proportionally greater than 5 , as 45 is gramer than 15. In the techmienl language of neithmetic, as 15 is to 5, so is 45 to 15 . To save words, such a propnsition is written with dots, thug-15:5:: $45: 15$. The two dote mean is fo, and four dote menn so is. The same formula is npplicable to any series of proportional terms, though not in continued proportion to each other.

In order to discover the ratio between any two termat

INFORMATION FOR THE PEOPLE.

wo divide the largest by the least, and the quotiont is the ratio: 45 divided by 15 gives 3 na tho ratio. 13y dus asecrtaining the ratio of two terms, wo are furnished with the means of arriving at the ratio of other terms. We cannot do better than explain the unethod of working out this principle in the ratio of numbers, by giving tho following passages from the admirablo Jeszons on Ari'hmotic, by Mr. 'I. Sinith of Liverpool.「「aking the four regularly advancing terms, $15,45,405$, and 1215, he procceds-"Suppose that we had only the first three, and that it wore our wish to find the fonrth, which term bears the aano proportion to the third as the second does to the first. The thing we have first to do, is to discover the ratio between the first and secend terms, in order to do whieh, as beforo shown, we divide the larger by the amaller, and this gives ua the ratio 3, with which, by multiplying the third term, we produce the fourth; ec, let the three terins be these, 405,1215 , 5 , and let it bo our wish to find a fourth which shall bear the same relation to the 15 as 1215 dees to 405 . We divide and multiply a before, and the fourth term is produced. And in this manner, having theo numbers, or two quantities of any kind, bearing a certain proportion towards ench other, nud a third, to which we would find a number or quantity that should bear a liko proportion, in this manner do we proceed, and thus casily may we find the number we require."

Referring to the discovered ratio of 45 to 15 to be 3, or the fifteenth part-"Now (continues this author), what would have been the consequence had we multiplied the third term (405) by the whole, instend of by a fifteenth part of the second? The consequence would have been, that we should have had a term or number fifteen times larger than that required. But this would the a mater of no difficulty ; for it would be set right at once and our purpose gained, hy dividing the over-large Froduct by 15. Let us write this process down: $405 \times$ $45=18225$, and $18225 \div 15=1215$, , which 1215 bears the aame proportion to 405 as does 45 to 15 . And this is the rule, when the terms are properly placedDuliplying the second and third torms togeiher, and dividing the product by the first : this avoile all the dilliculties arising from the occurrence of fraetions in the course of the process, and gives us, in all cases, any proportional torms wo may require."

Rule of Three.

On the principle now explained, we can, in any affairs of business, ascertain the amount of an unknown quansity, by knowing the amount of other three guantities, which, with the unknown quantity, bear a proportional relation. The word quantity is here used, but any sum of money is also meant.
Let it be remembered, that the ratio of one number to nnother is the number of times that the former conthins the latter; for example, the ratio of 6 to 3 is 2 , that of $: 2$ to 4 is 3 , and that of 8 to 12 is 3 . When twe numbers have the same ratio as other two, chey consittite a proportion. Thus, the ratio of 8 to 6 is the sume an that of 12 to 9 , and the equality of these two rati \cdot is is requesented thus:-
$8: 6=12: 9$, or $8: 8: 12: 9$.
The following is the rule for stating and working ghestions:-Make that term which is of the same kind os the answet sought, the secoud or mi'dle term. Consider, from the nature of the question, whether the anave: should be more on less than this term; if mure, Lake the smaller of the other two terms the first, and tae greater the third; if the nnswer should be less than th middle term, make the greater of the two terms the Arst, and the smaller the third; then multiply the second Eil third terms hugether, and divile the result by the
first torm. The quotient found will be the answer tw the question, and it will be found to bear the same proportion to the third torm as the second does to the first. Suppose
the question be this: It 3 lba of tell cost $\mathrm{\theta}_{\mathrm{s} \text {., how many pounds may be }}$ purchased for 21s. ?-state tho terma, with the larger bum last. Should the question, howover, be the reverse -If 7 lbs. of tea cost 31 s ., how much may le purchased for 3a. ?- then the suin to be ascertained ia less, and ia put last. Suppose another plain example: If 10 men can execute a piece of work in 8 days, how long will 4 men take to do the samo?
Such is tho principle of working Rule of Threo questiona, whatever le their upparent complexity. If cither the first or third urm, or hoth, include fractional parts, they must bo reduced to the denomination of tho

$$
\begin{array}{r}
9: 3: 21 \\
9 \underline{3}-\frac{3}{-2} \\
\hline
\end{array}
$$

21:7:
21) $\frac{7}{2!}$

1 b.
$4: 8: 10$
4) $\overline{80}$
$\overline{20}$ days fractions before working: thus, if one be reduced to shilliugs, the other must be made shillings also; if to pence, both must be pence, and so on. If the ruiddly term be also a compound quantity, it may cither bo reduced to its lowest term, before multif lying and di. viding by tho other terins, or you may multiply and dvide by Compound Division and Multiplication.

If the middle terin be reduced to its lowest term, the answer will be in that denomination to which it was re duced; thus, if it were brought to farthings, the answet would be in farthings; if to ounces, the answer would be in ounces.

Example-If 2 cwts. 1 qr. 7 lbs. augar cost $£ 8,14$ 4d., what will 14 cwts 3 qra. cost ?

Here, in order to make the first term a simple number, it is reduced to ita lowest term, namely, pounds. 'The thirl termis therefore reduced to pounda also, that both may be alike. The second or middle term is reduced to its lowest term, pence. Alter multi-

118	
1652	
2092	
3304	
14864	
33040	
$259) 3455984$ (12)13343	
259	
865	20)1111.11
777	$£ 5511$ aly
889	
777	
1128	
1036	
924	
777	
147	
4	
259) 588	
519	
70	

'The lollowing is a kind of question which often areas in husinces :-A person is mable to pay his delts. He ower to $\mathrm{A}, \mathbf{C} 540$, to $\mathrm{B}, \mathrm{C} 260$, to $\mathrm{C}, £ 200$, being in all £1000. On examining his affairs, it in found the
he posmewes pr
only to the va £370. How, t this to be dirite portionally amor three creditors, 8 each may rece fair sbare! Th boarize at an ar in to work out eac ditor's share us enct account. first, as to A's shn The answer is 16. Following milar calculation find that B wi ceive $\mathcal{L} 96,48$., n filt. Another thod of comput raull consist it octaining how hillings per p the effects would In this case we the terms as ann -. Inswer 7a. 4 or a fraction than seven shi and fourpence farthings in the po By aiutting this of dividend to credinr, their re oire shares woul liquidated as al Instead of divi 7400 by 1000 , the result will be fou it be divided by
Questions in metic arise in wh fixth term is requ bearing a propo to fise terms ali known. This, w involves what is c Datble Riule of 7 \& exemplified as lows:-If I give men $£ 45$ for 28 Wuk, what must I at the same rate, men for 35 days' w The answer, acco to the plan of won bere ahown, is $£ 7$ 3.

Inder these na methokls of wor shadly by the a Orlinary hosines Rule of Three, Arithnetic. Th occurin: are co certain tumiker of mg of the whole plan usually ado number of article to apply the dille - gown from a ha at Sfd. per yard; she has to pray 68.
canswer to the sanie proportion first. Buppon

7 lbs
$1: 7$: 3
21) $\frac{7}{21}$

1 lb.
: $8: 10$
4) $\overline{80}$
$\overline{20}$ daya
he reduced to ings also; if to If the middla may either bo tip lying and dimultiply and dlieation.
owest tenm, the which it was re ings, the answet c answer would
ar cost $£ 8,14$

Gr.
3
12) 13343
$£ 5511$ II
he pomeswes property
$\begin{array}{lll}\boldsymbol{£} & £ \\ \boldsymbol{E}\end{array}$
anly to the va.ie of $1000: 370: 540$ £370. How, then, is this to be divi!led proportisnally among the three creditors, so that meh may receive a fuir shure ! The way to arrive at in enswer, in towork out each ercditor's share as a distinct account. 'Thus, first,nato A's share :The answer is $£ 199$ 16s. Following a similar caleulation, we find that B will receive $\mathcal{L} 96,4$ s., and C, f\%. Another method of computation mould conaist in as. cotaining how many billings per pormd the effects would yield. In this case we state the terms as annexed. -.Inswer 7s. 4 ? d . $\frac{1}{3}$, or s fraction mero than seven shillings and fourpence threo farthings in the pound. By aiiutting this rate of dividend to each crelitio, their respetetive shares would be liquidated as above. lustead of dividing 7400 by 1000 , the same result will he found if 74 be divided ly 10.
Questions in arithmetic arise in which a exth term is requirad, bearing a proportion to five terms already known. This, which involves what is called Dimble Rule of Three, is exemplified as fol-Wws:-If I give 16 men $£ .15$ for 28 days' mork, what must I give, at the same rate, to 20 men for 35 days' work ? The answer, according to the plan of working bere shown, is $£ 70,68$. 3.
trartice and Mental Arihmetic.
C'nder these names are comprehended short practical methods of worning arithmetical questions, partly or whally by the mitul, or by the jotting of a few figures. Ortinary hasines; questions are sellom solved by the Rute of Three, aml priucipally by Practice or Mental Arithmetic. The kithd of phestions most commonly occuring are computations of the aggregate valuo of n certain number of articles at a certain price, noti the adduig of the whole together to tind the sum-total. The plan usually adopted is to calculate the value of any number of artichs by the nearest round sum, and then to apply the dilference. For instance, a lady is buying a gown frem a habwertasker; she has received 15 yards at 5id. per yard; the habertasher tells her in an insimnt so has to pay 6s. $10 \frac{d}{2}$. Ife knows it is so by saying

Internally to himself-15 yards at 6d. would be 7a. fid. then, if I take 15 halfpence, that is, $7 \frac{1}{2} \mathrm{~d}$., from the 7 s 6 d ., I find that 6s. $10 \frac{1}{2} \mathrm{~d}$. will remsin.

Another principlo followed in this practical arithmetio is to work by aliquot parts. By remembering that n penny is the 12 th of a shilling, or the 240th of a pound; that 6s. 8d. is the third of a pound; that 3s. 4d. is tho sixth of a pound, and so on, we are able to eave much of the ordinary figuring. As an illustration, let it he required to find the value of 3567 artieles at 3 s .4 d . each. By the usual ruler of arithmetic, this question would be performed by multiplying the 3567 by 40 (there being 40 pence in 3 s . 1 ll .), and then dividing by 12 to bring it into shillingr, and by 20 to bring it into pounds. The practical method is much shorter; 3s. 4d. being tho sixth of a pound, if we divide 3567 by 6 , we at once obtain the amount,
$\frac{\text { 6) } 3567}{5594,10 \mathrm{~A}}$ thus-

Interess.

Interest is an allownnee for the use of money, paid by the borrower to the lender. The amount of allowarice on $£ 100$ is callel the rate of interest. The amol of money lent is styled the prinripal. In the United Kingdom, it is customary to reekon tho interest at a certain rate per hundred pounds per nnnum, or for the whole year. The hunilred pounds, for shortness, is called cent., a contraction of centum (Latin), a hundred. It the money is lent for a less term than a year, then it recomes a question in arithmetic what is the proportion of interest chargeable. Accorling to the existing laws (1842), $£ 5$ per cent. is the highest legal interest that is chargeable on money lent in sny other form than by a bill or promissory note. The interest, commonly called disrount, that may be taken for advances on bills or promissory notes, is left unlimited. In general, it varies from about 4 to 6 per cent., according to the state of tho money market or trustworthiness of the borrower. £5, being equal to 100 shillings, the interest on $£ 1$ for a year at 5 per cent. is consequently 1 s .; and if the interest le £2, 10 s ., or $2 \frac{1}{2}$ per cent., the charge will of course ho 6d. per $£ \mathrm{E}$. This is so very simple a matter of calculation, that interests of 5 or $2 \frac{1}{2}$ per eent. per annum may in most instances be calculated mentally, or at least with a few figures. When the interest is $3,3 \frac{1}{2}, 4$, or $4 \frac{1}{2}$ per cent., and for a leas period than a year, the calculation ia more complex, and will require to be wrought as a question in Rule of Three, or the amount may be determined by un appeal to Interest 'Tables.

The following is an example of the mode of working a question of interest for a whole year What is the $£ \quad £ \quad £$ amourt of intercst payalle on $100: 41:: 649 \quad £ 649,14 \frac{1}{2}$ per $£ 100$ or per cent. 42 per ann.am?

2596

$3 \geqslant 4 \cdot 10$ £ s. d
100)2920-10(29 $41 \frac{1}{3}$ Or shorter, as under$\frac{200}{920}$
$\frac{900}{20}$
$100)^{\frac{20}{410(4}}$
$\frac{400}{10}$
$\frac{12}{100) \frac{120}{100}}(1$
Interest on broken periods is not calculated by calendar months, but for days-the exact number of daye frum
the day of leniling to the day of paying; and therefore the eulculation of the number of days is an important prelininary in the transaction. Bankers and merehants, to save the troublo of calculation, appal to a tuble which shows the number of days from one day to another in the diffierent months of the yeur.

When the period consiats of less than a year (365 dnys), multiply the principal by the number of days, and by twice tha rate, and divide by 73000 . (We get this 73000 by multiplying 365 by 2 and ky 100.) For example -What in the intereat of $£ 235,10 \mathrm{~s}$. for 28 daye, at 3 per cent. per annum? Here, for convenience, wo begin by multiplying by 7 and by 4 , instead of 28. The 6 is twice the interest, 3.

When purtial payments are maile, it is necessary tr, deduct them from the principal, care being taken not to confuse principsl with interest. The following is a rule to follow in auch a case:-- Calculate the interost on the principal up to the time at which the first partial payment is made, and add it to the principal; from this sum sultract the money paid, and the remainder is a new principal ; compute the Interest on this principal from the time of the first payment up to the time of the second payment, add it to the latter principal; from the sum subtract the second sum paid, and the remsinder is again a new principul; and continue this process till the last payment.

mensuration.

Mensuration refirs to the measurement of oljects, and Is of three kinds-lincal, or measuring hy mere length; superficial, which respects breadth as well as length; and solid, which includes, length, breadth, and thiekness. In the United Kingiom, the foot of twelve inches is the common standsrd of measurement. A draper measures coth with o rod of three feet or one yard, and workmen usually measure the dimensions of walls, or the superficies of apartruents, by ribton marked in fert and inches. In common usage, the inch is divided into eighths and sixteenths.

As lineal measurement requirea no explanation, we pass to a consideration of superficial mensurement, or that of both length and breadtl. A superficial foc', which is the hasis of this kind of measurement, is either a square of a foot in length and a fiot in breadth, in otifer words, a foot each way, or it is any dimension in which the length multiplied by the breadth will form a foot. For example, the surfuce of a piece of wood, 2 feet in length and 6 inches in briadh, is a superficinl foot. A superficial foot is generally called a syuare foot, and is a superficies consisting of 12 times 12, or 114 equare inches. Sometimes the term square ffel is confounded with that of feet aquarr, which is quite a diffire ont thing. A piece of floth said to measure aix square tert, consists of six equares of a foot each; hut a piece acid to theasure six fect squitre would be six fect along each side, and comprise thirty-six squares of a foot earh. Inattention to these distinctions has often led to awkward arrors and diaputes.
The methot of finding the auperficial contents of any oblong surface, is to multiply the length by the lipeadth; but other points require attention in the calculalion. To arrive ut exactness, the inch is reckoned to contuin $\$$ epondy or parts each recons contains 12 thirds, and
ench third contains 12 fourths. Fect mutiplied by feet give feet; feet multiplied by inches, give inches; ferl multiplied hy seconda, give seconds; unches multuplied by inches, givo seconds; inches multiplied by seconds. give thinls; seconds miltiplied by seconds, give fourthm, Rule for working questions-1. Write the multiplict under the multiplicand, feet under feet, inches undet inches, seconds under seconds, \&ce. 2. Multiply each denomination of the length by the feet of the breadth, beginning at the lowest, and place oach product under that denomination of the multiplicand from which it arises, alwnys earrying 1 for every 12. 3 Multiply by the inches, and set fach product one place farther to the right hand. 4. Nultiply by the reeends or parts, and aet ench product another plare toward the right hand. 5. Proceed in this manner with all the rest of the de nominations, and their sum will be the answer.

Example.-Multiply 6 feet 3 inches by 3 feet 2 inchea In working, we begin by multiplying the 3 inches by 3 , and then the 6 feet also by the F_{1} in. same 3 below it; this gives 18 feet 9 inches. This makes 18, 9. We now multiply ly the 2 inches, placing the 6 one remove to a sile. By then multiplying the 6 by 2 , we have 12 inches or 1 foot, ond setting down the 1 below the 18 , we add up. The an-
swer is 49 fret, 9 inehes, and six acconils. swer is 49 fret, 9 inches, and six acconds. Questions of this kind may also be wiought by decimala 'T'o measure the solid contents of an object, a different process is pursued. Suppose we take a piece of woad mensuring a square foot, and cover it with dice, cach die on inch square nat an inch high, the woor will be covered with exartly 144 dife. Let us now put a secomal layer of dice on the first, and the number will be dombled. ir 288 dice; and if we thus go on ulding lares ahove layer till we have 12 layers, the number of dico will be finully 12 times 144 , or 1728 dice; in other worda we shall have formed a culve consisting of 1728 solid inches. Such is solid measure.

Solid measure is conyuted arithmetically, by multiphy. ing the length hy the breadth, and the product by tha thiekness. Civil engineers, who require to calculate tha solid contents of masses of curth, with a view to excerga tion, resort to this simple rule; it is likewise follewed ty builders in refernnce to walls, phumbers to cisterus, and other artiticera. The following in a question not unlikely to oecur. Required the contents of a cistern 9 yards 2 feet in lenuth, 6 yards 2 seet in breadth, and 4 yaris 2 feet in depth.

29
$\frac{20}{580}$
$\frac{14}{2320}$
$\frac{580}{2 7 \longdiv { 8 1 2 0 }}$
$300 \mathrm{y.00} \mathrm{\%}$.

feet in n solid yard. The question is thus wrourbi in the murgin. 'The answer is seen to be 300 yards 20 feet

EVOLUTION.

The extruction of diwcovery of the square and able roots of mumbers, forms a ilepartment of arithoctic ealled Frolutzom, and is usefinl in some kinds of measure? ment. In the followine table, the syuares, cules, sad fourth and fifth powers of the nine units are siven. The square of any mamber, it will be observed, is ganned by multiplying the number ly itself; the culf, hy molto plying the mymare by the number; the biquatratic by multiplying the eabe liy the number; and the sursohid by multiplying the biquadratic by the number:-

[^38]The powe Ading a amal ond puwer u fies tho third The small figu becuuse it ind quantity to w amall quantity mulliplication be the q quare layzer numbe another 1 rroce
Supposing s.je of a squ: ita surface, it the mind wha promuces this the equare of of tie other diviled ints p nate figure, be separatiung it i the squate of (wo plares, th more than fot
Atter the vort whose sq he phaced in 1 he first peris being the ro quotient, and $=4$) is sult here forns th pericl (90) is mainder for a is doubled for taining how dividend, anit sult (4) is pl: unit's place os formel, must he subtracted be repeated u will contain The rule tior and iuleed a The methols are so comp anthnetical be ascertaine catuse it is the ront is the sum of the spuare
The 8th ro mont, may be times, in the cube toot of tl the cube root pations furnisl 13th. 14th, 1: and this part in practical di

Logarith,n ber of the rati of comparativ been John : eatly part of upo which dured fanuiliar Hat ! is the I that the ratio following mat

ARITHMETIC.

muatiplied by fref

 give illehes; fee Hiches muluplied tiplied by second conds, give fourth rite the multiplien feet, inches unde 2. Multiply each eet of the breadth ach product unde and from which it 2. 3 Multiply by place farther to the onds or parts, sand ird the right hand the rest of the de c answer.by 3 fret 2 inches. og the
by tho Fl in incho inly by
ye to a
2, wo
down
l:e aneconds. tought hy decimals. n object, a different c a plece af woad with dice, each die the wook will be et us now puts the number will be go on udding lave he number of dico ice ; in other worda sting of 1728 solid
tically, by multipls. the product by the nire to csloulste tha a view to excers ikewise follewed by crs to cisterus, and 29 $\frac{20}{580}$ 14 2320 580 27 $\lcm{8120}$ 300 y. : 0 f.
is thus wrourbs in e 300 yntds 2ω feet
square and auhe wnt of arithoftio c kinds of measure quares, cules, sad e units are given obseried, is gained the cube, by muththe biqualratic by ; and the sursolic namber:-

 77616025206.501The powers of numbers are usually expressed hy adting a smail figure to them; thus, 3^{2} signifies the mecond power or aquare of 3 , that th, $3 \times 3=9 ; 3^{3}$ signibes the thirl power or cube of 3 , or $3 \times 3 \times 3=27$, The small figure thus adfled is called in inter or cepponent, hecause it indieates or exposes to view the powers of the quantity to which it is affixed. The aquaro root of any mall quantity may easily be ascertained by means of the multiplieation tatbile for instance, 6 is at once seen to be the squate ront of 30 , lreausa $6 \times 6=36$; but when larier numbers occur, it is requisite to have recourse to anothet process.
Supposing it were required to fiml the length of the die of a square which contains 59,049 aquare inches on is surface, it is evident that it manot nt once orcur to the minal what umblor, by beine multiplied into itself, proluces thim quantily. It is therefore requisite to find the square of one part of the number, and then the square of tie other part. To effect this, the whole number is diviled into parts, by a dot being placed over each alterate figure, begionioge nt the wnit. The renson for thus eparation it into perioils of two fighres earh, is because the square of a single tigure never consists of more than wo plares, the sifuare of n number of two figures of not more than four places, \&-
After the whole number has been thus divided, the wot whose square comes nearest to the first peric. must le phacel in the quotiont, and its suluare subtract. from the first peiod. 'Thus, is lwing the first periol, 2, as bing the reat of 4 , is placed in the quotient, and the square of $2(2 \times 2$ $=4$) is subtracted from 5 , because 5 hene forms the first periotl. The next perid (90) is then monexel to the remindet for a new dividend. 'The root is doubled for a diviver, and after ascertaining how often it is contained in the

$59019(243$

44) $\frac{4}{190}$

176
483) 1419

1449 dividend, omitting ita last ticure, the result (4) is placed both in the quotiont and naso in the unit's place of the divisor ; the whole number (11) thus formed, must be multiplied by 4, and the product must he subtractoll from the dividend. 'The same process must he repeatel until there is no remainder, and the quotient will contain the root sought, which in this case is 243 , The rube for extracting the cube root is cqually tedious, ad iuled almost too complex for practieal parposes. The methods of extracting the roots of hiener pewers are so compliated, that they are uavally omitted in antametiral works. The 4 th, or biguislratie reot, m's be ascertained ly extriating the square ront iwice, be. cause it is the squire root of the squase root. The 6th ront is the sipuare root of the cube root, or the cube root of the square root.
Tho sth root, heing the square re ot of the higuadratie mon, may be fouml by extracting the square reot thre tines. In the same wiry the 9 th root may be called the cuhe root of the cule root, and may be found ly extracting the cube root twice. But the rommon arithmetical operations furnish no method of olitaining the 5th, $7 \mathrm{th}, 10 \mathrm{~h}$, 13th. 14th, 15th, 17 th, 19th, 20th, and most other roots; and this part of arithmetic continued, therefore, involved in practical ditacc.'ides, untit the invention of logarithms.

LOGARITHMS.

Logarith,as (from two (ircek words, signifying the numtar of the ratios or proportions) is a hrameh of arithmetic of comparatively moshern invention, the diseoverar having been John Siapier of Merchiston, near Ediahurgh, in tho carly part of the seventrenth erntury. The principles upon which logatithms are founded, may perhaps be rendered fanithar by the fillowing illustration :-Kupposing What t is the tirst term of a geometrical progression, suml that the ratio or multiplier is 2 , the terma stund in the following maner:-

	is the	firal term.
2	"	ratio.
4	-	sylure of the ratio.
8	\cdots	culve of the ratio.
18	\cdots	4th power of the ratio.
32		Sth jewer of the ratio.
6.1		Biti power of the r

Alf this might, however, have been conveyed 1 .. 2 far moro concisely by substituting signs for worls, thus-

It is evident that this might have been expressed still mone conciaely by omituing tho $10 \ldots 2$ ber signifying the ratio (2) throughout, $32 \cdot 2^{2}$ retainins only the indices or exponents, they $64 \ldots 2^{6}$ alone being sutficient to indicate the degreo of power to which the ratio is raised in each term. Exponents thus placed in orther, opposite to a scries of numlera in geometrical progression, are, as we have said called Logarithins, or, literally, number of the ratio.

The most tudions sums in multiplication can, by means of logarithms, he solved sinuply hy addition. For instance, if it were required to multiply 256 by 32 , it would merely be requisite to add tho logarithms standing opposite to thuse two unmbets-their sum (13) stands opposite the product required, namels, 8192 :

Num.			L.og.	Num.			Lea
1	.	*	0	123	-	-•	7
	\cdots	.	t	$2{ }^{20} 6$	-	*	8
4	.	\cdots	2	512	-.	-	9
\cdots	-	"	3	1024	-	-	10
16	"	.	4	20.4	.	\cdots	11
32	-	\cdots	5	4094	\cdots	\cdots	12
64	*	\cdots	6	8102	.		13

Again, to multiply 128 by 18, wo take tho 7th +4 th, or 11th power of 2 , because 128 is tue 7th and 16 the 4 th power of 2 ; opposite to the sum of 7 and 4 (11) is 2048, equal to the result of the multiplication of the two numabers. This also atfords a quick and ensy method of dividing one number by another; thus, if it be required to divido 4096 by 16 , it is only requisite to ascertain the diflerence between the lognrithm of these two numbers, which in this case being 8 , the figure opposito to 8 is the required quotient, indicating how often 16 is contained in 4096, immely, 256 times.

The indices or exponents, 1, 2, 3, 4, \&c., might, however, denote the powers of any other number or ratio. Every ditferent ratio or geometrical progression gives a diflierent system of logarithms. Sonn after the invention of legarithms by Loerd Nnpier, it occurred to Briggs, then professor of geometry at Oxford, that a system whose base or ratio is 10 is preferable to all others, on account of ins leiny ambogous to the general method of notation. In a. 13. 162:1, Briggs published the tables of logarithme which are now in common use. In this system, 10 heing the ratio or multiplier, the terms may be thus ex-pressed-

$$
\begin{array}{llllll}
1 & 10 & 100 & 1000 & 100,000, \& c \\
10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & \& c
\end{array}
$$

The exponenta, $1,2,3,4$, nre, as was shown in the pre vious table, the logarithms of the opposite numbers, and might therefore have been written in the following man ner:-

1	12	100	1000	100,000,	$\& c c$
0	1	2	3	4	$\& c$.

Tho logarithins of all intermediato numbers, such as those hetween 1 and 10,10 and $100, \& c$., ate found by ascertaining the geometrical mean proportion between any two numbers, and likewise the corresponding arithnetical mouns between the indices of those numbers. In every system, 0 is the logarithm of 1 . Henca, the loganthm of any number between 1 and 10 must be less than a whole number, and therefore a decimal fraction; and the logarithm of any number between 10 and 100 must be one with a fraction. In the sa:ne way, the logarithm of any number between 100 and 1000 must be 2 and a fraction, and so on, through the rest of the series. The integera, $0,1,2,3$, sec, to the lelt of the decimals it
higarithme, arn called the characterisica of thase fogarithma. 'Thus, 0 is the characteristic of all numbere between 1 and $10 ; 1$ is the characteristic of all letween 10 and 100; 2 that of nill between 100 and 1000, \&c. In tables of logarithme the claracteristica nre generally amitted.

The mothod of using a table of logarithms ia the fol-bowing:-'To ascertain, in the most common tables, the logarition of a number less than 10,000 , it is merely necessmry to find the first three figures of tho number in the left-nand column, and the fourth fgure in the horizontal line at the top; ther: opposite to the former and under the latter is the required logarithm. If the given number consints of five figures, find, as before, the logarithm belonging to the first four figures; the diffirence between it and the next lognathm may be ascertained from the margin; this differenco is to le multiplied by the fifth figue of the given number, and one figure cut off from the right of the proluct; and the other figures of this product being added to the preceding logaritur. and the index 3 prefixed, the sum will be the required logarithm.
The process of finding the natural number of any given logacillam is precisely the converse of that just describe. The given logarithm muxt le sought in the table, and against it, in the left-hand column, will le foums the natural number. It has alrealy been shown that tables of logarithers afford an cass methot of finding the product in multiplication, and the quatients in division, by means of simple addition and subtraction. Logarithms are equally applicalle to the setution of question in proportion or the rule of three, it being merely requisite to ath the logarithos of the second and third terms together, and from the sum to sultract the logarithon of the first; the remainder is the logarithm of the fourth term.
A number may, by meano of logarithms, be raised to any requird power, ly multiplying the logarithon of the number hy the index of the power. Thus to square any number, inultiply its logarithm by 2 ; to cube a number, multiply its logarithon by 3; and so ons.
To extract the roon of any given momber, the logarithm of the number must the divided by the proposed index, and the quatient is the logarithm of the required root. Thus, to find the square root of 169 , it is only necessary to divide ita logarithm, which is $2 \cdot 22$ ike 67 by 2 ; opquaste to the quotient will be found the number 13, which is the equare root of 169 , lecause $13 \times 13=169$.

algebra.

We have seren tiat logarithmic tables may be used as a substitute for many lengehened ons rations in arithmetic. It is evident that the value of all methods of computation hes in their brevity. Algebra must he considered as one of the most importane departmentes of mathematical wience, on account of the extreme rapidity nud certainty with which it enables us to determine the most involved and intricate questions. The term algeira is of Arabue origin, and hass a reference to the resolution and comporition of quantities. In the manner in which it is applical, it imbolies a method of jerforming calculations by meatua of various signs and ahbreviatims, which are used insteal of words and phrasen, po that it may be calleel the system of Eymbols. Although it is a merience of calculation, yet its operations must not be emtounded with those of arithmetic. All calculations in arithmetic refer to some particular individual question, whereat those of abgebra refer to a whole chass of questions. One great advantage in algebra is, that all the steps of any particular course of reasoming are, ly means of symbols, phacen at gine leGore rae eye ; so that th omin!, hying onimpeded in its operuLims, proceeds uninteriupt dly from one sh' p of reasoning ∞ another, untu ther a dutuan oi the question is attimed.
sumbole are usid to represest not only the known, bu
also the unknown quantitiea. The preaent custon in in represent all known quantities by the first letters of the alphanet, as a, b, c, \&ce., and the unknown quantitios hy the liast letere, x, y, z.

The aymbole used in nrithmetic to denote addition, aube traction, \&e., belong propurly to algebra. Thus tha agn $+p^{\text {has }}$, denotes that one quantity in to be added to another, and is called the positive or additive sign ; all numhers to which it is prefixed are called pasatiee The mem - minur, denotes that one quantity is to tre kubtrached from noother; it is called the negative or snbtractive sign and all quantitics to which it is prefised aro called nrga tirc. If neither + nor - loe prefixed to a quantity, then the sign + phes is understoont.
The general sign to denote that one number in to bo multiplied by another, is \times; but it offen occurs thet one letter has to be multiplied by mother, and this is reprea sented by phacing those letters ono afler the other, gena rolly according to the order in which they stand in the nlphalet ; thus a multiplind by b, is expressed liy ob. The multiplication of quantities consisting of nure than one term, as lor instaice a $+6 \mathrm{by} \mathrm{c}+d$, may be tre presented by any one of the lillowing methols:$\overline{a+b} \times \bar{c}+\bar{\prime}$, or $\overline{1}+b \cdot r+d$, or $(a+b)(c+d)$. The lar drawn over $"+b$ and $c+d$, which in the two fires examples marks them as distinct quantitics, is called vivenlum, but brackets or parentheses tor the same pur pose, as in the laxt example, are now in more frequentuse,

When a letter is multiplied ly anj; given number, it is usual to prefix that number to the letter. Thus, twico ${ }^{\prime}$ three times b, four times c, six times x, dec., are expresed thun: $2 \mathrm{at}, 34,4 r, 6 r$; and the mambers $2,3,4,6$, thuad profixel, are called the codfectents of the letters before which they stani.
I'he sign \div Inetween two numbers shows, as in arith. metic, that the forner of those numbers is to be dirided by the latter; thus $a \div b$, means that a is to he divided by b. It is, howe ser, more nsual to place the number to be divilded atove that hy which it is tio be divided, with small line between, in the form of a fraction ; thus $\frac{a}{6}$ do notes that a is divided by b.
It has been shown in Arithenctic that the powers of quantities are denoted by a small figure, called the en. poicut or index of the power. Thus, a $\times a$, or the aspuare of a, is expressed by a^{z}; ${ }^{b} \times b \times b$, or the culs of b, is expressed by l^{3}, \mathcal{d}. 'The cube of $a+b$, or $(l$ $(a+b)(a+b)$ in expressed thus: $(a+b)^{3}$.
The roots of quantitien are represented ly the sign $\sqrt{ }$ with the proper index aflixed; thus $\sqrt{ } / u$, or, more simply, $\sqrt{ } a$, expressen the square root of $a ; \sqrt[3]{ } a$ the cube root of $1 ; \sqrt{a+b}$ represents the 4 th or biguadra tic root of $a+b$. Fractic , bal indices are also diequently used to tenote the roots of ynamtitice, thus:
$a t$ is the minure root of u.
at is the cule root of n,
$a l$ is the 4 th root of $" \& c$.
Again, us" is the cubr: rost of a^{3}, or of the equare of a. a_{3}^{3} is the square root of "a, or of the culse of a.
$a^{\frac{2}{5}}$ is the 5 th root of a^{2}.
When two or more letters or quantitics are connected together ly signs, the combinati in ia callod an atgebraic expression. and vach letter or quantity is called a ternh

Quantitics of one term are called simple quantitics; a a, 2 u, 3 h, \&c.
A quantity of two ter, ur, as $b+c$, is called a binomial When a binomial "spresses the differnce between two quantities, it is called a resulval, ar a - b. 6 .

A quantity consisting oi' 3,4 , or many terma, are called respectively triumauls, qualctnomiels, multomomals,

The sign $=$ plared lutween two quantities show, u in arithmetic, the equali'y of those quantities.
When quantities are cunnected by this sign, tha aspree
non in called in Lion, as also, il The yy moul > placel between than another; turned towarls to be grrater tl thanc. The sid murertain which is \int denotes th uncerthin which
The word the uspraital reaso mpresent it : th
 $=c+d$.
Like quantitic of letters, or $ן^{1 \mu N}$ quantitice, and arc such as con $t e d$, which are

The operatior been shown, silm Liest trecher: tha cess is always u mith like sign.n $+6 a=11 "$ Dut ss it often ! be alded togethe bra a fir more Thus, to and 7 afer $7 a+4 a$ uscal methol, 3 nule for the addi to add first the c wadd those of it subtracted from of the grenter m or citerss. 'Thus $-4 a+5 n-$ the sum of the 1 tire: 11 a lwint tracted from 25 which is the req of procedure mai a letter may rep and suppose th seven five poum 9 n, or nine five tailor's till is 6 thre five poun pronds; it is er is really his owt of hia property amount of the hio Grence betwers foun the qreater kemsis equal to quantities will In and owey $£ 200$ tiven deluctrod L'nlike quantiti in une line, nus the sum of 3 a $3 a+2 b+4$ ing that differen alwsys represe course te adden be known. Th presented by 2 is equal to k, w
oc represented
VaL, $1, \cdots .54$

sent custom in to

 first letters of the own quantitice hy
note addition, aub.

 be nalded the mign be nolded to anive sign; all numsilice. The sim to be suhtracud is sultractive signI are called 1 are called negu o a quantity, then
number is to ho II occurs that one and this is repern the other, gene hey stand in the expressed ly. ab. ing of mure than $+i l$, may be mos ing methods:b) $(c+d)$. The h in the two first tities, is ralled a or the same fur. nore frequent uso, ven number, it is
'Thus, twiee a, ce., are expressed $\pm 2,3,1,6$, thun he letters before

10Ns, as in arith. a is to be divided z is to be divided ce the number to e divided, with tion; thus $\frac{a}{b}$ do t the powers of E, called the ex. , $1 \times a$, or the $\times b$, or the cule of $a+b$, or c ? $1+b)^{3}$. ted by the sign s $\sqrt{\prime}$ a, or, more : of $a ; \sqrt[3]{a}$ the 41 h or biquadro c also frequently Us:
the aquare of a ale of a.
es are conneted Ited an sigebraic called a term de quantitic ; as
alled a binomiah nce between two b.
terms, are called ultrnomals.
ntities showa, m itio's. sigh, the expree
on in called an equation: thus, $2+4=0$, is an equa. tion, as alno, $1+b=c-f$.
The symbol $>$ or $<$ is culled that of inequality, it being plared between two quantities, of which ono is greater than another; the open part of the symbol is alwnys furned towarils the greater guantity: thus, $a>b$ denotes W whe greater than b; and $c<d$ denotes d to be greater thanc. The sign of difterence is \sim, only used when it is nincertain which of two quantities is the grenter; thus isf denotes the differcuce between e and f whon it is oncerthin which is tho greater.
The word theriforr, or consiquently, often occurring in Hgebraitsl reasoning, the symbol ${ }^{\circ}$, has heen chosen to rupresent it: thiss, the sentenco "Therrefore $n+b$ is equal to $c i-d$," is thus expressed in algebra, . $\cdot, t+b$ $=c+d$
Like quantities are such as consist of the samo letter of leters, or power of letters: thius, 6 a nud 2 a ure like quantities, and also 4 ahr and 9 abir. Lintike quantities quasuch as consist of diflerent letters: as, $4 a, 5 b, 6 a x^{2}$, 4 d , which are all ulike quantities,

Aldition.

The operation of aldition in arithmetic consists, as has beas shown, simply in joining or addinu several quantities together: thus, $4+8+7+6=25$. This sume process is always used in algehra, whenever like quantities with like sigon are required to to added: thus, $2 n+3 n$ $+6 a=11 a ;$ and - $7 b-4 b-6 b=-17 b$. Dut as it often hapjens that like quantities which are to be added together have unlike wigns, addition has in algebra a far more extended signification than in arithnctic. Thus, to addl $7 a+4 a$ to $8 a-3 a$, it is evident that, afier $7 a+4 a+8 a$ have been odded according to the usaal method, 3 a must be sultracted. Hence the reencral nule for the addition of hoke quantities with whelhe signs is to ald firyt the coelficionts of the positive terms, and then to add those of the negrative terms; the loess sum mist be gabtracted from the grater, and to this dillerence the sign of the grater must be annexed, with the common letter orleters. Thus, let it le required to ndd $7 n-3 a$ $+4 a+5 a-6 a-2 a$ and $9 a ; 25$ " will be found the sum of the positive curms, nind 11 a that of the negafire; II a being the less number, must therefore be subtracted from $25 a$, the greater, leaving a remainder of $1.1 a$, which is the required amount. The reason of this mode of procedure may he shown hy a simple illustration:-As a leter may represent any quantity, let a represent 55 ; and suppose that a gentleman has in one bank 7 n , or eren five pounds; in another bank $4 n$, and in another $9 a$, or nine five jounds: let us suppose, too, that his tailor's bill is 6 a, or six five poumels; his baker's 3 a, or three ive pounds; and his hutcher's 2 n, or two five poads; it is evident that, to ascertain how mach money is really his own, he must first compute the whole value of his projerty dispersed in the different banks, then the amount of the lills of his creditors, sul then find the difSrence between the two sums by subtracting the lews fion the greater. When the aggregate of the positive umsis equil to that of the negntive ones, the sum of the two quantities will le equal to (1) thus if a man jossesses . C2000, sad owes f 2000 , it is evident that when lis slehts have frea deducted from his property, nothiug will remain. Lalike quantitics can only be added by collecting them in one liae, nod prefixing the proper sign of each; thas, the sum of $3 a+2 b+4 c-2 d$ can only le rendered $3 a+2 b+4 c-2 d$; this will be evident by reflectiag that different letters in the same algebraieal expression sways represent dillerent quantions, which cannot of course be added intn one sum unless their precise value beknown. Thus, the addition of a and b connot be represented by 2 a or $2 b$, beccuse that would imply that a is equal to b, wheh it is not necessurily ; neither cculd it ecrepresented by t^{b}, because $a b$ denotes the multipilicaYoL. I. -54
tion of the two quantlites; the only method then of ex pressing these aums is thus, $a+i$. When like and un like quantities are mixed tngether, as ln the following example, the like quentitica must first be collected together according to tho method above describod, and all unlike quantitice must be annexed in order:-

$$
\begin{aligned}
& 9 a+5 x y-8 a y \\
& -8 x y-10 x+5 x y \\
& 3 x-7 a y-5 x \\
& 5 a x-6 a x+11 y \\
& -5 y-4 a+9 a x \\
& 2 a y+12 x-2 a \\
& -10 y-3 x y+13 a y \\
& \hline 3 a-8 a x-5 x y+y \\
& \text { Subtraction. }
\end{aligned}
$$

When two like qu intitios, having like aigns, are to be subtracted the one from the other, the process is precisely the same as that already deseribed in arithmetic: thus, $3 a$ suhtracted from 7 a, leaves as n remainder $4 a$. From $8 a+5 a$ take $6 a+2 a$, and the remainder will be $2 a+3 a$, or $5 a$.

But supposing it were required to subtract $6 a-4 a$ from $9, t$, it is evident that some other prucess must he adopted; herause, if $6 a$ be aubtracted from 9 it, the proposed operntion will not be performed; for it is not $6 a$, lint $6 a-4 a$, that is, $2 a$, which is required to be subtracted from $9 a ; 6$ a subtracted from 9 a leaves $3 a$, which is 4 a less than would result lrom subtracting $2 a$ from $0 a$; but if to $3 a$ we add the other term, namely, 4 u , the sum will be the remainder songht, because $3 a+$ $4 a=7 a$; and if $2 a$ be sultracted from $9 a$, which is just the same quertion in another form, for $6 a-4 a$ is $=2 a$, the remainder is just $7 a$ as before. So, if $a-b$ is to be sultracted from c, the remainder would be $c-a$ $+h$, and for the same reason. It may therefore be given as a general rule, that all the signa of a quantity which is required to lie subtracted from another, must be chsnged: thus, when $4 x-3 y$ is subtracted from $7 a+5 b$, the remainder is witten thus, $7 a+5 b-4 x+3 y$.

When like guantities ore to be subtracted from each other, it is usual to place them in two rows, the one above the other; the signs of tho quantities to be suhtracted must, for the reison above adduced, be conceived to le changed; ond the scveral quantities must be added. as slown in the lollowing examples:-

> From $5 a x+7 x y-2 y$
> Take $3 y+3 a x-6 x y$
> Remainder, $2 u x+13 x y-5 y$

Mutipliention.

The multiplication of two quantities is performed by multiplying, as in arithmetie, the coeflicients of the quantitios, and thea prelixing the proper sign and nonexing letters: thus, the product of 3 a . multiplied by 5 b , is $15 a b$, and $7 a \times 4 a b=28 a b^{2} b$.

When the signs of hoth quantities are alike, the aign + is to be prefixed; hut when unlike, the sign - must be prefixed, whith may be thus shown at one view:-

> 1. + multiplied by + produces +
> 2. - multiphied by - produces +
> 3. + multiplied ly - produces -
> 4. - multiplied by + produces -

Hence the techmicnl rule generally given is, that "Sike numbers produre plas +, and unlike produce minus --" This, however, is not perfectly true when more than two quantitios are to be successively multiplied; hecause although the product of an even number of negative quantities is pusitive, yet the product of sn odd number of negative quantities is ulways negative; thus,

$$
\begin{array}{r}
-a \times-b \times-d=-a b d \\
\text { and }-a \times-b \times-d \times-c=a b d e .
\end{array}
$$

When the same letter occurs in both quantities, the 2×2
 In the mulhiplication of complound quantities, it in unual - commence from the lefthand figure; the multidicuOnn, for instance, of 8 ab $-4 a c+x$ by $2 a$, is thus serberned :-

$$
\begin{aligned}
& 8 a b-4 a c+x \\
& \frac{2 a}{16 a^{b} b-8 a^{3} c+2} a x
\end{aligned}
$$

To multiply two compound quantition, each term of the one must, as in nrithnetic, he multiplied by eacds term of the other; theme particular or partial prohlucts momt he added according to the rulee of muldition, and their wum will give the whole prokluct, as shows in the following inatarce:-

> Multiply $3 a+8 b$
> Hy $\quad a-b$
> $3 a^{2}+8 a^{a} b$
> $-3{ }^{4} b-8 l^{2}$
> Product, $3 a^{2}+5 a b-8 b^{2}$

Divinion.

The operations of division lefing in alcebra, ns in arithmetic, merely the converse of those of multiplication, the anme rules rexpucting signs upply in both. Thus, $6 a b^{2}$, divided by $2 b$, is equal to 3 at ,

$$
\text { And }-8 c x^{2} \div 4 x, \text { or }-\frac{8 r x^{2}}{4 x}=-2 c x
$$

In divixiom, all letters common to both guantities anuat he omitted in the gutient; and when the same lettera occur in hoth with dillierent indieres, the index of the letter in the divisor must he sultracted from that in the dividend; thus,

$$
\begin{aligned}
a b x+a b, \text { or } \frac{a b x}{a b} & =x: \text { and } \\
6 a^{5}+2 a^{3} \text { or } \frac{6 a^{3}}{2 a^{3}} & =3 a^{2}
\end{aligned}
$$

When the exponent of any leter in the divisor ex. ceeds that of the sane letter in the dividend, the latter exponent must be sultracted from the ionero, and the quotient will be in the form of a fraction; thus,

$$
-12 a^{3} x^{2} \div 8 u x^{5}=-\frac{122 a^{3} r^{2}}{8 a r^{5}}=-\frac{3 a^{2}}{2 x^{3}}
$$

When the number to loe divided is a compound quantity, and the divisor a simple one, then each term of the dividend must be diviled separately, and the reault will be the answer; thus,

$$
\frac{6 a+24 a b+8 a^{2}+12 a c}{2 a}=3+12 b+4 a+6 c
$$

When the divisor and dividend are both compound quantities, the rule is the same as that of long division in arithnetic. When there a remainder, it must be made the numerator of a fraction, under which the divisor must be put an the denominator; this fraction must then be placed in tho quotient, as in arithmetic. The compound quanlities must, however, be previously arranged in a particular way, namely, arcording to the descending powers of some letter, aa of b in the following example; and this keter is called the leading quantity. The tollowing is an example of the disision of componad quantiles: -

$$
\begin{gathered}
-a) \begin{array}{c}
b^{3}-3 b^{2} x+3 b x^{2}-x^{3}\left(i b^{2}-2 b x+x^{2}\right. \\
b^{3}-b^{2} x \\
\\
=2 b^{2} x+3 b x^{2} \\
=2 b^{2}+2 b x^{2} \\
b x^{2}-x^{3} \\
b x^{2}-x^{3}
\end{array}
\end{gathered}
$$

Fractiona.

The rules regulating the manugement of fractionam algelora are similur to those in urithmetio.

A mixed quantity in reluced to a fraction by multiptr. Ing the whole or integral part by the denominator of tio fraction, and annexing the numerator with itt propen nign the the produrt; the former denominator, if plaed under this aum, will give the requirad fraction. Thum the mixed quantity $2 x+\frac{6 u b}{6 e}$ muy bo thuas reduced to a fraction: $2 x \times 6 \mathrm{e}=12 \mathrm{c} x$, nad na 0 ab must bo added to form the numerator, and the former dinoming tor be relained, the required fraction is the following: $12 e x+5 a b$
be . An operation exactly the reverse of thia would of course be requisite, wete it proposed to reduce a fraction to a mised quantity. Thus, the fraco tion $\frac{12 e x+5 a b}{6 e}$ may to reduced to a mixed number by dividing the numerator thy the denominator; the numentur of the fractional part must the formed by that term which is not divisible without a temainder; the following ia therefore the required mixed quantily: $2 a+\frac{5 u b}{6 c}$. A fraction ia reduced to its lowest terms, in algelra na in nrithmetic, ly dividing the numerator and demominator by any quantity capmale of dividing them looth without ienting a remainder. Thus, in the fraction $\frac{10 a^{2}+20 u 0+5 u^{2}}{35} a^{2}$, it is evident that the coellicient of every term can be divided by 5 , and an the lethe: a enters into every term. 5 a may be called the greatest common measure of this fraction, becase it can divide beth the numerator anel the denominator. The numerator, $\left(10 a^{8}+20 a b+5 a^{2}\right) \div 5 a=2 a^{1}$ $+4 b+a$; and the denominator, $35 a^{2} \div 5 a=7 a$; hence the fraction, in its lowest terms, is $2 a^{2}+4 b+4$, Sometimes the greatest common mesaure of two quan. titaes is not so obvious na in the example just adducet, in which case recourse must the had to the following operation:-'The quantity the expunent of whose leab ing letter in the first uram is not less than that in the other, must first be diviced by the othir ; the divise must then be divided by the remuinder; cach sucesesing remainder is made the divisor of the last divisor, until nothing remains; when the divisor lase used will be the groatest common measure. Quaatities which have no common measure or divisor except 1 , are called incuro mensurable; thud, $7,5,3$, and 11 , are incomuchsuralie quantitice, and are also said to be prime to cach othrt. When fractions are required either to to added or to to subltracted, they must necessarily twe first reduced to 1 common denominator, which is effected by multiplyin? cach numerator by every denominator hut ite own, to pote duce new numerators, and all the denominaturs togechet for the comunon denominators. The new numeraton ean then be either added or subtracted accorling as tho case may ıequire, and the new denominator must be lett unchunged. Multiplication of fractione is purtormed by multiplying all the numeratore together for a ans mio merator, and their denominutors together tor a new deno minator; it is then usual to reduce the resulting traction to its lowest terms. Division of fruetions is cllict doy multiplying the civitend by the ereciprorat of the divisith The reciprocal of any quantity is unity, or I divided hy that quantity, or siluply that quantity inveled: thun, the reciprocul of a or $\frac{a}{\frac{1}{l}}$ is $\frac{1}{a}$, and tho reciprocul of $\frac{a}{b}$ is $\frac{b}{a}$ therefore, to divide a fraction as $\frac{8 a^{2}}{2}$ by $\frac{4 a}{5}$ tha dinidend

$\frac{10}{10}$ mued be n$\frac{8}{4 a}$; therefo diniked by its g unen requircd, a

The raising alleal minolutio yuasity into it, puver.' When neecesary to pl merely tis indic in ${ }^{4}$, and the c
When tho II multiplicd by th a^{d} iя a^{5}, lecaus b be ruised be denominator in
thus, the myua
quantity is + , raised must be $x+$ and anl -a<< A compound Hian one term. plying it into it power. This dereciled in inu othus found:

The oph ratio invalation, bein cube rout, \&e., netical comeflicis quare noot of 4 index of the gi maure root, liy So.: thus, the
The square trach: by an arahnctic, and The culbe root proces.

Some numb

 number multipl of such quanti or hy the sign the Latin rustiat bie cube rout $\sqrt{3}^{3}(a+b$ The approx ascertained to ecminon rules 1 of 2 is 1 and the exact valu urubinal is Liem from all (i)nal. of whiet therefore ternue rully called sur lem.
nent of fractione liir.

raction by muthiplr. ifriominator of tive or with ith prope ominter, if plame id fraction. Thum y be thus reduces
ad nas 6 mb must l former denomina a is the following: tly the reverive of vete it propound no y. Thus, the fram
to a mixed number
denominater; tho mast he formed hy thout a remaunder ed mixed quantity: to its loweat termin
ling the numerstor capralle of dividius ader. 'lhus, in the
4 evident that the
vided by 5 , and an 5 a may be caller uis fraction, becaus id the denominator: ($\left.{ }^{2}\right) \div 5 u=2 u$; $u^{2}+5 a=7 a ;$ is $\frac{2 a^{2}+4 b+a}{7 a}$. caure of two quan. ample just adduces, d to the folloxing ant of whose laab es than that in the other; the dirisue r ; ruch surceseino In last diviwor, untid ant used will in the ies which have re 1, sre called incrio. e incommencuratio the to each other - be added or to to first redured to a eted by multiplying hut its own, to prow rominaturs together e new numerater ed arcorling as tha nimator must be hat men is perfiuriacd by her for a mix now her for a new denwe e restiting traction ctions is etfect doy roval of the divisisit ity, or 1 divided y , ity inverted: tiunh
eriprocul of $\frac{a}{6}-\frac{b}{a}$ $4 a$
in must be multiplied by the reciprocal of $\frac{4}{3}$, which $-\frac{5}{4 a}$; therefore, $\frac{8 a^{8}}{4} \times \frac{5}{4 a}=\frac{40 a^{3}}{16 a}$; this last fraction, dinided ly ita greatest common meanure $8 a$, in the fracuna mequired, namely, $\frac{5 a}{2}$.

Involution and Evoiaton.

The raising of a quantity to any required power is alled molution, und is performed hy multiplying tho quantity into iterff as oflen as it in budicated by the given puwer. When the quantity has no index, it is only nereesary to phace the given power atove it, in order merely ti inulicate the power: thus, the 4 th power of a is a^{4}, ant the cube or 3 d power of $a+b$ is $(a+b)^{3}$,
When the quantity has an index, that index must be multiplied ly the given jower; thun, the fourth power of ${ }^{2}$ is is, ${ }^{n}$, lecause $2 \times 4=8$. If the quantity required to be raised be in fraction, hoth the numerator and the denominator must be multiplied ly the given jower: thus, tho equare of $\frac{a^{2}}{\mathrm{~m}^{2}}$ is $\frac{a^{4}}{\mathrm{c}}$, Whens the sign of tho quantity is + , then all thn powers to which it can le nimed numst lee + ; if -, then all the even powers will $x+$, and all thr odd powers - ' 'haus $x \times x=x^{2}$; $-a<-n=+n^{2} ;-a \times-n \times-a=-a^{3}$. A rompound yuantity, that is, one consisting of more Han one term, is ruised to any given power by multiplaing it into itself the numbrr of times lenoteil by the power. This is done arcording to the methonl already fencri'ed in multiplicution. Thus, the square of $x+4 ;$, in thus found:

$$
\begin{aligned}
& \text { Multiply } x+4 y \\
& \text { By } \frac{x+4 y}{x^{2}+4 x y} \\
& \frac{4 x y+16 y^{2}}{x y+16 y^{2}} \\
& \text { Square }=\overline{x^{2}+} \cdot x y+16 y^{2}
\end{aligned}
$$

The op rations of evolution are the roverse of thase of insolution, being designed to discover the eqpare root, cube root, de., of any siven quantity. The roots of numerical rewficients are found us in arithmetic: thus, the gquare peot of $49 a^{2}$, is $7 a$, hecause $7 \times 7=49$. The index of the given quantity must be dividfol thy 2 for the ypare root, ly 3 for the cule root, by 4 for thi 4 th root, So.: thus, the culve root of a^{8} is a^{2},
The square root of compound quantities may be extrate: by a methol very similar to that descriled in ertbmetic, and of which an example was there given. The cube rout may likewise be extracted hy a similiar proces.

Irrational Quantitics, or Surla.

Some numbers have no exact ront; for instance, no number multiplied into itself can proluee 5 . The roots of such quantities are expressed by fractional indices, or the the sign $\sqrt{ }$, which is called the radicsl sign, from the latin radir, a root: thus, tho syuare root of 5 , and the enbe root of $(a+b)^{2}$, may lee expressend cither by $\wedge^{4}, 3^{2}(a+4)^{2}$, or by $5^{4},(a+2 b)^{!}$.
The spproximate value of such quantities can be asertained to any required degree of exaceness by the cemmon rules for extrating roots: thus, the square root of 2 is 1 and an indefinite mumber of decimals; but as the exact value can wever be determinow, the bame of wrationat is given to such quantities, to distinguish tiem from sill munners whatever, whether whole or frattisable of which the value can be found, and which are therefore termed rationd. [rrational nombers are generally called surds, from the Latin surdus, deaf or sense- hem.

When two quantities ore equal to each other, the alge braical exprension denoting their equality in called an cyuation. Thus, $x-y=4+3$ is an equation, donoting that if 2 be deducted from ame unknown quanity reprowented by x, the remainder will be equal to $4+3$, that la, to 7 ; therelore, the value of x in this equation is cvidently $7+2$, or 0 .
The dextrine of equationa conatitute ly far the mont important part of algelra, it being one of the prineipal oljeeth of mathematica to reduce all questions to the firm of rquations, and then to ascertain the value of the un known quantition ly means of their relations to other quantitien of which the value is known.

Many problems, which are now quickly and readity determined by lwing reduced to equations, used formerly to be solved by tedioua and intricate arithmetical rules; and they may still be found in ohl treatisen on arithnetic, arranged unter the titles of Double and Single Fosition, Fulee Powition, Allegation, \&c. Equations receive dif fermt names, necordmg to the highest power of the unknown quantities contained in them. Anequation is said to be simple, or of the first degree, when it contains only the first power of the unknown guantity: thas, $x \times b$ $=35 a-2$ is a simple equation, the unknown quintity being represented by x, us it generully is in other equab tions, and the known quantitien by the other betters and higuress $x^{2}+4=8 u$, is a ysadrat. equation, becanas x, the unknown quantity, is raised to tho second power.
$a^{3}=a+3 b$ is a cubic equation, the unknown quantity leing raised to the third power.
$x^{4}-a=25 c$ is a bignudratic equation, because x in raised to the 4 th power. If equations contain unknown quantitien ruisell to the 5 th, , ith, or higher powerr, they ase denominated accoatingly.

The quantities of which an equation is composed, are called its terms; and the parts that atand on the right and left of the sign $=$, ure called the members or sides of the eryuation.

Whes it is lesired to determine any question that may arine respecting the values of some unknown quantity by means of un criuation, two distinct steps or operations are requisite; the first step consibts in translating the question from the collopuial language of common life inte the prectiar analytical language of the science. The second step consists in tinaling, by given rules, the answer to the question, or in other words, the solution of the erpatim. Expertness and facility in performing the firmer operation rumot te produced ly any set of rules; in this, us in mayy other processes, pructice in the best teacher. Ewery hew quostion requires a new process of reasoning; the conditions of the questio:s must se well considered, and all the operations, whether of addition, subtraction. \&e., which are required to te performed on the quantities which it contains, are to be represented hy the algebrsic sigus of,,$+- \& c$: the whole problem must be written down as if these operations had been already pertionmed, und as if the unknown yuantities were discovered, which cun te dons very brietly by aunstituting the first letters of the alphalet for the hnownquantities, and tho la-t letters for the unknown, prelixing to each the signs of addition, multiplication, Sc., which may be tenuted in the gurstion. 'rhus, suppose a tirmer wished to divide $\mathrm{fl}, 15 \mathrm{~s}$, Letween his swo sons, allowing 9 s , more to the elder than to the youngre, what would cach receive? To axperss this gueston in algeorare anguage, the share of the younger son may tre representei ty x, mad then that of the elder som will be $x+9$. The steps of reaseaing hy whidh this question may bo solved, are the following:-The share of the elder - the share of the younser is $\mathcal{L 1}, 15 \mathrm{~s}$., "qual to 35s. hertiore, $x+9+x=35$, or $2 x+9=35 a 2 x$ $=35-9$, or $2 x=26 \therefore x$ (share of the younger son)

- $\frac{36}{2}=13$, and $x+9$ (the share of the elder ann)
$-13+9=22$.
The secoud operation In determining a quention may be auid to combint in comitrivancea to get x, wr the unknown qumatity, tu ntand nloue on one side of the spuation, without destroying the equality or thlaner latween the two midea; inchuwe, in such an equation, fire instumer, an the fillowiug, $x=4+2$, the value of x is at mice acen: if 6 werw to te put in the place of x, the question
 thum, $6=6$; therefine, 6 in the rous or sulution of the equation, $x=4+2 . \quad$ In meme queations, the buknown quantity in mo murh involved with known guantitien, that It in often a ditticult, although alwaya a highly interesting proceme, to separate it from them. Many ruies tise eflieting thin are gisen in mewt algelvaical trentines, but they may all be comprisel in one general olwervation, numely, that any operation, whether of adlition, sultraction, ice., may be pertirned wn one wide of an equation, provided only that the very ame operation be perfirmest on the other side, so an not to idsothyy therr aqpatity. I'hna, in the equation $x+5=18$, it in wistent that, if 5 couih he remoself fion the leff to the right sile of the equation, x
 It having twedn ulremly wtated that any oproution may be performed on one wille of the equation, prosided ouly the anme operation he perfiomed on the uther, it bollows that 5 may be subtrasted trom the left miste, if wulitracted likewise from the right: thereffure, $x+5-5=12-6$; but $5-5$ twitup equal so 0 , the equantion would mere properly le expronsel thas, $x=12-5$; that in to way. the value of x in 7 . Agam, in the equation, $x-10=87$, add 10 to each mide of the equation; then, $\ell-10+11=$ $27+10 ;$ lut $-11+10=0$; therefiore, $x=27+10$. When the sume ynamtity in thus nublacted from hoth mides of an equation, or added to beth siden, ilue "peration is technirally, thaugh perhapw incorreetly, trmed, "transposing yuatuties from vies side of an cyintion to the other."
The reamon why the same operation proformed upon both, sides of ant cyuation dores not alter their cymality, is simply becanse "if "iphal quantitien be adided to, or silte tracted from, equal quantitien, the value of the quantitien will atill te equal." 'T'o illustrate this, suppowing a wince merehant has : caskn of wine, each cosk containing 36 gallons, it is evulows that, if he drawn off the eume number of gallons from coch cank, the quantity of gallons rematiniag in ruch cunk will witill twe equal; so, if be were to ryplace the same mumber of gallomes of wine in carch cuak, the number of gallouns contained in each woudd xtill tee equal to rach sther. For the same reasin, if the two sides of an equation were eilher multiphed or divided by the aame number, there equality to each other would atill remain; in the equation $3 x=27$, the value of x may be discovered ly dividing lnoth bides of the equation by it roefficient 3 ; thus, $\frac{3 x}{3}=\frac{27}{3}$; but $\frac{3 x}{3}=x$, and $\frac{27}{3}=9 ; \ldots x=3$. In the mame way, if the unknown quantity in an sguation is required to the divided by mone known quantuy, each side of the muaton may be multplifict by the dionore: thum, in the equation ${ }_{4}^{x}=32$, if ench member te mattiplied by 4, the reault will be $x=32 \times 4=1: 12$. This is technically called elearing an equation of iructuots.

On Simple Eapuations Comanining iwo or more t'ulnown 1 duntilen.

If may be given as a general rule, that when a question arimer as to the value of two or more muknown
quastiten, cana of the whantities must be represconted
by one of the last letters of the alphabet, and as many aeparute equationa munt he deduced from the quemtion e there are unknown quantitiea, A group of equatione of thivk kind la rallayl a ayatem of cimultaneown pyuatione,
If th be required to selve a nymems of two simple eque tioun, contalning two unknown quantitien, the moen natp ral methen merma to hu to intermioe firt tha value of one of thet unk uown quantiticn hy mernan of hoth the equan tiona. Thrn, as "thingn which are cqual to the mavie thina are "yunl to cach other," It followa that the two nete of numilwiss or lietters in the two equationa, whirb have lyren amertained to be equal to the value of x, wid almo be equal to each other, nad may be refluced to an epluation, which will contain only one naknown quantity, Thin procesa in technicully called rimination. leet it, ing inatunee, lve required to find the length of two plampe of wool: the length of both plankn together in 20 feet and one plank in a fied longer than the other plame This in evidently a quention involving two unk nown «uantitien, namely, the length of each of the twa plank of wood. To trnanlate thin queation into algebraical language, call the longer plank x, mid the anoter plank y, then the facto alove mentioned may bee thuas stated $x+y=20$, nid $x-y=8$. The value of x may le aserertained by meana of both tho equationa, in the for lowing manner:-

The first rquation gives $x=20-y$
And the seromil, $\quad x=8+y$
'The two valnce of x, thus ascertained, musi form a new equation, thus:

$$
\begin{aligned}
& 20=y=8+y \\
& 20=8+2 y
\end{aligned}
$$

So that it in evident from thim lant equation that $2 y$ in Mual to 12 , wecause $20-A=12$: therefore $y=6$, and $\because 0-6=14$. The length of hoth the plaske is tuan usectainul, the longer tecing it feet in length, and he whurter 6 frem.
This prohlsm is not only given as an sxunghe of flimes whflim, hut also as un illustration of the semeral theorema that "the greater of two numbern in equal to hatf then sum, thes half their litherence; and that the leses number in "ynal to half the sum, minus hatr the daterence." Thou the ulwe puestion might have bera wolled in the following manner:

$$
\frac{20}{2}+\frac{8}{2}=14, \text { and } \frac{20}{2}-\frac{8}{2}=6
$$

The folluwing is the method of demonstrating the curious theorem ulgelvaically:-Dat a and b be any two numbise of which as the greater, sad let their suan bo represented ly a, and thair diflerence by d;

$$
\begin{aligned}
& \text { Thrn, } a+b=1 \\
& \text { and } a-b=d \\
& 2 a=a+d \\
& \text { and } \quad a=\frac{d}{2}+\bar{d} \\
& \text { Aleo, } 2 b=\frac{1}{2}-\frac{d}{d} \\
& \text { and } \quad b=\frac{1}{2}-2
\end{aligned}
$$

Quadratic Fapuntions.

A yuadratic equation literully mesne a equiluret equas. tion, the term 1 wing derived from the lating gudrath, mpuared: a quadratic cquation, therefore, is imerely an Mpation in which the unknown quantly is syused of rainevl to the merond power. Quadratic equations ano ofter rallad equations of two dimenmions, or of the seemed degree, therause all equationa are clansed acrooding to the index of the highest prower of the unknown quantuis contained in them.

There are two kinda of quadratic equations, namely, pure and adlected. P'ure quadratic equations are tine
an midet the firm aol appear I there quationa, becaum ruve of the sylt winplo equations, of both sidee of the unknown IU of find the value Wuecting 4 from r^{d} is at once seen the mature foot denly give the ferva of afferted ast only the mina byown quatities.

There are two We are indehted t of which a tull ne work entitled $B y j$ sureed by tho ed opors which both liu evident that $x^{2}+b x=1, t h$ pote eypunc: it it the cquation that b he mado a com militions, multyli adp ahould not fout of each side, the first degree, process
The following und more to ainup utility, than any waced. A preas wild $a_{g}^{\text {ain }}$ at \mathcal{L}^{\prime} " v muhas one - pieces.

Grometri (ft earth, and tin wee sience which is ond size, and ma murest guide to th of dimension or fnowledge requir exyinvers, and op is deduced from matics. All wor te rules which sume laws observ of mathematies, y rutavating habit siect it forina a oburved from ev 1) present, the st, piemisen are clea fuctory. All si: beil: hrought but, to one acqu repeculations or orcepted as prov viapt at refutatic It has been
liet, nud an many m the question fr of equintione of oun eyuationa. two aimple equa ch, the mont nat the value of ond of hoth the equa qual to the ma own that the twe eyuntions, which ev value of x, will he reduced to an nknown quantity a'ion. Let it, c th of two plarku "gether in 20 fret the other plank is two unknow of the two plank Into algebraica the shorter plant y lne thos stated lue of x may in ations, in the fol
${ }^{20}-$
$8+$
mum form a new
ation that 2 y it relore $y=6$, and to platuky is the "longth, and the
example of chime grineral theorem yual to half the t the lass number It the dulirence, rell solved in the

$=6$

monstrating this mand 6 tre any two let their sum bo $d ;$
d
$\overline{2}$
d
d
2
a sçunroll requoco tatin quadratu, re, in merely ity is muaied on If Puntions ale or of the secod arcording to the nown quantulis
ustions, namely, pations are tine

- Which the fient power of the unknown quantity doem pon appear! there in not the least dililheulty in molving sueh aquationa, beccatne all that is requiate in to ohtain the aquec of the muare accoriling to the rulea for molving anple equations, and then, by eatracting the mpuare root at both sides of the equation, to neecrtain the value of the unknown gnantity. For inatance, let it he reyuirel w find the value of x in the equation $x^{2}+4=29$. Ily Jarting 4 from each shite of the equation, the value of Wie st once neers to be ns fullows $1 x^{2}=29-1$ - 85 ; tin maare root of both wildee of this equation will evio denly give the value of x, thus, $x=\sqrt{25}=5$. A. 1 dente or afferted yundratic equatione are such na contaln for only the manara, but alan the first power of the une (mowa quantitios.
There are two inethods of molving quadratic equations: me are liuldited to the Hindoos for one of theme methols, of which at full acconnt is given in a very curions Ilindoo wooh entited Bija Graita. The other methol was diacovered by the early Italian algebraiste. The prineiple opon which both inethols are foumided in the following this evident that in an adfocted equation, an for instance, $a^{2}+b x=d$, the first mumier, $a^{2}{ }^{2}+b x$, in not a coms plete squar; ; it in, however, necenaary for the molution of fur equation that the first nide moouhl be so modified an whe mate a romplete mpuare, and that, by correwponling aditions, muluplications, \&ec., the equality of the meeond de shonk not be leat; then, by extracting the mpuare tant of cach side, the equation will to reduced to one of the first degree, which may be solved by the common process.
The following llustration from Brilge will perhaps knd more to nimplify the subject, and show itn practical vitity, than any mere nbatract rules which might is adrascel. A permon bought cloth for $\mathcal{L} 13,15$ n., which he wid arain nt $\mathcal{L}^{2} 2,8$ s, per piece, and gained by the hargain w puh has one piece cost him. Required the number «i picien.

Let $x=$ the number of plever, $833,16 \pi . \times 20=6751$ therefore, 675 the number of winling each plece cont, and $4 A^{x} x$ la equal to the number of ahillingn for which be sold the while, becaume \&'2, 8n, or in millings was the price he obtaned for rach plice. "Therefore $48 x-675$ was what he gatned by the bargain. Ifence. by the queution, $48 x-675=\frac{675}{x}$. 'I'lis equation, after having been aubmitted to the uxial operationa of transpoaition rind divinion which have been already den meribed, ansumea the form of

$$
x^{2}-\frac{225}{16} x=\frac{225}{16} .
$$

The next etep in to complete the square; thim to done by adding to sach side of the equation the ayware of hulf the coefficient of the second 1 trm .

$$
x^{2}-\frac{225}{16} x+\left(\frac{225}{32}\right)^{2}=\frac{225}{16}+\frac{.61625}{1024}=\frac{65025}{1024}
$$

then, extracting the aquare root,

$$
x^{2}-\frac{285}{32}=\frac{245}{32} \text { nodd } x=\frac{480}{12}=15 .
$$

Therefore, 15 pieces of cloth was the quantity wold.
It in oftell requinite, for tho moro eany whlution of equationa, to ehange them into other equations of a different firm, hut of equal value; and this is twehnically termed 'Iransformation. Our limits will not permit us to enter on any explanation of this rule, or of the rulen farther advanced in the science, an Permutatons, Undetermined Coelficiente, Binomial 'Theorem, Exponerntial Equatione, de. 'ro those who desire to possens a thorough know ledge of aligebra, we reler to the complete and acceasible treatise of Mr. Bell, in Chambers' E Educational Coursen

GEOMETRY.

Grometiy (from two Greek works signifyung the arth, and to ménsure) is that branch of mathomathent scence which ts devoted to the eonsideration of form nil aize, and mny therefore the asid to the the bent and mrest guide to the study of all seiencem in which ideas of diacasion or space are involved Almost all the tnowledge required by navigutors, architects, surveyors, angreers, and opticians, in their requective oceupations, is deduced from geometry and uther branches of mathematics. All works of art are constructed according to tie rules which geometry involver, and wo find the ame laws observed in the works of nature. The atudy of mathematics, generally, is also of great importance in cultivatiog habits of exact reasoning; and in this resect it froms a useful anviliary to logic. As will be dwerved from even the short aketeh which we are alle to present, the stepr of reasoning from given and exact premises are ehour on! ubirniable, and the results satise fictory. All aroojecta, it in truo, are not susceptible of bing brenght to the test of mathematical unalysis; but, to one acquninted with the process, no fantastic apeculations or loose points in any urgument will be accepted as proved truths, or passed over without an atwapt at refutation.
It has been frequently asserted, though apparently
with little truth, that geometry was first eultivated in Esypt, in refirence to tho meanurement of the land. Thales of Miletus, who lived about Gut n. c., is among the first concerning whose attainmentr in mathematical knowledge we have any autheotic mformation. About two centurics later, the Jatonic echool was lounded, which event is one of the nost memorable epocha in the history of geometry. Itw founder, Pluto, made several important discoveries in mathematics, which he considerad the chicf of sciencen. A celebrated school, in which great improvemett was made in geometry, was ent Wished shout 3010 u.c. 'Tas this school the celobrated Euclid brlonged. After this period, geometrical science, like all general knowledge, gradually declined, and such continued to tre the case mintil about a century atter, when it revived among sho Arabians.

Atrout the beginning of the fifteenth century, geoinctry, as well az all other departments of knowledge, beamu more generally cultivied. In modern times, Kepler, Galice, Tucyuet, Pused, Descastes, Huygens of IIolland, our own Newton, Maclaurin, I.ngrange, and many others, have enlarged the bounds of mathematice. science, and have brought it to bear upon subjects which, in former ages, were considered to be beyond the grasp of tho human mind

As imploved by the labours of inathematicians, geometrical science now includes the following leading de-partments:-Plane Geometry, the basis of which is the Six Books of Euclid's Elements; Solid and Spherical Grometry, Spherical Trigonometry, the Projections of the Sphere, Perpendicular Projection, Linear Perspective, and Conic Sections. But to these main branches of the science thero are added Practical Mathematies, which may be defired as an elaboration of the alsatract Jnctrines and rules of general mathematics, in application to many matters of a practical nature in the husiness of life. For example, among the branches of practical Mathematics, wo tind Practical Geometry, Trigonometry, Mcas arement of Heights and Distancea, Levelling, Mensuration of Surfaces, Mensuration of Solids, Land-Surveying, Calculations of Strength of Materials, Grainging, I'rojectiles, Fortification, Astronomical Probhems, Navigation, Dialling, \&c. In such a limited space as the present sheet, it would he altogether impossible to present even a mere outline of these mamerous brameles of general and practical mathematics; and all we propose to do is to offer a sketch of a few leading features of the science, in order to show what is mont by various terms in common use, and also to incite the reader wa regular courso of atudy.

definition of terns and figures.

In common language, the extremity of any sharp instrument, such as an awl, a pencil, or a penknife, is called a point. A amall mark or dot made with such an instrument on wood or paper wontd also be called a point ; but if examined with a magnifying glass, it would appear an irregular spot, having length and breadth. A groweirical puint, on the contrary, has neither length nor breadth, and may be called on imaginary dot.

The extremities or ends of lines sire always considered to be points; and when the two lines intersect, that is, aross each other, the intersection is called a point.

The definition always given in geometry of a line is, that it is lisgth without breudth. It is therefore evident that a true geometrical line cannot be constructed; for however finely a line may be drawn, it will be always found to have some breadth; this will at once appear by examining it throngh a microscope.
In practical geomery, it is necessary to draw points and lines; hut it is impossiblo to approach to mathematical exactoess unless they be drawn as finely as powsible, always learing in mind that such linets and points are merely symbols of the true geometrical lines and points.

A superfiriss or surface has only length and breadth, and is bounded hy lines. By the word surface is generally understood the outside of any thing; as, for instance. the exterior of the lid or of the sides of a box. It is also used in geometry to convey the very same idea, always supposing that it has no thickness.
A geometrical surface, like a line and a point, cannot be constructed. The thinnest wheet of paper is not a superficies but a solid, having the three kinds of bulk, technically called dinnensions, which are possessed by a solid body, namely, length, breadth, akd thickurss.

Nolids are bounded by surfnces. Gicometry considers the dimenciona of space as abstracted or separated from any solid boty which might occupy that space: a boly always occupies a snace cxactly equal to itself in magsitude. 'This will be better understowd by imagining a cast to he taken of some solid body: when the borly is emoved. a carity rrmains, and we can reason concerning the dimensious of that eavity, knowing that it is of the same length, breadth, and thickne:is, as the solid hody fom which it was cast. In this way, we reason conerning the dimensions of any given space, and with the same precision as if zeometrical lines, surfaces, and sulids, were really drawn in tha apace; and it is the
business of theoretical geometry to examine the propep tien and relationa of these forms or magnitudes, We learn from practical geometiy how to form represents. tions of the ideas thua acquired. Therefore, the common meaning usually attached to the words point line, mus. face and solid, is admissible in practical geometry; the olject of this branch of scienco being to show how to draw upon paper, or construct in wood or metal, correct representations of those forms or magnitudes which are conceived to exist in space.

As there aro three kinds of magnitudes, lines, suro faces, and solids, it follows that the natural division of the acience of geometry is into three primary deporn ments; namely, 1. Geometry of Lines; 2. Geometry of Surfaces; 3. Geometry of Solids, or Solid (icometry. The term Plane Geometry, however, is usually applied to the geometry of straight lines, rectilineal figures, and cireles described on a plane.

Lines are named by two letters placed one at each ex. tremity. Thus, the line drawn here is named the line $A B$. \qquad
It is obvious that lines can he drawn in different wayn and in various directions. A line can be crooked, curved, mived, convex, concave, or straight.

1. A rrooked line is composed of two or more straight lines.
2. A line, of which no part is a straight line, is called n turer line, a curved line, or curve.
3. A mirell line is a line composed of straight and curved linca.
4. A convex or moncure line is such that it cannot be cut hy a straight line in more than two \qquad portion ts murned towaras the straignt ine, and the sno rexify from it.

A straight line is in geometry called a right tine, from the Latin recius, straight. If two lines are such, that when any two points in the one touch or coin, cide with two points in the othrr, the whole of the lines roincide, each of them is called a struight or ri,ht line. Thas, n line wnich has been carefully ruled on a alneet of paper, will be found to conncide with the edge of a ruler.

A straight line, therefore, may be said to lic evenly between its extreme points. If a straighi line, as A B, turn round
like an axis, its two extremities A and B remaining in the same position, nny other point of $i t$, at C , will alse remain in the same position.
Any point in a line is called a point of section, and the two parts into which it divides the line are called segmentr. Thas, the point C in the above line $A B$ ia a point of scetion, and $\mathrm{A} C, 13 \mathrm{C}$, are negments.

It is evident that two straigh' lines cannot enclose a space; and that two straight lines cannot have a com unon segment, or cannot coincide in part without coinciding altogether.

A surface may be concave, like the inside of a basin convex, like the exterior of n hall; or plane, like the top of a flat table. A plane superficies, or, as it is commonty called, a plane, is considered to be perfiectly even, so that if any two points are taken in it, the straight line joining them lies wholly in that aurfare. This cannot, perhaps, be bettor illustrated than by placing two flat panes of glass the one above the other. If the tro surfaces coincide exactly in every part, they may be said to form a geometrical plane; and it is upon a plane equally flat and even that all grometrical lines and figures in plane geometry are supposed to be dratw.

The Circle.

A figure in a part of space enclosed by one or mone lwundaries: if theso loundaries are suberficies, it in
calld a solin plane geome The spact grure is call in refereace is compared, The circlo in the arts rlaims partic turn round fixed, tho es tnees a line point whele to a arrle, n Goon the La A pair of grometry to atringht and always point are joined t be opened o circle, anc el being olemed circle, munst pancil or pen is left upon lugs of the e do is descrih A. A straics tie centre to cirele, is call latin word and of whice comn on whe failiur exal sald the spol wheel may that all the si natly the ca: lime, drawn nuted at eacl diameter, fro measure.
An arc of
 tics. These arcus, a bow, by the annes with its chor which a strit purpose of sh of on arc. for its chord,
When a luy cirele, and is mens, cuttir AB , which mitcle, meetin is called a (u) lungen: touct to touch the lithe line 1 CDE were ia the name it would the f be touched ly property of tarious wayn. kitives is a c Harle of the nal, thercfore reund, it rubs vilu giving it erefore, the common ords point line, sure :tical geometry; the ing to show how to ood or inetal, correct agnitudes which are
tgnitudes, lines, sur. e natural division of ree primary deporn nes; 2. Geometry of or Solid (icometry r, is usuatly spplied etilineal figures, and
laced one at each ex. e is
\square
wn in different way 1 be crooked, curved, f two
traight line, is called ssed of straight and
ch that it cannot be two pted int ane, and the nim
called a right line, two lines are such, one touch or coin ae whele of the lines a struight or rish n carefully ruled on incide with the edge
e said to lie crenly
and B remaining in of it, at C, will alsc
point of section, and the line are called he above line AB is e segnents,
es comut cucloze a cannot have a crimp part without coin.
he inside of a basin. r plane, like the tap p, or, as it is comto he perfictly even, I in it, the straight surface. 'This eano han ly placing two - other. If the tro irt, they may be said it is upon a plane onetrical lines and sed to be drawn.
ned by one or mal sulpurficios, it in
called a solid, and if lines, it is called a plane figure, in plane geometry.
The spare contained within the boundary of a plane Guyre is called its surf us; and the quantity of aurface, in refrence to that of some other figure with which it is compared, is cilled its arca.
The circle is one of those figuren which are most used in the arts and in proctical geometry, and therefore rlains particular nttention. When a line is made to turn round one of its ends or extremities which remains fired, the extremity which is carried round the other tncesa line which is in every part equally distant from the point whete the other end is fixed. The line thus traced is a ctrole, and is frequently termed the circum/irence, fron the Latin circum, round, and fercns, carrying.
A pair of conpasses are generatly used in practical grometry to describe a circle. They consist of two eminght and equal leg , generally of brass or iron, and delays pointed at the hotton. Their upper extremitics are joined together by a rivet or joint, ao that they ean be opened or closed it pleasure. In order to draw a circle, one end must he firmly fixed, and the other, after being opened preportionately to the required size of the cirde, nuist he made to turn completely round, and a panil or pen leing attached to it, the trace of the circle is lef upon the paper. The point in which one of the legs of the compusses is fixed, and round which the circle is described, is called its centrc, as A. A straight line, as B , drawn from tie centre to the circumference of a ciccle, is calted a rudites, which is a hatin word literally sicnifying a ray, and of which the phural is radii. A comen on whed affirds oue of the most
 faviliar exanules of a circle. The axle is the centre, a,ill the sjokes are raflii, while tho outer tim of the rheed may loe called the circumferconce. It is evident that all the syokes are of equal leugth; and this is invagaldy the case with the radii of every eircle. A straight lime, drawn through the centre of a circle, and terminated at cach entremity by the circumference, is called dumifer, from the Greek dia, through, and metreo, I measure.
An ure of a circlo is nuy part of the circumference; the hord of an are is a striught line joining its extremidics. These two worla come fron the Latin words wreu, a bow, and chorla, a string, hecnuse, as is shown by the annexed figure, a gemetrical are with its chord closely resenilles a bow to which a string has been nttached for the
 purpose of shooting. A rainbow is a heantifal exmmple of an arc. A semicircte is a segment, having a diameter for its chord, and therofore is just half of a circle.
When a chord is lengthened, and made to extend byond the boumlaries of n circle, it s said to rut the ciccl, and is thereliore enlled a sciant, from the Latin vanu, eutting. A straight line $A B$, which lies whotly ouside the circle, tuectiog it only in one point, is called a longen', tronn the Latin, tungens, touching, becanse it is said in touch the circle in the point \mathbf{C}.
 It the line $\mathbf{\lambda 1 3}$ were to renain fixed, nad if the circle CDL were made to revolve round a point in its centre, in the same way, for iustance, ns a fly-wheel turns it would he formil that no part of the line A B would be touchad by the circle, execpt the one point C. This property of the rircle has herol turned to account in tarious ways. 'Thus, the grimdstone used for sharpening wives is a circle made to revolve on its centre; the Made of the knife is held as a tungent to this circle: and, therefore, earh time that the grimistone is tunsed rend, it ruls nguinst the hade, problucing a finer cdge, whi giving it a pulthed appearnace.

Circlea are said to touch one another, when they meet but do not cut one ar other. Circles that touch one another, as the circle C D E and F G H in the lust figure, are called tangent circleb.

The point in which a tangent and a curve, or two tangent circles, meet, is called a point of contuct. When of two tangent circles one is within the other, the contact ta said to be inter:al; but when the one is without the other, the contact is said to be external. (See figure.) Tangent circles are very frequently applied to useful purposes, in various arts and munufactures. Tho wheels of a watch are merely so many tangent cicles. When by means of the mainspring one of the circles is made to revolve, its notion causes the wheel which touches it to move also, and the motion of that tangent circle causes the whel which touchea it to move likewise; and in this way motion is transmitted or carried threugh the watch. It will be observed, on examining the inside of a watch, that the circumference of each wheel is indented or toothed; when the wateh is going, the teeth of ono wheel enters into the indentations of the other, end thus tho one wheel is carried round by the other.
Concentric circles are circles within circles, having the same centre. A stone thrown into water producea a familiar instance of concentric circles; the waves at first rush in to supply the place of that portion of water which was difplaced by the stone, and then by rapidty thowing back, several circles are formed, one within the other, on the surface of the water; and though these circles are of very various sizes, some lieing large and others small, yet the spot in which the stone fell is alike the centre of atl, and therefore they are called concentric circles.

Cirdes that have not the same centre are called eferntris, in reference to each other from the Latin ex, out of, und centrum, centre. A point which is not the centre of a cirele riay also be called eccentric in reference to thut circle.

Circles are called rqual when their radia are eq'al in length, because it aecessarily follows that the circumference is also equal : thus, the two wheels of a gig are obviously equal circles, and the spokes or radii of one are equal to those of the other.
The circle, as we shall hereafter have occasion to show, is of much importance in many operations of pretical geometry, and is therefore divided into 360 equal parts, called desecs. It woull, however, have bern possilhte to have divided the circle into any other number of degrees; the reason why the number 360 was originally fixed upon, is the following. During the early ages of astronomy, the sun was supposed to perform an annual revolution round the earth, while the carth remained perfectly stationary. The first astronomers taught that the orhit or path in which they imagined the sun to move, was a circle, and that the perio 3 which elapsed from the monent of his lenving one point in this circte until he returned to it again, was precisely 360 days. Accordingly ail circles were divided into 360 degrees.

When it was discevered that the earth moves round the sum, and thint she performs an entire revolution, not in 360 days, hut in 365 days, 6 hours, 48 minstes, 48 seconds, it was not thought advisuble to alter the division of the cirtle which had previously becn established, because the number 360 is found of great eonvenience in all length ened calculutions, there ieing many numbers hy whicn it can the divided without a remainder, as $1,2,3,1,5,6$, $8,9,10,12,15,20, \& \mathrm{c}$.

Euch of the 360 degreea is subdivided into foume utes, und cach minute into 60 seconds. The degree ${ }^{14}$ marked thus (${ }^{\circ}$) ; the minute $\left(^{\prime}\right)$; the second (${ }^{\prime \prime}$); so that, to express 14 degrees, 7 minutes, 5 seconds, we have only to wite $14^{\circ} 7^{\prime} 5^{\prime \prime}$. Sometimes the second io
again divided into sixty equal parts, called tuerces, or thirds, which division is oxpressed by the sign (${ }^{\prime \prime \prime}$); but more frequently decimals are used to express tho sunaller divisions.

The French divide the circlo into 400 equal parts, culled degrees; each degree into 100 minutea, and each minute into 100 seconds. When this division is used by English writers, they generally give the name of grades to the degrees. One grade is equal to $0^{\circ} \cdot 9$, or to 84^{\prime}, or to $3240^{\prime \prime}$.
a eircle, as we have just observed, being divided by mathematicians into 360 degrees or parts, it follows that the quarter of a circle includes 90 degrees. Taking, then, a quarter of a circle, and marking it as in the adjoining tigure, H L is the horizontal line, and P 1, the perpendicular line aseending from it. Any line drawn from the centre to any point of the circumference detines the degree of inelination,
 or dupe of the horizontal. Thus, a line ascending from the centre to the 16th degree, is called an inclination or angle of ten degrees; a line sascending to the 45 th degree is called an inclination or anglo of forty-five degrees; and 30 on with all the other degrees to the $90 t h$. In this manner n standard of comparison has been established for definiag the various slopes or inclinations in planes.

Angles.

Every one is familiar with the meaning of the word corner: we are accustomed to call those parts of a room in which the walls meet, the "corners of the room," and in the same way, the sharp point in which two sides or edges of a table mect, is also called a corner. The very same idea suggested by the word corner is admitted into geometry, only the word itself is dropped, and the word angle substituted, simply because the Latin for corncr is angulus.

By an anglc, therefore, we are to understand the inclination or opening of two straight lines that mect, but are not in the same straight line. The two lines which thus form an angle are called the sides of that angle. In the above tigure of the quadrant, or quarter cirele, we have an exmmple of a right ningle in the coruer formed by the junction of the horizontal and upright lines.

An angle which is greater than a right angle, or more than 90° (as 0), is called an obiusc angle, from the Latin -b.unke, blunt, because the vertex or angular point las - blunt eppearance.

An angle which is less than a right angle, or less than 90° (as A), is called an acuie angle, from the Latin, acuius, sharp, from the vertex being sharp-pointed. The number of degrees by which an obtuse angle exceeds, or by which an acute angle is less than a right angle, is called the compleinent of the angle.

The two lines which form a right angle are said to le gerpendirulur to each other; therefore, whenever a perpendicular is raised either on the ground or on paper, a right angle is formed. Thus, the walls of housen and of all architectural edifices aro perpendicular, and form right angles with the ground on which they are ruilt; and when the perpendicular is departed from, as in the Leaning Tower of Pisa, the eye is offended, cul an afp"chensiou of danger excited in the mind. It
is not, however, essential that a perpendicular fine should be verical, that ia to say, in the same uirectlou as a weight falls when suspended by a string: a per pendicular may be in an inelined or even in a horizontal position, provided only thut it form an angle of 90 degrees with tho line to which it is perpendicular. It is so often requisite in practical geometry to crect a perpendicular, that an iustrument called a Carpenter's Square hat heen invented for the purpose. It consists merely of two flat rulers placed at right angles to each other. As, however, instruments of this description are often made with great inaccuracy, and as it is noh besides, always possible in certain situations to have one at hand, the following methods of raising a perpendicular on a given line and from a given point will be found very useful.

Let $A B$ be the given line, and C the given point.

Cuse 1.- When the point is near the midule of the line.

On each side of C lay off equal distimees C D,
 $C E ;$ and from D and E ns centres, with sny radius deseribe ares intersecting in F ; draw C F, and this in the required perpendicular.

Case 2.-W Wen the point is near one of the extremi tices of the lime.

Methad 1.-From C as a centre, with any radius, deseribe the are D E F , and from D lay off the sumo radius to \mathbf{E}, and from E to \mathbf{F}; then from E and F as centres, with the sime or nny other radius, de-
 scribe ares intersecting in \mathbf{G}; draw $\mathbf{G} \mathbf{C}$, and it will be perpendicular to A D.

Method 2. - From any point D as a centre, and the elistance D O as a radius, describe an arc EC \mathbf{F}, cutting A B in E and C; draw F: D, and proxuce it to cut the arc in F ; then draw $\mathrm{F}^{\prime} \mathrm{C}$, and it is the
 perpendicular.

The angles made by a straight line falling on anothen straight line, are either two right angles, or are togethen

equal to two right angles. I'he first of the annesed tigures presents an example of two right mugles being formed by the meeting of two straight lines. In the second tigure it is evident that the angle AOD contairs exactly as many degrees more than a right augle as the angle D C 13 contains less than a right angle; therfore the two angles are together equsl to two right angles, Each of these angles is sald to be the supplement of the other, from the Latin supplon, " 1 fill up what is deficient," because the numerical value of cach arole in exactly what the other waits of 180 degrees, whinh is the sum of two right angles. Equal ancgles have therefore invariably equal supplemonts; and it is ecarcely necessary to add, that all augles having equal supplo ments must be equal.

From this it follows, that when two straight lines
row, the opposi and DE B are C g g, because the: rach other; the cqual, simply be equal supplemen esamination of ongles C E B ant if two straight li they make at the egnal to four rigt bf any number 0 equal to four rigl

We are surrout

Alwajs preserve t tuts male in a m iron bars called whetls of the ste which the charae a harp and of a vi which are alway wiich, oven if p sume direction, e georaetry called p beside, and allelor As the distanc J|xays equal at culars drawn bet Thus, in architec zppes part of a neralluso the roof the gro ind from v that parallel lines 1 node of dividing parts.
Let $A B$ be the purts be five.
Nethud 1.-Dra Fine IC through my inclination to a.d through B d swother line B D pa Id to AC ; take distance A E, and a off four times or EF,FG, GH; aBD in the same wid E M, and they of $A B, A H$, an In this figure, the parallel lines thein the straight In practical geom parallel to a given dejends on the fact equidistant, and is Let K L , be the From any two M and N in K centres, sud a equal to D , descril دics P and Q; d We R \& to touch ares, that is to lee a ron tangent to t and $R 8$ is tho requ

The triangle is or ty; all figures wh apable of twing re Vul. I.-55
pendicular line sama uirection string: a per in a horizontal n angle of 90 rpendicular. It etry to ereet d a Carpenter's se. It consists unglea to each this description al as it is noth ons to have cne a perpendieulan it will be found

```
C
```

vith any radius C F, and this is
of the extreni

C, and it will be

lling on anothen , or are together
$\underbrace{0}$
of the annesed ht nugles being t lines. In the AUD contailis slit angle as the augle; therefore wo right angles. piplement of the $1{ }^{1}$ whint is deriI cark ar ale is "Lreex, which is gles have thred it is searcely y equal supplo
mont the opposite angles are equal. The anglea $\mathbf{A} E \mathbb{O}$ ad DEB B are enlled vertical an- C $c^{\prime} / 4$, becaune they are opposite to \mathbf{A} rach other; they are evidently aquil, simply because they have qqual supplements, as will at once be seen by a esamination of the figure. The eame is true of the angles C E B and AE D. It is manifest from this, that if two straight lines cut one another, the angles which they make at the point of their interecction nre together eynal to four right angles. Hence, all the nagles inade bf any namber of lines meeting in one point are together giual to four right angles.

Parallet Lines.

We are surrounded by fumiliar examples of lines which alwas preserve the same distance from each other. The puts nate in a muildy road by the wheels of a cart, the from bars called rails of a railroad, upon which the wheels of the stenin-carriages run, the five lines upon which the characters of music are drawn, the atrings of a harp and of a violin, ure all so many instances of lines which are always equidistant from ench other; and wiind, evell if prolonged to an infinite extert in the sme direction, could never incet. Such lines are in encastry called parallels, from the Greek words para, beside, und allelon, each other.
As the distunce between any two parallel lines is drass equal at ery point, it follows that perpendialars drawn between such lines must also be equal. lhus, in architecture, tise colunns which support the yper part of a building are made of equal height, Weause the roof which the; aupport is parnllel with the gro ind from which they are erorted. From the fact that parallel lines cut oth. r lines proportionally, results 1 node of dividing a given line into any number of given puts.
${ }_{\text {fits. }}^{\text {let }} \mathrm{B}$ B be the give ad let the number of equal prits be five.
Nethod 1.-Draw s hae I C' through A at any inclination to A B, ail throagh II draw wawher line B D paralid to AC; tuke any
 dstunce A E, and Iny it old four times on A C, forming the equal parts $A \mathrm{E}$, Ef,FG. GH; lay off the samo distance four times un $B D$ in the same manner ; drav the lines $\mathrm{HI}, \mathrm{C} / \mathrm{K}, \mathrm{l} \mathrm{L}$, and E II, and they will divid. A B into tive equal parts. or AB, A M, and B M, are cut proportionally.
In this figure, the lines $A C$ and $B D$ being paralkel, the parallel lines E M, F L, \&e., are equal; nud by then the straight line A 13 is divided into equal parts. In practical geometry, the method of drawing a line paralle to a given line, and at a given distance trom it, depende on the fact that the parallel lines are everywhere equidistant, and is the following:-
let $K I$ be the given tine, and D the given distance.
Prom any two points M and N in $\mathrm{K} \mathrm{I}_{4}$ as centres, and a radius equal to D , describe the ares P and Q ; draw a live R \& to touch these

$$
\begin{aligned}
& \frac{\mathrm{R}}{\mathrm{P}} \\
& \text { D }
\end{aligned}
$$ ares, that is to be a com-

cun tamyent to them;
wal R8 is the required line parallel to A B.

Triangles

The triangle is one of the most useful figures in geomeof; all figures which are bownded by struight lines are apable of luing resolved or diviled into triangles. A Vol.1.-55
triangle har three sides, and also, as ita name imports three angles.

A triangle (as \mathbf{E}) in which the three sidea are equal is called equilateral, from the Latill requus, equal, and latus, n side. Such a triangle ia also called cquiangular, (from
 aquus, equal, and angulus, comer), because when the sides of a triangle are equal, the anglea likewise are invariably equal.
A triangle (as I) having two equal sides, is called isonreles, from the Greek isos, equal, and shelos, leg.
In a acilenc trinngle (as S) the three sides are of unequal length. The word scalene literally means unequal, being derived either from shazo, to limp, or from skalenos, uneyunl.

One of the most important properties of triangles is, that the throe anglea are together equal to two right angles. This fact is demonatrated in the following manner :- Draw a triangle na A B C, and extend one of its sides (B C) ns far as D. The obtuse nagle thus formed
 (A OD), is called an coterior angle, becnuse it is outside the triangle. From the point C draw a straight line to \mathbf{E}, parnllel to the line A B. It is an estahlished fact, that all alternate angles formed by a straight line cotting two parallel lines, are equal; the nogles B A C, A C E, are niternate, becnuse they are formed by the straight line A C, cutting the two parallel lines $A \mathbf{1}$ and $\mathbf{C E}$, and are therefore equal. It is evident that the angles $A B C$ and E C; D are erqual, because the line $\mathbf{A} \mathbf{B}$, which oorms a side of one angle, is paralIel to the line C E, w wich forms a side of the other; and the other side of each angle is mnde by the same line, namely, B D; and an angle being the inclination of one line to another, it is obvious that whenever, as in this case, the inclination of the lines is equal, the nugles likewise must he equal. Having now proved that the obtuse exterior anele $\mathrm{A}: \mathrm{D}$ is equal to the two interior and opposite angles CAB, ABC, we have merely to add $\mathrm{A} C 13$, the only remaining angle of the triangle, to the nnele ACD ; and the angles $\mathrm{ACD}, \mathrm{A} \mathrm{CJ} \mathrm{B}$, will be found equal to the three angles $\mathbf{C B A}, \mathrm{BAC}, \mathrm{ACB}$ lut the angles $\mathrm{ACD}, \mathrm{ACB}$, are equal to two right angles, because, as has been already stated, the angles made hy one atraight line falling upon another, ne either two richt angles, or are torether egual to two richt angles; therefore, the angles $\mathcal{C B A}, \mathrm{BAC}, \mathrm{A} \subset \mathrm{B}$, are equal to two right angles, or 180 degrees.
'There nee several very nseful conclusions to be deduced from this property of triangles. 1. Thure can only be one right ungle in a triangle; for, if one angle is 90 degrees, the other angles can only be together equal to 90 degrees; one must be
 the complement of the other, or what the other wants of 90 degrees. A triangle which has a right angle is called a right-angled triangle, as R. The side opposite the righ angle is called the hypotertusc. 2. It is equally obvious that a triangle cannot contain more than one obtuse angle. Fig. O in an obiuscanglal triangle. 3. All the angles of a triangle may be arute, us A, which is callod nin trutrangled triangle. angles of a triangle are known, or even the sum of those angles, the third may lee manily discovered; for, if the sum of two noules he deducted from 180 degrece, the remainder must be the num-
 ber of degrees of which the third angle 4. When two
 consist:.

A nother property of triangles is, that the greater axide 20
of every tringle has the greater side opposite to it. In the annexed triangle, the nugle $A B C$ ts greuter than the angle BCA. Tho sido AC , being opposito to the larger angle, is longer than the dido $\mathbf{A B}$, which is opposito to the smaller angle. There is a rind of natural geometry
 in the mind even of an uneciucated person, according to which he acta without thuch reflection. Supposing that an untaught peasant had to aceend to the summit of n mountain, ho woukd not commence his ascent from a point where the mountain forns the greatest angle with the groond, and is therefore nost precipitous; be would, on the enntrary, take the more circuitous road along the opposits side of the monntain, as if ho were aware of the propert of triangles which has been last mentioned, namely that the largest angles are subtended by tho longeat , des.

Quadriluterat Figures.
Qumbulateral, or liturally four-sided figures, are sometimes calied quodrangles, because the y have four angles; they may he divided into two classeq-I. Those in which all the opposite sides are pirallel; and, 2. Those in which all the opposite sides are not parallel. Those belonging to the first class are called parallelograms, and may be further aululivided into two divisions-namely, those which contain four right angles, and to which the generic name of rectangle thas consequently then applied; and, secondly. those which do not contain any right angles, two of the angles being obtuse and two acute. A square in the most useful of quadrilateral tigures. Having four right angles, it is culled a rectangle; and all the aides are of equal length. The figure is is a square. The annexed figure R may le called with equal propricty a parallelogram, a rectangle, or an oblong; it will be observed that its sides are not all oqual, its length lwing greater than its
 brealth. In speakine of a rectangle, it is often found convenient to name it by the lines which compose its base and height, and it is called the rectanglo under or contained by these lines. A rhombus, or lozenge, and a thom'nil, form the second division of the first elass; because althcuah the sides are parallel, the angles are not right angles. A rhombus has all its sides equal, as B. in a rhomboid, the opposite sides only are
 equal, as P , the length being either greater than the breadth, or vice versa. A tripeeoud has only two aillea paral. lel, as 1). When the sidea of a trapezoid that site not paralLel are equal, it is sometimes called a trapesium, from the Greek word trapeza, n table.

A disgonal is a straight line drawn tetween two opposite angular points of a parallelogram. A diagonal bisects a parallelogram, that ia, divides it into two equal parts; thos, let ACDH be a parallelogram. of which BC is a diagonal ; the opposite sides and angles of the tigure are equal to
 sne another, and the diagonal BC biepets it.

From this it immediately follows, that the cemplements of the parallelograms, which are about the diagonal of a:y praralleiogram, are equal to one enother. It has lieen sliown, that the literal meaning of the torm complement it to fill up ; the application of thin term to parallelograms will be underatomel by carefully comfrating the following explanation wint the annexed figure. Let ABCDD is a parallelogrant,
of which the dingonal is AC; let EII, FG, be the parru lelograme alout AC, that is, through which AC parmen and BK, KD, the other parallelograms which make up the whole figure $\triangle B C D$, which are therefore ealled the com plements. The complement BK ia equal to the complement K1). The twe complements, jo.ned to any of the parallelograms about a diagonal, form what is called a gnomon. Thus the parallelogram $\mathbf{H C}$, together with the complements AF, FC, is the gnomon, which is more briefly expressed by the letters AGK, or EHC,
 which are pliced at the opposito angles of the paralicio grams which make the gnomon.
When it is required to deseribe a rectangle, of whicls the length and breadth are to be respectively equal to two given lines, the following operation is necessary :-

Draw a line MN equal to HI , and draw MP perpendicular to
 MN, and equol to KL; ;
$\mathrm{H}+$
K
 from I' ns a centre, with a radius equal to NN , descrite an nre at Q; and from N as a centre, with a radius equal to MP, deseribe an are cutting theformer in Q; dram $P Q, N Q$; and $3 Q$ is the required rectangle.

A square inay, for practical purposes, be described in the following manner on any given line.

Let MN be the given line.

From M draw MP perpendicular to MN, and from M13 cut off a part $M Q$ equal to $M N$; then from co and N an centrea, with a radius equal to MN , describe ares intersceting in R: lraw QR, and NR, and $\triangle R^{*}$ is the required
 square.

Ellipse.

An ellipse, or oval, is geometrically constructed as leb lows, by means of a pair of compasses. Jet $A B$ be the major avis or transverse; draw a lino bisiseting it perpendicularly (which is done ly describing from A and 13 as centres, with any radius, nres cutting each other in 5 ; mad
 D. and then joining C and D), and make ((1), GD, ead equal (1) balf the minor axis or conjugate; then CD is the minor axis. From C as a centre, with halh the maje asis A(; as a ratius, cut Al3 in E, and F, and thes [minte are the io Produce AB to Q, till E:Q become equal to .113 ; and from E as a centre, with $E Q$ asart dius, deseribe the are l'QR, and it will be a species of directrix to the cllipse. From the same aentre E, with ony diat unce F 'S describe the are IlIK, and with IQ, the distance of this are from $\mathrm{P}^{\prime} \mathrm{QR}$, as a rudius, ard F as centre, cut the arc IIlK in 11 and K , and these are two puints in the curse. Similarly, from E as a oentre do seribe nuther are I.M ; and with the distance of thinan from $I^{\prime}(2 R$ as a rudius, and F as a centre, cut the are $L X$

- Qumbitneral fiquras are concisely named by the ectana wo opposite angular poras
in La and M , an find the ather manner. Havi priata in the ens will thus be con An ellipse m which will be practical purpo given line, as two circles of a is may best the required Whatever aizo the font of tho placerd so na to elongated parts trie on the pers $A B$. Then dra line so that it parts C and D, clissul each oth width of tho ov been previously erpansion of the fout shall be plac cuntre, so as to wth the lines continuous line, manaer as to f operatic?.

Polygens.A plane figur lines, is ralled a mury, aad gonia many siues, it h of angles. A re aloo all its angle angles, or both, alled a pentagon zon; of cight, a a deagon: of e crgon; and of figures which polygous of 13,
The centre o distant from its a perpendicular sides, and analo:
The whole ${ }^{n} u^{\prime}$ er, from $p e r$ perimeter of a p is in a circle, for tical geometry, ragular polygons ahout equal in siz. the circumferenc the polygon is t complete the fis between each tw form the sides of
Figures constr to be inseribed ; sribed figure w cumference of the following pre
let SLIK be t
Jraw two p the radius Of in ralius. cut OK i the circumferene eqaal to it loin required volygor

ea of the paralisis

$+1$
al to MN, descrite with a radius equal ormer in Q; drav tangle. ves, be described in 1e.
N 8. Let $A B$ be ino

hake $\mathrm{tit}, \mathrm{GD}$, ead jugnate; then CD is with halt the majx and F, and the Q, till EQ lecoma e, wih EQ aq atr will be a specirs of wine centre E, with K , and with 1 Q , the rudius, ard F as , und these are two in \boldsymbol{E} as a centre do distance of than an nitre, cut the anc Lay
ainer by the etwor a

In l, and M , and these are nlao two points in the curve. find tha other two points S and T in exactly the same manner. Having thus found a sufficient number of manner. the curve, join them all carefully, and the ellipme Fill thus be constructed.
${ }^{5}$ An the llipse may he constructed by the following method, which will be considered sufficiently exaet for many practical purposes:-On a practical
piven line, as AB , discrile twa circles of such diu meter as may best acce,ud with the required proportiona. Whatever sizo be tuken, let the foot of the compasses be placed so ns to describe the plongated parts of the figure
clater trie on the perpendicular line AB. Then draw a horizental line so that it interscets the parts C and D , where the cirdissut each other. Now, the willt of the oval may have
 ben previously de.ermined; if so, it must regulate the expulsion of the compassea, and determine whether the fou shall be placed on the line CD, equidistant from the ante, so as to describe the acgment, that it mny unite wth the lines of the circles on eithcr side, forming a condinuous line, na at EE and FF; that is, in such a manner as to formithe oval figure as if made by one operatice:

Polygons--Inserited and Circumscrited Figures.

A plane figure enclosed hy more than four straight lines, is called a polyson, from the Greek words polus, many, and gonia, an nagle; because, when a figure has many siues, it has neccesarity a corresponding number of ungles. A regular polygon has nll its sides equal, and alo all its angles ; an irregular polygon has its sides or angles, or both, unequnl. A polygon of five sides is csiled a pentayon; of six, a hexagon; of sevea, a heptazon; of cight, sn ortagon; of nine, a yonagon; of ten, a deag'n: of cleven, on undengon; of iwelve, a dodecrom; and of fifteen, a yuindicagon or pentedecagon. Figutes which have more than twelve sides are ealled polygons of $13,14,15,16,17$ sides, \&c.
The centre of a regular polygon is a point equally distant from its sides or angular points. The apothem is apupendicular drawn from the centre to any one of the sides, and aunalogous to the radius of a circle.
The whole loundary of any figure is called its perime:cr, from peri, nround, nno metreo, I measure. The penimeter of a polygon is, in fact, what the circumference is in a circle, for ty it the figure is enclosed. In practiral geometry, the usual methol adopted for obtaining nerular polygons is, in the first place, to draw a circle atoutequal in size to the required size of the polygon; then the circumference is divided into as many equal parts as the polygon is to have sides; all that tirn remaina to complete the figure is to draw er raight lines or chords between each two points of division, and these lines will lorm the sides of the polygon.
Figures constructed arcording to this method are said to be inscribed in a circle, and all the angles of the inkribed figure will alvays be found to be upon the circumference of the circle. A regular pentagon may, by the fillowing process, he inseribed in a cirele : -
Let SLK the the given circlo.
Draw two perpendicular diametera, IK LM; bisect the rulias $O I$ in \mathbf{N}; from \mathbf{N} ns a centre, with NL as a ralius. cut OK in P : with radius LPP, and centre L, cut the circunference in Q; join LCQ, and other four chorda equsl to it being drawn in succession in the circle, the revured Islygon will be furaded

A ragular decagon may b inseribed in a cirfle by a little extension of the aame process:-
Let SIR R le as before the given circle.
Fi.l a side LQ of the inscribed regular pentagon; bisect the are $L Q$ in V, and the chord I.V being drawn, it is a side of the regular decagon; and ten
 chords equal to it being successively placed in the circle. will form the polyson.

Sometimes- figure is deseribed about a given circle, and is then said to le a cireumscribed figure, the circumference of the circle being touched by each of its sidem In practical geometry, the method of describing a regular polygon about a circle is the following:-
Iet WVY be the given cirelc.
Find the angular points of the corresponding inseribed polygon of the same number of sides; let W, \mathbf{X}, Y, be three of these nn-
 gular points; through these points draw the tangente WU, UT: TY; and UT is a side of the required polygoln; in the same mnnner the other sidea are found, and the circumscribing polygon is thua described.
In this manner, the regular pentagon in the adjoining figure is described ahout the cirele ; H, K, L, M, and G, being the angular points of the inscribed regular pentagon, aud tangents through these points being drawn, the cirrunsseribing regular pentagon is
 formed.

Practical geonetry afforda a short and easy method of coistructing a regular hexagon upon a given line. Let G H be the given line.
From G and H as centres, with the radius G H, dessrile ares intersecting in \mathbf{X}, and this point is the centre of the circumseribing circle ; hence, with the radius $\mathbf{G H}$, from the eentre X , describe a circle, and apply G H six timea along the cireumference, and GHKL is the re-
 yuired hexagon.

Another fact relnting to the properties of regular figures, and which is of some importance in ecveral of the mechunical nrts, is, that there are only three regular figures which can cover a surface completely, so as to Icave no intervening interstices; these figures e-e the square, the equilateral triangle, and the hexagon: we have a familiar example of the fact that squares ean completely cover a surfice, in a common chess-bonrdthe sides of ench syuare coincide exectly with. the sides of the adjoining squares, and no part of the board beiween the squares is left uncovered. The renson of this is, that all the sagles made by any number of linem necting in one point, are twgether equal to four right nugle a , or to 360 degrees; null that, therefore, if it be
the sides may be joined, and that no space may intervene between, it is a necessary condition that the angles contained between their sides be some aliquot part of 360, else their angular points cannot all mect in one point, neither can the surface be covered exactly. The angles of squarea being right angles, or anglea of 90°, it is obvious that four squares can completely cover any plane surface which is proportionable to their size, because $90 \times 4=360$. Six equilateral triangles can be joined withont leaving any interstices, because the number of degrees contained in each of their angles is 60 , and $60 \times 6=360$. Three hexagons can also be placel contiguvas to ench other, because 120, the number of degrees contained in earh of their angles, multiplied by 3 , produces 360 ; but no other figures could by any meana be thus pluced without leaving interstices; and it is useful to bear this in mind, because in mosaic work, inlaying, paving, and some kinds of ornamental painting, it is often requisite to cover a surface with some regular figure. We sometimes see octagons laid near each other in painted floors, \&e., and there is always an empty space between them; but this empty space is a jerfect square, hecause the number of degrees in each angle is $\mathbf{t 3 5}$, and as two angles only mect in one point, the sum of both, $135+135$, being equal to 270 , there are evidently 90° required to make up the required number 360 ; and 90° are, as we have shown, contained in the angle of a square.

The honeycombs of a bec-hive afford a familiar illustration of the fact just explained, with reaject to the figures which can cover a surface. Of the only three regular figures which can entirely fill up any given apace, the bees have selected the hexagon; but here the question arises, Why were the little mathematicians led t) choose the hexagon in preference to the syuare ? The reason is cogent and philosophical: the object of the bees was not oniy to fit in their habitations closely together, so that labour and wax might be saved, and that each little cell might be strengthened by the immediate juxtaposition of other cella, but also to render the interior of cach cell as large ant commodious as possible; because the young ones are lodged in these cells, and besides, the honcy which is to supply the whole nive with food during the winter is stored away in them. Had the square or the equilateral triangle been chosen, the angles of the cell would in that case lave certainly been farther from the centre, but the sides would have come nearer to it ; for just in propertion to the number of sides is the length of the apothen. When a figure has but few sides, the apothem is compuratively short; and, other things twing equal, it increases in length according as the sides are nore numerous. The longer the apothein, the farther the sides recede from the centre; therefore, it is clear that a figure of many sides circumecribes a larger apace than a figure of equal perimeter, which has fewer sides. This is one of the reasons Why a circular form is given to domestic utensils, such as ewers, bottles, casks, culinary vesmels, \&c., and also t.) water-pipes, and to the pipes used tor conveying gas. A circle is mercly a polygon of an infinite number of vides; on account of the infinite smallness of its sides, it is free from all angular projections, ant having more ailes than any other polygon, it can, with a given perimeter, according to the principle just laid down, enilose the largest possible spare. It follows from this, that if, from a given quantity of materials, a vessel is constructed having a circular form, that vessel will be found capable of receiving a larger volume of contents than another vessel wrought into any other corm out of the same given quantity of materials would be able to contain. This principle is one of very extunsive npplication, and is constantly acted upon in architecture and in many of the arts.
'T ne capacity of a circle, an, for instance, a circular
tube, ia greatly increased by only a omall adifiten to tha diameter, because the increase is all round. The is. crense of capacity is in the ratio of the squares of the diameter: a tube 8 incnes in dianeter has four times the capacity of one which is 4 inches in diameter; one If inches in diameter has four times the capacity of ene 8 inches in diameter ; and so on.

mensuration of plane gioures.

It is often requisite, for many practical purposes, to ascertain the exact size of a given figurc. For this purpose certain lines of a determinate length. as inches, feet, yards, miles, \&cc., have been pitehed upon as the unitg of measurc or lincal units; und measaring a line consists in finting how otlen one or other of these units of measure is contained thercin. Measuring a figure consists in firding the number of squares contained within its houndarics, the sides of each of those square being equal to one of the linest units above mentioned the number of squares, when found, is called the uria or superficial content of the figure.

A rectangle is very casily measured, it only being requisite to ascertain its length and breadth and then to multiply the one by the other.

If CE is a rectangle, nud M the unit of measure, as for example, a foot; and if the hase CD contains M 4 times, and the side DE contains it 3 times, the nomber of aquares described on M that are contained in C F is just $=4 \times 3=12$ square fect. For by laying off parts on CD, DE,
 equal to M, and drawing through the points of division lines parallel to the sides of the figure, it will evidently be divided into 3 rows of squares, each containing 4 squares; that is, $3 \times 4=12$ squares or sipuare fect.
If the side CD contained 412 inches, and DI: 3 inches it would similarly be found thint the number of square inches in the figure would be $=4 \frac{1}{2} \times 1=\frac{9}{4} \times 3=14$ square inches; or $4.5 \times 3=13.5$ sinuare melies; and whatever is the length of the sides, the area is foand always in the same mamer.

The reve of a syuure is at once known by multiplawe one of the sides by itself; thus, supposing one side of a square talle to measure 4 feet, ther 4 multipliad by 4 gives the whole number of square feet contained in the table, nainely, 16.

It is demonstratid ly Euclid, that parallelograns upon the same hase and between the same parallels are equal to each other; from this it follows that the ars of a rhomhus and a rhomboid can be ascertnined by the same easy process adopted for measuring rectangles namely, hy multiplying the length by the perpendice. lar height or breadth. The area of a tringhte is aliso found in the same way, the base being multiplied by the perpendicular height; but only half the product denotes the content of the triangle, ixcause a triangle in exactly the half of a parallelograin of the same base ond altitude.

The area of any qualrilateral may be found by the satae method: a diagonal being drawn from two of its opposite angles, it will be divided into two trangles and by computing as alove the area of rach triagit, and then adding their areas together, their sum will indicate the whole 1 ant of area romprised within the !uadrilateral. The area of a traperoid is generaly found by multiplying half the sum of the two paratel sides by the perpenticular distance between them, the arma of a trapezium nay likewise le found in the :wo way. When it is desired to ascertain the aren of as irregular polygon. diagonals must be drawn betweet be oppasite angles; this will divide the tigure into qued I teruls or traperoids, and triangles, and the area of ead 1
these must be cules; all the uyerficial cor
The area of the sides toge the apethem: The rearon of be tivided int and as the ar dact produed prependicular, forning a poly of the palygot triangles, by as lefore exp. the reatre of sides, and is tl of each triang cingle triangle
The rule fo that for findin oliserved, a cir as a regular po snall sides. the inuliplicat may naturally the circumfe. means of dise a difficulty ari cumfurence cas of each be kine the measureme stri; ht lines, circle, being a equal facility ; of the circumfe attention of p licerer solved ti a century ago ben made to tonce beurs to of the Greek than two thons tio to be as 7 discovered sine matician carric the time consite engrived on h quently extend work publishec less than 128 sceurate for al accuracy is re instead of 3.14 is taken, but s required. Thi th. ifrcumfere by the r tio. 1 to add the
diameter, alin rence.
the const
In practical for the constr divisions of var as they are to The name of the Latin word pquidistar,i iks in for "in sam bei: g derived the values
mall adétiticn to to 1 rounl. The it the aquares of the r has four times the 1 diameter ; one it a capacity of one 8

Fiaures.

actical purposes, to figure. For thin
Fores te length as incliea, itched upon as the d measaring a line other of these units Measuring a figure squares contained ach of those squares 8 above mentioned; , is called the uria
ared, it only being 1 brealth and then
nit ot measure, a31,

widently be diviled ing 4 squarts; that
s, and DE 3 inches, e number of square $\times 3=\frac{9}{7} \times 3=14$ siluare melies; and 4 , the area is tonend
town by multiplemes asing one side of is 4 multiplied by 4 eet contained in the
that parallclograns e same parallels are allows that the ana e aseretinined by the easuring rectangles by the perpendiev. of a triang! is alko oeing multiplicel ty y half the product incenuse a tringle iu If the same hase aad
ay be found by the iwn from two of in into two trangles ea of rach triangle, her, their sum will mprised within tha mooid is generaly of the two paralld betwen thens the e found in the \cdots mo tain the area of a - Irawn betweer be tigure inte quad d the area of eacl
thee must be f:und separately, according to the above pales; all these areas added together will give the whole upurffial content of the polygon.
The area of a regular polygon is found by adding all the nides together, and then multiplying tha sum by the apotien: half the product will be equal to the r The reason of this is, that every mgular polygon be divided into as many equal triangles as it has and as the area of a tringle is equal to hali the product prodused by the multiptication of the base by tho perpendicular, so the total amount of all the triangles forming a polygon may be found by multiplying the sidea of the polygon, whicla are the hases of the respective thangles, by half the apothem; because the apothem, as befiro exphaneal, is only a perpendicular drawn from the centre of the polygon to the midille of one of the siles, sad is therefore equal to the perpendicular height of each triangle ; half the product, as in the case of a cingle triangle, thercfore, gives the required area.
The rule for finding the area of a polygon leads to that for finding the area of a circle; because, as lefore observed, a circle may, by approximation, be considered asa regular polygon with an infinite number of infinitely small sides. As the area of a polygon is obtained by the muliplication of its perimeter by its apothem, so it may naturally be inferred that the multiplication of the circumfle nee of a cirele by its radius will he the means of discovering the area of the circle. But here a dififieuty arises; it is evident that tho radius and cirecumference cannot be multiplied until the exact length of each be known : there is no difficuity of this kind in the messurement of polygons, beceuse their sides, being strip ht lines, can easily he zeasured; the radius of a circle, being also a straight lin.e can be measured with equal facility; lut how are we to ascertaun the length of the circunference? 'This question has occupiel the attention of philosophers from age to age, and was acerer solved to the entire satisfaction of any till about a century ago. Innumerablo attempts have ben made to discever what ratio a circumference bears to its dianeter. Archimedes, one of the Greck geometricians, who lived more than two thousaud years ugo, ussigned the ratio to be as 7 to 92 ; nearer ratios liave luen disescered since his time. A Duteh mathemaxician carried the ratio to 36 figures, and this was at the time considered so important a discovery, that it was engrated on his tombstone at Leyden. Others subsequently extended the ratio still further; and in a French worik published about 1719 A . b., it was carried to no les than 128 figures. The ratio 3.1416 is sufficiently accurate for all common purposes. When very great accuracy is required, the ratio 3.14159 may be used instead of 3.1416 . Sonetimes the ratio 3.1415926536 is taken, but such a highl degree of accuracy is seldom required. The general rule firs finding the length of th. arrounference of a circle is to multiply the diameter by the r to. und the proluct is the circumference; or to add the tant logarithm 0.4971509 to that of the dameter, anh the sum is the logarithm of the circumference.

THE CONATAUCTION OF SCALES, —PROPORTION.

In practical geometry, scales of various kinds are used for the construttion of firgures. Scales are lines with disisions of various kinds marked upon them, according as thry are to be used for meraturing lines or angles. The name of strels is given to lises so divided, beranse the Latin word for ladter is scold, and the divisions are equidistar, iike the steps of a hadder. A line so divided is for '', same reason said to be gradented, this word bei: derivel from the Latin srudut, a step.
the values of the magnitudes of inc-or anglee are
numbers representing the number of times that soms unit of the sume kind is contained in them.

The unit of measure for lines is some line of giver. length, as a foot, a yard, a mile, and so on.

The unit of measure for angles is, as we have already shown, the ninetieth part of a right angle.

The method of constructing a scale of equal parta is the following :-
Lay of a number of equal divisions, $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, \&c., and AE, and divide AE into 10 equal parts.

When a largo division, as AB , represents 10 , each of the snall divisions in AE will represent 1. When each of the large divisions represents 100 , each of the small divisions in AE represents 10 . Hence, on the latter supposition, the distance from C to n is 230 ; and an the former supposition, it is 23.
If the large divisions represent units, the small onea on AE represent tenths, that is, each of them is $\frac{1}{10}$, or $\cdot 1$. Ot: this supposition, tho distance $\mathbf{C a}$ is $2 \cdot 3$.

To construct a plane diagoual scale

1. A diagonal seate for two figures.

Draw fivo lines parallel to DE , and equidistant, and

Iny off the equal divisions A E, AB, BC, CD, \&., ant make L P, A Q, B 1, C 2, \&ce., perpendicular to DE. Find m the midlle of AE, and draw the lines $\mathrm{Q} m, m \mathrm{P}$.
The mode of using this scale is evident from the last If the large divisions denote tenf, then from n to 0 is evidently 34.
2. A diagonal scale for three figures.

Draw ten lines parallel to DE, and equidistant. Lay of the efuatl parts AB, BC, CD, \&c., and AE, and draw LP, AQ 1, C 2, ... \&c., perpendicular to DE. Divide QP. into 10 equal parts. Join the 1st 2d, 3d, ... divisions on Q P with the 2d, 3d, 4th, ... divisions on A E respectively.

If the divisions on AD each represent 100, each of those on QP will represent 10. Thus from 3 on AD to 8 QP is 380 ; hut hy moving the points of the compasses down to the fourth line, and extenting them from n to n, the number will he 384 . For the distance of 8 on QP from Q is 80 , and of r from A is 90 ; and heres that of o from the line $A Q$ is 84 .
When the divisions on AD denote tens, those on GP dennte units; and from n to o would then represent $38_{10}^{\frac{4}{5}}$ or 31 -4.

When the numhers representing the lengths of the sides of any figure would give lines of an inconvenient size taken from the seale, the numbers mny be all nultiphied or all divided ly such a number as will atlapt the lingths of the lines to the required dimensions of the figure.
Seales, by enalling ne to nscertain the length of lir \quad s and magnitules of figures, are very useful in the inve tigation of the dortrine of proportion. The import of the term proportion has already been sufficiently dwelt upon in arithmetic; and the reader has only to apply the ideas there developed to lines and to figures.

To prerent any misapurehension on the subject, it in
well to understana elearly the diatinction between the term equat and rimilar figures. Fipual figures are those which are precisely the same in every reapeet, being of th: some size ant of the anme form. Similar figuren are trose which are precisely of the sume form or shape, lat of different sizes; the anglea of two similar figurew are equal, and the homologons sider, that is, the sides which lie in the ame relative pasition in each figure, are proportionsl.

Thero is always a difficulty in the demonstration of the doctrine of proportion, on accumbt of the frequent occurrence of incommensurable quantities, that is to say, quantities which have ne common mensure; the sulyect is however rendered clea; by the higher branches of mathemsti-s.

The app licationa of the doctrine of proportion are very numerous and important, for it is the very foumdation of aany aritnmetical, algebraical, and : "ronometrical operations. It furnishes rules for takir,, hans in arehitecture and surveying: " map, whether of an estate or of a country, is inerely a proportional representation on a sinall ecale of the exact outline of district. Sculpture and painting, usually numbered anong the fine urts, are really wholly dependent upon the mathematical dortrine of proportion; a statue or bust, for instance, is either equal to some given figure, and is then familiarly termed " large us life," or else it is a similar figure proportionably larger or amaller than the given tigure, according as it is constructed on a larser or a smaller seale.. In the sume way, landscape paintings are merely delinentions of the prominent forms in matural scenery, oll of which are represented in proportion on a smallar seale; ond the value of the painting in a great measure depmods on the mathematical exictness of these proportions.

ANALYSIS OF EUCLID's ELEMENTS.

It is one of the most remarkalle facte in the history of ecience, that, while the great maiority of ancient scientific treatises have been altogether cast nside, and their place supplied by more recent proluctions, destined in their turn to be an entirely numerseded by others of atill more recent date, yet that one book has weathered every ehb and fow of popular opinion, and still holds as hich, if not a higher, place in tha public extimation, as when first given to the world. I'his work was written more than 2000 years ago; and it is surely scarcely nece, ary to add, that Euclit was the author, or prohaps rathe the compiler, of this extraordinary pirolue'ion. 'I'here are thirteen books extant written ly Fuclid, and hence called Euclid's Elements. The fourtemth and fifteenth books are aupposel to have been added hy Hysicles of Alexandria, about 170 a. n. The method of reasoning pursued throughout these Elements, and adopted by all mathems. ticians, is the following:-In the tirnt place, certain definitions, postulater, and axioms, are laid down, which form the entire basis of all mathematical seience. Perhape it zight be aivinable to make a few observations on the exact meaning of these terms before we proceed farther.

By a difintum, is merely tueant an explanation or a description of the characteristic properties of the oljecet defined; the assertion, for instance, that "an isoscelestriangle in that which has only two sides equal," is a definition, becsuse jt conveys to an unlearned person atidea of the meaning of the termisosceles.

A postulate is something that is allowed to be done, or w be imagined to te done. The prostulates given by Euclid are the following:-

1. A line may be drawn from any one point to any other point.
2. A line may be proluced (that is, continued or 'engthened) at pleasure to any length.
3. A circle may lat describid about any centre, and at any distance, or with any radius. It will be evident, from a carefui examination of these postulates, that when
necenasy to provo any procesa of reamonis p , in in pen mitted to Irunt a line to the moon, and another from the moon to a star, or to nny point in the heevens; and ab though it is of course impossible rea!ly to draw such lines, y th hy these postulatos we are pernitted to imugine them, to bo so drawn. It ia alno evident, that by these postulates we are permitted the use of two instrumenta in mathemutical reasoning, namely the rulet and the comparses.

Mascheroni, an Itrlian mathematician, endeavouring to render the narrow hasis upon which geonetry is upreared atill more narrow, suggeated n inethod of perforning all mathematical problenus by the aid of compasses alone, dise. pensing altogether with struigla linen and the ruler: an arcount of this plan may lse meen in a celebrated wark published by Mascheroni about a. 1, 1797, entitled Gito metriar del Compassu (Geometry of the Compasses).

An axiom is a statement of some nimple fact which is self-evident, or requires no proof; thus, the 9 thaxiam :s an nasertion that the whole in grenter than its part. If bil $^{b^{\prime}}$ impossible to cloult a statement like this ; even a child ia prepared to ndmit its truth; for who is not aware that a whole mass of stone, for instance, is greater than any fag. ment that may be hroken of it? and every day'n obserss tion is equally confirmatory of all the other axioms, which, as propounded by Euclid in the first book, ara tha following :

1. Things which are equal to the same thing, are equal to one another.
2. If equals be auded to equala, the whole are equil,
3. If equals be taken from rquals, the remainders an equal.
4. If equals be adled to uncyuals, the wholes are unequal.
5. If equals be taken from unequals, the remainderian unequal.
6. Things which are double of the same, are equal to one another.
7. Plinge which are halves of the same, are equal to one another.
8. Marnitudes which coincide with one another, that is, which exactly fill the same spoce, are equal to ono ans other.
9. The whole is greater than its part.
10. All right angles are cefual to one another
11. 'Iwo straight lines cannot be drawn through the anme proint, purallel to the same straight line, without ex incilling with one another.
12. It is possible for another figure to exist, equal in every rewnect to any given figure.

Geometrical facts nad suppositions are, by Euclid and all other mathematicians, courhere in a form of expresion called a proposition. 'There are three kinds of jregnositions, theorems, prohlems, and lemumes. A the rem is a statement of sume truth or clase of truthe; but as, with the single execption of the axioms, uo bare assertion of statement is almitted into geometry unless fully corroborated by proofs, a theorem requires to lo dernonstrated There is no way of proving the truth of a theorm, exaps by reference to some truth or trutha alrealy cetablished by jreviona theorems; which again must have hern de monatrated by some proseding theoreme: and thas wese lod bark from throrrin to theorem. until we arrive at the foumbation יyon which they are all found to rest, namely, the definitions and arioms.
A prothem either proposers sonething to be eflected, a the construction of a figure, or it is a questica which ought to be aolverl; in cither case it requires sotnething to be thoue, and therefore dhperads eutirely upen the postelates for its solution. After the solutom has lacen stand its sutheriney for performing all the icquired conditions sill remains to be proved.

A lemma is a theorem which properly belongs eo some
aber part of on which st Heal ecience, cuily which of the sucre rather disturl) never used ! Inteiy requieil Having no inger. stra the nature of Euclid and position is tir the 20th prop wgether grea asection: to Gigure referre and tella him any two silles greater thill that is to say $A C$, aro toget the one side AB, BC, are and BC, C.I, AB. This is off the attur confinins it f dual colse ; it Live faculties the triangle : knowlelge the only ote of is Eurlid knew, that there are hact: the eye the perceptive acquired our ance of thise as well an the Euchid, theaf to a double ki faculties whic this may alon bie work has of clomentary traly philosol noraent. and
A brief ana called Buchud naleatned rea 1. are prohlem ing an equila equal to a git cutting off tro part equal to theorem whic anined a little 8th propositi is advanced This importa jws:-
If two trin miden of the o enąles contaii hates or third shall be equa: wearh, natm ute. 1)r, if tra.gle be re angles are equ
lut ABC'
ades AB, AC
amonlt f, nt d another frons the 3 heavens; and al to draw auch lines, ed to imagine them luat by theae poatu wo instruments in ruler and the coter
in, endeavouring to eonnetry is apreared I of performing an| mpasses alono, dis and the ruler: an a celebrated wark 1797, entitled Ge * Comparses). imple fact which : 8 , the 9 th axiom than its prats, It " dis ; even a chilh is * not aware that eater than any f.ag. pery duy's obserra the other axioms e tirst book, are the
me thing, are equad

- whole are equil. the remainders an
the wholes are und
the remaindersum
same, are equal to
same, are equal to
1 one another, that are equal to one as.
rt.
1e another
Irawn through the lit line, without is
: to exist, equal in
are, hy Eaclid and a form of espresesion - kinds of propasi.

A therem is: -uthe; but as, with 10 bare assertion of nless filly curroboto le ilemonstrated. of a theorem, cxepa alrealy cstablished mst have hern de us: and thus we are til we arrive at tho and to rest, mamely,
it to be tflected, a a fursticn which requires somethang ely upon the posto on has lyen stabut, repuiresl conditione
aber part of geometry, but whleh, from the close connecdon which rubaists hetween all the branches of mathenaHeal acience, is often fitly introduced to explain some diflieuity which would otherwise arise In the demonstration of the suececting theorems or problems. As lemmas rathet disturb the contumoun order of a subject, they are never used ly good mathematicians except when absolately requisite.
Heviay now explained the meaning of the terms used fageb. :rual reasoming, the following observations on the nature of that reasoning, and the method pursurd by Euclid and others, will be a mady understool:-A proposition is first stated in general terms: take, for instance, the 20th propowition-"Any tu's sides of a triangle are wagether greater than the third sule." "This is but hare assittion: to udvance a step farther, Euclid platees the Gigure referrel to, mamely, a triangle, lafore the student, and tells him that, in the annexed triangle, mamely, $\triangle B C$, any two siles of it tugether aro greater than the thirs side; that is to say, the sides IJA, A , wro together greater than the one side BC; the sides AB, BC, are sreater than AC ; and BC, C.A, are greater thon
 $A B$. This is certainly caiimg oft the attention from a mero general obs ervation, nuit confining it for a time to the pranamainas one individual case; it is nlso demu'ang the assent of the proceptive facultios; tor the moment that the eye lights upom the triangle ABC th: mind is ;:muediately realy to are knowledge that wo of the sidew mre together great r than only une of its sides. yot the matter cannot rest here. Eurlid knew, as well as any of oer modern ril. ionophers, that there are two primary principies in the homan intellect: the eye seres and conveys its impresaions dirvetly to the perceptive or observing taculties; but intiomation thus acquired ought to lwe immedintely brought under cogniance of these facolties which enable un to trace the canse as well an the efliet, und to compare the relation of things. Euclid, therefore, suljerted every probesition he advanemed to a double kind of proof, by adlressing buth the sets of faculties which compuse the humam intellect: perhaps this may alone the sullicient to account for the fiet, that bie work has from uge to age been used as the text-hook d denentary reometry, while other work w, because less traly phasophical, have courossed palite attention for a monent, and have then sunk into oblivion.

A briof analysis of the several bonks romporing what is called Enchd's Blemonts, may not be unarepptable to the molearned reader. 'The first three propositions in Book 1. are prohlems, and whow the seceral methods of describing an equilateral triancle, of drawing a straisht lime equal to a given straththt line trom a given point, unt of cutting off from the greater of two given straight lines a part equal to the less. The fourth proposition is the lirst theorem which oceurs in Euclid, and requires to be exavined a little in letail, hecause, in combection with the 8th proposition, it firms the foundation of all that is advanced respenting the comparison of triangles. This important theorem, as stated by Eurlid, is nas fol-bWH:-

If two tringgles have two sides of the one equal to two siden of the other, each to rach, and have likewise the poghe contained by those sides equal to one naother, their hastes or thirel sithes shall ter equal, and the two triangles shall be equas, and their other aughes shall be equal. each theach, mamely, those to which the equal sides are oppoute. Or, if two silds and the contained angle of one trasegle be resuretively equal to those of another, the triangleane equal in every respect.
Jat ABC, DEF', tw two triangles, which have the two auder AB, AC, equal to the two sides DE, DF, each to
each, namely, AB to DE, and A's to DF, and the angle BA! efual to the angle FDPF ; the base BC whall be equal to the tane EF, und the triangle AllC to the triangle DEF;
 and the other angles, to which ${ }^{B}$ the equal sides are opposite, shall be equal, each to each namely. the anglo \triangle BC to the angle IDEF, and the angle ACB to DFE. The method adopted for demonatrating this throrem, as well as that contained in the 8th proposition, is a peculiar species of demonstration which has reccived the name of super-position : it is in reslity the name method puraued by tailors and dressmakers when they wish to satisfy themselves as io whether a picee of cloth has been cut correctly from a given pattern; they pluce their original pattem and the piece of eloth or silk to gether, the oue behind the other, and carefulty observe whether the ediges of one project licyond those of the other ; but if they both coincide in every point, the teilor knows that his cloth hae been cor, Aly cut aecording to the pattern. In the samo vay, Euclid requires the triangle ABC to be applied to, or phaced exactly over, the triangle DEF', so that the point A may be on D, and the strajght lino AB upon DE, the point B shall coincide with the point E, becnuse Als is equal to DE; and All eoinciding with DF, AC shall eoincide with DF, hecause the angle 11 AC is equal to tho anglo EDF ; wherefore, also, the point C shall coincide with the point F, because $\mathbf{A C}$ is eyual to IIF: but the paint I3 coincides with the point E , wherefore the base BC shall coincide with the base EF', and whall he equal to it. 'Therefore, also, the whole triangle ADC shall coincide with the whole trianglo DEF, and t^{2} equal to it; and the remaining angles of the one shall coi cide with the remaining angles of the other, and be equal to them; mamely, the angle AIIC to the nugle DEF, nnd the angle $A \cup B$ to the angle IFE. The postulates do not permit one triamgle to be cut out and phaced ove the other, threrefore Eurlid only imugincs what would be the result supposing this were to be done. This theoren depends entirely upon the 8th axiom, being, in point of fact, merely what a logician would call the converse of it; for in thi sth axiom it is stated, that magnitudes which concide with one another, that is, which exactly fill the same space, are equal to orn arather: and in this theorem, in order to prove them equat, it is proved that they eonecide.

I'he demonstration of the fith proposition is the first instance in Eurlid of a species of reasoning termed hy logicians indiret, or a reductor ad nbsurdem, and whirh consists in proviag a theorem to be true by showing that an absudity would follow from supposing it filse.' The theorem here udvanced is, that if twonagles of a triangle he egurl to one another, the sides which subtend, or are opposit? to, those angles, shall also be equal to one another, and it is demonstrated by the following indirect mode of reasoning:- Let ABC he a Iriangle, having the angle ABC equal to the angle ICl , the side Al3 is also repunl to the side A(:, F'or if $A l l$ be not equal to $A C$, one of them was greatcr than tho other. Iet Als be the greater, and from it cut off Dlf equat to AC, the less, and join Dt:, therefore, because in the triangles DBC, AC:LI, D13 is requal to $A(\%$ and BI; common to both;
 the two sides IHB, IO, are equal to the two AC, CB, each to coch; lout the angle DBC; is also equal to the a.site AC13; therefore, the base DC of the on is equas to the hase $A l l$ of the other, and the triangio DBC in equal to the triangle AOB, the less to the greater, whien is ahsurd. 'Therotiore, $\mathbf{A B}$ is not unequal to AC : that is it is equal to ite

The corollary or inference drawn from thin ia, that alf triangles luaving equal anslon have also equal nides.
The 7th propowiton atforils another apecinen of that kind of indirect denomatration, which logichana eall n dilemma. It is stated in the proposition, that, upon the anme hase, anl on the anme aide of it, there cannot be iwo trinuglen that have their sidew which are terminated in one extremity of the base egmal to one another, and likewise those which are terminnted in the other extremity equal to one another. Ifins is proved hy examiaing reparately every powalflo position in which two equal trianglea can in imagined to the phaced no as to have but onn hase : it is evilent that if they rould the so placed, the vertex of one triangle must be either without, within, or on one side of the other tringle: each of these suppanitiona in examined separately, and each proved to be impossible; the reader in than brought into a dilemna, having no alternative but to almit the truth atated in the theorem. There are nany instancea in which this aprecies of demonstration is used by Euclid.

The 8th proposition refers to equal triangles.
The 9 th, 10 th, 11 th, and 12 hh propositions, are useful practical problems, showine how to hisect (that is, divide in two) an angle and a meraisht line; also houv to draw a struight line at right angles to a given straicht line, from a given point in that given line, as well as from a point without or beyoul that given line.

The 16th. 17 th, 8 8th, and 19 th pripowitions refor to the angles of tringles. 'l'he next propmsition most worthy of exnmination is the stith, which invortigaten twe natne suljeet as the dth ant the sth, manely the comblitions of the equality uf trimurter. 'The Ath propomition has alremply ben fully explaned. In the sth it is pooved that if tivo triamples have tivo sites of the one e pual to two wides of the other, emele to marh, and have likewise their hases equal. the angle which is comtained by the two sidere of the one shall be equal to the mught centained lyy the two sides of the other: or if the there ailes of one triancle be rexpertively equal to those of another, the trianglou are equal in every reapert. 'Ibhus, Let $A B C$, IN:F, be two triangles having the two pides AlS, AC, minal to the wo sides DFH, DF, each to each, narnely, AB (0) DF:, and $A C$ to $D F^{\prime}$; and Blow the base IBC Cyual (1) the hase FiF; tho angle B.SC: in equal to the anglo EISF, and

 gives still further information on this usafial sulyeret. It Rhows that if two triangles hane two anghes of the one egnal to two angles of the other, each to each, and ont sile equal to one side, namely, eithor the sides aljacent to the egual anzles, or the sides oppowite to the equat angles it each, then shall the other sides fie equal, rach to each, and alon the third ande of the whe to the third angle of the other: or, if two angles atul a side in orie t bangle be reapertively equal to two angles and n eorere apondiag side in mother tranelo, the two triangles whalt be equal in every reaject. 'Ilhos, let ABC', DIRF', be two triangles which have the angles ABC: IBCA, rexpectively equal to IJFF, EFPD ; mamely. ABC to DEFF, and BC:A to EF'D; alue one side equal to one mille; and first. let those vites be equal which are molja-
 in the two triangles, namely, BC' to FBF the other sides whall le equal rach to each, namely, 1 B to DI:, and 10
 ilhes hitle group of theorems is found very theeful in the
arta, for it in often requiaite to have wome rule by whird to be able at once to determine whether two given in anglen are exactly equal to each ottie ; and of ourh rilen were firmly engraven in the onind of every mecis. nie, there in no doube hut that thare would be faplem expenditure of time, labour, ant money.
ln the "7th proposition, the livestigation of the priw pertien of parallel line is commencel, and this subjert in continued through the $28 t h, 29 t_{1}, 3(t h$, and 31 at piom powitiona, until auldenly broken off by the lintrodurtion of one of the most remarknble proposition in the whila book, numely, the 32d, in which it in khown that the three interior anglen of a triangle are tugether equal tu two riuht angles. 'Jhis impertant finet has alrendy been examined, nul therefore we have only to add that it was dimeowered by Pythagoras, a philosephirr of Samos, ahota $500 \mathrm{n} . \mathrm{c}$. 'Ihar doctrine of parathel lisers muat not he disminsed hastily, for, with the exfertion purhape of proportion, no other part of elementary peometry hat created wo much proplexity abl dixcuasion. The fim two theorems relating to piorallel $\mathfrak{i f}$.em are very ailople and casily de'luonstrated; for the $: 7$ th theorem only alfirus, that if a straight line fulling upon twa other atraight lines makes the allormate anciled equal to one another, tioser twa ntraight lines shall be parallel. The "sih theorem im equatly casy of demenstratest, on it morroly assumen that if a straight line falling amon twen other stribight linew makes the exterior noghe equat to the interior und opposite nogle upon the same side of the lines, or makes the inturior angles upon then ame side togethor eyual to two right augles, the two straight lines whall lxa prathel to one another. To make this more char, it may be nu well to subjoin an example.

Lett the straight line EN, which fills upoll the two atruight linea All, 'Ill. make the exterior angle Eidll mual to the interior and opprosite angle (illl) yron the watue side; or make the interior absles on the mane side, BCill,
 (illi). turcther cyual to two right ungles ; AB is paralIol (1) I'I). But the e! ith propnsition asmumes the convorm of this, naturly, if a straight lime lath ugon two prathet straishs limes, it makes the atternate angles equal to one another ; and the everior angio equal to the ine terior und opposite upon the sabue side; atul likewise the wo interior angles winn the satme site tese ther repal 10 two right :mshes. Now, the uswertion contaiand in thig lheorem is both easy of comprelarions and evident to the sornses: the dithenty lies in sutherting it to that risorous demonstration to which all thomems aust he brousht lwfore they an be receiverl us wathemation trutha, Euclid has endeavoned to prove it hy means of at reduetion ad absurdum, but this wereides of demonstron lion is for many rasons neser alopited by good math. maticians, when it ta pussible to prove the truth of ster'unent by any other process of rensoning. Almos cory succeding mathemationa has devised sone particular unthud of his own to chocidate she doctrine of parallel lines, bit no one has aver yot fully succeded in eflictine the reipuired demonstration.
'The 3tith proposition whowe that straight linea whirh are parallel to the vame stmitelal lime nre parallol to one another. The following demonstration of this fact in fommend "pon the traths previnuly ulvanced in the 29 th and "7th propmsitiona:-
I.de the two lines. IB, (D), he partillel to EP; then All und Cll are parallel to one another. For herawse dilk eute the parallel atruight lines AB, J:F tho angle A(ill is equal to the angle (illt. Again. lueranee the meraight lime (iK cuts the parnitel straight lines F:F, (C1), the angle (ilif is equal to the angle GKD; and it was shown
that the onglo A
(noe, ale Mit nate inglen: tho The 33 d prop don, which wan of the famotia $3=$ agation of the 15 naturaily lowls and andeed it ma [rposition* in t] gruin of puralle treen the pirnue trianglen. III PI that paralletogra the same paraliel tion 37, the aarn angles, namely, t perecen the mame 3i are the convi proted, however, nnot atriking, per -ienee, is the 47 rem and the ex chicue as to th limself. In any in described 11 k an is equal to the sul upun the ailes the right nugk. a right-ningled t the right nuglo Nivare, deserihed nic is equal to t nillul upon 13.1 the square 13: tro squares IBC thayoras hal also disovering this nardiate'y upon with jay at the v buing permitted sarrificed a whote oren. as a testirt is entitely fahulot fum of fible; ane that the truth nos bell in the high recer, but by the wha transmitted
Haing how and the various fi bin, and adepte" only remains to athar hooks.
In the seconed mpuares formend al subject of in this hook wre ver in proving that the rectangles a of the demonstra principhe, that tI tyether. 'The \mathfrak{f} a. common tmat of the mensurat alpealy exphaner cal denanstratio the square root The 5th. 6th, 7 th cuples "pon whie couducted; all th are of great vintu
The thitel boun of the circle, at

Yub. 1.-s6
ne rute by whirt r two given in c. I and if muel if every mech nould he far leun ation of the prow and this aubjer th, and 31ut po. the introduction OHE in the whis - mhown that the together equal 1 has already been a achl thint it was rof $\mathbf{S}_{\text {amen, }}$, nhout near must not he tion perhapa of y keometry ha sion. The firm hre very munple h theorem only upon two othe les equal to one parallel. The onstratints, an falling upon twn - anghe remisal to the same side of upen the mane the two straight 'To make this in an example.

B

M
" ; All is paralNsulume the con. tall ufren twa ate angles equal egunl to the in aud likewiep tla one ther repual to containel in this and ridident to ring it to that acolems mast le es inathematical wo it by means en of dectuonstrior by goonl math. e the Iruth of a oultug. Almat ined sume partithe disetrine of Hy succested in
dele liues which latrallel on one of thin fact in tred in the 29th
nl to EH^{\prime}; then F'or, hecause , L'F the angle

that the angle ATSK in equal to the angle GHF ; there. fore, the AtiK in equal to (iKU, and they are altepo ase anglea; thurefore AII in parailel to CD.
The 3ad proposition resilunea the chain of demonstra. fion, whieh wan nuddeuly intermpted by the insertion of the famonm 32 d proposition, nnd continuen the invenogation of the propertlea of parallel linen. Ihis mulject naturally fomida to tho examiantion of parallelogramin; ond indeed it may be mahl, that almost all the sumereding peposition in the first hook aro devoted to the inseatigation of purallelograms, and the relation sulwiating beo ween the propertien of parallelograma not thone of tranglea. In proposition 35, for inatance, it in alleged that pralkd,grans upon the aume haso and lopween the anne parallels, ner equal to ench other ; in prosessition 37 , the mame fint is nffirmed with rempert to triangles, namely, that triungles upon tho mame base und butreen the same paralleln, are equal. Proponitions 36 and Ware the converse of the preceding. The most celobrated, however, of the ancementing theorims, und the mont atriking, pertmpin, in the whole range of gronutrical sinee, is the 47 th proposition. We nulijoin the theorem and the example given, and refer those who are cuisue as to the mothol of demonstration, to Euctid timself. In any rightongled triangle, the apmare which bdescribed ufon the siden snbtending the right angle, Gis equal to the sipurares describied upon the sides which contain the right angle, Jat AllC be - ight-augled triunglo, having the right angle D.IC; the putare, deseribed "phan the side BC is equal to the syures deantlel upon ISA, AC ; that is, the square 13: is embal to the tro \#quares 118 and (:II. l'y. thatoras had also the honour of
 diacovering this importunt troth. It is related, that inmadiately upen the discovery, he was so tranaported with joy at the value of the truth, and with gratitude at bing permitted to reveral it to the human race, that he sarificed a whole heratomb, that is to say, a humbed orch. as a testimony of his thatnkfulness. This story is entirely fabulnos; yot anonething may be gained even fon a fible; and from thin firtitious natration we learm, that the truth now unfolded in the 47th proponition was weld in the heghest ratimation, not only by the disernrever, but be the muricoms who invented the fable and wha trasulittel it to posterity.
Hang now rxamined Euclid's methon of reasoning, and the various forms of logionl arguments employed by bim, and adoptind by others in demmatrations, it now orly remains to ghame rapidly at the contents of the other lrooks.
In the sfeomil book, the properties of rectangles and muares formed under given lines, rons'iu's the princifal subject of investigation. All the demonntrations in this took are very simile; many of them consist chiefly in proving that the figure drawn is really composed of the tectangles allused to in the propostion ; and nost of the demonstrations are founded upon the selforvident priariple, that the wiole is oqual to all its parte taken tupther. The first three propusitions show the theory a. enumon mathernatical multiplication, and also that of the mensuration of rectangles in practical geometry. atrealy explained. 'The 4th may be called a geometrical demonstration of the rule laid down for extracting the square root of two terins in arithmetic and algelira. The 5th. 6 th, 7 th, and 8th propositions show the princules upon which sone useful operations in algehra are conducted; all the remaining propenitions of this book use of great value in trigonometry.
The thind book is devoted entirely to the investigation of the civele, and of various lines conmidered with refer-
Vol. 1.--i6
ence to the circle, and drawn within or without ita cir cuinference. 'The propertien of tangenta and of tangen circles are fully conmidered; and also the relation hetween anglea which are maile at the circumference and thowe made at the centre. Thin book is of great une in varioun mechanical arts; it ia also the foundation of prartieal geometry, the circle loeing very frequently used in the conatruction of complia ated figurem.
'I'ie fourth book may be connidered an a continuation of the thirct, an it triatm of auch ligures as cannot he easily dnuwn withont the circle. It explaina the methed of deacribing regulur polygona in and about circiems and conversely, to describe circles in and about regular polygonn.
'I'he tittl and sixth books may be considered together, being both devoted to the manne anhject, namely, the doetrine of proportion. The fifth hook in introductory to the sisth, for it lays down abstract theorems relative to proportion; and tho nixth hook shows the application of three theorema to geometry. Every branch of mathematicnt acience is more or lese dependent upon the demonatrationa contained in these two bookn.
'The seventh, eighth, ninth, and tenth books are never pht into the hands of atudents, being of very little use in any part of mathematies. 'I'he loctrine of proportion is more or lese dwelt upon in all these four hooks; and they ulao treat of the greatest common measure of nay two numbers, of square and enbe numbers, and of incommensurable quantities. The main, if not tha only, object of Eiuclid, in writing these four booke, neeme to have heen to aetle the intricate question of incommensurablen.

The rmaining books of liturlid are ea iroly devoted to the examination of molids, and to the investigation of their properties and relations,

BOLID GEOMETRY.

It lum been already observed, thint all boiken having longth, breadth, and thickness, much as word, timbur, Se., are enlled solida; and that the investigation of the properties and relations of the various figores assumed by nueh hodies, is the olject of solid treonetry.
'The houndaries of solids are murfaces. Those solide which are boundod hy plane surfices are called $i^{\text {ploly }}$ yhe drone, from the (ireck words polus, many, and edrn, a meat. 'I'he phanew which contain a polyheilon are calfed its sines or fares; the lines houndiny its mides are termed ite calers: and the inclimation of any twe of the olanes in catled a dilactral ansle.

The meaning of parallel lines having heen already explained. it is only necesvary tu say that the word parallel has the same signifiention when applied to plames as when applied to lines. Parallel plance, like parallel limes, would never meet, even if lengthened to any evtent. The ceiling and the floor of a room are parallel phases.

A solid augle is firmed by three or more plune anglen mecting in the same point. Iha corture of a box, for instamee, is a solid ancle formed by the jundion of three angles, namely, the plane angle terminating one side of the upiper or under surface of the box, and the two plane anglea lelanging tos its two sides.

The gencric name of prism is given to all polyhedrona contained between two opposite, parallel, nuil equa, polygona, connected together by parallelograms. The common bricks used in masonry are fanailiar evampled of one speces of prism ; the little optienl instrmment used for showing the colours of rays of light, is nnother kind of prism-it is a class, borunded lyy two equal and par allel triungular ends, and three equal and similar sides 'Ihe two conds of prisman ne gomerally called the termimating plates, and one of then is callod the hase. The edges of the sides are cailed the latval chiges, and thome of the terminating planes are called the terminating edgea
$2 \boldsymbol{2}$

Primem may be right or ollique, regular of Irregular. In right promms, the lateral edgen are perpendioular to that bawe in chique priame the sides are in an obligue pewition with respect th the base. A right briam having regular polygoms for its terminating phanes, in anid to he regular: anirrigular primmin one in which the endan ne trregular polygonn. The line joining the centre of the terminating planea of a regular priamin ealled the prise matic axis, and the ahtimete or height of the prism ia aqual to the lenuth of this line.
The parallolograma whith form the wides of prismu, are alwayn equal in number to the sillea of the loum, und prism are chased accordingly. The prism which have - triangular hawe ate called /ruaguhar primma, thome which have a quatrangular hage are caltod guadrihiteral priwnow. Hexagonal prisum are thome baving a hexagon fir their basea and prolygotal prisum are thowe of which the linee in a polygon, The parallelopipeel and the cule are two quadrangular prisinn, which, leving of great importance in the arth, repuime apecial uttention. 'Ihe parullelopiped in boundell sy aix four-sided figuren, of which every oplusite, tive are paratlel. It in called rectungular when its base in a rectangle: and whin thene six planes are all rectanglen placed perpendicularly to cach other, it in suid to be righe, und oblighe when the phanes are inclined to each other. We can sporcely look round un without mecing restangular paralbolopipetome. Beams of timber, hewn
 of carte, are almont invarialdy rectamular parallelopipwdoun; and this form is gemerally given to houses and to rooms. It is one of the propositions of the ltha laok of Eaclid, that if a wolid lne contained loy nir phases, two and two of which are parallel, the opposite phanea are amimilar and equal paralletograme: thas, let the solid CDC: II (which is a paralielspifeed), he contained by the pratattel phanes AC, GF; BG,CE;FB, AE; its opponite planes are similur and equal praillclograms.

Parsilflopipeds, when cut by a plane pasking through the diagonale of two of the "pposite planea, are formed into two equal triangular primms.

Let A B le a solit parallelopiped, and DE: C F , the diagonala of the apposite parallelograms, A II, GB, mamely, those which ure drawn betwixt the equal angles in each; and because C D, F' E, ure earlh of them parallel to GA. though not in the mame plane with it, CD, FE, are paratlel; wherefore the diugonals CF, D E, are in the phate in which the parallels are, and are themenines parallels; and the plane CDEF shall cut the solid AB into two
 equal parts.

Because the triangle CGF is equal to the tringle CBF, and the triangle DAE to DIIE; and that the parallelogram $C A$ is equal nud similar to the oppowite one, B F ; and the parallelogran G E to CH ; therefore the fance which contain the prisma C A E, (IB B, are equal und simitar, earh to each; and they are alwo equally inclined to one atuther, becouse the phans A C, E: B, are parallel, as nlso $A F$ and $\mathbf{I I D}$, and they are cut by the plane CE; therefore the prism CAE: is equal to the prism © B F , uad the solid AB ia cut into tivo equal prisins ly the plune CDEF.
Defo-The insistmy stringht lines of a paralletopiped, mentinned in the following propositions, ure the siden of the parallelograma betwixt the base and the phate parallel to it.
Parallmopipeds are equal when they are upon equal beeren and of the same altitude. This tiact is very cuident, and in constantly ucted ujon when the solids are right;

for inntance, in making book-ahelven, each ahelf is mad

cqual to the othern-that in, it in made equanly iong and cquinlly hroad, nud has the natime altitule or thirkurem Solial parallolopiperim which lase the mathe altitude, ate to
 purallolopipecta of the mane ultitule: they are to ore another as their masen-that is, as the hase $\mathbf{A} \mathbf{E}$ in to thie

Whatexer can lee prowed respurcting the froperties of parallofopipeds, is equally true with rewinet to thone of culven, lnccause a culve la merely a paralcalopiped pidh mpluare sides. Thle dive used ly gambiters are cubter and tablen, footstonls, and rooms often rective a culic forman Juxt as the unit of measure lior pibue surfaces is a mpure mo the unit "f meanure for solida in a cule, and the lenght of each side of the cuth in an inch, at fint, ay yard, or ang other limenal unit whish may he tived. T'o measure tho molidity of a molid, is to nseretain how many culicic inches, os cubtic fret, \&ere, are contained therem. 'The moldidity of a parallelopipart is fonnul by multiply ing the lengith by the breadth, mud the promber hy the heright ; the result gives the number of culses contained wothin the tigure.

Lact 1,1 , and h. be the lengeth, lircaidth, or thieknem and the height, and v the sollatio or molid conterns then

$$
r=\| h
$$

Lat I F te a dight rectanguler praillempiped. Let is Iength A It be 4 lineal mits, aq 4 inches, tha thieknea 110:2 influes, and it height A f as inelow. The whlid conn evidently le divided into three equal jurtions ly planra through (; mul II, parallel to the bis. AC; nud uto four equal purtions ly means of plamen through K. L, M. patall. 1 to the wide $\mathrm{B} F$; and
 intu two equal portions ly a !hame through I, parallel to II D. Farh of the small cube into which the solid is now dividift, is a culic inch; be namber of cultic inchese in the bweit parthen HC:
 there are an many; mad in them "d tharthere, there as

 null beight.

The molidity of a cube ir fomm ly multiplying the xilfe by itelff, und that product arydia by itwelf; or, literally, hy raving the side to the hirid prower
l.et $e=\mathrm{an}$ edge of a cule; Hen $\quad 1=3^{3}$
The reason of the rule is evident,
 wince n cube is just a purathelopiped whose length, hreath, und height, are cqual.
The solidity of nll prisma, or of any paralletopipud, may lue tounal thy multiplying the arca of the hase by the height.
1.et b denote the bane, and h the height: then $v=$ th.
A pranaid is an angular solic, which has a polygon for its bass, and trimules for ita sides or lines; those wides all mert in one proint, and form a solid angle, which in called the virter of the pyamid. Pyrumida, like prisms, may be either regular or irregula

Wian the trane meper or milr a perpendicular They are alow asi, wee, accord polyzon, ke, having aquare diden An obveli and trinugular portion to the minl is found by erpendicular nawer:
Example,- \mathbf{F} rectangular py and brealth or and if fort, and
$0=$ o $h=$ $=160$ culhie fer By a regular olid bounded ingurem, and ita that is to Ray, a the wides are eq hatral. It has merecan be onl Platonic bodiex gated their pro mals are the bese numes are indicatius the : from ribra (Gise
"'lie tetrihari wiel are equilat The orfluhedion The dulistaliedr golls, The ecos ral triangles. tetrabedron, haw ediges of these
A cylinder d instead of a rect equal and para line juining the are. When th b) the phane of is suid to be rig shathe of cireula pomman garden gua, and many are cylinders. ders are also y the arts; tuleses for instance, ar other, and of w sulidity of a eyl a priwn, namely the perpondicul theorem that a bases and ultitu biko a cylinder, print like a py of cones. The a cone. A IS the verter, and YD janning th centre of the 1 axis. A frutu portion contuin bave and :1 pha thus, the portic frustum of the axis of a cone i itu base, it is cta

la equally long and tiluld or thirknine atiwe whitule, are to A II, U: D, be milid a they nre to ore hanes A E is to the祖 10.
$\$$ the jropertion of rexprest to thase of parallelopiped with lers are rulter; ynd crive a culicic forma uluffaces is a mplusa uthe, and the lenerib curt, it yard, of ang I'o measure the many culic inctere, n. 'The solilitisy of 4 the longth by the t : the result ginca the tigure.
alth, of thickanem
or wolid centenc,
Illolopijed. Let is when, ite think luea

of the small cule It culic inch: the at jortion Ht t 'rlurwowt partos L2rr firn, there ato 0 cu ac content ol .nn 1 agth, breauth, D
 1

drimiges for its we point, and form x of the pyamid. gular or irregulu

When the thene of a pyramid In regular, the line joining moenes or nummits is ealled ites arin, and when the axis buerpendicular to the bane, it in then a regular pyramid. They are almo suid to ho triangular, quadrilaternl, polygonul, ke, aceording an the bume in a triangle, a quadrilateral, a polyzan, sco. 'The pyrmmida of Rigypt are quadrilateral, having quuare bumes and four similar amil equal triaugular ades An obelisk in alaos as pymmid, and has a mquare base gom triangular siden; but the height is vory great in pros prition to the extent of the lane. The aolidity of a pyramind in found liy multiplying the area of the loase ly the pependieular heright, and one-third of the product in the amwer: $\quad v=1 b h$.
Exanplice-Find the sulidity of a metangular pyrumil, the length md brealth of its bave being 0 and 4 firt, and its altitude 20 freet, $r=f$ h $=1 \times 6 \times 4 \times 20$ $=160$ culis: feet.
By a regular solidil in meant a - lidid bounded by regular plane jururen, and ita nolid anglea equal; that in to say, a wolid in which all tee dides are equinnuphar und equibacral. It haw been proved that
 ture canl be only tive regular solids ; these areoften called Platonic bodies, leciause Plato was the birst who havestigated their propertios. 'The names of these five regular abluls are the following: and it will be observed that thewe numes aro formed by prefixing the Greek numeral indicating the number of sides to the termination hedron, from firn (Greek), a meat, that is, a side.
"He tetrathedrom in a regular triangular pyramid, whose ader are equilaternl triangles. The hexatedron is a cube. The ofthed on in eonained ly eight equilateral trianglea. The duticatedron in contained hy tweive regular pentaguns. The covarhodrom in contained by twenty equilateral triungles. Lach side of a regular molid, exeept the terahedron, baw an oppowite face paralley to it, and the diges of these fures are also respectively parallel.
A cylinder differs from a prisin in having a circular instead of a rectilineal have; it is contained between two eypal and paralled circlex and a convex surtace. 'The line juining the centres of the two circles is called the and. When the axia is perpembicular bu tho phane of the bases, the cylimber is suil to be right. Stemombilere, the batix of cireular pillars, the stome of a ramman garden pollir, the marrel of a gun, and many other familiar ohjerts, are cylimers. Combinations of cylinders are also very frequently usid in
 the arts; tuleseopes and opera-ghasen, for instance, are merely cylinders titteld one within the oller, and of which circular binses form the base. 'Tlae salifity of a egtinder is foumd in the same way as that of a priwin, namely, ly moltiphyme the area of ilue thase by the perpsomicular height. 'ilhis rule is fomended upon the theogen that a rylinder and a purallelopipuod, having cymal bates and attituden, are equal to one mothor. A cone, Liko a cylinder, has a circular lume, hat it terminates in a pmint like a pyramid; sus ir-haves are mate in the form of coirs. The anmexd tigure is a cone. AB is the base, v is the verter, and the straight line YD joining the vertex and the centre of the buse is called tho axis. A frostum of a soldd is a portion contained betwern the base and a phate parallel to it; Hus, the prortion EGAII is a frustum of the cone. When the axis of a cone is perpendiculat to itw buse, it is called a right conce

Other conen are maid to heo ohliyner. A right cone may be demeribed liy the revelution of a right-angled triangle ahout one of tho sidem of the right angle. It is proved that if a cone and a cyliswer have the wane buas and the same altitude, the cone in equal to the thind purt of the cylinder. From thin fact resulta the nethod uminlly arlopited for asecttainiug the solidity of a conn. 'I'lee area of lian hase be multyplied by the nltitule, which, an lurfire shown, is the rule for fluding the solidity of a cylinaler; one-third of the result, therefors, givea the molidity of the cone.

BPUERICAL OEOMETHY,

A sphere or ghote ix a molid having our eontinued curved surfiace, und which in conceived to the generated liy the revolution of a memicircle about its diameter balloonn and cricket-thalls nte spheres.
Spherical geemetry conaista in the inventigation of the propurtien of spheres.
Every point on the aurfice of a aphere in equally diso tant from a point in the mildle of the pphere called ita centre; any line drawn from the centre to the circumfermene in called a rulius, und any line drawn through the centre, mad terminated at loth extremities by the cireumferemes, in termod a dimeler. Whan the diameter in perpundicular to the plane of a circle of the pphero, it is termed an axis, and the extremitien of the axis are called the poles. Circlen of the aptore, whose planen pasa throngh the centre, dividing 'ing sphere into two equal parts, are called grent circles, and ald othern ar: mall circlest. Ily the distance of two points on the sufface of a splure, is meant an are of a great circle insiscepted betwern them.
A spherirul angle is that formel on the s:s" ce of the sphere ly ares of two great circles meeting at the argular point, n_{i}.' is measured by the inclination of the phates of the circlen.
A spherical tringgle is a figure formed on the surface of the splicre hy arcm of three great citw, alled ite sides, cath of which is less than a seminitres do

A guidruanafur Iriangle is that of wb hore of the siders is a quadrant.

A lumery surfine a part of the surfice of the sphere, contained hy the halves of two grent circles.
A segment on a sphere is a part cut oll ly a plane.
There are several methouls of thuling the contents or solidity of a sphere; perhaps the most simple and the most raxy to be romenhered is the following: frind, hy the mules previnuly given, the so. r lidity of the circumesribing eylimeter, as $1: A B F$, which is a cylimider eqmal in diameter und theight to the diameter of the spharre; two-thirds of it will the the volume of the c.there, because a sidnere is pron. 1 ... lu. equal to two dhirdo
 circumscribing cylinder.
The exterion extent of surfines, or eonvex superficen of a sphere, may le asiertained b_{5} multiplying the diameter of the splacre by its circumfincmes. Thus, in a glabe of 31 inthes dimeter, and $69.83:$ pircumference, the
 $20=1256.64$. Ako, the surfice if any zone of the sphere, as mme'n', is exartly cyual to the surface of the correxpontiner zune of the eylintire res'r'.
suberieat kememery is of great impertance in eneveral of the arts and physimal sciences, and more espectally in nstronomy und navigation.
thgonometily-lann-sunveying.
Trigomometry, iguities literally the art of measuring trianales, but with the progress of sitict ce the meaning of the word has bern much extended. I'rigonometry is
divided into plane and spherical, necording as it is directed to the investigation of plane or of spherical triangles.

A fixed relation sulsista beetwen certain lines drawn in and Immediately round a circle; and it is upon this relation that trigononetry is founded. Mest of these lines, ouch as tnogents, secants, ares, phords, \&ce., have already Deen mentioned; it only remaios to add, that the sign of on are is a straight line, drawn from one extremity of the are perpendienlar to the radius paaking through the other extremity, or, it is in fiet the half of the chord of double the arc. The sine, tangent, and seeant, of tho complement of aid are, are called cosine, cotangent, and cosccaut of that are. 'Jhis will be better understood ly curefully examining the annexed tigure, which is a representation of the varions trigonometrical lines.

BC is the complement of the are AB; BMD is the suppirment of AB; angle $\mathrm{BO} O$? is the complement of AOB , and BOD) is the supple ment of $\mathrm{AOH} ; \mathrm{BE}$ is the sine of $A B ; A F$ is the tangent of AB; OF is the secant of $A B$; so $13 G$ is
 the sine of 13 C , or the cosine of A B; $\mathbf{C H}$ is the tangent of 11 t , or tho cotangent of A 13 ; and $O H$ is the secant of $B C$, or the rosecant of $A B$.

The following rules for computation nre useful in right-angled trigonometry, that is, in computing the aides and angles of riglit-angled trinngles.

1. When two sides are given, to find an angle.
$\|$ Make a given side radius, then the side made radins is to the other given side as radins to the trigonometrical name of the latter sile. 1
II. When one of the three sides nud an angle are given, to fist a side.
\triangle Make any side mulius, then the trigonometrical name of the given side is to that of the required side as the given side to the required side. 1

Although in this ense any side may be made radius, it i^{-1} preferable to make one of the sides conerrned radins, that is, +ither the given or the required side, as this introduces the radiua as a term of the proportion, and its logarithm being 10 , it simplifies the calculation.
III. When the two sides are given, to find the hypotenuse.

The sum of the squares of the two given sides is equal to the square of the hypotenuse.?
\therefore. When the hypotenne and n side are given, to find the other side.

T The difference between the sipuares of the hypote nuse and the given side is equal to the square of the required sidn. Or, the prosluct of the sum and diflierence of the liypoternuse and a aide, is cyunl to the spuare of Q e other side.l

When the sphare of a side is known, its equare root gives the value of the side.
The first two rules are sufficient for the solution of all the problom in right-angled trionnometry; but the last two may sometimes to conveniently amplayed.

Trigonometry is one of the most usefnl departments In mathematical serience. Ita application to pretional purposen are very extensive, and it in of great istiportance in navigntion, enginecriug, and, an we shall innedistely are. in land-surveying.
f.and-surveying is the method of measuring and computing the area of any amall $]^{\text {wortion }}$ of the oorth's surfree, as a fielh, a farm, an instate, or distrist of moderute extent. There are three distinct operations in the nrt of laml-anrveying, all of whith require t!ue nurveyor to posmess a competent lanowledge of arithmetic, algehra, and genmetry. In the first place, the anveral lines and angles must bo measured; secondly, they must lo protracted or laid down on paper, so as to form a plan or
map o: the diatrict; and, thirdly, the whole area of the district muat be computed by mes ns of the firs going operations. In performing tha first operation, the most useful instrument is the chain called Guntri chain, from the name of the inventor, the Rev, Edmund Gunter, who lived ahout two hundred yeara ago. It is 22 yards or 60 feet long, and ia composed of 100 equal links, the length of each being 7.92 inches. At every tenth link is a mark mato of brase. An aere consists of 10 square chains, or 100,000 square links. There are 80 chains in a mile, and 640 acrea in a square mile.

Iron pins, nbout two feet long, enlled arrous, with red handles, or pieces of red cloth, nttached to them, are used for aticking in the ground at the end of eacls chain length, when measuring in the field. Ten of them are commonly used.
In measuring land with the chain, two persons are recpuired, one nt each end of the chain; the one who walks first is, for the anke of distinction, enlled the leader, nnd the other the follower. Lines nucasured perpendieularly to chain lines, to the angular pointa, and other points of the houndary of n field, such as to ciooked hedges, brooks, \&e., are called 'flsets. The cross-staff is used in measuring offisets: it consists of two hars of brass placed at right angles, with sights at their extremities, perpendieular to the plane of the bass, There are narrow rlits at \mathbf{A} and C, to whieh the eje in applied, and wiuer openings nt 13 and D, with a fino wire fixed verticall, in the midelle of them. 'I'he eross is supfored on a staff E, abonit 42 feet high, which at the lower end is pointed and sholl with hrame, so that it ean casty be stuck in the ground. T'ne sights are placed on the top of the statf, nud fixed to any position by a serew F.

A simple crosi-staff may
 ho made by cotting two trooves with a saty along tho ciapotunls of a кyuare hond, to be fixpl on the top of the staft It can cavily the ascertained if the sighte are at right angles, by directing one pair of them, as AB, to one ohject, nud ohserviner to what object the other pair, U 1), are then directed; then by turning the sights till the scroml whect is seen through the first fair of sights A H, if the first oljecet is then visible through the ne cond pair of wights, nod is exactly in apparcne concidonce with the wire, the sights are at right angles; if mot, they must be ndjusted.

An instrument not less important in surveying is the theordolite. This useful instrument, fixed on the top of a tripued, consists of two graluated cireles perpendicular to earh other, one of which is fixed in a horizontal and the other in a vertieal plane, and is used for measuring horizontal and vertical musles.

In the igure of the theodolite here presented. HRS represents an ohligue view of the horizontal circle, and mipu a direct virw of the vertieal ons, which extemes to littlo more than a semicirele. The vertical cirele is mowable about an inacrinary uxis, roinciding with tha radius O (?, which, produced passares through the centre t^{\prime} of the horizontal rirede. In the vertional circle is fived a
 tolescope W, furnished
cope is conn wet with the radus is fixe cerev, along ! of the vernic the circle, the and the instru remier to the circle st e, and
To measure ment by the the tolescope ber of degrees this circle rem turn the verti through the to the intersectiol of degrees on ance between borizontal ang

To meabire the object whic the arc, intere angle. An an
A plane tabl instrument col hoard fitted in frame of wood the paper on th in the adjoining centre of tho t fied to a tripo the top a ba joint, so that t be fixed in any sition. The t means of two by placing a ba of it in which one side of the the purpose of perpendicular t of the other sic wa central poi uring angles.
A magnetic tuble for dctern odjects, and fo sume relative also an index-r erhts, one eds the same plane drawn on the objeot observed ated to serve a.
A principla conmon to lan veys of engine lowing figure. two objects tha waccussible in

Let A and arwight line f Meaure two li tained angle 1

Whele area of Whe of the fros - first operation n called Guntr', he Rev. Edmund years age. It Is sed of 100 equal nehes. At every An gcre consings re links. There cres in a square lled arrours, with tched to them, are end of each chain Ten of them are
two persons are in; the one wha action, called the lines measured a angular points, field, such as to lled cif sets. The its : it consists of les, with sights at plane of the bars, o which the ege it

ha a saw along tha xed on the top of d if the wights are of them, ns $A B$, tobject the whee turniug the sight 1. the tirst pair of visible through the in apparche coinco it right angles; if
in surveying is the fixed on the top of reles perpundicuat in a horizontal and rsed for measuring

- presented. H R rizoutal circle, wi

thevel I, tho wh
cope is connected with a movable radius 0 A , in conn+ with the opposite side of the vertical circle; and this ndus is fixed to a vernier o. movable. by means of n wiev, along the limb of the cirele. When the centre oof the vernier coincides with the middle division Q of the circle, the axis of the telescope is then horizontal, and the instrument thus serves alse as a spirit-level. A vemier to the horizontsl circle is attached to the vertical verime at e, and is movable with it.
cit
To mensure a horizontal angle subtended at the instrumeat by the herizontal distance of two objects: Direct the telescope to one of the objects, and observe the number of degrees nt c on the horizontal circle; then, while this circle remains fixed by means of a clamping screw, turn the vertieal cirele till the other object is visible through the telescope, and in apparent coincidence with the interscction of the cross wires, and note the number of degrees on the horizontal circle nt ϵ; then the difference between this and the former number is the required horizontal angle.
To measure a vertical angle : Direct the telescope to the object whose angle of elevation is required; then the arc, intercepted between Q and o, is the required angle, An angle of tepression is similarly measured.
A plane table is frequently used in surveying. This instrument consists of a plane and amouth réctangolar boord fitted in a movable frame of wood, which fixes the paper on the table P ' , in the aljoining figure. The anitre of the table below is fised to a tripod, having at the top a bull-and-socket jointso that the talle may be fixed in any required po-
 stition. The table is fixed in n horizontal position by means of two spirit-levels lying in dillerent directions, or by placing a ball on the table, and observing the position of it in which the ball remains at rest. The edges of one side of the frame are divided into equal parts, for the purpose of drawing on the paper lines parallel or perpendicular to the edges of the frame; and the edges of the other side are divided into degrees corresponding tha central point on tha beard for the purpose of meawing angles.
A nagnetic compass box, \mathbf{C}, is fixed to one side of the table for determining the bearings of stations and other objects, and for the purpose of fixing the talle in the saine relative position in dillerent stations. There is alio an index-rule of brass I R, fitted with a telescope or aghts, one edge of which, cnlled the filurial edge, is in the same plane with the sights, and by which lines are drawn on the paper to represent the direction of any object obwerved through the sights. This rule is graduated to serve as a scale of equal parts.
A principle of measuring ly triangles, which is alike conmon to land-surveying and the trigonometrical surreys of engincers, may be comprebended from the following figure. We wish to find the distanco between two objects that are cither invisible from each other, or waccessible in a straight line from each other.

Let A and C be the twe objects innccessible in a araight line from each other, on nccount of a mareh. Measure two lines A II, B O, to the objects and the contained angle B. In a triangle ABC, two sides, A B,

B C, and the contained angle B, are known; hence AO may be found.
Such a problem as the above is common in measuring heights and distances; and it will be understood, that the principle of throwing the area of any given field or set of fields into triangular spaces, is that pursued in all processes of land-measurement. In most instances, fielda are irregular in form; their outlines being often bent, with a greater width at one place than another. In such cases, after measuring the areas of the triangles, the odd pieces at the sides require to he measured, and their aggregate area added to the whole. We may illustrate the process of surveying as follows:-

The angular points of the large triaugles or polygons, into which a field is to be divided for the purpose of taking its dimensions, are called stotions, and are denoted by the mark 0 ; thus o_{1} is the first station; o_{9} the sccond; and so on. The lines joining the stations, and which are measured by the clain, are called chain lines, or station lincs.

II Divide the field into triangles, or into triong' and quadrilaterals, the principal triangles or quadrilaterals oceupying the great hody of the field, and the rest of it containing secondary triangles and trapezoids formed by offsets from the chain lines. Measure the base and height, or else the thre sides of each of the principal triangles, then calculate their areas by the rules in Mensuration of Surfaces, and also the offiset spaces, and tho sum of all the greas will be that of the entire field.ll
Exumple 1.-Find the contents of the adjoining field from these measurements, A being the first and B the second station.

The double of the areas of the component triangles and trapezoids nre found, in order that there may be only one division by 2 , namely, that of their sum.
$g i=\mathrm{Ai}-\mathrm{Ag}=147, \quad \mathrm{~B}=\mathrm{AB}-\mathrm{Ai}=172$, and $h k=\mathrm{A} k-\mathrm{A} h=301, \mathrm{~B} k=\mathrm{AB}-\mathrm{A} k=145$.

Twise the aren of the
tringle $\mathrm{AgC}=\mathrm{Ag} \cdot \mathrm{CC}=150 \times 141=21150$ trapezoid $\mathrm{C}_{5} \mathrm{D}=\mathrm{Di}(\mathrm{Cg}+\mathrm{Di})=447 \times$ $(151+167)$

$$
=137676
$$

triangle $\mathrm{D} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{iD}=172 \times 167 \quad=28724$ triangle A $h \mathrm{E}=\mathrm{A} h \cdot h \mathrm{E}=323 \times 180=68140$ trapezonid $h \mathrm{EF} k=h k(h \mathbf{E}+k \mathrm{~F})=301$
$(180+172)$
$=105952$ triangle $\mathrm{B} k \mathrm{FF}=\mathrm{B} k \cdot \mathrm{kF}=145 \times 172=24940$ And area $=188291=1$ acre, 3 roods, $2 \downarrow \cdot 26$ poles.
These admeasurements, instesd of being written out as unove, are generally registered in a tnbulur form. A field-look, which is used to enter these measurements, is divited into three celumns. The different distances on the chain line are written down in the middle column, and in the right and left-hand columns the offsete are inserted, with any remmarks that may be made. Tha measurements on the chuin lmes are written in order upwards in the midille colum, the first leying written at the foot of the colomin, as the surveyor can thuil more
conveniently compure the measurements with the imuminary lines in the fielos.

In aus veying a whole country by trigonometrical measurement, or in enginecring plans for canals, railwaya, and roals, it is necessury to make allowance for the earth's convexity in all the calculations of levels. The degree of convexity, or departure from a truc level, is reckored to be about $7 \mathrm{i} \mathrm{i}_{\mathrm{m}}$ hes and 9 -10ths in the space of a mile. (Sco anicle Hrneostatics.) In land-masaring, the scale of operutione ia ordinarily
too linited to require any such allowance for difference of levels.

We havo now, as far as our limits would permit, presented an outline of tho methola paraned in land-surveying ; and to those who design following ont the atudy of thia, as well as other hranches of theoretic and prace tical mathenatics, wo recommend a regular courte of instruction from Mr. Bell's excellent treatises in (humbers's Edncational Course-worka so cheap as to be within every one's reach.
to cunfinn a cert lend that they that they ahow from those prest thowe wha pursue cordance with th facts by which th dicularly likely to sre presumetly is it is difficult to so examplo, wo varioua notions causea of any dis the country. TI however, are cau causes, believing cases, to restrict

Mayy millions births in the var onc uniform resul for 20 girls. The ruad:-
©ATES AND PI

Rcssin

The Prnvince of
Viecklenburg -
France
Belgum and (tolt
Brandenburg and
Kingdom of the ' 1
A) stran Momari

Elesa hal Saxob
Prusian virates (e
Werphalia and
Ring dom of Wiur
Tiastera P'rugaia u
Kingdom of Bolat
Great Mritain
Eseden

Further inguirie tions of the law w the natural eronoms the ever proporti, prosimatine in sol of girls. There i from marriages in party, and where I
The average ir mertained, in com but it ia cousintered the ratio of 4.2 chi

Lagitit
The proportion point of great impu monality, ' or illegit the stale, and lo aseful ritiontas, It in opl to eot gruesally less of th other childrom. 'T' births ix-for Fra

[^39]for differencen
1 permit, fro. in land-sur. out the study etic and prac lar course of res in Cham.
eap as to bo
verbial wislom tself. For ex. that an open ore die of sur. : of these, and reverse of the errer, which is where formenty of almest all ir to have proor paradax the the mest likely
For instance, thing than over f we prase and lio of cholie and the same wisb is the bane of so most mischief is an end to such niable teetimouy thy service, and
ics has remered,
is directly usefid currences which harly as to time, A man conmits kely cover agan tssault with vib sion, the metest unstances whict - ollence. Yeth necidental as to ove inice in in stics tinds it to certain range of 'The retuas of as Euglard of surcessive year, ar occasional a surved when we In the number of lifresser, there a - of a large ethy find an unter a e waywand and righly interesting
nd difficulties m extenaive rany thought, tendian
to cuafina a certuin view, there may atill be room to contend that they leall to directly opposite concluaions, or that they alow the presence of totally opposito causes from thuse presumed to exist. There is a tendency in thase who pursue the science, to make inferenees in acrordance with thrir own prejudices, or to seek ouly for facts by which these are tiveured. Such errors are particularly likely to he made in subjects whero many rauses are presumedly involved, and which are so extensive that it is difficult to command a general view of them. As on example, we have only to remind the reader of the varioua notions which are usually entertained as to the canses of any distress which may take place throughout the conntry. The ligher class of statisticians usually, bowever, are cnutious in drawing inferences and tracing cause, believing it to he their best course, in all doubtful cases, to restrict themselves to the collection of facts.

BIRTHS.

Proportion of the Sexes.
Many milliens of observationa havo been mado upon births in the various countries of Europe, from which one unifurm result appears, that about 21 boys are born for 20 girls. The proportion in different states is here ancod:-

Males to Females.
$108 \cdot 91$
$108.9 t$
16761
107.07
106.55
106.44

10 Ki 27
10kj is
101010
11 ni'0. 05
10504
105.4
105.49
115. 616
105.35

10175
104.62

Avrage for Europe
108.

Further inguiries have slown some curious modifications of the liw which seems to preside over this part of the natural ecounny of the world. In illegitimato lirths, the over proportion of boys is semewhat less, nearly approsimatime in some countries to a p ar with the number of girls. 'lhere is also a less over-proportion of hoys from marriages in which the husband is the younger party, and where both are extremely young.*
The sverace truitfulness of marriages in not clearly taretained, in comsiquence of imperfect regiatrations; but it is comsidered by Mr. McCulloch to be in England in the ratio of 4.2 childiren to each marriage.

Legitimate and Illegitimate Births.
The proportion of illegitimate to legitimate births is a poiat of great importance in political economy as well as morality, for illegitimate children are generally a burden th the state, and have an infirior chance of growing up asoful cirioms. It is ulso a fact ascertuined by statistics, in opl" to common deleas, that such children have grenality less of the chomentes of health and vitality than other children. 'The proportion of illogitimate to other biths is-lor France, 1 to 12.5 ; Prussia, 1 to 13.1 ;

- "ta Frnnco, it was olinerved a few yeara ggo, thnt out of

 tonima: so that the prolumblity of a child atoot to be loorn belag a mamale a grester if a is illegitimate than if it to legitimate."-
Bubbat

Eingland, 1 to 14 ; Sueden, 1 to $14 \cdot 6$; the preponderance of morality thus appearing in favour of the two lattes countrics. In cities tho proportions are strikingly different. In: Paris, for 28 legitimate there are 10 illegitimate births; i- other nnd atricter terms, the latter are in proportion to the former as to 2.84 . In Stockholm, from the report of a recent trav iller, the proportion is 1 to 2.3 ; that is, nearly a third of thes children born in that northern copital aro illegitimatc. In Berlin, the proportion has risen since 1790 , from 1 to 9 to 1 to 6 .

Still Births.

The proportion of dead-born to live-born chitdren is found in European citics to be alrout 1 in 20, but in the country not above half that amount; showing apparently that rural life is most fuvourable to the health of women during pregnancy, and to successful parturition. It is worthy of remark, that more male than female children are still-born; the proportion in Western Flanders has been found as 14 to 10 , and the same result appears in some other countries. At Gottingen, in 100 births, 3 were of legitimate and 15 of illegitimate children.

Effects of Senreity.

Times of scarcity and privation tend to reduce the number of marriagen, and also of births, though generally not immediately. The great scarcity which occurred in England at the commeneement of the present century, occasioned a diminution in the number of marriages to the extent of about 18 per cent., as compared with the previous years of alundance. In the Netherlands, wheat was nt 9.56 florins per hectolitre, in 1816, and the birthe in the year 1818 had sunk, from a previous higher number (195,362 in 1815), to 193.706: in 1819, whent had falten to 3.72 florins per hectolitre, and the birtha, two ycars thereafter, rose to 210,359 .

marriages.

The number of marriages per annum, in proportion to the population, and the ages at which marriages take place in hoth sexes, form interesting subjects of inquiry.

In Encland and Wales, the number of marriages registered was 111,481 in 1837-8; 121,083 in 1838-9; ant 124,329 in 1839-40. The mumber is believed to have been loss in the first of these years than it otherwisp would have heen, in consequence of a popular error whicl induced partica to hurry on their nuptials beforo the commencement of the operation of the registration nct. Taking the two latter years ngainst earh other, we find an increase of $\mathbf{3 2 1 6}$ marriages upon the latter; but this is liahle to a reduction of 1700 on account of the increase of pupulation; so that, on the same number of people in 1838-9 and 1839-40, there was an increase of marriagea, strictly, of about 1500 . While there was thus an increase upon the whole country, the greater potion of the manufacturing districts in the west of England, where at this time commereial difficurtics existed, showed a decrease, amounting in some districts to 6 per cent.; in Manchester and Salford to no less than 12 per cent.
In England and Wales, the propertion of marriagea to the whole population seems to have leen diminished during the last finy years. It is calculated that, in the protiol 1796-1800, there was 1 marriage annually to evpry 12:3 persoms; in the period $1816-1820,1$ for every 127 persons; in the period $1826-30,1$ for every 128 pelsons. This seems to be nearly its present propers tion.

Some yeara ago, Mr. Finlaison made a calculation 6 the ages of women at the time of their marringe trom an assemblage of 878 casca, which was too amall for very satisfactury resulta. Ealarging the number to 1000 foe the sake of arithmetical distinctucss, he found the fellow ing to be the vari us ages at marriage:-

Aceording to this table, the average nge of marriage in England is-for men, 27.4 years; for womeli, 25.5 years. It presents, upon the whole, a favourable vicw of the prudence of the English people as to marriago. Only 2.3 per cent. men, and 13 per cent. women, are wedded under the age of 20 . thout one-half of both exes are married between 20 and 26. Only about three-fourths of a per cent. of first marriages are contracted by either men or women after the age of 44.

It seems to be clearly ascertained, that the tendency of the sexes to marriage is linhle to be modified by n number of conditions. Above a certain point in ednention, comfort of circumstances, and reapectubility of pasition, the tendency diminishes, and we see men and women of the widhle and "pper classes living contentedly in celibacy, from a dread of the increased expenses of matrimoniai life. Below that point the telldency increases, from opposite causes. It is observinly more powerful amidst a dense operative population than among a seattered one, nod it reaches its extreme in the hallilestitute class, however otherwise circumstanced. Sintistics aflord us some information respecting two widely meparatid parts of the carth, one of which is remarkable for early and numerous, and the other for rate and long-delayd marriages-(ilasgow and the parish of Montreux in Niwizerlam. In (ilasgow, the marriuges were, in 183:. in the proportion of 1 ta 112 of the jopulation; and the ratio rises much higher in unnsuatly prosjerons years, as, for instance, m 1825, when it was 1 in 84. Montreux is too small a distric: to afforil basis for a calculation of this kind: but the people, who sre all small lab uring jropietors, are remarkable for poatponing marriage to n hate nge, the average ages of men and women being 30 and 26.75 respectively. In Montreux, the hirths are as 1 to 46 of the population, and the deaths as 1 in 75 , both uncommonly low proportions. Those of Glasgow will be found very ditlerem:'. It reems incontestable, indereis, that a nuntiplication of marriages in most situationa is attended by an increase of mortality, and particularly an increase in the mortnlity of the young. We trost we may here venture upon a few general remarks with respect to marriage among the industrious orders.
It is a familiar aayiug among the industrious orders, that the nonth never comes without the ment for it; by which they encourage themselves to marry, or conoble themaclves when, linving married, they lind their family increasing upon them more rapidly than they cats well mee how they are to provide ior it. 'Ihis fallecy has inern in mome neasure brought to the tent cf Syures. Dr, Jumes I'hihpa Kay, an axsistant Poor-Law

Commiasioner, institured in the year 1838 an inquiry into the actual income of agricultural lahouters in the countios of Kurfolk and Sulfolk. Returns to the cire culars which he issume for this purpose enablad him to make the following abstract of the amual earnings of 539 familics:-

> Avernge annua income.
> 37 single men
> 41 married men. with no chitdren at home
d.er lay yers of aga

> whom athove 10 yeurs
> 92 marripd men. wiht $t 19-10 \mathrm{~h}$ s chiduren, 2 of whon thove to verrs
> 44 matred men. with 5 children, 3 of whom ahowe 10 yeara
> $t 5$ narrid mea, wi a 7 children, 4 of whom moove 10 yrars
> 1 marral man, wht 5 chilitren athove 111 yenrs 1 married wen, what behldrenabove 10 yeary $\begin{array}{ccc}+25 & 1 & 4 \\ 30 & 12 & 104\end{array}$ $\begin{aligned} & 30121 \mathrm{ct} \\ & 3213\end{aligned}$ 359 c 40 to 45 tt \% En 196 42130_{0}^{6} 5200

The first question suggested by this talle is-hom morh of the increased income of the men with fanilied was owing to their working more stcadily, from a seng of their familiea being tlependent umon them? and ham much to the earnings of their wive's unsi children flow. ing into the common stock? This dies not difecty "ppear, bot the returas afford menos of arriving pretir near the truth by calculation. Out of the 539 mate heads of familion, 475 eurned ammally by day-work L73s:. 5x. Ad., whirh gives the norruge inmial aming of cach uan by this menan at $, 515,10 \mathrm{~s}$. Ithl, o: within a fraction of 6s. a weck. The carnings ly task-work are suecified in 350 chses, mad manmit in sll to C501*, 17-7.0, which given the nverage earnins of rach mun by this metans at ell, tis. ithe nomally, of 5. tid. a weck. There are mummond at leat \$86 cases in which the labourer ohbined earnings in twith ways; hut it would give too high an average to adithes two sums together. We are emabliol the approsch to the trubla in asother direction, hy didhetise the amount of earninge said to be made by women sud chiliten frum the average incone of the fimilies. The smon of all the anmal earnings of all the fimities (counting ench simgle man as a fanily), in the tahle civen abore, in $£ 19,129,16 \mathrm{~s} .5 \mathrm{~d}$. ; and this gises an merace mand income of $\mathbf{6 3 5}, 10 \mathrm{~m}$. The menare stated to hinve eamed on an nerenge C 5 , ds. hy harvest-work, in wdition te their regular wages; the avernge carnings of wives as about $£ 2,12 \mathrm{~s} .7 \mathrm{~J}$. ; of children able to work, $£ .8$, b. $114 ;$ and the value of gleanings by the younger chilitren is El, In. 10d. Deducting thrse nums from the avenge fanily income, leaves $\mathcal{L}!7,4 \mathrm{~s}$, 4 d . fior the ascrape ans nual earnings of the man by ordining lusk and day
anes ; and this, monber of men, nese routine kinc entinate. Thus arrest wages, g pual earnings of more than the ave fon which we in vinfried men is deri whllich.
Deducting the the whole amount number of married for the annual ear Emaly. Hat whe dusurely to the 1 inculat of $£ 3 \mathrm{f}, 7 \mathrm{~s}$ $5 \cdot \mathrm{~s}$ pisons. Unh Hile and 3.5 chit, be bust dispense raiences, in whic And the averugo laz into acesomm? Gur, live, and six y arease bacome ifishighest grade, lase of greater vosxing ohlenough s little. The mill t ma be conceived 'the averate amuna weee $£ 3,8 \mathrm{~s}$. !d ; of of age, $£ 2,93.10$? anve $10,18,11 \mathrm{~s}$. tou above 10, $\mathrm{L2}$, three above $10, £ \Omega$ ins above $10, £ 2$ that a womath with :wathirds of what can earn. The ear b taken into acco wioc of whon were nual earnings o frallee with 3 7, gerage carnings o inallies with \boldsymbol{l}_{10} eanugh of each ch 3: chikren, Whee est child wete 1 drea Gour abuve 10 , wete £2, 17 s . N / l.
4 strict sceurary, meaned by the chil saunt increates w the age of the latter diean, the incre aquount.

VALUE
ralices.
45 with no children
104 wh the-thas, all
Wi with 37 .: © 1 hes, ol
5 wih fllof the is
5 w th 5 at the the
Si wath 7 , iourelikit
These figures dem reured in general a Fich their addition whe . The sint of nen, as well as the ? 4r, edacation of chil enness as the numb remarked, too, the in rat, are, in so
country are con Yul. I, -57
s thlle is-hiom en with fanilica ily, from s tenes hem? and hor (i) children flow. es not directly f arriving pretip f the 539 nuat: ly by day-wotk himbial sarninge 10d., a; within ss by task-work (1nm in all to hae rarnins of cal. anmally, or ind int leart 286 carningas in twla crape to adid tha (1) approach to tirg the anount in and chiliten The sum of nilie: (counting de given above awroge atous d to have camed , in adution to ugs of wives at ork, 58, be. $1 l_{1}$ uger chidiren is min the sverage the arerace ins task mad day
was ; and this, when we take Into consideration the monber of men, aud the amount earned in the year by whene routine kinds of lahour, seems not an improbable patinate. Thed $\mathcal{L 1 7}, 4 \mathrm{~s} .4 \mathrm{~d}$. added to the $\mathrm{E5}, 8 \mathrm{~s}$. of parrest swages, givea $£ 25,12 \mathrm{~s} .4 \mathrm{~d}$. as the average anornl earnings of a man (7 s .3 d . per wrek), or only 13 s . alore than tho average earnings of tho unmarried men; from which we inter, that the additomal income of the narned men is derined from the labour of their wives and nalloch.
Dedacting the earnings of the umarried men from the whole amount, and dividing the remainder by the maber of harried men, we get an avernge of $\mathcal{L} 36,7 \mathrm{st} .2 \mathrm{~d}$. for ho annoul earnings of each marricd man and his tumly. Bat whercas tho C 25 , In. 4 fd . is altotted exdusvely to the maintenance of one peraon only, the ineone of $£ 36,7 \mathrm{~s} .2 \mathrm{~L}$. has to provide for an average of 5% prisons, linless the married man can support a wifte and 3.5 children upon $£ 11,5 s .932 \mathrm{~d}$. per anmum, br mast hispense with luxuries, comforts, it may le conraviences, in which the ummarried man ean indulge. Amb the avage ineame is raised to this height by takin into acoout those families which, having three, Dar, live, and six children above ten years of aye, have ynnerage income of abont $£ 45$ per ammum. To reach tibinghest grade, even they must have passed through lists of greater pinching, whell their children were comut old mongh to takecare of themselves and earn a little. The mill through which they have bern ground an be conceived by taking into account the se facts. The averaze ammal carnings of wite with no chilitren reee $£ 3,8 \mathrm{si}$. $9 \mathrm{~d} ;$; of a wile with 27 children under 10 years oi age, $£ 2,9$ s, $10 \frac{1}{2} \mathrm{~d} ;$; of a wife with 3 , children, , we
 to above $10, \mathcal{L 2}, 5 \mathrm{~s}, 7 \frac{1}{2}$; ; of a wife with $5 \frac{1}{3}$ chillren, tiree above $10, £ 2,19 \mathrm{~s} .1 \mathrm{~d}$. ; of a wife with 7 chilliren, INa abuve $16,52,3$ s. 10 d . Erom whi.h it appears, tana woman with it fanily is only able to earn about :wothirk of what a womm without that incumbrance can eam. The carniugs of the chidren, also, fall to be waken into account. In families with $2 f$ children, Whae of whom were above 10 yoars of age, the nurage 3 ganual earnings of each child were 15 s .33 d. ; in fuildee with 3 , children, one of them above 10 , the areage carnings of each child wete $£ 1,1 \mathrm{~s} .9$ fle; in isalies with ' 4 " children, two above 10 , the average camugs of each chith were $£ 1,13 \mathrm{~s}$; in families with $5_{\text {f }}$ children, three above 10 , the average earnings of ewb child were 1 d. Ds. 5 ?d.; in fanilies with 7 childrea four atove 10, the average earnings of each ehitd - wete $£ 2,17 \mathrm{~s}$. Kd . An aditional head of income must, ta atrict scenracy, bo mentioned-the value of corn ghasied by the children. As might be expected, the wame increases with the number of ehildren; but as the age of the latter does not much affect their alsility (1) giean, the incroase is very gradual, and of small amount.

> yalue of corn olfaned.

Average annelt
amoum to eaels iamily.
tio wh no children
10. With 17 -mise, sil the children under 10
ne with 37 . 6 Oht s, one chitld whove 10
5 Whin forth, iwo chidrell above to 5. whih 5:3-has, three chilliren ubove 10 $\begin{array}{ccc}50 & 17 \\ 0 & 19 \\ 1 & 7 \\ 1\end{array}$ 13 what 7 , four chaldren atove 10 $\begin{array}{lll}1 & 0 & 0 \\ 1 & 5 & 6\end{array}$

These figures demonstrate that the married babourers incured in genaral an alditional monome of expenditure, frim their adlitional income by no me ons compengind. The cind of expense incurred by the married men, as well is the momont, is diflicent-bild-bed outWr, edacation of children, and the inerensed elamers of eckness as the numbers of a family inerrease. It munst bermarhed, too, that the cases solected to illustrato than :an', are, in so far as the naskilled labourers of he country are concormed, favourably curcumstanced. YuL $1,-57$

Of the 539 families enumerated, 397 had garciena (ave raging $19 \frac{7}{7}$ rods) ; 136 had some fuel free of cluarge 259 had each a pig; and 20 each a donkey. Tha ave rage of their house-rent ($£ 3,11 \mathrm{~s} .4 \frac{1}{d}$.) did not risa above the average level throughout the coantry; while in a rural district provisions are cheaper than in towns. Above all, the engrossment of their parents' attention by labour was not so danererous for the children as in densely populated towns, where, when left at all to thenselves, they are in constant danger offilling in with instructors in crime, and are placed in a situation where greater opportunities present greater temptation. If, then among individunls who, for the class to which they beloag, may be considered in easy circumstances, marriaf, be a step, which must render inereased exertions and self-denial necessary, what must it be for those who o are in more difficult circumstances? Let the ?xperience of a committeo appointed in Glasgow, in 1837, to alford relief to the intlustrious poor in a season of sevece prose Nure, answer the question. Ont of 3072 adult males who appiied for relief and wece furnished with work, 2273 were marricd. The number of the children of those married applicants was 6302 , or nearly 3 children to ench lamily. No less than 532 of those marricd men were under 30 years of age; of the children, 3994, or nearly two-thirils, were under 10 years of age. Of tho 2273 married men, 2171 were weavers; and the account given by Mr. Charles Baird, in a yaper read hefore the statistical Socicty of London, in February, 1838, of the cundition of that class even in times of no extraordinary pressure, may serve to show with what prospects they had rushed upon the hazardous responsibitities of marriage:-"'The great bulk of the weaver in Glasgow and its suburbs are in extreme poverty. Their wages which, even in 1819 , were as low as 12 s . gross, or 10 s . 8d. net (the deductions being for loomrent, winding, \&c.), now average only 8 s .4 d . gross, or 7s. net per were; and even for this miserable pitenne they are obliged to work from 14 to 16 heurs perr day. I'heir houses, which are generally in the suburbs, are of the poorest description, barely furnished, and the food and clothing of the inmates, as might he expected, not only of the plainest description, but also quite ifadequate." It is apparent, that they who, in the best of times, can barely procure a subsistence by 14 or 16 hours of daily toil, must, by the slightest and shortest stagnation of trade, the reduced to destitution, and, under such circumstances, to ineur the charge of a family is madness.

I'his is a consideration which has of late been much urged upon the poorer classes-not always, it is to be feared, in the most julicious manner. Leaving out of view that the deductions of Malthus, whose disciplen have been the most busy in giving this kind of advice, are based upon statistics remarkable both for vagueness and inaccuracy, and tainted by cict polemical biag of his mind when he first published them, the form in which they have generally been auhmitted is of al. others the least caleulated to make an impression upen unelucated minds. Abstract reasoning, geometrical and arithmetical ratios, convey no tangible ideas calculated to influence their conduct; and the subordiaste discuaric into which some of these philosophera ane fond of diverging, repet by :ispiring disgust. Arkice may be somma, however, 8! nugh it be given in ant wheonth form and ly mumiable persons. In regord w improvident marriages, the industrious peor would de well to consider.

Marriage las its attractions, nod, what is more, its moral adrantages. It is the only institution which reconciles with the stability and good order of society cne of the strongent impulses of our nature. If it add in some degree to a man's expenditure, it repays him by conferring bessings unvitainable without it The un
mor : A man in solated ; the married man, if ordinarily we chlucted, han promanent hold on the allections
 nos of a belpmate ensuces him comforts at home which so price could othe wise secure for him. It he act wisety, he will find him fanily affectione the best of moral tewhits. 'The state of maraiage is honen ahbe, nud is dekipuble. And now let us turn to the courderations which every man, properly desirous of enternis such a wate, ought to weigh duly beforchand:-It is canimly by her domestic industry that he ought to expect his wife to contritute to his comfort-hy her judicious nid in making what he carns go as far as prositile. She moy at first bave nome time to spare for carning. hut whin n funity eones upon her, that, and the hourebud tegether, will take up by far the greatest part of her time. Clittren must for a time lo a mere draft upon if industry, Great ond just complaints have licen raised of the extreme labour exacted from infints an factoriow. GrantIng that the employers of such intints are colpullewhat are their parents? Tle, father who allows his child to be precociously empleyed in labour lueyond its powers, caleulated to destroy it physically and iovally, and rinder all its future lifos one long disease, is conese ine on the crimo. There is no tegal pressoguas to swees calloren into factories. A conscicutious inan, who contamplates marriage, will take these facte into row-ibrasom, nod ask hinself whether his postiom arul prosen is re stach as antitle him the expet to fue ables to whent 1 wife ens abliten an due ought to be sup-
 possible eamines at bea wifo at a wey low figure-as
 an extra lusury, hut nue as cemb wher to g!o nowes.

 whit that for swae yearg att? thor orning will sumbat to a ware trible. "Be nommer of lis Eucone dene thus ascestabid. he must next look bis expense: farly in else face. it is a duty he owes to limself and secinty to aim at procuring for hireself a suticiont atowase of mourishins somd, comfortable clothing, the natas of preverving cleanhoness, so requisite to health, an! weabher-tight, well ventilated Whluites, with the neessary tuel. The same comforts which the ains at fos hinseif, be 'commes bound to $\mathrm{i}^{\text {ro }}$ cure fur her whose vme sfter their union ought to be mainly directed to caring for the comforts of him and bive chideran. And for thome childron, be is lount, hy es: 5 natural fecling, to provide white lhey are vable to provide for themselves, in sut hamanis that ihog shal! thit L_{i} on life with hate cotstitutions and a fair elencritary culucation. From lia* knowled ese of his orn expenses se a bachelor, and from what he can lo ion of the muenses of his married neighbours, he cen form a toleralily near estinate of what marriage is likely to cost him. He munt take it for granted that anforeseen accidents are more likely to occur in a family consistiag of two, three, or four. than in a fanily ronsisting of one; sad on tins account ourht not to winture on the married atate unless he or t_{in} intental tas some little etex is of rumings lail up in the event of contingencits. Thes neing provided for, he most mext take into account whether his carningt can cover the certain stealy ratsay of a fanily, and seposit a trithe at intervals in the evinga' bank; and whether there is a fair prospect os: their continuing to increnac, and at least not to fall oft: If every prospect is favourable, he may take the stop; it not, he ineurs the almost certain dinger of reduring L.mmelf and his family to a sta: " destirution-of inremasing by hin rash set the ovety-af stding to the num' er of sulferers in nat class which is - once misernble in itself and ste rasuse of mivery to - hers. When we ask all who have not a reasonimble
prospect of being able to rear and insstruct a heathy fimily to abstain from marriage, we only ask of then to consult their own happiness; the benefit of their th. stinence will be reaped by society at large as well'un themselves, the bad effects of their rashness will be felt by nocicty an well as themselvess, but the decpest. hit terest dregs of the harsh draught will fall to be drained by then. We only ask them to submit to a neeessity which it is in vain to struggle against. If they ask why they are to deny themselven a gratification which they see others indulge in, the nanswer is, for the same reason that they torego many other pleasines they may wish for lut camot carn by honest industrv. Marrisge is n fruitful source of happinerss when jullitiously sp sbout; but, liko all other gomin of this biti, it : nelst be carned, and those who are net in a comblion to mim (whether for want of empluetaen' ". want of ability) ourgt in conscionce to forefr, it. io rupls lii sdy upat the cost of marringe, without burethutghe, enserpaghe their ra-lnews by weh gromathens re"riaks as, "Btorn C. 1 senly monthe be sends ineat," is not crien to shata a plednth they hare not hal is in their yower to cam, for and inconsiderabe matelass have more of a curse in thes the: of a blessiuc. A bachelor state bay be leg halpy than a good marriage, but it is better than a mis one, when precipitutes all !ingtivs into destitution.

It is the more :bensary i, impress the importente of the lensom.. Leera to blixtuitu." Decatise it is the is: dikhoult to pract a on weobit of the slaceqth of the impulse to be overom. and the weaknes ', 'ore sub jected to St, from ita rraging it.s in."ensest potver at an ase when the judgument in yut inmmatared and cxperienen romty; and also lucause rath marriagen are the great promoters of a destitute, and conseguently a demoraliud atal unhealthy population; and because the man who has taucht himbelf, liy etruggling apainst inclination, io make lis instinets lemit to his reasom in this matter, bas strengtbened hinself to resist almost iny other templa tion. It is men (and women too) who know how to carn and how to practise self-lenial-who know what it is to appreciate pleasures, the are able to reconcile tleme selves to abstimence-in whom inclination and will an under the contrel of juigment and reflection-whocorn atitute the sorma and usidul postion of society. In pros jertion an this cluss preponclerater, will it be possibien keep the honlthiness and morality of the communtry a high avarage.

deathe.

A human being hom with a soum constitution is a culated to live seventy years or upwards, under fareo, nhle circumstaners; but, as we well know, all of usa surroumled more or less by circumstances mafavonsh to life, by which, practically, our term of ycars is lizh to he greatly shortened. Existence, as to duration, 15 proverlially the most uncertain of all things, and the hecause, from ignorance, incoutinnsmers, and accilems lifi is constantly coming into collision with the on' teore calculated to destroy it. 'Ihe conditions unfaion able to life come into opration, we have acen, belore the human hoing has sem the light. 'I'hey cominue in ope ration throughout the whole of its appminted priot is that, out of any large wumber horn, a certain propation die in the firnt yeur, a certain jropurtion in the second the third, and so on, a, rl atl arn Eone-only a certain comparatively wmall no nature promisen to gan ou:aining the full age whid circumstances.

The conditions nu existence are 1.
briefly antili'
Health, to , i countries, ycerd
a maintained in favouria
or healthy and protrack If Almighty wislom; they es Lie article P'ugemaration on refer. They vary in differa climate, civilization, and politam

It appears fro constructed in o males to females oppusite relation of longest durat

Siotality at
The great mot temarkable. On iut Eagland and die in their first less than a leyuth in the first mon: the deaths of m greatest under t the common rem hovs than girla, n in. harmony with
From a tablo with regard to ti person. The ca pirticular age, b the ileaths after aumbera living a ation ug life of espectation of t nuiny besiness, i every age, nend 1 We here presen
aln mortality t
af "very fitll ye encit of their ab largo as well'u thness will be fett the deepest, bit frull to be drained nnit to a necessity If they abk why eation which they or the same reaso ces they may winh lostry. Maringe an jullidionaly so nis !ef, il trma be midition le carn - wamt of abidity), rush hii daly upoc mald chiopraing $\cdots \therefore k s$ at, "W Wion not cren to glacis
eir power to cam, more of a curse in state bay be lea a ietter than a mas o destiturion.
4 the inlupertano of allse it is the ant the klorpqth of the chrives is :ose whb cuscest power at ma wred and expencine
iaures are the cently a demoraliad cause the inan ato cuinat inclination, to a in this matter, bss st uny other tempion who know how to -who hnow whatii lination and will an reflertion-who core of sociely. In pra will it he positie os if the community y
ud constitution is ad wardy, under faroes 1 know, all of us 27 stanees unfavorala rm of years is liak c, ns to duration, 11 all things, and the uners, and accilenas Ninn with the con conditions unfasa have acen, beione tex They continue in op apluinters priod is - a certain proportion wortion in the second Gone-n.aly a certas ug the full age whid atained in favourtie

ealthy snd protration

 ity wisplon: they un ? Presemasatios ol rey vary in diftersantingements; and as negrosarily follows, are diflerent in the sams cauntry in different ages.

Table of Moriality for England,
Dring the eighteen yeara from 1813 to 1830 there were rogistered as buried in England and Walce

Agat	Males.	Females.	$\begin{aligned} & \text { Boith } \\ & \text { Sexes. } \end{aligned}$	Age.	Males.	Females.	$\begin{aligned} & \text { l3oth } \\ & \text { Sexer, } \end{aligned}$	Age.	Males	Females.	13o1h Sexey.
Inder				40	16,219	17,364	${ }^{33,513}$	0	20,668	24.951	45.617
1mber	436,010	341.137	778,033	4.	111,073	${ }_{1}^{11,901.073}$	$201,12-63$ 127546	81	13,140	14,279	278.425 33.105
(1ear.)	130,403	127,017	266.441	4.1	111, -24	11,4-9	22:317	83	12.0\%2	13,201	25.763
${ }_{2}$	2404	73.1007	154.014	44	12:412	12.660	24,958	64	15,020	18,477	34,307
3	47.4i0	411.273 32,1761	91.013 65,769	45	15.532	14,549	310,000	85	12.245	14.187	26,439
4	- 2101031	23,340	4-194	411	12.801	${ }_{12}^{12.3134}$	24.183	${ }_{8} 8$	H.4.44	10,417	19,291
6	19:370	1 lay	${ }^{11.4} 467$	47	12,639	+19.103	24,3i3	87	7,070 0,762	${ }_{8,3,25}^{8,4}$	15.559 15.0×7 10.2
7	16.167	14,608		46	12,203	11,483	23,6:9	89	4,488	5,637	10,165
9	13,45 12,671	11.20	24.41 .11	50	17.108	16, 150	32.517				
				51	10,702	10.119	20,311	91	2.2433	3,057	5,350
10	11.016		220.219	52	11.54	13,6\%5	28.410	92	2.068	2,867	4.903
11	0.96	0,40	10,791	5	13.050	12,149	25.059	63	1.509	2,25\%	3,200
13	9,689	10.261	10, 21.19	54	13,1/18	12,344	25,494	04	1,120	1,655	2,614
1	15.5 .5	11,740	222.3\%	55	16,303	15.219	31,512	95	077	1,582	2,550
15	10,006	11.627	20,033	56	15.7115	14.549	30.294	96	15	1,142	1, 117
16	11.385	${ }^{1: 3,237}$	20,102	${ }_{5}^{57}$	1.1 .146	12,905	27\%,16is	97	4114	846	1,340
17	12, 2,58	1.212 1.1919	29, 210	58	14,2, ${ }^{189}$	13.414	22,701	98	428	709	1,194
18 19	15,144	10,06t	31,205	5.	13, 219	12:303	25,742	(1)	267	495	, 62
				60	21,535	21,4is	43.273	100	239	488	807
8	15×4	10.237	32, 175	612	18.4013	16.353	20,	101	70	${ }^{225}$	338
8	16.1ヶ9	:7,397	33,7-5	63	14.01931	1-242	:4.913	1012	03	134	197
21	14, 50	16, 16.101	31, ${ }^{\text {Lin }} 3$	64	17,76i	17,6:4	35,3410	11.4	41	40	$1: 3$
21	14.515	16, $2,2{ }^{2}$	31,237	65	18,011	1s,72:3	37,034	105	29	72	01
\%	$14.10 \div 5$	10,319	${ }_{30.1143}$	013	210.160	24.334	40,42:2	116	17	19	46
17	13.123	11.14, 13	29.7.is	${ }_{0}^{178}$	19.35	10.591	3 3-75	107	13	21	34
:9	13.39	11.972	30.150	69	10,816	10.2\%2	33,638	110	${ }_{6}$	${ }_{12}$	19
2	12.169	14,431	20.630								
30	14.513	10,514	31.027	70	24.197	27.766	53.959	110			
31	110338	11.1616	$2 ?$	7	21.115	2t, 0.64	32.923	1112	1	1	2
${ }_{3}^{3}$	${ }_{12}^{12.0179}$	14.4827	27, 2×64	73	20.5108	91,36, ${ }^{\text {a }}$	41,125	$11: 1$	1	1	2
34	11.616	13.279	24.く4	4	211,032	21.163	41,-15	114	0	2	1
35	13,41	15.200	20.0141	75	21.936	22.54	44.20	117	0	1	2
33	1.3:34	14.15	¢ ¢ 1×1	76	10,365	21, 5122	40.117	118	1	0	1
37	11, 23	1:3.409	${ }^{2582}$	77	${ }^{219.102}$	101.13	42,50	119	1	0	1
${ }_{3}$	12.169	12.611	24.73\%	79	19.59	21,		1	1	0	1

It appears from this tulde, as it has done from others \mid formed from the Million Tontine of $\mathbf{~ 6 9 5}$, and indicating eustructed in other countries, that, while the births of males to fraules is about 21 to 20 , the deaths are in an apposite relation; thut is to say, female life in general is of longest duration.

Sortality at Vartous Agea, naul Expectation of Lifo.
The great mortality of the enrly periols of life is very remarkatle. One-fifth of the whole of the children horn in Eaghand and Wales appear from the above talile to die ia their first year. (A Belgian table represents no less than a tenuth of the entire roortali'y as taking place in the first mom:" of life.) The disproportion between the draths of males and females, appears also to bo greatest under the fourth ycar; a fact which confirms the cormmon remark as to its leeing more difficult to rear tova than girls, and which, it may further be observel, is in harmony with the disproportion of still births.
From a table of mortality, a calculation is casily made with regard to the prolvable duration of the lifo of any persoa. The calculation is made, with 1ege re to any pricular age, by adian in anthbe of norality, all the death uffer that aese, of dividisin the som thy the numbers living at the - The quotient is ise e.pectation oy life of a on of that age. A talio of the espectation of lif, tor service in life assurance and annuity business, is sormed by doing this with regard to every age, and putting the whole in proper succession. We here present such a doeunent, formed from the aln wnertality table, hut only showing the expectation ar cery fitth year; juined to which is a similar table

3,938,496 persons, of whom $1,942,301$, were females The ages of all theso persona were, as far as possible, ascertained and stated; so that it was possihle by thean means to ascertain the rnte of mortality at the different ngea, for that period, and in that country. The tab's consequently formed is hera given.
very clearly the improvement of life in England during the last hundred years.

Age.	Million Tontine. of 1605.		Parish Registers. 1:13-1830.	
	Expecta. tion. Males.	Expectanon. Femules.	Expectation. Nales.	Expectalion. Femalea.
Unider 1 year.	$37 \cdot 61$		39.90	43.20
1 year,	3.49	43.85	47.78	50.14
	:31.191	42.44	40.0	51.29
10	35.71	40-4:1	$46 \cdot 83$	47.05
15	2205	37.32	47.08	44.03
20	20.34	34.25	39.65	40.69
25	27.96	31.67	$36 \cdot 65$	37.64
30	26.27	$2 \times 9 \mathrm{~S}$	$33 \cdot 34$	34.63
	24.12 21.74	${ }_{20}^{20.32}$	30.03	31.51
411	21.74 19.15	21.63	91.75	28.39
45.	19.15	80.62	23.48	25.14
50 ..	16.60	17.78	20.31	21.8
65 ..	14.32	15.40	17.19	18.51
${ }^{6} 5$	11.65	${ }^{13.25}$	14.201 31.43	15.23
65 ..	$0 \cdot 30$	11123	11.43	12.32
70 .	719	7.79	8.94	$9 \cdot 67$
75	5 f 1	5.58	6.75	7.33 5
$\stackrel{1}{5}$	$4 \cdot 42$	$\stackrel{3}{79}$	5.115	$5 \cdot 46$
\& 6	$3 \cdot 58$	3.50	3.85 3.42	4.22
90.	211	254	3.42	3.0
95 100	1.18	1.64	3.106 8.78	3.22 2.72
100 ..	0.10	$0 \cdot 0$	2.78	$2 \cdot 72$
Sums . ${ }^{\text {- }}$ - ${ }^{\text {ges, }}$	370.68	411.37	4,4.30	195%

Disenses.

Of the specific causch of mortality, it is difficult to procure anywhere a proper estimate, on ee cuat of the
mpreffection of niost syatems of registration, and particularly the want of precision and uniformity in naming various diseases. The aystem of registration recently vatahiahed in Fugland, is conducted upon onlightened principles, and appears to have hitherto been manged with great regard to correctuess. It has enabled its able director, Mr. Farr, to draw up very minute and comparatively satiafactory tablea of the fatality of diseases in England and Wales for several recent years. The regiscered deatis of 1838 were 342,549 , of which. $: 75,044$ were of malea, and 167,485 of femules. The na of death were assigned in 330,559 instances: assuming that the other cases might he distributed proportionally emong the assigure' canser, n table was constructed, of which the following is a sulumary :-

No.	Ihisrases.	Malen.	tiunnlea.
1	Epitemic, Eumemic, ant Coungious Disrases. tneluding $\left\{\begin{array}{l}\text { Smallopar, } \\ \text { Typhus, }\end{array}\right.$	2033 th	
		51.103	47111
		5.51 kI	$5 \cdot 11$
4.	(Oithe Nervous Systrm, -	10.014	134\%9
	Of the R"spuratory Oryans, -	27.114	1780
	- Inclating Phetivis,	${ }_{\substack{10.0123 \\ 1005}}$	${ }^{19.101}$
4. 8.	${ }^{\text {a }}$ Or the Orualis of Circuation,	5:9041	(915
6.	Wr the Urimary Organs.	50:1	-1193
7.	- Of the Orzans ot Cinurration,	. 1048	21×12
8	W) the Organs of Lecommion.	147	693
0.	(1) the turgimentary system, -	1.53	[90)
19.	Of Lemerain teat.	120\%4	13.45
11.	Otd Ase.	$9+387$	11985
	Deatha by Violence,	$5 \cdot 117$	2127

The healthy occupntions of the country make a difference in its favour in the general mortality; hut this ippears larger than it really ix, in consequence of the flocking of the worn-out and miserable to large towns, and the occasional resort of siek persons thither for the sake of medical nutenuance, in the course of which life is in many instances cut short. In 18:3, out of equal numbers in town and country, the deaths in thr, former appeared to be 101,019 , and in the latter only 70,410. The uverage of life in the country would thus seem to be 50 , and in the city 37 ; but if the abovo roodifying caunes are taken into a count, the disproportion must be dermed considerally less, A's might he expeited, disenses are of different fatality in eountry and in oown. Taking similar mmounts of prpulution in each. :3r. Farr found that, for $\mathbf{1 . 0 0}$ in the commies, there were, in the cilies, " ly asthma, 3.80 ; erysipelas, 2.71 ; convulsions and terthug, 2.57 ; cephalitis and hydrocephalus, 2.41; hydrophohia, 2.37; pueumonia, bronchitis, and pleurisy, l.99; dilirium tremens, 1.98 ; typhus, 1.89 ; small-pox, 1.73 ; heart-dimase, 1.73; childbirth, 1.63 ; syphilis, 1.59 ; rhemmatiam, 1.58 ; gout 1.55 ; bernia, 1.48 ; purpura. 1.46 ; sudilen deatha, 1.15 ; liver disease, 1.45 ; hepatitis, 1.35 ; tetanus, 1.32 . The excess of morlality in cities was of lems amotant in the following cases:-By consumpirm, I-24; croup, 1.23; violent deathe, 1.17; stone, 1.11; morification, 1.10 ; malformations, 1.07 ; aqoplexy 1.t7; hemorrhage, 1.1)2:" Of mome other dimeases, the "atality was greatent in the entinlies. The "mortality to 1.00 in the counties Fas, in the cities, hy paralysis, 99 ; hiopry, 99 ; jan-
 momatenesis, 79 ; delitity (fropernily premature birth), .75; attop hy, 75 ; sisufula, 16 ."

London is, upon the whole, healthy for a large city, the amual mortality being 1 in 42 of the pmpalatinn, a proo portion very litile atove that of Enghud and Wales (1 in 4.1.5). But the general heallhiness of London is in sone racasure deceptive. It contains distriets and kinds of population widely different ; and the effects of wralth, spaciuns accommodations, and comparative cleanlineas at Huc west end and in the suburim, makes cpina sunmary for the opposite conditions of the easte parts. This is vulered clear by the following atitement:-

	Animal Deuthe per cent.	
Whitecliapel	34 AR	1 IA 9
St. George'm, Souiliwara	2x:17	
flurmondsey *	3421	1. 32
S1. P'aneras,	- 2 21015	1. . 40
Cumberwell ${ }^{\text {, }}$		$1 . .88$
Hackney .	1403	t. . 5

It ia to he ohserved that all these results reat, nat upon the population us uetually known, but as computed hypo thetically from the cenalis of 1831 . 'I'heir aceuracy, of courne, cannot be cutirely depended on, but they may bo received as good nprroximutions. The clifect of crowding is shown hy a table, exhibiting the mortality, and the num ber of sypuare yarils of space to each person in three groupt of metrojplitun diatricta.

dence wo see that typhus is nenrly three times as fatal ir the first or crowded group as in the third or open one (ilasgow is believed to stand lowent among British citios in point of horalth, and for some yeare its unlealihio 14 we sevins to huve locen stembily on the increase. In 1821 , the rate of morlality was 1 in 39 and a fraction; in I831, it was 1 in 311 and a fraction; in I83s, 1 in 26 aud a fraction. In 18:1, the deaths of chiblem under te' yeare of age in this city were I in 75; in 1839, the vere n little under 1 in 48 . The extreme mortality of Glangow is readily necounted for by the existence of vast horile of miserable people in the manare and close? parts of the city. Mr. Symons, nu Finglish gentleman who hat taken pains to balake himself personally ace quainted with the subject, states ne lollows:--" It is my firm lielief that penury, dirt, misery, drunkenness, dispaso nul erame, culminate in Glangow to a pitch unparalleled in (ireat Itrianin." This elass becomes a focus of typha fever and other pestilential disorders, which emanate fram it to the rent of the inhilitants, and generally prove very fital. In 1s:t9, the deathe from typhus fever alone reached 2180. It may be re:narke! that statistical science, which has been cultivaled to an unusual degree in Gilasgam, give en onfavourable siew of the city in a number of respectes. In the five years pr vious to 1831 , the average hirthe in filasgow were 1 to 29.47 of the population; the burids 1 to 30.91 ; and the marriages 1 to 105; there spective average numbera for entire Fingland during the same perionl bing 1 to 37,1 to 51 , and 1 to 189 . Jthy apprars that there are in tilasgow inore marriages, mare birtha, and mere dric'he, than in the country generally. In the parish of Monlreux, where the hirths are 1 to is of the population, nincteen out of twenty complete the first year of liff, and very nearly tur-fifulis of those bap. tized have leen observed to live to receive the sacrament of communion.

A similar eorrespondence between many marriage, many hirths, nad many dealhs, is shown in the returns from Liverponl, as appears from the followiug passige in Ir. W. C. 'T'aylor's work, Lunland in the Nindeemh ('e tury:- The site of Liverpool is low, und we noget that, upors examining the returns of the popmation for ISAI, and compraing them with tlowe of the birtha marringes, and deutha, wo whomld have fonnd such 3 startling remult-a result not mo surpisinge to us as it womld tre had we not seen some of the older retun.s. Is
 alove, the former 131, the lourials 185; in 1sto, the lap tixua 30:43, hurials, 3157. 'The birlhs registered in 1899 , when a rlowe approximation to correctuess in the refurs toek pluce, were 712 A , wenthe 7437; in 18.11, with a po pulation of 223,054 , the rep ran showed 9990 deaths in 0925 birthe. We then wont fartho r. and made calculs tions upon a hasia every way fave, io for twe appliadn the Population Returne of 1811 !. . . Trtrar-Geners
wium of birth quently we ap dear increase pared with the made from $n t$ tion was detuc ing figurea :-

Ponglating of Pnialating of
Entanil redue En funn 30 , in $14,417,751$

Hera are start

 adouble the de half the numlw wality of EngSeamons rflec a!ready sdvertet is the mast fatul of the fact. So mueh greater e ments, than coul parel from tho gralual decline adraace, and th middle of winter in country than

Months

Averuge
In I838, the was more than 11 esces the mortali different scasons

Canses of Death

Paralysis,
Apoplexy
Asthma
Instutherax
Bronchins, plearis
pueamonia
Jnfacd/a
Diseares of the he
se.,
Diabutes
Diaberes
Drepary
Monfication
Sudden deatha
0 daze
The digproportion
diseases of the res
Farec
The progress of neat place aroong panying a reductio
The number of
don in 1697, was
or mas muly fiths of those tap ive the sacrameat
many mamage on in the returs lowing lrassige in on the Sinetenik ow, and we ngges he popmataion or se of the birthan ave found such 1 ising: io us as in older retui.s. Is als 331: 1700, as ; in Inco, the lap repistered in 1839, ress in the returns I 1×50, with a po ed 9990 deatas to and made calcule for we appliedtu trau-Gener
retum of birtha nnd deathe for 1840 in liverpool, consequently we applied them to nearly the turnth part of a dear increave morethan we ought, and the result, compared with the totality of Enalanil asclusively of Wales, made from a table in which the decimal surplue population was deductei irem England alone, given the following figures:-

	flirilis io l'opulation.	Deathe to Population.	Marringes in l'opulation.	易気
	1 to $31 \cdot 07$ 1 . 21.17	$1104.1 \cdot 4.3$ $1 . .029 .50$	$110195: 39$ $1 .$. 60.0	4.13 20
Iverpool, wein, it	$1 \cdots 24.17$	$1 . .2208$	$1 . .600$	20

Hers are starting anomalics," remarks Dr. 'Taylor; "double the deathe nad marriages, and little more than half the number of lirths [to a marriage], averaged in the whality of England."

Effect of Sensons.

Seasons sflect mortality very considerably. We hnve alrealy adverted to the popular notion that a mild winter is the most fatal to lifo, sond mentioned that it is the reverso of the fart. Severe weather, in reality, affects life to a nuch greater extent, partieularly in some clasees of ailnents, than could be supposed likely. One tuble, prepared from the lelgian registers, showa a surprisingly gralual decline of mortality as the spring and summer adrane, and then an equally gradual increase towards the middle of winter, the influence leing rather more marked in country than in town.

In 1838, the weather at the commenecment of the year wes more than usually cold, und ir; certain classes of diseases the mortality of that year in the metropolis for the different seasons was as I illows:-

Canses of Death.	Winter.	Spring	Summer.	Autumo.
Paralysis,	24	101	135	1-7
Apaplexy	2014	241	S01	240
Asthanarax irdrothorix	761 40	73	${ }_{13}^{117}$	$3 i 1$ 70
Bronchita, plearisy,				
pueumonia .	1699	870	515	115
Infuena.	31	19	,	$1 t$
Diseases of the heart,				
Drabeites:	12	150	177	211
Droney	501	427	375	46.5
Monulication	4	50	25	54
Sudden deaths .	216	115	1115	14.1
Oid are	1383	969	778	01

The disproportion, it will be ohserved, was greatest in diseases of the respiratory system.

Fifects of Wealh and Civilization.

The progress of wealth and rivilization takes a prominent place among the conditi. . Ther causing or accompanying a relluction of mu
The namber of teathe :\% ? ? is.red 'n the city of London in 1697, was 21,060; a intury inter, in 1797, the or was culy 17,000 , notwithstanling the increase
of the population. About the inilldle of hat century the annual mortality in the same city was us nigh as 1 in 20. in 1830, it was 1 in 41. Of course, in the met'opolla of a great nation, an increase in the numier of inhabitante is not neressarily a proof that the indigenol's population in increasing; lut the average of denths being in Ioondon 1 for rvery 41 inhalitants in 1830, and the average of registered maptisme (everywhere in this country less than that of birtha, and most of all in London), belag in the anme ycar 1 in every 31, wo know that, independent ot the increaso from immigration, the populntion of Jondon ham been atearlily angmenting. The statistics of the city of Amsterdam present a remarkable contrast to this picture. In 1727, the annual averaco of mortality wan 1 death for every 27 iohalitants ; hand the average for the twelve yeara preceding 1832 was the same. During these twelve years, too, the average number of deaths in a yenr was 7336; the annual average number of births only 7282. If during that period the pepulation of Aimsterdnm did not positively decrease, it must have been kept up ly immigration.

There is another point of difference in the carcer of these twe citics for a century back. Whilst the wealth of Loadon has bern inereasing almost in a geometrical ratio, the commerce of Amsterdmm, and with it the opnlence of the city, has heen diminishing. Here, then, we have two striking examples of an increase in the mean value of iffe attendant upon augmented wealth, and, at the leari, a stationary conlition of that mean value attenda, upon in dimmution of e mmercial prosperity. Tho analogy is marked, and not surprising, between the fortunes of rommunities and individuals: in both cases, opulence (that is, the comforts of which opulenee gives command) has a tendency to improve the gencral healih and prolong life. 'I'his, however, is taling but a super. ficial view of the guestion; to emable us to turn such knowledje to account, we zunst go more closely to work, and examine in what manner the beneficial change is producel. If we do this, there are facte establisherd by the statisticalinquiries which have of late years heen made in Europe (although the scionee of statistics can scarcely lee considered as lar advanced beyond its mere infancy), whel will shov as that tee increased wealth of a community is rathe. sin attendant upon its increased health than a cause. They are both mutually causes and con-sequences-both the results of alvancing civilization, an't both contributing to carry on that ci-ilization to a y t higher pitch. A recapitulation of some of the most atriking cireunstances cither atterdant upon, or productive of, the increasing health of a community, will be found fraught with useful practical lessons.

The ascertsined farts regarding the rate of mortality in our own country, since the commencenent of the reign of George III., invite 1 , investigntion. "'Jlie annual number of hurials," says Mr. Rickman, in the preface to the l'opulation Returns of 1830, "as collected in pursuance of the population nets, authorizes a satisfactory inference of diminished mortality in England; the average number of hurials not ditfering materially from the yeas 1780 to the year 1815 ; the first five years of 10 the last tive years, and the whole period of thirty \cdot. . giving the same average result of 193,006 registered burials, the propulation having increased $3,300,000$ in the seran time." It npprars from a subsequent part of the preface, that the nmual mortality in 1780 , as near ae could be ascertained, was 1 in 34 or 35 of the population that in 18:0 it was 1 in 49. On the other hand, the same authority states-"'Ihe mortality of the inhalitarts of Eugland appears to have sunk to its minimum in the diceate preceding the population abstract of 1821 ; and suce that time it seems to have risen as fast as it descended ater the ycar $1 \times(10$. 'l'he census of 1841 gives one
 England hos, however, cratinued to increase; and this
nhows the necenaity of inquiring into the minute detaila of our mocial syatend during the perion of increasing and dinniniduing healthinens, in order to what has cataed both.

In geteral terma, it may be remarhed that the commencement of the dinsinished rutio of mortality in neaty contemporaneous with those inventionn whil ch rontrileted to give such an increaned power th the proinetive indure try of the nation. The Duke of Hridgewater anal 1/rimiley conatristed the Winalry amil Manchester t'anal low tween 1758-80, and the Liverpool nul Manchonter Comal letween 1762-67. In 1769, the contiection Iw iwern Houltom and Watt for bringing into play the patent ottained ty the later for improvements in the stom-rigine,
 ment a further extension of the patc" they were then only beginuing to 1. 1 , ther a..... age of the improvements. Arkwright whane the dirnt patent for his spinning marhinery in 176 b , amat Lis seromed puternt in 1775. His fist waterambla was erestal in 1771; but Give youra claped fefiure la begran to derive any profit from it. The inducace of these impravernenta waw, from the first, of the moest marked kind, andit ranifind over the whole country.
By means of these invemtions, convenienera and luxinries were brought withu tho reach of incomes which previously could not ationd then; and the estraorilinary cheapneas and goodnese of Iritish mamufactures, wath puch adsantages, an, incroaned the demand for then in foreign marke th that the mandiaturess fimand the sind in of lathour insot" mt. 'The mathonal weath was not ouly incroased, it was diffused through all clasese of meiety. Increased iner ses, the spirit of risulty, prompted all
 comfirtably: bether clothecl, housed, and fid, inen tecane liatle to fewer diseuser.
From the aidde of the eighternth century, a atimulus had berco given to the pepular intelliet, and the Ehegliwh were becoming a readim, sation. The great inventors were therinelves chietly nempars of the midale and humbler rlasese, and the corliest of the grent manufierturera wrere so likewise. Sumblay-arlhooln, trook-cluhw, and the diffusion of newspapurs, were perhajes amonget tho most mervicratle mana of enlightening the people of Englamid during the relun of George IIt. At laxt rume Joseph Lanraster with his chrap applaratus for the clementary education of the masmes. When we find surh circumstances arcompanying the diminution of mortality in England, we cannot refrain from suppswing them in some meanure comected.
We deem it, then, tokrably elear that the ereat frim moters of the health of individuala are-inerrosed atfluence, relieving the mind from despundencr or harasoing care, and furnishing the means of chorishing the holy; and increasell intelligence, eseching how to derive the mont advantage from this aflluene, and layimg the foundation of hatits of jadrious self-control; wad that the great promoter of the heath of commmitien is the extenion of these advantuger to an masy of the individuala or cinses comproming them an ponsitle. The pan ceswion of atiluence, and the inte lligener requisite to arplure, retain. and use it aright, is the main disturtion letween what ure calletl civilued und клvage men. In the ronmon practice of sinking the imbivitual in the chask- sper as ing of wations ay remermbing or contrateded with maty, we are ajc to overlook the fact, that every ritilizi
 human being la pery nation, even un owr own, there ar" many who grow up, here, und die, unrefletting e catur. . of impules, scrambling day ather day to snatich a precarious livelhood-now gorged, wore oltma atarvetryoramt of responisinuthy to (iexd or man-in short, ax conplite mavages as are to te found among the worts of A merica or ill the buak of New Holland. The detri-
 len in uny mocicty is not conflieel to itmelf. Its uxisemenn does not merely lawer the average of virtue and enmforn in a country hy diminishing the ratio ita sum bears to the total of the whole population; the contagion extendin to the civilized or comfortable clasere, who are by proximity lirourcht into contact with it. Prom the mqualid dens in which thisa clase congregaten, emanate contaginas dieas an that penetrate into the dwellings of the wevithy. it numbers compone what all ominent stationt hat aptiy ralled "the dangerous rlanses of large cities;" the rambin of our thievea aud honsehreakera are perennially in ruited from among them. They constitute, in limeen of dumpatic contention, the hrute inatrumant of to wikhed of' the riwitered elass. They are a chronic disesase in the aucial bouly ; and a nation is heratiny in proportion an the are diminisised in mumbur, or therome humnized by participution in the comform of their moro favoumed brethren.

The andvantagen which society ban Ierived from ate mented wralth and extrowled edncation, mwy bre listrikuyed utuler throo clasen, aceording as they proveril fram granter facility of prowuring physiral comfirts owing to then krenter abundance, or from the grenter pwawe of ronth hist.
own mioyment by reguluting their moral
 or from the union of theth these ranses, Wreprofeen is illustrate, by monar statistical detuila, the mosie of oper tion in enth of these threre chasmem.
The alvantages which the whole ronmunity derin from an inerease of wenlth, and its mourre, maro aficions aphatation of indandy to the natural walth of the comen try, are of two kinds- thome in which ull participate, every thase who dhe not esert themandere; and thase of atared indiviluals nequite a share thy ther feremomal esertions Of the sirat kitul are the benctitw revolting from drainge in town and cometry. The slumulue given lyy the in rentions adverted to at the outset have catemeted to aghi culture; and the elliorte which have been male to reder land which was mot prodhetive, or produrtive of litrete bore fiertile, hate mudirectly romatratuten! to promote ba public hadth. 'the draining of the forn conatipa on the coast coant of Enghant has banithet: a clase of disane wheh were moas dentruetive in these dintrints. Tbe fievers of Eissex umel to be interior in virulence, but saircoly infernor in frequency, to chase of the Ponten Buarilues. With the dramage of the marmbes of the county these fevers have disaplocured. "'Tlie intermbto tents," baya Mr. Ru'kminn, "which, heretolore, under be name of ugoe, interted the comintry very entenxively (es
 the time of hachardson the novelist, as we tram from ta
 "ven these families which were in casy circumsannes The change fer the better is of course mos manifss a the pesitively unheralthy distruets, hut it is "xpenenced a the dimination of chronie rheumatismes, whereeter suffia drainage mad underground Iramage have estroded. the erertions of the mose wealthy clasme's in large towns. potute by sewers mal other aids of pither fleanderes their own thandth and rombiort. hus in the maner indo rectly whecd to promote tia beath and enmiort of at

 "11 hemale rumine bleonl two days on ewery wrik" 1r. Suman has lett on werond was the conse in touthat in lun day ; mar do we thad "pizs bred ond ted in te housee or luck-sides of paved berreter," roulded out a drovens by the comentathes in the tishliomande pulleves d

The advantages which each individual must seque for himself ly has own exertions, are superior hawide accommodation, clothang, and tood.

Previpus to the oarly part are the ratee England had -in the iron and phating manuficturea veighthourhnox leedian, $\mathrm{Sa}, 3 \mathrm{~d}$. 7n, bul. ; in th 7s. 6d., the c nufacture of manufacture in the tunieris and whoen at fustians, sher k 14: in the pr in the mm ulia whire, $11 n_{1}$; m pins in Crownce Subbury, 7s. 6 9.; thannela a the lace matil manufirture mington, 6x. making pins shocen and hat perchluin and of ahows and ! nee at lowherl lead mitur, :ta Mandhester, 3 nasufacturing fus ; in the son rate of agrimu cien ; fiss. in th districts. 'IW in his tours peprolation of I of thems he gi agriculture-11 pendantes, ams
年": in extif te, would pei" it upon time. lexse th industrions ןur
The ingurati "Arts and .la
 caputal?! of " of E'ughand in upinner can ea card-room, 14 s to bise; by he :3s.s. 1030 N ; wages at she amount to 10 m a the irosi-w average from: the Leceds thaxat the Sluorem other trades, Ecgland arecrs, $26 \mathrm{w}, 1030$ tc :50ss: stuhu 20\%.; spadesm liers, 3e, 6d a par werk. I: aplumers, Its. neavers by l' in the Leed Gloucestershire
of thils mind seins scelf. It existene virtue and comfor tis num belars to the phtagion extends to 10 are hy proximity
the squalid dena the equalid dens in contugloum diseaw the wealithy. It ntatime has aptly "citien ;" the ranh ure perennially is intitute, in timien of nent of th a wiket ronie disease in the a proportion an they 10 laumanized by eir moro favoumed
derived fram aupo a, may la divatribule preted from greate rts owing to them or pherer of ronthe nuluting their mory Whortual culevation, vis. We proced to the male of opers.

- community derin ource, niore efficien wrilth if the cour all participate, erep und those of whies furmonal exertiona alting fromn drainge in givion ly the im ${ }^{24}$ estrinited to agm ecri mate to retidn proklurtive of litte ited to promote the fors countion on the $: 1$ clasn of disease lu'se districts. The or in viralence, bu toss of the Pontite ee markheg of tut 'I. "I'he intem: lurrotolore, under bex very "atenxively (es ger spolien of." be as we lemin from tha a vinited periodiows casy circumstances Ne most manifos a it is expencnced 1 un, whereser surfiac have exumedre. The ' in large towns, of publace cleandiey it) Whe mo milier ind 1 Huld comport of at urs in london, inh are still batly enown - even til thena, fid " HI pwry werk." we came in touthat broel and tod in te ets," routed out a liomumle purheus a on the case in 1761. villual nust acque : superior browide

Trevious to the impenta given to nalional induatry in the early part of the reign of timorge 111 ., the fothowing are the rates of wagen which the lobouring clames of England had it ih their power to earn per weok: Men -Io the irom-workn at Rotherhum, 10a.; in the cutlery and plating traden it Shettield, 13m, hil.; in the cloch manufactures at Wakefleld, 10a; the colliern in that veighbourhonkt, 11 a. ; in the manuficture of eloth at Leed, Be, 3d.; at the ulum workw it Ayton, in ('heshire, 7a 6d. i in the Jaml minn at Fremiugton, in Yorkmitu, 7. 6d., the coiliern of Newematle, 15a, fils; in the manufurture of cottomen nod checkn at Carliele, DH_{H}; in the manfarture ol storkinga, cottons, and linacy-woolarya,
 and shoes at W'arrington, $\mathbb{Q}_{4}, 7,7$, in the manutin there of funtians, rheaka, hate, and smmilowarea nt Manchestor, 7a.
 in the ma ulacture of pirecogosals at Witury, in 0xfordshire, 11s.; making eargets at Wibten, in Wilthire, IIs.; pias in Coburestershire. Ins.; mave and huryingerrape nt Sudbury, 7x, 6il. ; нiys and ralimancoen in Sullolk, 5s,
 the beve mandarture nt Iledforil, As, bil.; in the cloth manufarture at lacole, 3m; in the leud mines at Fre-
 making jims nad whem nt Warriugton, 4s, fild; makin! sheres and hats ut Newasile, 4s. fin, Childien-ln the
 of athemathins ht Newerastle, lan; hoys in the putte-

 Humester, 3 s . 5hl. The modium rute of the where of nanafataring lahous was-in the cast of Fincland, fins. 6u; in the sonilh, 9_{4}. dd.; in the west, 11 w. 'Ithe medium rate of agriutural wages was Ns_{s} in the castern counties; fiss in the southern; and 5s, Whl, in the wewtern districts, 'lheme rates were asecrtaimed by Srthur Young in his tours of $176 \mathrm{~m}^{2}$ and 1770 . Yomug estimates the population of Encland and Wales. in 1770, at 8,510, the $:$ of thene he giver 2, sell, 1160 as the number enguged in agriculture-the landtorda, with thair limailien and de-

 catly te, would gise the firmbers of the popalation de. pe.- |" apos the wages of habour for subsintenere, of that time, luss than fimer millions. He eatimatere the nonindustrions peor at selli, (M10.
The intoration giver by Mr. Iellineere Eymons in his "Arts amd Altuans at Home and Abroad," published in
 capubil? of carmury !"mesessed by the dabouring chassom of Eugland in our whe hay. Mon-In Mandiestar, n

 Wages at shoflied sury from 25s, to :35s, und often amonit to 10 N, tor workmen in the skillen ileprimenta; in the iron-works of tha Hirmingham distriet, wagen average from 20 se . to 30 s . for the common hatoourers; in the Leeds tlax-mills, men curn from 17s. to 19s, n week; on the 'jlourestershire cloth-fictorien, from 12w. to 14n, In other traden, the abrrage wages per week throughout Erghand are-iron-fommers, Sen. to 3l/s.; machime-mak-

 20s.; spulcmmen, 10s, to lins ; porters, 1.ls. to llise; colliers, iss. bd. a day; monkine weavers in lacieentor, Sa, Bul. per week. Homen cara per week, at Danchester, as opaners, 1 the to 15 s ; in the cari-foom, 9 s , to $!\mathrm{s}$, bid.; weavers by prower, Es, to $1 \mathrm{Ds}_{\mathrm{s}}$; by hand, fis, to 12 s ; on the Lateds llax-mills, 5n. 6il. to fis. 6d.; in the Gioucestershiro cloth-fuctories, 4 s , to 5 s . Children can
earn in the Mant hoaler factorica, frem 1a, 6d, enenvengers) to 7 . a week; in the Leedn flax-milla (n sen nine or ten yearm olli), ins, fid, to 4n. "Agricultural wagas," nuya Mr. Kymona, "in Fingland vary mo little, anal are so well known, that I nued harilly do more than whte, that in the Cosewwold districts, for instance, a whepherd re-
 in - ner, nud Bn, in winter; in addition to which, they rarn a suinene nt harvent time, which will phy their rent. Womati remion Bal. a day in winter, and Ed. in numiner, and 1a. ill time of hay and harvent. Porhaps theng urn the lowent wagen paid in any dintrict in Fingland. Fromb AN, fal, to 10a, Ed, will lie throughout the beverage wngen of the great laik al adult male agriculaurnl halumera of England. 'Thene raten of wagen are taken at n perion when the remuneration of luhour in retrograting in a marked monorr. livem umler this state of athirn, bowever, thry whow that the increase of nutional wealth lane in least given individuals of the labouring claas the commurnl of a grenter money ficeome.
'I'he lahourer'w pewer of commanding the eotaforta of lifis can only be partially kuown from a statement of his Parninges: aftention must be paid to what thene carninga con parchanes. 'I'he primelpal expenditure of the habourer, as alroaly stated, in in loone-rent, chothing, and urticles of domertic consumption. Ily the improsementa of machinery, all chaser are emahled to procure leeter clothing at a lower price than they formurly paid for an infreior article. 'The extent to which this chomge has been carried, may lu' inferred from one or two facter regarding our manafoctures. In 1787, when the mule-jouny first rane into common use in loltom, l'aisley, athl dilangow, the mannfacturers paid for their fine yarn at the rate of 00 guineas jer 1 b .; the sme quality of yorn has of late lueren mold at from 14s. to 16 m , a lb . 'I'lue colton twint, which sold in 1786 for fI , I An, pler lb., in wold now for 3s, 'I'he procens of reduction in the price of mumulao turel goods is still going on, and in the linets an well as in the cotton trado. (innvan, No, 27, an article, the quality und dimenions of which do not vury, which sold
 woollon mambiatures, a great reduction of price, compared with quatity, has also taken place. The consugurne in apparent in the style of dress adoped by the working-claswes of Great Hritain, so dillerent Irom what prevails on the contiment, and did formerly prevail here. Is to housen, every person who has athaned to middte ape must have remarherl the improvement in many diztricts of the accommodation of the lahouring classes in this resiect ; and yot he money rental secmat bave remaind menrly statimary. Young staten the house-rent of the working man to have fren in him tinn-at laceds,
 tirld, L2, 15r.; North Mincs in Middlesex, (3, 1tes, ; Kinnington as bigh as C 5 . In 1N39, the average rental of a labourcre's cottage in the country near lemance wan almut C 3 ; in the town, \mathcal{L}; in the comaty of liutland,
 rent of 539 labourers' families ave rastod 233 , I1s, per family; in Northumberland, the average noth of a latourer's coltage was cotimated at $\angle 2,1 \mathrm{~km}$, livent the price of jrovisions, which is gencrally suppisal to have been so much lower in firmer times, has not moreased, if it had incrensed, so much as is supposed. Thae avernge prices of butcher meat, leecr, cheese, milk, and butter, throughwut the hingolom, do not materially dillir now from what they were in 1760; bread is dearer, but inproved in puality, and potatoes are mach cheipur. Then, coflee, sugar, mal pepper, have heen murh reduced in price; and now, instend of scarcely ever oppraring in the werkly bills of the labourer, are standing artictes ol his expothditure.

I'his improvement in the quality of the accomunde
tima procitrabic by a moternte income munt alwaya he tept in view, whet comparing what a man can ears now with what he coult eurn fiomerly.

It would, however, convey in falwe bimpreation of the smount of nocrial advantage at any time derived in (ireat Brtain from the great inerense in the productive powern of induatry, were we to leave unsuticed the lirge mand inereasuig elases which han never yot been reached loy theme beneflen. Even in the moat lnny marta of induatry, numbere are to te found, and thesen not mlways cotirely anable or unwilling to work, who are in a atate lemedering upkin dextitution. We have a remarkalle exumple of thin chask in the city of Limerick, where a large dinemet in in a manner given up to then. In Fingland, it in to be obeervelt, the mean value of life amoug the more confortalle partion of the working. lanesen in now an high as that of the middle clase in hast century : thin appears from comparing the experience of the Amiculte
 the midille claseren, with the talle of mortality collerted by the Nociecty for the Diffusion of Uneful Kumwledses, which cmbiaren the himery, an 10 motality, of $24,3 \times 3$ years of life nomong the lahouring rlawes from all pathe of Eugland, from 18:3 to $\mathbf{1 N 5 \%}$. In Limerick, on the contracy, while the deaths in the three tomtine suciectien there finmaled in 1807, 1811, and 1814, wind with lives injodiciously sellected, whow wexpertively one death anmbally in Itis, 81 , mad ise persons, the annual mortality minong the poar is 1 in 19 . This is not all. "The
 the jower of lamerick may lue gathereal from the foslowing fact, that while the perecemate proprotion of chim chans to the whule number of deatis in England and W'ales in
 26.1 nul 26 rexpectively; in Mancherter, $8: \%$; in Birmingham, stt; und in liverpuol, 19.8; it in in limerick not lese than '16, or nearly five tinies as great an the proportion of denthen from dimenes of the respiratory symem,
 nearly equal.": Anong the familien of this clian who came nuster the nutier of Dr. Criflin-" Chut of bif who had more then 16 children hern alise, 13 , or one-fibith.
 mortality of thuse famalies was 155 , or 12 earh, which. if distrifited amone the same mumber of families who had the graitest number of clidedren hoen nlive, ammente to 79 per cent., and wam probahly higher." He mdere oft has horen remarked that prexhertion in uttoln mumb
 I strongly nawnet that this is a cunsegnecure of the high mortality which orcurn in such citcumesemes, It in the character of any intlance which trode gevetly to ibpromes
 tenderness of intany and the fieflemene of age. Ninw, as ! tind that the pues nurse their own childern, there is generally an intreval of ahme two gearn betwern the birth ef une child mad that of the next; but if a chatd dicn early wis the lereast, this inters al will he muich mharter, and if thin oecturs often, there will be a rertain mumber torn, an it were, for the purpose of "y"ㅆg."

Eifectu of therensed Wealth and Kimwletge in Combination.
Some rexultes from the combinet indluene of increased wendth and know ledse may mes la materted to. It is to be uherved, that the rich could at all times come mard many comforts favemathe to life; lout it is only when browtedge suggeste a tight coplogment of the
" "Bherver the nhaglute mormbluy is lowe, the pumber of

meanm afforded by opulence, nod opt lence on the atsen hame erists to avnil itsolf of the aill of kn wielolge, the the full leneft of the condition we have bean revine
 tion may make our menaing more clest. -
It in communly lelieved that there in more dangen to life from lithotomy than from anpuration; bue station tical inpuiry shown that deruth mus thyuen, in fullong the latter than the former operatic as. Jhe, maulan of 610 camen of moputation of legn and wina, in lompitain and privnie practive, in F'runce, (icrianny, Inited Staien absl Cireat Iritain, worn in 160 cusers fatal-at rating sid pur cont. It in to be kept in siew, however, that the mortulity lin canem of sumbtation very freque ty arines frous the injury or diesame on accobat of which die opration is remorted to; whercus the mortatity form lithotomy is almost lisuriably the slirect effeet of tha oreration alobe-lhe murgeon having it in him power, in the litter came, to choowe a time whero the putient in in the bent cumbition to codure the mulfering, which he can tarely do in cose of nupputation. When we rellect upan the intimate acpuaintanee with the human france, and the contild'uev in his own akill, which the murgeon can only

 to form nome iden of the ingurturne of knowledye in nlloviating the mizeries of hommnity. And when we ndit the consiterathon of the cont of instrmanerta, medi. cines, and the time nat troulile requinite to furm a gnol surgeon, we are able to form nome iden of the extent to which stored-up capital is a nocespary prerepuinite to burn lancing luern nhte (in the firmt instaneren at least) to give and receive this ullevintion.

Another cuample of the be nefit of the en-operation of increasel matiosul wenth with increased hoowlodse, is the diminisharel rixk of life in cuses of child-hirth. It masy appar that we ure wandering from the consideration of wealth, kecing that the axamples we are ahout to pho join are melected from the returne of lying-in hompitalme tha only trustworlby statisties on this point. Hut it muse for kept in mimel, that a nation must be wealth! Isefore it can sulphert nuch inntitutions; that the imes proscmadit no markend in the case of the poor, mixt to "f fir cens gerator in thome who can ablierel command whtchane mot the hest asxixtance; and that the afflent
 "vermed to the prar. 'Thee procerna by whill. a maie in lhas and other prisileges of the oich has heon extomhd fu the peror, is a purstion for aller invertignatem. With this esplanatios, we mumuit the following youtation from DI. (vartheten "'ruatise on Man, to show the mertality of women in chidd-hirth, and their children:-
" Acrocdiore tu. Willam. tho montality in the greal lying-in hompital in loondon, into which ahout 5000 wis bell were amuatly admitted, was,

Prom 1	1:49	in 1789.		Of motheres.	Of chiliteat
	1200	$\because 1760$	-	1 "	1 "
"	196	" 1 Big	-	1 " 5	1"
	17%	"1\%"		1 '1810	\cdots
"	$17-3$	" 18:5-1		1 "2-4	1188

According to Casper, the mortality of eonfined tromen
 $170110177.1,1$ in $8:$: from 1785 to $1794, t$ in 141 ; and from 1819 to $1 \times 22,1 \mathrm{in} 15 \%$.
"The wame nuthor wupplies us with no estimate of the sathitary miluenere of varcomation:-" In most juilized commeriew, there are shactmente on varcination, of greater or lose weverity, which are enforeed with proportinate
 who have written of the raviges caused by the small. jurx, it woulth appear thare fiermerly generations were do. rimated hy this meonger, that is to say, one-tenth of the homan race dical from it. Duvilhard has found-ide

That in the matupal wage, scareely fuur of amail-paxi 2 ll , atackeal by it wonne the early yeara ather nut of every thren ane diea out of every ase it may be. Nucl decovery of vacionat linatated. However, at anall-pos; in | 141 was many un lods 408 deaths lexik placs 1892: whint in loni Frusia has her'll 111 wuatrien: during tha ungether, only 1 in 7 loat ! in 48 io the lat the data of Berlin di 1832 to 1791 inclusiv 4999 deathe; from 1 $18: 2,355$. Thee 1111 which is extrectocly at coding yearm, woulh 1 and 1815 were sulter tioa was uryleyted. death from it ; w this only 111. But we sil M. Villermé lats maill, lution all those individ not carricd ull hy the otber madaly thaninst ou'selwes,' M.1yn .H. canse of death; but f bility of dying from wu In other worda, lye tho open the others wider, these iatter: which in be equally rupid. Cos preservative against whatever, does not lime dirceily, but, what is thase whum it shatel por, it diminisho thu he native heanty of pate daration of lifi.'
Ihis will mearnely of the advanluце"s anation. In the the dued, the reader may atiec combinded, hase tangible dausures. Bu are comerned, this is hey have contioned. chases by the mis.ince increased ditfinsion of wa general batalthy oc alite calculited to wa to hathe then whin whoe memory cial ca who has had opportun the deticient wentihatio ber of inabuth', ill tacl the houses of the lan Wan still greater. 1_{3} retrospect still firbleer in Frame, and Dasy sencel their crusuldes. the desa and manner ω imagine the whole : bas been effected in : of the wealthier clase e morals: and, in recor Vow I-58

That in the natural atate, of 100 indiviluala of 30 years wo oge, ecarecly four inilividuals have e:maped an attack of allall-pux: 2l, 'I'hat two-thitits of all Infanta are entacked by it sowner or laters 2d, 'Ihat mmall-pox, in be early yearm niter birth, destroyn, on nis avernge, one not of every three who nre afficted with it, 4 th, And ane diea out of every neven or elght afliected, at whatever ane it may be. Surh was the atate of thinga belibre the deeovery of vaccination; it ham since heron mach ancelineated. However, in 1817, 745 permons died in Paris of onall-pox; in 1414, 90:3; nod in 18:2, the number was many us Ithet. Alsar, ut Nt. I'vtersburg, lis 1821, tu8 deaths took phaco from it ; and nt Vionna, zils in 18*2; whilat in lonnhon, in that year, there were 71%. Frumia has lowell mush better denlt with than other countries: during the two yours 1820 and 1821 , tuken wnether, anly 1 in $7 \boldsymbol{2 0} 4$ persoma died; whilat Prance foat I in 4 tho the last two yeares. I'lae following ure the data of Herlin for aloment half a century :-From 1793 to 1791 inclusive, 1433 deatha; froun 1702 to 18111 , 4999 deatin; from 1802 to 1811, 2955; from 1812 to 18:2, 355 . 'Thes number of deathe for the last period, which ix extrendy manall in comparinon with the preceding yearm, would be still lone, if the deaths for 1814 and 1815 were mbitrmeted, daring which time vacerimation was meghected, haderel, these two yeura hate 111 waths from it; mos that durimu the remalning there wis only 11.5. But we should fall into a serious error, as M. Villerme has suid, if we counted as gain to the pepmlation all those individuale who had been viccimated, und not carried olf hy the sumall-pex. An cpilenic, or uny oder malady aguinat which we embebour to secure ouratives, may M. Villarme, "inded nuppreanes one cane of death; but from that circunstance the probability of dying from some other diacase lneomes greater. In other words, by dusitag one of the gettes of death, we open the athere wider, no that more persuns priss through these latter; which is thet sayimg that mortatity shomhl be equally rapuil. Conseduently, vaccination, midedery preservative against epidemic dimease, or any disease whatever, docs lut inerease the population ol old biurope dirciily, but, what is mill better, it alleviation the lot of those whom it shatches from the chance of the smallpos, it diminialios the number of the blime, it preserves the native heanty of the persom, and increases tho arerage duration of life." "
[has will searecty be called an exagererated entimate of the advantases isablinf from the dincovery of vacgimatisn. In the three examples which have been addoced, the reader andy se how lar knowledge and athlueace coubinel, hase served as preservatives ugatust tangible danecrs. Jut in so far as the alluent clansers are concerned, this is but a small jortion of the benetits they have contioned. The habits generated in therse disses by the adsumement of knowherles, at a time of increased ditfinion of hnowledse, have been favourable ba gemeral hatthy comatition of the individual system, atike calculted to ward off the attaches of disease and w hatle then when they are incurred. Any person whase memory can carry hin back for forty yenrs, und who has hal opportmities of olnotrving, may recuember the deficient whilithon, the small rooms, and the momber of inmatis in eoth room, which charneterized even We houses of the banded gentry. In towns, the avil Wan still greater. But it woulil reguire to carry the retrospect still birtier bark-to the time when Rousseau in France, and Day and Eilgeworth in Enghand, commeaced their crusuhes ngainst unhealthy abourdities in the deese and maner of living of the wealthier clissesswimagine the whole anount of the improvement which bas been elfectel 11 this respert. The improved taste of tho wealthier chasees has contributed to improve their morals; and, in return, the better regulation of theit Vow I -
conduct has teniod to improve their geners hwalth. The practice of deep drinking, which misersally preo vailed, has almont ceased to cslat anoug the allitent clasmes. literary nal sclentific purauits, if they do not nlwaya guard agalnat low lelmuchory, mave many from it, mad rualilo still more to recover, after ylelding for a time to temptation. An interesting paper, publiaked by M. Benointon de Ch vinumf, entitled "On the Duration of life lin the Rich and in the I', wor," corroborates theme viowa. Ithe author lots made, on the one hand, an abstract of the deathe of 1000 persons of the higheat rank, emong whom are 167 bovereigos and princex; on the other hatid, he has taken, from the civil
 arrondissenment, which contains a population of workmen of ull kindw-raginen, sweepers, itelvers, day-fahoureps, \&e., it clasm nubjected to pain, anxioty, and hard labour, who live in want and die in hompitala. Ont of theme Hateriala he has constructed a table showing the per cenauge of mortality nomong the two clasem at differens mees, and has alded a column indicating the per centage umong the midille or cany clavers. He found that, bee tween 25 and $: 11$, the deathes ber cent. were-arnong the rich, 0 ; umbis the commun clines, 1.11 ; unong the jeor, 2.2e: from 50 to 65-among tho rich, 1.81 ; among the common clase, 9.68 ; ammerg the poor, 2.58 t from 75 to 80 -among the rich, 8.09; nmong the common clans, 10.:12; numbg the jeit, $1+59$. It this last age the colann showing the deaths monge the peor stops for want of materials-they had all ilicel ofl; the colunn showing the deathen of the rommon clase extemis to the uge of 90 ; that of the rich to 95 . The mame contusion is indicated by contrasting tho nnnual mortality shown by the annual avernge of denthe anong the Euglish midille clasmes who have insured their lives with the Equitable Socicty, and the annual average among the negro slaves. Amons the former, it was only 1 in 81.5 from 1810 to 1880; wherens it has been caleulated that one neцro slave dies annuatly ont of 5 or 6 .
some facts would ahomst sermin to show, that the edrcation enjoyal by the more afluent chasest-the cultivation their minds received, partly from direct tuition, barty from their social circunntances-gave the mind an increised power of vitality. An officer of high rank in the service of a (iorman state male this remark to the writer, when speaking of the disastrous retreat from Moscow, in which he had taken a part. 'The oflicers, ho naid, miformly atood out longer than the pirivates, nlthough the previous habits ol huth partics had led him to expert the reverse. Literary men, and artists who have attained to uny thing like a competence, are also a long-lived generation. The remark has often been mate, of the greater facility with which young mest, belonging to the clases vaguely ratled "gentlemen," geo morally athin to superior adroitucs in athletic cexeresses. Whonever a party of Etonians are pitted ut cricket or running agninst a party of lads of a lower clans, the diffrence is at ance perceptible. Again, the facility with which the young men edueated at Onford and Cam-bridge-mapt though the system of education pursued in these two great seminaries lie to prepare them for the real business of life-work their way into the routire of lemal or diphomatir lusiness, is well known. There is sumething in the strengthening intlumee of good and delicate feding, clothing, and longing, combined with expreise of the physical oml mental facultions sutficient to strengthen, not to exhanst, persevered in for genern tions, that ennobles the race of the human animal, juat as carefol gromuing and crossing the lored judicionsly embobles the horse. What is here spoken of, is not the power of such a process to confer gunius, or true nobility of disjosition ; but to bring out in perfertion all the ave. rage commonplace qualities of the liuman being. In any 2 Q
country, asuperiority of this kind is discriniblo in the dominant easte; and ns mere human animals, there is no country in the world that can produce a race equal to the young gentry of England.

Limits to the Eitacts of Wealih.

The limits to this fuvourable condition of the afluent classes in Pagland, nere to bo sought partly in deficient knowledge and deficient habits of self-control; partly in a redundancy of wumbers compared with property. which affects them in common with all other chasess, though not exartly to the same extent. 'The deficiency of knowledge may be detected in severat noxions practices still persevered in, such ns tight-lacing on the part of the fair sex. The want of proper habits of selferontrol is n mete deeply rooted evil, innmuch as it has its root in a physical fiet too much overlooked by reasonors upon morals. When named, it will be found tu be - very commonjlice fact: it $i s$, that every successive generation begins the wrold with as little experience as that which precedeal it. Every one of us starts from as mere a state of innorant harbarism as the child of the sarage. We are forewarned of much by the instruction
 or the expremes of those who went hefore them; but there is murh of which it seems impossible to forewarn vs. The prasions are fully devefped betiore the retlectHey powars: and wery individual scems deathed to axperience a periok of his existence in which imatination add passion are strongly nod thallingly nwakened, vhile the guidin; fower of roason is yet dormant. I'lis Sthe most danerrous, as it is perhaps the most pheasant, period of life: and it is one which is most dancerous with regant whan wory chass which is so highly fiverured in other resperes. Pemury, or the meenssity of daity habor, may routrain the has alluent classes at this perond of lifie; but the youmer branches of the atlluent class hate wash substitute for the eontrol of reason; and in proporinun as their genernl henthiness is higher, so their jusions are developed, it may be, with grenter intensity. It is at this priod that many of the more favoural chas make shipwreek of their health, ineurring diseases which cling to them through life, if they do not bring it to a promature close.

The influrnce of economical circumstances upon the affluent chasees, in regard to their moral atd flysicul welfare, is yuite as striking as their influcnce on the less fortunatu chassers, thongh somewhat ditferent in kind. 'The unviety occasioned to the upper classes by the prospect or antual presture of pecuniary mabarrassment, is of a mod more harassing and c whating kind than what is sutfered by the poor. Pride, and all the oher serondary ferlings, with ranging imaginatios, add to their tormonts ; nod their oceupations generally demandinz a standy evercise of the faculties of combination and investigation, and kerping their minds continually on the stretch "won in the tume of prospurity-this addition renders their burden nure than they ean bear, and the whole man breaks down beneath the woight. Excessive ment.l"exertion, even under the most faveurable circumatanes, is known to be pronluctive of fatal effects. Eve hilde of willomt and forthate parents haw [k:a. surofited to the vanity which was sratitied by
 geave upan men atruasling to maintain their phace in
 ments of ehatern, in the hope of ereing then ables, at a compartivily early uge, to provile for thermselses. '? anor uf Borlan puhliwhed, in tri3l, a tabular matement oi his ohsurvatoses on the samatory tembency of varisus or fuphamis, whith serees to throw some light on this Letncave juretion:-

Of $\mathbf{1 0 0}$ theologians, liere have allained the age of $\boldsymbol{7}$ Agricutturists and foresters., Super ntidents. Comenereind and industrious men
Militury men........................
Suhbiterns.
Advocnles.
Artisls.
Physierans.
That physicimes shouhd stund lowest in this scale of pitality, is not, considering their expoware to contagion, to be wondered ut; and the high grade of theologians is equally intelligible, from their certain thoush modere income, and the equanimity fivoured by their pursuits It is, however, startling int first view to find the averame duration of life nmong commercial men so little elevated nhove that of military mon, in a table constructed in a country where war had raged at no remote period. The last fiact seems to estabish that the ngitation of mind pro duced by mercantile uncertaintios and diffeculties is scarcely a less destructive agent than the sword.

There is perbaps n point in the thevelopment of na tional wealth and civilization, at which mortality show a tomplency to increase. Sueh an idea is maturally ana kemed when x. lean that the mertutity of England is now greater than it was some years ago. The propor. tion of wathe to persoms in the dectate $1 \times 2 t-3 t$, was t1 49 ; that of the checalde $18: 31-41$, hns, ns already stated Feen found from the population returns to be 1 to 41.5 ,

educition.

The statisties of education have an obvious value in their connection with many questions regarding the civilization of countries.

It is clear, however, that the state and amount of edr cation in a comary is a highly complex guestion; for first, thore may be much education of a pour and inede quate kind; and, second, there may be comblitions favers alle to alncation in mome conntriss, and nit in otherm as, for instance, the matural character of the prople, the tendency of the political and social institutions, and the direction which the enorgy of the peophe chie-tly takes, as towneds war, commeres, or art. 'The mumbers at school are also liable to be aflicted by the ratio of the incease of population; for, where there is a rapind increase ? prople, there is always a greater than usual foporto of the joumg.

Prisitia, where the most perfert of nll national sy tomes of education exists, as far as organcation is con errurd, contnincel, according to a census ta' en some yeurs aco, $12,726,8 \pm 3$ inhabitunts, of whom $4,767,1 \%$ wre under fifteen years of age. It is rechous that, out of 10 chidreen from one to fourteen yenas of age suts plote, there are $4: 1$ of full sewn and upwards-the leal age for attendance at school in Prusilia. This would give $2,013,0: 30$ children in I'russia liahte ly law to atterd schosh. It was found, in pwint of fact, that 2.021 .121 did attend, bring only n sbortcoming of 21,609 , a simallewest allownare for contingencire. 'flhus, it we' were to the Prussia as a criterion for ohd states, where the poputace does not advance rapidly and ronsuler the years betwee 7 and 15 as those proper for school attemathe, we should condinde that nbout one-sizith of the whole propulationd such a country should lo at schowl.

Most of the (ierman states monke an appreach to the organization of the l'russian system; and we find that a Anstria there was, a few years ajes, one schogl for evet 275 fanilies. Hut the whoret of the governments in st;
 sutd to be of a narrow kind-a species of drill. for the purpose of conforring the accomplinhanats ε^{c} ratiang writing, and arthmetic, and to train the young to a mb servieney to the goverumbent itnclf.
Education wan in a low state in France till the raw

ltained the ago of \%

\qquad lowest in this scale of ris exponure to contagion, to h griste of theologiana is certain though tnoderate conred by their pursuita t view to funt the averape reial ment so litule elcuated a tuble constructed in at no remote period. The the agitation of mind pro tinlics and difficulties is it than the sword. in the thevelopment of na. at whinet mortality shows an idea is maturally ana e mortality of Finctand is years ago. The proper. he decoute 1821-31, was -11, hns, as slready stated on returns to be 1 to 41.5 . 10 N .
have an obvious volue in questions regarding the
, state and moount of edr hly complex question; bia, ation of a peor and inale may the ronditions favere atries, and not in oher: harawter of the prople, tie encial institutions, and the the prople clicily takes, 1. This numbers at sctay y the ratio of the increat ire is n rapiul increase ? ater than usual propothea
erfect of nll national s. ar as onganization is conto a census ta' en sore itmiss, of whon $4,767,48$ e. It is rechoned that, ous fourteen years of age cotro n and upwark-the hal in Prustia. This wodl ssia liable ly law to ateed of lict, that $2,021,42120$ g of 21,609, a small cownh Thus, it wr were to the tates, where the population consubr the geas betwea houl muturance, we shoud of the whole pepulaion of churel.

- make an approach to the ywlem; dult we find that It anar', one xchuol ior even of the governmente in sh; and tiormany petherally -a species of dill, for to complinhmeruls c c° reajug (1) train ther young to a b tsilf.
te in France till the now
man of the Bourbon fomily, sinee which time it has becomo a governnisent object, and made a rapid adnace. The elementary schoola instructed 737,369 pupls in 1915; in 1828, this number was raised to pls 500,000 ; being onc-tuentielh of the population. It is calculated that one-third of the peoplo of France are unablo to read or write.
in England and Wales, in 1818, there was 4167 eninved schools, 14,282 unendowed schools, and 5162 Sunday-selhools, educuting in all 644,000 ehildren, or on-sixtce th of the population. Of 11,000 parishes, 3500 , or nearly a third, lind no school whatover. Since then, the number of both schools and scholars ' is leen greatly increased. In 1833, the following retr as wore made to parlisment:-

$$
\begin{aligned}
& \text { daily sesuols, } \\
& \text {.89.005 } \\
& \text { Tonal. } \\
& \overline{1,365,952} \\
& \text { A:tenting swalay-achols s............. } \\
& \text { be an exagye rated alatement). } \\
& \text {. .1.515,900 }
\end{aligned}
$$

Probatily from a tenth to an eighth of the people of England and Wales ure now receiving school instruction.
The registration of marriages, by which the parties nre required to sign their names on being united, has supplied within the hast fow years a means of testing the proportion of those ignorant of writing throughout England and Wales. Of the 121,083 couples married during the yes: enting June 30, 1839, there were 40,587 men, and 58,959 women, who, heing unable to write their aames, were obligel to sign hy marks. The proportion of mea unalle to write was thus 33 , of women 19 per cont; meliom, 4t. The number unalle to write was least in the motropulis, and, next to it. in the northern counties; anl greatsst in Lancashire, Bedfordsaire, Monmouthstire, and Wales. The trustworthincss of this tent was confirmed by the registration of the pnsung year, when amongs the 124.339 murried couples, 41.812 men, and 62,533 women, were found to sign with marks; and Wic propurtion in the various districts was also nearly the same. It is to be remarked, hat a large portion of the married couples riceorled in these years must have congisted of pursons who passed tiecir educational years in times when the menns of instruction in reading nud writing were murh less extendel than they now are. Ten years henee, the proportion of both men mul women altsting the marriage-register with "maika" will probably be much diminished.
Scothad, unlike England, possesses a national system of education, there being a legally eadoved seliool in esery parish, under the care of the elerge. Returns to partianent in 1831 gave the following view of education in Scotland:-

Parocheal,	Schools. . . 1147	$\begin{aligned} & \text { Pupila. } \\ & 6 \in, 24 \end{aligned}$
Prusate,.	...	154.17i0
	$50 \cdot 2$	22e2 43:1

The whele emoluments of the teachers of the parochial shools was $\mathfrak{C 5 5}, 3: 39$, thing at an average on income of 815, $11 \mathrm{a}, 914 \mathrm{~d}$, to euch. The aggregate sum was compoed of chatownents, $£ 2!, 642$; fers, $£ 20,117$; other em tuments, E 8979. 'Taking 68,293 as the mumber of pupis in the pirochial schools (it was, however, the Gru'est attembance), earh costs the pullic 15s. 7hd. per emman. In the seme year, the Sablbath Scliool Union

'Ple - ripurtion of children tauche out of the parochial estem wat nuexpectrilly great. It waw greallest in certhin counturs, as thllows:
-and there was un conny, everpt pepbles, where the parochal arols were the most sumetous. Oily one-
fifth of the teachers and onc-fourth of the schclars were under the purochial system. It is also to be remarked, that some of the schools returned as parochial, vere merely under the caro and patronage of parochial clergymell, by whom they had breen estathishel. The returna wero considered as not quite complete, and the number attending school in Scothand in 183.4 was compuled as being more probably $\mathbf{3 2 3 , 1 5 4}$, the proportions in the two dillerent classes of schools being nearly the same.
Notwithstanding tho political agitations and poverty which havo long depressed Ireland in many respects below the level of the sister kingdoms, it has certainly for many years leen above nt least Eingland with respect to the eletocntary instruction of its people. Tho ability to read und write is observahly much more diffused in Ireland than in England; and it is often remarked with surprise, of Irish peasunts of tho humblest appearance, that they possess an acquaintance with the classica and the elements of Geometry." Till 1N31, education in Ireland was chiefly left to private enterprise and the elferts of a frw religious societies: the government in that year established a Board for Naitonal Education, which has since been a channel for the apllication of a considerable amouat of public money to this purpose. Various enumernous give the children uttending public schools in Ireland for different periods, as follows :-

In 1835, a return to the Commissioners of the Education Board gave a computed total of children ntterding school in Ireland ot 633,946, the population bing at the same time conputed at 7,95., 800 ; so that the proportion under school instraction appeared to he alwout 1 for every 12.5 inhabitunts. Since then, the national system has mado great nulvances. The following talle, drawn up from the eight reports of the Conmissioners, shows the progrean down to December 31, 1841 :-

Repoits to the Cominissioncers of Viduestion.	$\left\|\begin{array}{c} \text { Number of sehools } \\ \text { in actual ofee } \\ \text { ration. } \end{array}\right\|$	Nimmer of Ctisdren on the Rolt.
No. 1. (184),	7-9	107.042
- $2(1-15), \ldots .$.		1.65.521
- 3. (1 i 36),	$11>1$	1233.707
- 4. (1-ibi),	1:3\%1	166.029
-5. (1 3) , + . . .	$1: 17$	1610.648
* 0. (1-39),	171	19 mb .97 t
. 7 7. (1-11),	$19 \% 3$	289510
. $8 .(141), \ldots$.	2317	$\because 1.1549$

Number of schoots in actunl operation on the 3151 Deremer, $1>$

Total number of national selionds on the 342 Itsi Dereanter. Ind...................
 xpettel atentunee umn the 3×2 buiding seh:ools

> Total mumber of ehiddren in netunl athendence, nul expeeted attendance.......

stmmary of the motrecong.			
Schools in opiera		Schonls lluiding	
	? 11.700	Ulster. 103	10.160
	75,75:	Manster. 113	13.917
	Nosin		1).2.54
Commatight, 20 ,	24.119	Cot.7nugh, mi	13.5:99
43:37	2-1. 49	$3 \div 2$	49,356

[^40]To which are to be added eight vested schools not injuded in the alove, making the total number of schools 31 the 31st Dccember, 1841, 2727.

The Irish national system at first met with great oppoation, in conserquence of religious party-spirit; but this obstads is gradually giving way. The Preshyterian Church in Ireland has 300 schools in connection with the nationsl hoard, and the Irish Society is stated to be about to form a similsr connection with respeet to about 60 schoc' : under its charge. About 20 Poor-Taw Sehools have recently come under the superintendence of the board. It may here be mentioned, that at a great proportion of the elementary schools in Ireland, one penny a week is puid by each pupil for cducation.

Education is actively conducted in America, and it is calculated that ahout a sixtla of the poputation are at echool. In most of the states schools are suplorted by a tax on property, and the superintendence is intrusted to committees of the rate-payers. In those of New England, the schools are as one to every two hundred of the inhabitants-a proportion, perhaps, exceeded in no part of the world.

In surveying the statistics of eduration, we must keep in mind a fuw consilerations by which the character and effects of education are liable to be much affected. Education is not certin to proluce good effeets, but only those which its directore contemptate and seek to hring about. It is a means of conferring certain accomplishments upon the mind, and modifying it to certain ends, inelinations, and halits of thinking and feeling. Its efficacy, even where well directed, is liable to be grently modified by the character of the people sinongst whon it is operating: for instance, a Euroferan people of good atock, and amongst whom all refining social agencies have long leen at work, will show better results with a certain upparatus of sehool instruction, than a people newly emerged from harbarism. Abowe all, our expectations of moral re:ults must le governed by the degree in which the morat deparment of education is attended to. Intellectual education gives only aptitude and inturmation; it reguires a training of the monai being to produce good conduct. We shall say more on this subject under the head " 'rime."

It has been seen that Prussia stands at the head of all the countries adverted to, with respect to the proportion of the popistation attending school. It is exedled in this nespect by the 1 nited States of America, where, it is computed, there is a school for every 200 souls. Enyland and Scotland have probully a ninth of their inhabitants at schoal-a considetably smaller proportion. Inat reckenings of shools and sidolars are only a means of aserrtaining a purtion of colurational influences. It conmot be doubted that, hosides all the berefite, such as they are, of school learaing, the youth of this country rajoy an Inmense blamage in the influence which the free Institutions, the hamanity, and the tone of mind resulting from an wheretahbised covitization, must excreise upon them. In a national system of education, the central government should possess but a slight, if any influence, and the bosuces of loth arranging not supporting should be left as murh as possible in the hands of the people thomselves. We beg to submit the follawang general views on this suhjert:

Any thing done ty gowernment, as the organ of anciety, to promute umveral elucation, must he based upon the actual state of educational efforts in the country. 'The people mus everywhere ise cmonazed, insted. stimulated, to talue a partion of the turk of colucation into therr own hand.. With commantien, un with individuals, education canot the a olverided matter, in which the inatructor aroums the pupil; there aust be cerction on the part of the latter almo. 'The mistake of nome: governments, expacially the l'russian, han heen to hold the :reople as entively pamive: they have ditled rather than
educated. Almost cvery thing that has veen hitnerte done in Great Britain to promote education has been the result of private enterprise: even the majority of endowed
schools are the fruits of private entlusinsm in the schools are the fruits of private entlusinsm in the cause of education. A paper by Mr. Long, in the secons volume of the Journal of the Certral Society of Edures tion, extimates the annual income of endownents in England, for purposea of education, at $£ 1,500,000$; and shows the want of a proper power, invested in some individual or body, for the purpose of assisting, directing and correcting all who are intrusted with the manage ment of such charity property. Educational amateun may be deficient in skill, but funds left to support schoold require somo one to adminiater them, and to adapt the mode of dispensing them to the perpetually altering cir cumstances of society. A table of the mechanies' institutions and other popular associntions in Eugland for promoting and diffusing science and literature, has bera published in the Statistical Journal. It is defective, but it shows approximatively what has leen done by prisge effert for the bicher education of the prople. The totad number of societics is stated to be 112; of 91 of these the annual income has been ascertaincd, and it amouns to $\mathrm{L} 36,793,14 \mathrm{~s}$. This is a slender provision for the intellectual wants of the adults of England, and what is^{\prime} more, its influence is limited, in a great measure, to thow who, strictly speaking, do not belong to the workize classes. In the Glasgow Mechanics' Institution, a majority of the attendants on the lectures are shopmen, individuals employed in warehouses, and even some students-the middle classes. Of the operatives $\boldsymbol{P}_{10}^{\prime}$ attend, the mechanirs form a considerable propartios The Mrehanies' Institution of Liverpool, nate of the most flourishing institutiens of the empire, is, both in is elementary schools and its lectures for adults, frequented and supported almost, if not quite, exclusively by the middle classes. The facts mentioned seem to justify these conclusions:- That national ednation require the operation of government only as public trustre, and of the peophe thenselves, trying to procure the kind of oducation their wants prompt them to sock; that the duty of government is to insist that education sha! le universal, and to provide such supwrintendence and means of general control as are neevesary for enforing this precept; that the duty of the people, in their respect ive districts, is to carry into eflect the general direction of government. The insiness of government is to exe that the necessary funds are proviled, the neressary establishments for training teachere and pupils kept up, and the attendance of children enforced. The hasines of the prople is to appoint teacheis, sad to take preat. tions for their diseharging ther duties conscientiousty, The details of tuition are best left to the teachars, care buing taken that they nee presinusly edacated for thea profession. Sucress in teaching deyends, in a atrat measure, "pon the mithusiam and winity of the teache; and the most successful method is that which is les adiphed to the prealiar character of the teacher. Sna teach more efic antly by one method, others by anotee. The pullice judire most correctly of a teacher's ability by lowling at resulta-nt the hind of acholars he tums eat Some such organization of the whole country for edac. tional purposes, as is indiented in these general term would, ly giving a controlling power to gownmath, ensure cyatal diflision of cducation; ly leaving to the peoph the mpnintmat of temelers, and ly leas ng, tiz certain extent. 10 mividuals the choice of what shotit tre tatugh, would kerop aline the interest which men the
 the choiece of well-tramed teachers, would give seope 'st
 Cation by thane who wert practually aequanted with it I'he importance of leaning a certain latitme of chaice so
indisiduals (parents, or the more adranced young mad
women), is ap
Mechanica' In
dases have b phy) and cher nuves who others engagec Inose who uI Human heings enil of learning formstion be al necessary to \mathbf{u} task) by the c ne lismed to aubjet thorous and are more It ag good not ane to learn accupations: it what it may,

Crime is th natural or origi moral atmesph temptations pls causes are mor comes a very c tics to the in further difficult of the offences proportion kno cording to the to the detectio affo ded some subject.
The number ω take their tri bar of years pos believed, in cons lows. For the an average; in an increase of 4 सаร 18,657 . now sumamaries rears, There which are tried anple, in 1837, upon regular to tions.
By far the g azainst property hefore 1839 (22 thetts and fraul threse being a azainst property volsed, as murd thate were airo offinces gave 2 , Fas incluled co
The countics fowest, are those wall, and Dirhy are Middlesex, 1
There are so nhous caluses, not apprar to b oi female to ma lis as 84 to $73 \mathrm{j}^{\mathrm{x}}$ females.

In the inguiri the are of offet benn found, as giving the cen life -
as oeen hitnerts tion has beent the jority of cndowed asm in tha calus b, in the secon 1 ociety of Educa endownents in £1,500,000; and invested in some asisting, directing vith the manage rational amsteun to support schools , and to adapt the nally altering cir mechanice' instis in England for teraturc, has beea It is defertive, but en done by prisa: seople. The total 2 ; of 91 of these d, and it amouns provision for the gland, and what is t measure, to thow g to the worki.g ics' Institution, a ures are shopmen, , and even some he operatives \boldsymbol{r}_{10} lerable propurtion ryool, one of the pire, is, both in is r adults, frequented exclosively by the d seem io justify elucation require public trustee, and rocure the kind of to serek; that tha educution shall le prerintendence and wsary for onforeng he, in their respect general directions vermment is to se iled, the neresanty (III) pupils kept ug, ed. The businens ind to take preaz. es conscientiouss! the teachars, care eductard for theet pends, in a great ility of the teacher: that which is les he teacher, Sine , others by anotee. tencher's ability by tolars he tums cita country for eluts. hese general terman er to govermmit, by learing to the and ly le.unge to dice of what show st which men the Fing the thethom: x ould give scope's ed in the ant of cult arepuainted with it latitule of chuice o anced young mad
women), is apparent from th.s experience of the Glasgow Mechanics' Institution. 'The most uniformly auecessful dancs hava been those of mechanics (or natural philosophy) and chemiatry; and a large proportion of the openuves who attended them have been engincers, and others engnged in processes which are best conducted by tnose who understand something of their principles. Human leings are most easily seduced to undergo the thil of learning (for though to pick up fragmerts of information be agrceable, to devote the continuous attention necessary to understand a subject thoroughly is at first a task) by the conviction that what thoy are learning can ne limed to profitable account. Having learned one natiot thoroughly, they acquire a liking for the effort, and are more easily induced to extend their researchos. It is good not to aticmpt too much at first. Get every one to learn something that may henelit them in their acupations: none who have learned this thoroughly, be it what it may, will stop there.

Crime.

Crime is the result of various causes_as, first, the natursl or original disposition of the culprit ; aecond, the moral atmosphere in which he has lived; and, third, the temptations placed leforo him. Generally, nll of these causes are more or less concerned in crime, so that it becomes a very complex question. When we apply statistics to the investigation of crime, we are met by the further difficulty, that only a certain portion of the whole of the offences committed are known to us, and that the proportion known nust vary in different countries aecording to the efficiency of the legal apparatus npplied w the detection of crime. Statistics has, nevertheless, affoded some curious and valuable knowledge on the surjeet.
The number of persons annually committed or tuiled ω take their trial in England and Wales, has for a numher of years past heen on the increase; but chiefly, it is belicsed. in consequence of the incrensed efficiency of the bus. For the five years before 1839 , it was 22,174 on an overage; in 1840 , it was 27,187 . The last sum wus an increase of 45 per cent. on the number for 1830, which was 18,657 . It is important to olserve, that these are nut summaries of the whole offences of their respective years, There is, besides, a larger number of offences, which are tried summarily lefore magistrates. For exanple, in 1837 , in addition to 17,090 persons convicted uphn regular trial, there were 59,374 summary convictions.
By far the greater proportion of English crimes are against property. Taking the average of the five years belore 1839 (22,174). it appears that 84.5 per cent. were thefts and frauds, the small proportion of 7 per cent. of thrse being accompanied by violence. Of olfences arainst property and person, in which malice was involed, ns murder, maiming, arson, and injuries to cattle, there were about 6 per cent. A elass called sexual offaces gave 2 , nud offences against the state. in which ass included coining, $6 \frac{5}{3}$ per cent.
The countics in which committals are year after year fewes, are those of Waler, the four northern ones, Cornwall, and Dirly; those in which they are most numerous, are Middlesex, Essex, and Warviek.
There are some crimes which uomen are not, from mous cause's, liable to commit; but the gentler does not apprar to be the honester sex; for the proportion of fenale to male committals for theft without violence, is as 84 to 73 per cent., a difference of one-sixth against fraales.
In the inquiries which have hern male with regard to the age of offenders, wonderfinlly uniform results have been lound, as will aply ar froun the following table, giving the centesimal proportion at each peried of life:-

1538.	1837.	1838.	Grealest Lifference
Under 12 years . . $1 \cdot 84$	152	- 1.53	- 032
From 121016 . . . 977 t	0.72	0.92	- 0.21
$\cdots 17 \cdots 21$ - . 20.03	24.23	- 20.13	- 020
$\cdots 22 . .30$ - . - - $31 \cdot 42$	3174	- $31 \cdot 4$	- 0.50
$\cdots 31 \cdots 40 \cdots 3$	- 14.515	- 14.75	- 0.32
	${ }^{6 \cdot 65}$	- $7 \cdot 02$	$=0.37$
Above $00 . . .1140$	${ }_{1}^{3} 1.24$	- 31.68	
Nol ascertained - : 203	1.79	1.73	0.30
Totat . . . $100 \cdot 0$	1000	1000	

The large proportion at the periods of adolescence and youth must be considered as strictly owing to a greater tendency to crime for the proportions of hubian beinge at those ages to the whole population are different, the persons from 16 to 20 being as 10 yer cent., and those from 20 to 30 as 15 per cent., of the entire nation. It is calculated that amongst the persons living in England and Wales, from 17 to 21 years of age, there is one committal for 232; while from 41 to 50 there is one for 941 ; and ahove 60 one for 3391 individuals. We thus see how great an influence the strong and unregulated feelings of youth excreise in inducing criminality.

The connection of education or non-education, and of poverty, with crime, lus excited much attention during the last few years. It is abunduntly clear that some school learning may exist where the moral department of education has been neglected, or where the temptations to error may be very great. The education of mere reading and writing may only supply the means of committin.g a crime-as forgery-insteal of tending to restrain from it. Yet it certainly does appear that criminals are generally uneducated in all ordinary respects. Mr. Rawson, Sccretary of the Statistical Society of Loondon, has found that, of every 100 offendets in England and Wales, 35.4 per cent. could neither rad nor write; 54.2 per cent. could read and write imperfertly; 10 could read and write well; and uly +1 , or less than a half per cent. had received a gond cducation. In Scotland, out of 8907 offenders, 20.2 per cent. could neither real nor write; 59.2 could read nod write imperfectly; 18.2 per centcould read and write well; and $2 \cdot 4$ had received a su perior, lucation.

Mr. Be utley, nuthor of a History and Directory for Worcestershire, has shown the relation of non-education to crimo in a difirent way. It appears from his tahles, that the six English counties having the greatest proportion of schools are Cumberland, Durham, Middlesex, Northumberland, Ruthand, and Westmoreland, in which the schools are one for every 727 inhatitants, and the criminal cffenders one for every 1156 inhalitants. The six counties that have the smaflest proportion of schools are Chester, Derset, Hereford, Lancaster, Northampton, and Somerset, in which the selaools are one for every 1540 inhabitanis, and the crimi 1 al oflenders one for every $5: 8$; that is, out of a pople having twice the number of schools, there is not in proportion half so many criminals as where the sehoo's are defi ient. A comparison of the number of schouls in the six most criminel, and the six lenst criminal, of the English counties, leads to the same conclusion. In Essex, Gloucester, Hertford, -'hester, Somerset, and Warwick, we find one criminal offender in the lista of government for every 499 inhabitants, and only one school for every tong inhebitants; on the other hand, in Cornwall, Cumberlam, Derby, Durham, Northumberland, and Westmoreland, we have only one crimin:! to every 1309 inhatitants, while we lave one school for svery 839 inhabitants. In other words, there aro six counties in Enghand which have nearly three times the amount of cringe found in sax other counties; and the counties in which tlie least crime is found have onf-fourth more schools than the counties in which crime abounds.
'The dillerent distribution of elucational aequirementa among the convicts of England and Scotland is atriking
and requires for clucidntion anme inquiry into the propertional diffision of knowledge among the whole community in each country. Among the nfluent classes it ia tuuch the same, but among the working-classes it is materially different. According to the factory returns, there exists a more widely diffused instruction in Scotland than in England: in the former country, out of 29.486 operatives, 95.8 per cent. could read, and 53 per cent. cound write; while in the tatter, out of 50,497 operatives, only 86 per cent. could read, and 43 per cent. could write. We have seen sbove, that, in proportion as ellucation was diffused through the whole community, the proportion of criminals to the total of the population was diminished; and this holds gookl in Seotland. But the mere extension of intellectual ediention to individuals of a clase in which improved eeononical circumstances and self-education in moral respects has not induced that moral rense shown to be elicited in civilized communities, does not raise these individuals to the same elevation in the moral scale that the same education would do under more favourable circumstances. To produce the foll benefit of education, it is the dass, not merely the individuct, that must be educated. An educated indivilual, belonging to an uneducated class, either continues to associate coutentedly with his original companions, and retains their comparatively low standard of morality, combined with the increased power lent him hy educatiot, -he has as feeble a testraint upon his conduct as they have, with much more power to do harm-or he attempts to associate with those ahove him in circunstiones, though enly equal in acquirements, and, failing in the attempt, sinks down to his former social level, soured against society, and prepared for any act of outrage. The petty vilferers are, for the most part. supplied in the destitute and unefurated class; the more daring and dangerous offenders ly those who havo moved in a more affluent sphere, and fallen from it by their imprudence or vices. The lesson read by the different degreea of
education possessed by Scotch and English criminalm, tho recessity of educating classes as well as individuala
When wo come to apcak of cducating elaseses, we am hrougit to the consideration of their economical condition. In Bristol, an inquiry into the educational statistics of the eity showed that, out of nearly 10,000 adults, taken in discriminately among the working-classen, 22.5 per con could neither read nor write; 25.6 could rend only; 81.9 could read or write. In a wretched part of the parieb of Marylebone in London, it was found that 25 per cemt could neither read nor write, and 75 per eent. could either read, or read and write; and in two other portiona of the saune parish, inhahited prineipally by Irial labourers and their fanilies, 49 per cent. could neither read nor write and only 41 per cent. could rend, or crad and write Among 1022 able-lodied and tempornly disabled pana pers above the age of 16 , the inrur ces of several union workhouses in Norfolk, Suffolk, an I Kent, whose attain. turnts were nacertained with precision, 46.5 pe eent could meither read nor write, 18 rend in:perfectly, ait read decently, 5.3 read in a superior manner; and of the same, 66.4 could not write, 15.4 could write impoffectly 16.9 wite deerntly, and 1.3 write well. It thus appean, that poverty and wunt of education, as well as crime and want of clucation, go in company.

On the last point it is necessary to guard against mixconception. There may be a district poer in re sources and with respect to the style of living of the inhulitants, and yet crime may not abound in it. The department of Crecuse is one of the poorest in France yet it prenents the fexest crimes. M. (रuctelct dami the important distinction, that a set of people living steadily on small means, but knowing no lutter, and contented with what they have, are not pror, in the seluse in which a people are poor who, seeing wealth and luxury around them, and exposed to the severea sufferings from the occasional failure of employment wo thereby Jemoralized.

SOCLAL ECONOMICS OF THE INDUSTRIOUS ORDERS.

It in surely a deplorable feature in the condition of a farge portion of the working-classes in this country, that they have lithe or no provision made against the necessities which arise to themselves or their families in the event of sickness, a failure of employment, or death. With some this is not the case, lunt it is the case with many; and the result is, that these persons have neter more than a thin partition dividiug them from the realma of want and dependence. The effect which this is calculated to have, need not he largely insisted on, for want and dependence are universally allowed to bring many evils. What is there to be expected from the morat nature of one who is every now and then ohliged, perhajes, to ank for gratuitous meticire and medical attendanceto take hreal from a parish officer or the nanagera of a charitafle sulseription-to trust to the puty of neighbours whenever any thing like an exigeney stives in him funily -in mhort, is, for the supply of a great part of litin neets, estipethhary upen his fellow-creatures? These things are evidently apreeoneilablo with true manly dignity, with political independenere, and with an upright lwaring in any of the relations of life. The slestitution of such individuals is commiserated when it ariseg-every humane porson who is himself above want, feeta bound to contri-
hute to its rolief: the claim from suffering min to bim who suffiers in the smallest degree lesw, is irresistille. But while it is allowed that the need, when it doeservist, mus and ought to be relievel, all must likewise sue that, in the efliort to diminists one inmediate und chamant evil, another is introduced. The working man is morally uetrierated by ceasing to be independent. Better, cloarty, that tha portion of the community were to place themselves, b, efforts of their uwn, ahove all need for such degrading aid
" But then the working-classes realize such small gaing that they ean spare nothing for this purpone." 'This my be said; but it is at the best partislly truc. A great pot. tion of the working.elasses do mugt unquestionably, in ordinary tianex, reatize enough to enuble them th. plaie I little hy way of frovision for the liture. Since many. mest creditahly to themselves, make such a powision it may fairly the jresumed that others, hisvius the same wages, could do so ulso, if thry wire willmy. We my atill more comfilently presiame, that, when motue with compuratively small wagee are able to have, those ato are better off could save almo. Now, it often happent thant the labwurers of leant skill, and who are leat lite rally remunerated, contribute us largely to mavinge' banku their better paid brethron. Where ilus is the case, ans
the circumatan annot doubt th lisporal of thei tute the frugal to have ample don. On this outs notions pre we hear of an the higher-wag, jitte if any mor class, and perhin tura of works d not, as a cliss, children, so we the sum. In a Donder, it :1: by 108 male w weekly, and \mathcal{L} wàgca are 12ء., men whose wag and we believe seen to prove th in their power noral well-lwing filly that many in doubt that a far tube the proper
We do not p cuses of the une but we can remb perance and bad hin" for the whole must be an enor o. callons of sipir which twenty reied, we cam teen consumed probably expend of the relimions gow there is a ta lies; and the slut thuusand of the day night. In while there are the sale of liguor Renfrewshire, the this wsy than is eduration. 'The parish of Stevern 3681 , exceeds th slartling facts, tel partion of the e: than thrown ava compassiontaw al we cannot lut in the plain truth, our countrymen been of late yeat wards them, dise ous ientency.
to le both paying thern a greater so bry, portion of t 6) show them how

Wo propuse it matious arrangetn siand for the hen on theip mantaise

the greater ev

Oik of the tho

Precious to thi ach of the loum
the circumatances of tho men are otherwise equal, wo the cinnot doubt that the latter class make a lese economical disposal of their income. Clearly, they have only to imitute the frugal conduct of the small-wage class, in orler to have ample means for making the provisiona in quesuon. On thia subject, from various causes, many erroneans nations prevail. When practionl men sre consulted, we hear of an afflicting number of instances in which the higher-waged workmen are considered as securing little if any more comfort to their families, than the other clase, and perhaps not so much. We, ive heard mastors of works derlare that their men, at 258. n week, did not, as a chase, nuintuin their households, or educate their children, so well as those who had little more than half the sam. In a recent return from the Savings' Bank of Dundes, it aprears that, while there is $£ 1189$ deposited by 108 mate weavers, a class whoae wages nverage 8s. weekly, and $£ 425$ by 36 heckicrs, a class whose averago waiges are 12 s , there is only $\mathbf{L 6 3 7}$ from 56 mechanies, men whose wases range from 18 s . to 30 s . Such facta, mand we believe many of the like nature might he ndduced. seen to prove that the working-classes have much moro in their power for the promotion of their physical and moral well-heing than is generslly thonght. Admitting fally that miny are ground to the dast by poverty, we cannot doubt that a far larger proportion have all but the will to take the proper means for preserving their independence.
We do not profess here to inguire into the primary cases of the mendowed condition of the workinc-classes; but we can rablily see vaious immediate ones, as intemmerance and had management of resources. The tavern fir' of the whole operatise class in the United Kinglom must be an curmous one. Of alove thirty-one millions 0. callons of spirits prepured in one recent year, and for which twenty mitlins of pounds sterling would the received, we cannot assame less than two-thirds to have been consumed by the working-classes. These classes probably expend in this way three times the whole cost of the religions establishment of the country. In Glase gor there is a tavern or spirit-shop for every fourteen families; and the sheriff calculates that not fewer than thirty thousand of the inhahitants go to bed drunk every S_{n} ir. day night. In the parish of St. David's, in Dundee, while there ere but it bakers' shops, there are 100 for the sale of liguors. In the parish of Iochwinnoch, in Renfrewshire, three or four times mo.e money is spent in this way than is required for the sipport of religion and education. The value of ardent spirits consumed in the parish of Stevenston, in Ayrshire, with a population of 3681 , exceeds the lamed rental hy £3836. These are starting facts, telling, if they tell any thing, that a large pantion of the earnings of the working-classes is worse than thrown nway. Now, thourh it is well, ce tainly, to conpassionate and reliese the sulletings of all who need, we cannot but be equally sensible that it is proper to tell the plain truth, and say that for much of this sutfering our countrymen lave themsilves to hlame. There has been of late yoars a hollow kind of cajolery practisea towards them, disereditahle tor all parties, and of a dangerous iendency. We dismise this entirly, and conceive it to be both paying them a greater compliment and doing then a greater service, to tell them that the conduct of a lars, pertion of the' clase is in muny respects w rong, and whow them how it might he shaped some what hetter.
We propme llorefore, in the present rheet, to trent of Pations dransements or insititurims which have been derised for the benctit of the industrious orders, with a view in theis maint ining their inde'froulence, or avoiding some f the grater evils which hesert them.
Oic af the most conspicuously valuible is

the savinges hank.

Presiaus so the commencement of the presentecntury. each of the humbler chasses as were given to saving hai
no proper place of deposit for ther spare funds, which they were obliged, therefore, to keep in an unfructifying honrd in their own possession, exposed to the risk of loss, or had to consign to some neighhour, who, though thought safe, might turn out to be much the reverse. At the same time, in the want of a proper place for the deposit of apare money, those who might save, but did not, lecked one important requisite to their doing so. About 1805 , it occurred to some henevolent minda that an important trenefit would be conferred on these classes, if there were institutions of the character of hanks, but on a modest seale, in which the poor conld deposit the smallest sums they could, from time to time, spare, certain of being able to draw theo forth when they preased, with accumulated interest. Suvings' banks were accordingly established, first in England, and afterwards in secotand and Ireland, whence thry quickly spread to America and France. They were generally conlueted hy associations of lenevolent persone, who gave the security of their own credit for the accumulated sums, and leeld forth every temptation in the way of liberal interest, courtesy, and fromptitude in management, to induce the working-classes to re sort to them.

For some years, thes joint-stock but still private security was found to be sufficient for the prorpose; but, when it was understood that .nillions lad found their way into savines' lanks, it lecame apparent that something else was necessary in order to maintain the contidence which had at first heen felt. The government was therefore : $n-$ duced to trame a varicty of statutes for the hettor regula tion of savings' hanks, and one in particular ly which its own security was given lor the sati-keeping of the deposits. This was done under the guidance of the best intentions towards the industrious classes, who generatly are depositors in savings' hanks, and with as little interfercuce as possible with private and lecal management.* A substantial benetit was also conferred, in the fixing of a rate of interest rather above the undium of what could he expected in a country under the particular cireumstances of the United Singlom with regatd to capital.

By the ahow-mertioned acts, it is directed that all the funds deposited in Poational Security Savings' Banks must be paid into the Tank of England on account of government, and that the money so invested shall hear interest at the rate of $£ 3$, 4 (ts, $0 \frac{1}{2} \mathrm{~d}$. per cent. per unnum, whatever may be the flachutions in the value of the pertic fruds during the trm of antestment. Depositors are thus afforded the best of all securities, namely, that ot the whole british matim; while the National Sisings' Banks are emabled, nfter paying all charges upon their establishments, to giee a considerably hicher rate of interest than the orelinory banks, or even the grewter part of private savings' banks, allow on drposits. 'The highest interest which the law allows the National Sccurity Savinga' Banke to pay, is sdd, per cent. prer dicm, or $\dot{L} 3,8 \mathrm{~s} .5 \nmid \mathrm{~d}$. per cent. ier annum; the diflerence betwen this and the rate allowed on the money invested by them in government securitios lwing reserved as a fum for the payment of the otliciats of the banks and other necessary expenses The rate of interest which is generatly paid by these banks, is $3 \frac{1}{3}$ per cent, or $23,6 s$, Ad. per cent. per annum; and whatever is left, after defraying all charges, is allowed is accamulate as a surplus fund.

* Varions rules ure appointed by the legislatire for the formation and matusemen of savinge' hianks. An usmociation of pervols d-s roas os timmay one in uny pluee the ing:ned first
 to trume a se" of rulex for the mamagempert, and to athinat the fe to the approval of a larrister apponted iy puvernme ht, with-
 of the adyunteges wheh the leglshuture hat thongh proper to

Deposits of from one shilling to thirty pounds may be recenved by these banks, but no indivilund deponitor is allowed to lodge more than thirty pounds in one year, or than $£ 150$ in whole. Charitable and trovident institutiona may lolge fiunds to the amount of $£ 100$ in a single year, or $£ 301$ in all; and friondly socicties are permitted Lo deposit the whole of their funds, whatever may bo their amonnt. Compound intereat is given on the sums ookged, the interest leing added to the princijal at the end of each year in some loanks, and the end of each half. vear in others, and interest afterwards allowed on the whole. Any depositor may receive, on demand, the money lodged by him, if it do not amount to a considerable sum; and even in that case it will be returned on a few days', or at most two or threo weeks', notice. Practically, in Edinburgh at least, payment is always mate on demand.

The wisest and most effectual provisions are made for insaring the proper management of the alfairs of these benks. Each must have a certain number of trusiters and managers, whose services are performed gratuitotisly, besidea a treasurer, actuary, cashiel, clerks, \&c.; all of whom must give security, by bond, to st ch amount as the directors of the establishment may 'adge sulficient. No portion of the funls invested in government recurity can be withdrawn, except on the authority of an orler signe: by several of the truatees and managers. Detalled replorts of the transactions of each bank must le perivdically forwarded to the Commissioners for the Redaction of the National Debt, and also exhibited to the depmaina at the hank office. It may lee of use to add, Lha the money depositid in consigned daily to the sali custoxly of a bank, such as the Bank of Scotland, nul is iberue regularly trambiertad to the Jank of Bughand. Any doubt, therefore, as to the security which is offered, would tre quite absurd. When the perfect tatety of the s:st .. . contrasted with the insecure practice of phacing bunes is tuterest in the hands of private persons, as is unhappity too inten doner, no one in his sesnes woulil firs a moment hersitate which mude of disposal he should prefer.

Under both the ohd ant new systems, savings' bankhave been highly anecrsiful in their olject.and the money deposited in thein reaches an amount which no one who regarded the habits of the working-classes thinty-fiver years ago could have anticipatod. In 18411 , the total sum was a trife within reventeru millions. In 1×37. it was stated that the accumulations in the bank at Fixeter alone, reached $£ 200,100$. At the kame tine Manchestier and liverpanal respectively shawed $\mathbf{x}=80,060$ and $\pm 345,000$. In November, 1811, ather existing live and a half years, tho Edinburgh latak hal acrmanated $£=221,816$: at the name period, ather a comewhat bretire career, that of Giasgon anowed a balance of theposits amotating to f173.20.4. In 183t, when the total accumblations in England (inclusive of $\left.W W_{F s}\right)$ amountet to $\boldsymbol{E}!3,582,10 \%$, the number of deposituon was 434,815 , a very considerable proportion, it munt te owned, of the whole population. 'The average defera of rach pervon Wan at that time $\mathbf{L} 31,4 \mathrm{~s}$ In Scotland, the average theposits are less, perhaps in conenquence of the comparatively recent introduction of the national security system. At November, 1841, the the positors in Fidhlough were 18,961, giving an aversge of ten guineas to each; those in Glasigow were at the same time 13,234 , giving to each an average of twelve porunds. We lind ten quineas the average deposit at the Carlube Savings' Bank, a rural estallishment.

The kund f fereone teho deposit is an important point; and here, we frar, some dixappointment must lay frli. We have already men that the average amount of depovits at Dundere is litte larger amongst workmen of high han amongst workmen of low wages. In that town, out of 464 male iveavere in tho parish of st. David's, with wages averdeging os, 108 are deporiton, or 1 in $4 \frac{1}{4}$; of

181 flax-drrssers, with wages averaging 128 , 36 are do positors, or 1 in 5 ; of 200 mechanics, with 20 s . of averaga wages. 56 are depositors, or 1 in 3 :. ' 1 he very amall degrec in which we thus see comparatively good wagen favouring the saving principle, is surprising and lamenta. lhe. Another fact of a gencral character is not leas strik. ing. In many places, of the depositors in savings' bank, a majority are females. Female servants, in atmost all places, form a conspicuous section. In the Dundee Sar. ings' Ilnank, there were, a few ycars ngo, 237 accounts in the names of female servants (aggreyate deposits, £2235), while (and this is equally remarkable), out of the numse, rous class of factory female workers, only one had an account. It has also been stated, that, "a few years ago, in Perth, it was found, from ita savings' lank, that the wonen of the 'f'air City' were laying up for the men, not the men for the women; that the young mechanies had forgot there were such things as want, or sickness, or age." In the Eidinhurgh Savings" Hank, of the total number of accounts existing at November, 1811, the ins. jority wero by females, and generally by filwales iootated in society, and depending on their own exertions, as appears from the statements given below, in which the ninomnt of bahuses and the average amount of each person's bulance are also shown.

In Cilangos, the inalo depositors are a majonty; but here the lactory operativis are comparationly a small
action, numberi Geers are 6774, ins employed domeatics who are 3862 , and th With regard to resoling fuct is in Savings Bunk last opened by to agyregate quadred opened

1 is of still g thiaks of depositi beneit he is to tle ren usually given 64. 8d. per cent.
hich
Debtallow, leing
expenses, dic. I nasy realily recke moing an a Wition and of every your nullings, arenl licts 15s. 6it. It is ri areqpect of inte Ful, 1. - -iv
$12 \mathrm{R} ., 36$ are de 20 s . of averago 'he very amal y good wages g and lamenta s not less strik. suringg' banks, , in almost alb e Dundee Sav: 37 accounts in posits, $£ 2235$) It of the nume y one had an few ycars ago, bank, that the p for the men ung mechanica 11, or sickness, nk, of the tota 1811, the raschales isorated xertions, as apin which tse nt of each per.
ection, nombering only 1282, while mechanics and arti- show a total of no less than $£ 11,92110 \mathrm{~s} .4 \mathrm{~d}$. We here Geus are 6774, notwithstanding the vast number of per- see, in a atriking manner, hov it d fund once begun sns amployed in factories in that city, The female by a person in humble circumbin....., wenda to monnt up domentics who deposit in the Glasgow Savinga' Bank in the course of a few years. gee 3862 , and their aggregate accumulations are ${ }^{\prime} 22,378$. It msy be of service to many persons in the humbler With regard to this portion of the community, an inte- walke of life, who are not much acquainted with businers, moting fuct is mentioned in the report of tho Ediuburgh to sue an example of a asvings' bank account: the folsatings' Bunk for 1841. The five hundred aceonnts lowing is one presumed to be formed by a man named last opened by female servants in that hatk, present John Smith, whose signature accordingly appears in the the aggregate sum of $\mathrm{E} 2313, \mathrm{~N}_{\mathrm{s}} .7 \mathrm{~d} . ;$ hat tho first. five last colunm, as acknowledging tho auma which be hat oundred ejened by the samo claas, four or tive years ago, \mid withdrawn:-

SAVINGS' BANK in Account with
No.

Date.	Deposited and Wilhdrawn				Manager's Signalure.
$\begin{aligned} & 1336 . \\ & \text { Jaly } 40, \\ & \text { Angasi } 12, \end{aligned} .$	Recejved Ex Sbillings. Heceived Nin. Shall inse, biterest to November 20, -	1 0 0 0 0	s. 1 0 0 0	d. 0 0 $1 t$ it	Gearge Rose. J. T. Becher.
November 23, *	Paid Five Shillings and 'Three Ma!f̧ence,	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	15 5	1!	John Smilh.
Deceinber 20, - -	Received Thirly-five Shillings, -	0	15 15	0 0	George Rose.
June $10,{ }^{1837}$. -	Received Three Pommes. Interest to November: 0 ,	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	0 2	0 14	J. 'T. Becher.
Decernber t, *	Paid Fivo Pounds, Seven Shilings, had $\}$ Twopence llalfueany,	5	7	21 21	John Smilh.

1 is of still greater importance that a person who hinks of depositing should have a distinct idera of the bene the is to derive in tho way of intereat. The interest unually given in ssuinas' banks is at the rate of $f: 1$, 64. 8d. per cent.; tho diflerenco between this and L'3, 2

Interbest Table, at f3, 0s. ed. ier Cemt.

Principal.	I'er Month.	$\begin{aligned} & \text { per } \\ & \text { rear. } \end{aligned}$	Prineipal.	ler Month.	$\begin{aligned} & \text { Per } \\ & \text { Year. } \end{aligned}$
${ }_{0}^{f} 150$	$\begin{array}{lll} \text { i } & s & d \\ 0 & 0 & 0 \end{array}$	$\left.\begin{array}{lll} \mathbf{f} & s & d \\ 0 & 0 & A \end{array} \right\rvert\,$	$\left.\begin{array}{ccc} f & 5 & d \\ 20 & 5 & 0 \end{array} \right\rvert\,$	$\begin{array}{lll} \pm & s & 1 t \\ 0 & 1 & 1 j \end{array}$	
1100	${ }_{0} 001$	1610	2510	015	$0_{17} 11$
53	$\begin{array}{llll}0 & 0 & \text { is }\end{array}$	$\begin{array}{lll}0 & 1 & 1 \\ 0\end{array}$	3015	$\begin{array}{lllll}0 & 1 & 4\end{array}$	1
00	$\begin{array}{lll}11 & 0 \\ 0\end{array}$	029	3310	0) 20	0
150	$\begin{array}{lll}0 & 0 & 2 \\ 7\end{array}$	26	415		${ }^{3}$
410	0 11 3	0 3 11	4 n 10		1110
55	$\begin{array}{lll}1 & 0 & 31\end{array}$	$\begin{array}{llll}0 & 3 & 3 \\ 10\end{array}$	5115	112114	11.18
10	1) [1 4	10	570	0 0:	1140
815	$\begin{array}{llll}0 & 1 & 41 \\ 0 & 1 & 1\end{array}$	46	$\begin{array}{llll}32 & 5 & 0\end{array}$	${ }_{0}^{0} 315$	$\begin{array}{lll}2 & 1 & 1\end{array}$
110	15	10	6710	0	$2{ }^{2} 51$
5	$11) 3$	0 5 b	72150	04 at	3
0	0	${ }^{6} 101$	740	$0+4$	2120
9150	110 咕	a	835	017	$\because 1.50$
100	00 fit	0 O	- 410	0.111	?19 11
1010	117	170	0315	058	
115	0 it	0 7	000	0.56	$3{ }^{3} 11$
128	${ }^{1}$	0 \& 0	11100	0506	368
12150	0 0	0 - 6	14.5	0.504	300
1310	$1{ }^{1} \mathrm{H}$	$1)^{0}$	[00) 10	$0{ }^{6}$	31110
145	0 0 9	000	11.415	$0{ }^{1} 311$	¢ 10
150	00 in	010	1/4) (1)	118	40
1515	08105	016 \#	125	0611	$+$
15100	0 0) 1	0110	1:0 10	073	17
17	0115	011	13315	7 lif	110
1.	$\begin{array}{ll}11 & 1\end{array}$	(1) 12	1.110	11710	1110
15150	11101	012	146	0.311	1170
1910	11	$101: 3$	1511	0 -	0)

ISs. OXd. which the Commissioners of the National Doballow, heins, as already mentionod, reserved to pay oxpenses, dc. 'This being the interest nilowed, any one nay readily reckon how his money is to fructify, hy suppring an aldition of our-hirtirth beiug rode lo it at the and of every year. For instance, if ho deposits tiftem nuthes, and lets it lis for a year, he is then emitited to 15s. but. It is right that he shombld be fully aware that, a rexpect of interest, he is better oll than tire perphe of fol. 1.--M
the middle and upper ranks who deposit in comanon banks; for not only does he $\mathrm{g}^{\text {nt }}$ a higher per centage than is generally given by the banks, but he has the advantage of cimpumid in'erest; that is to say, the interest due to him at the end of a year is silently, and without any trouble on his part, added to and considered as a part of the principal, on which interest is to be given in future. 'Thus, a common bank acculnt and a savinga' bunk accomit, for the same sum, if lelt unattended to for a few years, would in the end come to a very different anowis. In order that no one may be at a loss to ealculate the interest he is to receive on a savinga' bank deposit, wo present the preceding table, which showa simple intereat for a year on a variety of gums.

A prejulico exists in the minils of many working reople, and is perhaps affected by othera, against aavings banks, on the gromed that, when a man is known to aave, he is the more liable to have hia wages reduced by his master, or to want work when there is any thing like a general failure of employment. Surely, there can be litle foundation in faet for this notion. It is a general wish amougst masters that their working veople should save, and many endenvour to bring this about by instituting savings' banks, and acting as managers. It is felt by every maxter, that a workman who has asaved a litte, ia likely to be a much more steady and respertalle person than one who has not. Indeed, as it has been justly observed, a receipt from a savings' bank is one of the best certificates of character which a working man can show. Let it also be considered, that, with a little eapital in his poseession, a workman stauls in a much more indepuendent position with regard to his master than he otherwise could to. We cannot doubt that in these consilerations there is mush inore than a connterpmise to tho visionary fear of having wages redured, or emplayment withhede, in consequence of a bank deposit.

The following tahle was formed to show what a certain weekly comtri' ution paid into the Windsot and Eton saving: Bank wonld bumont to in a certain term of years, interost being at $£ 3$, so 5 . h . yer cent. It is m highly inutructive table, well worthy of leing carctuts studind brerv individual of the industrious ordera:-

It woold be difficult to over-pstimate the inportince of a litlle privite hoard to a working man. It not only proves a succour in the evil day, but it temds to imprase his whote morn nadure. Weath has been the whiget of many hitter remerks to both the met and th: \mid.nhosopher; but it is atter all a greater frimed to sirtue than to vice. Oten a very amall nomount of it. nequired by honest indastry, will supply a mokest pride that suppuste, if it is not in itself, moral rellicacy. Doing well in this small way suggests and leads to doing well in other ways. Tres aver may prove the stay of a declinina parent or ohber frimal: he can do a letter duty to his chiblem; he caz courrilute to philanthropic objerts which interest nut br ing out his finest ferlings. It may eren happen that. fion less to more, and with no sarrofice of peace of mind. he is emabled by saving to rise into a higher urable in society. One of the liest of the immediate efficts of aiving is, that, once fairly begun. it prowss a preservative from many extravagances and vaes. 'remptations may present themselvea; but the mind reverts to thar fondly regarded litte hourd in the maviugs' bauk, and they are eavily resisted. Hener, it is generatly observed that, on e a practice of saving has commenced, a great reverution takea place in the character. Irregulatitica and selli-indulgences disippear, and steadiness, sobriety, and retlection take their place.

These vicws ate, we feel assured, accordant with general experimence; hut it may nevertheless be well to guote one testimony from a practical guater in suppont of them. The following passigus are from a tract, published early in 1st2, respecting an auxitiary to the Govin Suvo ings' Hank, in Kerr and Compmy's Naldry:-
"Three years ago, nearly all the men in this work were semingly constitutionatly and hopelosely aftlicted with a spark in the throat, and spient a very large portion of their wages on ardent apirits to quench it. As migha save leen expected under the circumstanes, both their sersons and twellings presented standing proofs of their "ninons hatits; and their employer was frequently an--urcal by their suspension of latour to gratify their vitiated taste, at times when the herried exceution of ordera sembered hims most dependent upon them. Howtver, by the casercise of a little kindly fecting towarda them, insters began to assume a more pheasing aspect. Dy being regarded and spoten to in their solner intervals as rati shal and accountalle beings, and having exhithited b) them the advantagea they were likely to derise from comecting thenselven with the Total Anstinence society and the savings' Hank, one nfiter amother was cured of the lone existing madady, and not only toris ap a new puation amoug his fellow-workers, as at ouce an advotate and an evidence of conperance and tronomy, but wan ena! ded to proside himself and family with heusebuh comtorts wiwh they had jreviously been strangera.

With the view of cherishing such newly-formed habla their employer ufforded them the weekly opportunity of hashanding their sparo carninss, by forming amonz them und conducting a little nerncy of the National Nerurity siavinge' lhank. 'The following summary of ita transactions will show both the succest of his laknumg and the enrourngement which the propriators and mane agers of other publice works are bikely to erijoy in makiang simitar elforty:-The milery consiste of thee shopes of hearths, rach areommedating four workmen. Among, the twelve persons cmployed in these sheps, and timy jnior members of one of their timilies, there are nixe oprin accourts; the mumber of deponis has been 301,
 The number of epayments has heer 31 , mal the amour repaid $\mathrm{c} 36,11 \mathrm{~s}$. Jd., so that the haliane due at the 20 th
 Ho, or about SL, this, wach-a smatl average, eretainy, in comparison with that of some other teades, , hut presening a juasinu contrist to the situation in which matters stond at the emmunement of the neeny, wharn searcely one of the workmon could, on a Widnestlay or Phurasg, muster a sicjeve of his presiou* weck es carnings. ODe othervaton must yet twe made; they are now no only
 in the estimation of their empleyers."

the friendly suciety.

Sasinge, instrad ol fring storecl up in a bank, to be there comanaly at commana, may the digpoed by 1 working man in a well-constitnted fricully society, as 3 urans of charing for himedf certain contingent and fiwd tonelits. Frienuly societios peurally partrace sere ral objeris, as the securing of a wrekly sum during sich. ness, and a prinion after a certain age. They are baxd on the princilde at mutuat insurame ; that is to and members make payments, cither at once or in small pe riolical sums, and thus constitute a fund, ont of which such as happen to fall sick or to survive a certain age are supplind, the uncertainty nttached to all indiridad concerns buing lont in the certuinty which cutenda catro tations involving great numbers. In some respecte, and for somu cases, joining a friendly snciety may be bethe than beemmine a dejowitor in a savings" bank. Siechea may come hefore the savings art constderable; or, if ton sideruble, they may be metted awny by a longeontinad wickness ; hut, uffer the first weekly payment is masde to a trimally sericty, the member is socure of suctour, how ever loins his illuens may continue, besildes, perhap other m!cantages. It is possible, on the other hand, that a ditliculy may be experienced, in certain cireunatancen in keeping up the weekly or other paynents required to secure the benefits of friendly socinties. Here, hemere, it may te said, thero is no more than the dasual uncen
niny atuached t α a ightly con a m lighty
conalidealile den consertainties of It is to the re tions, that mam) piuriples, or rat bap ina, therefo disippointed, the sultitect. 'Phis a no proper cal but such in no 10 now attainatle. bet of dise ure fri tandon, and by 0 mivepund large per to state wil wathishanent of ench as aro of a. One grent mis dite in to assume wim, whatever h younger members wne to the fixu there iv a rising out all the years fount that, betwe an wernese to be tween thirty and of a wetk. At f swn, two week reley, from t.king male out the pro fill wimg twhe, th the propartion of iilerrala of age:-

Agrs.

20 to 310 (3i) .. (1)

The difference in arvence. 'Ithey 0^{\prime} yerrss is atten Whe a righ: frien rimumstare. Tt is riestly making who should have paying all uloug.
Another great rifties, is in maki old fiemally socienti cinequinte of w qement, or precul hase contracted th yearly turn. The in a well-constitut as they are called, often the keeprer o. will be formed in anta for admissi which goes into scheme, ly way of foll, namely, a fur deposit fund, and is perhaps a weet necessery, together of money to the
bere is ? prymer
iva Shiltiag
per weok.
$1=0$
$4 \geq 0$

$6510 \frac{7}{3}$

| 70 | 10 |
| :--- | :--- | :--- |

$\begin{array}{ll}1113 & 6 \\ 110 & 0\end{array}$
$\begin{array}{ll}119 & 0 \\ 1: 4 & 5\end{array}$
10.42 if
ewly-formed habite maly opporturity of y firmiug among y of the National diug sumnary of is ress of his thavors gprivitora and mash to mijuy :a naking at three shops on workulen. Among "se shomes, and tim iliss, there are nine slis has been 35 l , Petet, 661 , lis. ind 31 , and the amount me due st the 20, a cooluhs, is $£ 25,41$ wrage, ertainly, in ades, hut presenting which mattexs stoud whin searcely one extay or Thuursap, k's carnings. One Yare now wo ondy stunt much hicher

Ty.

PIII a bank, wh le lwe dis limed by umily socinty, as (iin contirgent and rally yuirace sere sum during side.
Thry are baved re ; that is 60 sap uer or in small pe fued, out of which vise a cetain age d t:1 all indiridal histh hitends calensome respects, and -icty may le bethem s trank. Sic:mes rulerable; or, if cons. is a long contirued rayment is trade to e of she our, bow , henider, perthas ie other hand, that tain erreunstancen ynuents required io

Here, however, in the asual ancem
winy outached to all things. Assuredly, the arrangement da ighly constituted friendly society furnishes a very consideralie degree of security ogainst some of the uncertainties of life.
It is to the regretted, of this excellent class of institutiona, that many of them are fuunded upon erroneous principes, or rather upon no principles at nll; and it ofton hapl ne, therefore, that those who truat to them are disppointed, the funda fulling aloort before all claima are sulusted. This was at one time not to be wondered int, as ho proper caleulations for frieully societies existed; but sach is mo longer the case, for sound calculations a's nuw unainille. Nevertheless, there is still n vast rambre of das'ure friendly societies, proceeding alder, ather at tandia, aud by which the industrious classes are indueed 10 mispend large sums. Wo trust thut what wn "use pan to stato will bo of somo service in prem-. is the citbisidnacnt of round nocicties, and putting an ca ${ }^{\prime}$ to sulth as are of a diflierent kind.
One great mistako in the forma on of friendly sociefirs, is to assume that cach member should pay an equiu! rum, whaterer his ago may bo. 'This is unjust; for the rounger nenthers have a less chance of becoming hurdeneme to the fauls than the madle-aged; mul, inderen, bire is a riving seale of probability of sidkness throughant all the years of a man's life. 'The Highand Society frond that, between twenty and thirty, men are liable at an werace to he half' a week indisposed per ammum. Between thirty and forty, the averuge was alout two-thirds of a week. At forty-six, it became a fill week; it tittyswh, two weeks; ut severty, weren week th The sioceres, fom taking unsmitable grou : for the ir calculations, male out the probibabilities, is si-kness too low. In the foh wiog tadde, three set it alculations are given, as to the froportion of sick out a one landred at particular imervila of age:-

Am / s.	Mighland		
20 to :30,	1.1	194	19
(1)...an)	197		411
530. , (i) ${ }^{\text {a }}$,	(16) 6	+12	15!

The differene in the three columns is here of littlo con-- Wpone. They at least agree in reporsenting incerease of yirrs us attendod by incroased liubtity to sorkness. Xiw, a riph friendly society is bonnd to adsert to this ciremstance. To admit ali ages at an equal mayment, is clearly making the younger members pay for the edher, wha should have entered at an earlier age, and icen paying all aloug.
Another great error in the constitution of hemefit socertie, is in making them for a year onty. Many of the old fiendly socertien having ended in disappointment, in onvequence of want of right caleulations, or had managenent, or peculation of the fimbls, the working-classes bave contracted tho notion that there is more suffety in a yearly term. The immediate payments are also less than in s well-ennstituted friendly society. Yearly societies, as they are called, usually originate with some individunl, oten the kequer of a tavern, who alvertises that a society nill be formed in his house on a particular day. Appliants for admission pay ono shilling as entry-money, which goes into the porket of the originator of the scheme, tyy way of rent. 'The oljeets are generally threefoll, mandy, a fund for sickness and furveral expenses, a deposit fund, and a loan bank. Towards the lirst, there is perhaps a werkly payment of two-pence, or more if meessary, together with the interest arsising from the loan of money to the meaters. Towards the diposit fund, Were is p payment ranging generally from sixpence to $^{\text {p }}$
two ahillings, the recumulationa being received beck when tho soriety, ses. Tho money deposited in ento rloyed in mating hans to such of the menibers as denire nuch accommodatio , within the amount of their meveral entite deposits for the year, one penny per poand per month being clurge! by way of interest. The surpluas, if any, of the twoprucess and interest, ofter siek und funeral money books, und other necessarios are puid, ia divided anoes st those members who may be clear of the books at the close of the society. Some such susieties are formed by a spontaneous associstion of persons, who prefer renting a room for their meetings, and thus escape the temptations of a tuvern; but none of them avoid the errors of an equality of payments for all agen, und the yearly dissolution. The youth of fifteen, who is not tiable to half a weck's sickness por aun'm, pays as much as the man of lity-meven, who 's liahle to two weeks. Should sirkness lecfall any one towards the close of the year, he is left, when the society disso'ves, quite unprovided for, theruse the cannot enter another society in a state of sicknesw. Consilered as a deposit for savings, the yoarly society is strikingly inferior to the savings' lamk, in as lat as the depositor cumnot take out monej without phying an exorbitant rate of interest. Finally these sencictiee are genurally under tho care of olsacure
 their hanls, ind wh, it many instances beeome hankrupt or alscond hefore the finsl reckoning. Yearly socirties are, indeed, in all points of view, a most oljectionuble class a' inatitutions, to which working prople would nor er res. but for their ignorance and unwariness, and the temptatimes held out to allure them.
A well-rous' uted friendly society involves the principhe of paymer's approprinte to particular ages, as no other phan ean be emisidered equitable. It stands forth terfore the working-elusses as a permanent institution, like the lifi-insuranee abeinties of the midde and upper claseres, und anceessarily requires its members to consider the connection they torm with it as an enduring ons, beranse its grand nim is expressly to make provision at (HIn perixh of life for contingencies which are to arise at another-youth, in short, to endow old oge By a yearly sercinty, a inan is ic it at hist no better than he was st tirst, as far as that meswly is concerned; but the proper friendly seciety contemphatis his enjoying a comfortable and indeprukent ond ure from the results of this own well hestowed carnings.

It is also essential to the character of a proper bencfit socipty, that indivitual. he not admitted indiseriminately. To tike in a ${ }^{4} \quad n$ in had bealth or of broken constitution, is unjust io n e rest who aro heathy, lecause he is obvinusly more chaty to be a specdy burden to the funds. Here, as in lifforssus lice societies, it is necessary to admit members on'", upon a showing that they are of sound constitution una in the enjoyment of gool health. And it may le well to grant no benefits until after the nember has been a year in the society. By these muans, men are inducell to enter when they are halo and well, instead of ${ }^{\text {pesst}}$ poning the strp until they have a pressing need fir assistance, w'ien their endeavour to get inte a benefit society is little es than a froud.

Government has thought proper to interfere with its aid in the formation st friendly societies, though not compulsory. An association of persons forning one, has the means of ascert:ining the soundnoes of its primeiples, and also entitles itself to deposit funds ir aavings' banks, with the government seeurity and libera. interest, by sulmilting the propased i" is to the harristo s appointed to certity them (at present Junn 'Tutu Prott, Essq.), to whom a fee of a guinea is payable. Under the kanction of government, tables have ben firmod by a highly competent person, John Finlaison, Esi!., Ac "ary of the National Deht, for the guidance of friendly societies; and these
are casily to be had，no that it ia quite inexcuaalile to proceed upon pandom ant unauthentiented data．Before quoting any of thene tubles，we whall endeavour to ex－ plain how they are fermed．

We have an idea of a luenefit nocicty in ita simplent form，If we uuppone a hundral men，of exartly 33 yeam of age，to aswofinte，and make nuch a payment at firnt an may loe aure to alford eachs man that mhall fall sick during the ensuing year one alilling a day during the tefin of his sicknema．＇Taking（for the suke of illuatra－ tion）the Scottinh milea，we find that，momug nuch a tady of man，there will be ahout 66 werks of illness in th：－＂ourco of the year．Thin，mu＇ts＇＇hy 7 ，gives the wisle aum required， E 23 ，2s．，wo a hitle mume thans 4a．6d．ench，which，hias＇＇j amall um for interent，will acconliagly be the entiy－money of each man．A anciety of indiviluala of ditionnt agen，each paying tha anin which would in like manner be found profer to his age， would the quite ne mound in priaciphe as one on the above simplo scheme．It in only a step furthert to equalize each man＇s annual paymenta over the whole period during which he undertakes to be a paying menlier．
We ahall suppose that the superannuation allowance
or pennion is contemphated an commencing at to year if age．It is necessary to consult tablea of motality，in order to ascertuln how namy mon be expected to meat that nge，and loww hang ewh of thene han a chance of surviving it．Having already truated of talles of mon
 whall not nay much on this subject．The table prewater by the flighlund Nociety，as proper for frieutly societien is a mean of the Northampton，Carlisle，and Eweding tablen，and may be regarded as tolerally affe for bota life amarance and amsuity schemes．It alowe that，of hoos persons of 21 yuars of age，no fower than 528 reach the age of 00 ， 330 that of 70 ，and 127 that of 80 ；thus mat． ing it evident how absurd it if fir a working man on hind that he has un extermoly amul it ins of groving old，wa to need a provissen．
Another point for conslderati in is the rate at which the funds of the society may to improvel．In mod cosen，we believe，it ia lest for aull socictiea to reat con teat with takiug ulvantage of the privilege which they eajoy by act of parliament，of depositing their money in the fuade or the savingen banks，in which came they oh tanufur it（considering the half－y carly payment of interen） about £3，17s．6d．yearly．

$\begin{aligned} & \text { y } \\ & \text { 膏 } \\ & \text { ot } \\ & 0 \\ & 0 \end{aligned}$	Toral value in T＂4i money of the three llenefis．	Inuivalent Somehly Contr：bution eras：ing at the＇ Age of 65.		Total value in really money at the thrat H．Itefig．	Hajivalent Nonthly Contr bution ceasing at the Age of 185.		Total value in realy money of the thres Benehis．	Painivalent Slomlay Contribution cranang al the Ige of 63.
15	$\begin{array}{ccc} \pm & 1 . & \\ 8 & 0 & 11\end{array}$	$\begin{array}{lll}\text { ¢ } & \text { d．} & d . \\ 0 & 0 & 4\end{array}$	35	$\begin{array}{ccc}f & A & \\ 13 & 7 & \\ 21\end{array}$	$\begin{array}{llll}\text { ¢ } & \text { 1．} & \text { d．} \\ 0 & 1 & 51\end{array}$	5.5	$\begin{array}{ccc}\text { ¢ } & \text { s．} \\ \text { dit } \\ \text { dit }\end{array}$	8 5. 0 5
16	811 H	0 0 0	3	1311 1i	0 O 10	36	21107	
17	91413	0 t1 㨁	37	1113	017	67	2×19	
14	517 0k	0 （1） 0	！ 12	$14 * 11$	0 1 il	54	24126	
19	90101	0004	39	1417 if	0 1 81	69	313 檍	
81	（1） 40	$0 \quad 010$	40	$1.5 \quad 5 \quad 4$	0110	80	9？ 1610	
81	965	00104	41	1514 d	0111	01	3110 日f	
121	91471	00110	12	111313	031118	$1{ }^{2}$	（ill 7 11	
93	917	0 0）it	4.1	11.111	1121	12：1	is ${ }^{\text {a }}$ ，	
24	1019	0 0 11］	41	17301	02313	61	4115 if	
						6.5	411801	
25	10 （ 8	0 0 111	45	1713 － 1	0285	（h）	411701	
29	1012 12	010	14	185 mb	027	67	4079	
27	101011%	01 ul	47	1717 \％	$0{ }^{2} 213$	414	3 yc 148	
$2 \cdot$	1124	（1） 11	14	191118	02111	60	37100	
49	11711	0 1 11	49	20436	0321			
30	11139	18 1	50	2010 6t	0 3 51	71 71	$\begin{array}{llll}361 & 3 & 64 \\ 31 & 17 & 14\end{array}$	
31	11101	i 11	5 t	31 is 11：	（1） 11	78	211111	
32	1200	1431	62	$2{ }^{2} 13$－	041	71	is 5 it	
33	3412 11	16， 31	51	2313	147	71	301515	
34	1219108	1） 14	54	$211: 111$	031	75	41 13 －	

Proceeding upon thene or nearly similar ground of ealculation．Mr．Finlaison formed the thlle whieh is given above，to ahow in one num（and also in an equivalent monthly contribution，to cease at the age of 65），the value of an allowance of four shillings per werk during vichness，from and after each age until 65，combined with an allowance of pension of 2 s ．per weck，eommencing phyment at the nge of 65 ；and further combined with a payment of tour pounds whenever the death of the pur－ rhaser ahall happen．

We would here call particular attention to a point of view in which savings＇banka and friendly societies might be regardel as favourable to each other，It will te observed that，for the sum of about thirtern pounds at the age of thirty－four，a man can insure himelf against absolute want under all futare contingentien except deficient employment．Now，at that ase，a pru－ dent and careful man，who has biggun early to frequent the savings＇bank，may withont dilhoulty have saved ，histeess poonds．Let him draw his thirtern pounds

[^41]from the snvings＇bank，and place it with the frienty mociety，and he is all lout an indeproment man for life Ihis in a course highly worthy of the attention of tomestic an rvants，who in the lattor yrars of life ares oftern expros．l to want．＊
 Pival insitutions．ant therif teapective mierits are keraly cat

 death itself．than cumbection w tha soumi fre coflo mocety．The

 not e＂t ha monry back neram．unt dees ban pat lior it ary visbe

 it have lose in liard monery．and is thus ellabled to sumainat \because ent which would ohtrew ae overwhelm h．m．

 a ack at aut eurly period．or is be live to cold age，ha＇igrem

The acheme of Rlamerated by th prored character， We allude Priesally Socicty This noclety，alt y：mbere of and is inchanica＇Insl fictwine connec woll persons，me It has three wil Sidncas Fund，l） mante Fund． the member durin 7 in 6 d ，a weak fio all future period aconting to the a and thereafter hid we enjoymens！of of which entitlea ras，comactuching entry，One shar oum of LIO payyl mase，as in the oth d 60 or 65.
The rated are c withess table，iuct asemay lo comusile beulthy men ate poanded of then ort ing the tate of iute and the only charg zoney tos cacls fisu munter of curh fui The life assutath foom the olfer two We talle boing the which preserite the humbler classes，we fenales are admin a crown of entry－m

The sickness anc nected，and the tabl
lover：for his anvinga h．ma lut a elouft time＂ inodage ather hav ennaty whel he can deed to thas！which tie trmelf to the berastit who，hwug courribuly fona，hald never reach milte on f＇riendly
leing at 10 yeer - of moitality, in xpected to math han a chasee ot of talliles of mor. ve8, Na. 16), wo te talle preainted frienilly societies, anfe for both life. ows that, of loos an 828 reach the of 80 ; thus trak. King man to thin growing old, Nas
he rate at which oruved. In moas sieties to rest con ilego whish they of their money in lch came they obyyment of interent)
with the friendy Went man for lif the attoution of cars of life ares

sometimes appray 4

 raty are kerniy car r atvantages Thenanall fund stored on *mall fund stored on, murticular purpose al ["sicve bund tanieg uch as sickmess as r.efollv socerty. The
risk of loas from fire W'In wever thety is long uganat ! ! ! - sublecel ho maef ta -ay te subjeced ba Nidons net hal. dons Ket lor it any vinitie ity agallitt futh and What the coult ngetey - Ine exemp:en fon h.m.
abitfir in a som,man -s atlucks bim dire at dias bewre le is pas い'ution bu'iflid! ld age, he ingrea

The acheme of a right friendly nociety may be further mplotrated by the actual arrangemente of one of approved pharacter, which happena to be well known to poved Wa allude the Edinhurgh Nehool of Arta' prieally Socicty, eatallishled alout thirteet. yeare ago. This society, although originating with certnin of the an- blera of and fricals to the School of Arta (a apeeiea is moshanien' institution), and taking ita mame, is not dicrwise eonnected with that hatitntion, hut ha open woll persons, male and femme, resilling in Edinburgh. It has three melparate funds or sehemea-namely, a Sidhess F'uad, leferrol . Amuri'y Fund, and a L.ife Iso munce Fuad. Onc share of the micknewa fuad entites the mesuber during sickness to like a week for 52 weeks, 7m bid a week for other 52 weeks, and 5 s a a week fir all fature primel of sickness until the age of 61 or 8.5 , neontiag to the ago of supperamantion fixed at entry ; and therratter his contrilutions cenes, and he enters to tie enjoynent of the Defirred Amuity Fiomb, we mhare of which entites the member to an annuily of $\mathrm{C8}$ a vary, comuencing at the age of 60 or 65 , as tixed at his entry, One wharo of the Life Assurane Fund is a rum of f 10 paynille at the member's death. In thin ase, as in the others, the contributiona ccase at the age af 60 or 65 .
'The rates are eal-ulated from the Highland Society's. withness tuble, inureaved liy 50 per cent., which in this asecmay be comidered as solficient (seeing that only sonnd bedtity men are almitted), und a mortality talle compounded of tha Yorthampton, Carlisle, and Swedish, oxsumang the rate of intereat at ifer cent, arrumulated yearly; gult the only flarges for mauagement aro 2 s, Gul, entrymoney to each thand, and 1\%. a year payable ly euch anmer of curch fund.
The life assuratue funs of this socinty stands apart toan he other two, and may the entered independently. Lis atile being the only one wo are arequanted with, whidh presuta the alvantages of life inssurnuce to the bumblue clases, we extract it. It is to the cbaservel that fenales are almissible at one-sixth less charges. Half a cown of entry-money is charged.

Life Assurance Fund.
Contributinns cease at 60

Age.	Singla Payment.	Athlata! Payment.	$\begin{aligned} & \text { Fryt } \\ & \text { Month. } \end{aligned}$	Other Dontis.
	4 b. di.	8.	3. ${ }^{1} 1$.	$\begin{array}{lll}3 . & \text { at } \\ \text { (i) }\end{array}$
19	$21 \sim 10$	31	$1) 7$	$\begin{array}{ll}11 & 3 \\ 0\end{array}$
45	317	311	$1{ }^{1} 2$	$0 \quad 3$
w	316 nid	4 if	0 l0f	04
35	3173	5 51	0111	05
01	44 it	6 -	13	110
45	41301	8 b	15	08
50	$5 \% 5$	12 5f	15	10

Contributions cense nu 0.5 .

Age.	shile fryment.	Anmual Payment.	$\begin{aligned} & \text { first } \\ & \text { Monh. } \end{aligned}$	Other Montha.
	$\begin{array}{ccc}f & 1 & d \\ y_{1} & 14 & 10\end{array}$	a. ${ }_{3}$ d.	$\begin{array}{ll}4 & d . \\ 0 & 0\end{array}$	\% 0 d.
${ }^{19}$	$3{ }_{3} 7$	3 \%	$1{ }_{1} 10$	0 0
3.	310 it	44	0 NH	04
35	317 3	5 1f	110	115
211	11 it	616	11	00
4	4118 ll	771	127	07
50	525	111	1 N	00

The sickness and nomuity funds are essentially connected, and the tabley for them are subjuined. It is to be
beter: for his anvinge, with their necumbtutiona, with support

 deed to tlat which tie woold have oltangecl, if lie hatd entulted

 Fone had ne wer reachat an uge tio require i.."-R purt of Con-
remarked, that two, three, or four sharea inay be taken in all of thene fundn. Towards the anneity fund femalea pay one-fourth adiditional, in conaideration of their lives being so much better than thome of men.

Sicknees Fund

Conirithutiona ma flenefin cenama atol.

ARe.	$\underset{\substack{\text { Nongle } \\ \text { Pnjmant. }}}{ }$	$\begin{gathered} \text { Anmuи } \\ \mathbf{P a y} \text {. } \end{gathered}$		Oher Months.
\% 10	111: 120	$\begin{array}{llll}5 & 11 \\ 0 & 11 \\ 0 & 12 \\ 9 & 98\end{array}$		
${ }_{115}^{30}$	11 110	014	1 04 1 8	1 1 1 1
40				18
13	11178104	$\mathrm{C}_{1}{ }^{1}$		110
50	1018.4	16 ${ }^{1}$	${ }_{80}^{21}$	1

Contributionm and Herofia ceana al (t5.

Age.			Firal Mnath.	Milier Monthat.
11120333035411454550	$\mathrm{c}_{5}{ }^{\text {s }}$, 1			
	1119	"12944		
	183 is	$\begin{gathered} 1314 \\ 14 \end{gathered}$		
		1	${ }_{1}{ }_{1} 7$	
	[ii	[11 ${ }^{5}$	${ }_{2}^{210}$	$\frac{9}{4}$
Fund.				

Age.	$\begin{gathered} \text { Ningle } \\ \text { frayine } . \end{gathered}$	$\begin{gathered} \text { Anmai, } \\ \text { fй mem. } \end{gathered}$	Firal Month	Other Months.
	${ }_{7} 8$			
45	IIIII	${ }_{11}^{112488}$	$1{ }_{1}^{1}$	
3	178	1178	110	18
311		${ }_{1}^{1} 181$	${ }_{3}^{2}{ }_{3}^{17}$	${ }^{2} 10$
45	29178	2163	411	
511	:3117 71	41811	811	

Conuributionn cease al 85 .

Age.	Simgle Pry ment.	$\begin{aligned} & \text { Annual } \\ & \text { Puy minnl. } \end{aligned}$	Firal Noilth.	Oher Montlia.
19	4 s. d		${ }_{1}{ }^{\text {d }}$ d	8 d 0 4
2.5	519111	(1) 70	07	0
:13	$71: 114$	080	13	08
: 5	$11 / 11$	0182	1 :	
40	$1210: 1$	0148	2 3b	
4.3	17 0114	17104	316	23
50	22149	2311	40	

The following is an example of the paymenta required for one share in all the three funds; namely-

Puymenta to ccare al 60.

Paymenta to ecase at 65.

Age.	Annan! Payment.	Monibly rayment.
171	11078	020 l
35	1175	0314

So that a person of the age of 25 , for an entry-money of 7s. Bel., amd the payment of 2s. 2d. a month until the age of 65 -or $\mathcal{L}, 5 \div 9 \mathrm{~d}$. a year-may securo an allow-

Photographic
Sciences
Corporation
ance of 10s. a weak during aiekness for 52 weeks; 7s. cd. a waek for other 52 weeks; and 5 s , a week during the whole remaining period of aickness, until the age of 65 , an annuity of $£ 8$ a year during life after 65, and a aum of $£ 10$ at dcath.

Or, for 48. 4d. a month, or £2, 11s. 6d. a year, double of these allowances.

At an examination of the society's transactions and funds in Decomber, 1840, it was found that, after twelve years of business, when the deaths of unfrec members, or persons who died in the first year of membership, were deducted, the mortality was within that nllowed for the tables; and that all the three funds were in a good condition, each ahowing a surplus over what is necessary to make good the claims to which it was liable, when the value of the future contributions was taken into account against the value of the pronised benefits.

For those who find occasion to go deeper into the subject of friendly societies, with a view to founding such inetitutions, we would recominend a careful perusal of the work which Mr. Charles Ansell prepared for the Bociety for the Diffusion of Useful Knowledge, and which was published by that society in 1835. Much benefit might also be derived from Mr. Willian Fraser's pajers on Friendly Societies, published in Professor Jameson's Philosophical Journal in 1827.

THE LOAN SOCIETY.

The modern history of Scatland has proved that advances of money to persons of the trading elass, made by the banks under prudent cautions with respect to security and the personal character of the borrowers, have a beneficial efiect, supplying materials on which industry may vork, and at once enabling many individuals to thrive, and giving a powerful impulse to the country at lorge. The vell-cultivnted face of our northern region beara powerful testimony to this fact. The institution called a Loan Socicty conteinplates the mame benefits to be conferred on an humbler portion of the trading class than those who resort to banks. By making small advances to such persons, it enables them to make little ventures in business which they could not otherwise have attempted, and often sends them forward upon a enreer which lends to their permanent advancement in life. The purchase of a cow or horee, of farm or meehanical implements, the discharge of rent, and the fitting out of a child for service or appreaticeship, are among the chief objects for which much loans are desired in the humbler walks of life. One might at first sight dread the effects of such anticipations of income; but, practically, the loan system, when rightly conducted, works well, and is productive of much good. "A loan fund," says a late writer, " ia asvings' hank reversed, and even leads to the eavinga' bank, if well inanaged. For instance, I have before ne now the case of a man who, though he has a family, is able to put by at least one shilling weekly. I might have urged him for ever to do so, hut it would have been to no purpose. He came to me to borrow 308. fram the loan find to buy corn to fatten his pig; he paid back this regularly at the rate of one shilling a week; and at the end of thirty weeks I anid to him, ' Now, you have been owing me money, and have felt no inconvenience in paying it beck; why should you not begin to make me ove you ?' He had nothing to say to this, and is now a regular depesitor in the Savings' Bank through my hands."*

Loan societies are not institutions of yesterday; but, until a recent period, there were none upon an equitable or philantluropic footing. Government, sensible of

[^42]the erroneous principles on which thay were genenaliy conducted, obtained an act in 1835 for their better regh lation. By this statute certain benefits were held out to aucis loan societies as should be formed upon prin ciplea approved of by a revising larrister, and enrolled in conformity with the provisions of the act for benef aocietien. The principal benefits offered were exemp tion from stamp-duty, and certnin powers for recovery of loans. Fnrolled loan societies were forbidden by this act to make loans of ahove fifteen pounds, or to
make in any instance a second loan until the first shal make in any instance a second loan until the first should be paid off. A scheme of rules for a lian sociery conformable to law, is presented in the pamphlet quoted
below." below.*

It aeems here necessary to state, in the most explicit terms, that loan societies formed by interested indiv. duals are entitled to no confidence, being almost unires sally usurious and oppressive in their modes of dealing and a source of grent misery to the poor. Thers and about two hundred loan socicties in London, and almost without exception they are of the samo character as pawnhroking establishments. \dagger On this suljeet we quote the following passages from a vnluable conmunication which appeared in the Times newspaper:-"They gene rally originate with a knot of small tradesmen, who, having a surplus over the demands of their immediate business, find in them a profitable employment of their money. A capital of $£ 500$ has been known to start such a society-the paid-up capital eventuolly to be $£ 2000$ in shares of $£ 5$ each. It is very rare that the whole of the capital is at onec paid down. Their rales in the outset describe the name and the constitution of the socicty; then follow the terms on which the ohase holders have taken their shares, and the manner in which they are to reccive a return for embarking money, which is the allowance of 4 per cent. interest per sir num on the amount of sulsecription, while the balance of profit afterwards aceruing is to be declared as a divi dend. There are separate rules which apply to the bor rowers from the society, which are called the 'borrowns' rules.' 'The general place of business is a public house; some few, hut very few, are carricd on in offices hind for the purpose. The horrower has, in the first instance, to call on the secretary, director, or treasurer, all of whon are allowed to sell (at a profit) what are termed 'application papers,' and purchasce one (they are cithe 2 d . or 3d. cach), fill in the amount of the loan he an quires, and leave it with the name of one or two sure ties, according to the amount, for the inspection of the directors. He culls again, and has to pay Is. for hises curity being inquired into, which goes inta the pocketof the director whose turn it happens to be to look aflet the securitics, the emolument of this office always going in rotation. He calls again, and is told whether or nd his security is sufficient; if not, he gives another security and another shilling; if it is, he is told to rall ons certain evening when the loans are made, and he wille attended to. Should he give half a dozen secunties, and none prove acceptable, he pays his six shilling-fot nothing is returned. When the cvening arrives, heit called in his turn before the secretary, treasurer, and two directors, who form the authorized court for the rondust of the business. He is nsked what amount he wishest borrow. Perhaps it is $\mathrm{E5}$ for six months; the first thing is to deduct 5 per cent. from the amount of the lan, Is. for the book with the 'horrowers' ruies,' in whict will he made the entries of his weekly payments (for the loan is repaid in this manner), and the first weckis stalment, and then in addition ld. in part payment of the

[^43]를 boch of whi beor in com Should he mitten to h for this lett the secretar \&s, at the e . tee magistra - disinclina and have co to the socie That these no doubt, bu mense profil that one of to declare or I5 per cent., I8 per cent.' A proper lanthropic p f who wish to bourhood wit the prospect o only for the tend theit a guard agains only where, that a goorl io such circt good, as it prudence an km of banki tended with t
As far as o fund system land. Privat etiea exist th proportion to tensive utility establishnent commissioner wcieties form statute, there rcieties thro principles, an good. In tho salary and ot claritable pu ascieties wer borrowers, an in three yeary
Mr. S.C. liahed by him of the way in stituted, and quently cond locality in wl woch an instit ple in the dist are inclined t taking debent receive intere per cent. Or ary secretary for the gover! it is imperatiy rision that no fy derive any the limit to w in expenses n surer shall be wonable amou
Theso rules a
they were genenilly or their better rege refits wers held ous formed upon pria rister, and enrolle f the act for benef offered were exemp powers for recover were fortidden ifteen pounds, or to until tho first should for a lian societ the pamphlet quoted
in tha most explicil by interested indiribeing almost univer ir modes of dealing re poor. There an London, and elmost e same character as this subject we quate rable comunnication nper:-"They gene aall trudesmen, who, s of their immediste employment of their ieen known to start tal eventually to be is very rare that the I down. Their rule d the constitution of ; on which the ohare and the manner is for embarking mone?, cent. interest per snon, while the bslanoo be declared as a diri hich apply to the bor called the 'borrower' ess is a public house d on in offices hired .s, in the first instance, , or treasurer, all of ofit) what are termed one (they are cithe nt of the loan be re c of one or two sure the inspection of the s to pay 1s. for hiss goes into the pocketo ns to be to Jook afle is office always going is told whether or ad to gives another sect he is told to call om o made, and he wille alf a dozen securities a his six shilling-for evening arrives, be iu ary, treasurer, and tro d court for the rondert at amount he wishes to months; the first thing e amount of the hatin owers' rules,' in white plry paymenta (for bo and the first weck's in in part payment of it 1 Elons. for his Majerty
Iundred Loan Socielan!
wat of the offier and Id. towards the aecretary's salary, both of which expenses he is ohliged by the 'rules' to bent in common with the rest of the borrowers, weekly. Should ho fail to keep up his weekly inatalmenta, he ia rritten to by the aecretary calling upon him to pay, and for this letter he is charged 3d., a fee for the henefit of the secretary. If he does not pay due regard to this, he bn, at the expiration of three weeks, aummoned before the magistrates of the district, who, hewever, have shown disinclination to enforce the payment of the extras, and have confined their dcciaions merely to the aum due to the society after the deduction of the legal interest. That these societies occasionally austain losses there is oodoubt, but they are trivial in compariaon to the immense profits they make, as will be seen from the fact that one of them, upon a capital of $£ 2000$, was known to declare on the first half-year's busineas a dividend of 15 per cent., and on the sccond half-year a dividend of 18 per cent."
A proper loan society is a modest asaocintion of philanthropic persons, connected with some limited district, who wish to aid the meritorious poor of their neighboarhood with small advances of money, with or without the prospect of a small interest for their outhy. Anxious ouly for the good of their humble neighbours, they extend their nid on terms strietly equitable; while they guard against abuses of another kind, by making loans only where, from personal knowledge, they are aasured that a gool use wiil be made of the money. It is only ia such circumatances that a foan society will do any good, as it is only under certain circumstances as to prudence and careful management that the Scotch systom of banking, which lonn socicties resemble, is atcended with the contemplated resulta.
As far as our information enablea ua to judge, the lonn fund system is nowhere on a better footing than in Ireland. Private, irresponsible, and usurious, loan societien exist there, as elsewhere, but apparently in less proportion to those of a beneficial character. The extensive utility of loan funds in Ireland is owing to the estahlishment, by an act in 1836, of a central board of commissioners, with power to inspeet the books of all wcieties fommed under the act. In consequence of this statute, there aro now from two to three hundred lom fund rocieties throughout Ireland, conducted on philanthropic priaciples, and said to be producing a great amount of good. In these accieties, all profits, after paying clerk's salary and other unavoidable expenses, are applied to charitable purposes. It appears that in 1840,215 such acicties were circulating $£ 1,164.046$ among 463,750 borrowers, and that $£ 15,477$ of profit had been realized in three years.
Mr. S. C. Hall, in the agreeable work on Ireland published by him and his lady, gives the following account of the way in which one of these societies is usually constituted, and the manner in which the business is subsequently conducted:-"The resident gentry of some locality in which no loan society exists, perecive that ouch an institution is required, or would benefit the people in the district. A meeting is called, and as many as are inclined to become depositors state their intention of taking debentures from the new aociety, for which they receive interest, in some places five, and in others six per cent. One party is voted trensurer, another honoary secretary, and three or four others trustees. Rules for the government of the society are then drawn up, and it is imperative that ench set of rules alall eontain a prorision th:at no manager or trustee shall directly or indirectIy derive any profit from it. Anotler rule must ascertain the limit to which the managers shall be at liberty to go in expenses of management; and a third, that the tren. surer shall become hound with solvent sureties in a renconable amount for the faithfit! performance of his duties. These rules are then transmitted to the secretary in Dub-
lin Castle, for the approval of the board, who make any alteration in them they may deem expedient; and thim copy is then returned to the society, that three fair transeripts may be made and sent up for certification. On their reaching the secretary, he submits them to the certifying harrister, who, if they are in accordance with the acta, attaches his certification and signature that such is the case. One of these transcripts is then lodged in the office of the zecretary to the board, another with the clerk of the peace of the county in which the society is sitnated, and the third is transmitted to the treasurer of the society, as a vouchor that his society ia entitled to the privileges conferred by the act.

The society is then in legal existence, and commencen operntions. A person is appointed clerk, and to him the intending horrowers apply for application papers, which are according to tho form printed in the note,* and for each of which a penny or a halfpenny ia generally charged.

This being filled up, and returned by the applicent, his solvency and general character, with those of his aureties, are considered, by one or two of the trustees in council met for the purpose, and if approved, the full loan npplied for, or such portion of it as they may think proper to grant, is paid to the borrower, stopping, at the time the loan is issued, sixpence in tho pound by way of interest. The borrower then receives a card, on which the amount lent to him is entered, and the instalmenta he paya are marked oft. A duplicate of this, or a proper account of the transaction, is, of course, booked by the society. The borrower, and his suretics for him', bind themselves to repay the amount of the loan in twenty weeks, by instalments of one shilling in the pound per week. Thus, if a borrower applics for a loan of $£ 5$, which is approved, the auciety hands hin $£ 4$, $17 \mathrm{~s}, 6 \mathrm{~d}$., retaining two shillings and sixpence as interest Ile then pays five shillings for twenty weeks, and the £5 is paid off. Should the borrower run into default, he subjects hirsself, in moot societics, to a fine of one penny for the first week, and threepence for the second and every aucceeding week, on each pound lent him; and should he remain two weeks in defanlt, his sureties receive notice that they will be aued for the amount, together with the fines incurred; and unless the borrower comes in, this is immediately done. But in the very great inajority of cases no such steps are necessary, the poor borrowers being generally very punctual in the repaymento.

It has been ohjected by some, that the borrowers lose their time in repaying these instalments, but in practice
 nnd of which 1 solemuly declare that the whote is to be applied to my own use, und not divided wih any ather person.

I certify that the shove-nsmed
 is personaliy known to me, and that 1 consider to be a solvent, hanest, indisirious person, and that I believa the ahove statament to be perfectly correct.
Given under my hand, this
Signed of \qquad 184.
[It is requested that no person will certify for an mocomas prason, ot for ane who does not live industriously in same calling.]

Ve whose names are hereunto subscribed: will guarantee the pryment by a promissory note of $£$ vurer for the time being of the C—Charitable Iooan Socialy. applied for by -
diven muder our hand this day of
are held at -oin, possessed of property in Sessions to the value of nt lessi $£$
are held si-oi-, possenecio of property in Sessionn the value of al leanat for
the permonal attenjance of the borrower or his suretion in seldom given. The instalmonts of a whole neighbourhoou are frequently brought in by a child, or some old porson, fit for no other employment, who goen, per vicen, for two or three town lands. 'Indeed,' remarks the Rev. Mr. Nixon, of Castle Town, 'it is quite delightful to see the coufidence reposed by the borrowera in the persona Who carry their instalments, and aleo the fidelity, and accuracy, nay, even the tact, that theme latter avince in the dischargo of the duty they have undertaken.' In some places the amount of interest charged is less than that above stated, and in others the fines are higher. There is no uniformity in these matters, nor havo the central board any power of enforcing it, though it is evidently desirable."
Mr. Hall, adverting to the Third Report of the Loan Fund Board to Parliament, says-"It appeara by this return $\boldsymbol{c}^{\text {and }}$ and the circumstance is so remarkable as to appear at first incredible-that out of an amount of $£ 1,164,046$ circulated in small loans among 463,750 individuals, so small an amount as $£ 360,18 \mathrm{~s} .8 \mathrm{~d}$. only ahould have been lost, or about $\ddagger 4$. in the pound. We were very skeptical on this point, and consequently directed vigilant attention to the subject; when, what was our surprise to find that even this $£ 360$-thia $\ddagger q$. in the pound-is considerably more than has been really lost, or left deficient by the poor borrowers! From tho clist of societies whose accounta show a loss on the transactions of the year 1840, after paying interest to depositors end expenses of manageinent,' we took the first, namely, Mitchelstown, where the reported loss was $£ 43,2 \mathrm{~s}$. 6 d ., when we ascertained that this society lent during 1840 , £5420 among 3070 borrowers, who paid $£ 135$, or sixpence in tho pound, for its use, besides $£ 11,10 \mathrm{~s} .10 \mathrm{~d}$. for the price of their applicetion papers and cards. The mociety paid in interest for money lent to it, and expenses of management, $£ 190,3 \mathrm{~s} .4 \mathrm{~d}$., and the difference between its receipts and disbursements constitutes this $£ 43,2 \mathrm{~s}$. 6 ., not one penny of which was lost from defanlers. Wo are informed by a person in every way competent ω judge, it is his firm helief that out of this $£ 1,164,046$ lent, not the odd £46, or not onc-leath of a farthing in the pound, was unpaid. This fuct alone speaks volumes for the honesty of the people, and their appreciation of the benefit which the loan funds confer on them.
uIt has been argued that this security from loss has arisen in consequence of the power which the law gives for the recovery of the loans; hut the olservation is equally applicable to societies more strictly private. For example. in Now Ross a society has been estallished upwards of forty years, for the leuding small sums to the poor; and the sum lost during the whole of that period is within five pounds. This fact we give upon the authority of the Rev. George Carr; we could ndduat others equally strong, and we hnve no doubt might receive similar atatements from nearly every institution of the kind in Ireland. We rejoice greatly at the opportunity thus supplied us of bearing out by unquestionable proofs our own opinions in favour of the honesty of the Irish peasant. It is indeed a sulject upon which satisfactory evidence is especially necessary; for it has been too frequently and too generally questioned in Engtand, where, upon this topic particularly, much projudice prevails, and where it has been far too long the cuetom to

Judge the many by the rascal few.'

"We therefore, from the very minute inquiries we have instituted, have no hesitation in arriving at tho ronelusion, that the loan funds in Ircland will speedily accome, nay, are already, mighty engines either for good or evil, according as they may be worked and superintembed Where froperly managed, they cannot fail to exercies a vaa intluence on the moral and aocial condi-
tion of tho people; where conducted carelemsly, of of parties endeavouring to force business for their own gain, they may be indeed considered a moral pestilence, blighting the energiea of the surrounding population and fostering habits of inprovidence or diahonenty,"

the annuty.

The purchane of an annuity is a mode of providing for the latter part of life, which may be the mist appron priate in some instances, especially where a person in uneonnected with wife, children, or other near relstives, or where these have been otherwise provided for. When tho caso is different, such a mode of provision is liat's to the charge of selfishuess, in as far ns it concentruter the benefit upon the purchaser alone; it has also beem thought to tend to encourage improvident and carelecen halita, secing that, once assured of a full provision ior life, the need for further saving is in a great measura precluded.
There are numeroua companies which grant annuitics on the principle of making a profit by them; and some. tines this branch of business is carried on in connection with that of life-assurance. There are aleo associations of individuals for obtaining annuities and endowment to widuws and other nominees on the mutual assurnnce principle, and one large elass of these, at present fourishing in various parts of the United Kingdon, are said to be based on unsound calculations, and fraught with disappointment to those relying upon them. There in indeed one circumstance generully unfavourable to annuity business, numely, that the ordinary tables of mortality present views of the expectation of life some. whint below what is at present the truth in England Hence, what makes life-assurance business everywhere so prosperous, is precisely that which tends to make annuity husiness a source of loss. It is obvious that, where in. dividuals unite for nunuitics, and too low charges aro made, those dying first will secure an over-proportion of the benefits, and leave those who come behind nothing but nn empty purse.
With a view to encourage persons of the humblet classes to provide of themselves for their latter year, the government obtained an act (3 and 4 Will. IV. a 14) to emable trustees of the legnlly established savings' hanks to sell annuitics of not less than four or more than twenty pounds, upon the security of the national credit. 'The same act proviled thut, in parishes where there was no savinge' bar* a society for granting euch anmuities might le fors vided that the rector or minister of the parish, should tie oue of the tristece. Any person shove fafeer years of age was entited to purchase such an annuity, which might le to commence immedintely, or at a futum period of life, or for a limited term of years, at the pleasure of the party, and might he paid cither in one sum or in Inlf-ycarly sums, convertible into quarterly by dividing the nnuity, and commencing the two parts at different 1 eriods of the year. The whule arrangenents of this act were dictated by the most considerate hene. volence towards the classes designed to be bencfited. To quate an authoritative document:-" Provisions are made for cunbling th: party to mnke his annual payments, or receising the annuity, nt any other society than the one at which the contrant was originnlly entered into. Upon the death of the person on whose life the annuity depended, a sum equril to one-fourth part of the said annuity (over and above all half-yearly amears thereof respectively) will be payuble to the person of persons entitled to such annuity, or his, her, of their executors or administrntora (as the case may be), provided such last-mentioned payment ahall be claimed within tuo ycurs after such decense, but not otherwise; proviled also, that the fourth part of any expired lifo ennuity, payable ander the provisions of the said art
will not be p ny deforred f wuch defer paid or beco nomineo. In thus afforded nall paymen wher stated they cannol the tables of of the purcha ime arrives while of the " urned, withou does not exc or lotters of a ha has left tanap or lega so returnable, under $£ 50$; continuing the at any time, ut tha y.ve of th nui be aubjec same be trand the property, by or for who baukruptcy or the same is to valuation ace ity was origio to the assigne
uFrom the deferred azma ments, from Will. IV. c. 1 tha age at whi an annuity eq with the accu unable to cont back all the and if he die bis family will contributions bis decease, \mathbf{e}

[^44][^45]The tables
vol. I.—60
careleasly, or of for their own moral pestilence, oding population, r dishoneaty."
oole of providing e the mist approvhere a person is act near relstives vided for. Whea provision ie liat's as it concentraten ; it has also beea dent and carelesas full provision ior a great measura
th grant annuitices them; and some. on in connection : alco association and endowmenta mutual assurance o, ot present Alou . Kingdom, are seid aud fraught with them. There is unfavoursble io ordinary tables of ation of life someruth in England cas everywhere so 3 to make annuity us that, where in. low charges aro n over-proportion ne belind nothing
s of the humblet their latter years, and 4 Will. IV.c. tallished snvings' han four or more y of the national in parishes where for granting pueh that the rector or justire of peace, rsoll ahove fifteen such an annuity, ely, or at a future years, at the plea:ither in ene sum nto quarterly by 5 the two parts at pole arrangements considerate beneto lee beacficed. -" Provisions ore his annual paymy other society originally cutered on whose life the fourth part of the alf.y yarly armars to the person or his, her, of their ise may be), proshall be claimed at not etherwise; any expirad lifo of the said m
will not be payahle, nor be paid upon, or in reapect of uny deferred lifi-annuity, unless one half-ycarly payment of auch deferred life-annuity shall have been actually paid or become due at the time of the decease of the nomines. Independently of the advantages which are thus afforded to the industrions classes to olitain by mall payments a certain provision in old age, or at any wher atated period, sccured by governnicnt, and of which they cannot be deprived on account of iniscalculation, the tables of contributions have been so calculated, that of the purchaser of a deferred lifeonntuity die before the time arrives at which the annuily is to commence, the whole of the money he has actually contribuled will be returned, without any deduction, to his family. And if it does not exceed $£ 50$, it is not necessary that probate or lottere of administration should be taken out. But if he has left a will, or administration is taken ont, no stamp or legacy duty is payable in respect of tho sum so returnable, if the whole estate, \&c., of the member is under E50; and again, if a purchaser is incapable of continuing the payment of his yearly instalments, he may, at any time, upon giving three mon!hs' notice, receive lack tha whene of the moncy he has paid. No annuity granted wis be eulject or liablo to any tares, \&c.; nor can the same be transforred or assigned, but must continue to be the praperty, or be received for the benefit, of the party by or for whom it was purchased; but in case of the bsalkruptcy or insol vency of the purchaser of an annuity, the same is to be repurchased by the commissioners at a valuation according to the tables upon which the annuity was originally granted, and the moncy will be paid to the assignce for the bencfit of the creditors.
uFrom the above statement it will appear that any deferred ainuily, purchased by annual or other payments, from a society established under the stat. 3d Will. 1V. c. 14, will entitle the purchaser (if he live to the age at which the annuity is to commence) to receive an annuity equivalent to the value of all his payments, with the accumulation of compound interest; if he be unable to continue his yearly instalments, he may have back all the money he has paid, exclusive of interest; and if he die before the commencement of the annuity, bis family will, in like manner, receive tho whole of the wntributiens he may have actually made previous to bis decease, exclusive of interest."
Age ef the person at the pime of
गurchnse upan whose Life the
Annuily is to depend.

15 and under 16,	$\begin{array}{lll} f & d & d . \\ 10 & 1 & B \end{array}$	$\begin{array}{cc} \pm \\ 157 . & d \\ \hline 10 & 0 \end{array}$
$16 .$.	$\begin{array}{llll}10 & 8 & 0\end{array}$	155176
17 18,	10 7	1543
13 ..	1040	1527
19 20,	102	15010
20) 21,	919	14813
$91 .$.	917	14113
$22 . .0$.. 23,	914	14411
23 .. \cdot.	911	1428
2 ... - 25,	98	1402
${ }^{25} \cdot . \cdot \cdots{ }^{26}$,	95	13715
${ }^{26}$.. \cdot. 27 ,	91	1354
$27 . .1023$	8 ts 0	13211
27.	81.1	12915
29 30,	8166	12318
	860	1241
$31 . \cdot \mathrm{O}$ 32,	8	19120
3 . . 33 ,	719	1148
${ }_{34} \cdot 34$	7150	115110
${ }_{31}^{31}$ - 35 ,	7118	112170
${ }^{35}$. $\cdot{ }^{36}$.	780	11036
33.37 ,	746	107110
${ }_{37}^{37} \cdots \cdots{ }^{38}$	7 t	104190
$\begin{array}{llll}34 & \cdots & \cdots & 39,\end{array}$	${ }^{6} 178$	10278
${ }_{40}^{\text {亿r }}$.. 40,	6140	99150
40 .. \cdot.	6168	8710
118 $\because .$.	66	9456
	62	9170
${ }_{4}^{43} \because \because \quad . \because 44$,	618	8960
H. . ${ }^{\text {H }}$ 4,	614	856

granted have been formed, an unight be expected, of the soundest princlples, and are entitled to the greates respect. They relate to four kinds of benefit-deferred annuities upon the continuance of single lives, immen diate annuities upon the continuance of single fives, defarred annuities to continue for a cortain term of vears, and immeriate annuities to continue for a certaln term of years. Tho whole are presented in a brechure quoted below." We have extracted only one specimen, namely, the terms of an annuity of $£ 20$, payable after twenty years from the time of its purchase-(See preceding table.)

BENEVOLENT PAWNBROKING.

The necessities ef the humbler classes have given rise to the trade of pawnbroking, which, even when conducted, as it often is, by respectablo persons, certainly forms a sevcre punishment upon the poor for their poverty. On this subject some exaggerated views have of late years gone abroad; but there can be no doubt that the poorcst class, in pledging small articles for short periods-and the greater part of pawnbroking business appears to be of this kind-are subject to enormous extertions, calculated, most materially, to keep them in a depressed condition. It has been said that $£ 3000$ is annually lent by pawnbrokers in Ireland in one shilling loans, and that this sum actually preduces to the lepders in a year not less than $£ 19,500$. To a poor persoh in want of a shilling for a week, it appears no great hardship to pay a penny for the loan of it; but when we consider that this is, in reality, borrowing money at $433 \frac{1}{3}$ per cent. per annum, the hardship of the case is presented in its true light. Nor is the licensed and ostensible trade of the pawnbroker the worst of the case. Wherever a large horde of very poor people is collected in our large towns, there rises an unlicensed and clandestine species of the trade, conducted upon principles still more ruinous to the needy. It has been shown that there are in Glasgow no fewer than seven hundred small unlicensed pawnlreking establishments, whose extortions from the poor infinitely exceed the legal rates to which the licensed traders are restricted. The saying of Solomon, that the destruction of the poor is their poverty, was never perhaps shewn in a more striking light than in the losses which they endure in consequence of the neccessity they are occasionally under of raising money by pledges.

On the continent, the system of lending upon pledges has been practised for several centuries upen a benevolent principle. The estallishments where the business is carried on are called Nonts de Pie'é (mounts being a term applied to heaps of money, while the word pidte expresses the religinus views in which the plan originated). In this case, an association of bencvelent persons, possessing a little capital in common steck, are the pawnbrekers, and the objects they keep in view are to make the evil of pledging as light to the poor as posaihle, and to apply the profits to charitable purposes by which the poor will be benefited. Here there is no extortion, no punishment for poverty, and the poor, as a body, may be said to lose nothing. In France, some abuees have crept into the gystem; but these are not essential to it , and we have lately had experience nearer home how much good may be done by a well-conducted ment de piété.

The first establishment of the kind in the United Kinglom was set up at Limerick in 1837, through the exertions of a gentleman named Barringten, for the purpose of supplying funds to an hospital which he had founded out of his own fortuno. The required capital was raised by dohentures (or joint-stock shares) varying in amount from one to five hundred pounds each, upon

* "Inalructions for the Formatinn of Prochial Socienes for graming Government Anmulies,' Lonton: Printed by W Clowes and Son, for his Majesty's Stationery Office.
which interest was to be allowed at the rate of six per cent. 'These might be withdrawn at three monthe' notice, or money would be advanced upon thom as pledges. Mr. Barrington described the following as the advantages proposed by his acheme :-
" lat, The raising a caplal by small debentures at a certain interost, and lending it on a greator intorest, and applying the profits to the purposes of charlty.
"2dly, Receiving the debentures in pawn, thus giving to the dopositors an advantage which they do not posmens in the savings' bank.
"3dly, Lendiug money at interest to poor persons of unimpeachablo character and industrious habits, on permonal accurity, as is done hy the loan-banks.
"4thly, Lending money on goods, as is now done by the orlinary phwibrokers.
"Sthly, In case of deserving ohjecta, to restore the article. such as implements of trade pawaed in the hour of real want, without interest or charge.
" 6 thly, Using every precaution against recciving atolen goods in pawn."
The plan meeting with a hearty approval, a capital of above fifteen thousund pounds was quickly subseribed, partly by the gentry, and partly by persons in the humbler walks of life. An active and intelligent person, who had himself been a pawnbroker, was placed at the hoad of the establishment, which had no sooner commenced business than it became largely supported. The following viow of the transactions, from Mareh, 1837, when it conmenced, up to December, 1810, is given by Mr. and Mrs. Hall in their work on Ireland :-

Yenra.	Amount lent on lledges.	Annount reeeived for Reteased Articles.	Gross I'rofit**
1887,			
1535,	17,825 13 3	10.023 t5 ¢	10711946
1880,	21,091 7 \&t	20.72710	117215 3it
1840,	25,4>9 6 ¢t	23,675 115	13571311
Tolal.	78,595	$71.005 \quad 8 \quad 7$	$3040102+$

There is no charge for tickets at this estallishment; consequently, if those pawns were pledged at a pawnbroker's, the poor would have to pay for each pawn a cum of one penny; if the amount borrowed amounted co 10 s , twopence, if it amounted to 40 s , fourpence: therefore (not at all taking into account the low rate of unterest) the saving effected by the very poorest persons is moat remarkable. For instance, say that
380.000 of those pledges were under 1Us., al Id. each, f1500 00 $\begin{array}{llll}80,000 & \text { do. } & \text { under } 40 \mathrm{~s} . \text {, nt 2d ench, } \\ 10,695 & \text { do. } & \text { oner } 450 & 0\end{array}$

Or a mam ped in four years on the bare frem of
tickets, to the very poorest people, of tickets, to the very poorest people, of
If to this be added the onving in interest, we may safely calculate that nearly as much in addition is saved as the establishment is realizing, as the following table will ahow the difference in the rate of interest, for differont mums, to 10 s . and $£ 1$.

Sum Lent.	Mont de Pieté loterest.	Pnwnbroker's interest.	Pawnbroker's Total Charge of loterest and Tickel.
\pm *. \boldsymbol{d}.	d.	${ }^{\text {d }}$	
010	04	0	1
$\begin{array}{llll}0 & 2 & 0 \\ 0 & 3 & 0\end{array}$	04	1	2
030	0.	1	2
$\begin{array}{llll}0 & 4 & 0 \\ 0 & 5 & 0\end{array}$	1	11	2
$\begin{array}{llll}0 & 5 & 0 \\ 0 & 6 & 0\end{array}$	1	11	24
$\begin{array}{llll}0 & 6 & 1 \\ 0 & 7 & 0\end{array}$	1	${ }_{2}^{2}$	3 3
0	1%	2	3
090	2	24	3
0100	2	3	5
100	1	5	7

[^46]The Mont de Piette of Limerick ha ring heen attended with success, tmsomuch that it supports the honpitad for the slek poor of the city, similar eatablishments have been opened at Belfast and Tandrageo, and the axample will doubtless be followed in time on this side of the Irish Chanuel. In September, 1840, at the meeting of the British Association at Glasgow, an interesting paper on tho suljoct of the Irish establishments was read by Mr. H. J. Porter, from which wo maku the fol lowing extract :-
"At tho close of the first nine months of the operm tions of the 'Tandrageo Mont de Piété, I was able to show that the borrowers from the loan fund department on porsonal security, had in their possession 1189 looms of which 612 (more than half the number) were hired at 10s. per amnum. One man had at that period one loon, for which ho had paid $£ 12$ within the previous twenty-four yeara, without any other alteration thesn that which was necessary on the invention of tho fly-shutules and, alter having paid the prico of four new looms in interest, ho was not nit that time tho owner of ona Here, and in many sinilar cases, the mont de piete was the means of relieving the poor, and the owners of loons for hire began to find it difficult to let them out. One farmer proposed to sell his slock of looms to the institution, finding the hopo of his gain drawing to a close but of courso the proposal wss rejected, as thewe old looms were incapable of producing as good a fabric a the new looms issued by the mont de piété.
"At the period of which I speak (first nine monthe of operation), alove 2600 loans had been granted for the fol lowing purposes:-

"In order to form some idea of the nenefit derived by these horrowers, I examined grent numbers of then a they appeared, on the payment of the last weekly inatal ment. I ascertaiucd pretty nearly the amount of money saved or realized by their having the alvantage of ready moncy, and from these I formed an average estimate of tho whole.

Oatmeal	11100	Saving	-	$5 \times \mathrm{M}$
potatoes	550		-	334
Cows	2569	Profil	-	124
Pigs	1223	-	-	10
Dealing	664	-	- -	闞
Total	f6096		Total	£356

"Had the mont de piété conferred no other bencitita the country than that derived by the peasantry, in procaring their summer provisions for ready money, that alone would amply repay the directors for all the labour bestowed on the working of the institution. What wero the circumstances of these 550 fimilies in bygone summera? Many of them found it difficult to procure credith or oltain a sufficient supply of wholesome food for the maintenance of their families ; ideness prevsiled, sickness incrensed, and not unfrequently fields were mortgaged in more wealthy neighhours, who aupplied the wrected hollers of two or three acres of land with the requind food at an exorlitant pricc. Others, whose credit wat good, passed promisoory notes, payable at harvest, and not unfrequently thry were charged tor incul 68. or 8s, per cwt. more than the market price, independent of the etpense of atamps; and it was no uncommon practice for a poor man, wanting the immediate use of a few poundr in money, to purchase oatmeal thom a forestaller of pro
derone, wh fom the po clarged, ha never be de next custon The value enily recov caah, bearin the forestall were the p arrived, and rally first p were they 0 chargea, wh their enn ti ing the prod "What, the last sum dente inter haints of in instalnents lnoolved in food, snd th been reserve tained ; thes supply them But other n pence, whic onl ardent ing's instalm valaz of sm that, 'if you take care of - Again, parchase of this particule posscesion o ment on tho tensace of which is pro tained that chased have onehalf of now possess alrealy proc habits which tien, that a whose sole exportation ; to tho imme produce to wolanan borr 2di; she ex of the twent of paying ol "But whe ncighbourho by the need punctusility alrealy had
"And hov tions of tho tl:ority, that mult, and a g engarements
"One clas mont de pié Thoso who body, are no houses for t poor persun for, or is ah taking care grave in the
ng been attended is the hospital for ablishmenta havy e, and the exam in thin side of the , at the meeting w, an intereating tablishmente wa we maku the fob
thes of the operstité, I was able to fund department, ssion 1189 loom mber) were hired it that period one thin the previous Iteration than that of the fly-ahuttles sur new looms in 1e owner of ona. mont de piété was e owners of loonis them out. Ous oms to the institr. awing to a clase cted, as these old good a fabric a pićté.
rst nine menths of granted for the foll umbers of then last weekly instalamount of maney ailvantage of ready verage eatimate of

Toial . 53 now other bencit of peasantry, in prow ready money, tha s for sll the labou ution. What wer 's in bygone sum It to procure credit lesome food for the s prevailed, sicknes wcre mortgaged in plied the wretched with the requind whose credit wa ; at harvest, anduat neal 6s, or 8 s , pet epeodent of the er. ommon practice for se of a few pound a forestallor of pio
vidons, while a thind person would buy heck the oatmeal fom the poor man at a much leus price than he was charged, hand him the money, and the oatmeal would never be delivered, but onld again by the forestaller to the next customer. The ubject of this transaction is evident. The value of a promissory note for proviaions would be carily recoverable at the quarter-sessions, while one for cash, bearing unurious interest, would be likely to involve the forestaller in an open violation of the law. Thus were the poor on every side oppressed; the harvest time arrived, and the debte for summer provisions were generally first paid from the produce of the farm; too often were they unable to pay just demands of rent and other chargen, while in few cases were they able to hold over their corn till the most favourable time arrived for hringIng the produce of their farm to market
"What, on the other hand, has been the experience of the last summer? Those 550 familice horrowed, on moderate interest, from the mont de piété, $£ 1640$, and by haints of industry and incressed diligence, their weekly instalments are paid; at harvest, instead of being deeply involved in debt, they owed nothing for their aummer's food, and the produce of their land has in many cases been reserved for weeks, till the best price could be obtaiaed; they are able not only to pay their rents, but to aupply themselves and their children with better clothing But ether moral effects have followed. Halfuence and penee, which formerly were squandered in tobucco, snuff, end ardent spirits, ars treasured up for the Monday morning's instalments, and the people are heginning to feel the value of small eums, and the truth of the old proverh. that, 'if you take care of the pennies, the ahillings will take care of themselves.'

* Again, we find that $£ 2569$ has been borrowed for the parchase of cows. The benefit to the poorer classes in this particular is incalculable-the health arising from the possession of an sbundant supply of milk; the improvement on their farms, by sowing green crops for the maintenance of their cows; the increased quantity of manure which is provided for the land-while it has been ascertained that in twenty weeks the generality of cows purchased have paid, by the produce of milk and butter sold, one-half of their own cost. Hundreds of fanitica are now possessed of a cow each, and great numbers have already procured a seeond. As a proof of the saving habits which are promoted by this system, I may mentiun, that a respectable person has settled in this town, whose sole business is the purchase of butter and eggs for exportation ; and he finds it frequently ditfieult to attend to the immense influx of persons who come to sell their proluce to meet their weekly instalments. One poor wotwon borrowed a pound; she bought five hens for 4 s . 2 d ; she expended 15 s .10 d . in elothing; and at the end of the twenty weeks her five hens had been the sole means of paying off her debt to the loan fund.
"Bnt what is the testimony of the manufacturers in the neighbourhood? That the industry which is promoted by the necessity of those weekly instalments, and the puactuality of the weavers in returning their cloth, has already had the most bencficial effects.
"And how are persona in trade affected by the operntions of the mont de piecté? I have it from the best autherity, that a great increase of husiness has been the reoult, and a greater degren of punctuality in meeting all engagemente on the part of the poorer classes.
"One class alone are sutlering from the effects of the mont de piété, and they are litte deserving of compassion. Those who live by the destruction of others, both soul and boly, are not to be commiserated-those who keep open houses for the drunkard-and when they have given a poor perton as much whisky as they think he can pay for, ir is able to consume, turn him out inemable of caking care of himself, and exposed to the risk of a watery grave in the next river or canal he meets-those are suruly
persons whose lack of businces and prorperity is a bleem ing, and whose failure in trade must be held as a common good. I have undoubted authority for saying, that the temperance cause and the mont de plété are going hand-in-hand; and the twopence for the morning glass, or the shilling for the night's carousal, are now carcfully saved to meet the weekly instalment.
"I might enlarge on the important benefits which this institution confers upon the working-clas--ahove $£ 1200$ expended in the purchase of pigs, which are such a source of wealth to the Irish poor, being nearly fattened on the refuse from the tables of the ownere."

We must be oxcused for adlling one more anecdote from a report by Mr. Haynes ot the Jimerick establlsh-ment:-"A poor woman, when the institution first opened was in the habit of pledging cvery morning her bed-tick for two shillings and slxpence, and releasing it overy evening; this she did for the purpose of purchasing potatoes from the country people, and retailing them afterwarde in small quantities, at a higher price, thereby endeavouring to support her family: for this loan she daily paid the pawnbrober the sum of twopence. When the mont de piété opened, she being only charged a halfpenny, saved three-halfpence daily, which eventually enabled hor to raise a small stock-purse of ten shillings; and she now seldom, if ever, visits even that office."

THE PROVIDENT, DIGPENEARY.

On the sulject of medical attendince, the working man, in ordinary circumstances, may well be at a loss how to act; for, on the one hand when he calls in a doctor on account of himself or his family, he is oppressed by the high charges for attendance and medicine; and on the other, if he resorts to a dispensary or hospital, he lose his independence. That these ara cvils of large amount, and widely prevalent, might casily be shown. In England, the ordinary medical practitioner charges for medicine only, but he gives much of that, and places a high price upon it. A working man, ill for three weeks, will find, on his recovery, a bill of thirty or forty shillings run up against him, either causing hin to break up his little hourd in the savings' bank, or keeping him in embarraasment for the ensuing twelvemonth. Conducted as the medical profession is in that country, it is impossible, in short, for a poor man to have independent medical attendance which he means to pay, without the most serious pecuniary distress being entailed upon him. So severely is this felt, that the resort to medical charities has of late years been rapidly on the advance in England, both involving more individuals, and individuals of a better class than formerly. In 1821, when the population of Manchester was 158,000 , the dispensary patients were 12,000 In 1831, when the population was 230,000 , this class of patients had advanced to 41,000 ; an increase of fully two to one. It was calculated in the latter year that, of all the persons ill and requiring medical ndvice, the dispensary patients were a majority. Similar facts are stated with respect to leeds and Birmingham. It would appear as if a wide-spread denoralization were going on throughout England from this cause. Dr. Holland, of Sheffield, has recently published a volume calling attention to the aubject. He sets out ly stating very hroadly, as his opinion, that the eharacter of the working-classes in Sheffield is at present undergoing a certain degree of doterioration, in consequence of so many charities, and particularly medical eharities, heing thrown open to them, the self-respect connected with independence leing this gradually worn away, and with it the virtucs which have never yet leen found to exist without it. The Infirmary, we are told, was established for the benefit of the poor and needtul of all nations: list it never, our author aro gues, could have heen designed for those who are able otherwise to ohtain the desired aid. Now, nowever, the fact of being an operntive is held os a suribient claim

INFORMATION FOR THE PEOPLE.

- The artinan nevpe disama of the poesibllity of rejection on the ground of haing in full and regular omployment, an being amply romunarated for his labour. He applioe u. I as naturally to the charity when he is sick, as to the thener for the repair of his clothes, with thia difference, that he would be perfectly antonished were any one to hint at the propriety of paying for the favoura conferred by the former." Our author argues againat the following classes, at least, having any right to the bencfits of the inatitution : Bingle men in enupl(yment-maried men with ouly young and nmall fainilies-men with several children but high wages-men who have soveral sons and apprentices working along with them-servantin in situations. All of these persons, excepting the last, munt be able to provida mudical attendance for themselves, if they economize their resources. He presents a hundred cases of applications, being those within the fow week before the time when he was writing, and out of these he shows that there were fifteen young single men, all of whom but two had been in employment till the time of their illness, twelve at well-paid crafts, and one as a Inbourer. Eleven cases ware of married persons without children ; and thirty-two spplicants were married, with only one or two chaldren. - In some of the latter instances, "the only child is a daughter cighteen or twenty yeare of age, who had never been allowed to go out to place, or to learn any buainess; in others, a son apprenticed to his father, and both in regular employment. In one instance, where the wife was the patient, the daughter was in a warehoune, and the son, a youth of fourtecn years of age, was a day echolar in respectalle private academy in the town. The huaband had received regularly twenty-four shilling e week for the last twenty years. Many of the thirty-two cases are even more flagrant instances of imposition on the charity."

Certainly in the whole number of applicants for relief, as far as our author has described them, we do not find that proportion of persona likely to be in necessitous circumstances, which might be expected. To support his views, he brings the testimony of the house-surgcon, who, in anawer to queries put to him, says-_s The character and appearance of the patients generally are very different from what they were fifteen or twenty yeara ago. The patients are much more reapectably dressed, and in better circuinstancea. Many now, not from inability to walk, are conveyed to the house in hackney coaches. * They apply for inuch more trivial ailments than formerly." The author apeake of feinales who come to the institution in elegant cloaks, shawls, and cloges. Not one half of the applicants have the appearance of indigence. "The frequency with which they apply for very trifing ailments, such as alight aymptoms of indigestion, coughs, or occasional pain, or, indeed, for the removil of a disease which just perceptibly mara the beauty of the face or neck, is evidence that their situation in life is very remote from thoee circuinstances which entitle them to the sympathy of the benevolent. The really poor never opply for the relief of slight aud unimportant complainte." Afternards Le adds-ur In evidence of the trifiing nature of many of the medical casea, we may state that one-half are often cured in ten days, and two-thirds in three weeks."
The results of his inquirlea at the Dispensary are nearly the same. The great bulk of the applicants are either themselves artisans in the receipt of good wagea, or the connections of auch persons. They come in respectable apparel, and, when visited at their homes by tho medical men, are found to posmess every appearance of domestic comfort. Recomisendations from subscrilera to the insticution are neccssary to procure admiseion; but these are given, in seven cases out of ten, by persons who have no Enowledge of the circumstances of the applicants. "A gentleman who, froin his position in society, is often applied to, informs wh that he alwaye refuses, unless the individual bring a lether frox. his employer, stating that he

Io a necemaitous object; and thongh promining to ftw recommendation on this condition, not ome in twenly : etwom to receive it."

Facts atill more remarkable are brought out by D_{r}, Holiand. "'The distresees of a community;" ho my, (meaning such a community as that of Sheffield), "will be admitted to bear a atrict relation to the state of traile When this is extremly depramed, many hands are thrown out of employment. When the trade is good, the do mand for labour ia great; wages advance, and the blew inge of plenty are universally experienced. The amount of iniaery or deatitution cannot be the mame in these very difforent circumstances. It cannot be a fixed quantity floating in society. The idea is preposterous ; and yth if the registered demand for charity be any criterien of the miaery exlating, thera is indeed a quantity aubject to scarcely any variation whatever.
" From midsummer 1835 to midsummer 1838, between which periods trade was better in thia town than it had heen known for yeara, the number of patienta admitted on the books of the Infirmary was 3128.
"From midsummer 1838 to midsummer 1837, between which periods the trade was exceedingly depressed, the number was 3431 , being an increase only of 305 ps . tients.
"Between the former periods the number of patients on the books of the Dispeneary was 2888.
u Between the latter periods, that is, from July 1836 to July 1837, the number was 2575, being lees by 313 po tients.
"According to these returns, there were cight patients more during a prosperous state of trade, recipicuts of mo. dical churity, than during the severe depression of it."

He elsewhere statea that ticalthy seasons are marked by no diminution of the number of applicants. "Wia hesitate not to assert that, during the last twelve month, there has been lies disease in this town and neighbour. hood than has been known for many years, and yet dum ing thia period the demands on medical charitics havo increased."

As a remedy to these evils, some benevolent person, with the co-opemtion of a few of the more literal of the medical profession, have instituted what are called Pratident Dispensarics, the main feature of which is, that the working man contributes a small sum weekly from his earnings, to cutitle him to medical attendance and the requisite medicines, in the event of illness entering hin houseliold-the united contributiona of a few hunded membera being sufficient to engage a respectahle physician, and defray all the other expenses. Such institutions have been tried with marked success at Coventry, Derby, and some other places. They are limited strich ly to the clase who are unable to fee medical attendants in the ordinary way, but who ure yet anxious to keep themselves in all respects above the condition of paupern Individuale wishing to belong to the provident dispensirice must join when in good liealth, as the object is in reality an "assurance" againat sickness, and the provident character of tha inatitution could not otherwise be maintained. One penny a week is paid for each adult of the family, and a halfpenny for each dependent child Individuals of the more affluent clasees contribute without the design of benefit for themselves, in order to cuccurago the institution, and from them, in general, the directing body is closen-the only part of the arrangement thich we cannot fully approve of. From the procceda a me dical man is feed, and medicines are provided; and it is remarkable that a thousand aick persons connected with a provident dispensary have been found to cost corr siderably lesa than a similar number of patients resorting to the medical charitics. The tendency of such institu-

- An Essay on Diapenatios, By P. H. Holland, Sarge Manchuater: 164es.
ons ti main daesee is oliv they have bee havo heen dil mea have a duer cause I In supporting nolical then my womethin bun only pa mort to char
Whatever npon this po working-clase mont unexce them over ot preservation o ing on the foresight. $\mathbf{8 c}$ to it are thus let above qu more easily dispensarics. bimeoll, by ru applies at uno milf under th choice; in fac richeat of the Mr. Nankivell beng scen bs batility of a a dinary dispene loath out of 6 Cherlton-

Averages,
uThe aver population, la whereas the patients has b the dispensary fiif much of buted to the c consisting alm and prudent perlaps to be portionato nu ever warrante of life, most s sell-supporting dical advace at pelhaps than

The Hon. \& Buckinghnms enall econorn parish-a larg

[^47]riving fo yton ght out by D_{1}, unity; ${ }^{\circ}$ ho my, Sheffield), " mill - atste of trula ands are thrown - good, the do s, and the bley. d. The amounl ne in these very fixed quantity erous ; and yeth any eriterion of intity aubject to
er 1836, between own than it had patients admitted
er 1837, between ly depressed, the only of 305 pa .
ser of potients on
om July 1838 to ; less by 313 pm
ere eight patienta recipiente of mo ession of it." sona are marked pplieants. "Wo ot twelve month a and neighbour. ears, and yet dur. cal charities hare
nevolent persona, tore literal of the are colled Prati which is, that the weekly from hin endance and the nese entering hin f a few huadred respectable phy. -. Such institu cesss at Coventry, are limited strich nedical attendants tanxious to kefp dition of papern rovident dispenso as the ebject is in 8, and the prove 1 not otherwise bo aid for each adult dependent child contribute without order to encourapo eral, the directing rangement which te proceeds a me provided; and at crsone connected found to cost corn patients resorting cy of such institre-
(wna t, maintain the moral uprightnew of the workingdouen in olvious: and it is already proved that, wherever they have licen plantod, applicationa for purochial relief have heen diminiohed. It ia to be lamented that medical gaven have a prejudice egainut them, probably from no oher cause than that amall copper auma are concerned In eupporting them. But auroly it is better even for medicul men that the humbler order of patienta chould py something within their means, and that regularly, than only pay in a few instances, and in othera either wart to charitica or leave a large debt unliquidated.
Whatever may be the centiments of the profension npon this point, it must be ovident to all that, for the worting-claswos themeelven, the provident diapensary is a most unexceptlonable upeciea of inatitution. It carries most over one great dilliculty in their career with the preservation of their independence; it doea more, for, lieing on the weaurance principle, it encouragee habits of foreaight Some other advantagee presumedly incidental to it are thue atated by Mr. P. H. Holland, in the pamphlet above quoted:-4 Assiatance in aiekness ia much more ensily accemsible in provident than in honorary dipensarice. The patient need not lose time, or degrade bimelf, by running about to beg a recommendation, but applies at unce for an attendence ticket, and puts himealf under the care of the medical officer of him own choice; in fact, procuree assistance just as readily as the richat of the land. Consequently, as I am infurmed by Mr. Nankivell, at the Coventry Dispenaary, tho cases beag seen by the aurgeons at the very outset, the probubility of a auccessful result in much higher than in ordinary dispensariea : for inatance, at Coventry, they have losh out of 6094 patiente atiended, 92 , or 1 in 66 ; at to Chorlon-upon-Mellock Dispensary, in the mame
period, out of 6438 patients admitted, 210 died, or 1 ith 30.6. All who have had experience in ordinary diapenmary practice, well know the advantagee of getting the cares early; for, at prenent, very many patients, rather than undergo the trouble, unpleasantnema, and painful ascrifice of honent pride, will not apply for a recommendation until they dore delay no longer; consequently, many canes are not under treatment until the only time at which it could be available is past, and it is this which rendora dispeusary practice so barusuing.
${ }^{\omega}$ It in probable, nuy certain, that the large number of patienta, in proportion to the deathe, is in a great meaaure owing to the very easy access to a provident dispensary, causing tonany to upply on very trivial occasiona but who ahall any how many of these trivial cacea would have become serious, or even fatal, if neglected? But thia partial explanation will not at all aecount for the very gratifying result which, by the following analyain of the reports of the Coventry Self-eupporting Dispensary, I havo elicited, namely, that the average meriality among the menbers of that digyensary is considerally leas than the average mortality of the country generally. Thia is the more remarkable, as it ia fair to presume that the sickly will be more ready to subscribe than thowe in robuat health, and therefore we might have expected a mortality eomewhat greater than the average. The mortality of a town like Coventry is about 1 in $\mathbf{5 0}$ per annum. The following talle oxlibits the number of members, upon tho presuruption that each on an sverage contributes at the rate of 3 s . per annum, which must he very near the truth, aa adult members pay one penny per week, and children a halfpenny, whilo any more than two in a family, below twelvo years of age, are not charged.

Yeara.	Calculated Number of Members on the average of the whole year.	Patieats Adinitied.	Deaths.	Compuied Number of Members to each Death.	Number of Cases Desth.	Amount of llonorary Subacriptions and Donatione for Bxpenses of the Establishment.	Amount of Members' Subscriptions, from whith Fund the Drugs are psid for, and the remainder	Pald to tha Surgeous.
1834, 1835, 1806, 1307,	2670 277 t 2750 2651 2614	$\begin{aligned} & 1568 \\ & 1505 \\ & 1420 \\ & 165 t \end{aligned}$	20 27 17 23	$\begin{gathered} 133 \\ 102 \\ 155 \\ 9 . \end{gathered}$	$\begin{aligned} & 77 \\ & 59 \\ & 63 \\ & 55 \end{aligned}$	$\begin{array}{lll} f & 3 & d . \\ 143 & 6 & 6 \\ 114 & 4 & 0 \\ 124 & 6 & 2 \\ 10 t & 32 & 0 \end{array}$	$\begin{array}{ccc}f & 1 & \\ 400 & 12 & \\ 415 & 13 & 1 \\ 307 & 9 & 34 \\ 392 & & 1\end{array}$	$\begin{array}{ccc} \hline f & d . & d . \\ 268 & 0 & 0 \\ 257 & 8 & 0 \\ 262 & 3 & 0 \\ 20 t & 15 & 0 \end{array}$
Averages,	2670	1523	23	121	68	12017 34	40 t 91	$200: 59$

uThe average annual mortality among 2676 of the hamblor classer, apparently in a great measure by the population, taken promiscuously, would he about 53 ; whereas the mortality among the Coventry Dispensary patients has been only 23. We must not suppese that the dispensary is asaving lives at the rate of thirty a year, fir much of this difference of mortality must be attributed to 'the circumstance of the members of the institetion consisting almost entirely of the most frugal, industrious, and prudent of the work-people.'* Something ought perliaps to be attributed to there being probahly a diapro portionate number of adult menshera. Nus if we are ever warranted in ascribing to medical means the saving of life, most aurely are we so among the patierste of a seli-supporting dispensary, where the mombers have medital divice at the very outset of discase, more promptly pethaps than any other set of persons in the country.'"

MINOR ECONOMLO PUNDS.

The Hon. and Rev. S. G. Osborne, of Stoke Vicarage, Buckinghamshire, has published an account \dagger of several mall economic funds, which have been formed in his parish-a large agricultural one-for the bencfit of the
${ }^{3}$ Letter from Mr. Nankivell.
Letter from Mr. Nankivell.
"Rints to the Curitable." Price One Shitung T.a W.
active and well-directed zeal of the author himself.

One of these is a Conl Fund. The poor in Mr. Us borne's district are generally ill off thr coal during the winter months; and, when the "wer is unusually severo, it is found necessary in many parishes to oubecribe to obtain for them a portion of that domestic necessary. In Stoke purish, the poor are induced to commance in June paying one shilling a week each into the parson's hands, until twelve shillings have been paid. Coal is there generally from 1s. 1d. to 1s. 5d. a bushel; yet the managers of the fund undertake that each person shall have twelve bushels of coal delivered to him, during the course of winter, at his door, free of all charge (a sack of three bushects being given every three weeks four times). The extra money required is contributed by the benevolent people of tho neighhourhood. Charity is here partially employed; but it is to be remembered that the benefit is conferred upon a clasa who might otherwise he entirely dependent in this respect." Mr. Osborne conaiders it a great matter that the poor are induced to contribute the larger share of tho funds: their spirit of selfdependence is encouraged to that extent. The reverend manager of the fund endeavours to snvo a little in good years, in order to be the more able to succour the poor in bad ones The poor complain of this, but he watu
patantly till a bad year comen to show them the good of the aymem. In the severe winter of 1837-8, he had e24 in hand. "We thought tle severity of the meuson auch on extrome caeo, that we ought to do something more than usual for the poor. Accordingly, we took a pat of the bolance, and boughe 114 sacke of coal, come of which we gava away, but eold the greater part at tha low price of sixpence a aack. The poor were thus taught the advantage of having anved thim balance, and wo bud the entiafaction of affording a mout seasonable rollef, without hegging for a aingle sixpence from any one." It may be premumed that the partier on the coal fund will be more careful of fuel thus obtained than of that which in given them for nothing, "They ean look forward to the winter," bays M. Oaborne, "with one heavy care for it removed. When the winter comes, with little or any addition, the tired labourer may ever find a comfortable fire at home to apend hia eveninge by; he ia not forcoll to go to the beer-ahop to warm himalf."

The Wife's Frieully Society in deaigned to enable married women of the poorest cleme to have a mall fund which they can draw upon, to defray the expence of a proper medical attendant at their confinemente, and furnish some of the comforts requirel on thow occasions. Generally, this clase of persons have no provision for anch occasiona, and the consequences are that they depend on charity, and sometimen suffer from the indifference which the midwived in that case employed are apt to feel where their care in not to be remunerated. A poor woman recommended to the Wife'a Friendly Bociety pays 2d. weekly for a year to the treasurer (the vicar's wife), making 8 s 8 d . in all. I'o this the nociety from charitable contributions adds 2s. 10 d , making 11 s .6 d . If sho is confined that yoar, she gets an order for 10 g, which merves as payment for her medical attendant. The romaining ls. 6d, sorves ω furnish gruel and other little comforto-a amall num for such a purpose, but better than nothing. The person who recommended the momber guarantees, that, after thin payment is made, she will continue to pay her weekly twopence till the end of the year. Should no confinement take place, the money is spent on clothes.

In the case of the Penny Clothing Fund, the proporcion of charitable contribution is greater than in any other of Mr. Oslorue's mehemes. The object is to encourage the poor to exert themselves to furnish decent clothing for their children. A benovolent peraon pitchen upon come child belonging to a poor neighbour: the patron and the child esch pay Id. weekly into the fund, that
in, 8s, 8d, annually, Some persona take twa, thre, en more children under their care. Mr. Oaborne npente of 150 in all in him parith boing elothed by theme means in one year. "Tha buying of the cluthing is thun manoged a linen-draper attenda with his mbopman on a given de at the expiration of the year, with a large eupply of all such articlea of clothing an the poor mont need for thet children; the mehool-room in allotted whin an a whop for the day. In addition to the linen-draper we have a pen son over from a neighbouring market-town, whome buid ness it is to deal in ready-made clothing and when for hoya; he has a room adjoining the achool for him abop Each lady (these clubs are alnowt alway wholly supporta! by the female eex) appeaps with the children she has put in, tugether with thair parenta; they are merved in turm, and it is the lady'a duty to mee that they have their sa, 8d. worth of goods. The pence are received from the childres weekly at the achool; from the personi putting them in, at the end of the yeac." Clothing for childten being one of the things which the poor, amidst the vea rious difficulties which besct them, are least apt to provida for, we can well believe that this fund does much more good then the practice of presenting blankets at Chride mas-blanket being an article which the parent couplo foel the want of preasingly themelven, and are therefore cager to provide from their own means.

The Eridonoment Society for Children is the last of M_{4} Oaborne's parochlal schensen which are different frum those already developed in these pagea. The obycet hers is to make a pravision, by amall payments, is the courm of a few yoata, for an event connected with a child which will make a omall aum of money necensary-as, for instance, to put him (or her) out to service or ajptentice him, or to furnish bim with tools for his trade when his apprenticeship is expired. Ono shilling, one and sixpence, and two shillings, are the varioun kuans received and they may be for two, four, or six years. The pris. ciple is the mame ax in a uavinga' hank, but the money is devoted to a particular object, and that a very intereating one, and a atimulus to anving in added. The managen of this fund place the muney collected in the savingo bank; in the event of the nominated child dying, in other is taken, or the money given bock.

For further information on these economic institutions we refer to Mr. Onborne's little volume. It may be mes tioned that he has published some other small pamphiete (T. and W. Boone, London) connected with tho subjeet of this shect, and all of which seem to us well worthy of the attention of those who aim at benefiting the poor by evaking their own beat powers in their own behulf

Abmicelt the soil in 8 greatest ahu which are ult him for sulm tulem where nasee a cert plants moro o and beast; bu in unount c from it by m proluctiona al nost needful. the natural p be fow in pro aad generally ever mans has himelf to cu of nupporting population.
The earlics averywhere bo The nufface outh, \&c.) we wa contentel ayatem, mo tage of the ceoun grains i hawever, agri takea its stat recent times t the eoil und having a refer arase the n render the es population.

The rise an unavoidably b liarituen of the islan ils, haviu west and Ger $50 t h$ and $59 t h$ relative situati to a variable, For nhout five till March, th anoro with ans herbage in c sharep, and not does not afford animals requi nuaketa lus it unlicient \mathbf{v} oborne apeaks of theee mana in - thun manaped on givea das
ge apply of all th need for thels im an a shop for r we huve a per wn, whose busp ond ahoee for ol for his sho A wholly mupporta! iren she has put merved in lurn, oy have their 8a aceived from the persons putting hing for childrea r , amidat the vi out apt to provido loes much more anketa at Chrint the parent coupla and are therefore
is the last of Md_{6} e different fruta The object here its, in the counno ith a child which sary-an, for inice or apprentice in trade when hie 1g, one and sin. s sums reccired cars. The prinbut the money in a very interesking The managen in the savinge' child dying, an
omle institutiona It may be men amall pamphetet 1 with the subjer as well worthy of fifing the poor by own behalf

AGRICULTURE.

Asnicolivis muy the lefined an the art of diapoaing the woil in arch a munner na to make it produce, in the greatest aluudnace and perfection, thoso vegetables ebich are usefuit to minn and the nnimala depending on him fox submistence. The earth, in a atate of nature, uolem where it is chilled by an ungenial climate, powavasea a certuin degrve of fertility, so as to produce plants nore or less suitable for the subvistence of man and beast; but its apontnncous productions are small in amount compared with those which can bo drawn from it by man's industry and Intelligence, and those productions are not sure to be of the kind which are nost needful. Sannge nutiona usually rest content with the natural produce, and they are accordingly found to be fow in proportion to the surface which thoy possess, and generally in the lowent state of misery. But wherover man laas possessed any intelligence, he han applied himself to cultivate the carth, so ns to make it capahle of supporting in comparativo conofort a larger amount of population.
The enrlieat efforts in agriculture appear to have averywhere been simple, and limited in their object. The aurface was ploughed, the cerosl graina (wheat, oath, \&ec.) were sown, and such a crop us nature gave me contentelly renped. It cannot be said that, ly such a aystem, more wss done than merely to take ndvanagge of the natural fertility, in order to raise firinnceous grains instcad of the spontincous herbage. Here, bowever, sgriculture acema to have in every country tekea its stand for many ages. It has only lieen in recent times that men nnywhere thought of cultivating the soil under certain edvantageous circuinstances, having a reference to acientific principlea, do aa to inrrase the natural prodwtiveness, and consequently render the earth capable of supporting an increased population.
The rise and progresa of agriculture among ua bivo unavoidably been much affected ly the natural peculiarites of the country. Great Brituin and Ircland are isla ila, having the vast expanse of the Allantic on tho west and German Orean on the cast, and lic within the 50th and 59th degrees of north latitude. Both from relative situation and latitude, therefore, they are exposed to a variable, and, upon the wholo, ungenial climate. For nbout five months in the year, or from November till March, the ground is liablo to be covered less or more with anow, or to be frozen in its surface; and herbage in cither case in so scanty, that, unless for sherep, and not always for them either, the open grouns does not afliord nouriahinent for the ntock of paaturing mimala required in hushandry, or for the deiry and marke's In a word, vegetable food must be pröuced in aullicient varioty and quantity during seven monthe
of mild weather, to atore up an a provision for the rob milining five. Thia neceanarily gives a peculiar chareo ter to the huabandry of the British islanda, or of any otbor country similarly situated. Independently of the circumstance, the natural character of the soil throughout is far from being uniformly suitable for agriculture. Some Innd is gooul, some is of a medium quality, and a large proportion in positively bad, being in a state of nature ro hetier than an unproductive morasa or wate. Henie, under a poor aystem of agriculture, onty the good land was cultivated, and a large acction of the country was of no use to man or lieast, farther than affording refuge to tribes of wild animals. In former times, live-stoek were either kopt on such a linited senle as to render their amount of winter provender casily attainable, or thoy were half starved for sovoral montha while the inciemens season lasted.
The improvemonts which were in time effected to remedy thene deficiencien, consisted of a scrien of moven, each depending on the other. Two things were desiro able-to increase tho extent of culturalle soil for grain crops, and to ruise sufficient food for cattle and horsen all tha year round. Now, these desiralle points involved a thorough change in the practice of huslandry. How was it possible to break up and profitably cultivate indifferent aoils, much of which had hitherto heen considered beyond all hope of improvement, without an aluudant supply of manure? and how could this manure be procured without keeping a large stock of cattle, for which there wna ovidently no meana of suhsistence! To overcome these difficultics, it was found neceasary, in the first place, to introduce what are called green crops, that is, cropa of artificial grasses, including clover, turnips, and other roote and plants; for, hy having : proper supply of these subatances, two important enda wero gained-the support of cattlo for manure, and the alternatiou of green with grain crops ; thus at once enriching the land, and relieving it from the scourging obligation to raise com crops succeasively. On these main points, then, along with plana for drawing off by artificial drainge the surplua water lodged in or upon the soil, hing the great agricultural improvements of moden times.

8OIf.s-CHOTCE OF PARMS.
The soil, or that carthy subatance with which the dry land is in most parts covered, forms more particularly the inaterial on which the ngriculturist has to operato. An inveatigation of its various qualities is abaolutely necessury for all who would conduct farming business in an enlightened and liberal manner.
The soil ia mainly composed of particles which have been diaengaged by varions means in the course of time
from the rocke on which It rence in eome inatances, and inore particularly on hilla, it in composed in the main of pulverized materiala from the rocka liomediately beneaih ; but in inany othera, the pulverized matter has heen washed down froin bigh into low grounda, or traneported by flooda from great diatonces. Tha action of alr and water on rorks in dissolving them, and the power of the latter element in tranaporting the disongaged particlee, are the chief caumes of the prosent arrangements of the soil.

Notwithatanding the different appearances which the earthy covering of the globe exhibita, it is composed alinout entirely of four nubstances, formed ty an original union of simple ciensentary mattern. These four aubatancea, washed at a former period from rocka, and calied primitive cartha, are clay, oand, lime, and maguesia. It In in the due combination of those that fortility consinta. We shall deacrive them eoparately.
Clay_Clay, or, an it is ofen callell, alumine, or argillaceous earth, ia easily distinguishable. It in a compect aubatanee, which absorls water dowly, sud when mointened throughout, in sof, pliant, and exceedingly tough or tenacious. In Ita ordinary condition it in so close in texture as to prevent the penetration of the roote of planta, and therefore is a merious obstacle to vegetation. Clay is one of the moat obdurate and worat kinda of noil upon which a farmer is called to operatc. If it rent on a aubetratum of gravel, or friabio rock, or nand, It admits of eany melioration! but thin le eellom tho case; it too frequently reata on a coild and atill more compact dark ciay, called till, which is so clome that no water can oink through it.

A elayey soil may be inelionated by a due mixture of eand or any other light mubntance, which will serve to cheer down its articies nnd keep them apart from each other. All kinds of calcarcous nanures, ashes, and the toose dung awept from tho atreets of towna, peat, and farm-yard manure, are serviceable in uningling with elayey with, and liringing them up to a proper atato of fertility. When so improved, they are calculated to yieid good ceope of beans, wheat, osts, clover, and Swedish turnipa. They likewive answer well for nicadow lands or puaturage. Clay soila ought, if possible, to be ploughed up before winter sets in, in order to exjore the furrows to the action of the frowt, which mellowa and braya down the tenarious cloda.
Sond-Sand or gravel, called mometimea milex, silica, oiliceoue matter, or carth of alints, is distinguished hy propertian of a tutally opposite character from clay. It has tittle or no cohesion among its parts ; is incupable of retaining moisture; and powerfully promoter putrefiction, hut permita the gases to escape. Sand is thun a corrector of alumine. These two earthe may indeed tho elassed among the contending elementa, of which a union beightena their common virtuen, and rectifioe and subduea their respective defects.
The bulk of the soil, gencraily, in composed of aand, in the extent of from four to seven-eighthe of the mass. Sir Humphry Davy ohserves that "tho term aandy should never be applied to any soil that does not contsin at leant seven-eighths of sand;'"aleo, that, "sundy soila which effervesce with acida should be called by the name of calcareous nandy soil, to distinguish them from thowe that are siliceous."

We are informed by Sir John Sinclair that " tho bent mode of improving tho texture of a sanily soil, deficient in retentive or alheaive properties, ia ly a mixture of clay, marl, warp (the sediment of navigable rivers), neanoxe, wea-shelle, peat, or vegetable earth. Even light mandy soils aro thus rendered retentive of moisture and manure. In soine parts of Norfolk, the farmera have availed themselves of these auxiliaries for improving a andy soil in an cminent degree. Thoy hava thus entiely changed the nature of the soil ; and by the con-
tinuation of judicious management, have given a womes of fame to the humbaidry of that illistrict, fur aurpaneming that of others nuturally more fertile."-(Code of dgrin
cultwre.) cultwre.)

If the farmer of a sandy soil poseses the meana of gis Ing it a top-dressing of brayed down or broken peat, he will find it to ho attonded with good effectat ln genomit, the materials of Improvement ure obtained with litto dif ficuity. When properly prepured, a suanly moil is one of the mont valuabilu which can be worked. It will proluce good cropa of common turnipm, potutoes, carrota, balky, rye, buck-whent, pras, clovar, and amufrin and other grumses. It neldom poseseanea numbient strength for wheat, besna, or Aax.

Crops on eandy solla are eanily injured ly drought, m the mointure too readily evaporatea from the apen par. ticlon. Thia may be in aome meaxure remedied by paep. ploughing, which has the effiet of preserving a due degroe of mointure in the aubatratum, ua a remervoir for the planta. To ansiat furthor in preaerving the molature in the soil, uny minall atonea which lie on the surface should not be pieked off. In rainy climates, or when the woil resta on retentive clay, auch expedienta may not bo necemanty.

Gravelly noiln are almilar in character to thome which are sandy, and equaliy acquire tho administration of materiala to glvo tenacity to the mann, alao at due supply of conipost manure. Both mandy and graveily noils should have frequent returna of grasa cropm.

Lime.-Llime, commonly called calenreous earth, in never fonnd naturally in a pure atuto, but in combina Hinn with the acide-chiefly with the carbonic, for which it has ao strong an affinity that it attracta it from the atmoaphero. The burning of limestone is undertaten for no other purpowe than to expel liy heat this gan, and reduce the base to a cauatic powder, in which atate in has a atrong tendency to ahourb firnt mointure, and then the earbonic acid of which it had been deprived. Limp blends the qualitien of clay and mand, occupying a midb die place letiveen the two. In ils caustic state it in 1 powerful promoter of putrefaction, or dscomposer of anio mal and vegetable matter, to which circumatance la owing, to a certain extent, ita efficacy as a manura. Lime ulso helps to fix the carbonic acill which is generated by the fernentation of putrescent manures in the coil, or which flonta in the air on tho aurface of the earth, und it freely imparts this gas, in union with water, for the nouribh. ment of plaints. Lime ia therefore an exceedingly valuable ingredient to the farmer; and, accordingly, wher. ever agriculture is carried on with spirit, it is eagety sought afler, though it sometimes beara a very bigh price.

Magnesin.-Magneala ia a primitive earth found is some soils, hut in a much amaller proportion than the abovo three. Its properties are neurly analogous to those of lime, hut of doubtful value, and it is certainly injuri. ous when mingled in largo quantities with the other earths.

On analyzing the varioua soila and nubsoila, they have been found to reolve themselves into one or more of the foregoing primitive eartha; and their harrennesa of fertility has in no smali degree depended on the mixing and assorting of these ingredients. Some suils are cailed loams; a loam, however, ia by no menns a distinet bady hut in a combination of clay, annd, or calcareous mattet. Some joama are denominated claycy, from the escess of argiliaceoun matter; others, open and light, from tho preponderance of mand. In fact, these two original ingredients acem capalise of being compounded in auch in infinite variety of waya, an to give oceasion to that direp. sified texturo of moila met with in all countries and Ill situations.

Besidea these four primitive earthe, which conatituan equaliy the noil and subeoil, the upper of teree. or moould
malainn the have çuwn ot thither in the sion of these! richneat of anoll The reaidual lulion, in ext Hackiah colou which has bree to a black shat the atoundince will are foun counpoumin, in of which are in rious, to veget. dratu from wh heen earried to caures
The natura 0 of wagetalitex is dure. 'I'lis, ho will or trather atate of tillage: ancultivated gr bintance on the chanced to falt. thin kind of Inv lry-an, for in suparahundaut
The quanticy of niture will alan for proluction. berthuye is a sur of modaturo in 1

It has been uriculturist, the arol mil, and ti firm profitable. pent soil is ne note manare, at the former, and It is a wise max will nay he, that it should alway to dh the work i height at which British islands in atinns, from patet ble crops of harls of nearly 900 ter lie climate is \mathbf{i} Jninage, the huci. becomes the grea wodevote high gri and a considerat mection and ren
lu making n ct b prefer a gently irregular surfaco. lar surface is v nintages ; and if low rental. If j, dape to the soutl tion in other dire and rejuire Irui erve if there lse water.' If thero may be conveqie land, for this defe source of trouble cols, and in mod the surfice and n the auriace and
Yow. I_-61

-(Code of Agri.

te meane of giv. brouken peat, bo ctsa in general, ad with litto difí dy soil in one of It will produee , carrota, barley, mifin and othe? reugth for wheat,
d ly drought, a 1 the apen paro cencodied by deep erving a due de. remesvoir for the the mointure in te nurfaco ahovid or when the noil nte may not bo
ir to thone which diminintration of alno a due aupply welly soila thould
enreous earth, in but in combint arbonie, for which racta it from the we is undertaken heat this gan, and in which state it oisture, and theo deprived. Lima occupying a midcustic atate it in : wcomposer of animatance is owing nure. Lime also generated by the the evil, or which arth, and it freely for tho nourishexceedingly ralocendingly, wherpirit, it is eageriy cara a very high
ocearth found in prortion than the mnalagoun to those A rettainly injuri. ex with the other
ulsooila, they have one or more of the barrenness of fitr1 on tho mixing me poila are called IA a distinet tovy calcareous matteh fom the excess of 1 light, from the two original in. unded in such on asion to that diret. countrien and dll
which conatitua of thesc. or mould,
mamana the gutril relice of organized muturancea that havo mruwn of decenyed upon it, or have lwen conveyed thither in the prongreas of cultivation. The decomponition of tirewe is the prosimate caumen of fertility; and the richnese of woila hearn refirence to the relative guantitien. the reinilual earils remmining after the procem of dianopulion, in estremely light in weight, and alwayn of a Harkioh colours. It in owing to this that a garilen, which has leenu under long-emithued culture, approarien to blark abate, progrewively deepening accordiug to the atuablance of thim matter. In militition, nearly ull wolla are fuoud to rontath certain valiona chemical cumpoumla, mineral anlta, and metallie oxiden; some of which are luneficial, otherm harmlenn, and a few injurioue to vegetathon, and which either preeenisted in the drata from which the surfoce haw treen formed, or have breen carried to it hy wuhterrauean apringa or liy faetitious caukes
The nature of moila in mometimea lutiented by the kind of vegetalte which they appear gpontanemaly to produce. 'llisiv, however, in not in safie trst of the inature of will, ar enther of what con im proslueed from them in a ante of tillaze; for the anpla of weeda whill grow upon uncultivated ground may have thouted to them from a duanace on the windr, and vegetated where they have chanced to foll. All that ean urually the expreteil from think kied of inventigation is, whether the firll be moint or ify-an, for hataner, rushera will hivarinhly indicate suprabuanlant mointure nud a neceasity for draining. Shie quantity of herlmge or plants proxluced in a ntate of nuture will alaonerye as a test of the moil and its eapacity for production. A surfice which exhibite thin nematy therthage in a nure indicution of goverty of soil, or a defect of molsture in the elimate.

Chnico nul Size ot Farma.

It han heen jurtly observed ly wo eminent practical aricultuist, that too much cun linrilly he peid for a gool muil, und that wen a low rent will not make u bud Garm profitable. The labour of cultivating a rich and a pant soil in nearly the same, while the hatter repuires inore manure, and conserguently in more expensive than the former, and the refume bear no proportion in value. It is a wise maxim in husbandry, of whatever nature the will may the, that, like the cattle ly which it is cultivated, at should alwaya le kept in gool condition, to cunble it bodn the work it is uxpeeted to perturm. The ordinary height at which common grain cropes an be raised in the British islands is from 600 th 800 beet; but in some situstima, fron particulaty favournble circumstances, toleruble crops of harley anil outs may be produced at a height of neatly $\theta 00$ fect, and even higher. In propurtion ua tie rlinate is improval by aheltering plantatione and drunage, the heiflot at whicli grain ereps may le realized becones the greater. In gencrul, it is more appropriate wdevote high grounds to sheep pisturage than to tillace; and a cansuleration of this circumstance will guide tho mection and rent of lumd.
In making a choice of lund for farming, let it he a rule onprefer a gently sloping surfuce, or level, to a hilly naul irregular surfiace. Tha labour of working land of irreghlar aurface is very great, independent of other disandmanteger ; and if taken, it shoold be at a proportionably low rental. If posailh, select land that lies with an casy alope to the sonth; though, if well sheltered, the inclimation in uther directinus is of little consequence. If the bad require draiage, or he exposed to heavy rains, nharve if there le sutfiaint inclination to cairy of the water:' If there be no lower point to which the water may be conveniently druwn, avoid the risk of taking tho land, for this defect in its eharacter will prove a frequent source of trouble and loss. In the cate of dry calcareous solla, and in moderately rainy districts, the indlination of the surfice and means of drainage are immaterial.

Iand on the hanks of a running utrenm la likely to be more maluhrlous for cropa than that which in near aluggtinh brooks or dull sedgy liken. Prun dull heret watern thete arime, in certain eonditiona of the atmonthere, heavy permiciona vapourn, which ateal along the anrface of the widjarent groundn, and tetid to blight and otherwise injure the ctnps. These watrea, alme, are a fortile hothed of innectso Running waters purify the air, and are of great advantage for eattle. Neoc, however, that the land in not lialle to be floskled in whiner, for a contingency of that unture should eanee a diminution in value.

Conuiderationn rempecting elimate, moll, elevation, $\mathrm{Kc}_{\text {, }}$, are, however, of aulorilinate connaquence in compmision with the very important matter of instince frim marketa and roaid. A long carriage to market, particularly if the roadd be indifficrent, in one of the greateat drawbacks which the agriculturiat ran pomaibly encounter. We have a atriking "xmuple of thia in aome parta of North Amerifa, where the linemt landa, nuch an wowld lother an annual rent of $\mathbf{5 6}$ or $\mathbf{5 6}$ per uere in Eughand, are not, Wir their entiro propictarmbip, worth an many ahillinga Where bal roaila interpose, a distanee of a fiw miles is practically na bad un a dintance of humberda, or "wen thonmamia, of milex. The meana of procuring an ulundance of butpoter, at in reasomblide rate, aloo forman an important inater of culculation for all perwona before netting on a tirm.

Farma vary considerahly lit size ond mode of working. The firat clans which we may mentinn are amall forma of from six to eight nerea, conducted exclunivily ly tha labour of a cottager, or, an he may be called, amall firmer, and his family, and who, by dint of great peraonal exartion, and acarecly any outlay of money capitul, fulfila the momerat! expectation of realizing a plain livelihoom, and, if ho he a tenant, paying a rent to a landlorid. The mecond rlane ol tarma, aro these which are to twe wrought on the moat extended principlea of rural eronomy, either by a tenant or proprictor, a large capital embarked, the hest implements and machinery, hirrd lithour, and the hig!est professiomal will. F'arns of this nature, when almont entirely laid nut in tillage for grain crops, such oa nre common in Norfolk, Northumherland, East Lothian, and Berwickahire, range from 300 to 400 acres in extent, and are divided inta cight or ten large felda, ly rarefully arranged thorn or stone fences. Some furms, however, where the soil is light, and cattle and sheop freding in an oljicet with the tarmer, are as large as from 700 to 1000 acres. In those districts where the climato is moist, and attention is directed mainly to dairy husbandiy, the farma are of more modernte mize, lieing in general from 60 to 160) acres. Notwithatanding all that has been written on the practice of agriculture, it remnins undetermined, hy rivid exnmination of facts, whether small .ttage farma, wrourht by spmude hushanitry, or the large faring of eapitalists, aro most advantageous to the country-that is to say, which rlass produres the largest quantity of produce it the lenat expenditure of means, taking those mears on louth sides at their market value, and which ran atford to pay tho highest rent. It being, we think, very important that cleur notions should prevail on this subject, we shall in the present article notice the routine of procedure on farms of the lurger and more common clase, and in that which tillows proceed to un account of cottage farming, conelading with a few generol obacrvations on both.

A furm of the larger class, whether conducted by a tenant or a propristor, may be descriled as a fuctory of ugricultural produce, every part of the proceelings being conducted us in u lactory of articles of trade, by he employmem of capital and the division of labour. The master farmer with his npparatus occupies a lirge estur bishonemt, such as we represent in the following cut Nurh is the estublishment, at least, common in Scotland The whole, it will be observed, form a quadrangle, with the farmer's residence in front: feeding-houses for culven 2 s
and cattie on the left; cattle-aheds in the rear, over which te a straw-romm connected with the edifices behind for the thrashiug-milt, for which steam or horso-power is employed; and on the right, stables, suddle-rooms, scc. In the centre are tiree fold-yards, open to eattle from the aheds behind, and into which straw may be thrown from the strow-room. The editices on each aide of the farm-

Fig. 1.
bouse in front are for cart-lodges, boiling food, lodges for unnarried male servants, or other purposes. A granary ia supposed to be connected with the thrashing department.

If the farm be rented, it is superintended by the farmer himself, and this is the most common plan; but if kept in the hands of the proprietor, it is generally placed in the charge of a deputy, who is named factor or grieve. The farmer's family interfure very slightly with any of the arrangments. The whole of the labours of the field or in the farm establishment are performed by hired servants; and it is a leading principle in the economy of the farm to keep as few of these as possible.
It is tound from experience that farms of this description cannot le conducted properly, for the legitimate advantage of either landlord or tenant, except a lease of considerable duration be granted; for if the tenant be at all time s liable to be dispossensed at the mere will of the proprictor, he can have no interest in improving the land, and therefore cannot afford to pay a suin suitable to the actual cajabilities of the ground. In all cases, sor mutual comfort and pecuniary advantage, there ought ω be a properly defined lease or contract for a term of sears.

According to the modern practice of agriculture, the pronts of a farm are frequently prospective; a number of years muat sometimes elapse before the ground repaya the farmer for his aunk capital, and his trouble in effecting improvement. The duration of a lease consequently dependa on the nature and condition of the soil, as well as some other minor circumstances. It ia understood that a long lease is a much greater stimulus to spirited furming than a low rent. If the lease be long, and the rent high, great exertion is used by the farmer; but if the lease be long, and the rent low, a slovenly mode of farming may in general the expected. It appee w, from all experience on the subject ins Scotland, that a lease should neither be too long nor too ahort, but of a fair moderate duration, as nineteen or twenty years. In Ireland it is customary to make the length of a lease depend on the contingency of two or three lives, one of wlich is the life of the landtord. But this is a clunsy and far from liencticial practice as reope ts the'improvement of the land, and is not to be comareniled.

Purnished with a long loase; a capital of ouc, two, or three thousand pounds, according to circuinstances; the best implementh, and artive servants, the agriculbarist enters on a great undertaking, which demands all his energy and skill. He has to calculate rotations of cropus ; to procure manure at all bazards, cither ?:\%
purchase or by feeding cattle; if by the latter or dient, he has to attend fairs, to purchase cattle in lean state, with the hope of selling them after being fatted by whinter keep; and to provide for this wintel keep, ho must necessarily raise a sufficiency of tumiph
The keeping up of fences, tho attending of markets, The keeping up of fences, tho attending of markets, and the general contrivance of ways and means, are also anong his onerous round of duties. Let us now glarce at what must be the nature of his procecdings in the
ordinary culture of his possessions.

tillage-farm utensils.

Titlage compreheuds the ploughing, cleanng, and fallowing of the fialds, with a view to their proper eul ture and improvement. The oljeet of ploughing is is delve and turn over the soil in the ridges, to destron the wurtace vegetation by burying it underground, wher it rots and becomes a kind of manure; to bury the dung spread on the land; to form furrows for ditferent pur poses; and, generally speaking, to prepare the land for cropping. In old times ploughs were exceedingly clumsy in construction, and dragged with much difif culty. This great defect was at length removed by the invention of the swing plough, about seventy yean since, by Jaines Small, a Scottish ploughwright. Smalh plough, which is an elegantly shaped instrument formed on scientific principles, was originally composed of wood and iron, and did not weigh altogether abont seventy-six pounds; it was afterwards made of malle. uble iron, and of a light appearance; but latterly the practice of makiug it of wood and iron has again become pretty general. The chief merit of this phough convisu in the fore part being formed in auch a slender and tajering wedge-like mamner, as to cut the land with the least possible resistance. The mould-board for tuming over the furrow is benutifully curved from the point of the sock to the heel of the wrest, so that it turns ovee the nould with a small degree of friction and in the bead manner.
A sketch is here presented, fig. 2, of the profile or side appearance of this valuable instrument. The degre

Fig. 2.
of bend in the mould-hoard is ohserved in Fig. 3, which represcuts the bower part or sole tumed up to riem. Small's plough, under diflerent moditications, is adapled

Fig 3.
for every species of tillage which the plough is required to perform. In its own proper form it is particulady well suited for light soils, and proceeds actively throuqh the ground, cutting to a deptis of trom seven to aine inches; but it may be made to go much decper, if adletional power be attached to it. In Scotland, and othe countries in which it has come into use, it is almost in variably drawn by two horsea, yoked abreast, and in guided and tented only lyy the plunghman, the reins coming to each handle of the plough. Considerable dill is required to steady and guide this sharp instrument a it advances through the ground; but this is a point of whieh properly-bred ploughnen pride themselves, ad does not form the nubject of complaint.

Bmall's plo thase moder sdapted to pe it is not very land from a st recypable mat anchoke and deficiency, M twenty years plough, a repr

this plough th coulter ; and pushed up as t nid or clear its The sock and cut and lay o yringing lack
Thete aro \mathbf{y} wheels, and a designed to sui ever agricultur wheci-ploughs
With Sinall' min and a cou work. The fol tions to plough than a field con There is even picase the eye 1 its unrivalled ri.lges of the sa slraight equidist exactness as sca
"It is not the the horses who monly he who milf, and keeps pronent them yet without lay checking them and he who cer tintee so to the finish with one is all nlung un dependently of preference of th "If brosdeas tir-zag, the wor ings much time is ploughed, ant ground, an une been ayplied, at dane where the ooddening the u are narrower.
"In fioe, the is that of the p and in the furr thus he is more and the plough the friction by 1 mg the horses and procceding thus, too, he i
by tha latter erve purchase cattle in ig them after being vide for this wintet ufficiancy of tumipe tling of markets, and and means, are aliso Let us now glatice aproceedings in the

CNSILS.

shing, cleaning, and to their proper col t of ploughing is is te ridges, to destroy onderground, where re; to bury the dong ws for different pusprepare the land for 3 were exceedingly ed with much diffif igth removed by the hout seventy yeam oughwright. Smalli ed instrument formed cinally composed of yh altogether abore ards made of malle. sce; but latterly the ron has again become ithis plough consixt such a slender and cut the land with the uld-board for turning ed from the point of 0 that it turns orea iction and in the bet of the profile or side unent. The degrow

Fig. 3, which turned up to riem. lifications, is adspted

te plough is required rim it is particularly eds actively throuxd from seven to nine nuch deeper, if adlit Scotland, and other 0 use, it is alaost in hed abreast, and is loughman, the rem h. Considerable aill sharp instrument a ot this is a point on ride themselves, ad tint

Amall's plough may be aaid to be the parent of all those moden improved ploughs which are strictly ylapted to peculiar kinds of work. In its ordinary form it is not very well suited for ploughing up moor or heathy land from a state of naturo, as tho heath and other tough vepetable matter is liable to collect upon the coulter, and anchoke and retard the instrument. To remedy this deficiency, Mr. Finlayson, an Ayrshiro farmer, about wenty years ago contrived an instrument called tho rid plough, a representation of which ia given in Fig. 4. In

Fig. 4.
this plough the benm is curved so as to terminate in the coulter; snd when tho heathy matter collects, it is pushed up as the plough advances, and falls off, so as to pillor clear itself of all kinds of looso fibrous rubbish. The sock aud mould-bonrd are also so contrived as to cut and lay over the slice, without tho power of its ppringing back to its old position.
There are various kinds of ploughs with one or two whecls, and adapted to purticular purposes, but chiefly designed to suit an unskiltul class of ploughmen. Wherever agriculture is in a backward condition, there are whel-ploughs in use.
With Sinall's or Finlayson's plough, a skilful ploughmula and a couple of active horses will make excellent work. The following are among Mr. Finlayson's directions to ploughmen :-_w Nothing can be more beautiful than a field commodiously laid off, and neatly ploughed. There is even none of man's handiworks that can please the eye more, and nt the same time show more of its unrivalled accurucy, than a lawn which presents nitges of the same width, with furrow-slices rumning in straight equidistant lines; and that, too, with such minute exactness as searcely to be equalled by the gardener.
"It is not the man who makes the greatest ado with the horses who opens his ridges best. but more commonly he who goes steadily and directly forward hinswilf, and keeps such a command, by the reins, as to prevent them from devinting far from the right path, yet without laying too murh stress to thir precision, or checking them suddenly from one side to the other; and he who con take a struight furrow at first, and continue so to the last, even on a ridge of fifteen feet, will finish with one, two, or three bouts less than one who is all along undoing, and overdoing, and that, too, independently of the ense to himaelf and his team, nud the preference of the work in every respect.
"I[broadcast ridges are of uncqual breadth, bent, or rirzag, the work cannot be so uniform, and in the turnings much time is lost, and harm done to the land which is ploughed, and with crooked drills there is a lose of ground, an unequal distribution of manare, if such has been applied, and the hoeings cannot be so effectually done where they are far distant, or done at all, withonit oddening the mould, and injuring the crop, where they are uarrower.
"In fine, the grand criterion of ense and proficiency is that of the ploughman's walking between the stilts, and in the furrow, with a free step and erect looly, for dus he is more convenient for himself, has the horses and the plough better at command, and increases not the friction by his weight; for thus he cannot go, excejting the horses and the plough are properly adjusted, and proceeding with the least jossible obstruction, and thu, too, he is more glaceful to look on, than when
wriggling with one foot foremost, or moving as if part of his mascles were under the domination of violent spuamodic contraction.
"It would perhaps be impossible to give any thing like a systcm of rules farthe most proper and convenient make, size, weight, turn, \&ec., of a pluugh for all the varieties of soil, or of diversity to be met with, even in the sane ridge; neither shall I mako the attempt; hut a few rules may be laid down, and observed na axions in all ordinary circumstances, viz:-
"1. The horses ahould be yoked ns near to the plough as possible, without too much confining, or prevonting them froin taking a free step.
"2. When at work, they should be kept going at a good pree.
" 3. The chains or theets should, from where they ars auspended over the backs of the horses, point in a direc tion leading through the muzzle to the centre of the cuting surfaces of the coulter and share.
"4. The implement, when taking the form of the dimensions required, should stand upright, and glide onwards in the line of progression, without swerving in any particular wny.
"5. The ploughinan should walk with his body upright, and without using his foree to one point, or showing appearance of inclination.
"The untaned and liveliest, or most forward byre, should be put in the furrow, and only bound back to the right or off theet of the land-horse, at or near the place where the backband joins it, at such length, when stretehed at the width required, as to prevent his end of the bean, or double tree, from being before the other. And further, the heads of the two should be connected thecther by a small rope or chain, at the distance wanted, giving the furrow-horse power over the other, that is to suy, if tender-monthed, it must be fixed well up on hir hend, nad in the rings of the bit or curb of the other, 30 that he may have the power of the head over that of the mouth of the land-horse."

Let the draught of the horses go in a direct line to the plough or swingle-trees; for if the line be in any way bent, a portion of the power will be lost. Sometimes in Eingland ns many as five horses are yoked to a plough, two and two, with one in front; and in most enses of this kind, the power of the foremost horses is partially thrown away, or probably distresses the hind pair of animals. It is not convenient to yoke four or five horsea abreast, but it should he fully understood that in that manner they would exert their power to most advar: tage. Two horses will, in general, do more work yoked abreast to a plough, than four yoked before each other in single file; because some of the power of the foremosi horses is always lost in its passage along the sides of the hind horses, and, in turning, the whole draught is imposed upon the hindmost in the row. Wherever the practice of yoking four horses in single file prevails, we recommend it to be discontinued as a waste of animal power, and in its stead to try the more efficacious plan of working the plough by only two horsea abreast. Unless on very strong soils, or where a great depth is required, two horses with a well-made plough will be found amply sufficient. Where four horses must be enjployed, yoke them two and two abreast, and let the irnight of the foremost pnir proceed by a chain from their centre swingle-tree to the centre awingle-tree of the hindmost pair, thus passing hetween the hindmost and going in a direct line to the muzale of the ploughs By this means, the power of both pairs of horses goes unimpaired to the resisting object. Never, on any account, let the power of the foremost pair proteed by twe chains along the sides of the hind horses to the outer ends of their swingle-trees, for this would only cause needless expenditure of draught. In Seothand, where the economizing of animal power has been carefully
etuliol, all ploughing whatsoever, be the land light or heavy, except when excrted on the subsoil, ia performed with but two horses, and these invariably yoked abreast.

It is a well-known maxim in tillage, that clay or tenacioun soila should never be pibinghed when either too wet or too dry. When too wet, they are tough, and the clods difficult to break, and when too dry, the plongh will acarcely penetrate the soil. In ploughing the first time for fallow or green crops, it is of importance to begin immediatcly after harvest, or as soon after whentsowing as possible, in order that atrong tenacious soils may have the full bunefit of tho frost. On wet stiff soils frost acts as a most powerful agent in pulverizing the earth. It expands the moisture, which, requiring more space, puts the particles of earth out of thelr place, and renders the soil loose and friable. On such soils there is no rule of husbandry more essential than to open them as carly as possible before the winter frosts set in. If left till spring, clay soils may be too wet for ploughing, or, if the season be dry, the earth, when turned up, will be in hard clods, very unfit for vegotation. 'Therefore, on farms having a proportion of clay and of light soils, it is necessary that the strong wet land should be ploughed first, providing the weather will allow.

Subsoil-ploughing is a new feature in hushandry. The object of it is to trench or loosen the soil beneath the ordinary ploughed surface, so as to allow of its gradual assimilation with the mould above, into which it may afterwards be brought. The process of subsoilploughing is effected by a powerful instrument, constructed according to the design of Mr. Smith of Dennston. As subsoil-ploughing, however, is intimately connected with the methods for improving waste land, we postpone any account of it till the article which follows the present on that subject. For an account of the proper steps to be taken to drain the land, if in a moist condition, we also refer to the same article.

The Harrou-The plough leaves the land cut in longitudinal slices, and is therefore less intended to pulverize the soil than to turn up a fresls surface to the atmosphere. Another kind of instrument is required to break the upturned sward, reduce it to powder, nad also to clear it of weeds or other foul substances. The harrow is the implement chicfly employed for this purpose, as well as for covering the seed. Accorling to the diversity of soils, and the particular use to which the harrow is to be applied, its form undergoes considerable changes.

The harrow is a frame of wood, consisting of at lenst four bars lengthwise and crosswise, with iron terth set on one side. Usually a pair of harrows is yoked and drawn together, as represented in fig. 5 . The figure represents the most perfect inplement of the kind, or such as is generally used in Derwickshire and the Luothims. The teeth are set only on the long bara; and the harrows are drawn at euch an angle as to preserve the tracks ol the teeth in separato lines, and at regular distances from cach other. Strong heave lands require neavier harrows than those of a light nature. In soine cases the teeth of the harrow are of different lengths, those forming the front row heing half an iuch longer than the second, the secont a little longer than th: 'third, and so on dincinishing backwards. In drilling crop, an implement called the drill-harrow is enil yrd. A light single harrow is in most instanees suthicient for drilling or harrowing over the young wheat in apring.

When the land is very foul, and calculated to choke the teeth of the harrow, a powerful instrument is How
used, called Finlayson's patent harruw, or sellaleanm, cultivator. It runs upon three wheels, one in front and two behind. The teeth are curved in such a manner at to -bring up and disengnge the couch or other weedy matter, the implement thus clearing itself as it advances By menns of a lever above, affecting the frame, the tecth can be depressed or raised, ao as to work to any required depth.

The Grubber, \&r.-In certain conditions of the ground, a hurrow is incompetent to cut up and clear it of its under-surface weely matter. In such cases, grobbers, eradicators, or acufflers, aro used, necording as circum. stances require. The common Scotch grubler reseltbles a strong harrow frame, running upon four wheets, and guided like a plough. On the lower side of the frame are placed eleven long prongs, ench of which tes. minates in a triangular sharp foot. On being dragged forward, the prongs scuttle the ground to a depth as great as that of the plough, effectually cutting the roots of weeds, and bringing all loose matter to the surface. The grubber, or scaritier, may le used to advantage in the following cases:-" 1. Barley and turnip land, after being once ploughed, may be made both clean and fine by its means, and the harrowings and subsequent ploughings are thereby rendered unnecessary. 2. Where Iands have been ploughed in autumn, the objection to the sowing of apriag crops on the winter furrow may be obs viated by the use of the scarifier, as not only barley, but oaia (if not grain nfter grass), beans, peas, and tares, may be sown without an additional ploughing. 3. Sume mer fallows may likewise he advantageously cartied on with fewer plouglings, enrlier in the season, sud at less expense. 4. It may be effectually cinployed to for ward operations in the preparation of land for potatos or turnips, and afterwards for raising the potato crop; and, 5. Its utility in mixing lime or compost with the soil is of the highest importance, ns it not only incorporntes these manures more effectually than the plough, but never places them beyond the proper depth. Hence the scarifier or grubber is considered to be one of the greatest improvements in the culture of the soil that modern times can boast of."-(('ode of Agrioulture.)

Souring Implements.-There are various machines for sowing grain, seed for turnips, \&c., in drills, or rows, in the hollow of furrows, or ridges, or on a flat surface, as may be required. For sowing turnip-seed, a barros on wheels, and pushed along by the hands, is generall? used. For sowing grain, one of the best implements in use is

Morton's improved Grain Drill-Marhine-This ma. chine, as represented in fig. 6, consists of a box or hop

per supported on a frame with wheels, and is drawn by one horse, and guided trehind by one man. The sed escapes from three conductors, the lower points of whith net as coulters on the soil, making drills iter the sech In the inside of the hox is an axle with projecting teeth. kept in motion ly the oxfe of the nachine, and preveat ing the seed from getting rlogged. The seed pasas into the conductors through holes, which can be msto of any size by means of a sliding-hoard. The width ol the coulters admits of being regulated by meana of acrew and other apparatus; and five conlters marb used if necessary. A rod projects from the handle half
the breadth of marts the groun the machine is
There aro :radth and siz uut they requir of wood or sto land which hos will also be un Hocing Inpls hand hoe is of but is altogeth the tows of ex \&ic. This hea mal labour by instruments of

Hilkie's Hor ment, a skctel gaialed sud drav plants applear a rows, thoroughl numerous weed feathered feet g or depressing th as a rake, by dr troyed wecds. able mould-hoar heaped up on ro nety of the plou

All lands are are of no value mary, they injur from the groun spreading their manure deposite the support of w liss plant, theref and ouglit to be "A farmer shou As prevention thould begin by seeds from whic ner to the land vicinus proxluce enhankments for every species of rank grasses, \& be similarly clea tion. If this w fertile source of sure destroyed. gravi or other or onls which sre
Notwithstandi acknowloulced, w seevls will lie un winds will waft is one of nature' regetation. It h diffreent weeds i nuals, others bien
 , one In front and such a manner a a or other weed elf as it sdvances g the frame, the is to work to any
ons of the ground and clear it of its h cases, grubbers, ording as circum. ch grubber rescm. upon four wheels, lower side of the each of which ter. On being dragged and to a depth as y cutting the rocts itter to the surface. ed to sdvantage in d turnip land, after oth clean and fine s and subsequent cessary, 2. Where the oljection to the furrow may be oh sot only bartey, but 28, pens, and tares, loughing. 3. Sum agcously carried on the scason, and at lly employed to for of land for potateses g the potato crop; or compost with the it not only incorpo Iy than the plough roper depth. Hence d to be one of the e of the soil that mos (Agriculture.) arious machines for , in drills, or rows, or on a flat surface, irnip-secd, a barrow hands, is generally best imptements in

Mashine.-This ms. sts of a box or hop
ls, and is drawn br ne man. The sed wer points of 世hilh driths for the seed with projectiug teeth. arhipe and prevent

The seed pases which can be mato pard. 'The width ot lated by meane of 1 ive coulters mar by rom the handle hall

He meadtl of the machine (n it shown in the cut), to park the ground, and by this mark the next advance of the maschine is regulated.
There are other drill-sowing machines of grester U:adth and size, likewise machines for dibbling leans; out they require no particular deseription. The rullers of wood or stone, employed to roll or prese down the fand which hos been lately sown, are so common, that it will also be unnecessary to describe the
Hocing Implements.-'The light inn! hand hoe is of use in cleaning tuiups:
nt called the but is altogether unsuitable for stirrion he soil plants, the rows of extensive crops of turnips, pefatoes been \&e. This heavy duty requires to be periormed by animal labour by means of the horse-hoe. Ono of the best instruments of this kind is

Fig. 7.
Hilkie's Horse-Hor and Drill-Harrm:-Thio implement, a skitch of which is here presented (fig. 7), is guided and drawn like a plough. As soon as the infant plants appear ahovo the surface, it is drawn betwixt the pows, thoronghly scuflling or cleaning the land from its numerous weeds. The depth to which its prongs and feathered fect go in the soil, is regulated by elevating or depressing the whed in front. It likewise nazwers as a rake, hy dragging along with it the heaps of destroyed weeds. Some horse-hoes are fitted with a movable mould-board at each side, by which the carth is heaped up on rows of plants; this is also done by a variety of the plough.

Weeding.

All lands are less or more infested with weeds, which are of no value cither for ormament or use; on the contrary, they injure the crops by extracting the nourishment from the ground, and greatly impede cultivation by spreading their entnggled roots benenth the surface. The manure deposited on the soil is destined exclusively for the support of what is meant to be raised, and every useless plant, therefore, which lives upon it, is so far noxious, and ought to be extirpnted. Hence the common maxim, "A farmer should let nothing grow hut his crops."
As prevention is alwnys hetter than cure, the farmer ehould begiu ly preventing the growth of weeds. The seeds from which weeds spring are brought in some manner to the land from somewhere. Pry to cut off this vicious produce at its source. Let all bauchs or natural emhankments forming boundaries to fields, be cleared of erery sjecies of weeds, queh as thistles, docks, ragweed, rank grasses, \&c., and let nll road-sides mear the lields be similarly cleared of their gay but unprofitable vegetation. If this were done generully over the country, a fertile source of foulness in land would he in a great meagure destroved. It is also desirable to sow clean seed for gram or other rrops, and to use, if possible, those manures only which are tree of the secels of noxions vegetables.
Fotwithstanding all ordinary precautions, lands, it is acknowledged, will developacrop of werds, bevause some repds will tie minjured for renturies in the soil, and the winds will waft others from great distances; such, in fact, is one of nature's provisions for covering the earth with regetation. It has been asertained that upwards of tilty different weeds infest arabla lamds, some of which are me nuals, others biennials, but the principut part peremials,
whose sceds will lie for a long period in the soll. The more common of these various weeds are the wild ont the common thistle, dock, coltsfoot, ragweed, dent-de-leon, and chorlock or wild mustard, the latter particularly. To these is to le added that most tormenting weed, coughgress or rark, which spreads its long cord-liko roots boneath the surface, weaving the soil into a kind of matting Annuals and biennials may be partially extirpated by a well-wrought summer fallow, or, if the soil be light, by the culture of potatoes or turnips, for the land in that case is well cleaned and dressed in spring, as well as hoed in summer. Hand-hoeing for this purpose is sometimes necessary. If, however, no ordinary process of teasing and cleaning the land extirpate the weeds, the more tedious and expeusive operation of pulling must be resorted to. This will be absolutely necessary for the extirpation of chorlock, that flowering yellow weed which tingea the fields with its brilliant lustre in summer. When the crop is alout a foot high, women or children should be employed in going earefully over the field, trampling down as little as possible, and pulling and carrying awsy in their aprons every stalk of the chorlock. The same thing may be done with the tall seeding-grass called the wild oat.

This process of weeding may be expensive, but it generelly cleans the land, and repays itself by the increase of grain erop. According to experiments adduced by Sir John Sinclair, the increase of a whest crop on a weeded over an unweeded land, was four and a half bushels per acre, and of other crops much more. "A six-acre field was sown with bartey, in fine tilth, and well manured. The weeding, owing to a great abundance of chorlock, cost twelve shillings fer acre. The produce of an anweeded acre was only thirteen bushels; of the weeded, twenty-eight bushels; difference in. favour of weeding, fifteen bushels per acre, besides the land being so much cleaner for succecding crops." With regard to oats:"Six acres were sown with oats; one acre ploughed but once, and unmanured, produced only seventeen bushels. Other six acres, ploughed threc times, manured aisd weeded, produced thirty-seven bushels. Ten bushels may the fairly attributed to the weeding, and the other ten to the manure." It is justly olserved by the same authority, that however anxious farmers may be to have their lands tithe-fice, it is of still greater importance to have them uceil-fice. There is much truth in the observation; for the ngriculturist who suffers his lands to bear crops of weels, pays denrly for his neglect in his diminislued produce, and has the additional guilt of injuring his neigh bours.

Dry and gravelly plains and hill-sides are frequently overrun with ferns, which occupy the gpace that ouglit either to be covered with good pasture or laid under tho plough. The fern is so tenacious of life, and so firmly ure its roots fixed in the soil, that repeated cutting, or the ordinary course of tillage, is unable to extirpate them. It has been mentioned as a good plan for eradieating ferns, that the land in which they grow should be partially flooled, or at least well moistened, by leading small surface water-channels nerose it.

Fallowing.

Fallowing signifies leaving the land for a certain time in a bare anproductive condition, during which it receive a rest from the labour of cropping, and is subjected to various processes of ploughing and harrowing, to pulver. ize the soil and destroy its noxious weds. The value ut fallowing for these purposes is a sulject of considerable controversy; some ascribing to it mumens virtues, mad others altogether condeming it, where grean crops and good hushamdry prevail. The truth seems to bee, that fadlowing is extremely useful for the purpose of working, !uhberizing, cleaning, and orherwise impror ving, tunds of 2:2

- poor quality, after their first subjection to tillage; and that there its value rests.

The operationa necessery for a well-wrought naked suminet fallow commence after harvest. The first winter fallow ploughing is begun as soon as the hurry of harvest and wheat-sowing is over. If deferred till nn adranced period of the season, and the weather sets in wet, the land becomes unfit for the operntion. To prevent the had conseguences of too much rain at this period, that manner of ploughing and laying the ridges should be adopted which will beat keep the land dry during the winter months, this leing a most essential point. Strong retentive soils to which a summer fullow is more particularly applienble, should get an end-leng ploughing, so deep as completely to turn up the soil from where it mingles with the subsoil or till.

When thoroughly pulverized, and freed from roots and weeds by the process just deswribed, the fallow is ploughed end-long into gathered ridges, which are usunlly from fifteen to twenty feet lirond. When the land is gathered into a furrow as deep as the soil will permit, the manure may be laid on. This is a very critical period; for if the weather becomes wet, the carting of the manure on fallow land of retentive wheat soils, is apt to poach and puddle it very much, by the pressure of the horses' feet and wheels of the carts. 'Jo prevent this as much as possible, the manure should be carried to the ground in single horse earts, with broad whecls, as they are less apt to poach the land than others. The manuze is earted along the crown of the ridges, and is thrown oat into lemps, of a size and at distances proportioned to the quantity intended to be applied; experienced workmen can generally measure both ground and manure accurately with the eye. People are now employed spreating the manure, and the plough inmediately follows, in order that the dung may lie exposed as short a time as passible. The dung leing covered, and the ridges raised, so as to admit the rain to run freely into the furrows, the land ahould remain untouched for a few weeks, that the manure may become decomposed. The period of decomposition is shortened, if the dung has been previously fermented.

The land may now be considered as ready to receive the seed furrow, which is generally given to it previous to the sowing. The ridge ia again gathered; but as this ploughing is very slight, it does not raise the ridge much higher. Lime is frequently applied to fallow as well ns dung, sometimes before the dung is laid, and sometimes afler. In the first case, the lime is laid on just before the land is formed into ridges, and, if poasible, a calm iry day should be selected for the purpose. After the lime is laid, the land ahold be immediately harrowed, to incorporate it with the soil. The second method is to luy the lime on just before the seed furrow is made; and if the ground le dry and the dung decomposed, this method will be found good.

The syatem we have described is referable to the heavier eoils; when theme of a lighter nature are to be fallowed, the cleaning process is not so diffienlt, and there is not the same risk from wet weather. If summer fallowing be judiciously condueted in the manner descrilsod, strone soils moy carry repeated alternate cropes of grain nod pulse, without any intrrvening naked fallow, for perhups six or eight years. But to preserve the beneficial etfiets of fallow on ordinary farm land, which is manured alone from its own produce, it is certainly the leset and most economical plan to lay it down to grass with the erop immediately succerding the fallow. Afterwards, successive cropls of grain and pulse may be taken as its coudition will a!low, when broken up from lea previous to next falIow. Sir Juhn Simelair silys: "It may be fortold of every farmer on a atrong woil, in surla a climate an icotland, that ais atllurnce and prosperity will always be in proportion ha the excellent state of his fallows, every thing else being
equally well conducted." Indeed, if fillowing in nend gently or imperfectly performed, no land, hewever cheaply
rented, can yield much profit to the farmer.

Farm Carts and Implements.

Two kinda of machines are in use for conveying produce to market and other purposes in husbandry-wo. ons and carta, and of these there are aeveral varietios Wagons with four wheels, and drawn by two or more horses, are acknowledged to be heat adnpted for conveying great loads to a great distance, nod that is their prineipal mprit. For all ordinary purposea connected with hatim bandry, the one horse cart with two wheeln is preferable.

The Seotch cart, as it is colled, is a most consenient and ussful machine; and to ndd to its uses it may to rendered servicenble for earting hay or straw by placinig a movable frame on its sides, as it is represented in figure 8.

Figure 8.
The Scotel cart (without the frame) is suited for conveyiug any kind of material, dung, turnips, grain in sech, \&ce, and usually curries from cighteen to twenty-tho hundredweight, when drawn by only one horse; with a horse in trace, the weight may he augmented. In Scot Inad, all grain for market is carried in these me-hose enrts, and to any distance. Ou such occasions one driven takes elarge of two ents.

The following advantages of one-horse carts are caume rated in Loodon's Fncyclopredia of Agriculture, the pas sace being apparently copied from a paper in the Analis of Agriculture, by lard IR. Sevmour. "A horse, whente aeta singly, will do lalf ns much more werk as when he scts in conjunction with another; that is to say, that two horses will, separately, do ns much work ss three ren. junctively: this ariese, in the first place, from the singe horse heing so near the lond he draws; and, in the neat place, from the point or line of draught being so much below his breast, it lwing usual to make the wheel of single-horse carts low. A horse harnessed singly has nothing but his load to contend with; whereas, when te draws in conjunction with another, he is generally entar. rassed by some ditlirence of rate, the horse behind orte fore him moving quicker or slower than himself; te a likewise frequently inconvenieneed by the greater or lefs height of his neighour: these considerationa give adecided advantage to the single-horse cart. The sery great ease with which a low cart is filled may be adeded; as a man may load it, with the help of a long-hmaded shovel or fork, by ineans of his hands only; whereas, in order to fill a higher cart, not only the man's lack, but his amacnd whole person, must he exerted." 'Tho these just dsent. tions it meed only be added, that in many parts of Eno. land there is a wasteful expegnditure in horse power, conple of horses beiny often set to draw a clumay way to marker, containing a load which could with thegreass cane be drawn by one lorse in a machine of lees jonder ous dimensions.
Every well-conducted farm estalishment is now, ot ought to he, provided with a vanety of small hat usfoul machines-fior slicing turnips or potatoes, chopping lay or jreas straw, hruiniug heaus, peas, or ouks, weighing, marhine, \&ce, all which, of the newest constraction, are to he seen at the estahlibhments of arricultural implemeat nakers. Dtensils for cooking tood for catte, tairy ultse sils, und tools for manual latour, need not here be put ticularized.

There are now agricultural implement makere in ani
ans lum ne inot neweat im atablishments enlture, publisl Pdetions.

By repeated of their fertile require the nd will yield a dn 'There are. no of the world, in growing su tions of impor exhausted, an or artificial fe husbandman. importance.
Manures ar tinetive charno ecotiomy of all animal and cipally employ sive, and susta rates more on directly eontril Gist kind has second fassil, ranked not ent and clay, so th un soil by llen tre compressed
The animal cent in their n nity. They ed and vegetable cal pracess in t the bollies. IJ snimals, is no aimal food wl undergone the out as unservi tem. From tl and its conver: that animal n cious matter, a different parts sential elemen oxygen, either gen. Comsey grouad, these the roots of pla of a new veget gerater concet vegetables, the (man included bulk than that herbage. Ex regetable mun ciples; their a less consequen these princip!e Whatever of manures, till they are further observe produred by literty citluer tity of atalile pooed to all elaites stre:m over it. 'ither re gasea escs

fallowing in need nal, however cheaply armer.

 a husbandry-wag rre several varietice wn by two or more lapted for conveying ant is their principa onnected with huse wheels is preferable. a most convarien its uses it may bo or straw by placing it is represented in

1e) is suited for con. irnips, grain in sacks, teon to twenty troo one hures; with agmented. In $\mathrm{S}_{\text {co }}$ in these one-horse occasions one diver
orse carts are chume Agriculture, the pas paper in the Annal , "A horse, when te work as when be acta is to say, that two work as thrce cont lace, from the single ws ; and, in the nest aght boing so much make the wheek of zarnessed siugly tas 1 ; whereas, when te ne is generally emba chorse belind orke than limself; he is by the greater or lees rations give a decided 'T'he very great cate be addeed; as a man andled shovel or fork, as, in order to fill a k, but his arms crd 'o these just obsers. many parts of Eng e in horse power, raw a clumsy waym ould with the greatat chine of less jound
dishment is now, on of small but ustal tatoes, chopping hay , or oals, weighing iest consituction, ar rricultural implemeal for cattle, tary uns eed not here be pur
ment makers ia an
wann inth in Fingland and Scotland; for a list of the newest implements and their prices, at some of these etablishments, we refer to Jackson'a 'Treatise on Agriculture, published in connection with Chambers's People's Edtions.

manURES.

By repeatel cropping, the best soils become exhatusted of their fertile properties, while naturally indifferent soils require the administration of certain qualities, before they will yield a due return to the labours of the husbandman. There are, no doult, soils so naturully rich in some parts of the werld, that, though used for wenty or more years in growing surcessive grain crops, they show no indientions of impoverishment; yet even these must in time be enhansted, and therefore, in all eircumstances, manures, or artificial fertilizers, requine the consideration of tho husbandann. In our own country they are of the first importance.
Manures are of two classes, both of which have distinctive characters, and perform different offices in the economy of vegetation. The first of these comprehends sll animsl and vegetalile decomposing matter, and is principally employed in feeding tho plant, augmenting its gize, and sustaiuing the vital energy. The second operates more on the soil ond decomposing matter than in dirently contributing to the support of the vegetable. The first kind has been called animal and vegetable, and tho second fossil, matures. Under this second class are ronked not only tinse, marl, and gypsum, but sand, gravel, and clay, so that whl the meliorations which are etfected on soil by Mending and compounding the original earths, tre compressed within its limits.
The animal and vegetable manures, which are putrese ent in their nature, are foremost in importanco and dignity. They consist of certain elementary parts of animal and vegetable suhstances, elaborated by a natural chemical process in the course of the decomposition or decay of the bodies. The excrementitions matter, or dung of all animals, is no other than the remains of the vegetable or animal food which has been received into the stomach, undergone there a partial dissolution, and been thrown out as unservicealle for the further nutrition of the system. From this universal decay of organized matter, and its conversion into tluids and gases, it wonld seem diat animal nud vegetable substances, and excrementitions matter, are resolvalle into each other, and are only different parts of the same original principles. The essential clements of them atl are hydrogen, carbon, and oxygen, either alone, or in some cases united with nitrogen. Conveyed by liquids or moist substances into the ground, these elements are sought for as nourishment by the roots of plants, and so form the constituent principles of a new vegetation. Inasmuch as flesh consists of a greater concentration of these origimal clements than wegtables, the manure produced by earnivorous animals (man included) is always more strong in proportion to its bulk than that discharged by animals who live only on herbage. Experience fully proves that all.animal and regetable munures are but varieties of one kind of prindiples; their actual shape and appearance being of muels less consequenee than the degrees of strength in which these principles reside in them.
Whatever be the value of the elementary principles of manures, fractically they are of no use as manure till they are disengaged liy putrefaction. It may be firther observed, that putrefnction is in every instance produred hy the elementary principles being set at liherty either in a fluid or volatile state. If a cuantity of stalle dung be piled into a heap, and froely exposed to all varicties of weather, it soon heats and enits stream of vapour, which is often visible as a cloud over it. These vapours, and also the orlours sent foth, are gases escaping, and the heap is conistantly dimi-
nishing n weight and volume: at the end of six inonths, if there have been alternate moisture and warmth, not above a fourth of the original essential material remains to be apread on the field; there may be in appearance nearly as much substance, but it is comparatively of littlo value-me real manure is geno, and what remains is little bettor than a mass of unputrefied rubhish.

It may be safely averred, that no principle connected with agriculture is so littlo understood or thought of an that which bas been now mentioned. We thercfore crave the most earnost attention to it by every reader of these pages. Generally speaking, the excrementitious matters thrown to the dung-hill are treated with perfect indiflerence as to the effects of exposure and drainage away in the form of liquids. It cannot be too strongly stated that this is a gross nbuse in farming. The putroscent streant contains tho very essence of the manure, and should cither be serupulously confined within the limits of the dung-hill, or conveyed to fresh vegetuble or carthy matter, that it may inspart its nutritive qualitics.

A knowledge of thia important truth has led to the practice of making compost dung-henps, in which tho valuable liquids and gases of different kinds of manure are absorbed by carth, or some other substance, and tho whole brought into the condition of an active manure for the fields. Hitherto, it has been customary to speak of dung-hills, but there ought to be no such objects. The collection of manure from a farm-yard and othices should form a dung-pit, not a dung-ill ; and the manner of making and managing the contonts of this pit on the best principles is well worthy of our consideration.

F'arm-yard Manire.-The situation of the dung-pit shouk be near the stables and cow-houses, and placed so low that all streams of urine from them should flow at once into it, so that nothing be lost. It may be three or four feet deep, and of a size proportionate to the stock of cattle usually kept ly the furmer. It is not necessary that it should be built round with a wall, or have a perpendicular deseent, as it may slope gently inwards, and deepen gradually towards the centre. It should, if possible, be covered by a roof, to prevent the action of the sun. If the bottom be found tirm, impervions, nud cupable of containing the juices, no further trouble is requisite, and the work is complete; in many instances, however, it will be necessary first to puddle with elay, and then line the bottom with flag-stones Into this pit, earth, with refuse straw, should be brouglit, and strewed over the bottom and sloping sides, to the thickness of from nine to twelve inches, and this will form an inferior layer to absorb all that portion of the liguid manure which naturally runa to the bottom. The pit is now prepared to receive all kinds of animal and vegctable manure, which, when brought, should be ntways laid evenly over the surface. In Scotland, such dung-pits are common, and in the course of necumulation, a young or wintering stock of cattle is nllowed to go at large upon the whole; the animals being at the same time fed on a proper allowance of straw. Care is also taken to mix, in laying on, the dung brought from the cow-house, stable, and piggeries, so that the rich excrement of the well-fed animals may be incorporated with that of a poor description from others. It is likewise of the utmost importance, though too frequently neglected, to convey to the pit the entire liquid refuse of the farm-yurd, provided the quantity be not so great as to make it advisable to have a separate pit for its re cejrion.

It is customnry to cart away the matcrial of the dung-pit at convenient opportunities (usually during the frosts in winter), to a place in the ficles, aear where it is to be used, and there pile it up in a quadrangutas
heap of about isu' feet in helght. Dung, cartod out in this manner, is ready for the turnip husbandry in Juna, and the practice is otherwise convenient. It may, however, be stated, that for want of attention to principles already explained, such dung-heaps, by oxposure for months to the weather, must lose some of thoir valuabla propertiea. In every instance, the dung-heap in the fields should be placed in a hollow situation, with a nubstratum of earth, and should have a acattering of a few inches of earth over it, and around the sides, to keep in the volatile gases. When the dung-pit haa been thus emptied, it may again be progressively filled as before; and when it ia carted out in any of the spring months, it will be found necessary to turn it once, or oftener, for the purpuse of accelerating the decomposition of the strawy part of the mass. It may be of use to know, however, that tho dung required for fallows for wheat in autumn, may be less putrefied than that for turnip crope.
Liquid Manure, Bone-Dust, \&ec.-Tho urine of cattle in of great value as a manure, and this is so well known to the farmers of Belgium, that thoy use tanks for collecting the liguid from the cow-houses, and thence they pump it up, and poar it over the land at the proper aeanon. When mixed with vegetable refuse, mose, or earth, it forms an excellent compost. It is deeply to be regretted that so little is known on this subject ; and such is the carelessness of farmera and cottagers, that the urine from the cattle stalls is in most cascas sutiered to go completely to waste. The value of night-soil and human urine as manures is equally great, but both are mach neglected in British agriculture. Without entering minutely into details on this point, it may be stated, that the offensive odour of all exerementitious matter may be neutralized by an intermisture of gypsum, or lime and earth, and in this state be used as must valuable manure. Bone-dunt is now used as a highly nutritious manure on light suils; and it is rerkoned that 100 bushels are equal to $\mathbf{4 0}$ cart-lowis of farm-yard manure. Common sea-salt, when judiciously alministered in moderate quantities on arable land at the time of fallowing, has been found of great value for its manuring and cleaning propurties. It promsotes fortility, is a remedy against mmut and rust, preserves the secd from vermin, and is particularly useful in increasing the produce of grase lands.
Guan--'The sterile soils of South America are manured with a sulsiance called gumo, consisting of urate of ammonia and other ammoniacal salts, by the use of which a luxuriant vegetation and the richest crops are obtained. (inam is the excrement of sed-fowl, accumulated for centuries on the ground; leing collerted by the natives, it is now imported mo Britain ly merchants for the use of auriculturists. The increase of crops ohtained by its application to land is said to be very remarkable. According to one authority, the crop of potatoes is increased forty times by it, mal maize thirty times. 'This may be an exugberation; lat it is certain that guano contains ammoniacal sales in ahmodance, and other inorganic constituents which are indixpensible for the development of plants. Like bone-dust, it ia now sold by merchants in erapport towns.
Lime-Dry lime from the kiln is a powerfully excit. ing agent in agriculture. It powesses the power of decompowing animal and vegetable matter, and coters as an element into the fabric of plants; in rertain cases it only alters the constitution of elhe sail. The great use of lime is ω prepare newly bronem-up land tior successfinl cultivation. If moorish or wheste suil is much infisted with the tenarious roots of rushes, hesthis, and other weeds which rewist the mechanical artom of the harrow, sul yield slowly to putretiction, the hest mod, on to till the groumb, and al: Nit to lic in this state for twelve or vighteen munthe, or even two yeara, befure applying the
in as aoon as poesible; but if not immediately tilled illw tha soil with the lime on it should be harrowe 1 , so tha its deconnosing effects many act as powerfully as possible upon the vegetalle innter. After thesc operations, tha land is sown two successive years with oats, withmult nny fallowing but that descriked, and along with the second crop of oats some tenants sow it out in grime seeds for pasture. Others, aftel the first or second erey of eata, give the land a summer fallow for one scamp, or a green crop with mamare. On the following semona, another erop of outs is taken, along with whieh gras secds are sown, and in this state is committed to pasture, In some cases, ather tillage, the soil is allowed to lin fur one, two, or more years, according to its nature, after which it is reduced to a complete state of pulverization by a well-wrought maked summer fallow. On tho spring following it is limed, und the lime is well hat rowed in nlong with grass seeds allone ; and in the fol. lowing season the land in committed to pasture. This, however, is a very expensive mole, and cannot be re. commended to tenants whose lease is of a moderate length. It in decidedly the most enriching mode of lay. ing down waste land with lime only for pasturage, as the energy which the lime communieuted to the soil is not exhausted ly grain crops.-(See article Imphovemest of Watit Lafis.)

cropping.

Difference of crops successively on the same prese of land is essentially necessary in a right system of husbnadry. Crops of the same kind have an exhauld. ing ctliet, and experience proves that there must be a regular round or rotation, involving in particular a change from grain to green crops. A material use of green crops oceasionally, is to weed nad clean the land, for the land leing in open furrows, may be trenched or hoed in such a way as to extirpate the weeds that ${ }^{\text {spring}}$ up. Some lands becone so foul, from negligent farming, that the only method of cleaning them is by putting them through a course of potato and tonup crupling.
Liowaun on Clay Soils.-Cloy sails are of ranious dripths and fertility; and, like all others, difie nis terially according to the elimate in which they am situated. All other circumstances being favourable, goond chay soils ure particularly alapted for the produs: tion of wheat and leans, and ansy be continued under these crops alternately, ax long as the land ran be kept free from werds by ditling the hem crops. This is the most protituide course of cropping that can be followed providing a suthicioncy of mumare le procurch, and the drilled braus be alteruately horse sud hand heed. The nature of the soil or other circumbtances may render a crop of clocer or rye-grass neressiary occusionally for one ycar, and this can be succeched by oats. This course may continue for six or cight ycars, or cen longer, and will rum thus:-1. Fallow; 2. Wheat; 3. Clower and rye-grase; 4. Oats; 5. Dilled beass; 6. Wheat. In this rotation, to procure full fertility and lusuriant crops, the soil ought to be recruited with munure evers third or fourth yar, the dung loing fist apyliced in the fallow yrar, und nest to the lean capp Whenever the koil grts foul with root weeds, which it will sooner or later do, another naked summer fillow must in most cases le resorted to,'in order to eatipate the weedr; and this legegiss a new rotation.

Where circumstances are not favourable to the alovo rotation, the following may he advintageonsly subtrituted. It contains a saricty of the crops ustally cul. tivated, and ly dividing the lalour mone equally through. out the gear, may be curried on with a smaller number of horses, and consequently at less expense; 1. Fallow, 2. Wheat; 3. Drilled beans; 4. Barley; 5. Clover and
negrans ; 6. which a new colation it is have dung tw cropa /hrough twa application wheat, on the dilled beans A favurrite 1, Suminer f fed and aftery dunged; 6. nerer to put cessive erope the beat prine nature hoth w beforo or an jury to the 80 bood of Edint sown along taken after ancceeds well will not ripen the clay soils soils and situr to answer :vala; 3. Clos for two or tly begins. By or seven yeare ture on these of third year, this, the soil ility. But, n furrov-draisis these soila are superseding th adrantage, as these secluded
In the soutl doser ley is while in the n more common lowed by outs niably found t from the whe umediately a
Rotation on ahsolute clay of loam. Cla of crops, ma exactly in thr they should a which they loam is the to cultivate of formly produ affiords excell ment dejpends be retentive, require to b ercry six or and in this similar to th lost clay soi if the soil lis drilled turnit deaning, and are in every nutation may 2. Wheat, oi the turnips on the rest ; grass ; 5. Dri
VoL. I.-6
utumn, and tillay lediatoly tilled in harrowe 1, so tha erfully ae possible ee operations, the ith oats, without 1 along with the N it out in grma rst or second ere \checkmark for one seamu,
following seasan with which graz mitted to pasture, allowed to lief for its nature, afte, 3 of pulverizatius lallow. On tho lime is well bar; and in the fol. o pusture. This ad cannot be re is of a moderate ling mode of lay. pasturage, as the to the soil is not e Imphovemext
the same prese right system of rave an oxlaust t there must be y in particular - material use ol d clean the land, may be trenched e the weeds that l, from negligen ning them is by ptato and turnip

3 are of vanola thers, diftit na which they arm being favourable, 1 for the produs continued uade and can lie lep pes. This is the can he followed rocured, and the rand hoed. The es may render occasionally for by outs, This t years, or even ow ; 2. Wheat; . Drilled beais full fertility and : recruited with dung being first the besin crop weeds, wlich it stummer fadlow fler to extirpate m.
ble to the ahove ageously sulntiops usually ${ }^{\text {cud }}$ equally throagh. simaller numbe use; I. Fallow ; 5. Clover wad
pegress ; 6. Oats; 7. Drilled heans; 8. Wheat; after which a new fallow begins a new rotation. In this potation it is alisolutely necessary that the land should have dung twice or thrico if possible, to ensure abundant crops ihroughout the course; and the proper periods of tas application are-on the fallow before the first crop of wheat, on the slover stubble in the fifth year, and to the driled beans the reventh year.
A favuurite rotation on tho strong lands of Easex is1. Summer fallow, limed; 2. Barley ; 3. Clover, first fod and afterwards kept for seed; 4. Wheat; 5. Beans, dunged; 6. Wheat; 7, Oats. It is a rule in Essex never to put in wheat in a fallow. Although two successiva crops of white corn are justly oljected to, on the best principles of eultivation, yet upon land of this nature both wheat and oats are frequently taken either before or afur each other, without doing material injury to the soil. On the strong soils in the neighbourbood of Ediaburgh, elover is found not to succeed when sowa along with whest, on which account barley is taken after whent, and the grass sown alung with it succeeds well. In the colder parts of Scotland, beans will not ripen in some seasons, and in these districts the clay soils are uniformly thin and sterilo. On such soila and situations, the following rotation may be found to answer:-1. Fullow, with dung; ©. Barley, heans, or uan; 3. Clover, cut in the first ycar, and depastured for two or three years; 4. Oats; find a new rotation beging. By this methol, the rotation is kept up for six or seven years, a period quite long enough, as the pasture on these cold and mongre soils, ufter the second of third year, will be found of little value; and after this, the soil will rather fall hack than improve in ferility. But, as already mentioned, from the practice of furrow-draining, to which, ecen in exposed situntions, these soils are suljerted, a fallow crop of turnips is now supetseding the naked summer fallow. which is of great adrantage, as dairy farming is the principal object in these secluded districts.
Ia the south of Fingland, the farmers consider that a dover ley is the hest preparation for a crop of wheat; while in the north of Eugland, and in Scotland, clover is more commonly sown with wheat or haricy, and followed by oats, both beranse the onts are almost invaniably found to produce a large return after clover, nind from the wheat being better placed in the succession unmediately after the fallow.

Rotation an Looms.-Fvery soil intermediate hetween shoolate clay and rharp saind, has received the name of loam. Clayey loam, and loamy soils, in the rotation of crops, may be ranked as clay soils, and cropiced exactly in the manner already explained, even though they should approath to tho nature of light lands, from which they only differ in degrees of gunlity. Rich loam is the mist profitable and the most agrecalle to cultivate of any description of soil, as it almost muiforaly produces abundant crops of all kinds, and aflords excellent pasture. The mode of its management dejends upon the nature of the subsoil. If this he retentive, and not firrow-drnined, the soil will retuire to be subjected to a nated summer linlow cuery six or eight years, to free it from root weeds; and in this case, the steps of the rotation will he similar to those already doseribed as suitable for the wat clay soils. When completely furrow-drained, or if the soil lies on a porous bottom, a fallow crop of drilled turnips or potatores will be found an effectual claning, and from lie great value of these roots, they are in every way preferable to naked fullow. The rotation may then be as follows:-1. Turnip fallow ; 2. Whent, on such parts of the land as are freed from the turnips in time for that crop, and barkey or onts on the rest ; 3. Clover and rye-grass; 4. Oats after grapa; 5. Drilled leans; 6. Barley; 7. Clover and rye-
grass ; 8. Oats; and this to be aucceeded hy turnips, on other green crop, to begin a new rotation. Some atop at the sixth crop, and make it wheat instead ol barley, and then commence with turnips. To keep up the fertility of the soil, manure should be applied with the heans.

Jiotation on Light Lands.-Light lands includo all soils called sandy loam and loany sand, which are merely gradations of the same. The general princulea of management for this description of soil are precisely the same as those already described, and every rotation slould be established on a well-wrought and well-dunged turnip fallow. The courso of crops hest suited for these light soils is-l. Turnips in drills; 2. Wheat or harley ; 3. Clover and rye-grass; 4. Oats; and round again to a new rotation. On good turnip soils this rotation may be repeated indefinitely, provided the turnip crop be eaten on the ground, that the grase crop be pastured, or that the manure derived from the hay be returned to the ground. It will be necessary, however, to introduce occasionally the alternate system of pasturage, for without this, even with the most liberal treatment, it will scarcely be possible to keep up the fertility of thes erit

On good turnip soils, when what is prauced on the farm is the only manure used, the following rotation may be found advisablo:-1. Turnips ; 2. Wheat or barley; 3. Clover and ryc-grass; 4, 5, and, if necessary, 6. Pasture; 7. Oats; and round again. When manure is within reach, alternate white and green crops may be followed for a number of years, in this rotation :1. Potatoes or turnips; 2. Wheat ; 3. Drilled beans or pess; 4. Wheat or barley ; 5. Potatoes or turnips; 6. Wheat or harley; 7. Clover and rye-grass; 8. Oats. The advantage of this course is, that it secures a good crop of clover, and it is practised near Edinburgh for this purpqse; but wheat occurs too often in the rotation.

In the vicinity of London, Edinhurgh, and Glasgow, the rotations are frequently--1. Potatoes; 2. Wheat; 3. Clover and rye-grass. By some, the clover is followed by onts, and the rotation again begins; others end the rotation with clover. Even with she manure which these short rotations secure to the soil, occasional pas turage must he had recourse to, if the soil is in any way exhausted.

Rotation on Sandy Soils.-Sandy soils are such as approach to the nature of sharp sand, having so little clay in their composition that they possess no adhesive quality, either in a wet or dry state. These suils require the most liberal cultivation, to produce cither grain or green crops; for in the event of dry weather, they become so parched as to be unfit for the growth of almost any species of plant. The application of clay, marl, peat, carth, and manure, will be found materially to improve the texture of such soils, and their constitution will be ultimately changed to a sandy loam. When well manured, samdy soils produce good crops of potatoes or turnips: if possible, the latter should be consumed on the ground by sheep or cattle. It is diffieult to make these soils ton rich, and, from their nature, all the manure given them is soon consumed. Wheat, beans, or peas, do not succed; barley, outs, and rye, are the only grain crops which yield a profitable return on these soils; nud pasturage for a term of years is absolutely necessary. The following six years' rotation has been recommended for these soils:-1. Turnips, with dung, which are to be consumed on the ground ley sliecp; 2. Barley or onts; 3, 4, 5. Grass, pastured by sheep; 6. Ryv or oats. The rotations on peat or moorish soils will be treated of in the section Imprevement of Pasturage and Grass Lands by 'Topdressing, Tiliage and Irrigation, on which account littlo may be said of them here.

In land situated in exposed and iemote districts, to
only grainn which are cultivated are early varietien of oats, bear or bigg, and patatoes, as a chango of aeed for the more genial and fertile grounds. The following course of cropw, proportioning the quantity sown to he munure supplied to tho turnipm and potatoes, may be followed in auch situations:-1. Oata from old ley; 2. Turnips and potatoes, 3. Oats, barley, or bigg, aown with clover or grass eeeds; 4. Hay; and then reatored to pasture.

Rotutions urcording to the state of Cvilure,-Having treated of rotations of crop under a variety of circumstancea, wo shall now consider the culture whieh arable lands may require; and this may be-1. The restoration of land to fertility which has become exhausted by overcropping; 2. The management of land which bat become very rich from being long in pasture; 3. The method of laying land for pasture which has been long under tillage; 4. The improveinent of pasture-land by a ahort course of tillage.

To restore over-cropped land to fertility, the most liberal course of culturo is necessary, and a tenant should therefore receive every indulgence from the proprietor. Where lime has been previously applied to the soil, it will not alone restore the ground to fertility. A summer fallowiug with dung, or a fullow crop of turnips, asd laying the land gradually down to pasture, are the true methods liy which it may le brought back to tertility. If the turnips are consumed on the ground by sheep, bone-dust may le advantageously used, especially If the soil is light and friable. If composed of thin clay, and manure not easily obtained, a seties of years will be necessary to restore the land, as the pasturage will be thin and unproductive. On light soils, pasturuge will be found the inost suitable for their improvement.

With regard to land which has becone rich from long tillage, little need be said, the method of inamagement ieing simple and well known. Over-cropping must be evoided, and care taken to keep up rather than diminish ite fertility.

Summary of Rotations.-The rotstions, as it will he perceived, vary considerably, according to the nature and wants of the soil, yet all possess a general resemblance, and enbrace alternations of green with grain crope. It is necessary, however, to mention. that the land in time is apt to be injured by an unvarying routine, and seems to require changes in the character of those green crops which are usually reckoned to be so beneficial. In other words, there is a necessity for a change of rotations. This is done by either changing the green crops in the rotation, or alternating one rotation with another. The latter plan, which is called shifting from one course to another, is adopted by many of our best agriculturists.

Chnice of siced.-In choosing seeds, there are three rulea that should be attended to:-1. That the variety to be sown is suited to the soil and climate; 2. The propricty of changing the seed; 3. That the seed has tho a,pearance of being sonnd. Every species of grain has varieties which differ from each other considerably. In many distriets the seed long used is still commonly mown. cither from ignorance of better varicties, or fear that a change will not be attended with good consequeners.

All seed should be allowed to arrive at full maturity before being sown, for the nourishment which the sied must vicld tin the plant in the first stage of growth can never be sn great when this is not the case. 'The best cultivators choose the finest qualities of cach epecices for ared: sowing them on the land hest adapted for their Erowth. K, me varicties are remarkubly attarlied to partieular sails, and certain degrees of fertility and moisture *em to suit them hest. Others require a greater degreo and duration of heat, and frequently take four or live
weeks longer to ripen. ought to he resorted to.

Too audilen a change in climate and situation is hurb ful; hence, Yorkshire seed has been found to anawer better in Scotland than that brought from Eiscex. Many variction may be introduced gradually, which would not anawer if the hahit of the variety were not a little consulten. The particular varieties of grain will be do ecribed under their rempective heads, and the woils to which they aro heat suited.

Souing.-The oldest estallished morle of nowing is by hroaicoas, or aeattering the grain from tho hand over the land which has been prepared for it. But thia plan is not so economical, or otherwise so valuable as moving in drills by machines. In Scotland, the usual method of sowing broadcast consists in the nower walking along the ridges, and at very regular intervals, so as to keep time with hia steps, throwing a handful of grain hefore him by a wide sweep of the arm. Ho carries the grain in a sheet, which is slung round his neck and is open to the hand in front. A servant attends, to afford fresh supplies it the end of the ridgen.

Culture of Wheut.- Wheat is the most important of all the grains, and its varicties are numerous. Among these now in cultivation, the following may he enume. rated :- The beurded, the Dunghass, the golden ear, the velvet ear, the egg-shell, the hedge-wheat, the Essex dun, the Kentish yellow, the white and red Essex, the Mungoswell's, tho Burwell red, the Hunter's, and the Georgian. A general division of wheats is made into white and red, with aeveral shades between, and summer and winter. Winter wheat may be hrought into the nature of summer, by altering the time of sowing. If winter wheat he aown at the period for putting summer wheat into the ground, in the course of two she sons the winter will become of a similar habit as the summer, and the same process will bring a surnmez wheat to he a winter one.

In general, the fino white wheats are preferred to the brown and red; but the latter is most profitable for wet alloesive esils and unfavourable climates. on account of its hardiness and ripening early. A red wheat, of greas proluctiveness, has been recently introduced into Scob land from Mark Inane.

The varicty of wheat most profitable to be produced must depend upon the nature of the soil, as land whech has proluced an indifferent crop of one may yield as abundant crop of another kind; and land is frequently found to yichi better crops if the varieties be alternately changed. It has been observed, that a mixture of grain proluces the heaviest cropa, and that mixed flour makes the best liread.
The richer description of claya and strong loams 8 so the best adapted for the production of wheat; but if properly cultivated and well manured, any varicty of these two soils will produco excellent erops of this grain Good wheat land ought always to possers a large quan. tity of clay and little sand ; for although light sails may be made to produce good crops, yet the strong clay lanis in general yield the heaviest grain. Sandy soils, being deficient in firmness, do not afford suthicient support to the roots of plants such as wheat, which do not gink far into the soil. There nere light soils, however, made from decomposed granite, felspar, or clay-stonc, com pounded with vegetable matter, which produce excetlent whent.
"The season for sowing wheat is necessarily regulsted by the state of the land, as well as of the season; on which account it is not always in the furmer's powes ic choose the moment he would prefer. Atter fallow, at the season allows, it may be sown from the end of Avgust till tho middle of Nicumber. On wet clavg, it is proper to aow as carly a pussible, as such aoils, whon
thoroug ily dr domi in a pro quing. In puen, the heat low, rag.fallo beginniug of his must dep In East Lath tien, after a been known After drilled ploughing un midale or en sfter this 8 sen hazarded till
"Ater tur and the groul sowa any ti middle of M now the land are consumed lity, verging winter whea auccess. W it will genera not too ofte bushels of w fore, on an a the harley en ject which ou of Scolland.) Whent is . ample, smu reserving th it is customat ling it in a k ling or pickli washed, by urine, dilute atrength to fl taning as 1 inches, and the tight gre as long as th the reed into are easily to over an comp or four hour pichle, after Epread thinl well sprinkle About half wheat, and may get a pe bo passed th will facilitat g.n'n witl t more than si used the fol
Some cau perly slaked be raised, Doults have a moiution of Dey powder when z.awiy proved from line-water and-twenty disteasc, wh very in'onsi

Of the tw the must efl nor tou stale

ng of theon smu

vituation la harn found to anver om Einsex. Many which would not e not a little con rrain will be de and the soils to
le of aowing la by the hand over the But thin plan is luable aa sowing he usual method ver walking along ils, so as to keep iul of grain belore o carries the grain neck and in apen ds, to afford fresh
host important of meroun. Among If may be enume. ic golden ent, the whent, tho Eissex nd rell Essex, the Hunter's, and the eats is made into etween, nad nump be brought into n time of nowing. for putting rumb ourse of two sen iilar habit as the liring a aummer
e preferred to tho profitnble for wet es, on account of d wheat, of greas duced into Scol

- to be produced iil, ss land which me may yield 3 a land is frequently lies loe alternately mixture of grain iixed flour inaket
strong loamearo heat; but if provaricty of these of this grain oss a large quanh light suils may et rong clay lando andy soils, being icient support lo ich do not sink 1, however, maje clay-atone, com produce exce-
ssarily regulated the season; on rmer's powes te Atter fallow, m the end of Ab wet clays, it is uch soils, when
thorougsly drenched with moiature in autumn, are melSom in a propor stato for harrowing till the succeeding pring. In the opinion of many experienced huslandmen, the best seanon for sowing wheat, whether on fallow, rag-fallow, e, loughed clover atubble, in from the begiuning of ε. ber to the 20th of October; but this must depent upon the state of the soil and weather. in East loothian, on dry gravelly loama, in good conditivn, alter a clover crop, and well prepared, wheat has been known to succeed beat when nown in November, After drilled luans, whenever the acason will admit of phaghing and harrowing, wheat may ho sown from the middle or end of September to the middle of November; after this neason, the sowing of wheat ought not to be bazarded till the spring quarter returns.
"Afler turnipe, when the crop is consumed or led off, and the ground can lse properly ploughed, wheat may be cown any time betwixt the lat of Frbruary and the middle of March; and it is customary to plough and mind the land in successive portions as fast as the turrips are consumed. It is only on turnip soil of a good yunlity, verging towards loain, and in high condition, that winter wheat, sown in spring, can le cultivated with auccess. When circumstances are favourable, however, it will generally happen that such lands, when wheat is not too often repeated, will nearly produce as many bushels of wheat as of barley. The whent crops therefors, on an average of seasons, will excecd the value of the harley crop considerably; hence its culture is an olsject which ought not to be neglected."-(Giencral lieport of Scotland.)
Whent is liable to certain fungous discases, as, for sample, smut, mildew or rust, \&ce. With a view of reserving the grain from these most injurious disorders, it is custonary to prepare the seed hy stecping or pickling it in a kind of saline brine, or diluted urine. Stecpung or pirkling is performed after the sced has been washed, ly allowing it to lie for a time among stale urine, diluted with water, or salt brine, of sufficient atength to float an egg. The aced is put into tubs, conhining as much liquid as will cover the grain a few inclies, nud ullow it to be well stirred, so as to bring all the light grains to the surface, which are skimmed off as long as they continue to rise. Another way is to put the seed into baskets, which are immersed in the water, are easily taken out, and can be conveniently placal over an empty tub to drain. I'he seed is left for three or four hours in the chamber lyc, or full six hours in the pickle, afler which the liquor is drawn off; and the wheat sprend thinly on the floor of the granary, where it is well sprinkled over with quick-line slacked in the liquid. About half a peck of lime is suthicient for a lmshel of wheat, and it should be well stirred, so that every grain may get a portion. If the secd is to be drilled, it should be passed through a coarse sieve after being linned, which will facilitate its progress through the machinc. The gin will thus be quiekly dried: and it should not lie more than six hours in the heap, then be spread out, and used the following day.
Some caution shonld be used in having the lime properly slaked, for if this is not done, too great a heat many be raised, which will destroy tho vegetative principle. Doults have been expressed of the efficacy of lime, and a solution of copperas is used on the Continent instend. D: powderd lime would ecetainly have no effiet, hut when a awiy slaked it is very effiracious, as has been proved from experiment. It was fonnd thrt a stecp of lime-water alone, in which whent was immersed for four-and-aventy hours, proved a powerful preventative of disuase, while the good sferta of unmixed brine were very inconsididrable.
Of the two kinds of steeps mentioned, urime is thought the most officient, and it should be used neither too fresh nor too stale, us in the first state it is ineffectual, and in
the secono injurinua. The meed should be nown ats soon as dry ; for if allowed to lie in ancks or heapa beyond day or two, the lime may be very hurtful. Another ntoep, which in recommended by Rir John Sinclair, and is much used in Flandern, France, and Switzerland, ia a weak solution of the nulphate of copper, or blue vitriol. The modes of using it are as follow:-

Into eight quarts of boilling water put one pound of blue vitriol, and while guite hot, threc busbises of wheat are wetted with five quarts of the liquid; in three houre the remaining three quarts nre added, and the wheat in auf fered to remnin three hours longer in the solution. The whole should be stirred three or four times during the six hours, and the light gralna akimmed off. After the wheat is Irained, slaked lime is thrown on it to facilitate the drying. Another way of using it in to disaolve five pounds of the sulphate of copper in hot water, ond add as much cold water to this an will cover three bushels of wheat. The wheat is allowed to remnin five or six hours, or even longer, in the liquid. After two or three bage, of three busheln each, have paseed through the liquid, one pound more of the sulptiate for each bing should be ndied; and after twelve baga or so have passed through, new liquid will be requircd.

To this we may add, that sowing the land with malt is considered an excellent means of preventing liability to any of these fungous disorders.

Fiye.-Rye is usually sown on light soils, and doea not require so much eare ae wheat; it auffers less by being nown on the stubble of another corn crop, or upon it own. and it is not unusual to grow it on the same land two years in succession. This grnin is frequently sown to be cut for soiling instead of winter tares, and in England it is frequently used for early shecjp-fceding, cut green, withont obtnining a grain crop from it. It is extromely useful to brecling flocks, ns it comon forward earlicr than tares, and affords good food when other sustenance is scarce. Sometimes it is sown on the margins of ficlds of oiher grains, to protect them from poultry, which do not use it as food, and will seldom go amongst it.

Barlcy.-Barlcy is a much hardicr grnin than either whent or rye. There are six varicties of this grain, digtinguished by the number of rows in the car, four of which are cultivated in Britain. I'se kinds which have been recently introduced into Scotland are the Chevalier, Annnt, and other sorts; but the two-rowed and fourrowed, called bere or higg, have heen most extenajvely cultivated. In its culture, harley requires a clean, rich, unclow lonm, moderately retentive, and on clays, tempered with wandy mould, or containang a certain portion of chalk and sand, it is found to succeed well. On poor wet soils it is never successful; and every kind of land on which it is cultivated should be well wrought and thoroughly pulverized. If the preceding crop has been wheat, the land should undergo threc ploughinga before barley is put into the soil. Barley usunlly follows turnips in the rotn'ion, but it is found to grow very well after potatoes. It is thought best to have the turnips eaten on the ground when this cun be accomplished; and if the preceding crop has been potatues, the laud should be well ridged up, in order to have it os dry as possible. The al, plication of lime and enrth, earth and dang, or urine, is thought of great advantuge to the barley crop, and even to plough in the turnip lenves is benffirial. If the plough is not sufficient to pulverize the land properly, the harrow and roller ought to be nsed tu accomplish his. In most cases more than one plonghing is givell. but after a winter furrow the grubber may be used instead. When turnips bave been consumed on the groame, it is much trod den down, nud will require two ploughings; it thas is not given, the soil should be well harrowed and rolled. If grass is sown along with harev. the land should be has rowed after the roller was passed iver it, whith covera the
frew seeds. Baricy sh iuld be aown as woon after ploughing an powsible, when the land is freeh and moist, in order to obtain eyual and speedy vegetation. The beat season for nowing barley is from the beginuing of April to the middle of May; but it has been sown a month after thly with suceens. The lerre or bigg aort is mometimes sown In Oetoler, and called winter harkey.

In Scotland, clover and rye-grase are sown immediately after barley, und the arods are covercd by the lust harrowing; a light grasm harrow being sometimes umed for the purposu. Ifolling is practived ly mome immediately after, while others prefer allowing the plants to come above ground; the small clocts in this eane act an a shelter to the plants, which is of great service in frosty weather.
Oats.-The out is suited to clinates which are too cold for wheat or other grain crops, and therefore thrives in high regions better than in low-lylng countries. W'hen land is broken up, wither from a state of nature or from pasture, oats torm the first erop, us they may le repeated for a weries of years without injuring the soil. They are also the best crop to follow clover, and are nometimes sown with clover nud grass meeds. They often follow potators and green crop, and in cither of these casers, the land ahonld be well ridged up in the winter. When the seed ha sown, the land slould be completely harrowed, and then rolled acrons the ridges. A mixture of onta is gencrally sown along with tures, to prevent them from falling and rotiong on the ground. In this state they are cut green, and form an excellent food for eattle and horsen, A change of nead from hot to coll, and colld to hot, is always to le recommended; and the quantity of seed must degand on the nature of the soil and the varinty to be sown. On poor soils, from the plants not sprending, oats should be suwn thick. The Hopetoun, and many other varieties, do not tiller out, und therefore require more med to be sown. The quantity of aced necessary, varies from four to seven bushelx per English acre, and hroadeast sowling is generally practised.

The unatil time of sowing is from the beginhing of March to the end of Aprit : carly sowing is to tee preferred, as the grain is of lwetter quality; lut late sowing produces the greatest bulk of straw. Sowing in aut imm has been practised with success in some jarts of Irelamd, the seed leing put in carly in October; but this is only done on dry sandy loams. This period of nowing is not likely ever to become common in scotlind, from the coldness of the climate. Seotland and Ircland seem ferter adapted for growing oats than England, and in the former countrien greater attention is paid to their cultivation than in the latter, where the protest soil and the worst tillage are thought sufficient for them. The produce ditfers materially according to the soil, climate, and the fitmess of the particular varinty for the lami. The maximum quantity, aoil and climate lwing favourable, may he eatimated at seventy bushels, and the minimum twenty bushels per acre; the average licing about four quarters. Oat straw is prefirred to styy other as fodder for cattle, as it is conadered more nutritive.

reaping and harvesting.

The ripeness of grain is shown by the straw assuming a golden colour from the luittom of the stem nearly to the ear, o: when the ear Iegins to Irop gently, the corn may be cut. Although the ntraw may be green from the ear for some distance down the stem, yet if it te quite gellow at the bottom, and for some dixtance upwards, the grain requites no further nouri-hment from the earth, and if properly harvested will not shitink. 'Therse indications of ripeness may suffice for wheat, batey, and onts. It was formerly the practier to eut grain with a naw-edged ackle; but this has given place to a larger instrumut. With a smooth edre like a wythe. The reapers are usiellv divided into bands of six or seven, with a binder to
each band. When the ridgea are lem than eighteen fee broal, three reapers are usually placed upon earh ridya the middlle reaper making the bands with whieh the sheavee ara tound up. When four reapers are plineed upon one ridge, as is ununlly the came when the ridge is eighteen feet broad, two bante are laid upon one ridge; and twe are anabled in this way to muage twelve reajrers, ploced oll three ridgea, atooking the corn all in one row upon the middle ridge. When the crop) in very atrong, howeser, it is olten found necessary that cach binder uhouid stook
by himmelf.

In harveating oats nud barley, each shock or atook is formed of ten sheaves placed in two rows, the head of carh sheaf leaning upon the opposito one, and a sheaf co the top at each end. They atand unually due north on: south, so thut each side miny receive equal henefit from the sun. The struw of wheat being longer than that of oats and barley, the stooks of the former are made larger, having six sheaves in each row, and one on tho top at each eud. When the rrop is thin, half stooks are frequently set up; nud to forward the drying process, the end shraves are now generally onitted when the wrathe is goond; but this should never be done where the climate is uncertain, as it exposes the corn to rnin.

Onts and barley nre now frequently cut with n seythe, which is cither plain, or furnished with a bow or cradle, in order to lay the grain evenly in one direction. Whas is almost universally cut with the sickle; and if the wea. ther keep good after this operation is performed, is will ready for starking in the course of five or six lays, But. ley is frequently cut with the scythe in England, hut the sickle is generally used in Scotland. Barley and oats re. quire to lie ten or twelve days, as they ari more or lew. mixed with elover, before licing rendy for atacking. The clover ought to lwe completely withered hefore the com is stackel; and, indeed, it requires the greatest caution on the part of the farmer, in ancertnining whether his cens nre in a proper state for being carried to the stardeys.d The best way for jutuging of this, is to take out a handid from the centre of the midulle sheaf on the Ifa sito of the stook, repeating this on acveral parts of the field ; nnd if the knota or jointa of this are dry and marivelled, the conp may he led home in safety. All corn crops shomeld he eut as near the ground as possible, for ly this n great addition is made to the straw, and consequently to the future manure.

S:arking, When tly rrop is thoroughly dry, it is led home to the stack-yard on open apar-fuilt carts, aud buitt intontacks so consirurted as to afforel pomplete sheltet from the weather. 'The stoul or Trottom upin which the stack stands was formerly made of loose straw or brushwool; but in the leest mannurel farms, it in now the prace. tice to construct the starks on witands made of stone or brick, or upon pillars made of stone or cast-iron, sparred across with woml or iron. 'These stands are furme! so as to prevent the access of vermin, which iscalerilated to effect a saving of two bolls in thirty ; and many have funuela from the top to tho bottom of stacks, to adinit a free current of air. In Seothand, the starks heing mostly round, a wheaf is first placed on its butt-end, in the cen-
 tre of the bottom or at and ; around thin olliess are phacot, also upright, hut with a slight in clination of the herit inwards, whtil the stand is tece!! filled. The stacker then phacere a layer of sheaves hotio zontally on the outside of these, lying on their sides, the rar-cods inwards, and, pressing them together with rotsiderable force, be eontimues to lay on rows, until the outside sheaver are as ligh as those standing on end. The whole stack in filled up in urarly the same manner, the eareends of the sheaves being always inwards, with a
merular Inelin butis, and the pompreased an ing of tno whe the stack, hut layers, that p this is done, ti of dhenver, has beyond the boo ers rome grail natrow circle, completely fill Graly bound w rope, the two of the stack. will completely bigh windu. ahould alwnya may anise from thatcher stands of the atack, at quantity place he thrusts into ovet the stark. each handful o aack a thick c astraw ropx is into equal secti athw with lon per end of this f the top rese the aid of two olaces a numls mb, to securo pach other at an the sheaves, or the stack.
Stacks are es bet platform ra framework of a tiled or thatehe to the crop, ane ing. The pric trifing, when t sidered; and th what for thirt
Thrashing i thrashing-mill. reommend in nuadred acrea ay water, horss tances. Sevt thrashing-mills corn is now mo white it is acte larger cylinder 2500 feet in a is to have ragu fid into the roll in the corll; or and a woman the fieder. O: carrying the the is built. Whe it i. generally chines, accordin the 'hrashing-n grain for mark mushine will th nine hours, and chinery, the es by the use of oushel.

Hinnouing

- hould atoo
hock or stook l
ws, the henil of
, and a Rheaf $C A$
y due north mi:
ual benefit from
onger than that
ormer are made and one on tho 2, half stooke are ying procea, the hen the weather here the climate in.
ut with n seythe, how or cradle, rection. Wheat nond if the weat formed, is will he six lays. Bat. Eoglani, hut tho arley nud onts re. are more or le. - stacking. Tho efore the com in intest caution og whether his crow o the ataink.varl ke out a hanifol 10 lea sith of the the firlld ; and is rivellent, the ctop ops shoult he cut a great aditition y to the future
hly dry, it is led It carts. and buila complete sheller upon which the straw or hruyh. in now the pras. lider of stone or ast-iron, sparred

with a slight is stand is ricaly of sheaves hotio their sides, the rether with currows, until the anding on end. e same mannet, inwsrid, witha
regular inclinatiun downwnrda and outward to their
butts, and the centre of the rick being higher and not so butts, and the centre of the rick being higher and not so compreveed aa the outwide. Proper attention to the slop-
nit of the mheave in necessary from the foundation of the atack, but particularly so at the intake of the Inner layefs, that part boing alwayn left more open. When thin ia done, the ntacker aets up an ontaide circular row of ahenver, having their butt-enda projecting a fow inches beyond the looly of the rick, nfter which the outside layery rome gradually Inwards, until the roof in drawn to a nurrow circle, when two or three sheaves placed upright completely fill up the ntack. The topmost alieaven uro then firmly hoind with a few turns from the middle of the ntraw rope, the two I'miln of which are funtened on opposite sidea of tir atack. When carefully buile and thatehed, a ntack will completely keep out rain, and be quite sccure from high wind. Materiaja for thatching, and straw ropes, ahould always be made before lanrvent, no that no delny may arise from thia, in the event of wet weather. The thatcher atanila upon a ladder, placel on the sloping roof of the stack, sind lays on the straw in handfuls froin a quantity placed within hia reach. Ono end of tho straw he thrusts into the butt of a ghenf, and the other ent hanga over the atark. He thus progresses up to the top, naking each handful overlap the ether; and on the top of the anck a thick covering of whort straw is placed, over which a straw rope is carried perpendicularly, dividing the roof into equal sections. He then covers the topping of short atraw with long thatch coning to a point, and tien the upper end of this with a straw rope into a peak, the form of the top resembling in appearance an umbrella. With the aid of two aesistants on the ground, the thatcher now daces a number of tough oat-straw ropes over the covering. to serure it firoily. These ropes are nade to cross each other at angles, and are fastened cither to the butta of the sheaves, or to a repe firmly bound round the body of the atack.
Stacks are eometimea constructed in England on a timbet platform raised upon atonea, and over the atack the framework of a perfect barn is placed, which can be either tileel or thatched. This is said to afford greater security to the crop, and to be less expensive than annually thateliing. The price of erection is suid to be comparatively trifing, when the convenience of such buildings is considered; and they have been known, when well put up, w last for thirty years.
Thrashing is either performed with the flail or the thrashing-mill. The use of the latter we by all means reconmend in preference, on arable farms of alove one pundred acres in extent. The machine may be driven oy water, horse, o: steam nower, nccording to circumslances. Sevoral improvements have ineen made en thrashing-mills since their first invention: the unthrashed corn is now made to pass tituugin two revolving rollers, while it is neted on by beaters placed lengthwise unon a Iarger cylinder or drum, which moves at the speed of 8500 feet in n minute. The great essential in thrashing is to have regularity of motion. and the grain to be equally fid into the rollers. One manshould he employed to feed in the corn; one man, or two boys, to carry the sheaves, and a woman to untie and place them on a table near the fieder. Dther persons are employed in raking and (urrying the thrashed straw to the straw-honse, where it i. built. When the machine is driven by steans or water, it iv generally the case that one or two winnowing-machines, sccording to the power employed, are attached to the 'hrashing-mill, and thus the expense of preparing the grain for market is considerably lessened. A powerfal machine will thrnsh from two to three hundred bushels in nine hours, sad, allowing for wages nud wearing of machinery, the expense of proparing grain for the market by the use of water or steam, is under one penny per oushel.

U'innouring or dressing,-Winnowing is a proccas per-
formed hy the ald of wind, hy which the chafl if corn te mejnatated from the grain. Winnowing-inarhines, or fan nerm, an atated before, are sometimem attinched to thrunhing milha, and they are a necemary appendage to overy farm, either in conjusction with she thranhing-mill, or separately. Some farmera winnow their grain by hand-fannera, which are thought to he ateadier in their motion than when driven by machinery, and connequently the grain in more thoroughly cleanaed. After thrushing, the grain in regu lurly dreased in the clean corn room, by means of fannerg, ridillen, and sieven; and this final dressing is requlated accorling to tho atale in which the grain comes from the thrashing-nill. By the procesm of winnowing, chatr, bite of ntruw, the secda of weeds, and other refuse, ure meparated from the grain; and it is a wies jirecaution to boil the intter before putting them on the dunghill, which will effectually dentroy their vegetative poworn. The different qualities of grain are almo separated from each other, by which it is rendered more valusble than when the good and bad are mixed toyether. The thorough cleaning and dreaalig of grain are of great importnace to the farmer, and he will find it added to hits proft in the end to have thin eticctually done.

If whent lian been injured by wet, it is thought ado visable to kiln-dry it moderately, and nllow it to lie for some time before being ground. When grain ia infected with sinut, it should undergo three washings bee fore going to the inill, which will bo found an offectual way of cleaning it. Mere ventilation hus been recommended for this purpose, but washing is as simple, and a far more certuin operation.

Barley undergoes a procesa called hummelling, by which the awns are broken off from the grain. The machine is composed of o vertical spindle enclosed in a cylinder, and furnished with arms which act upon the grail. It is sometimes attnched to the thrashing-mill, aud sometimes driven by a separato power. 'I'he grain is put in at the top of the eylinder, and as it passea through, the awns are broken off by lwing struck by the armas attached to the fipindle. A more simple process ia, nfter the barley is thrashed, to take off the head of the drum and put on another cover of tin, perforated with amall holes nhout thrce sixteenths of an inch wide. The barley ia passed through the rollers, and hy this the nwhs are rubhed off. Another method is to lay the barley on the barn floor, and beat it with a square instrument consisting of paralled bars of iron tixed on a frame, with a handle nttached, which is worked in the aame way as a pavier's rammer.

After being dressed and made ready for market, grain shoud be kept very dry, in a graunry free from damp, end which is impervicus to the incursions of vermin. It in, however, the beat plan not to thranh grain till it be required sor markel, !wcause it loses in wuight, or shrivela in bulk, ly kecping. It also loses in weight, though to a much less extent, by being kept long in ear in stacks; and therefore the sooner grain is thrashed and carried to market, the greater will be the return, supposing there be no rise in price.

GREEN CROPS.

No farming can be said to be perfect unless it involves a due alternation of areen with grain crops. The more fonl the land is with weeds, green ctops of the drill kind are the moro necessary, because, in the course of enltivating green crops, we have un opportunity of hoeing and trenching the land, not only once, but repratedly, and of thus exhnusting the seeds of weeda loolged in the soil. 13y administering manure, and this mode of cleansing, the necessity for fallowing in in a great mensure obviated. But green crops alao futfil the important purposo of feeding live-stock and producing manure. The constant exhaustion of the noil, be ; even very fertile, demands a periodical nourislunent, and

Whit in beat done hy means of live animals. It in cut comary on the well-organized farms of Norfolk, BantLothian, dec, to manufincture manure on a large aeale by means of soiling; that is, feeding catte in honme or on open yard with turnipa, the catile at the aame time treading on the wate atraw of the farm, and thine uaing up a material which would lne otherwine lush Sheep sra also turnent hito pene on turnip-fielila, to eat up the turnlpin from the drills, and the droppinge grently enrich the apot. It la cuatomary in Eustland for lowecountry farmers to buy eattle lean at the end of autumn, sud sell them fatted to a certain extent in apring ; and all thin trouble ia taken only for the anke of their manure. We shall now mention what constitute the primelj al gien eropa.
f'ecm require the mame sort of moil an wheat, namely, heavy claya, and whould the sown in drilla. Some nuppose that hean exhuust the woil; lut thin in mearcely probable, from wheat slway yielding a gool erop after thein. In prepuring the ground for beans, it ought to be ploughed after harvent, or curly in willter, thint the soil may he mellowed with the winter froats. The furrow should be derp, but, before aowing, the land ahould be drained of itn auperabundant moisture. Sow an moon as winter in over, or never later than the end of Mareh in Scotland Four bushela of meed to the acre are sufticient; but it in common, for the anke of inproving the fodder, to mix peas with the benns, to the extunt of one bumbel of peua to mix of hemas. Jleana require frequent weeding with the horse-loe. 'The crop, if late, shoul. 1 le carried to another field to dry, und thus leave tho fand for operations necessury lor the wheat crop.

Prat grow best when mixel with benna, na they by that means yain a support for their slebder trailing etalke. They, however, grow on n poorer soil than beans, such as a sandy loam, and neither too moist nor tor dry. They are improved lyy lime and marl manures. Irilling, as in the case of besns, is greatly preferable to bromileast; and from four to tive bushelm of weed per acre to reckoned a proper allowatice. The early kind of puas many be nown at any time till the end of $\mathrm{M}_{\mathrm{s}} \mathrm{y}$, but the late soust be sown in February or March.

Tares are a valuahlo crop, both for aoiling and feeding cattle. Thares aro of two sorts, winter and summer. 'The' eeed of the nummer taren should te put into the gromed at intervala, from the end of March till the end of Miny, to te to furnish auccessive cuttings. The winter thife requires to be sown in September or Octoler: and in carly apring it is a very valunble food for catte and sharej.

Clover und liyc-grasm.-These are the tnost valunble artificial granses thut can be grown by the farmar. They should never be sown except when the land is in the beat condition; if possible, with the crop innonedistely following a summer fallow, or after turnips or potatoes. Thus, in oll well-inanured and well-dreased land, clover and ryt-grase are mixed with the croj, of grain, being either sown at the same time or at a suitable perion after. When the grain crop is cut in harvent, the tops of the young clover are perhaps cut at tho same time, but thin is of little consequence; the great bulk of the grass crop comes into maturity amoug the remaining atubble, and is then either seythed for hay or for feeding enitnals in a green atate. When aown on land on which grain has been nown, it is customary to roll the ground. to asaiat in covering the light aceds. Gircut care requises to the employed in cheosing proper kinds of clover and grass secels "i thore are many worthless worts.

Many farmert : propose to prolong the rotationa, and prevent the \hat{r}. .g.cent rapetition of the clover crop, substituth a eys \quad f peas st tares after the barley, sowing the clows ater, 0 *viest or barley in the next rotation, which makealie tors between the tivo clover sonpe to or se:ch inistorid of four ycars 'the crop of
pest they conalder as hy no meana remunerative, from the additional cror of elover reaped in the meend rotation, they flud thomselves comprenanted for the de ficlency in the pean. Surface appillentions are now ad minintered on ant extenaive seale in improved dintrite for the wole purpome of procuring an abumalant crop of clover and ryegrana. Noot la one of the ingrediente which is appilied to the greatent extent, and it has unip formly tho effect of atrengthening and forwarding the crop. Lidijuid manurea are also extenuively umed, and the urine of the cown is collected with great eare, for the jurpowe of lwing applied to the solh. Liyuld ma nurea nre much more lanting in their elfiecta, and seem Isether adnpted for clover than avot. Nalfinetro ia likeo wise much naed, and forma an excellent top-dremaing fut acedtha-grumeen. It la ly anch menne an thates that the ngrlculcoriats of the Netherlanda have been athe to keep ul the fertility of their landa, ln the cultivation of clovep, through the immemorinl; and those, therefore, who neglect auch measures, have themselven to hlame when their clover crops fail. The whole of the agriculture of the Netherlanda renta upon the cultivation of clover, which not unfrequently yieds a lieavy crop the Brin year, two and even three abundant aropm the recond and, if allowed to atand unother year, will ytuld a goed crop, and afterwarils the excellent panture for cutile, till ploughed up to receive wheat nevd.

I'rurnipa yield a mont proftable crop for the mainte nance of live-stock; and they are alno useful an a green crop, by premitting ant effectual clovanaing of the land from weedn. The leaven being large and wpe wing, they ufford a alnde which rotnime the moisture, an terde to lecompose nuy vegetalile mattor in the ground. Turnipas are divided into various elnasem, in each af which there are several varietics. The more comma clasara are the round or globeoblinged, the depressed or Norfolk, nid the fusiform or ohbing, the hitter hing letten known by the name of Swediah. They are also come timen known ly their colonr, na the white, the yellon, (imeluling the Swedish,) and the purple-topped. The white, with the purple-toperd, is enrly, particulaty suited to thome light soiln where aheep are fell, and reguires leas manure. It must te cousumed, how. ever. na moon as posnible, or in apt to run to secd of ti) he injured by frost. Npon the whole, the Sweding or yellow turnip is now preferred to most others, and yields the heavient crop. It requiren to the mownearly, ir: from the beginning of April to the end of May; the seed whould the given liburnily, or at the rate of about three jounds per acre. In all cosere, the sowins oughe to bo in drilla, to jermit an effective hocing when the crop is getting up. After being sown on a well-ploughed field, tho roller nunt te employed to prese all atnooth on the ridges. The plants wilt in general make ther appearance alout ten days or a forthight after they aro sown, according to the quality of tho aoil and the fate of the weather. When the leaves are about two incher high, a horse-hoeing is given tretween the ridgretes, it cut up the wecdes close to the plants. The hand-hoe u then introdnced, to thin the repp, 'raving plants stand
 Swediah kind being soumes' a thought quite sufficient . \qquad This distance',
 nor too nimnll in size. l^{\prime} ', n turnip, when allowed too great a distance, js upt to hecome very large, and it nutritive juices are found to be quite lost. The Swedish and other hard turnipes whould be allowed sufficient room to become as large as possilhe, for their nature is such that there is no fone of their ever being over bulky. The hand-hoeing and thinning are generally purformed by women and boya, and three expert hoers will go over on ocre n-day. A fow days nfler the hoeing, a amall wing. plough is uned to make rmall ridgelete hetwern the rows;
awy agnin te the intermed deatroyed, al sometines amall ploul however, is ents the b duce la ic be be injured by on wet molla allowa the f and when the protection to unmed on the foldeyarile, or huge towna expeditionn In Ireland. and given to vul of the no are left entir then puthero fiskl and goil lruised; ans an acto of Mreza. .' (7x) h hablat buluph

Cifa'race Into a cutiras hourhood of 1 be obtainerl. intanda is the lote and moro are not kejut f The potato h rember. It h picces of the I mination ; bu interdured the is preferalile. et in drill fur tance of cieght is tumed over plante appear carticed as ma them, js done ceptible of di there is reason of miamana;ce ugain without mot from wet H Recommendin bendry to con
numerative, ju ed in the meeond ated fur the de One are now ab proverd dintricta, bundunt erop of the ingrediente , and lt has unip forwarting tia asively uned, and h great enre, fot il. Ihyuid mat plivetw, and meem Nalturtre in like-top-drexting for na then that the reen whlu to keep : vation of clover, , therefure, who to blame when f the agriculure vation of clower, vy erop the firm ropis the serons, will yluld a goed tire for cottle, till p for the mainte uneful tan a green aing of the land 3 and npre ding. be mointure, ind er in the ground. meses, in euch of te ture conmana the eleprewsed of latter heving better cy ary also nome white, the yellor, ple-toplord. The arly, particulaty eepe ore frod, and consumed, how. to run to sued of hoole, tho Swetish most otheres, and to he mownealy, emil of May; the the rate of about he sowins ought loneing when the in a will-ploughed ress all amooth on neral make theit cht after they are moil and the atate about two incher a the ridgelets, th The hand-hoe is ving plants stand ituches apart, the This distance!
ther too larget (iij, when allowed very large, and is ont. The Swedinh ed sufficient nom ir nalure is such tover bulky. The ally parformed by re will go over oa ng, a small swing. betiveron the rowa; e, it will be acere
my agnin to hosme or hanil-hee the ground, which levela the intermealiate ridgeiet. After all weeith arn thoroughly dentroyed, and the thluning is accompiliwhed. the earth is cometimea athered up about the planter by in inw of anall plough with two mould-hoarda. 'Thia operation, however, in objected to, on the ples that the earth pres veats the bullu from growing, and alwo when the produce in te the conmmod on the gronnit, the shecp may be injured by fulling into the ho lown between the porse. on wet soila, the earthing up in very leneficial, na is dlows the free diacharge of nuperabindant mointurs; and when the wenther in fromty, the earth is an excellent protection to the jlants. 'l'urnipm may either he conarmed on the fiedelm where they grow, on grase fielidn, it futcoyardm, or in fecelinsehonaen; and in the vicionity of hage towna tney are sold to cowfecilers. A cheap asad expeditioun mosle of lifting turnips has been practived in Ireland. The tope are firme shavid off with a acythe, and given to young catte, amt the bultis are plonghed vut of the moil, which leing afterwarda harrowed, they are Iff entircly free of the ground. The turnips are then gathered into carts, commencing at the top of tho firk and going regulerly down, so that none may be hrused; and it in cmenhated that six labourers will lift min aren of "1t.1", be be this method in a day. Mangel merer. . $e^{\prime} \quad 7 \quad$ rolimed with alvantage an a variety in (Nein hat and, :t l, as a food for cattlo, supersedes Wriver.
dita'mex. Crops of thas valuahic plant usually enter fato a rel cas of humbamiry, particularly in the nuigh. buathool of populone towna, where a ready market eon he ehtainom. 'I'he untal period of planting in the Pritisli inlande is the und of April or legioming of May, for the late und more romumon morta. The eurly kinds, whinh are not kejt for furmanent stork, are planted in Murch. The potate hurveat is in Octolier or beginning of Norember. It has been customary to plant by sets or cut pieces of the potato, each having an cye or point of germination ; but the numerous failures of the crope havo introlumed the practice of setting the whole tuber, which in preferable. In the large farma of Scotland, they are eet in drill firronen (previously well manured), at a diatanse of eighteen inches ngart, and six inchen of earth in tumed over upon them by the horse-hoe. When the phanta appear alove the surface, they are repeatally cartied as may be refuired; this, with the wectling of them, is done lyy hand-hocing. Potatoes are very ausceptible of discames, which cause failures of crop; but there is reason to helieve that this arises from some kind of minmanazconcot, as, for example, producing again and ogain without change of seed, lifting of aecel nfter frost, It from wet neasona, heating of heops after lining, \&c. Recommending all who feel interested in potato hus bendry to consult the treatise of Mr. Jnckson, formerly
alluited to, for information, we need here only say, the the preventives of dineame, likely to be mont succensful are froquent changes of aeed, bringing send from quits a diflerent aoil, not too frequent cropjuing froin the aame Innd, spreuding out to dry after lifting, and careful pro vection from frost during whiter. 'I'hey are beat pre served in pita, a layer of potatoer and earth alternatels to a lugght of four feet, and fimally covered with earti on the tuy' anil sides. 'I'his in conshalered the conditior mont naturil to the potato, and in found to aucceed well.

Iliy-maki,g-When the grama ban arrived at or near ise full growili, but hwfore tho meai is pertiented, it should die cut down liy the weythe for hay, \mathbf{A} ahort time after beins mown, it mould lie turned over in full owathen, without la pis scathered. If not in a fit stute to be forked the first dity afler cutting, it whould lo put into. munil hamderowkw, as sooh as ith stato of drynees will allow; from these it should be gothered Into larges onew, and when ita contition permits, pul into tramp rick. 'I'he guthering of the hay is generally petformed ly women and boy, sume carrying and othery raking up what may remuin. Let it he remonibered that the lese the hay in exposed to tho sun, the better in its flavour and strength. In wet ecemona, the utmost tare will be required not to atuck the hay while moint; for then, like musant aheaves of grain, it will luent, and cither hura into a llame, or ho meriously inmaged lin quality. The criterion for good hay in, that it whould he greenish in colour, be perfectly dry, and josmen a swret otour. In thil mate it will be caten with avidity ly horses

Within the linits anaigned to us, it in impossilise to impart directions for every atep in hushandry; nnd we shall consider our tank accompliwhed if we have impressed certain leuding principle of ngrieulture (the minde of those hitherto ignorant of them. Not to be misunderstood, we shall apecify, in conclusion, what we consiler important truths in connection with thi subject:-1. Jand, to ho well cultivated, must rither be the property of the farmer, or lee let on a moderntely lous lease, 2. 'The humbandry inust be ronver'ihle, that is, on a precise system of rotation of grain and green irops. 3. Cattle numt be krpt, to produce a due share of manare for the fields. 4. If the land he moist, or liatle to leavy raine, it must be effectunlly drained. (Sec next article.) 5. Desp ploughing, and thorough pulverizing of the soil aro essential. 6. The fielda must be prejerly fenced and of casy access. And, lastly, no land witl le profitable as a apeculation, unlese closely superintened by a farmer whose mind is alive to nll ita vasied wants, and neither raah in running into experiments, nor prejudiced egainst well-authenticated improvements.

IMPROVEMENT OF WASTE LANDS-SPADE HUSBANDRY.

Accordine to the best authoritica on the subject, it appears that the British islands contain upwarda of thirty millions of acres of waste lands. Much of this large division of our territory ia situnted at an altitude which places it beyond the possibility of improvement; hut at least one half is believed to be improvahle, and capable of being rendered suitable, if not for tillage and grain crops, at least for the feeding of eattle. The question as to the propricty of improving the really improvable waste lands of the country, j, , in any individual case, to be satinfactorily answered by ascertinining at what expense, in relation to the probaide profit, the process may be performed. A harren rocky desert may he rendered productive by covering it with soil and manures brought from a distance of miles, aided by years of rkilful tillage; but will the cost of these operations be fairly returned by the profiss of the produce? Cold itself may be purchased too highly, and so may agricultural ioprovements. We do not thiow ont this idea for the purpose of discouracsing, but of cautioning proprictors and farmers of lands. In all projected improvements, they will require to ascertain, in the firat place, what will be the probable return, within a moderate length of time, for their outlayalways kecping in view the prospective prices of raral produce during the period. Such, at least, is the principle of calculation which ought naturally to guide all proprictors of extensive tracts of waste ground, the outlay on which is to tee strictly pecuniary. With reference to those who propose to inprove wastes chiefly by an expenditure of time and personal labour, the calculation will take a similar tum; and the question will be, winether that time and labour could not have been cm ployed more profitably in another line of pursait. Leaving this, however, for further discussion in the sequel, we proceed to print out, first, to those whose sithation in life and inclinations lead them that way, the means to be adopted, hecording to the best priniciples of scienee and lights of experience, for reclaining latge or small portions of waste lands, and the reaults which may be expected to reward their enterprise; and, sromid, the best plans which may be followed for inproving patches of ground by spade-hushamery, and establishime thernupon small rotage farms, suitahle for the support of a eomparatively humble class of families. In the trentment of these certainly not unimportant subjects, we ahall of course refer chietty to the condition of wast, lands in the linited Kiurdom; but the improvement of wastes in the colonies or in foreign countries will nlso be understood to be induded, and in carh ease we will endeavour to adhere closely to practical details.

tmprovkhint of moss lands.

The greater prortion of what are usually called waste lands, are stretelien of pent-bog or moss, covered liy a thin benty grass and tufts of heath. This remarkable species of land is found to a very grent extent in Ireland and Scotland, often in the midst of beautiful and productive tracts of eountry, but generally in high-lying districts, which are somewhat defective in point of climate.

Peat-moseses are supposel to be occasioned by the desurartion of ancient furesta, either by the hatchet or from
natural decay. The treea found at the outskirts of them mosses appear to have been eut down, while those in the interior appear to have decayed by the gradual procese of time. It is believed that the trees thus left upon the ground would soon become covered with moss, lichens, \&e.; and the free drainage of the land bring obstructed, uguatic plinits, such as reeds, rushes, horsetail, and marsh treboil, springing up and decaying, would leave a strata of soft vegetablo matter, which every succeeding year would increase. These plants grow in greate or less abundance, according to the quantity of moisture on the ground; and this may necount for mosses berng decper in some parts than in others. The hollows would naturally retain moisture in larger quantities than the level ground, and here tho aquatic plants would be most prolitic, and the hollow gradually hecome filled up The peat, which has been in this manmer formed, is therefore a compound vegetable substance, which, al though it has undergone a change, has not been entitely decomposed; probally the cellular tissue, or transparen vegretable matter has derayed, while the woonly fibre still remains. Water is indispensable in the formation of moss; and according as the ground is very wet, or only so to a eertain extent, different plants will be productid On ground completely saturated with water, various spe cies of moss grow, to the nlmost total exclusion of other plants; lout if the land should in uny way becone drier, reeds, rushes, marsh trefoil, horsetail, und wher plants, spring up in the place of the moss. 'Ihe quality of the moss may be judged of from the glants which grow upon it; all the moss tribe, the horsetail and the marsh trefoil, are fibrous, and difficult to decompone, while reds rushes, and sedge, are comparatively easy of decomposition Peat-noss possesser an astrimgent quality, which has the power of preserving hodies immersed in it, and even heeps itself from entirely decaying. This power is supposed to arise from the carbonic and gollic acids which iskue from decayed woot; nad vegetaile gums and resins will also have the same etfect. The tamin prin ciple exists, as is well known, in the oak; and tho pine contains much both of resinous and astringent matter. Hany mosses are formed upon decayed trees, and the wood most commonly found is either pine, hirch, hazeh, or oak; and in these cases the presence of the tannin principle is easily necounted for. It is also highly proballd that the plants themselves, by the action of natural agents, may have acquired an antisoptic or antupatrefvim quality. It is certain that aciols of considerable strengh rxist in some mosses; and it is mentoned by lood Meadowbank, that in proparing peat-muss for manue, he used lime to deatroy a vitrinlic salt of irom. which he stys abounds in peat-moseres, In some cases, lakpa and pools of water have been tilled un, by the acrmmulation of moss; and it has been observal that fermentation oncurs where this has taken place. Gitsiotes mater is evolverd, and the neighourhood of such a moss is gene rally unhealthy; but true peat noils are always salu brious.

The reasonable question has sometimes ocrursel to inguiring minds-whence the subwtance of prat-mosess! for stagant water alone could not have produced mans fert deep of solid matter. This yuczation is answerell chemistry. The vegetation which springes up in the form of aquatic plants, absorbs carbouir sacid gas from the atmosphere, and a earbonaceous ilejusit is nude in the form of vegetahle fibre, or dead vegutialdes in the form of mould. Mr. Johnston, in his Lectures on Agr
gultural Che on this aubjec
"When la eo grass, and in vegetalile n up, you find organic matto merration app table catter cleared and p Do grasses an Then how, by tily of carbon It is obvious t the air not 0 sulstance, but soil.
"But on th considered eb livtle rmaning a marshy apo take root and sunt forth, and sumulates; a fomed. Nor arpense of on rade and loca wielly alfect t the suil. In o aro furned of the highest of wia), nearly two species of pose a thick be dmost every k avers the wh vected into thi
«W hence h The quantity lapse of years dead matter th answer at one at the expense bon it wiss cal must have left succeeding ta pest-mosses is eridently a un Life.

Though thu ble matter, whi prat-musses ar till freed of si with siliceous however, is cot uat the peat at so as to form planned by the distinguished in tho county Lond Kames, w tre of the mov Teith was dire rections from t l itself into the viled into por who recerved frietor, ns an i peat earth was runuing water Forth, and th alenred away, and presentiod were only ov

Vol. 1.-63
cukural Chemistry, makes the following observations on this subject :-
"Whon lands are impoverished, you lay them down wograss, and the longer they lio unilisturbed, the richer in vegetullo matter does the soil become. When broken up, you find a black fertilo mould where littlo trace of organic matter had previously existed. The samo atserration applies to lands loug under wood. 'The vegeubla catter increases, the soil improves, and when cleared and ploughed, it yielda abundant erops of corn. Do grasses and trees derive their carlon from the soil? Then how, by their growth, do they increase the quantily of carbonaceous matter which the seil contains? If is obvious that, taken as a whole, they must drow from the air not only as much ns is contained in their own salstunce, but an oxcess also, which they impart to the suil.
"But on this point the rapid growth of peat may be coasidered elbsolutely conclusive. A tree falls across a liale raming stream, lans up the water, and produces a marshy apot. lushes and reeds spring up, mosses thise root and grow, Year afler year new shoots are wat forth, and the old plants die. Vegetable matter ac.umalates; a log, and finally a thick bet of peat is firned. Nor does this peat form and accumulate at the uspense of one species or gonus of plants only. Latiride und local situation ore the circumstances which ,hiclly affect this accumulation of vegetable matter on the suil. In our own country, the lowest layers of pent aro formed of aquatic plants, tho next of mosses, und the highest ef heath. 'In Terra del Fuego (says Darwia), nearly every patch of level ground is covered by two species of plants, which, by their joint decay, compuse a thick bed of elastic peat. In the Folklame islands, dmost every kind of plant, even the coarso grass which wers tho whole surface of the islands, becomes conveted iuto this substance.'
"W hence have all these plants derived their carbon? The quantity originally contained in the soil is, after a lapse of years, imereased ten thousand fold. Has the dead aattor tho power of reproducing itself? You will answer at once, that all these plants must have grown at tho expense of the air-must have lived on the carbon it was capable of alfording them, and as they died mast have left this carbon in a state unfit to nourish the succeeding races." In other words, the sulstance of pat-mosses is a deposit from the ntmosphern; which is eviduatly a univeral souree of sinmisteace to vegetahle ifie.
Though thus composed of a deposit of dead vegetable matter, which is a lasis of fertility to new vegetation, pat-mosses are not in a conclition to be actively useful till freel of superaluandant moisture, ami compounded with siticeous (sanly) materinls. Where the subsoil, however, is coumposed of gravel or sand, it is necessary tina tho peat and these hodies should be mixed together, so as to form a soil The first of these methols was planned ly the lato Lord Kames, nnd performed with distinguisthed sucress on his estate of Blair-Drummond, in the county of l'erth. The first process performed by Lord Kames, was to construct a ditch through the centre of the moss, through which a stream from the river Teith was directed. Branch ditches were cut in all dinexions from the main one, the water from which poured itwalf into the river Forth. The whole estate was diviled iato portions, and let to small occupiers of land, who eecevel the most favourablo terms from the proprietor, as an inducement to carry out his views. The pat earth was cut into small pieces, and cast into the running waters, by whieh they were carried into the Forth, and thenee to the sea. After the moss was sleared awny, the trees of the ancient forest nupeared, and presented new difliculties to the workmen, which mere vuly ovarcome with grat labour and expense. Vol. l.-63

The roots of these trees were firmly fixed in the earth. and the tanning process which they had undergone in the moss seemed to have added greater strength to their root-branches. They were completely oradicated, however; and in the year 1782, no fewer thun 330 acres of ground were rechaimed and brought into cultivation. His son, who inherited his father's spirit of enterprise, pursued the same plan; and in ten years nore, the population on the estate had increased to 764 persens, who cultivated 444 acres of hand. In 1805, by survey, 577 acres were clcared; and in 1814, hetween 800 and 900 acres were under cultivation. Lately (1842), the whole has been cleared. Thus, an extensivo tract of country, which at one time was entirely useless, has been brought, by labour and perseverance, to bear rich crops; and the land is now worth from $£ 3$ to $£ 5$ per acre of ammal rent. In this case, the subsoil was good earth, nnd the operation necessary was the removal of the peat-moss, so that the subsoil might be made the surface soil.

Where the subsoil is gravel or sand, a very different operation must be performed; and this, perhaps, is the -most common species of moss ground. Of whatever nature moss ground be, it is evident, that, so long as the stagnant water remains, no useful crop can be cultivated; and to renovo the superabundant moisture, by menns of draining, must be the first operation of the improver. In some cases, where the moss is not too wet, a road unay be run through the land, which will greatly facilitate the after-operations. Should such a road he cut, and a deep ditch on each side of it formed, the next operation is to open drains leading to some main ehannel, by which the water can be carried away. The moss land should be sounded in different places, to ascertain where the greatest depth lies, and when this is found, the main drain should be drawn as nenrly in that tract ns possible. Where there are beds of great depth, it dons not apprar expedient that the drain should lie cut to the bottom at first ; and, indeed, a dilference of opinion exists ns to whether moss land should be thoroughly drained at first, so as to render it perfectly dry. Mr Boroughs, the author of a treatise on waste land, is of opinion that the surfice water only should bo drained off at first; while Mr. Blackadder of Stirling osserts that there is no danger of over-drying moss by draining. This may depend upon whether or not the moss be in a decomposed state. When moss is rendered too dry, it hecomes a filrous inert matter; and, as is the ease with all other lands, it will be easier to work afterwarda when moderately moist. With regari to the sizo and form of drains, it was formerly the practice to mako theso wide and deep, and at about fifty yards apart. The lateral pressure of the water upon the sides of theso drains, however, pressed them so much together, that in the course of years they wern acarcely traceable. The depth of the main drain will depend in some measure upen the depth of the moss; und if the average depth of this be twelve feet, the drain may be seven or eight feet deep, and about the same width nt the top. The sides should he made sloping, so that the hotom of the drain will not be nhove two or three feet wide; and this difference letween the top and fottom will gradually diminish in consequence of the laterai pressure. It may in some cases the necessary to prerforate the main drain with holes, if any water appicar to be coming up fron below. Tle uryt operation is to form smallor drains leading into the min chamnel. Experience has shown that the most eflietual wny of draining defp moss is to insert edrains at small distinces from each other, and as deyp as the nature of the moss will allow. 'They may be either of tile or stone, and guardel from choving by overtaying turf. Moss ground drained in this effectunl way, will he, hres, surrounded with the main drnin which carrien the water entirels away from the field; second, cut into

2 тi
divisions with open drains, at from forty to sixty yards apart, leading into the main drain ; third, these divieions will be ugain divided into smaller portions by the covered dtains at fivo yards' distance from each other.
In this manner the moss will be effectually relieved from its superabundant moisture, and the next operation ta to lovel the land with the spade. In casea of dry moss, of course the draining is needless, and may be omitted. The land being either naturally or rendered nrtificinlly dry, should never be ploughed with a peculiar kind of plough made of wood, and covered with sheetiron, which can be freely used if the ground is free from rushes, heath, \&ec. If these plants bo growing in profusion, however, it is thought better to burn them down to the surface before ploughing. After the ground is ploughed, some prefer rolling and others burning, as the next operation. If a roller is used it should bo mude of iron, with plates of thin iron six inches deep, tive juches from each other, and placed at right angles to the cylinder. Repeated rollings from this will cut the sod fiac enough to allow the mixing of it with sand or gravel. Insteal of rolling, it has been found advantageous to hurn the soil turned up, as a more ellectual way of decomposing the roots of such plants as the cotton-grass, mat-grass, marsh trefoil, \&e. If the land is burnel, it should be plougled immediately after, preparatory to being mised with other substances. The next step in the process is to cart sand or small gravel to the field, and spread it over the wholo to the depth of three inches. Now plough all down, as the first regular dressing and culture. Thus prepared, the land is ready for cropping, and it is generally allowed that the best plan is to sow with grass seeds; the kinds recommended for this purpose are the timothy grass, cocksfoot-grass, and ribwort. Wheat, however, has been taken from newly reclaimed moss land; and potatoes, if the moss is in the neighlourhood of cultivated ground, will be found a very valuable crop to be disposed of for seed. Italian rye-grass has been highly recommended for bog land, and also rape, to twe followed by oats or barley.
One of the most remarkable experiments ever made in reclaining peat land, was performed some years ago in the neighbourhoox of Edinburgh, and is mentioned at length in Jackson's Agriculture. It was ns follows:"On the high and bleak grounds which lic on the boundaries of Micl-Lothian and Tweeddale, at tho distance of twelve or thirteen miles south from Edinburgh, there existed, from time immemorial, an extensive tract of mose, which was dug for its fuel, and exhibited the appearance of precijices of peat rising from sour pools of water, the whole broken and disorderly, and of littlo or no value whatever for pasture. A portion of this dismal-looking land, which lies about eight hundred feet ahove tho level of the sea, being purchased ly Mr. Jolan Carstairs, a gen tleman in Edinburgh, he commenced operations for reclaiming it. The purchase was made twenty-five years ago, at which time thero was neither tree, house, nor road, upon the whole moor; and a morehopeless attempt than that of bringing such a tract of utterly waste land into cultivation, cannot well be conceived.
"The firtt etfort of Mr. Carstairs was to gain access to the ground, by forming a road to it from the great road between Edinburgh and Dumfries. He evtended the roud at a great exjense through the centre of the moss, and built a handsome suit of farm offices at the western extremity. The muas was then suldivided intos fields of ecrioun fized, by running strijes of plantation in squares, protected by dikches and turf tlykes; and the fortunate formation of a new line of road between Edinburgh and Peolles, going through a conner of his property, gave energy to his exertions. Well-formed metal roads, made at his own expenes, now intersect and cross each other all corr the property, aflording easy access to every phart or is
"Tho extent of the land to be improved wan from 5 po to 600 acres; and thia he partitioned intoficids, protectea by plantations and turf walls, as we have just described The land was also effectually furrow-drained, and levelled on the surfaco by manual operations. Tho remoinder of the process of reclamation consisted in the application of lime and sandy materials, and tillage. Yeor after yean the land gradually assumed a better oppearance, and yielded a better crop. At first, the oats which grew upon it were scanty in the extreme, but now the land is in henrt, and yields good crops, and also excellent pasturaga
"To quote the words of Mr. Carstairs himself upon the state of this moss when he got possession of it-li m mostly composed of white foggy etull; stoniling from (ma to twelve inches deep of water, and not worth sixpeno an acre of rent, as it would carry neither man nor beasd In 1834, he commenced cutting shece drains treels inehes wide and twelve inches deep across tho whol moss, dividing it into regular riggs of from twelise in fourteen feet broad each, which has had the desired effect of drying the moss completely, the hollows being filled with the sols taken from the drains. This draingge coil him £.43, 11 s . In the summer of 1836 aad 1837 , s grea extent of it was top-dressed with carth and lime; and now it bears the horses and carts over its surface freely, althouge the moss is from ten to forty feet in depth.
"The application of gravel and ssand effects pethop more improvement, in consolidating and decomposing the moss, than either lime or dung. This is shom to be the case from the circumstunce, that moss land when overflowed, is rendered fertile by the deposit o carthy matter from the water. In imitation of this ope rution, Mr. Carstairs is in the habit, at every hreaking of the reclaimed moss land from pasturage, of giving likeral application of clay, gravel, or sand. This he efficts in an casy manner, by means of a portable ril roal. The application of the gravel, and the committing of the land to pasturage, or irrignted ineadow, for a given number of years, have the effect of consolidating it so much, as in most cases to render it capable of being ploughed by horses; but when ruther sott, pattens are pol upon their feet to prevent them from sinking.
"By the means detailed, some very large fields of the moss ground have been so redured in depth as to allon the subsoil, formed from the application of clay, graveh dec., to be brought up by the plough and incorporated with the moss. Complete furrow-draimage keeps the soil and subsoil always dry ; and now this ground prat sents fields of as tine and as fertile vegetalide loam as an he seen in the whole conuty, which nothing hut theie great elevation prevents from lwing equally valuable The chick, the sorrel, the nettle, and other wreds, whird usually infest moss land when first lrought into culing tion, have entirely disappeared-a sure indication that 1 completo melioration of the land has leen efficted.
"When the depth of the moss is considerable, the under atratum, fron being moro decomposed and consolidered is uniformly of a much letter quality for ngricultural ionposes than that on or immelliately helow the surfice. io gut rid of this inferior soil, Mr. Carstairs has frequentr resorted to burning; and even in this operation, bie eflients of lime and other carthy upplications, some gears previously put on, is singularly valuable. 'They not whe make the moss hurn mose frecty, und at a mare unifna destee of deph, but the aslues are remered lizhly rala able as a manure to the succeeding ereps, ly beingmined with the lime. Thus, by frequent mplications of in earth or lime, but particularly chay, and oceasional bume ing, tho worthless moss snil becemes progressively os duced in depth, and fertilized."

The expense of draining und preparing mass land io pends on many local circumatances. The usual cost in font $\mathcal{f 1 2}$ to $\dot{L} 15$ per acre ; but much has been done at £'7 or $£ 8$ per acro. The expense, in either case, infa
the most part r land, which ma may be said to wilderness, anc country.

In bome cous tho climste pos drainage, the la rith water at c generally speak se of a very did the country wh ture, is not re draining should practical agricul The necessity rising to the su sulsool being of i.pno the surfac nut escape. Ac nste, or are asso cess of drainage those of a very tions, excepted, either from the on which they r peath, is, froan it ture. A mixtu also found very they absorb wat thars loams ust chours and text in various degre rot so apparent as iajurious, and Land subject to and msy requi effectually remo Drainiag is from the over-m proper degree of proluctive tillag will produce cr beavier the drye lands er a comm that tiey often croris, and that, in bulk sad weig subjected to a th of tillage conseq outward mark of ne graia grows along the centre the sides, where of every field w observed in thi part of that in \mathbf{E} age. The pract and deep furrow being badly drai bencath, no piort the crop is at lib furrow is only a risions for the re Drailus are of and situation of buile with store, loose stones, bet exsapes, and oth urular form. 0 butary drains ar and an inferior d
proved was from son 1 intofields, protectes have just deacribed drained, and levelled - The remoinder of in the application of re. Year after yeap ter appesarance, and lats which grew upon
now the land now the land is in , excellent pasturage, airs himself upon the if, standing froin tha not worth sixpence ither man nor beast, sheep drains twellie ep across the whole s of from twelve ts hall the desired effect ollows being filled op This drainage cost 336 and 1837 , a greas th and lime; and now urface frecly, although depth.
sand effects perhopn and decomposing the 3. This is shown rec, that moss land le by the deposit of mitation of this ope at every breakingup asturage, of giving 1 or sand. This be is of a portable rit , and the rommitting I mentow, for a given consolidating it so it capalite of being r soft, pattens are pot sinking.
ry large fields of the in thepth as to allon tion of clay, gravel ha and incorporated -drainage keeps the ow this ground preecretable loatu as can It notling but thein g equally valuable other weeds, which hrought into culitis ure indiration that, heen efiected. nasiderable, the unden ed and consolidated, for agricultural jur low the surface. io stairs has frequenty this operation, the lications, some yem ble. 'They noton? 1 at a mare uniform rdered hiehly whe reps, ly heinginined opljirations of an? nd crecasional hum: es progressively io
paring moss land is
The ususl cost is ch has leen donea in eitlier case, in fur
tha moot part repaid in a very few years; and then good land, which may be let for $£ 2$ or $£ 3$ an acre per annum, may be aid to have been absolutely conquered from the rilderness, and added to the productive aoil of the country.

draining.

in some countries the ground ia naturally so dry, and the climste possesses so little moisturo, that instead of drainage, the land may require to be irrigated profusely with water at certain seasona of the yenr. The lands, qenerally speaking, of England, Scotland, and Ireland, ace of a very different character. There are few parts of the country where drainage, from superabundant moisture, is not requisite; and, therefore, tho operation of draining should be thoroughly comprehended by every practical agriculturist.
The necessity for draining arises either from the water ising to the surface from springs heneath, or from the sulssoil being of a retentive quality, by which water lying ripunt the surface, or absorbed in the upper stratum, cannut escape. According as either of these causes predominate, or are associated with each other, so must the process of druinge be regulated and conducted. All soils, thosc of a very sandy or gravelly nature, in somev situatinns, excepted, aro more or less liablo to over-wetness, either from their own nature or the nature of tho subsoil on which they rest. Clay, whether on the surface or bepeath, is, from its adhesive nature, very retentivo of moisturc. A mixture of clay, sand, and sometimes iron, is - also found very impervious; and even lonms, nlthough they obsorb water frecly, generally retnin too much. Rich thack loams usually lie on a clay subsoil, of different cioura ond textures, according to which tho land will be in ranous degrees wct. The wetness in these loams ia rot so spparent as on other soils, but it is in every case - os mijurous, and as great n necessity exists for its removal. Land subject to springs is usually very varied in its surface, and may require a number of drains beforo water is effectusily removed.
Draising is the operation of drawing off the water from the over-moist land, and of reducing the soil to that proper degree of dryness which renders it available for proluctive tillage. Many moist lauds, though undrained, will produce crops of grain, and the crops will be the beavier the dryer and finer the season; but, taking these landsen a common average of scasons, it will be found that they often grently fail in yielding even moderate crarg, and that, at the very best, their crops are inferior in bulk and weight to those of grounds which have been subjected to a thorough process of drainage, and the kind of tillage consequent upon such an improvement. The outward mark of all undrained arable land is, that little or no grain grows in the furrows. The crop is seen to run along the centre of the ridges, dwarfing grndually off to the sides, where it disappears, thus leaving a large portion of every field with no crop at all. Wherever land is ohserved in this condition-and npparently tho greater part of that in England is so-there is a want of drainage. The practice of making narrow heaped-up ridges, and deep furrows at their sides, is a proof of the land being bally draincd. With a right method of drninage bencath, no portion of the surface is lost for cropping; the crop is nt liberty to grow all over the field, and the furrow is only a slight indentation, to mark of the divisions for the reapers in harvest.
Draina are of several kinds, according to the nature and situation of the land. Some drains are conduits buite with stone, others nere conduits filled entirely with hose stunes, between which the water percolates and exapes, und others are constructed with tiles of a par trular form, Of whatever description, main and tributary drains are required. We shall deserihe a main and an inferior drain, in the language of none of the most
experienced writers on the subject, Mr. Smlth of Deans-ton:-
"The main drain should be directed slong the bottom of the chicf hollow or valley of the grounds, whele the whole or greater portion of the drains can be led into it. If any lesser hollows occur in the field, they must also have their proportional maina or lenders. The bottom of the main drain should be at least 3 feet, and, if possible, $3 \frac{1}{2}$ or 4 feet under the surface where it passes along ; and it should have throughout as uniform a fall as the nature of the ground will adnit.
"It should be flagged in the bottom, or, where flag-stones aro expensive, built as an inverted arch, to prevent the possibility of washing away under the side building. The dimensions neccssary will depend on the fall or declivity, and the area of tho land from which it has to receive water. With a fall in no place less than ons foot in 100 yards, a drain 10 inches wide and 18 inches deep will void the rain water from 100 acres. It is of greut importunce to mako the open area of such drains nurrow and high, as smaller bottoms and covers will suit, and be less liable to gite way; and the current of water being more confined, mud and sand will be less apt to settle in the bottom. Let the sides be smoothly and securely built with that stones, either with or without inortar; and let strong flat covers bo placed over, or, where such ele not to be found, rough simplo archea may be built with thin stoncs and mortar, for the bottom and cover, paciing the hnunches of the arch well up to the sides of tt:13 cut. Where lesser hollows occur crossing the fields, it is neccssary to cut submains along their bottoms, about 3 or $3 \frac{1}{2}$ fect decp, and having openings of suitable dimensions formed by inverted stone couples, or with drain tilea, or, where a very large flow of water has to be provided for, with an inverted tile, and a covering tile placed above the hottom one, or with larger tiles made on purpose.
"There should be a cross submain at the bettom of cvery field or stretch of druins, to reccive the water from all the parallel drains; and such drain should altraya be cut six inches deeper than the drains running into it, that the water may have a free drop, which will prevent the lodgment of mud or sand at their junctions or mouths Open cuts or ditehes, cither as mains or submains, should never, execpt from necessity, be adopted, being apt to get filled with mud and grass, by which water is thrown back into the drains, which often chokes them; besides, the loss of land, annoyance in ploughing, constant expenso of cleaning, and the unsightly appearance of the thing, are serious oljections.
"Hrving thus provided a main drain, with submaina flowing into it, matters are prepared for setting offi and executing the parallel frequent drains in the body of the field. Tho drains can be exceuted at any scason, when the weather will permit; but the spring and summer are most suitable for the work. It is best to execute the drains when the field is in grass, as it can then be done in nll weathers in a more cleanly manner.
"In laying off the drains, the first object tor consideration is the nnture of the subsoil. If it consist of a stiff strong till, or a dead sandy clay, then the distance from drain to drain should not exceed from 10 to $\mathbf{1 5}$ feet; if a lighter and more pornus suhsoil, a distance of from 18 to 24 feet will be close enough; and in very open subsoils, 40 feet distance may be sufficient. When the ridges of the ficld have been formerly much raised, it suits vety well to run a drain up every furrow, which saves seme depth of cutting. The furrow being thereafter made over the duains, the hollow is filled up, and the general surface ultimately becomes level. W'hen the field is again ridged, the draina may be kept in the crowns or middle of the ridges; but if it is intended to work the field, so as to alternate the crowns and furrows, then the ridges should be of n breadth equal to dowble the distance from drain to drait:; nud by setting 24 the furrows in the middle hetween two

INFORMATION FOR THE PEOPLE.

drains, the crnwns will be in a similar position; so that, when the furrows take the place of the crowns, they will atill be in the middle betwixt two draina, which will prevent the risk of nurfuce water getting access to the drain from the water furrows by any direct opening."

Small trithtary drains, male with broken stones, and covered with turf, to prevent the enrth fron filling them up (called rumble drains in Scothand), are in most places falling into disuse, and are superseded by drains msde with tiles. The tile drains are peculinrly available over the greater part of England, where there is a scarelty of stone; and both there amd elsewhere they will' soon constitute the only kind of ficld drainge in usc. The tiles for theso drains, which are made at most briekfieths, ore eimple in construction. There is a flat tile for the hottom, and a semicircular tile to place upon it, with the concavity undermost. In hard-botomed land, the sole tile is sometimes disused. The tiles measure from 12 to 14 inches in length; and being placed neatly in a mow, close to each other, a channel of 4 inches wide mad 6 inches deep is formecl; the water is admitted by the seans or interstices, so as readily to mow away. A little straw, stubble, or looso furze, is placed immelintely over the upper tile, hy which the chance of stoppage by the intrusion of earth is removed. The depth at which the tile drain is haid is 24 or 36 inches, as alove, which, being covered with 10 or 12 inches of gravel or stones, allows a sufficient depth of soil stove for the operations of sub-soil-ploughing. When the depth of the drain is three feet, and the soil a retentive clay, it is frequently fillod up for about a foot with stones above the tile, and turf laid nbove the stones, the rest being made up with surface parth. Figure 1 represents a section of a tile-drain of the proper construction. It will be observed that the bent tile laid on n flat sole, is advantageously placed for enrrying off all the water that may tricklo ihrough
 the earth and stones above, and cannot be easily choked up with soil.
In cutting drains, three kinds of apades will the re-quired-a common working spade, one a little narrower, and the third the breadth of the hottom of the drain. The cuttings should te done smoothly and neatly, pre-- serving a descent throughout; and tho tiles should not ter laid till the cuttings have been curefully inspected. The terminations of the tile-drains may be led into subterranean mains, or into the shelving lanks of open rivulets or sunk ditches; but in the laterer case, their mouths will probally require to be protected from the intrukion of vermin, or from external injury. In planning the lines of drains, the straightest side of the fich should be nelected, the first being laid off as parallel as possible, and the others formed at the distances thought necessary.
In some phaces, from the extreme leveluess of the land, or from olstructions in the subsoil, it will be found difficult to carry off moisture by drainage in the negular man. ner, and the leading of converging drains to a pit in a low purt of the field, will the the only course open for adoption.
The drainage of alheep pastures is often not lese neceseary than land for tillage: it improves the grass, and, hy Arying the sufface, renders the ground more sslubrousdry pasturage leing indispeusable for sherp. The mote of draining alopted for hilly shefp-walks is very simple. On the sides of hills, open dratiss a foot in depth, and from eighteen inches to two feet liroal at the top, ure eut, with a gente slope towards a rivulet into which they are to discharge themelves. They are made to slope in dif:ferent directions, and thus forim so many furrows, whis draw off the trickling moisture of thad sprinzs, and the cuperai) undant rain which falls. In the aouth of Scotland,
the sheep-walka have been prodigiously improted of
these simple and unexpenaive drains. these simple and unexpenaive drains.

gUBBOIL-PLOVGRING.

It has been seen, in treating of moases, that grymin chicfly composed of inert vegetable matter, or peath ins be greatly improved by supplying a due proportion of sand or gravelly material, carted from a distance or raisel from the subnoil. The same thing may be said of all lands which hnve been deteriorated ly repeated cropping A time comes when the silica and other earthy basean an found to have been abatructed in the cropa, and frese an terinls must be added.

The process of earthy restoration may he accouplished by scattering now materinls upon the fields; and thin might be ensily accomplished in many pe-ts of tho coontren, so far ass silicu or fine sand is concerned; but tha teandien nod cheapest process in most situations will consist trenching the subsoil, and gradually assinilating it to the mould above. The subsoil, or that portion of the undee stratum which lics out of reach of the ordinary plough may olready be so good as to be nvailable for briuging towards the surface, and in such cuses it elmits of eas and profitable management; but in most inatatuees in ouif comnty, the sulsoil ia hard and stony, and will requine to he trenelsed, and lie for a time in its underground pasition before it is rcady for mixing with the upper mould.
The moas efficient instrument for trenching the subwil on a large scale, is the subsoil-plough, invented by M_{t} Sinith of Deanston, whose account of it we ahall take the liberty to introduce.
"In the design, two essential points were kept in vicw :-1. The construction of an instrument that woold eflectuarly open up the subsoil without throwing any of it to the surfice, or mixing it with the active or in fice soil; 2. To have an implement of the ensiest pos sible draught for the borses, while it was of sufficient strength and weight to penctrate the firmest groomd and resist the shocks on the largest stones, The ero treme length of the plough is nbout 1.5 fect. From the socket at the point of the heam to the first stile or uprigh 6 feet; from thence to the back of second stile, 19 inches; from thence to the outer end of holding handles, 7 feth from the sole to the hottom of heam at stiles, 19 inches; length of head or sole-lmar, 30 inclies; from heal of sik to point of sock, 46 inches; broadest part of esti, 8

Fig. 2.

Fig. 3.
inches, The coulter is curvel, ond in erler to preted its point being drisen from its place by stones, it is is serted to the depth of an inch in a socket (a). To lateral dimemsicns of the sollepince are 2 inclus squas This is covered on the bottom and land sile with a caie iron shle piece, to prevent wear. The sock gows onte hrow in the usual way, nul from its feather risas the ghe piece (b), for the purpose of breaking the subsoil fino Whar the sulnoil consists of very tirm elay, or ote hard and compact earth, the feather and syur-pice maty dimplensed with, and a plain wedge or spear-pwinted but, such as those of the old Scotech plough, may be new The draft-bar (1), of 14 inch round iron, is dtactel it
he beam at the evo in the uprig of lateral direct tuo point of the by a pinching-s proper setting proper of the h puiding of the guiur The hean nd $1 \ddagger$ inch in tapers to 3 inche end, where the end,
The whole weig nommous weigh strength nad wei trials with light weight now desc mosts efficient, th for the ploughm
When a field drawn by two la open furrow of lors in the wak roughly and brea active soil is thro is a kind of hor: understratam to by this means sterile and obdur and the common depth of from te For this heavy p alvenst will be re ing may be estim per statute acre, winh the spate ellectually done. doult considerah "All who have tommon gardeni santages of deet in the broad fielld asally believe tha repaid in every a pasture. When 1 wreught, und well sidl bromes a d test natural land for rasing only good crops of fron buthels of beans, 48 to 70 bustiels potatoes, turnips, crops, and which avandant produce

Lime is the m usually applied to material, in whic ratbonic acid gas. and it assumes th teducille to powde in its sot powder innkibe mointure f ssit was previous itslf carbonic aci
Hlye use of thi the is well know bare never been thie poser of dece nad cuters nax an centain cases it on In some instancess
.
mosses, that gTrum matter, or peat, tiay a duo proportion of madistance or raiscd may be said of all by repeated cropping. ther earthy bakeg an
may be accouplished the fields; and this y perts of tho country, ned; Jut the realliest ations will eonsist it assinuilating it to the portion of the undee the ordinary plough vaitallo for briuging ases it admits of easy most instarlees in put y, and will require to underground prositian, re upper mould. trenching the sutzoil ugh, invented by Mr of it we shall take the
points were kept in nstrument that nooll out throwing say of th the active or sus nt of the easingt pos o it was of sufficiem the firmest ground est stones. The evat 15 feet. From the e first stile or uprigh econd stile, 19 judess; lding handles, 7 fett a at stiles, 19 inches; es; from heal of sol adest part of exk,

d in order to proeres ce by stunes, it is is a siorket (a). Ts o aro "e inches squan land side with a cas The sork goes ontir feather rises the qu: ug the sulsoil faroon y firm chay; or otis and spur-plece mat x or spear-pwinted suk, plough, may be new di iron, is dtachei
the beam at the strong eyo (d), and passing through an eye in the upright needle (e), ia adjuatnble to any height of lateral direction, being movablo in the socket (f), at due point of tha beam, ond can be made fast at any point by a pinching-screw wrought by the laver (S.) By the proper setting of the draught-rod, the direction of the pooper of the horses is so regulated ns to render the power of of tha plough easy at any depth or width of furrow. Tho beam is about 5 inches deep at tho midelle, radd if inch in thickness-townrds the draught end it anpers to 3 inches deep, and 1 inch thick-at the holding end, where the handles branch off, it is 2 inches by 1. The whole weighs 440 lhse imperial. This appenrs nn enarnous weight, and most people are alarmed at tho atrength and weight of the implement; lut nfter repeated atreng with lighter ploughs, those of the dimensions and
trials wight now described have been found to be at onee the most efficient, the most ensy of draught, and the casiest for the ploughman to mansge."
When a field is to be trenched, a common plough, drawn by two horses, goes before, throwing out a largo open furrow of the artive soil. The subsoil-plough follaws in the wake of the common plough, slits up thorougly and breaks tho bottom, and the next furrow of artive soil is thrown over it. This large subsoil-plough is a kind of horse-pick, breaking up without raising the unler-stratum to the surface. The atmospheric nir being by this mans frecly ndmitted to the sulssoil, the most stenilo and obdurate till becomes gradually meliorated, and the common plough may ever after be wrought to a dipth of from ten to twelve inches without obstruction. For this heavy ploughing most likely three horses yoked alrast will be required. The charge for subsoil-ploughing may be estimated at twenty-four to twenty shillings per statute acre, being one-fifth of what a similar depth with the spade would cost, and, upon tho whole, he as effectually done. The expense of subsoil-ploughing is no douht considerable, hut its advantages nro incalculable. "All who have ever studied or experienced the most ommon gardening, must be aware of the important atrantages of deep working; and when it can be attuined in the broad field of farming st so small a cost, they may easily believe that the whole will be more than donbly repaid in every succeeding crop, and abundantly even in pasture. When land has been thoroughly drained, deeply wroght, and well manured, the most unpromising sterile soil bromea a deep rich loam, rivalling in fertility the thest natural land of the country, and from being fittel far raising only scanty crops of common oats, will bear good crops of from 32 to 48 bushels of whent, 30 to 40 bushels of beans, 40 to 66 busbels of barley, and from 48 to 70 bushels of early oats per statute acre, besides potatoes, turnips, mangel wurzel, and carrots, hs green rops, and which all good agriculturists know are the abondant producers of the hest manure."

liming.

lime is the most important enrthy substance which is osually applied to land. It is found in the form of rocky matrisl, in which condition it is in combination with carbonic acid gas. O_{n} being burnt, this gas is expelled, fard it assumes the form of n whitish brittle mass, easily reducille to powder. On loing exposed to the atmospluere in its soft powdery condition, it hats a stroug tomdency to iantibe moisture from the air, and som becomes as heasy is it was previous to burning. It also ecombines with italf carbonic acid from the nir.
The use of this arniticially prepored earth in agriculture is well known; nut certain peculiaritios in its action bave never lueen satisfintorily aserertained. It poessesses the power of decomposiug animal and vegetable matter, fal enters an an element into the fabric of phats; in cetain cases it only altere the constitution of the soil, and in some instancers its application would be pestively in-
jurious. Speaking of this remarkable fi mil, Sir Humphry Davy observes-" When lime, whother freahly burned of slaked, is mixed with any moiat tibrous vegetsble matter, there is a strong action between the lime and the vegetable mstter, and they form a kind of compost together, of which a part is ususlly soluhle in wster. By this kind of operation, lime renders matter which was before comparatively inert, nutritive; and as charcoal and oxygen abound in all vegetable mstters, it. becomes st the same time converted into a carbonnte of lime. Mild lime, powderod limestone, marls, or chalks, have no action of thia kind upon vegetable matter; by their action they prevent the too rapid decomposition of substances already dissolved, but they have no tendency to form soluble mat. ters. It is obvious, from these circumstances, that the operation of quick-lime, snd marl or chalk, depends upon principles altogether different. Quick-lime, on being applied to land, tends to bring ony hard vegetable matter that it contains into a stato of more rapid decomposition snd solution, so as to render it a proper food for plants. Chalk and marl, or carbonate of lime, will only improve the texturo of the soil, or its relation to absorption; it nets merely as one of its earthy ingredients. Quicklime, when it becomes mild, operates in the same manner as chalk; but in the act of becoming mild, it prepares solulte out of insoluble matter. The solution of the question, whether quick-lime ought to be applied to a soil, depends upon the quantity of inert vegetable matters that it contains. The solution of the question, whetber marl, mild lime, or powdered limestone, ought to be applied, depends upon the quantity of calcareous matter alreaty in the soil. All soila are improved hy mild time, and ultimately ly quick-lime, which do not effervesce with acids, and sands more than clays."
Let us now proceed to the prsctical spplication of this valuable fossil manure, commencing with its use in the reclaiming of waste lands. If moorish or waste soil is much infested with the tenacious roots of rushes, heaths, and other weeds which resist the mechnnicsl action of the harrow, and yield slowly to putrefaction, the best mode is to till the ground, and ollow it to lie in this state for twelve or eighteen months, or even two years, hefore applying the lime. It is then generally applied in autumn, nud tilled in as soon as possible; but if not immediately tilled in, the soil with the lime on it should be harrowed, so that its decomposing effects mny act as powerfully as possible upon tho vegetablo matter. After these operations, the land is sown two successive yeara with oats, without my fatlowing; and along with the second crop of oats some persons sow it out in grass sceds for pasture. Others, after the first or second crop of oats, give the land a summer fallow for one senty n, or a green crop with manure. On the following senson nnother crop of oats is taken, along with which grass seeds are sown, and in this state it is committed to prasture. In some cases, after tillage, the soil is allowed to lie for one, two, or more years, necordine to its nature, nfter which it is reduced to a complete state of pulverization hy a well-wrought naked summer fallow O_{n} the spring fotlowing it is limed, and the lime is well harrowed in along with grass seeds alone, and in the following season the lsnd is committed to pasture. This, howover, is a very expensive mode, and calmot be recommended to tenants whose lease is of a mokerate lensth. It is decidedly the most enriching monde of laying down waste land with lime only for pasturage, as the coergy which the lime commonicatel to the soil is not exhausted by grain crops.

It will now be ohserved that line is a most inporta. encin of inprovement for waste lands; for it decomposes nud brings into active use the inert segetable matter, and atso serves as an elemontary earth for the growth of plants. For peat lands, filter being drained, and generally all rough lands teclaimed from a state of nature, line is invaluable, and equally so for eithe: tillage of
pasture. In connection with turnip husbandry, it has been the grand reclalmor in many parts of Scotland, and will cffect aimilar onda in any district of country not possessing a aharp and active soil; in such places it is not required, and ita application mny do harm. Laid on merely as a top dressing-that ja, thinly powdered over the land-lime is found to have very extrnordinary effecte. Mr. Aiton, in his treatise on moss, ohserves-u" If lime or other calcarcous subatances are lnid on the sward, though the land be neither laboured nor any seed sown, such are the effects of hot lime, that the moss plants will instantly disappear, and a rich and beautiful sward of clover, dajsies, and the richest poa or meadow grasses, will rise epontaneously."
From the result of experiments in many different situations, it scema satisfactorily proved, that the proprictors of waste lands within reach of lime have themselves to blame for the grounds continuing in sterility. Their complete melioration, however, is not to be expected at once; but upon proper arrangements being ontered into between the lanillords and the temants, a grent proportion of the pastoral grounds, lying in a state of waste, might by these means be progressively improved.

It seems to be a general wish of farmers to use lime rather in tillage than by top-dressing, which is much to be regretted, as the lime, when used in tillage, conjoined with over-cropping, eventunlly exhausts the soil; whereas, by applying it in top-dressing, it will prove highly benefieial. Therefore, in a elimate rising six hundred feet above the level of the sea, top-dressing is the most effectual way in which lime ear be npplied for improving barren pasture-grounds. The land is never in this way exhausted by any apecies of cropping; it is put in a state of being benefited by the dung of the animals grazing upen it; and by due attention leing paid to keeping the land free from wetness, by draining, it will be progressively fertilized. In the application of lime, it is a role which should invariably be attended to, alwnys to give abundance, and in a newly slaked condition, in order that it may have its full effect. If slaked a considerable length of time before it is applied, it does not act so powerfully either in reducing the natural herbage or neutralizing the acids, as when applied in a hot powdery state. There are very thin moorish aoils, however, where lime by itself will not improve the herbage, these requiring a nouriahing before a stimulnting manure; and on such lands, a dressing of good earth will be found to have the same effects as lime has on a strong soil. Top-dressing with clay or and may also be performed with advantage in mossy moorish tracts, where lime cannot ensily be obtained. These earthy materials have a wonderful effeet in improving the pasturage; they entirely destroy the growth of most plants; and if applied to the depth of an inch or so, will generate a sweet herbage, rendering the ground capable of being benefited by the droppings of the animals it aupports.

irrtaation.

While some lands can be reclaimed only by draining, others, which are naturally dry, may be rendered equally serviceable by irrigation, or artificinl watering. Lands in the dry climate of Australia seem to be in this condition; instead of depriving them of water, they require all that can be conveniently led towards them. Nuch of the land in the imer parts of North America is likewise on dry, that drainage is altogether undesirable, and irrigation is in maty cases a means of fertilization. It may happen that lands naturally marshy are as much the letter for irrigation as dry deserts; hut in all such cases the hauds must in the first place be drained. This leada to an exflanation of the principle of irrigation.

When water lies in or upon the land, it stagnates and produces a marsh, whieh is aiike insalubrious and unproductive. The extensive Pontine markhea in the neigh-
beurhood of Romo present a romarkable example of bol these conditiona. In order that water may not be lajorluus, it must be kept flowing, alwaya running amongon and from the blades of herbage. Regarding the them of irrigation, Sir Humphry Davy aays-d Water is abyy Intely essential to vegetation; and, when land has beet covered with water in the winter or in the beginning of apring, the molsture, which has penotrated deep into the soil and even the subsoil, becomes a sort of nourishment to the roots of plants in the summer, and prevents thone bad effeets which often happen in landa in their natural state, from a long continunnee of dry wenther. When the water used in irrigation has flowed over a caleareow country, it is generally found impregnated with carbonate of lime, and in this state it tends, in many instances, to ameliorate the soil. Common river water, also, gens rally, centains a certain portion of organizablo matter, which is mueh grenter afler rains than at other times, and which exista in the largest quantity when the atream rises in u cultivated country. Even in cases where the water used for flooling is pure, and free from animal and vegetable substances, it acts by enusing the moro equabie diffusion of nutritive matter existing in the land; and in very cold scasons, it preserves the tender roots and leaves of the grass from being injured by frost.
"In genernl, those waters which breed the best fisham the best fitted for watering meadows, hut mabi of the benefits of irrigation may be derivel from any kind of water. It 1s, however, a general princijue, that katen containing ferruginous impregnations, though posseneld of fertilizing effects when opplied to a calcareaus soil, ano injurious to soils that do not effervesce with acids; and that calcareous waters, which are known by the corth? deposit they affum when loi cd, nre of most use on sild ccous roils, or other soils containing no remarkable quaro tity of ennlonate of lime." Whatever be the actuad properties communicated hy the water, it is certain that the general effect of meadow irrigation is greatly to ine erease the quantity of herbage, and remder it more swet and nourishing for cattlo than if grown on dry grounds

In order to irrignte a field, there must be n differefe of levels, the water being made to run in a main chancel along the highest side, and thence sending suall rills dy over the lower parts of the ground. The principte of adjustment is ly sluices. When the slope is considen able, the wuter requires to be sent diagonally across the field, and being catched in mains at iutervals, is sgein distributed, if need he, in new directions. This is cilled catch-work irrigntion. The following ohservati, no on tha suhjeet occur in Stephens' I'ractical Irrigator and Draisen: --"In the formation of an irrigated meadow, there an two rules of the greatest weight: one in, that no part of the works be made on the dead level; and the other, that every drop of water be kept in constant motion; buth give exnct directions for the formation, is beyond tix ingenuity of man; for no two pieces of land are precisty alike, which renders it impossihle for the irrigator to foin the same plan in one field that he has done in andtien, Each meadow, therefore, requires a different desiga, te construction to le varid nccording to the mature of the ground and the quality and quantity of water. Incind plains are absolutely necessary for the purpose of imp tion; and the benefit of irrigation depends so much yra the good masagement nod pationt perseverance of but who have the superintendence of it, that I da not wema it has so often proved masucessful. However simplete construction of a water meadow may appear to the on superticial view, those who enter minutely into the ded will find it much more diflicult that is comnery imacined. It is not an ensy task to give an irreging surfire the equal slope repuisite for the ovenlormat water. It is very necessary for the irrigutor to hase put ideas of levels; a knowledge of supurticial forms will an be suflicient. Few prople unacquainted with the and
nigation and migation and modelling the unovan, it is 8 plough, and t which means wrized before prough and ap may be execu wiih thas spads paltago by do especially wh water can bo by breaking u two or three ? the water can long to wait, pense to have doing, the wh eeason. The land for water soft meadow farin grass (tha prevailing way of planti the same way other sides. good crop the some perenilia the others, to commence."
It must he dow is not to water must be todry ; it is a and removed. off the water which a const: ing on this ? serves:-" On of irtigated m proper attentic and stagnant there is 200 m water lodyes coarse and sea mitted is, allo without prope stances in thi attempted to the meadows, fare the cuttio grass is of the cane so very obliged to be male into hay management, in this countr too long befor badly made, beiug put int lateness of th that the propr miadow whie bad heen mad "'l'he first Water in the parts than one regulated; th tops in the i water in thi ing the apern guarly over the first, he
kable example of ber ater may not be liju- ayo running among Regarding the thengy ays-a Water is aboy, or in the beginning 0 netrated deep into th a cort of neurighmen er, and prevents thone lands in their natural
dry weather. Wihe dry weather. When
wed over a calcarcous gnated with sarbonato in many instances, in ver water, also, gene of organizable matter, is tham at other timer intity when the strean n in cases where the 1 free from animal 8 ond lsing the mero equable ing in the land; and the tender roots and red by frost. breed the best fisham loves, hut mosi of tho ved from any kind principle, that water ons, though possean o a calcarcous soil, as rvesce with acids; and known ly the forth re of most use an sil g no remarkable quan latever be the actua ater, it is certain tha ation is greatly to in d render it more sxee own on dry grounds e must be ndifferenc run in a main channa sending stuall rilla a nd. The priaciple o the slope is consite. diagonally actoss is 3 at intervals, is sgei ections. This is calles ing observati, an on it 1 Irrigator and Drainer ted mendow, there one is, that no parted vel; and the ohere, baid onstant motion; heth mation, is beyand te es of land are precidy or the irrigator to folla a lass done in sutbert a different design, te: g to the nature of te ity of water. Indined the purjose of inim dejends so much yura perseverane of blet t, that I do mot wenia

Hawever simpletz nyy appear to be on ninutely into the dus It that is commens 6 to give an itreguig for the overflormy d e irrigator to hate jus perticial forms will a rainted with the onf
migation and the regularity of form which the adjustmgation water requires, have any ilea of the expense of modelling the aurface of a field. Whero land is very noveren, it is sometimes advisablo to break it up with the plough, and tuke a crop of oats tefore the formation; by phich means the land can be properly cleaned nad pulwrized before lovelling it into form with tho levelling rough and apnde the following year-an operation which may be executed at half the oxpenae of doing the whole with tha spade and whecl-harrow. But there is one advantage by doing the whole work with spado and barrow, eapecially where the turf is strong, which is, that the water can bo applied as suon as the beds are formed; but by breaking up, and taking a crop of oata, it will require two or three years after the grass seeds are sown befure the water can be used, whieh some proprietors think too long to wait, therefore will rather be at an additional expense to have the turf liftel and laid down again; by so doing, the whule oporations may be performed in ono euson. The grass seeds generally used for laying down land for water mealow are, vernal grass, crested dogstail, off meadow grass, rough-stalked meadow grass, toxtail, forin grass (agrostis stolonifcra), which last is one of the prevailing grasses in all gool meadows; and the best ray of planting it is to cut tho whole into short pieces, the same way as cutting straw into chalf, and sow it with ther sides. It is not always that those grasses give a rood erop the first year ; therefore, to obviato this evil ame peremial ryegrass seed should le sown along with the others, to produce a crop of hay beforo the watering commence."
It must be maderstood that the irrigation of any meadow is not to be incessant. 'There are times when tho water must be altogether torned off, and the ground left odry; it is at these times that the herbage is to he cut and removed. In large mendows, it is customary to turn of the water from ditferent parts at different times, by which a constant succession of crops is obtained. Speak ing on this part of the management, Mr. Stephens ob serves:-" One of the greatest defects in the management of irngated meadows in this ceuntry, is the not paying propet attention to freemg the ground from subtertaneous and stagnant water; for experience shows that, wherever ere is too mueh moisture beneath the surface, or if the water lolges too long upon it, the crop will alwiys be coare and seanty. Another great crror generally committed is, allowing the water to run too long at a time without properly drying the gronnd. I know some instances in this neighbourhond where the ground is not sttempted to lee dried from the time the water is put on the mealows, in the autumn, till eight or ten days before the cutting of the hay; the consequence is, that the grass is of the coariest quality, and the ground has beanae so very boggy, that the whole crop of grass is obliged to be carried by people to some other place to be mate into hay. Another inconvenienco nrises from bad management, which, I am sorry to say, is too prevalent in this country; that is, permitting the gruss to stand too long before cutting; the consequence is, coarse hay, bodly made, and in many instances half rotten before being put into the stalk; ami, moreover, owing to the beness of the season, the aftermath is entirely lost ; so that the proprictor has not reecivel halt the value of his madow which he ought to have received, if the hay had treen made in the proper seasous.
"The first operation of the irrigator is to adjost the water in the condurtor, or, if the memow is mane pards than one, the water in each conductor mast be fist regulated; then he commenes anew hy regulating the aope in the tirst feeder ; but should there not be sulifecient water in the feeder, a little more must be led in, by maklog the aperture willer or deeper, ill the water tlows regurly over the sides from one end to the other; from the first, he proceeds to tho secon: feeder, and so on,
until the water in all the feedors is adjuated. Let the beds of a wator-meadow be ever ao well formed, yet, by some places sinking mors than others, or by the ice raiing the surface of the grcund, although the water along tho tranks of the feeders bave been ever so nicely edjuated, it often happens that there may be some places between the foeders and drains with too little water, when it will be advisable for the manager to make a third round, redressing inequalities of the surface, so as to give overy spot an inch deep of water. Every part of the work being regulated, the water should be allowed to run through the whole of October, Novomber, December, and Junuary, from fifteen to twenty days at n time, without intermission. At the expirntion of these periods, the ground should be mado completely dry for fivo or six days, to give it air; for there are few species of grasses, which form the most nutritious part of tho herbage of water meadows, that will long exist under an entire immersion of water. Moreover, if the frost should be severe, and the water begin to freeze, tho watering must be discontinued, otherwise the whole surface will become one sheet of ice; and wherever the ico tukes hold of the ground, it will undoubtedly draw it into heaps, which ia very injorious to the plants. I'he object of this carly preparation of tho meadows is to take advantage of the autunaal floods, which bring along with them a variety of putrescent matter, which is found very enriching to land." At the most convenient period of the year, the various channels will requiro to be cleaned out, and the works repuired.
photecting river banks.
Much valuable land on tho banks of rivers and rivulets is often laid waste by the encroachments of floods A few words on this importunt subject seem to be necessary. It may be laid down as a principle in natural science, that water is irresistible, and therefore it must not be resisted-it must be humoured. All windings in streams are causes by resistnnce. The water, in rushing onward, dashes ugainst a projecting stone or hard part on one of its banks; this sends it in an opposite diretion, and it strikes against whatever obstack is presented. This process of interruption soon cnuses a mouldering of the hanks in opposite dircetions, so that nt leagth the water runs in a zig-zng or serpentine course. All this might have been avoided by allowing tho water a pertectly free course.

The damage done to lands by flooding, has led to numerous experiments for keeping the water in its channel, hut seldom with any degree of sticeess; because the attempts have been to hem in the current by sheer forco. In all eases in which it is desiruble to keep ont tides or ligh floods from lands, the only secure method consists in giving the banks such a slope that they will present no resistance whatever, but allow the water to rise and subside with equal ense and tranquillity. As a general troth, the greater the slope the better; and it should never be less tham a foot and a half for every foot in the hright. Employ no stones or stakes, or any thing else, for the current to eateh upon; but eover the slopes with smooth turf, nt a season which will allow of its growth before the tloods set it. If any patehes get broke, let them be annually mended. To keep out high floods, the banks must be made correspondingly bigh. Artificial embankments, in a flat country, should assume the form of a long moum, sloping on both sides.

Notwithstanling the obvious utility of this simple and umexpensive mole of protecting river bunks, instancea of thanage are constantly occorring from projects of an opposite kinel. Mr. Ntephens mentions the following na one of many within lis knowledge:-"An embnakment was thrown round the sumull ishand Mugdrum, in the river Tay, to protect the land from being cverfluwed ty the tide; but it was mado so stecp, that the first spring

When asvelled the stenter part of it to the ground. meond attempt was made, with the ailditional expense of a stone wall facing the water, which shared the sane fate with the former bank. Since these failures, a third omhankment has been erected with nothing but the nucural soll of the lanil, and the whole covered with thin turf. The length of the present slope next the men is five times the perpendicular height of the hank, and tho innor slope threo timss; the water, meeting no resistance, molls down the long slope without doing any injury. $\%$ We refor to Mr. Stephens' useful treatise for furlier information on thle salject, as well as on irrigation and draining.
In councetion with the protection of river hanks, wo may say a few words on the methol of gaining Innd from rivers and tidal estuaries. This may he done if the river appeare to atrugglo over an unnecessarily wido space, and lorings down quantities of mud so as to produce impediments to navigation. The process usually tollowed with most advantuge, is to run out at intervals short rows of stakes, matted with twigs, calculated to catch the confluent particles of mud, but to nllow the water to pass through. A sediment is thus gradunlly formel between the rows; in time it rises above the water, nod ultimately forms a green productive surface. When the water is alfected by the tidea, a row of loose stones lnid between high and low wuter-mark will similarly catelı mud and sand, and while forming new land, will, by marrowiag the chnmel, give greater inpetus to the stremm, and help to decpen ite hed. When done on a great senle, the bed of the river is seooped by mechanism, and the rubbinls brought up may atterwards assist in elevating the newly formed banks. In point of justice to all parties, nny of these processes of river-bunk improvement should be done on both sides of the river at the sames time; for if eflecterl only on one sile, the water may be drisen to the opposite shore, to the serious damage ci the land in that quarter.

SIADE: HCSBANDRY.

The rechining and culture of small pieces of tand liy meane of the spade and other instruments of mannat kabour, is usually spoken of under the name of spade husbandry ; but is also sometimes called cottoge-firming, or field garilening-the oprrations of the culturist learing an intimate resemblanee to those npplied in ordinary kinds of garileming. The npparatus supposed to be employed by the cottage farmer is simple and une xpensive. It consists of two or thrie spades of dillierent sizes, a pickaxe, three-pronged diggint-firk, hoes, rake, light harrow which he can imaw, scythe, reaping-houks, hayforks, flail, wheelbarrow, \&c.. according to means. It is of great inportance for the cottage farmer to be able to sharpen or mend his trols, and for this purpose her should have a grindiur atone and small forge, alos some carpenter's tools. No horse or paid servant is kept. All the work is done ly the mannal labour of the farture and his family. The ouly live stock is a cow or cows, pirs, and poultry. The homesteal consists of a coltage with several npartments-a cow-lonse, pis-stye, and barn. The rize of the farm is supposed to vary from four to six or cight arres, und to be laid out in six or cight dis. tinet tiches, properly fenced.

Trenching.

The basis of cothage farming is deep trenching with the spad:; but before regular trenching can commence, the land if in a rough state, must ine eleared and drained. Ws have already shown how these prelioninary operatoons arc iorformet on a large seale, and they may very aesily be inudifed for manual dabour. Suppose the patch
of land in part of a moss, dig open drains round in th draw off the water; scarify the surface with the spalg and burn the heaps of turf; seater the ashees on the Inad along with any sandy material or lime which can the procured, and then delvo all from one ond to the other. This proceas will enuse a large portion of the mossy fibro to decay, and the exposaro to the atme sphere and draining will be found to meliorate the mant. In twelve months, the face of the lind will be mute like earth and less like peat than it was at the time ul delving.
If the Innd be choked with atones or roota, all them encumbrances shoutd bo removed to the depth to which you design your trenching should go; and the sooner you get rid of them tho better. The whole ground should he free of every thing which enn present the alightest impediment to the spuile. Stones of even an ounce in weight should be removed. Where suldraine ing is required, the stones may be employed to lay is the druins. With reapect to the first cropss taken from the delved fiehl, it will deyeme on the natural fertility of the ground and other circumstances. If the land te comparatively dry nud fertile, av, for instance, the forest land of North America, a good meliorating unll operim crop is potators; but in the case of poorer roils, mamars ing will be requited, and the first crop may be gras If tho land con be convenicutly partitionet into serparito fields, d diflienent crop mny le taken fron pach, tho commencing a regular rotation. In proportion as the upper layer of rarth is melionuted and exhausted, it will te uecessary to go the deeper down. On large farm, certain fields are occasionally lef fallow, that is, doing nothing, unless it bo gatheriug what strength can le procured from the ntmosphere. In cottage farming this wasteful practice must be unknown. Insteal of try? ing to recruit the land by giving it a rest, you must re rritt it by turning up the layer of mould immediatels holow that which has leen afforling nouridmant is your crops. This stratum, which we shall call laver No. 2, extends from 9 to 18 inches lelow the surfare, supposing you to have been employing a nine or ten-inch spade. It is, genernlly speaking, meither soil nor subs suil. but partakes of the qualitios of hoth; and after two or three years' cropping, will be found to have imbibet a share of the manure delved in for the crops. The art then, ronsists of raising up this layer No. 2 , and turning down No. 1 in its stead. Dly doing so, perhaps manus ing may be omitted for a year, and, nt any rate, a light manuring will sullicr.
In sume districts the depth of availahe aoil may not the so murh ne is inches, the layer lienoath being tok or chalk, in which case the stirring of the soil cannot be carrid deeper, unless at on immense cost of labour; bu in the greater number of instances. the soil rests on a till or clayey-hardish substance, usually called sulicoil; and this which we may call layer No. it, must he stired and gradunly brought up in aid of the upper soils, is mentioned under the heal Subsuil Plowitung, the propes method of nomrishment consists of first striang or lireak ing up the hard sulsoil. Gict down to it, and go owes it wih a pirkaxe. Next year it may be ineorporated mih hayer No. 2, , nud in two or three ycars the whate three layers may be indiscriminatcly mingled or made to rhanse phaces. Such is the principle of trencliars tr which threce lavery of soil are uttermately, or at proper intervals compeiled to do duty; and thus a hann of sis weres, ly lwing, ns it were, three story itep, is practio cally us extensive as one of eightern acres but one story derp. When we ald, that white the plough leates lumps of carth unhokern, and comparatively nsedess to the rrop, the spade dushee nad pulverizes the whole soily bringing all into effective play on the roots, the value of apale orer plough hombandry will be at ouce appasent A nother important advantage of deep trenching with the
qume, is ti.c insecta and see face; and it wenched grou nuisances.
The process ralluages is n fact not to be mint, and la faming will disinclined to the eudertaki whle, it ahoult the inere the trenching he. Trenching, performed as two feet in w mence ut x an

the top layer, upe of the stri suhsoil from. near whete y being now sn 2, and next w layer No. 1 , or and shifting now turn and manner; troif havo in cuery a layer No. 3 fil up the stri bifferent whys Xo. 2 upperin this mnst be l of what will means of mel arch atrip who groil plan; fo pared for being the fields be.

Whether th clained hor phether it x : ressarily exer and renching routine of mas other allairs o in sufficient u ond a juis, and molid refuse, ir family, must Louse shand d lul. I.-

drains round it r

 ace with the spady, or lime which the or lime which eanom one enil to the arge portlon of the xuro to the atmis o meliorate the sum. land will be mory was at the time of
a or rooth, all thene the depth to which ; and the seonet The whole ground h enn present the Stones of eren an Where suldrain. emoloyed to lay in erops taken from natural fertility of s. If the land b instance, the fore: rating aud operin? oorer soils, manur. crop may be grak tioned into srparite n from each, thras proportion as the d exhausted, it mill

On large farms, How, that is, doing t strength ran le cotiage firping n. lustend of tri: rest, you must remould immediately ig nourishment is ve shall call lave below the surface, f a nine or ten-inch ither soil nor subb oth; and after two Id to have imbibed ecrops. The arth No. 2, and turnin; 30, perhaps manus. at nuy rate, a light
ilable soil may aot eleath being tove the soil cannot be cost of lahour; bat lue soil rests on a lly called sulisoin; B, must he stired - upper soila. Ab wathere, the propes sttiting or break l it, and go over it incorporated with re the wholo three aled or made to of trenching, hy atcly, or at proper hus a fam of sis y deep, is practicres but one story he plough leares ratively usdess to es the wh:ole soil oots, the value of at onec appasent renching with the
apme, in the tuming down and destrnyling the larvm of insects and aeeda of weeds which may be about the aurfacel and it will bo found that the firat crops of arenched ground aro alwaya remarkably free of theac nuisances.
The process of trenching to effect these important adnatuges is no doubt very toilsome; thin, inileed, is a foet not to be concealod ; but, without almort constant wi rr , and labour in which a pleasure is taken, cottage faming will generally come to nought ; ind he who is disindined to undergo the trouble, should not eommence the endertaking. 'I'o reneler the work an ensy as posable, it shoukl he methodic, and hit by hit, and alwaya the mere the gromend is tilled, the less difficult will the trenching be.
Trenching, either for gardening or farming, is nsually performed ns follows:-Mark off the field in atrips of two feet in width, as in the nnnexed dingram. Commence at x and y at top of the fleld, and take from each

the top layer, which wheel ncross to a and b lie ond the upe of the atrip 1I. 'Then digy out the lowet layer or subseil from x, and whed it away to a separate henp near where you have laid the top earth. The patels x beiag now empty, fill it two-thirds, first with layer No. 2, and next with layer No. 3 of y, nnd cover it with layer No. 1, or top carth of z. Thus go on wheeling and shifting till you come to the bottom of A. You now turn and troneh upwards the strip \mathbf{B} in the same manner; trefth down (; and up D, und so on till you have in exery patels laid a layer No. 2 undermost, nud a layer No. 3 above it. 'I'lic overplas, wheeled nside, will fill op the strip 1I. You may vary the process in many different ways: nod, you think proper, phace layer No. 2 uppermost, and layer No. 1 in the contre; hut all this must be left to your own ingenuity, and your ideas of what will be lest on the occasion. As a further means of melioration, some trenchers stir the hottom of each strip when it is exposed with a piekaxe, which is a grod plan; for the more the subsoil is loosenel and prepared for bing brought into netivity, the more fertile will the fields le.

General Management.

Whether the land of a cottage-farmer be part of a reclained bog or woste, or a section of fertile soil, or whether it he his own property, or rented, he must neeessarily exett unremittiug industa: not only in digeing and renching his small fields, but in all the ordinary routiae of manaring, cropping, and in attending to the othet affairs of his estahlishment. 'I'o procure manuro in sufficient abundance, he must keep one or two cows and a pig, and into a pit aljoining the cow-house, all tho wolid refuse, incluling all that may be collected from the family, must he removed. 'The urine from the cowhouse shou'd ln collected in another pit, or a barrel sunk

Vul. I.-(1
in the ground, protected from the alr. This will in found a moat valuable liquid for throwing over the land, to excito a young growing crop. While on the sulject of manurea, it cannot be out of place to mention thit most aurprising reaults have been effected in agriculture and market-gardening, by the use of night-soil. In some foreign conntriea, whero this in well understood, the nightraoil is carefully saved, und to deatroy ita offen. sive eflluvia, is milxed with gypeum or earth, for a few shovelaful of earth thrown over it at onco remerce all offensiveness in this respect, besiden bein. 'erwiso usefinl. So little thought and trouble are uss , taken in Britain to preserve thia materin! for manure, that for tho use of enterprising agiculturists, quantities are now imparted from France in a dried and prepared condition.

Thero are other meana of increasing the quantity of manure. From every piece of ground a quantity of ruhhish may be collected, as withered lenver, stalks, elippinge of branches, roota, \&c. Improvident persons hurn much of this refuse, but wa strongly advise the eottager or gardener never to burn any thing, except it ho atumps of trees, or pieces of hranches as fuel. Collect all the inferior stuff into a heap, to which serape or carry alf the mire that can be gathered from the pathwnya, and the whole will make n compost dung-hill; a pailful of cow prine thrown oceasionally over the heap will be a valuable addition, and so likewise will be a shovelfil of night-soil. A little lime will hasten the rote ting of any compost. If properly mannged, in twelve montha all will be rotted, and then begin taking from one end for manure. To the other extremity you may keep alding now matter that is collected. The trentment of the ordinary dung-pita is to he on the samo plan. Do not remove the manure till it has lain a sufficient leugth of time to ilecompose, but keep taking from one that is ready, wiile another is collecting.

If n rivulet can be mado to run upon a meadow, as previously dencribed under the hend Irrigation, the cotthger will add prodigiously to his stock of grain, forder, and hay. From a single nere, well irrigated, as much as 200 stones of sweet, nourishing hay may be cathered every year, hesides a quantity of green stufl. The proper saving of this meadow hay requirese considerable tact ; if any wny spoiled, the cattlo will probably not tonch it.
In the scheme of working a cottage farm, it should he an objert to make the very mont of every day out of toors, when the season and weather permit, and to ocenpy the deal of winter and days of bad weather at work in the barn or honse. The Swiss small farmers do much by workiug nt some handieraft employment, particularly weaving and making toys, during those seasons when prevented from labouring out of doors; and in many instances they keep one member of the family at the loom. In short. none must he idle; the grown-up children, when not at sehool, heing made useful as far as their enpacitics will admit of.
It is calculated that an nctive spadesman would find little differulty in bringing balf an acre annually into an improved state; for as 80 rods make the half acre, and there leing 313 worbing days in the yenr, to necomplisk. this it would sequire little more than a quarter of a rod to oe tronched daily, whereas a molerate day's work, even where the soli is stony and diflieult to trench. would considerably execed a rod. 13ut where there is a hoy or two to assist, an acre might with perfect ease be lirought into an improved stnte yearly.

Whether it would he prefernble to devote a cottage furm to n mixture of grecn nud grain crops, as in ordinary hushandry. or make it chiefly a dairy farm, in whics the raising of green crops for fodler is the princijul it not the only ohject, must depend on loeal circumstances If near a city, where frush dairy produce could be profit
2 IJ
ethly dupoeed of, dairy farming might be most suitable, although the largo rents uanally exasted near populous cown would prove an obstaclo. Several experimenta tavo heen made in order to ascertain the quantity of produce in roots, artifichal grasses, \&cc., that an acre of ground, under this sort of culture, could the made to yield; and the result has been that even less than 80 roils, or half on arre, will produce food sufficient to meintain a cow. This calculation is founded upon the well-known fact, that 100 lbs weight of green fuot, a considerable prortion of it roots, is a sullicient daily allowance for an ordinary cow. But cows kept upon auch produre must not he allowed to pasture on those portions of tha ground that are dovoted to grass crops, suela an clover, lucern, tares, \&e.; but for the letter luealth of the animals they should have an open space to move about in aljoining the shed or out-building, where they find shelter from the storn and cold; for in soiling eattle during tho hottest part of summer, an open shed. with a rack for their food, is to be preferred to shatting them up in elose stablen. Mr. Allent, in hix Colonics at Home, very properly remnrks-". Whenover it is possible to make a rol of ground produce 500 lles. of the artithcial grsswes, in the several cuttings during the senson, I greatly prefer it to any thing else, for cows thrive hewt upon grass and hay." He afterwards observes, in reference to this sort of food-a As it sometimes nutliers much in dry seasons, we must not depend entirely upon it; but I have proved that it is possible to keep a cow all the year round upon the produce of half an acre of land if it be carefully cultivated." He then proceeds to give a list of the produce ho raised, which consists of lucern, cabbace, tares, mangel-wurzel, potatoes, turnips, paranips, and cariots; and as a portion of hay is indispensable along with rome of the root-crops during the winter season, ho did not attempt to grow it, but sold a portion of his potatoes, and luid out the sum he received for them in hay. We need ouly udd, that whatever number of cows be kept, they must be fed entirely withiu doors, and only suffered to go out in any small enclosure for the sake of air and exercise.

Plan of a Three-Acre Farm.

With the view of keeping up in the country a certain number of peasant families who should be nhlo to assist farmers at particular scasons, tho late Sir John Sinchair planned a system of cottago farms of three neres cach; these were individually to be cultivated entirely by manual lalour, and ly the cottager ond his fimily. From the account of the method of managing these cottuge farms, whiels he has given in the necond volume of the Farner's Magazine, we select the following partieulars:-
"Course of Crops.-The three acres proposed to bo cultivated should be divided into four portions, each conaisting of three roods, under the following systen of management:-

"Other articles besides these might be mentioned; but theenns to me of peculiar inportance to restrict the atter.ion of the cottager to as few oljects of cultivation as possible. It is proposed that the produce of the two rooks of potatoes shall go to the maintenance of the cottager and hiv fimily, and that the rood of turnips should tee siven to the cow in winter and during the spring, in addition to its other fare.
"The second portion, sown with tares (the two rools of potatoen of the former year to be successively sown with winter tares, and the turnip, rood with spring tares), might partly be cut green, for feedang the cow in sumuer
and autumn; but if the seanon whe permil, the wiob ought to bo uade linto hay for the winter and promg food, and three roods of elover cut green for summer food
"The third portion may be nown either with harley whent, or oata, accordiug to the soil or elimate, and the general custon of the country. The straw of any of these crops would be of essential service for littering the cow, but would be atill more useful, if cut into chaffi, in feeding it.
"Tho fourth portion, approprinted to clover and rye grass, to be cut green, which, with the assistanies of the orchurd, will produce, on three poods of land, as much food as will malataiu a cow and her calf for five monthay numely, from the end of May or leginning of Junce, when it muy be first eut, to the 1 st of Novenher, besides some assistance to tho pigs. It is supplosed that an aree of clover mud rye-grass, cut green, will proluce 20,0 ave pounds' weight of fiod for cattle. 'Three rookls, thero fore, ought to yield 15,000 pounds' weight. A large cow requires 110 pounds' weight of green food per day ; midulling cow, such as a cottuger is likely to purchas, not nhove 90 pounds; eonsequently, in fivo manths nllowing 1320 pounds' weight for the calf and the pigs, there $\begin{gathered}\text { ill } \\ \text { remain } \\ \text { i } 3,680 \\ \text { pousuls for the cew. Wis }\end{gathered}$ there, however, even n small deficiency, it would be more than compensated by the rood of land proposed to he kept in prerpetual pasture as nn orchiard.
"Hote in which the fumily may be maintained,- His calculated that threo roods and eight purches of potatores will maintain a fumily of six persons for about nine monthe in the yeur, but nccording to the preceling plain, it is proposed to have but two roods 1 . wter that article; for however valuable potatoes aro justion accounted, yat none change of fiod would the arecpitit: ; and the con tager will be enalled, from the proviace of tho cow, and ly the income derived from his own :abour, and fronn that of his family, to purchuse other whulc some articies of p rovision.
"Manner in which the Stock may se kept.-It appeass, from the preceling system of croplying, that ten rods of land, or two acres and a half, are appropriated to tha raising of food for the cow in summer and winter, be. sides the pasture of the orchord; mid unless the season should be extremety unfavourable, the provluee will be found not only ad no ato to that rurpose, but aloo to maintain the calf fus some time, till it can be suld to ad. vantage. it is indeed extremely material, under the propesed system, to make us much profit of the calves as possible, as the money thas raised will be a rasource, at ubling the cottager to rephave his cow when a new one must te purchased.
"For the winter provision of the cov, which is the most material, because the summer foond caa be mare easily procured, there is the prouluee,
"1. Of about three roods of tares made into hog.
"2. Of threo roods of etraw, deducting what may be necessary for litter; and if dry carth be put into the cow's hovel, nad removed from time to time to the deng. hill, little or no litter will be necessary.
" 3. Of one roxd of turnips.
"The whole will be sutlicient for seven months in the year, namuly, from the 1st November to the Ist Jume; and during the remaining five months, the pastare of the orchard, sume of the winter tares, and the produce of three roods of clover and dry-grass, will not only suffice, but will fornish a surplus for the calf, if it in kept for any length of time, and some clover firr the pigs. The infit rior barley, potatoes, \&e., will of course be given to the jigs and poultry.
"I alue of the Prohure.-The land thus managed will certainly proluce, by means of the extra imbastry of the family, and at a small expense, a most impartant adib tion to the income which the cottager may derive from lis urdinary labour. Por instance-
t. The ore
2. Thres
2. Eishteer
4. The co
b. 1tege.
d. J'ouliry
"Where profit woull difiter inuch r that is of litt counted too h
"Time requi of land inten teffere with only require It is propose cultivated (th and rye-grass of about 55 rood. This when the fiat ranced, and ance; but su ing, \&c., will adidion to t Sundaya and orlinary han per day, wou the wife and least $£ 4$ per eulation, cons hag and corn male, the tot

1. Problace
2. Rabour

3 E.urning
"Rent and and of land dom, that it the cottago sh 25s. per acre, exceed $£ 7$, paynent of more. Hence leaving a buln Considering t a quantity o sumption, and salance he ra himself and phacing out 1 annuil strple either in sick "Alvantuge be completely posiblle. Th would be an turnips and p 1. Tares ; 2. rye-grass in manure. Th besides 3 busl the same prop necessatry for sold in its or or cunverted neighbouring might certain
"It is har bikely to prom hody of poorp
permit, the wishe winter and ariag a for atinmer food
either with butley or cliniato, and tha 10 straw of any of ice for litteriag the cut into chall, for
to clover and ryan to ansintance of the s of land, as much alf for five montha wgiming of Juble Novembler, bewidey prosed that an acre ill proiluce 20,0 ove lhreo roosk, there dight. A large cow 1 food per day; likely to purchas, , in five rionthe calf and the pigs the cow. Wire ncy, it would be fland proposed to hard.
matintained.-It is perches of potatory as for about nine ho preceding phan, : iner that stticle; stiv accounted, yet al: x ; and the col. ce of the cow, and :abour, and from wholesome articies
krpt.-It appears, that ten roods of piropriated to the 'r atal winter, le. unless the season e prodace will be riose, but also to cass be solal tu ad. aterial, under the fit of the calves as be a rosource, en When a new one
cow, which is the wed can be more ade into hay. ing what may le he put into the time to the dung
en months in the to the lst June; the $p^{\text {mistare of the }}$ d the proluce of I not only suffice, it is k ?pt for any pigs. The info we biven to the
luss managed will ra industry of the t inpportant alldi may derive from

"Where wheat csn be raised instead of harley, the prafit would be still more considerable. Opinions will differ much regarding the value put on ench article; but that is of little consequence, as the total cannot be accounted too high.
"Tinu requircd for Cultivating the I.and.-The quantity of land intended to be cultivatod will not muterjally interfere with the usual labour of the cottager. It will only requie to be dug once, and is then fit to be cropped. It is proposed that only nine roods shall be annually cultivated (the remaining three roods being under clover and rye-grass), and nine roots may be dug in the space of alout 558 hours, or at the rate of 62 hours yer rood. This may tre done at by-hours (inore eapecinlly when the family of the cottager shall be monuewhat adranced, and consequently moro able to furnish assistsace; but supposing that the digging, manuring, harvesting, \&e, will require twenty entire dnys jer annum, in sidition to the by-hours, and nllowing sixty days for Sundays and holidnys, there will remain 285 days for the orinary hand-lahour of thi: cottager, which, at 1s. 6d. per day, would smount to $\mathcal{L} 91,7 \mathrm{~s} .6 \mathrm{~d}$. ; the carnings of the wife and children may, a' an aversge, be worth it least $\mathrm{C4}$ per annum more. 'ihis is certainly a low calsulation, considering how much may le got during the hag and corn harvests. But even at that moderate estinale, the tetal income of the family will be us follows:-

t. Produce of the farin, .	20
2. habour of the contuger,	70
3 Lurnings of the family,	0
Toial,	06

"Rent and Balance of Income.-The rents of cottages and of land vary so much in dillerent parts of the kingdom, that it is difficult to ascertain an average. But if the cottago shall be stated at $£ 3$ per annum, the land at 25 s per acre, and the orchard at 10 s . the whole will not cacced 57,15 . The cottager will also be linble to the payment of some taxes, nay to the amount of $£ 1,58$. morc. Hence the total deductions would be nhout $£ 9$, leaving a balance in favour of the cottager of $£ 37,9 \mathrm{~s}, 6 \mathrm{~d}$. Cumsidering the cheap rate at which he is furnished with a quantity of potatoes, equal to several months' consumption, and with milk for his children, surely with that balonce he can find no difliculty not only in maintaining himself and tamily in a style of comfort, but also in placing out his chidren properly, and laying up a small annual surplos, that will render may parish assistance, either in sickness or old age, unnecessary.
"didvantagea.-The land possessed ly the cottager would be completely cultivated, and remdered as product.ve as possible. The dung produced by the cow, pigs, ©r., would be amply sufficient for the three rools under turnips and potutoes, which would afterwards produce1. Tares; 2. Barley; and 3. Clover; with a mixture of reagrass in regular-succession, without moy additional manure. The burley sluould vied at least 18 bushels, besides 3 bushels for seced; and if whent is cultivated, in the same propertion. The milk, deducting what may be necessary for the calf and the cotuger's family, mirght be sold in its orginal state, if there slanll be a market for it ; or couverted into buther, for the: purpose of supplying the neighbouring towns or villages. Such cottagera, also, might certainly send to market both egres and poultry.
"It is hardly possille to suggest a measure more bikely to promote the bencfit of a numerous and valuable hudy of penple. The syatem of seeping cows by cot-
tagers, which has been found so $n \mathrm{~m}$, ous the the grazing districts, may thus be letule ver the hole klngdom: and indeed, if the whove pl is f and io
 ing a single cow, it would be much bel! r , even in the graxing countien, to reatrict the land to a iller quantity under a tillage mode of management.
"It is of Infinite conequence to establinh the practica bility of this syatem, as the means of removing a most unfortunate obstacle to the improvement of the country. It is well known to be the only popular olijection to the enclosure of our watea and commone, that, while uners closed, a number of cottagers are enmbled to keep sows by the means of their common rights, and that their cows disappear when the commons are unclosed. But if so emall a portion of land as $3 \ddagger$ acres, when improved and projerly cultivated, can enable a cottager to keep a cow to mors ndvantage than with a right of common, which can hardly be doubted, as he is enabled to provide winter as well us summer food, there is an chd to that obstacle to improvemuint. Indeed, if suflicient attention be raid to the principles nbove detailed, the situation of the cottager, instead of being deteriorated, would bo materially bettered by the enclosure; and his rising fimily would be carly necustomed to labits of industry, instead of idloness and vice.
"I shall conclude with asking, if any one can figure to himself a more delightful spectaclo than to see an indus trious cottager, his busy wife and healthy family, living in n comfortable house, rented by himeelf, cultivating bis little territory with his own hands, and enjoying the pro fits arising from hia own labour and industry? On whether it is possilile for a generous landholder to om ploy his property with moro autisfaction, or in a manner more likely to promote not only his own but the puhic interest, than by endeavouring to increase the number of such cottagers, and encouraging, ly every meana in his power, the exertions of so meritorious and so important a class of tho community."

To the articlo comprehending the nbove account, there is added an appendix containing a letter froin Sir Henry Vavasour, deseribing the field-gardening on his estate We extract from it the following pussages:-
"I have for some years cmeouraged my cottagers in Yorkshire in this modo of manaying their small garths or gardens, which are in general from one to thres acres I have now nn opportunity of stating the husbandry of a poor industrious cottager's garth. As the man can neither read nor write, these particulars have heen transmitted to mo from his own mouth; and ns I saw his land nlmost every day during the last harvest, I can vouch that thia account is not far from the truth.

Deduet rent,L. $9 \quad 0 \quad 0$ inclating the house.
Nueds, \&e..
our,$\ldots \ldots . .10$......... 10

> 1.51 I1 0
> L. $30 \quad 190$ if sotd almsrket exclusivecfbuter.
" His stock was two clus and twa piga; one of his cow had a summer's gait for twenty weeks with his landlord. 'The land was partly plenghed and partly dug with the spade, cultivated (the ploughing excepted) by the toman

[^48] ber of y eura afo.-ED.
sie wife, and a girl about twelve years of age, in their pare hours from their daily hired work, mondom a whole day off, excepu in harveat I made the rent in butter, besiden a litte uned in the family. The man relaten that he think he cleara, one year with another, from the three acren, about etlo. The daily wagen him family earna nearly keep them. It in very evident that thia man eleara, from hia three acren, more than a farmer can posmilly ling by from urore than righty acrea of lund in the common huabmalry of the country-praying for horses, mervanta, \&ec.; and It mont "e abvious to every one low great the edvantages most le to mencely in eultivating hatd in thim manner. It would have taken more than half the quantity of hia three acrea in puature for one wow at grama durhig half the year; wherens (excepte the summer's sait for one of his cows, an mentioned before) his stock of two cows and two pigs in kept and carried on the swhote rear. T'In family liven well; and a handsome aum haa been yearly maved, to place out two monn, and anpply them with clother, washing, Ace"

How to Koppr n Cow and ${ }^{1}$ 'ig upom nin Aere of tamb
A mociety was formed in Lamston in 1835, called the Labourern' F'rient Bociety, for the purpone of procuring allotmenta of smald portions of land to the labouring poor, and whome aperations, we believe, have leren on the whole beneficial. The land, however, is let only from year to year, which, as a gelmeral principhe, is pernicioun: for no hand will ever he properly cultivated whell the holder of it in liahe to le dingrasessed at the ent of every year. In cottage us well as large firming, the humbadman must he insured a continaane in hia posereadion for at leant ten or iwelve yours. J'rrhajis the abovermus. tioned society insures a renewal of the anmat hose, provided a certain fixed rent is paid, which would bo remsonable and lueneficial to all partios.

The Labourers' Friend Society has puhlished n cheap magazine of pepular information on rurul subjects, mad from one of the numbers we extract the following atvices, headed-How to Kecp a Cow and lig upors an Acre of land.
"1. Never let the cow ont of the cow-house, 2. Carry her tood and water to her. 3. Do not keep one foot of land in pastore. 4. Dieg your land instend of ploughing it. 5. Never throw away mis thing that can be turned into manure, G. Keep your land well weded, and collece a large slunghill.
"A small cow, which is beat for a cotenger, will eat from seventy to eighty pounds of gockl muint form, of the following kirds, in a day :-Lucern or clover, and the leaves of yellow beet or mangel wazel, from the leeginning of *prine to the end of autumn; and the roots of yellow lwet or mangel warzal, Swedidh turnips, putatoes, and straw, from the and of autumn till the begiming of spring, If the cow is rurried once a day, it will increase the quantity of milk.
"To procure the above-mentioned crops, you must have plenty of manure, which you will oht ain by rareful management. Rushes, potato-stalks, amd werds lwo fore they secd, whouh be induatrionaly collected for the cow'a liturs.
"Lnecrn requires a good and deep soil. The gronnd for it should he 'vell dug, two qpits doep, and the nanure deponited at one apit dec䧉. It must be sown wery early in the mpring, in drills nine imeher nurt. The quantity of acel is one ounce and a quarter to the pereh. It nust le kipt carefully free from werde, und watered wath the liguid mannre from lime to lime ; andes alse ore a good manure for it. It sometines monits of four cuttings in the sammer, and, with uttention to the foregoing rules, will continue prokluctive for ten or twelve years. It will not do well upen shallow or boggy land, th which ease red clover will be the substitute.
"Surdish Tur nifs, - Propure the land as if for drilling
potatooal open the drilla about twenty inchea diatank, the deeper the better: fll them with manure, cuves them with four or Ave lnchen of earth, nake the top amooth and level, then with a dibble make holee two inchea in depels, and alrout twelve inchen apart, and drop aned into every hole. Keep them free from weed Thiresafuartern of a pound of meed will now twenty perches. The tine for nowling in May,
"Wangel Wiursel, or Fellow Hect.-The ground to to prepured in the name way an for Awediali turnipe; from the $20 t h$ to the cud of April in the heat time for sowing half a pound of aepd will now twenty perchea, In Auguat and Reptember pull the leaven for the cew there will lant till you take upand atere the roots, which ahould te done lectore the froat acter in.
" lled CVowr (to the uned only where lucern will not anit the moil) will nifiond a large quantity of green food ns well an hay from ten nquare perchen. It will hast from two to three yearn on the anme gromad; one ounco and a quarter of aced in suthicient fur a pereh. The ground should lie well and deeply dug, and made as fine as pos sible. 'The tine of sowing is from Frbruary till Aprib The aced put in immodintely after you have sown yous oate bulf an luch decp ill clayey moila, and one inch on lonese noils; a cont of manure should lo pirt on in apring and nutumn. It mad In eut two or three timen in the season, and should not be given to the cow till it has Inen cut sone hours, or she would be in danger of burnting.
"Some dry food whonlal he given with the roots. The daily supply for a cow fur the winter (uhout I 80 days) nay In us follows :- $\mathbf{3 0}$ lhs of mangel wurzal, or vellow beet - 3011 м, of Nwedish turnipe- 1.1 lha of straw." The writer adils, wit's respect to the rotation of cropls-"That nypposing the land of the peasant to connist of four rociln, in the first year he devolesan rood for outa, a second rood to patatoen, a third to lucern, and a fourth to bet and Siwedish turnips; in the nerond year he pite puta. toess on the first rood, Jeret and turnips on the necond lueern on the thirt, and oute en the fourth; in the third yoar ho puts beet and turnipes on the first, onts on tha second, lucern on the third, and potatoes on the fourth Hy this means he effocta a proper rotation of croping, advantarcous in kreping hia land in heart. It will he easy for him to devoto spure borders to the raising of onions nad secds."

Spate Hushamiry in Belgimen.
Aa a pinture of rurat affairs under a welleconducted syatem of apade honhandry, we prement the folluwing from the report of Mr. (ieorge Nichols reapecting Bto gium, laid bafore l'arliament:-
"The evtensive manufactures which at no very remote in rionl flomriwhed in By, gium, appar to hase congregated a numerons population of artinans in and around the great towns. As the recone of manulacturing industry changed, this papulation was deprived of j's meana of hatalicratt cmploynent, and was compelled to resort to the cultivation of the moil for suthintence. 'This serms to have been the chiof, though possilly not the sole, origin of the systers of she small harms which still prevails, gnd which are cultivated by the labler ana nis family, generally withose other asointance. 'The fams in lhiluium very rarely exced one handred acres. The momber eontaining tity ocres is not great. Those of thirty and thenty acres are mere mumerma; but the nomber wh holdings of from five to ten and twonty ares ia very consideratile, enpreially those of mather extent, and to these I chictly continced my inquiries.

The small farma wif trom five to tin acres, which alound in many parts of Welginu, closely rememble the small holdings in Iroland: but the small Linh cultivater exinte in a sitate of miserable privation of the conmon comforte and conveniemoer of a civilized life, while tha

Balfin peas: compurta. I! nule are gen If ithey ha and closets for which in cons dairy, and ato on eubhouse piggery, and dncent furnitu although the not be every propricty per row-house the diag: the dun the tank; tho for manare ; t collected in in mentation, ans paration. Th pact order, an economy way decently clad, even when the The men unis are in cotumo to a large exte ing uswally co with the occa alies of butor consumed did point out the here deacrilsed nons in Irelan the causes of t
In the great moil is light an ductive power of Ircland, anc nor. To the doves not owe over the Irish frund in the ss fariners of It forethought of firms in Bely quantity of sta a supply of n strict atlention (5) taost shilfu astem of rotat even on the an with the jlan lent in Irclatal
In the farmes cart the only fork, and whe woolen harrov The farmer he and children, found he oceas bour, or hired of the land i . drep, but as not areat. 'I' aniurd, cousis or two pine.s. su The cows ard elover, rye, ve unde by boilia sce., into one aid to be very of milk. Is and distillerics

Incher diatant manure, corey , nuk the top nake hole two apart, and Jrop ce from weed ill now twenty ie ground to to I turnipu; from hane for mowing; ty puerchear in (1) fire the cew the roots, which
lucern will not y of green food ex. It will last unil ; one ounce ch. The ground ens flue as poot ruary till Aprit have mown your and one inch on prat on in apring co timen in the cow till it hag e lin tlanger of
the roots. The it I St days) เnay I, or yellow heet of ntraw," Tha ferope"That, ronsist of foup for outs, a mreond a fourth to beet ar hor enter pita. on the seconts rth; in the third irst, oate on tia es on the fourth. lion of croping , teart. It will he σ the raising of
well-eondueted at the following resperting Bir
h at no very re* yar to hase cos. rim in and mound anufacturing in deprived of ins an comprelled to ulsistene. This prossilly not the arms which still cholder ana nis ner. The farmis frod arres. The reat. Thine of ner mus; but the ind twenty orra smaller cxtent, irles. in acres, which ely resemble the II Thinh cultivaia of the common d life, while tha

Balpim peasalit-fiarmer enjoya a large portion of those amburs. I'be houmea of the mall cultivatora in Ilelguve are generally mbstantially builf, and in good ree paif : they have commonly a meerping-room in the attic, and closets for beda connected with the lower apurtuent, which is convenient in mize; a mall cellarage for the dairy, and intore for the grain, aw well as an oven, and an outhouse for the putatoen, with a roomy catile-atall, piggery, and poultry-loft. 'I'ho houme generally contains pront furniture; the bedding snlliciont in quantity; and alhough the wcrupulous cleaulinems of the Dutch may not be everywhere olservabln, an air of consfort anel propricty pervadea the whole establishment. In the prow houne the cattle are anpplied with atrow for berlding; the dung and moluture are carefully collected lis the tank; the ditchem hod leron mouured to collect materiala for manure; the dey leaven, petato-Lopa, dec., had been allected in a moint ditels to undengo the procens of fermentation, and hempe of compont were in course of preparation. The premiuea were kept in a neat and conpact order, und a wernpulona attention to a mont rigid economy was everywhero appurent. The family were decently chal, nons of them wero ragued or sloventy, even when their slresm consisted of the conrent material. the men universally wear the blouse, and wooden ahoess are in cominon tue by both nexen, The diet consints, wa targe extent, of rye breal and trilk; the dinner belug usually composid of a mens of potatoen and onions, with the occasional addition of nomo ponnded han or alices of lucon. 'I'he funntity of brown wheaten bread consumeal did not apperar to be considerable. I need not point out the atriking contrant of the mole of living here descriled with the stute of the name clans of jerssons in lreland ; and it appeara important to invostigate the canses of this diflerence.
In the greater part of the flat country of Belgiom the soil is light and samby, and casily worked; but its produttive powern are certainly inferior to the general moil of Ircland, and the climate does not appear to be supenor. To the soil and clinate, therefore, the Belgian dows net owe his auperiority in comfort and position over the Irish cultivator. The dilterence is rather to be found in the sysum of cultivation pursued by the minall farmets of Itrlyium, and in the habits of economy and furethought of the people. 'The cultivation of the amall farms in Delginm ditlers from the Irish-Ist, In the quantity of stall-fed atock which is kept, and by which a sapply of manure in regularly secured; 2d, In the strict attention paid to the collecting of mamire, which is meat skilfully mamaged; 3d, Ity the udoption of a sstern of rotation of five, six, or seven succerssive crops, even on the smallest farms, which is in striking contrast with the plan of cropping und fullowing the land prevabent in Ircland.
In the farms of wix acren, we found no plough, horse, or eart ; the only agricultural implenent, besides the rpode, fork, and wheelharrow, which we observed, was a light wooken harrow, which might he dragged hy the hand. The farmer had no assiatance besides that of his wife and chillren, excepting sometiones in harvest, when we found he ocessiomilly obtained the assistance of a neighbour, or hired a labourer at a frane per day. The whole of the land is duy with the spule, und trenched very decp, hat as the soil is light, the labour of digesing is nut areat. The stock on the small farma which wo examind, cousisted of a couple of cows, a calf or two, one or two ping, sometimes a goat or two, and some poultry. The cows are ultugether stall-fed on straw, turnips, elover, rye, vetehen, carrots, potatoes, and a kind of soup made by boiling up potutoes, pens, leeans, brun, cut hay, sce, jato one vess, and which, being given warm, is said to be very wholegome, and to promote the secretion of milk, In some districts the gruins of the breweries and diatilleriea are used for the cuttle; and the failure of
the Infylian distilleriea has been reckoned a calamity is the agriculture of the country, on account of the lom of the aupply of manure which wan produced by the cattle fod in the wtalla of theme emtablishrmenth.

Thu succesa of the Belgian farmer depenile mainly upous the nuuber of cattle whach he can maintain ly the produce of him land, the general lightu.ena of she soil rendoriag the conatant application of marrse uboolutely necesary to the production of the crop. The attention of the cultivutor lim nlway, therefore, enpectally directed to obtain a muply of manure. Some nmall furmera, with thin view, agree with a ahecp-dealer to find stallpoom and straw for his shecpi, to attend to them, and to furnimh fodder at the murket price, on condition of retaining the dung. 'Itse minall farmec collects in hia atable, in a fown lined with bricka, the dung and moisture of hin catto. He buy mullicient lime to mingle with the ncourings of his ditches, and with the decayed leaven, potato-topm, dec, which he ia careful to collect, in order to euriels lile compont, which in dug over two or three times in the consme of the winter. No portion of the furm is allowed to lie fallow, but in divided into six or meven minall plots, on ench of which a ayntem of rotation to adopted; rund thus, with the aid of munure, the powera of the coil aro inaintained unexhanuted, in a atato of constant activity. 'The order of unecension in the crops is variou*; but wo observed on the six-acre farina which wo vinited, plots appropriated to potatoen, whoat, barley, clover (which had been sown with the preceding yoar'a larley), Hax, carrots, turnips, of paranipm, vetches, and ryc, for immediate une as green food for cattlo. The tlax grown ia heckled and spun by the farmer'a wife, chictly during the winter; and we were told that three weeks' labour ut the loom towards the noting enabled them to weave into cloth all the thread thus prepared. I'he weavera are generally a distinct class from the small farmers, though the lahourens chiefly wupported by tho loom commonly occupied about an ace of land, sometines more, their labour upon the iand alternating with their work at the loom. In some districts, we were informed, every gradation in the extent of vecupancy, from a quarter or half an acre to the six-acre farm, is to bo found; and in such cases more work is done in the loon by the smaller occupiers.
'I'he lahour of the field, tho management of tho cattle, the preparation of manuro, the regulating the rotation of crops, and the necessity of carrying a certain portion of the produce to market, call for the constant exercino of industry, akill, und foresight, anong tho Belgian pea-want-farmers; und to theso qualitiea they udd a rigid economy, lublitual sobriety, and a contented spirit, which findm its chicf gratification beneath tho domestic roof, from which the tather of the fomily rarely wanders in senrch of excitement abroad. It was most gratifying to observe the comfort displayed in the whole cconomy of the househohls of there small cultivators, and the respectability in which they lived. As far us I could learn, there was no tendency to the subdivision of the small holdings. I heard of none under five ucres held by the class of peasant-furners; and six, seven, of eight acres, is the most common size. 'I he provident habits of these small farmers comahles them to maintain a high standard of comfort, and is necessarily opposed to such subdivision. 'I'heir marriages are not contracted so early as in Irciand, and the consequent struggle for subsistence amone their otrspring does not exist. The proprietore of the soil ritain the free und unrestricted disposal of their property, whether divided into smaller or larget holdings. The common reat of land is about 20 s . an acre, and the untual ruto of wages for a day labourer is a franc (or 10d.) a day.

A small occupier, whose farm we examined near Ghent, paid 225 franca per annum for about two bonniers, or six actes, of land, with a comfortatle house.

202
ctabling, and other offices attached, all very good of their kin 1 ; this makes the rent (reekoning the frane at $\left.{ }^{1} 0 \mathrm{~d}.\right)$ equal to $\mathbf{\perp} 9,7 \mathrm{~s} .6 \mathrm{~d}$. sterling per annum ; and if we allow $£ 3,7 \mathrm{~s} .6 \mathrm{~d}$. for the rent of the house, stabling, and other olfices, thare will be £6, or £1 per nere for the land, which accords with the information we obtained at Antwerp, Brussels, and other places, as to the rent of land in the flat country, the soil of which is generally of tho same quality throughout. This farmer had a wifo and five children, and ajpeared to live in much confort. He owed little or nothing, he said; but he had no capital beyond that employed on his farm. We questioned him respecting his resources in case of sickness. He replied, that if he wero ill, and if his illness were severe and of long duration, it would press heavily upon him, because it would interrnpt the whole farm-work; and in order to provide for his family and to pay the doctor, he fcared he should be obliged to sell part of his stock. If his wife and family were long ill, and he retained his strength, tho doctor would givo him credit, and he should be able to pay hion by degrees in the course of a year or two. The thought of applying for assistance in any quarter appeared nover to have entered his minel. Wo suggested that the Bureau de Bienfaisance, or charitable individuals, might afford hiin aid in such a difficulty; but, with evident marks of surprise at the suggestion, he replied cheerfully that he must take caro of himself. If a sick club or benefit society were ostablished among these people, so as to enable them by mutual assurance to provide for the casualty of sickness, the chief source of sutlering to their families would be obviated, and there would be little left to wish for or amend in their social condition."

Comparative Value of Spade Itusbnndry.

It is, we believe, an indisputable fact, that a garden produces heavier crops, space for space, than a field under culture with the plough. "In regard to the difference of produce, an experiment was tried in the neighbourhood of Hamilton, expressly to ascertain that point. A field was taken, which liad been cropped with beans the preceding year, and the previous year with oats. Two ridges wero dug, and two ploughed alternately, and the whole was sown on the same day. A part both of the ploughed and dug wass drilled with the garden-hoe. The whole was reaped the same day, and being thrashed out, the result was, that the dug land sown broadeast, was to the ploughed sown broadcast as fifty-fivo hushels to forty-two; while the dug and drilled was as twenty and a quarter hushels to twelve and a quarter upon the ploughed and drilled. The additional grair proluced was not the only beneficial result gained ly digging, for in this instance there was also a great deal ot straw, and the land was much nore free of weeds, snd inore easily cultivated next year."Sir John Sincloir's Code of Agriculture.
Some soils, however, are unsuitable for spade husbandry; as, for instance, heavy wet lands linble to inundation; stony, gravelly, or shallow soils, more especially if incumbent on clask. Manual labour is also inapplieable where the climate is precarious, and it is necessary to he expeditious in tilling the land, and in sowing and narrowing for a crop. On these accounts apade husbandry cannot be universally resortod to with advantage either to the culturist or the community. With re prect to its economy, whero it is available, there are two questions.

Fizat. Whether the cottage farmer with his six acres san raise as nuch prosluce, and at ascheap a rate, as the capitalist can from any given rix acres on his form? If he cannot raise so much at an cheap a price, and cannot pay the same proportion of rent, cottage farming is deridedly finjurius to the community ; but if ho can ermpere on all these pioints, there can be $n o$ solid oljec-
tion against the practico. From the foregoing oviaenee of Sir John Sinclair, and from what is khown respece. ing spade husbandry in Belgium and some other conth. nenta! states, it is placed beyond a doubt that mora produce is raised for human subsistence-space, soil, and
climate being equal-by small farmers climate being equal-by small farmers using only manual labour, than by large farmera with horses and ploughes and it is certain that the produce is alwaya more accessihlo to tho public than that of large farmers, who, by means of their capital, which is very frequently not their own, but borrowed from banks, can hold themselves indifferent respecting sales, till, by a fortunste contingency, the prices rise and become bighly remunerativo.

Second, How far is apade husiondry available in the shape of paid labour to the capitalist farmer? We are unable to answer this question from our own experichee, and therefore refer to a paper written by a competent authority on the subject. This is an essay by Mr. Archibald Scott of Southfield, near Haddington, who obtained a prizo of $£ 100$, which the Rev. C. Gardiner, a elergyman of tho church of Eingland, had proposed to grant for the best plan of giving employment to the poor.
"I am quito convinced:" proceeds Mr. Scott, "there is bit one way of employing the surplus population of Fingland and Ircland, and that is by a judicious introduction of spade husbandry.
"To show that I am not a mere theorist, but a prac. tical man, I may mention that I rent a farm from the Earl of Wemyss in East Iothian, consisting of 530 Scottish acres; that I have cultivated land to a considerable extent with the spade for the last three years, snd that the result has exceeded my most sanguine $2 x p e c$ tations. In 1831, I determined to ascertain the difference of the expense and produce between treuching land with the sprade and summer fallowing with the plough in the usual way: I therefore trenched thiteen scres of my fummer fallow-break in the montlss of June and July. I fornd the soil ahout fourteen inches deep, and I turned it completely over, therely putting up a clean and fresh soil in the room of the foul and exhsusted noald, which I was careful to put at the bottom of the trench: this operation I found cost about $£ 4,10 \mathrm{~s}$. per Scottish acte, paying my labourers with 1s. 6d. per day. The rest ol the fieh, which consisted of nine acres, I wrought with the plough in the usual way, giving it six furrows, with the suitahle liarrowing. I manured the field in August; the trenched got eight cart-loads per acre, the ploughes land 16 ; the field was sown in the middle of Scpteaber. The whole turned out a bulk's erop as to straw, par. ticularly the trenched portion, which was very much loalged. On threshing them out, I found them to stand as under:-

By irenched whent per aere. 52 bushels at 68.90.
117110
To wo yrars' rent ni $£ 2,10 \mathrm{~s}$. per acre S5 0
Lxpensio of trenching $\quad .410$ Cichlit cart-luads of manare ni as - 1128 Eight eart-loads of manare at 4s.
Expense of cuthing, threshing, nid mar-

Troht
lly plonghed wheal per acre, 42 hashels at 6 s . 04 dt f14 30 'ro two yenrs' refle at fe, fox. per acre
Six firrows nat harrowing al ios.
Acd. threa binshela at Rx. ind.
150
-30
ixtees cart-ionds of manure. at 4a.
lixpense of cutting, theseshing, and mar-
keting
Profit
$\begin{array}{ll}1 & 0 \\ & 3\end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 3 \\ 4 & 0 \\ 10 & 0 \\ 0 & 3\end{array}$ 1438
"I now anw, that though it might be difficult to trench over my fallow-break during the summer monthe, it ru by no meana making the most of the systom, as the ope. ration was not only more expensive, owing to the land being hard and dry during tho aunmer, but that it was a uscless waste of time to take a wholo year to peffora
an oper ition provided labi tural operatic must be puid no that in another to charged aŗai rent charged the land was ing with the tsges of a suu tages attendi acres of my rexaved from by the middle that I did not mer crop was threshed out o follows:-
Dy avernge of 3 3 To rent of lay Expense of ir cut
Cuting, thres
"The advar In my opinion but, as far as om so sutisfie above noticed, land after it sutumn cultivi and the crops first commenc but now when ansidered a v ing their judga siderable expe are at least $\# 5$ this season in meaced, there the satisfaction of causing $£(t \mid$ ing classes in contident, that the wheat crop wil. be handso cot say that the of soil, as it in of the operatio soil will not b ample employ neighbourhood
"Sow, this lahourers are l Great Britain. it persevered in to the poor, bu The East Looth premiums for ject. I last y Socicty of Se what I value the labourets The system, I this year put succed as wol and spread ov in those distri a) oppicssive, do weill to inve will the lenat on their estat what is now a

going oviaence

 khown respeca me other conth. that more pron -space, sail, and rs using ouly ith horseg and nluce is alway f large farmers, very frequently , can hold them. by a fortunate te highly remu-vailable in the mer! We are own experience, by a competent n essay by Mr. I addington, who lev. C. Gardiner, had propased to ployment to the

Hr. Scott, " there us population of judicious intro-
orist, but a prac. a farm from the onsisting of 530 and to a considerthree years, and sanguine expeo tain the differenee nching land with the plough in the teen acres of my June and July. Reep, and I turned a clean and fresh sted nould, which the trench: this per Scottish scre, day. The rest ol s, I wrought with six furrows, with 0 field in August, here, the ploughe dale of Septenber. as to striw, par. was very much and them to stand

6s. Pd $7 \cdot 1$
$\begin{array}{r}1100 \\ -318 \\ \hline\end{array}$
08. 9 d . fil 38

Os.

85
$+\quad$.
-
-

$\left.\begin{array}{lll}3 & 0 & 0 \\ 3 & 0 & 0 \\ 1 & 0 & 3 \\ 3 & 4 & 0 \\ 1 & 10 & 0\end{array}\right]$

| 1 | 10 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 9 | 3 |

c difficult to trened ner months, it tra aystem, as the ope owing to the land ler, but that it war ho year to perfori
an oper ation that could he as well done in a few weeks, providel lsbourera could be had; and as in all agriculprural aperationa losing timo is losing money, as the rent must be paid whether the land is carrying a crop or not, must that in taking one year to fallow the land, and another to grow tho erop, two years' rent must be charged acyainst tho crop, or at lenst there must be a rent charged against the rotation of crops for the year the land was fallow. AsI felt satisfied that, by trenchlog with the spade, the land would derive all the advanlages of a summer fallowing, and avoid all the divadvantages attendiang it, I determined on trenching thirty-four acces of my fallow-break iminediately on the crop being reseaved from the ground, and had it sown with wheat ly the middle of Noveinber, 1832. I may here remark, that I did not apply any manure, as I thought the former crop was injured by being too bulky. As it is now threshed out and disposed of, the crop per acre stands as follows:-

"The advantages of trenching over summer fallow are, in my opinion, very ilecided, as it is not only cheaper, but, as far as I can yet judge, much more eflectual. I om so satistied of this, not only from the experiments above naticed, but from the apparent condition of the land after it has carricd the crop, that I have this antumn cultivated nhout a hundred acres with the spade, and the crops at present are very promising. When I first commenced, I was laughed at by my neighours, but now when they sce no persevering in what they a asidered a very chimetical project, they are suspendiug their jodgment, and several bf them have made considerable expriments this year. I should think there are at least $\% 50$ acres under crop cultivated in this way his season in Hast Lothion; in 1831, the year I commenced, there was not a single acre. I have therefore the satisfiction of knowing that I have been the means of causing $f 1000$ to be spent this year among the labouring classes in my immediato neighhourhood; and I feel calident, that should the scason turn out favourable for tho theat erop, and fair prices obtained, their employers wil. be hadsomely remuncrated for their outlay. I do tot say that this system will succeed in every description of soid, as it must necessarily be of some depth to admit of the operation; but there are few districts where anch soil will not he fonnd in suflicient abundance to give smpla employment to the surplus population of the peighbourhood.
"Sow, his is going on in a county where agricultural lahourers are lifter employed than almost any other in Great Britain. The systens was not introduced, nor is it persevered in, for the purpose of giving employment to the poor, but entirely fior the benefit of the employer. The East Lathian Acricultural Society are now otlering premiums for the most satisfuctory reports on the subject. I last yeer reccived a medal from the Highland Society of Sce.tland for introducing the aystem; and, what I value st ill more, I received a piece of plate from the labourers I employed, as a token of their gratitude. The system. I aduit, is only in its infuney, hut I have this year put it completely to the test; and should it succed as well as it has done hitherto, it must take root and spread over the kingrlom ; and the landed interest in those districts of Eagland where the poor-laws are soppressive, and still more, the Irish proprietors, will do well to investigate the system, and have it introluced with the least possible delay, that what is now a burden on their estates may become a aource of wealth, and what is now a curse inny become a blessing.
"This aystem, :f it succed to my expectation, possesses all the requisites you require; it farnishes employment for the surplus population by substituting manual labour for that of horses-and certainly, if there is a lack of food for both, it ia desirablo that the one ahould give place to the othor. It will make bread plenty, as the naked summer fallows of Great Britain will be covered with grain instead of lying waste for a season; it will render corn-laws unnceessary, as wo will bo then independent of foreign supplies; farmers will he enriched who aro enterprising and industrious, and they only deserve to he so; it wil. aise rents by increasing the capabilities of the soil, enabling the farmer to cultivate wheat to double the present extent; it will raise up a home market for our manufactures, as the paupers, who aro at present starving, or living a hurden on the parish, will find employment, and therehy be enabled to procure the necessaries and conforts of life; it will check the poor-laws, as there will then be none but the aged and the helpless dependent on parochial aid."

Stronger testimony in favour of spade husbandry could not well be adduced, but we doubt its being generally practised with success in the ordinary routine of agriculture. It siems to be best suited for mere cottage farming, in which the labour is of little exchangeable value. Referring to this point, the Rev. Mr. Hickey (Martin Doyle), in his Cyclopadia of Practical Husbandry, observes-" (In even un extensive scale of farming, we recommend spade huslandry in potato or cabbage culture, but not for general crops. However gratifying to the benevolence of an individual furmer it may be to employ a vast number of men to dig his land in preference to the usual course of plough and horse-labour, he must consider that there is a limit beyond which he cannot multiply his labourers without occasional inconvenience and perplexity to himself, and without unceasing superintendance. Slould any of the numerous causes which may occasion a change of occupiers on a given farm, or a change of system occur, what is to hecome of the numerous families collected by an individual who has largely introrluced the practice of manual labour, and confined his operations to that system alone? What is to become of an excessivo population of agricultural labourers, if their services be no longer required by the successor of the spade husbandry farmer? If any one replies, 'Oh, let the system be generally introduced, and there can be no danger of their want of employment somewhere,' the answer is plain. 'If you substitute the spado for the plough to such an extent, you ruise the price of labourers beyond what you can allord to pay, and you diminish the chances of success in your general farm operations, by giving up too much time to one department of labour. 'Time is money to a farmer: let him lose a week in a critical season, and the delay may be highly injurious to him in many respects. Promptitude and despatch are essential to his completion of farm tabours at the proper times: without the aid which improved machinery afforls him, it would he utterly impossible for him to get through his work in due course. Jet him abandon the more rapidly working plongh, and take the tedious spade, and he will soon heartily recret his exchange. After what we have premised on this subject, it is almost superflnous to repeat, that if these latter remarks possess any accuracy at all, they are merely true in their application to large farmers, and not intended by nny means to aftect the sulyject as it is connected with the cottier or small farmer, who has rarely any capital lut his labour, and needs no wther if he be sultered to use it freely and frirly.' What is the limit, then, to the capital of his lahour? What sized firm should he lave that will make it the most productive? Why, the exact amount, and no more, to which he can ajply all his capital ? Has he n family $!$ he may then linve more cajuital of lar bour to hestow hy their assistance; consequently a larger
nllutment will be needed to employ all the capital of nore extended latour. If he be single, then less, of course, will suffice."

The only point that remnins to be settled is one conneeted with political cconomy. It is slleged by the leading political economists of Enaland, that cottage farming (see urticlo Cottage System in the Encyclopadin Britannica), whilo calculnted to promote the growth of a population of paupers, is only distracting manual lubour fre.n its proper fied of employment. But this allegation proceeds on an unproved assumption. If it could be shown that every able-bodied man could make five shillings a-day by working as a wenver, at a fuctory, or any other branch of labour, the assertion would in part be correct; but such is not the case. There are countries in which remunerative employment cannot be permanently had, and in such situations-to which society in England seems advancing-the choico is in n great measure between spade husbandry and starvation, not between spnde husbandry and well-paid employment. Besides, the political economist entirely overlooks the fact, that the cottage-firmer derives inmense advantages from the labour of his wife and children, not one of whom, most likely, woutd be able to eara a pensy at any sind of labour in towns. It is by calling up these engines to assist him that he can outlo the lurge farmer
with all his capital and machnery-a fnct diatinct,y proved, at least as respects tho kreping of cows and selling their produce; no joint-stock company of cor keepers being able to compete with the miscellaneon and unmarketablo labour of an hamblo dairyman and his family. As to the allegation that cottage-farming would cause a deterioration in socicty, it is also founded on narrow views. In some parts of the canton of Vaud and elsewhere in Switzerlnnil, where the farms are all amnll, and mostly wrought by their proprietors, there is no pauperism worthy of the name, no overplus popala. tion; mad who would compare the orderliness of man. ners, the sobricty and thriftiness of the people, and the small amount of crime in that country, with the vice, intemperance, and poverty, for whieli Eugland and $S_{\text {cot }}$. land, with all their largo and splendid farms, are nows becoming unhappily distinguishal? It might be diff. cult to prove that largo firms have been in may material degre the canse of the sorial evils now exciting so much attention; but it is clear that they have not pre. ventel those evils. Without going so far as to say that cottage-farming would furuish a universal remedy, we think that, indegendently of its use in inerensing the productive surfice of tho comary, it wonk nt least af ford some relief, and add to that section of the popula. tion which is still in a henlthful noral condition,

THE KITCHEN GARDEN.

Thenz ne various kinde of garderig-the Italinn gardens, with their splendid terraces, vases, and statues; the ohd Frencil gardens of Le Notre, of which we have a apecimen at Versailles, with their long straight walks, clipt hedges, formal parterres, and fountains: Englinh gardens, with their elegant hlemding of natural with artificial beauty; and so on. [hut it is none of these princely kinds of gardens which will engage our attention in the present and succeeding s!eets. We proposi to treat of the three deportments which belong to the greater number of gardens of the iniddle and limmbler classes; those, in short, which, designed on a moderate scale, are intended to afford the three staplea of garden culture-vegetables for the kitchen, 月owers to charm the eye, and the mere ensily attaimble kinds of fruit. These various articles are for the greater part the production of one garden, a section or scuttered part being set avide for each; but, for the sake of clearness, we shall confine ourselves in the present sheet ehictly to the economy and products of the kitchen gariden.

laying out of gardens.

A garden of the ordinary mixed description usalty extends from the cighth of an acre to a whole acre; but the more common size in country places is about half an arre. Whatever be the dimensions, the gaden ought ta we enclosed with a wall from tors to twelve fuet high, and if possible, te surroundel by a strip of eattured land, which should he fenced with a hedge nat shruhbery, so ns to remese the rupearance of stifliness from the walled cuclosure, and serve for other asclial purpases. Desides a wicket or small door for ordinary entrance and evith there should be a Rate that will admit a cart, to take away proluce or bring in manure. A much more im. port:ant circumstance than size or uti external appegrance is exposure. In a flat country, the garden must of conse be level; but if there be a choire as to situation, sflet ly all means a spot which lies with an dasy slopeonn angle, for instanee, of tifteen degreps-towards the sug at his meridian. In the British iklands, this will he ficing the south. 'The next hest exprosure is towarts the soub. west, and the next $i: 3$ the west. Avoid a northem of eastern exposure. An exposure towarls the morning and midday sum, even though at a very small inclins tion, is as good as leing many degrees themer sonth hoar-frost on the grass and plants will le melted within un hour after sunrise; whereas, if the gardou lie in the smallest degreo away from the sum, the hoar-frost will renain unchanged ferlaper tine whole diy. Allw no house, wall, or trees, to intermpt the fair ation of the morning sun on your graden; for the sum is the man agent in bringing all things to perfertion, and if rou be deprived of it, your operations will te hlighted and mo tarded in every possiblo way. So importat are the smin rays, that, if your gneden be small, rather have no wid Ion the south and west sides, but only a law fence, tha
mbanit to their that they reeciv only partially t impetfect. Th oun daily, excel bis mys are of doould also allo fat thia renson is most advantn ovetlockell by,
The shape o may be square cording to taste number of inst adjoining figur will be found mo convenient. It surroandel by wall, in which is: eatrance mark t. Within the wn is a borter of s veral feet wid and dotied roun with flowers fowering shrub Next is a grav sontaining fruit, leiss, and in the in three plots, 1 ard areund them in width, not for the varions plots te divided. 'Thu' and by the spadr the course of dig
At the opposit, may be sulp pasa werhung with tre op accorling to
The regular should le not wi a mere loss of g walks in orler, fo weeds and grass; walks well with effectually prever the growth of w puta a layer of sm a layer of lraye can be procured. with s roller. Mavies and thrift tut constantly at The most effectu bax. It is casil reqaires little tro alwaye close s'a frowh and seeen.
So promine dir wols and appare quired in moder Apades of three and common hor weth for the wit strong clasp-knif shears, an axe, s male of zine are for carrying a lit large compasses. ladder. Flower ware blanching of different sizes secvireahle parts 1/4. L.-. 65
mbrait to their exclusion. Some gardens are so disposed that they receive the sum in abundance in summer, but anly partially the rest of the year. These gardens are imperfert. The garden should be visited all over hy the oun daily, except, perhaps, in the heart of winter, when bis rays are of comparatively little use. The exposire dould also allow a free admission and currency of ail; for this reason a garden is best nwny from a wood, and is most advantageonsly placed in on open sloping lawn, averlooked by, or near, the house of the proprictor.
Ths shape of n rarden is of little consequence. It may be square, obleng, semi-circulnr, or irregulnr, accarding to taste or local circumstances. In the greater number of instances, an oblong, as represented in the ndjoining figure, will has found most convenient. It is sarrauded by a wallin which is an eatrance marked c. Within the wall is a horiter of several feet wille, and dotted round with flowers or fowering shrobs.

Fig. 1. Next is a grawel walk; and within ia another border :ontaining fruit, bushes, or perhaps fruit trees on espaliers, snd in the centre is the bolly of the gneden laid out in three plots, marked a, b, nnd r. Between the plots ard around them are paths of twalve or fourteen inches in width, wot for ordinnry walking, but for admission to the varions plots or sections into which the gromed may he divided. These paths are only flattened ly the feet and by the spule, and are to be delved up annually in the course of digging.
At the opposite side of the garden from the door there may be supposed to he an nrbour or summer-house, uterhung with trailing plants and honcysuckle, and fitted of according to taste.
The regular walks in all moderately sized gardens should le not wider than threo feet; any thing wider is a mere loss of ground. Much eare is required to keep walks in orler, for they are very liable to show crops of weeds and grass; but the best remedy is to bottom the wnlks well with broken cinders from a coal fire; this effectually prevents worms coming up, and also stops the growth of weeds. Over a smooth bed of cinders, pet a lsyer of small gravel that will bind, or, failing this, a layer of brayed yellow nshes from a furnace, if they can be procured. Smooth all with the rake, and flaten with s roller. Many small flowering plants, such as Masiee and thrift, are used for edgings to walks; hut if nut censtantly attended to, they straggle over the horders. The most effectual and also the prettiest edging is dwarf bur. It is casily set in an even row, grows regularly, requires little trouhle in trinaming-for it should not be alwaya slose 9^{2}-aved-and, summer and winter, is ever fresh ant syeen.
No precine directions can be given respecting garden tools and apparatus; the following aro the articles required in moderately sized gardens of a mixed kind :Spades of three sizes, n trowel for lifting flowers, Jutch and common hoes, a broal iron rake, a rake with short weth for the walles, a smnll rake for flower borders, a strong clasp-knife for proning, a pair of strong punning sheara, sn axe, a hand-saw, a hammer and nails (those male of zinc are liest), a wheclinarow, a wroden acutte tor carrying a little earth or mumure, a roller, a pair of large compasses, n dibblo and line, n wntering-pot, and a ladder. Flower pots of diferent sizes, conieal earthenware blanching pots, leell-hand glasses, and glazed frames of different sizes. These frames nre among the most servireable parts of a garden npparatua, and may be had
cither in one piece or with a movable top, ns in fig. 2. A neat small kind, framed in zinc, useful for protecting early aeedlings or flowers, may be had in London for 1s. 6d. each. Other utensila employed by gardeners, such na forcing pumps to wash wall

Fig. 2. trees, fumigating bellows, \&ce, need not be particularized. A persor possessing only a small garden will shortly discover by experience what are the artieles required in his operntions. For gardens in which cucumbers and melons are to be grown, glazed frames and brick-built pits will be necessary. It is a great ndvantage for every garden to have a command of good fresll water for the purpose of irrigation, and also a sroall pond in which nquatic plants con be grown. If water is procured from n pump-well, it should be allowed to stnnd in the open nir in a trough for at least a day, before being poured on the plants.

A garden is in all enses laid out according to the taste or fancy of the proprictor; but there are certain general rules which all follow. The wall is reserved for fruit trees. As fruit trees require much air and sun, the horders must not he clogged up with bushes, peas, or any other tall vegetalles. The borders should contain only small artich's which are delved up ycarly; because the soil at the roots of the trees requires occasional renewal and loosening, and these operations cannot be done if the ground is encumbered with permanent plants. If a row of gooseberry or other small fruit hushes be placed on the borders, they should bo near the outside, and not less than ten fect apart.

The boly of the garden within the walks is laid out in Inrger or smaller plots, according to taste. These plots nre generally oblong, and nre subdiviled into sections, rows, or beds for the different kinds of kitchen vegetables. In the corner of one plot are the cucumber mut melon pits, partially secluded by hushes. In different corners are plots, and round the edgings are the flower parterres, disposed to meet the eye, and to be easily necessille from the walks. In some gardens, much of the ground is overshadowed by fruit trees. I'his in scriously detrimental to the growth of the plants beneath, exhausts tho soil, and prevents the proper flowering and fructification of every vegetnble within reach. Permit no tree to overshadow your ground; the only allowable plaees for trees nre tho walls and narrow espaliers running up one side of the central plots. When a garden possesses the nddition of an outside atrip, enclosed by a hedge, the exterior sides of the wnils may be lined with fruit trees, and the ground laid out for potatoes and other common classes of vegetables; it will also afford the most proper site for compost dung-heaps and forcing pits.

SOIL-DIOOING-COMPOST.

The soil of a garden should he deep, rich, and easily penctrable. Whatever it may have heen originally, the soil admits of vnst improvement, and no trotible can be considered too great to bring it into a good condition. If shallow, trench it necording to the plan mentioned in the previous sheet on Spade Husbandry, so as to loosen the subsoil, nud gradually bring it into operation above In many instances the soil is too stiff or clayey. Such a soil may not be unfit for plough husbandry, hut is out of phace in a garden. The method of loosening and meliorating a clayey soil is to givo it a large volume of sand and vegetable manure, which may be delved in at the winter digging, and, at the spring digging, the new
1JL. 1.--65
and old materiuls will be well mixed. In general, firr too little atcention is paid to giving sand us a restorative; such is ubsolutely necessary in ull soils but those of a very sandy nature, hecause every crop actually carries away a certain propertion of tho silica lodged in the wil. If the ssil be alrendy too sandy, it may be assisted by clay, mud frum ditches, \&e. Whatever be the nature of the soil, it should be thoronghly pulverized. Lumps thrown up ly digging at the commencenent of winter are meliorated by the frost, and have imbibed nutritious gases from tho atnoophere. In epring all blould bo well delved, dashing every spadeful ad it is turned down, and leaving no hard part impervious to the tender roots of the vegetables. A garden gilould not contain a single stono the size of a boy's marhle. Every particle of soil should tre capable of doing duty in feeding the phants. It will save much future troulie in lilting atones by the hand, if you would begin ly putting eviry spadeful of mould through a sieve. lersons owniny enall gardens ought to pay particular attention to this. A worling mann having only a small pateh for his amusement at leisure hours and holidays, could not to any thing more serviceable than to trench his ground bit by tit, and rididle every part of it as he proceeds.
No garden can le eonducted with the least advantage without giving it a regular manuring. If you humer a garden, it will hunger you in return. In conmectisa with every rightly-managed garden, there must either to a composit hexp, in which dung is preparing for use, or there must be some means of readily perchasing old manure when it is required. The manures eniployent are the same as in agriculture (wee article on that sub)ject, but leiag required for a more delicite purpose, they must in gencral be well rotted and realy to unite with the simil. A compost dung-heap is preprated hy puiting alternate layers of steble dung, or night soil, \&e., with carth, weeds, and general ollal of vagetation-turning the whole oceasionally till the mase aprears to be realy for use. A small quantity of this stuff will of on Le required to place at the roots of plants.
The practice of professional gardeners as respects composta, may be learned from the following brief notice in the "Eacyclopedia of Gardening:"-" Composis for particular plants may he reduced to light sandy loam from old pastures; strong loan, approaching nearly to, brick carth, from the same source; peat earh, from the surface of heathe or commons; trog carth, from bogs or morasses; vegetable carth, from decaycd leaves, stalks, cow-dung, \&e: sand, either sea-sand, drift-sand, or puwdered stone, so as to be freo as possible from iron; lime rubbish; and lastly, common garden earth. There are no known plants that will nut grow or thrive in one cr other of these carths, slone, or mixed with some other earth, or with rutten dung, or leaves. Nursery-men, whose practice may be considered a safe criterion to judge from, have seldom more than three sorts of eart! : luan, approaching to the qualities of brick earth; peat or borg earth, from heaths or morasses; sud the common soil of their nursery. With these, and the addition of a little sand for striking plants, some sifted lime ruthish for snceulents, and rone well-rotted cow-dung for tulls and mone sort of trees, they contrive to grow thousands of different species in as great perfectom (takiug the diffir. ence between plants in pots and plants in the free soil and air) as in their native countries; and many, as the pine, vine, camellia, rose, \&c., in a sugkrior mamer." The same author uferwards observes: "I Pat earth, or harath earth, being generally procured in the state of turfis full of the roots and twis of heath, requires two or three grare to ret; but afer it has lain one yeur, it may te rated, and what pusses through a small sicve will be tiound fit for use. Some nursery-men use hoth these losme and jeites as soon as procured, and find then anower jerfec-ly for most plants; but for delicate dowern,
and especially buths, and all flo $1 a t$ an $^{\text {fowers, and for a }}$ composts into the composition of which manures enter not less than one year onght to he allowed for decompo sition, and what is teeluically called sweetening. The French gardenera allow for their rich orange-tree come posts from three to six yeurs."
Near large towns, whers there ia a constant lemand for kitchen vegetulles, market gardens nre estallished for pro ducing the required artieled in variety and abondance The finest market gardens in the world nre near London, where the soil is deep, and any quantity of manure, in the form of night soil, from the inetropelis, is casily oh tianalle. The plan on which these gardens are conducted might serve as a model for all kitchen gardelent in this country. It is thus bricfly deseribed in the artieter Gardouing in the "Penny Cyclopadia:"-a'The gardeners' year properly be zins in autumn, when the land in dug, or rather trenched, and well manured. Various vegetahles, which will to required in winter, gre now sown, and especially those which are to produee plante to he set out in spring; spinarh, onions, ralishes, and winter allads are sown, ami, when the weather is seeren are protected by a slight covering of suraw or mats, In February, the cauliflowers, which lave bern raised in frames or under hand-glisses, are planted out. The cabhage plants are pricked out. The ralishen, onions, and salats, go to market as soon us they are of sufficiont size, and sugar-loaf cabbages surcend them. As the cauliflowers ure taken off, they are succeeded by endire nud collery, and the same is the case with the cablages Thus there is a constant successiun of vegetables, without one moment's respite to the ground, which, in conse yuence of continual stirring and manuring, maintina its proluctive power. Deep trenehing in some legree prevents that [reculiar deteriuration of the soil which would le the conseguence of the frequent repection of similar plants. I'lise effect is most perceptible when the phiants perfeet their seed, which is seldon or never allcwed to take place in market-gardens; but great ettention is paid to the species of phants which succeed raci other on the same spot. The principte which experience and theory unite in establishing, is that of avoiding the too frequent recurrence of plants which beloug to the same matural families. 'The preatet varicty cultisated in gar. deas, in comparison with the common produce on a furm, enables this principle to be fully acted upon. Thae gardeners who overlook this, and repeatedly sow or phant the same kind of vegetables in the same sjots, ate soon aware of their error ly the diminution of the produce, both in quantity and quality, and by various dikease which attack the plants, however abinalaut may te the foed mupplied to them, or carcful the tillaze.

The principle on which the gardens are cultivated, in that of forcing verectition hy means of malmudant surn ply of dung, constant tillage, and occasimal watenge The whole surface is converted into a species of hotwd; and crop succecols crop with a lapidity which is troly astonishing. Those wgetables which arrive at a mathen able state in the least time are always the noos profituth, and those also for which there is a constant denand at all times of the your. With an abundent suyply of manure, the marke t-gurdeners lave no fiar of exlaoding the esil; and dissimilar vegetables may grun tugether on the sume ground.
The value of the probluer in ene year from an acre of gardern-ground in tha mont favourable sitnation, as shatel by Mr. Middeton, from the account whith be rreved from a murhet-pardetcer, is monost incredibic. It is w
 230 ; celery (first crop), 2.50 ; (second crop), $240 ;$ ear dive, $£ 30$: making a total of $£ \geq 20$ for the gross produot of an acre in twelve nomiths. The expense's of eultin tion are very great. In interior situations, the produce in much lese, but the expelises are abso somerhat iem

Whea it is con Hius caltivnted, revy grent."
The domestic pendently of sg of rich manure, hase any part of kecp up fertility the delving may the raking may n in comprisison wi He will likewise leaxing no croppi df unintelligent

garden

Discying or d means of garden is 10 inehes deep not direct downw spale goes in dits and offen not m w dig a piece of one side, and can to leave off. No opened ; thrust tl taking about tive wer into the ope tresh earth nbove full and so on wi Talke eare to dig brradth, so as to furrow one width in the gurfiue, pu Break or pulveriz ths hesh garfiace rove to the last, th cluding trencl. dyy weather ; but mexlioration shoul suil is moist. In turaps with the sip Ruking is usua hadde of the rak it lightly over the oliject ia not to down the irregul refise or stones. in dry westher.
Marking with in delving in a groend with n e earth st one cull reel cord will be of parteres, plote line, go along it qusntity of earth do the same with and so its dimen dener measures ground with his ! draw a circle rou a union of two uagular appeces, or a saall path betw acendingly, and sile, ho tramples other, and then bis spade.
Ifveing.-With drown towarts th draw the earth ul ot to deatroy wee bencalh the surfa
wers, and for a muinures enter, sweetening. The orange-tree comp
nstant lemand for stablished for pro and ahundance are near London, tity of monute, in polis, is casily ob gardens aro conkitchen gardeners ibed in the articte "-"'The garden when the land is anured. Variaus winter, aro now to produce ptanta ons, radishes, and weather is severe, raw or mats, l_{n} c been raised in ed out. The eabishes, onjons, and , are of suffeien them. As the ceeded by endive vith the cabbages erctables, wihout which, in conse nuring, maintaine g in some degree of the soil which uent repectition of reeptible when the n or never allured great otlention is cecd each other on a experience and f avoiding the too clong to the same cultivated in gar produce on a fatm ted ujon. Thooe tedly sow or plant nie spots, are soun nl of the produep ; various disease mulant may le the llage. s are cultirsted, id nII abundant sup casional watering sucies of hollod ity whech is truly arrive al a mishit the most proftatie, onstant demand a sundent supply of licar of extausting i grow together on
rar from an acre el nituation, as slatad which he recerved ctedible It is a r, Lbit; cablagea d crop 1,540 ; en the gross produa xpenses of cultive ions, the produce in so solacwhat ine

Whes it is considered that there are nea.ly 2000 acres Whes ciltivated, the gross amount of produce must be very great."
Tho domstic gardener will now perceive, that, indeendently of a good soil, he must give his ground plenty pernien manure, and by so doing ho need scarcely ever bave any part of his surface unoceupied. To attain and keep up lertility is the grand prineiple of his operations; the delving may be awkward, the lines of beds uneven, the raking may not be neat, hut all is of no importance in comparison with kecping the ground in good heart. He will likewise maintain a regular connective rotation, learing no cropping to caprice at the time, or to a system of unintelligent routine.

garden opirations-CULTIVATION.

Digsing or delving with the spado is the principal mans of garden culture. The spade usually eniployed is 10 inches deep in the blade or spit; but as delving is not direct downwards, but sloped, tho depth to which the spale goes in digging is selkom more thas nine inches, and often not more than eight inches. In eommencing to dig a piece of ground, take out a spadeful all along one side, and carry it to the opposite sillo where yon ore to lesve off. Now hegin at one end of the trench just opened; thrust tho spade with the foot into the ground, aking about five inches in breadth, lift it up, and turn it reer into the open trench, the top undermost, and the frech earth above. Do the same with the second spadeful, and so on with all the others to the end of the line. Take care to dig always a uniform depth and uniform bradth, so as to keep the line even, and the trench or furow one width. If there be any weeds or loose offal in the aurfuce, put them in the trench and cover them in. Beak or pulverize the mould as you procced, and keep the fresh autlace level. When you havo delved row after roir to the last, the earth laid aside will fill in the coneluding trench. Ordiasary digging is performed lest in dy weather; but digging to throw up lumps for winter melioration should, if possihle, be perlonned when tho sell is moist. In this kind of digging, do not touch the turips with the spade atter throwing them up.
Raking is usually performed after delving. Hold the havdle of the rake at an angle of 45 degrees, and draw it lightly over the surfice of the newly dug ground. 'The object is not to draw earth along, but to even or comb down the irregular surface, and bring away any loose refuse or atones. Like digging, it should be performed un dry westher.
Narking with the Lime.-When there is any difficulty in delving in a straight line by the eye, mark off the ground with a cord, drawn from a reel stuck in the earth st one end to a dibble or pin at the other. This rect cord will be indispensable in marking oft the edges of parterres, plots, \&cc. In such casce, having fixed the hine, go along it with the spade, taking out a very small quantity of earth immediately beneath the cord. Then do the same with the opposite side and ends of the plot, and so its dimensions will be fairly marked. 'The gardener measures and marks off all his figures in the ground with lis line and spade. With the lines he can draw a circle round a central pin, or make an oval from a union of two circles, or from semicircles, spirals, trinagular quaces, or polvgons. When he wishes to make a sinall path between rectangular plots, he sets his line acordingly, and walking along it, with a foot on each sile, to tramples down the earth from one end to the other, and then he can even it and beat it down with his spade.
Heeing.-With a common hoe, the carth is cut and drawn towards the operator. The object of hoeing is to draw the carth up the stalks of plants growing in a row, of ha deatroy weeds. In hocing weede, cut ofl the weed beacath the surface, and do bot cover the stalk. If con-
venient, rake away all the loose stalks, and place them on tho dung-heap. Weeds, such as dandelion and grounusill, which become winged when ripe, should bo hoed and removed beforo seeding. As matay such weeds which infest gardens are hlown into them fromi adjacent road sides, it would not be misspent time to clear the neigh bourhood of them periodically.

Animal amoyances.-All gardens are less or move exposed to the dentruetive inroads of wild animals, Hares and rabbits gnaw the bark off the stems or lower branches of trees, and also the buds in season. 'To prevent the encroachments of these quadrupeds, the garden ought to be properly fenced; but if they get in notwithstanding, the trees may be saved by smearing the lower parts with a mixture of cow-dung, soot, and water, reduced to the consistency of thin paint; a smearing of tsr or grease will also answer the purpose. Moles, rats, and mice, may be caught in their approprinto traps; moles, ulso, may be got rid of by placing slices of leek, gano lick, or onion, in a green state, within their holes, as they have a grent antipathy to the odour of these vegetables.

Birls are sometimes an nunoyance, particularly when new-sown peas or seeds may be casily scratched up Bat though in some instances injurious, it is believed that, on the whole, their visits are bencficial; for they pick up large quantities of slige, insects, larvos, or cutem pillars of different kinds. Wall-fruit may be preserved by nets, or ly the more simplo methol of fixing hori. zontal lines of black worsted in front of tho trees; the repented ineffecturl attempts to alight on the lines is said to scare the animals and cause them to desist. Lines of worsted threads, in which feathers are fastened, are enployed in many cases to protect beds of sceds trom birds; this preventative can he casily tried.

Inseets are the grand pest of gardeners; their appearance is so mysterious, aud their devastations so varied, that all schemes to extirpote them are often ineffectual. They are most destructive in their first condition of larvo or caterpillars. In this state they should ine removed by the hand from kitelien vegetalles. Podestroy the smaller kinds of larve, fumigation of tobacco smoke, by meana of a funigating lollows, is employed with aulvantage; and the plants are eleansed with a kyringo and water. For the cleansing of fruit-trees from insects, we refer to our article on Fruit Gardening.

Slugs are another chicf annoyance, especially in lowlying situations. A littlo salt destroys them, but, ns in the case of caterpillars, the lest plan is to clear them out at their first appearance by the hand or a pair of pincern Worms in the ground are not considered injurious; in a properly trenched garden, however, they exist only in small numbers. Salt kill- them.

Soncing.-The greater 1 unher of garden vegetables are reared from seeds, which are sown at certain seasons in the ground. Some seeds, such as peas, are sown in drills, the hand deliberately dropping them in a atraight shallow trench. Other seeds, such as seeds of onions, leeks, cress, \&c., are sown broadeast, which is a thin and equabla scattering over a bed prepared for the purpose. Most seeds, peas included, require to be pressed down by treading or gentle rolling, and then covered up by the hoe or rake. All seeds should be sown and covered up in dry weather.

Planting-Many vegetables require to be removed while young from the bed in which they were grown from seede, and planted out in rows. A straight row is unde with the line, which is gently treaded on each side. Commence now at one end of the trodlen line, and in the central or untrod part pierce the earth with the dibble. Into the hole so made insert the root of the plart, and pierce the earth at its side, so as to press the mould round the ront, leavine no vacant space below.

Watering,-In dry sensons, urtificial irnigation is of
great use for giving due liquid aliment to plants, and is indinpensable to planta newly tramsplanted, in order to consolidate the roots. Watering, for whatever purpose, is most advantageously performed in the morning or evening. If done during the time the sun is shining, take cure not to water the leaves of any plant, for the heat will raise the temprerature of the liquid, and tho leaves will be acalded. If the day be eloudy and cool, watering the tops of planta can do no harm. 'lhe watering, in any case, should resemble as nearly as possible a soft shower, and he performed with a rose watering-pot. The greater uimbler of flowera are injured by watering, If tho water touches them.

garden vegetables.

The vegetables usually grown in kitchen garilens are of various tribes or classes, which, for convenicnce, we shall arrange in certain intelligible groups, sa follows:1. 'The brassica, or culbuge kind of vegetables; 2 . The pen and bean kind; 3. The root kinds, or those grown only for the sake of their roots; 4. The onion and leek kinis; 5. The salal kind; 6. The various kinds of sweet herb; and, 7. miscellaneous kibds, including several of a delieate nature. 'Ihis arrangement of groups, it will be understood, han no reference to botanienl order, and haa only been adopted in preference to the confusion of kinds in alphabetic lists.

The IBrassica, or Cabbage Tribe.

This includes bome of the moat hardy, easiest cultivated, and useful of kitchen vegetubles. 'The following are those wbich we would recommend to te cultivated: broccoli, Brussels sprouts, common cahbage, red cabbago, cauliflower, savoy cabbage, and Scotch kale.

Bnoccoli.-This is one of the best kinds of greens, and is vałuable from coming at a reason when not liable to be affected by caterpillars. There are various kinda of broccoli, but all may be arranged under two headsthose for spring use, and those for use from September to Christmas; the latter are termed "Cape" or autumn broccolies. The best varicties for spring use, are Bowles'a new sulphur, Moody's dwari, (iranger's cauliflower, and Portsmouth cream-colour.

One ounce of seed of broccoli is calculated to aow a bed four feet wide by ten long, broadenst on a prepared bed, but if sown in drills, rather less med will the sutificient. Each kind ahould have a place allotted to itself. The soil should the fresh sandy loam, not manured, and the sesson for aowing will be comprised letween A pril end July. The Cape plants are timally set out in beda made rather rich with manure, at any time when they have leaves aix or eight inches long; two feet distances, plant from plant, will be sulficient. Each plant is to be firsnly secured in the soil; and if the weather be dry, nvery hole should be filled with water. This apecies will come in season in August, and continue to produce a supply throughout the autumn; in mild seusons, some beada may be cut even at the turn of the year.

The spring hardy varieties are treated hy most peraons in the same way as the Cispe; that is, the plants, when they are aix or eight inches high, are transplentid as they become ready, between the first week of July and that of September, into beds of richly manured lam, and set two feet apart, the largest sorts, as the Portsinouth. at thirty inches, and they nre kept irerfectly free from wecds. If the meanons be favonrable, a suecessiona! supply of broccoli is thus obtained from the first week of March to the end of May. It ia also customary 1, lay plants down in Scpember, with the heads turned from the sun, applying earth on the south side over the stems, to protect them from snow and frost. We prefer to plant in six-inch deep trenches, properly manured, remorinf the plants to them when not less than a feot high, tilling each thole with water, and re-
peating the watering for two or more auccerrivn eveming This treatment, even in the druest soasons, will secun the plants; and as tho winter approaches, by drawing the earth from the ridges on each sido, and thua fillimg up the trenches, the stoms will be protected, ond tho ground levelled und rendered light. We have practiped this method during seven or cight winters, and have 10 no opportunity to recommend it to others. Brocelli plants do better in trenclies than any other membens of this extensive family.

To save seed, it is only necesarsy to watch the progress of some very line plant left late in the spring, to cut out all the weakly and crowding parts of the headg when expmatech, and to secure the seed brfore it be goit ripe, or rather hefore the secd-vessels shed the sed IBut as all these plants pass by crossing into othe varieties, it ia generally not desirable to attempt sed. growing.

Bregsels Sprovets produce tall stems, threo or four feet high, which support n head somewhat resembling an open savoy, of little value. This being cut oftithe lateral buds down the stem protrule a succession of little green heads, like small savoys, delicate in flavon, very much admired, and yet but seldom seen, inasmuch as the true vegetable is not easily oltained. Ourbest authority is stitl that of Professer Van Mons of Brus sels. We copy the following from the last clition of the Domestic Gardener's Mmmanl, whercin the Brosseln practice is noticed, and a few experimental remaky appended.
" I'he planta are raised from seed sown in March or April, of which an ounce may he requisite for a seedid hed of four feet by ten. Van Mons says (Hort. Trons vol. iii.), 'The sced is sown in spring under a frame, to bring the plants forward; they are then transplaited into an open horder with a good napect. By thus beging ning early, and sowing anceeasively till late in the sfo. son, we contrive to supply ourselves in Belgium with this delicioua vegetable fully ten nonths in tha year that is, from the end of July to the end of May, Thas plants need not be placed nt more than cighteen ituhes each way, as the head does not spread wide, and the side leaves drop off.' With us (in England) the Brus aels aprout is so hardy that it will stand twenty degrees of frost; and its heal about Christmas is a tender and delicate species of greens. Being then ent, the plant will remain nearly torpid till the advancing sun csused it to blart into new regetation; then the spaces between the rows should have a little leaf-soil or good manue lightly forked in : and the youmg heads, all of which were quiescent, but visible in the winter, will speedily advance from the axils of the leaves, and yicld a aupply for many weeks, if they be properly pulled or cut in buo cession."

We cannel add much to the nbove, but may ohsere that, if any one can procure true ared, it will be adriasale to try to ripen some, and to nlandom seed-grouing of every other kind of the hrassica during that somen, for fear of crossing it; also to try Van Mons' repeated sowings, for in trith a mora delicate family vegetalis cannot be cultivated.
('annath, -The cultivated varicties of the commo. of white hearting cabbage aie very numerous; and as all enn intormingle, so no one who ams at rasisig seed can be condident of what he shall produce. The hest raine ties in ordinary uee wre-1. Simall and large York; 2 I,ondon varicty of York; 3. : 'ugar-loaf; 4. Knightis Downton: 5. Battersea; 6. Vanack. 'I'he cablage is a biennial plant; it rims a two years' course, hears sech and dies. Therafore, to obtain hearted cn'buges threught out the year, two or more sowings must be made; ons in the spring, the other in summer. Spring-sowing can he effected at once, or it may be divided into two or lbwe operations; becausc, from the third week of Mash it
the firt week of ? for the aupply of management, on that a large family to that sinnplo op
Prepare n hed sure, and let it seedlings bernefit not to oe made to for four rows, nir twenty fect long. settle for threc or on, whilo a first line; make the and a little solid, or by patting it w \mathbf{s}_{0} the secds rat rta an abundance of a few by inser fine carth, procee bed be finished, a with the fret plac fuce with the sp the back of a rak boles, and theref prefer to use the atilf and binding will not casily \mathbf{v} the drills, nond wat cessive erenings, the day. In the aov, cover with uts by day, till once with the fine in the evening wi I'hese direction a set of eabiage, road sand that wa and as to slugs, lit their ravages or de
When the plan thin them out, firs inclus; they wil! they bave three o they will ho fit t others to the plot set in the former, roots, and he pre of the plants will sulumer months. quire the ground transition from p mpidty. 'I'he sm of fifteen inches a inches. Set each leaves, and ohser p. 336. These tablo frem May later.
Carnage Col don, known by th soring the sced from the end of plaild in Augus teen inches asun another; they f cabluges-at a ${ }^{\text {p }}$ and the suring o rety severe winte The main sum letween the 25 h last week in the fo able perios. T'ts in evary respect hes, by draming o, and thus filling protected, and the
We have practiped ters, and haste lod others. Brocelli other membens of
to wstch the pron e in the spring, to parts of the heads d lofore it te quite s shed the seed. ossing into other to attempt seed-
tems, three or fous hewhat resembling s being cut oll, this en a suecession of delieato in flayour, on seen, inasmuch fotained. Our best an Mons of Brus the last edition of erein the Brusely erimental rearark

1 sown in March or equisite for a seed. says (Hurt, Troms : under a frame, to then transplated ct. By thus heging till late in the sea. ; in Bclgium vith mths in the year; fud of Msy. Ths on eichteen inchen read wide, and tho Angland) the Brus and twenty degreen nas is a tender and then elut, the plant roncing sun cause the spaces between il or good manure cadt, all of whire inter, will speedily and yield a supfly mulled or cut in 80 .
re, but may obserte wed, it will be gedi. milon sced-greaing during that sases, 'an Mons' repeated e family vegetallo
es of the comma. wi merous; and as all at rasing seded e. The best ranis and large York; 2 r-lonf; 4. Knightis 'I'he eablage is 1 course, lears sehi, $\mathrm{d} e \mathrm{~s}$: bages thre ugh must be made: ons Spring-sowing can ed intotwo of the week of Mark to
the firsi week of May, t o ses 1 can ne auccessfully sown for the supply of summer und winter. Yet by attentive management, ons sowing may be made to produce all mang a large family car. require; we restrict our directions to that simple operation.
Prepare a bed of good sound lonm in an open exposure, and lot it be very slightly manured, for cabbage sedings benelit much by strong contrasts, and ought not to de made to run up while tender. Dig the ground for four rows, uine inches nsunder, and from fifteen to weaty feet leng. Break the earth finely, and leuve it to setle for three or four days; then place boards to tread sttile while a first drill, one inch deep, is struck ly the line; make the bottom of this and every other drill even and a little solid, either by pressing a long pole into it, or by patting it with the lack of a wooden-haded rake. g_{0} of the seeds rather thickly, hecanse it is better to thin ${ }^{2} 1$ an shandanee of plants than to lose the major part of a fer by insects. When sown, cover the drill swith fine carth, proceed to make and sow other drills, till the bed be fixished, and then cither tread the surface over with the feet placed nearly close together, or pat the surfice with the spade, and then finish it of smooth with the beek of a rake. Always avoid to treall ground into boles, and therefore recede from the work backward; prefer to use the feet in light sindy soil, but rarely with suiff and binding grounct. In a very dry sensen, seeds will not casily vegetate; therefore, in such cais., strike the drills, and water effectuatly along them for threo successive evenings, covering the plot with mats throughout the day. In the third evening make the drills oven, wow, eaver with earth, sprinkle again, and thy on the nats by day, till the plants le visible, bien dust them once with the finest road sand white the dew is on, and in the evening with air-siaked lime.
Ihese directions need not he repented. We nevor saw a set of eabhage, turnip, or celery plants, so dusted with rad sand that was much infested with the turnip beetle; and as to slags, lime, or lime with coal-soot, will prevent their ravages or destroy the vermin.
When the plants begin to proluce thrir true leaves, thin them out, first to an inch asumder, and again to two iaches; they will thus gain strength rapidly; and when they bave three or fonr good leaves four inches long, they will be fit to go out, some into nursery beds, and athers to the plots whore they are to remain. 'Those set in the former, six inches asunder, will require stocky roots, and be prepared for successional beds. The size of the plants will indicate the senson daring any of the sumuer months. Those planted permanently will require the ground to be made rieh with manore, and the transition from poor to rich earth will make them grow mpilly. The smaller Yorks, \&e., sloould stand twelve or fiftean inches apart. the large vrricties twenty to thirty inches. Set each plant as deep ns the base of the lower leaves, and observe the directions given under Broceoli, p.356. These seed and nursery beds will supply the table from May to November, und in fine seasons even bater.
Casuag: Conewonts-a fivourite vegetable in Liondon, known hy the name of spring gerens-ate raised by sowiug the seed of the !ardier middle-sized cabbuges from the end of lune to the middle of Iuly, to be transe plated in Augnst and september in rows twolve or Effeen iuthes asunder, the ghants nine inches from one anoher; they form pritty little hends-not properly cahbegeat a prerion when the ohl stork is exhansted, and the suring cablage is not come in. They fail in refy severe winters.
The main summer crops are raised from seads sown letween the 25th of July and the lorh of August ; the last week in the former montls comprises the inost favourable periol. The directions previously given will apply in every respect to the treatment of the plante; wo need
only remark, that it in advianble to plant the young cab bages firat in nursery beds of simple loan, wherein they will be more secure during the frosts than they would lio in rich beds; but being transferred to tho latter at the end of February or early in Mareh, they will moke rapid progress, and, according to the season, produce hearted cabbages in April, May, and Junc. All the departments must be kept clean, and free from litter or weeds. Seed can casily be raised, but tho resalt in alwnys doubtful.

Ren Canhane is maly used for piekling; it is raised by a two years' conrse-that is, by sowing in August, and transplanting as directed above; but this variety roquires a little moro space. The healla form in the ensuif I summer, and are in fine condition in October. If sown in spring, little-hearted cabbages can be obtained, which may supply a loss, or serve as a substitute for the othors.

Caulifloown.-This plant, which is grown only for its rich white head, requires in the open air a warm and moist elimute, or it must be grown under glass. In Holland, it grows to great perfection, and, like many of our garden vegetables, is most likely imported from that country. One of tho chief difliculties attending its open-air culture is its destruction by caterpillars, and therefore great eare is in many respects necessary to bring erops forward. Under glass, the plants are rendered very expensive.

Syring sowing, for a first crop, may be made in March, over a temperate hot-bed. 'The seedlings are to lo pricked out when the leaves aro an ineh broad; and from this nursery bed they are moved to tho garden bed in May, to stand more than two feet asunder, the ground being made extremely rich. The plants, after they begin to grow, are occasionally watered with liquid manure coll rted from the drainage of dunghills. A second spring-sowing is made in the open border in May, to obtain plants from Soptetmber to November, by a similar moke of treatment. 'The last sowing occurs in tho middle of August. The plants, when about four or five weeks old, are to be thimned out to two or three inchis apart, the best to go into nursery beds of rich earth, three ar four inchos asmuler. Here they must grow till November, when the strongest are to be set out in row:, to be preserved under bell or hand-glasses. Dig a bed of rich ground in an open situation, and mako it sti!! richer with manure; set three or four plants together, five inches apart, in patehes, each patch a yard asunder: give water, and cover close with a band-glass till the plants begin to grow ; then tilt the glasses on the sunny side with a brick; and thus continue to give air on mild days during the winter, and on some occasions tako the glasses quite off, but replace them and cover close every night.

In the spring thin the plants to two under each glass, making good any deficiencies with some of the best plants thus taken up, and plant the surplus in a warm spot of gromad two feet apart. Keep the glasses on the other plants, raising them more and more, oceasionally exposing them to mikd rains till about the beginning of May (untess in the event of intense frost, such as we have experioned within a few years), when the glasses may be fually removet. Caulifowers will thus be protuced in succession from the end of May throughout June.

Other plants should, in November, be placed in frames four inehes apart, in a bed of rich dry loma, over a yiry slight hot-ted: give water, close the lights, and be guided ns respects the adnuission of air by the directions for the hand-glass division. The lights should be covered with mats and boards during severe frosty nights, In February, March, and Ipril, the plants are removed in success sion to beds richly prepared; and the caulithowers wiil coure into perfection during July and August. It is 2 X
euntomary to form the earth linmediately around the stema into the shape of basins, to constuin wator or tho liquid manures it is a usefil practice, and this, with lucings between the rows, will compriso the general treatinent.

Thas Sayot, or Savot Cambaof, is very hardy, and the most useful of winter cabbages. Its cultume is very easy, and admits of four sowings. There ate two mpproved variotiea, the harily smarll grea, and the lurge yellow; tho former is generally preferred. Begin to now in February, sow a second time in Mareh; a third, ancl this is for the main crop, in April, about the midille of each month Let the situation he open, the soil a good natmal toan, if possihle, and trid out in a led three or four feet wide, thigged mad made fine. Scatter the seedn evenly, and rake them. leprat, for the fourth time, in Aughst. The plants of this last sowing will attain a large size by the following Augunt and September, if planted out in April. Is the plants of all the sowings, after thinning, bceome four or five inches high, they are transphanted between coops standing widely apart, as in the single-row system of asparagus, or as succession on potatioland. Moist weather whould be chosen, and the savoys shouhl stand two feet upatt. Kcep the gronnd closin, stir it occasionally, and draw a little toward the stems on cach side, alivays, howe'vor, leaving a sort of flisow threo or four inches with, to receive the rain, and convey it to the roots. See,l can le sown in the aecond year, but it may he rendered spurious.

Ecoren Kafe and Gensan Kals are the hardest mong oar winter greens. They are mised by sowing the seeds cither in beds or single drills late in Febrnazy or carly in March; to be first thinued nut to three inches apart, and fanally transphanted to bole or rows, wherein the phants are to stand thirty inches asunder. 'I'he planis may go out in suecession, from June to the middie of July. The heads are cut first, and subsepucntly side-shoots arise, which produce excellent winter greens, till carly cabbuges cone in. The plant runs up to flower and seed during the sncceeding summer.

Instead of growing kale, calthage, or any other of these plants from sed, it will save much trouble to purchase young plants by the hundred from a nursery of such vegetables.

The Pra and Desn (or Liguminous) Kinds.
T'he Pra.--There are varione sorts of this nutritious Jittle vegetable, bu it is only those of a fine kind which are cultivated in gariens, and called garden-peas, that we require to notice. When fresh, they are a bright green, and when dry for seed, most are a huff yellow. Peas are a sinnmer delicacy, and the chief art is to protuce them in the open air, by the midtle of May, and to keep up a succession of crops till other vegetables nuperserde them. Skilful garelenors do met consider it a difficult process to etfect an early crop, as the plant is very hardy, and sustaina violent transitions without much danger. Peas, therefore, may be accelerated in frames and vinerics luring Felouary, and being transplanted into rows fronting a mouth and east wall, will continue on advamen progressively though the weather be cold. They can also be nown (provided there be no frost) in the open grour d at any time. The chief varioties for the earliest and latest ciop are the curly H'wricih, bishop's diretrf, Charlon, fronts, and some other preculiar to localities. The varicties for the main summer erops are the the Prustian, the imperial, Kinigh's dwarf and tall murrow futs, and the cimetar.

The soil most affected by this vegetahle is a free, light, int rich ham. alounding with vegetalle matter, but net raanured with recent dung. The situation for crops trom June to. August shonlld be exponed and open. The titness of sowing ste very various, Some oldain an exeelis nt yiedd from seed sown early in November in long

Jrills; amil if the winter be open, sliccess in neary an tain. At whatever season persona commence, a bethe general rule cannot be alopited than to mow for a sue cessional crop as aoon as the peas of the preceding som ing nte fairly above the surface. The plants, when laree inehes high, should have carth drawn against their stems on both sides, after which the soil may he superficially opened by pasaing the hoe lightly through it, and thin brunchy sticks, of a height suitable to the habit of the variety, ought to be thrust into the ground, convergiog little, so us to meet at top, und interlace each other Shallow soila over chutk aro soon over-eropped by peas and refuse to bring a heallhy flunt; and in all king of ground, the frequent rejectition of pea-sowing is tot deprecated. The land also must be purified by a rutation of cablugge and potatoes.

Sticks for peas ore indispenalilo in kecping them from trailing on the ground; and therilore every peren, who wishes to grow thia vegetable in hin garden, ploond take care to preserve the sitichs from one reason to an other, as long ns they are serviceable. Any kind of branchy twigs will answer the purpenc. When all the pods are takel, remove the haum or pra-stalks to the compest dung-hcap.

Dwanf-Beans are planted in rows, and the secus ing generally sown at diflerent protiots hetworn the lat of May ond the middle of July. The rituation sheuld open, not crowded by other vegetalile crops, or under trees-the soil a free-worhing loum, moderately manured The drilts shonld now be nearer to cach other than thity inches, and not more than two inshes derp. In these the heans are to be dropped at regular distanees, notez ceeding three or four inches. Nahe the ground frm bottom, hut let the covering earth be light, and ond slightly raked, not troklen or mate hard. The one lad ing principhe of anccessfu! growth is to hing the phat up as soon as possible, and this is cllicted ly melecting warm weather, and opening the drill caly in the lor that its base and the hoome soil nout it may he rendered hot hy exposure to the hettest sin for two or threc hotre A cole, wet, clodity condition of tle land causes dicaj.

Thu: Kunex Jeas comprises two speries of phate which, thongh of one fumily, are of very diflerent hatis Both, however, are matiors of the east, nud ate very im patient of cold; hence the necessity of deferring the sor ings till the weather lee nomly settled in the spring, and the ground warmed to the depth of several inches. Th two krecties are, firct, the dwarf with its bumeroas in rieties, ull leoring the title of French Birans; and secomed the climber, commonly turmed Sculet leans, or rumen alhbongh there are varieties with white and variegdict blossoms: one of the latter, the paiated hady, is sery prolific. 'There are few of the many varietics of ti dwarf which can surpass the buff or don-coloured han -it is free of g owth, and fertile, either when fored in pots, or planted 'a the open ground. The back speried dwarf is alse an excellent hearer; the whiteseeded is the true harioot ot the French; in Kent it is callo'sare ransero.

Rrisen-Brans are plantel with similar precautiona or, if sown catly in pots and hoxes, will transphant erg well. When the plants attain the lieight of three on four inches, they shouht have a litele carth drawn abmed the stem, and be stickel; that is, sume what tall brand sticke should le phaced on cach: side, converging 'onati each other at the tup; these props ought to he eighthet high, uct when the plants rearh then summits, thy should le bipief off ahd liep stopped, to cause lhem 's protoce frest-maring laterals, "Gather heans and has beans," that is, hever t:we any joxis to ripen; if en dumdant. let thera he given nway, or go to the pifsbeg for a maturitus ponl arrests the firtilty of the plam ty tanhing all its powers. Keer, all the crops clean, aud th surface of the ground about them rather open.

That (inant bea been in u * alluaion inade a native of th wery hardy ; t more approved which may be lonreport; an bighly flavour for favour, hyt twe last, comblo the ligh llavo
Benus preft of maisture. and noil, part (aphis), which the plant, and aimost cutirely Topping, whe the only reme rows, and onu The beans on inches deep and trealing the rake shoul trausplant ext thickly in atst mats, or with

Wh:en the
fier being tra Datch hoe alo to each sille three inches zuch side of the stems that their way dire are autumn fo long-pods, an Eow successio the demand, a ing shall be q bow Windsor save the bean sional Wiuds taired.
$A=$ the hear place thens to frem mice, w as we have f nety, which h

The vegeta of two kindsher py, includi Re turnip; a noluding the zorse-radish. dec., sre not bow the grou hh ot uut fro plant. All r baseness und
Jercfalem de said to eot the putato. no resemblan is a conuptio is a native sane family diswers in the are esten, ar elowe to the like the pota
creat in nearig an commance, a bette the preceding some o plants, when three against their ateplip ary he auperficially rrough it, and thin to the habit of the round, converging a
terlace each other, ererropped by paen ; and ill all kint pra-sowing is ote urified by a rotation
in keeping them refore every perion liia garden, slould b one reason $t o$ an lhe. Auy kind of mise. When all the or pea-stalks to the
as, and the secels are betueי'n tho Ist of situation sheudute the eropis, or unde nothrately manured els other than thity les derp. In these ar distances, noter the ground firm a be light, and osity rard. 'The one law to bring the platid eflected by selecting II canly in the top t it mey lee renderad r two or thece hours land causes decrat. wo species of platite very diflerent halits Int, and are very im of defirring the sors d in the spring, vat everal incles. The th ite numerons in Brams; and sccorid, ef 1 eons, or ruther Wite and variegtan aiated ludy, is sory 1 ny varictics of to or dun-coluured luan ither when fured is The lilack spectict e white-seeded is the ut it is calle' coron
similar precsutions , will transplant ter : leeight of three is earth ilfawnabus me what tail hrand a , converging rowhis ubit to le evight hes their summis, thy ed, to cause them: ther licans and has orls to ripen; if n r go to the pigsity ility of the plan ty crops clean, and ther jpen.

Tas Garner Bran is known to every one, and it tea been in use from time immemorial, ns appears by tho allasion made to it by ancient classical authore. 'Though antive of the east, it is in all its cultivated varictica very hardy; these varistics are numerous: somo of the more approved are, the carly masagin for the first crops, which may be nown from October to February; carly lonapod; an excellent fehtilo bean for general use, not bighly havoured; broted W'indenr, the leost nf atl heans for favour, hat not a prolifie hearer, a hybrid between tha two last, combining the fertility of tho one with much of tho lifh thavour of the other.
Beans prefer a sound and rather firm loam, retentive of nolsture. 'Plisey antler much in a very dry senson and aoil, particularly if ntacked by the laack blior (aphic), which covers the tops, preys upon the fluids of the platt, and as we have seell in tho summer of 1850 , aimost entirely alestroys whole fielis in a very short time. Topping, when the insects are first seen, appears to be the only remely. The secds should always he sown in rows, and one pint is considered enough for eighty fiet. The leans ought to he sown in one long row, three inches deep and tour ineloes apart, returning the soil and trealing along the conse of the row ; after which the rake shonal be amployed to level the aurtace. Reans trangplant extremely well, and therefore may bo sown thickly in autum, covering the plants with hoops and muts, or with a garden frame and lights.
When the plants rise in the rowa, or begin to grow fer being tronsplanted, loowen the earih by pishling the Dutch hoe along the surface, and draw three inches of it to each side of the stems; or eather shovel up two or threo inches of the earth, and lay it flat a foot wide on zach side of the row of heans, shelving rather towarels the stems than from them, for then the rains would find their way directly to the roots. The seasuns of sowing are audum for the mazagan, Jantary ant February for long-pods, and from March to June for the Windsor. Gow successime crop, one after the ohber, according to the demand, as soon as the plants of the preceding sowing shall he quite nhove ground. 'I'o cross the variety, sow Witulsor and long-pols alternately in the row, and save the beans, introduring in future sowings an occasional Windsor bean, till tho desired rich flavour be obtained.
A the beans ripen and turn hack, draw them up, and place them to dry in are airy situstion, guarding the pools from mice, which sometimes take every bran, nud thas, as we have found, deprive the gardener of a choice vat nety, which he had leen at considerable pains to procure.

Fixculent or Rori Vegemhles.

The vegetables grown for the satie of their roots are - two kinds-I. Those in which lie ronts nre round or hen py , including the Jerusalem urtichoke, the potato, and Le turnip; and 2. Those which are tap or taper rooted, niluding the carrot, the bere-root, the cadish, and the sore-radish. Strictly speaking, the tubers of potatoes, de.. are not roots, hut mercly parts of the vegetable bebow the ground, the real roots leeing small fibres which ahot out fronen the tuiers, and hring nourislment to the plant. All require depth of soil to permetrate, and also loseness and lureadth of soil to allow of expramion.
Jerigacem Aationore.-This is a root which may we said to comhine, is point of dlavour, the turnip with the potato. Its name is an absurdity, for the phant hat no resemblasee to an artichoke; and the word Jowsulom is a corruption of the dtalian name Girassol. The plant is a native of Brazil, and hotanicolly belongs to the sune family as the sumbower, bat it rarely produces dowers in the British iskinds. 'J'he tubers, which alone are eaten, are produced alundantly under the surface elose to the base of the main stem. 'The plant is set like the potato, by either whole roots or cuts with one or
more eyes to each. The pieces or cuts should he pre pared at the time of planting, and set by depositing in ahallow tronches two feet apart, and one foot asunder in the row; and being covered with oarth, nothing mors will be required but to keep the ground clean by the hoe. I'le season for planting is in the first dry weather of March; and lialf a peck of tubers, according to Abercromlie, will plant a row 120 fect long. A good mellow hown is the proper suil, and the spot for planting should be apart from the orgctable garden, otherwise this proliffe plant may intrude and become a complete nulsance. Being set in March, the plant is perfected about Oetoler or November; the crop is ready for use when the stems are quite dry. Dis only when wanted, if that be convenient; but if there be a danger of frost, ns will most likely be the case, lift the crop, and atore away for winter uae in moint sand or any kind of light soil through which the frost cannot fenctrate.

I'otatio-liko the Jerusalem artichoke and zome other plants, the potato is a naturalized exotic in English gardens from the wilds of America, and has been greatly improved by eulture within the last hundred years. 'There are now many varieties, individually distinguished by colour and llavour; and as some are better than others, it is very important that proper sorts should alone he cultivated. There are two diatinct kinde-early and lute. Early potatoes aro a prematuro and tiunsient kind; they soon come to perfection, and cammot be atored for future use. On this account no cottager should have any thing to do with early potatoen, which aro never srown but as a luxury, and alter all they are in general poor waxy stull. 'I'he true petato is the late kind, which will store for winter and spring use. Of this there are hundreds of sorts, every district upparently having one which is best adapted to its soil and climate. The sorta to be preferred are those possessing the guality of mealilese, und which will not degenerate or fail in cropping. The kinds wo recommend, as far as they may be found suitable ns to climate, \&e., are kidney-shaped, or long and fluttish; red rougha, a round reddish-coloured potato; nod those whito kinds which are smooth skioned. Of carly potatoes, the asl-leaved kidney is among the best for open-garden culture.

I'ho polato may be cultivated cither from seed procured from the apple on tho stalk, or from the tuber itself. If from the seed, the first eropa of tubers are only a little larger than peas, and several seasons are required to liring the plant to an cdible size. The common method of cultiontion is by pieces or cuts, each having at least one well-detined eye; cuts with two eyes are generally preferred. These are set in trenelies, the ground being in good heart with previous manuring, or good old manure placed along with the sets. The seasun for planting is late in A pril. Dig and plant sets, fresh cut as the work proceeds, placing the nets from nine to twelve inches apart, and the rows being about twenty inches asunder. Heap six inches of soil loosely over the sets, and when the shoots have risen sufticiently above ground, keep earthing them up with a hoc. When the stalks begin to decay in Octoher, the crop is ready for lifing. (For further information on potaio culture, see Aanicul. Tune.)

THE Tunvir.-Of this useful vegetable there are many varieties, but three only are grown in gordens: these ate the carly Iutch, which is white; the ycllow Dutich: and the suecte, also a yellow kiud. Tho white is the nost delicate while young, but the yellow swode is preterable as a keepung or late turnips. Ithe yellow Dutch has also an excellent flavour. 'Turnips are cultivated from seeds in drills one toot apart, and thinned when they come into leaf, to aflord room for their ex pansion. For the two Dutch varieties, the best soil is sabdy, enriched with bone-dust or good ohl stable dung . One ounco of sced will go over a great spaco-A'ror
ercmblie mays an much an 200 equare fret of surface. Amall sowings al ould be made in surcession from Maich Lill July, and then the main crop for winter shonld be cown. To avert the endroachmentry of the turnip leetle, ceatter rondduat over the leaves before the dew is off them in the morning. This, when timely applied, will never be foumd to fail. Swale turnijs should be nown in April and May. Deeply hoe the rilges alter thming, and keep the surfure clear of weeds.
The Canat.-The favourite varictiea are the firly horn, the Alleringhum, and the long orange or Surrey. Ail require a deep light moil. The carly horn is nown in February for the apring crop, und in July for a late crop; the two other kinds are sown in Morch, April, and May. All are mown broadcast in bude. 'The sered may he nnved by planting a lew of the beat currots to atand the winter; seed will not retain its growing principle above a year. Carrota may he stored like putators in winter.

The Pansvie ia a taper-rooted vegetable resembling the carrot in shape, and iu England is a favourite vegetablo with salt tish. 'The seed is sown in drills a font asunder. 'The period of sowing is comprised thetween the last week of Felinuary and the first week of May. On thinming out, let the remaining plants be nine inches apart in the row.

Tux R R wisn,-There are two distinet kinds of radish, which conprise all the numeroun varieties which are occasionally eultivated. According to Lindry's catalogue, these are-
Tho tuper-rco.ed spring radish, of which the varietics are-l. the long white; 2. purple or malad radish; 3. salmon or rose-coloured, 4. हcarlet ; 5. white Russian radish.
The round turnip-rooted spring radish.-6. Crimkon turnip-rooted; 7. yearly white; 8. purpte turnip; 9 . white turnip; 10, yellow turnip.

Winter radish,-11. Black spanish; 12. brown oblong; 13. large purple; 14. round lrown; 15, white Epanish, a large hull, which in good soil growa to the size of a small stublile turnip.
Numbers 2 and 3 are the best of the apindle-rooted radishes; numbers 6 and 7 of the carly turnip-rooted. The winter hack radishos are rare'y men in gardens; But die large white (15) is very mald, if the aoil nad ecason le favourable, and its testure is t'nder.
Sown in Pebruary and Mareh, the spring radishes come into use in April and May ; if weenired earlier, they muat the protectod ly frames or mals. The makit-gardeners obtain them warly by gente forcing, covering the teda every sescre night. The sowings of all the carly varieties may be repeated montl:ly till dugut. The witter radislees are wown in July und August, and come into use from september till the spring. A rich and ligh: voil suits the radsh, with occasiomal ropious eupplief of water; and rupidity of growth is required, otherwise the roots will not le teneler, nor will the flavour tw mild.
Honskensmish is a vegetabie which in certian noils is at extremely dilicult culaure, in others of uncontrollibly luxuriant growth: it is a mont pernirious weed where it intruilen, because of the multitude of vital germs with which its root-stonk alounds, and by which it is remulered a sort of veretathe poly pus, esely inch of it heine caprable of doveloping a srowing buil.
Suck being the dithiculty of artiticial propagation, it may le: quentimed whicther much troutle in not axpombl uselessly t, effect that which matare pronlucess by the most simple means. Howerer, horse-radiah can he proeured by trenching two feet deep o plot of free loasm, removing all stoues as the work proceeds. Whe tretwh heing well elenred, a hayer of manure two inches thick whoud lne taid at the botton (for none must be miscol with the noil), and upen that three inches of the tine ham. Some fine otraight roota lwing in readiuens, they are w be cut into twouch length and picce atier piece
pressed inta the ail cight incher asunder, In a mw, wion whole length of the trench, and exactly in the mikhle The roil is then to be dug out monother two feet space surning it into the opre trench, rlearing away the sporem and other rough sulastances. Thus alternately trenching and planting, a bed will ho formed of aryy extent that may loe required. The work should be performed ethee in Oetoler und Novemular, or in Fochruary; and the dry ext westher of the weacon should h , milected.

Alreceronbie, ono of the hert practicul writers on gan droing, made the following jucticioua remarks, whird will, if duly considered, throw light upon thove habite of the phant which have ted to the deep mellood of culter just descriled. "The rowt," he nays, "twing Jurable forms itself into a thick hnoty ntood at a certain depth wending up several erect, straight, root-chloots, in length proprortionate to the depth of the stoot or main root which, if phated filturen wr eighter" inches helow the surface, the whoots or sticks of horse-rialish will rive to that length. 'They will rise in May, increasing all summer till Octolx'r, when in ridh ground they will be nome times large enough to dix up for une, lwing an inch thick, if not, they must have onother year's growh, taking them up clean to tho hothon ly ruting them off' clone to the ofd atool, which remaining, sends up a fresh sujply umnualy."

These habits indicate two important facts. First, that the crown or ntool must eujoy all the benefit of the manure, to emble it to se nd up a straight stem, and to nourish that stcial by its own power; therefore no manare munt ine placed in the upper soil, sibee it might excite lateral growth. Sceond, it paints out the method of taking op the roots, which should always be that of trew lung, beginuing at one end of the bed and clearing nwa; the roil to tho full Upipth of the original trench Thue a row ean be taken without disturbing the crowng by couting ofl the aticks or upright shoots close to the head of cach stool or stock , aud what in surphos of each digging can be preserved in sand till mose be requist

Merp-Ront or Man Hexz,-This in one of the mom valualle of the spinalle-rooted wegetalises; it has heeto fore lych wasted by most nelwime, who, overtooking the really useful purposees to which a rowe so salultrions san be applicd, have comsidered it as little mare than a gas. nish to malads. Berte oots shom:d lue boiled or taked til they tweone perfertl/ tomele, when they may le eaten wain as a dinner vegetulde. When cold, they should be cat into wlires, and covered will ribugar. The platit is a biemial, that is, it grows, and pertiects its roots in one seruson; in the following spring it sender up its thwer st:ath, ripus its serds, and dise. Sierd, the fore, gan thes Ix• prowered; but it is butter to prurehase or exchange than to grow it. Of the two varmbers of red beet, the -maller ileep-parple varicty is gratly preferable to the lasere, which approaches to aml is litile lintter than mano. welwuzal. We select two varicties, 1. The slowt-roved
 levet, the leavers of which only nre used in liun of spinach

F'o grow the red theet well. the gromond ought to be light and pulserizable, otherwise tha spindte-root will be diverted if it meet with ohstaches, and laerome forked and dishurted. 'Iremels the phit wo the drphiof cighteen inelhes, removing large ntunem, roots, mad hard clow of earth; lay a meratum of manure at the hottom of the trenelt, in order to attract the root lownward; then return the fine carth. Let the work be complited twlore frot sel in, and mark ont the bedw accorling to the mmeler of rows repluired. At the midatle or latter end of March, the seeds are to be sown. These are contoined in a curious necd-vessel of rude shapar, mul camot coaveniemly tee mparated from it. In sowiug, sterteh the line, and driaw an even drill alout on inch or an inch and a half derp, and drop the seded-vesself at exen distancea two or three inches aeuader; for although theo anow
al 1 minch toc am to be iberal of deatroy many 1 Cover with light cowring earth If the planta ris wand from nin wen eightern it will traneplant, at hest it in antel hela entírely fre breing, Some thence througho stoning up duris being careflul no dry and weil-w atraw or decomp
To callert see roota in the rpot autumn to a con be produced in rured by stikes malks, and dry t rate the weed-we a dry and cool power for severa
Remark appli difl clayey or bucceed vary ind avoid repetition, tine of sowing and left exponed led, and holes with a strong p and twelve inche earth aifted, and which drop four light earth, and spade ; the root: preserved as in around them. anis, an we hav handsome figure grown without able itaportanee jured by the 1 wounded by the

The Allia
This savoury oninn, leck, garl far the mont imp trice, but they ! gency of flavour

Tha: Onionsnich, light, and fore sowing, wo eighteen inches, spade. Sow th eratch drills by conible, and sp or four in an ine and pat the surt them out accerit interveuing spac between hulb a tako up the crep, powe the onions externally quite beds, in which e
A auminer su
ous stock is exhe not come into m rbtained. Prep
Vol. 1.-6t

, in a mow, to in

 y in the mikillo. or two feet npace away the tume ruately trenchun any extent tha performed eitape ry ; and the dr. cted.a) writern on gan remarka, which It thowe habits a prethent of cultir "luring Jurable - a certuin deph whoots, in lengt al or main root whes brelow the ulish will rive to "reanitg all sum hey will be some ng an inch thisk * growth, taking? them off close ta j) a fresh suply
ficts. First, that e benefit of the ght stcem, and to refore no manure ce it might exrite the method of waye be that of luci and clearing - origimal tench bing the crowns oots clese to the surplus of cach more be requis one of the mase - ; it has hicieto , overlooking the so salubirious can more than a gas diled or laked til "y may le eaten d, they should te r. The plant n s its roots in one ds up its thowe Herfore, can here ase or exchange of red beet, the preferable to the Isetter than man 'I'he whort-ruoted : 12 y y cha, or silves a liero of spinach. mil ought in te ndill-ront will be rome forkid and 'phth of righteen d hard elody of a hottom of the ard; then tetum reted isfure froer to the unatere of r end of March, re contained in d camot coare , stretch the line, or an iuch and a even distaacex ugh the\% apacel
wnmeh too amall for final growth, it in in all enmes wise to be alberal of mecd, hecanse lnmeetn and other enemien deatroy many plants, nad than n menoon may be lowt. Cover with light fine earth, and rither trend or bent the covering earth wi"t the epado till it lio firm on the needs. If the planta riso equally, thin them gradunlly, till they and from nine to twelve inche apart every why, or wen eighteen inchen for the large rosted varicty. Beet will trataplant, but lise operation dwarfs the phants; and at best it is nttended with monno risk. Keep the rowe or bela entirely free from weels ly hand-weeding or flatheing. Some roots will he rendy in Scpteniber, urd thane throughont winter. In uxing them, or prior to atang up daring winter, cut of the straggling lenves, being careful not to wound the roots; they keep well in doy and will-washed anod, but becoine tainted if wet straw or decompronilile vegetable sulwtances are present.
Ta colliet seed, either reserve two or three of the hest roots in the apot where they grow, or transplant them in sutumn to a convericot situation. The thower-stems will be produced in the following apring, and whould he serured by atakes till the seeds ripen. Then cut down the Rlalks, and dry them on a cloth uniler an airy whed; sepasate the seed-veanels, and preserve them in paper bage in a dry and cool situation; the secds will retain vegetative power for several years.
Remark applicable to Tiect, Carret, and Parsnip.-In diff clayey or cloddy land these rpindle-root vegetables succed vary inditferently, carrot especially; therefore, to avoild repetition, it in thonght right to ohserve that at the time of sowing (the lund laving been previonsly tremelod, and left exposed to from in rideres), the moil is to be levelled, and holes made along the course of a gavilen line with a atrong puinted crowhar about four inches resmader and twelve iurhes Ileep. Fill them with very light sandy earth sitted, and make in little casity in tho centres, into which drop four or live seeds; cover them with the namo light earth, and theat the anrfine level with the bat of the spade; the roots so treated will tup downward, and he preserved as in s sort of aloenth by tho binding carth around them. Thos car ote, which slways fail in certain ails, ae we have often ohserved, may be produced of handsome figure and good quality, and beet-root may be growa without a fork in it-a circumatance of considerable ingortance with a root which is so liable to be injured by the loss of its purple juice whenever it is waunded by the knife.

The Alliaceons or Onion Kieds of Vegejables.
This savoury class of kitehen vegetables comprises the onion, leck, garlick, and shallot, the two former buing by far the mot important. All are natives of castern countrics, but they grow to great pertection, as respects pungency of flavour, in the British islands.
The Ovion.-Forn erop of onions the soil should be rich, light, and deep, nud well expoaed to the sun. Before mowing, work and enrich the led to the depth of righteen inclien, and then brat it flat and firm with a pade. Sow the speds at any time of March, thunserath driths by the line just so deep ss to be cleurly disarnible, and sprinkle the surds along them about three or four in an inelh. Sift fine samdy earth over the secds. ond pat the surfaer even. As the onions advanee, thin them aut accerding to the varicty, altowing alternately an intervening space filly equal to the breadtl of the onion between bulb nad hult. In Reptember twint the neeks, take up the crop when the lenves become yellow, and expoee the enions to sun and air mader a shed till they be extenally quite dr_{j}, Many sow onions broadenst in heds, in which case they likewise require thinning.
A summer supply of onions, at a time when the previous atock is exhausted, and the growing autumn crop has not come into season, must lee desirable, and it is casily rbained. Prepare the ground carly in February; select
a bumber of thear amall hulth that are alwaym found in every bed of the larger kinds, which aro not above an inch hroad. The loed leing ready about the end of the first week, mark out mquaren on the surface ly means of cross-stringe, hut do not move the ground. At rach intersection of the lines, prews in an onion, the ront downWard, to one-third of itn depth, so that the bull remnin firm nnd crect. Thua, when completed, the bed will exhibit the onions in aquaren five or six luchey anumder. The onion forma its bulb in the first year of its growth, and the flower and secd in the second year. These small onions will thereforo maturally attempt to produce a flower head, which, an mom as it is fiaily vieibla, is to be pisehed off. Another attempt will ho made, and that alxo must be frustrated. 'The natural course of the vitale fructifying wap being thua literrupted, will be diverted to the buib, and graduaily, chmont imperceptilly, two, three, or four oniont of medium size will be produced and grow freply. These are to he taken, an soon an they are rife (which, if the summer be fine and sumny, with oecasional showers, witl be in July,) und dried in the air an hetore directed
Tue In:ise is another of the garlic family, 5 il if properly treated in a favourable aoil and situation, growa to a very large size. It is a plant which is much improved by proper transplantation, but yct can be growa very well in ite need-lued; the lionden leel; in the hes. Sow the eceds in a shallow drill at the elose of Feliruary or early in March, and eover them with half an ineh of fine woil; na the plants grow, keep the surface clear of weeds by hand-picking and passing the Da': $^{\prime}$ h hoe lightly on each side of the leeks. Presiming that they are thmined uut at first to atard threo inches raunder, half of the plants will remain, and tho other half will be removed to another situation. Thus the plants in the seed-bed will stand six inches asunder, and will be greatly assisted if the ground be opened on each side of them at the distance of nine inches, and manured spit deep. A crep of fine middle-sized lecks will tee olitained in the succeeding autami.

I'n tranaplant leeks, prepare a bed at the end of June to contain cither two or four rows nine inches nsunder, and manure the aoil richly to the depth of a foot or fifteen Inches. Jet the hed settle during a week or more, and in Joly make holes along tho intended lines six inches decp and as far apart. Collect a number of the strongent lecke, trim off the strageling roots, and all the suckera or otherts. Drop a small handful of powdery manure or reduced year-old cow-dung into each hole, place in it a lrek, and holding it ly one hand, fill the hole with water. Plie object is to fix the leck ins in a case, to which it can aulapt itself, and will fully mocupy, becoming, under propitious cirenmstances, s plant of large size and of most excellent quality.

Gambic, one of the mort pungent species of allitm, in increnved by dividing the bulbs into cloves or small hulbs, and planting them in cood sundy loam, at any period hes twern the midalle of Februnry and the end of April. Draw drilts two inches dorp and ten inches apart, then press the rootend of each clove firmly into the earth, till it atand erect; let the distance between each be six inchea and fill up the drills with fine sand. Kecp tho ground free from wreds and when the leaves furn yellow, taka up the bulbs with a trowel or hand-fork, and keep then in a dry room. Nocambinf, a mild species of garlic, may be cultivated in the abme manuer.

Tine Sualiort is a mative of Palestine; its culture ja precisely the same as that of garlic, therefore both may bo grown in great ndvantage by adopting the phan suggested by the lste Mr. Knight, descriled in vol. iu. of the Transnctions of the London Horticultural Sociely. Let a rich soil he placed beneath tho roots, and raise the mould on each side to support them till they become firmly ronted. 'Thia is then removed by a loor, sind by pouring water from the

Val. I.-66
rowe of a wateringepot, till the bulba atand whilly ont of the grous d. I'bua they become mere surfine luithe, nupported entirely by the bliroum roote, which pan deeply boneath moto the rioth mill. "Ilve growth of theow plantis, Mr. Kilighe alde, so clowely resembled that of the onion, as not rentily to be dintinguinhed from it till the irragularity of form become conspinnoun. "The form of the bultow, howeser, remained promanenily diffirent from nll I had ever meroll of the mane anserien, lwing moch more brond and lese long; and the crop wan so much bether in quality, un will as more abundant, that I enn combiternly recommend the monle of enlture to every gardener."

Cutven, one of the mumbent of the gatie trile, in a harily and useful whetable, fiar aupurior to young inmanture ontons. 'I'be plant growa in tuth annewhat like emall rumbes in apparatue, but of a coloner remembling the yellow green of young onions or scullionn; it never bulb, A crop is readily incrased by diviling the roots in April or early in May.

salang.

Balada are those watery plante whose long freah leavea are eaten at tahle rav, or only drisued with zu'sts and condiments without the preparation of cooking. 'I'he principul vigetalse of thim kiad is

Tuk Latricis, of which there are aeveral varistion, but all may las claserd miler neo lacuds-the ipright or con lettued, and the opeti of cablage lathes. Of the upright, the green and white coos, and of the oren, the inner cablage atul gramd admiralla, are the larst. In pring culture, sow every month in wery shallow drills of
 with rusten manures Strike the drille a foot anduder, and as the plants rise, thin them to stand in regular order, first to two inmes, thell, for tablo we us amall matal, to ax incheq, and for the larger morts, tinally to one fort. Never tranmplant darins mpring and summer, wa the plants, by remosal, suatain a cheok which urges them to fly up to seal. Npring and smmother lettoces are nown from Feliruary to July. In tepterlibre, (wo) minall nowmges shoulit be made of the harily sorts, to come in ume during the late winter and кpring; but it woald be ader to make use of a larse three-light frame. Some lettuces heart frecly; those which do not should be asmixted by passing a flat string of matting round them from the middle upwards. I'his bathdage must mot remain many days, otherwise the lettuce will run to seed, und become bitter.

In autuman culture, sow in Augunt. in drills pretty clome together, for the exprese purpose of transplantation in Septeminer or October; they will not then min up. When the plants are three inches high, thin out half of thesin, and transplant some into warm quarters, and whers umbler a frame; protect by coverings of hoop and mats thowe in the open ground; and if they lear the winter, thin the plants early in the apring to six inches apart. 'J'he plants in the frame will rarely fail if the earth be free from shug.

To kave seed, Iratuplant some of the finest hettuces when ahout bali grown; they will produce a flower malk. and when the down of' the aceds becomes vinilile, cut oll ${ }^{-}$ the upper purtion of tho stalk, and dey it in warmand airy room: thus save all the seced an it rumen in sucerse sion for it is very valualle.

F:oblys in a salad of a pleasant bitter lante, and nome authorition way it hav lwa'n impunted from thina. 'There are dree pribeipal sorns in urtinary fultivatos, the arene curfed, whitechrleif, and lingorm, with undiviled fiat leaves. Ther secedmare fown at ditherent peridots between the twergming of Jume and tho second week of Auzuxt, as required fow the antumal, winter, and anring cropso Whari the plantes wre three or form inches high, they may de remosed to lads of mewherately eariched loan, to atand - font spart. But transplamtation in not ersential, for very lime plants are produced in the seed beds. When
they are nenaly full grown, they munt he jirepared fo on thline lyy blunehbug, an otherwive they would be too bitum fir une.

Jilonohing thay be cllicelens by mereral metholes the mowt simple in that of powning a atring of mof basa nus ting round the centre of esteh plant, an un to explumethe tight from the lieart; but an laral from in very linjurione mome planta ought to be re'moved to a led of dryinh mant or mand under an airy med ; or a gariens frame panalaly
 alrendy tied up. A goast kind of put lor blanchity in one of F'rench invention, mode of earthenuare, mut peris ruterl with holes: a representation ol' it in given in fig., Many pernones lhanch only by throwing strave low over the planta, lint this nakes n filler not wery pleming in a gurdert. The curved conlisen would blatich in *hort time without tying within a darkeneve framip
 that the phata sulter from laink bud. The Batanum molive, hoserver, requirere a hanhage at all theren, othe: wiwn ita harmh grooll heaves will be useleme, and the cers tral heart, which nlomes is entahle, will never bo roudered tomer and white, sume jurnons blanch in a nimple why by laying a tile over the opers luart of the plant.
Conn-xatab-Lamín Iat. ruce, a totive of leritain, lormerly used mach more than it sow is, mal cultivated
 1ig. 3. yuartir of insipic malad. A
 hie as suliocient to sus n led d feet ly. 5 broadrad. The firmenosing in effected in Auguat, the actond in sep tomber, for winter use. 'Ihin out the plants whea an inch ligh, to meand at three times that dishane asumder. I' summer sabading sow mace a thonth, heginning in Mane Cut the plants for use as somon as they are large anotitn; this the taste will detorminu; but they mollald be taien bery young, otherwise they lacomue rank in hot weathen

Crkan, on Giandev Cobism, - In alloting to the elh ture of this common salal, we will include matayt, fa couse they maturally are companions, ond are almay mentioned together, though they are of two very ditt cot futailion, In cultivatiag mivarod mand cross, it a ramential only to remark, that the listor mhould be ara thres or four daya in advance of the former, hecase cress is more bardy than mustard. Hoth are verya rommodationg horha, juasmurh as hige will grow of in Writed thann! in a saucer placed itl any apartment an Wrell an on the flaor of a green-honse. On Nhiphoath thus, under cover, they can low ohtained throughunt bet winter; nal in the girdeme, from Marela to Novemater, by sucressional sowings mado once every fortught. si cither broadenat over the whrlice of a frenh diggedied raking, and patting in the sereds by the that of the spach or in shallow drills half an inch derpe coveriag the wods wirh a little fine sobit. Suw thickly, and if the young planter rise, as they are apt to do, with a cotenng or cake of earth over them, remove it ly means of 1 light heath-wink. Salad should la taken before the twe rough leaven be fully developed.
Witeh-('uses, a valualle antiscorbutie, and whone some as a fresh alterative to the inhahitants of eilies, a grown to most advantage ly the cuise of roming mereams. If a mull tivalet can be intraduced into tha garilen, nuthing can he imore cany than to plant the rosts in spring, and when they have erice seeled thes will be speredily a mass of water-reress, which it requins only trouble to pull. 'I'be moisture is pertured primo pally in summer. The soila berst calculated to hring te plants forwarl are loams indining to gravel. The leme don markets are now auphlided with inmense gaadua
n "Avan Bırin
Sown and nety
Arabentin garshes near very rask ant dangerous. II been brought vegetidle whir are three vartict welery ; a. 'Ithe red. Of the In callimated) the and delicates int soils, und, und aike, but in ort white, yet alw and thavour. to sow a lied ing, thereforn, sown is a frati ry, for the lirm 9 warm whelter plants should bull rich earth bed), to loriug

The poots o firm and stout wilh dicompos which falle frou os that of a taes bring wolle phata trenches, siluc they are about atout leaves, a riote, If them nothing more als:ys dimuxht three inclues his manure to stre: can obtain tho atus!ly under
To treuch viously manur mended for ung dig a trincho spade's depth, right and lidi it thres inches incorporate it of the stronure atrotegling filor wuch a true le the large sorts water: shate Nater every " The size of th planting.

As to finture the evenings becone there den of the tre pil en will a brenk it liur. ham, insinm

- little finely-re trache on "int nourah the hi leaves; watior this mamure ings ans ofery manuse the e groave, till at duffer of the woping ridgew
" Drepared for ohe ould be too bitere
ral metholind the of ouff buan mava ins to exclude the is very injurioun cil of dryinh mant "I frame patially munuly r of thom blanching io men ware, und perin明 given in 樶, ills mitrave lown? Hot cery pleaming aulit hauch in wheried frame in ; for "1 is kutoun 'lise llatursun t all timen, othe lenN, and the cen

00000
\qquad

1.k:
insipin! matad. a ated by Alerefoto 5 hroadrast. The se accond in s ants when an inch uree amudes. lis יgimuins in Marm are large notun y mhould be tatien nk in lone wealket Iludin!s to the cul chlute mustard, la A, and are alway of two very diter I and crese, it it rir should themat ce former, hecale lloth are very we will grow tupa may aprartowat an
() n shiphbarth ed throughout tan reh to Novemhe, ery fortuight. N . fromb digged lu4 e that of the spain lecl, covering the kh, and it the lo, with a coversg it hy rueans of cen luefore the tion
rbutio, and whole litinnts of cities, It crize of runniz? nitrohluced into A thann to plant ix ence neeled the , which it requing is reciuired primp ulatod to bring the griaed. The lane turucrase yanalua
" Afram apring water-creamom," from the moiat landa of Bewr and neighbouring comntiom.
f,reser is a native of llitaln, formen in ditchem and marshen notar the sea. 'The odour of the wild plant in wery rank anill diwagreeab'e, and jth juhe in neridl and dangerous. lly cultivation, this dangroun weed hum been brought to the condition of that highly outecued veggetalde which is culled awret celery. Of thin there we thren varictien: I. I'lae common upright hollow whito celery; :. 'The purpleostalked; 3. 'The ginnt white and fod. Of the lant (for which Mincheloster is particularly adcbrated) there in n new sub-variety, extrmiely temeder and deliente in favour, the planta growing in finvourable wilm, and, under wilful management, to an enormons wite, but in ordinary caspa not larger than the common white, yot alway poasessing a maperiority in texture and havaur. Half wn ounce of need is deremed authedent w sow a hed if feet whid, null 10 feet long, comprin. ing, theretiore, 45 stpurs teet of marfare; and it may be wiwn in a frame, with gentlo heat, at the end of February, for the tirst crop, und thence to the cuil of May, on g warms sheltered boriler for nuccension. All the meeting phats slould be prickerl out into intermediate beds of aff rich earth (the first mowinge over a gentlo hotbed), to liring plants in June and July.
The roots of celery become buahy, and its leat-ntalk firm and ntout; it likex incisture, anil the soil to toe rich with decomposed vegetable matter. Nelf-sown secd, that which hifles tron a sording plant, if it lighe on rich curte, as that of a newly-dressed asparagus bed, in Octoher, will hring nolle plants in the upring, fit to go at once into treaches. Wueh phanta may in thus shortly deacribed: they are aboat six or eiglit inches long, with numerons stout leaves, und a massive collertion of short fibrons roots. If these to produced by autuma-sown sorid, nothing mone in required; but the epring sowings will dways firninh weak and lax phante, that, wheng grown three iuches high, hant be removed to a nuracry hid over maure to strougthen and lecome stocky. Few persons can obtain these plants till June, unless gravis conasas!ly under glasm.
To trench for celery, preparo the trenchos by presvionsly muaring tho whole plot in the mothod recompaemed fior asparagus, nal after the gromil has mittled, dig a triwh or two for the first plants at n monterate spade's liepth, ilepositing the earth on a ridge to the right and left of the tremeh. Clear the bottom, lay on
 iurorporate it with the manure. 'Then 1 a number of the stromgest and most regular plath strim ofl loose alfageline fibres and all the wide behem, fint do not wach a trac loaf: set the plants four ite hiw inelos, and the latege sorts six incles anunder, and fill the holes with water; shade during sumaine thare theys, and give water every evening, unlers there be copious showers. The size of the plants will imiticate the season of transplanting.

As to fiture attiontion, water the plants frequently in the eveniugs till they lugin to grow; and when they become three inches hicher, streteh a line along each elen of the tritheh, nud cut down by the spaile as much woil en will walliee to rarth the stems to that height; break it the and granpinq each plant firmly in the loft ham, iasinate the soft soil aroume it; then place a
 trench on su:/ side, remote from the stems; this will numeth the likers. without comine inter contact with the kaves; Water ןwentid once or twice along the course of this manare witl promote its action. Repert the partloings as ofter as the plants alvanee three inches, and manue the evorme colgen where the spate las made a grocre, till at homgh the trombers borome level with the auffer of the groand. Then dig out woil, und add it, doping ridgewise ti!! the plants are "landed" up filtern,
eighteen, or more Iuchen noove tae murfare level. Celery may be premerved from fant liy two or more sapine boarila placed as a proit-honwe alsout the leavera

- we:ct menhe.

Thean we whall clase under two heodn-namely, thowe that nre prrely frugrant, and thowe which aro uned for culinary purposea,
 elirulom, nutiven of the mouth of Fintopm. They yield powerful ensential oila, when distilled with water, that of haverder leing employed, ins are alma the dried floworm, in the preparation of tho apirit anally lut erroneoumly called lurealer wetcr. Wheen are extremely partial to the thowern of romemary.

Both thene whalos are propngated with great faclity Ity slips of the young side shootw, trimmed of the strip of ragged hark, und murely dihhlad into the soil. They will grow almost anywher, mad in any aspert, bat the flowers possexn tho ligghest dogree of frugrance when tho phante grow lis a ilry, mandy, or griselly carth. Spring or suptember is most favourable to the propuga tion by mlipa.
 the latter in one of the mont fragrunt lurfor of the gate dell: both aro raised from nernles anwn curly lin apring, or by opersing the eurth arotud the ateme, aprading the reclining aloots like lavera unon it, mil sprembing nome frowh mandy mould over thim. Roots are aoon formed, and thos a supply of young phats is oltained. It appeara eswential to rencow thyme, and to phace it (lemon thyme particularly) in a new moil, otherwise the plant dwindles and prosishes.

Sobs, red und green, is prapagated in the same way as livemder.

Manionam.-There nre three sorte of this herb-pot marjoram, swet or kinotidi minjoram, and ainter marjo ram, all hardy or suh-hardy perenniat and hiseneial suatl shrubs, matives of the suith of Europe, which grow robdily in a ligy light soil, but require change of situa tion. 'She firsit nad third norts may la propagated by divisi n, in the mamer of thame, lint the sweet marjo ram should be raisad from siods sown in April every yenr, the plants to be thinaed out to the dintance of six inchen.

Sivons.-Winter and smmorer savory; the former is propagated either lyy slips and enttines, by neparatiog the lower hoots, or rooted oflicts, in Npring ; the latter is un unumat, sown in April, aul beconing fit for gathering in the кumaner and nutuma.

II XT,- tarden und nearmint, and peppermint, are not properly sweet herbs; the latter, indeed, is only used modicimaly, the essential vil possessing extremely pungent qualifies, whint reader it oue of tho lest difusihte stimulants we posisess. Njerar, or garden mint, is used is the hichen for a sariety of purpesen familiarly known.
 mint, are cultivated by divinion of the roots in spring. Mint delights in moisture; and when growing in a soil which it atlects, extumls with great rapidity. Care, however. is reguired to give it : bew sitmation when the plant hormases weak, , mits leaves appar of a pale and yellowids hum.
'lo dry and preserve thesp herhs, seloct the shoote just as the flowers th and slow cibluer, but before they eapand; suspend theos in an niry situation, under cover, not exposed to the sun.
miscermaneder veghtambes.
Antirnosit,-This whetable is estermed by many, vet is fomml in lew gardens; it is a mative of the sonth of Euruln, and was broterh: to Eumband nearly threa lmudred years ago. 'Two borietie's of it are cultigated in the bers gardens-the conital wab-licuded, and the
round headed, with dark parplish heuds, the senles turned in at t,p. The plant has fibrous, rather fleshy roots, largo depply-cut leaves, whitleh with down, and it producos an upright stem, bearing nt the summit an oval or roundish flower-head, not unlike a thiatle. Artichokes can be raised from seed, but much more speedily by offset-suekers, which are produced frecly by the parent plant. Select a spot of open ground; any boil will do, but a free light loain is to be preferred. Dig out a trench two feet wide, and of the same depth, if the good soil extend so low; if not (and this remark will apply to every future allusion to trenching), remove all tho good soil, whatever its depth, to a space beyond the boundary of the farthest intended trench, and dig and turn the inferior bottom soil, incorporating with it three or four inches of good half-decayed stable manure. Then mark out another two-fiot trench, and throw into the fiateight or nine inches of the surface-soil of the second trench; add another similar layer of dung, and work it and the earth thoroughty together. Again, throw in the remainder of the good soil of trench 2 , and ald a third layer of manuro, which mix also with the soil. Thus trench 1 will he completed, and by repeating the work till the earth dug out of 1 he deposited in the last intended trench, all will be manured and laboured alike; and a piece of rich ground will be prepared that may be expected to kecp in heart during many years. These directions will apply to all emriched trenching, therefore we shall not repeat them. The work ought to be performed before the frosts of winter sot in; and if the land be constitutionally heavy, it will be prudent to set it up In ridges.
Suckers are generally ready at some period of April ; and gardeners are willing enough to part with them. Having procured the desired number, level the ground, dig a portion of it again, and reduce the surface to the anest condition possibla; then, after trimming off decayed leaves anl damaged roots, plant the anekers in a row, two feet asumer. It is usual to form a completo bed of three or more ranks, the rows to be five feet apart -and we have prepared ground, na above, for such a bed-but, in truth, artichokes and all other permanent vegetables ought to be set in single rows ten feet apart, because the ground between the rows can le cropped with other annual vegetables, which will benefit the artiehoke, not only by the rich manure applied at tho first, and other successional croppings, lut by abstraeting from the soil whatever it nay exude from their roots of an exeremertitious nature, and which, of necessity, must the injurious to the indivilual itself, though nutritious as manure to a vegetable of a different habit and character. The garden. in all its crops, permanent or temporary, ought to le made a laboratory of correstive rotations, wherein one crop shall attract and consume that which another deposits. A dozen good artichokes will he sufficient for a molerate fimily; but as some suckers may fail, it will be prudent to set tho plants one foot asander, securing the roots firmly in the soil, and giving a copious watering at the ime of planting; the supernumeraries can be removed when all are safe.

The subsequent culture is as follows:-Hof occasionally to destroy weeds, and kerp the surfaee open. A crop cannot be anticipated during the first year; and if little heads be pushed up, it will be wise to remove them as soon as seen. When the plants become torpid and yellow in antuma, a few of the outside lenves are to be scaled off by the hand; the ground should then be marked by the liue on each side at eighteen inches distance from the plants; and loing cut straight ly driving the spade to its full depthalong the line, the earth is to of dug up, broken fine, and laid on the surface of the eighteen inchos left on wach side of the phants, brinemg it carefully against them, sis as not to full into their brarts, but yet to protect them effectually near the tops
of the leaves; the operation ia called landing up. Thit done, fill tho trenches with littery atraw, dung, or form and in the event of hurd frost, bring more litter close to the plants and lay it over the landing earth, for arth chokea are rather tender, and may be destroyed during severe winters. This practice ia to be observed every year, with tho additional precaution to cut the floweratems close down.
Spring-dreasing consista in removing auckers after levelling the earth, and digging in a little of the ahort manure that is left on the ground after clearing away the straw, \&c., and making the soil neat. Ong or twa of the strongeat suckers may be loft on the stock.
Aaparabus.--This is justly esteened one of the choicest vegetables of the garden, and indced it possessea every quality to recommend it-flavour for the palate, hardihood of constitution, facility of culture, and it brings profit to the grower. It is a native of the British isles, but in its wild state bears little resemblance to the plant in a state of cultivation. Perfectly hardy, so much so as to resiat a frost below zero, as was that of Januery, 1838, it nevertheless benetits by protection and gencraus tillage: this it will now be our object to prove, whilg explaining the method by which it is cultivated. In forming new plantations, it is customary to purchase two years' old plants, hecause they ore aafely remared at that ago, and will come into bearing in two yean more; April is the hest season for planting; lut having ourselves produced beds from seeds, we prefer that mos thod of propagation. Let the ground be prepared before frost sets in by deep trenching and rich manuring; but by all means adopt the practice recommended by Grayson, who produced what he styled giant usparauus about the year 1830. We give his own concise directions in the following quotation:-"If your ground be stiff and uns pleasant to work, get aome milder earth to mix with it and a very large cart-load of rotten dung to alout every ten square feet ; trench it two spit deep, and loosen the hottom; let the dung and earth be well mixed tagether When your land is fit for plaiting, draw your drills sit inches deep and sixtcen inches from the tirst row to the second; that will form a bed; and ten inclies between each plant in the row. Do not raise your beds till they have been plated one year; then put on about faut inches of mould out of the alleys, and cut till the loth of May. If you keep then well manured, they will last twenty years; but never cut later than the 4ith of June. Let them he eight feet in the clear from bed to bed, 80 that you may crop tetween, and lose no land."

Here we find the sum of all that censtitutes anparagus planting ; but, after all, persons must be content will such plants as the constitution of their ground will produce; for this very sort, whieh in the rich waterdepusitud grounls (alluvial) alout the Thames, produced shoots an inch in diameter, would and did dwindle in the loams of ordinary gardena to less than half that size. Neverthe less, if the beds be narrow, thoroughly mamured at firth remote from each other ; if, also, alout February of the first year affer planting, a trench eighteen inclies deep and a foot wide, be formed on each side of the natrow hed, and twolve inches distant from the plants, and bo half filled with the berst rotten dung, incorporated with an equal fuantity of the earth dugy out, a most excellent ab puragus will be obtained, speedily, sud the quality will not deteriorate. This enrichment may be occasiunally 1 renewed, but these auxiliary trenches are to ho mode al an increased distance each time, so aa to avoid cutting and mutilating the roots, which extend very rapidy. Ao this vegetable will no doubt be sold by the cothger, too much pains cannot be bestowed in order to obtain on carly supply of the very finest quality.
The weed of asparagus may be purch. ased, hut it in yrelled abundantly by every grod bed, and should be po thered before it fills ofl; and kept in the berry till pring

We will pres bearing bidn, for forculls. realiness for tor, wile beds ∞ made. T med, and plac two drills with son, two inche dills nine incl frety thickly, the earth, an Watch the co fust them wi When they sh lings six inch four inches op rours for forcin inches, and th Dutch or thru
In future tr then cut them the sufface wi inches of deca approach to th to call humus the meaning o con!aing subut converts to sal nuinure, or dec mixed up with pared contains from an old du to food; there the state of hur gnerally take greatly to prote luing priaciple plants will be maining mano also, before nll We have cut the sowing, an prepared from ments, he it o led that is use tuising plants ground thorou the plants, wh th the forcing .ceves or manu be lost, as the will be the pro
When once be judiciously thoots, elways each crown, ni in high condit forgotten that, eid of a leng prevent the er sequence of frok the veda tather loosenin anad raking the tloo gives free
With resp distant beds, t in the spring, ur wider, and warm ntable d leaves, raising livel The g
nding up. The v, dung, or fera ore litter close is earth, for arth destroyed during - obscrved every o cut the flower.

1g suckers after ittle of the ehort ter clearing away lat. One or two the stock. red one of the diced it posseases r for the palate, culture, and it ive of the British remblance to the hardy, so mueh that of January, ion and generom it to prove, while s cultivated. In hary to purchase e safely removed ng in two yean ting ; lut having e prefer that me e prepared before hi manuring; but nded by Girayson, magus about the directions in the 1 be stiff and ulth to mix with it, ig to about every p, and loosen the 1 mixed together. ow your drills six te first row to the 1 inches between our beds till they it on about fout cut till the loth red, they will last the 4 ih of June. min bed to bed, so o land."
stitutes aspargyus content with such and will produce; 1 water-deposited roduced shootann e in the loams of size. Neverthe manured st firt, February of the teen inches deep, le of the natrow se plauts, and bo orporated with an most excellent at the quality will y be occasionally to be make at an void cutting sud ry rapidly. As the cotager, tod der to obtain on
clased, but it in and whould be po berry tul spring

Wo will presume the object to bn donble-first to raise hearing beils, and second, to raise a stock of young plants for forcing. In the former case, the ground is to be in realiness for narrow beds, eight fect asunder; in the lattor, wide heds, like those directed for arichokes, should m nade. Townrds the latter end of March, rub out the two drills with the hoe at the distances directed by Graysen, two inches deep : or in the broad beds, make similar drills nine inches asunder; and in both scatter the sceds jrelty thickly, we will say half an inch apart; cover with tino earth, and pat it to an even surface with the spade. Watch the coming up of the plants, and be prepared to fost them with air-slacked lime, if slugs threater them. When they shall have fairly formed rows of young seedlings six inches high, thin out the narrow beds first to foor inches apart, and again to nine inches. The sced rous for forcing, thin first to three, and afterwards to five inches, and then leave both to grow, observing to use the Dutch or thrust hoe repeatedly, to keep down weeds.

In future treatiment, suffer the stems to become yellow, then cut them down at two inehes above the soil; clear the surface with hoe and rake, and lay on the beds eight ioches of decayed leaves. Such manure is the nearest appraach to that substance which it is now fashionnble to call humus; this word is the Latin for the ground, and the meaning of it, if it have any, is this: all good ground contains substances which the living principle of the plant converts to sap; earthe pure cannot be so converted, but munure, or decayed vegetable and animal remaina, when mixed up with carth. can. After a time, ground so prepared contains what is called humus, and seaves or dung from an old dunghill is in a condition to be soon converted to food; therefore we say it approaches pretty nearly to the state of humus. This surface-manuring, which will generally take place about the end of October, will tend greatly to protect the young plants, and impart a stimulaiag principle to the ground; so that in early spring the plants will be strongly excited, nnd rise through the remaining manure in perfect safety. The trench manuring also, before alluded to, will come in aid of the top-dressing. We have cut excellent "grass" within thrce full years of the sowing, and our two large beds now existing, were prepated from sced sown in 1831. These annusl enrichments, he it observed, might le persisted in with every bed that is used for cutting; but for the beds devoted to raising plants for forcing, it will suffice to make the ground thoroughly rich at the time of trenching ; because the plents, when three or fuur years old, will be removed to the furcing depsertment; yet a eoating of half-lceayed .eaves or manure, after the stalks nre cleared off, will not be loet, as the stronger the plants, the more remuncrative will be the produce.

When once asparagus is in full bearing, if the cuttings be joxiciously mada, that is, by taking only the strong shoots, always leaving one or two of medium strength to each crown, nd duly applying manure, a bed may keep in high condition for twenty years. But it must not be forgoten that, if every shoot be taken off a crown, to the ead of a long season, that root will be deatroyed. To prevent the crowns from being too deeply buried, in consequence of tha autumnal dressings, it is customary to fork the oede late in March, digging them carefully, or sther lnosening the surface with o fork of three prongs, and raking the rough earth into the alleys; this operation also givea freedom to the plant by opening the top soil.
With respect to forcing, it is very essy, with narrow distant beds, to bring the plants somewhat more forward in the spring, by diggiug trenches eighteen inches wide or wider, and shove foot deep, and filling them with warm atable dong, blended with a third part of forest-tree leaves, raising the dung to six inches above the surface livel The gentle warmth communicated will stimulate
vegetation, and it would be assisted by covering the deda with houps and mats, or with boards set up ridgeways, in the event of sharp frosty nights. Buccessional forcing beds are prepared as soon as the cutting of the zarlier begins to decline, or even when it is at its height.

The Cucumern.-This juicy vegetable is tender, and requires a fine climnte and extremety rich soil. It is usually grown over a heap of old horse-dung, on a spot of ground open to the south, and large enough to permit a two or threc-light frume to rest upon it. Dig out the soil a foot in depth, and lay it on one side or around the trench. If this soil be a light frisble loam, incorporate it, a month before it is to be used, with one third part of leaf or vegetaiole earth and old decayed dung, and again dig this mixed earth two or three times. But if the soil produced from four or five ycar-old couch grass roots, harrowed from a field of sound loan, can be procured, it io the best aliment for the cucumber. The soil should be ready in April, and the work of planting begun in the first week of May, ly filling the excavation with etable manure to the height of six inches above the surface-level of the unmoved earth, and placing on it the frame and lights. In a week the manure will hnve settled, and is then to be covered with a six-inch layer of the conch mould or other soil, and a hill of dryish carth raised a few inchep higher under ench light, in which eight or ten seeds of any approved variety may be sown. If preferred, the secds may be prepared by previous sowing in pots in a slight hot-bed, nnd the plants so raised ean be transferred to the hills. But as the plan now recommended is not one of foreing, it is snfer to begin on the spot, by sowin t_{5} sced, nnd covering the bed with the lights, and those with mats or boards every night. As the plants rise, observa them carefully, and pick out the central buds when the true leaves have become strong. Persons differ much in opinion at this stage concerning the practice of stopping the shoots. M. Phacl, gardener to Lord Liverped, as Addiscombe, Surrey, pointed out the true theory and results of stopping, as may be perceived by the following abbreviated extract from his work on the cuemmber. He first directs to stop (nip back) the young seedlings at their second joint, then-" When the plants shoot forth after a second stopping above the second joint of the latterals, produced by the first, they seldom miss ' ; show fruit at every joint and also a tendril, and betveen this tendril and the showing fruit, there may be clearly seen the rudiments of another shoot. This shoot is then in embryo lut if developsd it becomes a fruitfinl lateral. And when the leading shoot has extended itself fairly past the ahowing fruit, then with tho finger and thumb pinch it and the tendril off just before the showing fruit, being careful that, in pinehing off the tendril and the shoot, the showing fruit be not injured. 'This stopping of the lcading shoot stops the juices of the plant, and enables the next shoot-the rudiment above mentioned-to push vigorously, and the fruit thereby also receives benefit."

The remarks will avail equally with the melon-plant as with the cucumber; and when the few remarks which follow on forcing shall be considered, nothing farther need be said of the cultivntion of melons.

Whether cucumber nad melon plants have been raised separately in pots, or from seed sown in the frame, they ought to be progressing carly in Junc, and should be stopped occasionally, till fruit begin to show itself. The soil must never be wet but always retained in a free and rather moist condition, water being kept in the frame for the express purpose. No water ought to be poured against the stems-it should be applied to the soil round the slope of the hills only. Air ought to be admitted in all warm days, by tilting the back of the lights till three o'dock, but atter that hour tho frame should bo kept closed. When fruit is visible, stopping, aecording to M. Phael's dircction, should be persevered in, and its fertili-
ing effects will soon be apparent. Cover with mats, and boarde over them, at sunset. Every decayed leaf and weak athoot ahould be removed as soon as perceived.
In order to raise and fruit cucumbers or melona before midsummer, forcing must be employed. The hot heds of the lest regulated gardene are conducted without masses of inanure under the roots; heat is excited by an atmosphere of warm air; thua injury from internal rank vapour is avoided, and manure is economized. By this method cucumbers and melons can be produced during the spring and summer months with certainty and precision. In the cultivation of both these plants, equability of heat is important; and nothing would be more likely to secure this, and also to ward off sudlen accession of coll, than to case the frame with an inner lining of thin boards, seaving a space of an inch or two between them, to be filled with some imperfectly conducting substance, such as powdered charcoal or very dry deal saw-dust, taking care to secure it from the ingress of water. The expense would be trifing, and tho security afforded very grent.
Celehiac, or tumip-rooted celery, is ruised and nursed the same as celery; but in planting out, tho ground is dug and enriched, not trenched, and the plants are set by the dibble or garden trowel along the course of shallow drills druwn by the hoe, six inches apart, watering them freely. As the growth advances, bring carth to the plants, by which the knolby roots will be bleached, and made delicate and teuder. When these are the size of amall tumips, they aro fit for the table. Celeriac is never eaten raw ; it is boiled, and served up with melted butter. The seeda of toth the species ripen frecly in the summer of the second year, and many fine plants aro obtained from aelf-sown seeds, which may serve as excellent substitutes chould the spring-sowinga fail.
Muarrooss.-We have great hesitation in saying any thing of the artificial growth of this species of vegetable, both on account of tho difficulty which unprofessional gardeners labour under respecting the right sorts, and the complex methods which require to be employed for bringing forward crops. The greater number of mushrooms brought to market are of natural growth on old rich pasturea; and it would appear that, without providing a similar kind of soil full of decaying matter, the plante cannot be raised. The method of procedure is very peculiar. The mushrooma are not aown in the form of seeds, for they have no olsecrvable seeds, but by spawn, or portions of their sulstance, mingled in the prepared soil. Mr. Rogers, in his work, The Iegetable Cultivator, to which we would refer for much useful information on kitchen gardening, describes the process of mushroom culture which he says is that approved of hy the Horticultural Society. We extract a few passagea for the sake of general information.
"In June or July take any quantity of fresh horsedroppings (the mure dry and high fed the better), mixed with short litter, one third of cow's dung, and a good portion of mould of a loamy nature; cement them well together, and mash the whole into a thin compost, and spread it on the floor of an oren shed, to remain till it becomes firm enough to be formed into flat square bricks; which done, set thrm on an edse, and frequently turn them till half dry; then with a dible make two or three boles in each brick, and insert in cach hole a piece of good old spawn, alout the size of a common walnut. The bricks ehoull then le left till they are dry. This lxing completed, level the surface of a piece of ground, under cover, three fret wide, and of sufficient length to receive the bricks, on which lay a botom of dry horsedung, six inches thick; then form a pile, by placing the oricks in rows mue upon another, with the spawn side uppernost, till the pile is three feet high; next cover it with a amall portion of werm horse-dang, suflicient in quantity to difiuse a gentle glow of heat through the whose. When the eppew has epread ite droughevery
part of the bricks, the procese is ended, and the brick may then be laid up in a dry place for use.
Mushroons apawn made according to this direction, will preserve its vegetative power many yeas, if well dried before it is laid up; but if moist, it will grow and exhaust itself. The noxt aubject to be treated of is the preparation of the dung for the bed; and for this purpose nono dnawers no well as that of tho horse, when taken fresh foom the stable; the more droppings in it the better.
About Michaelmas is the general scason for meking mushroom beds (though this may be done all tha yeur round). A quantity of the dung mentioned should be collected, and thrown together in a heap, to forment and acquire hent; and as this heat generally proves too violent at first, it should, previously to making tho bed, be reduced to a proper temperature by frequently turn ing it in the coursc e^{f} a fortnight or three weeks; which time it will must likely require for all the parts to get int an even atate of fermentation. During the abova time ahould it be ahowery weather, the hent will require some sort of temporary protection, by covering it with litter or anch like, ns ton much wet would soon deaden its fere. menting quality. The liko caution should be attended to in making the bed, and after finishing it. As soon ac it is observed that the fiery heat and rank ateam of the dung are gone off, a dry and sheltered spot of ground should be chosen on which to make the bed. The place being determined on, a space should bo marked out five feet hroad, and the length (running north and south) sleenld be according to the quantity of muahrooms likely to be required. If for a moderate family, a bed twelve or four teen feet long will be found (if it takes well) to produce a good supply of mushrooms for some months, pravided proper attention be paid to the covering.

On the space marked for making the bed a trench ahoold be thrown out, alout six inches deep; the mould may be laid regularly at the side, and if good, it will da for earth ing the led hereafter; otherwise, if brought from a die tance, that of a more lonmy than a aandy nature will be thest. Either in the trench, or if upon the surface, there should le laid about four inches of gooxd dung, not wo short, for forming the lotton of the bell ; then lay ot the prepared dung a few inchea thick regularly over the sur face, heating it as regularly down with the fork ; continve thus, gradually drawing in the sides to the height of five feet, until it narrows to the top like the ridge of a house In that atate it muy remain for ten daya or a fortnighth during which time the heat should le examined torard the middle of the bed, by thrusting some small sharp sticks down in three or four places; and when found of a gentle heat (not hot), the led may be spawned; for which purpose the spawn bricks should be broken regularly ints pieces about an inch and a half or two incher square, beginning within six inches cf the bettom of the bed, and in lines nlout eight inches apart ; the same dism tance will also do for the piecea of spawn, which, in a dung ridge, are best put in by one hand, raising the cung up a few inches, whilst with the other the spawn can be laid in and covered at the same time. Afer spawning the bed, if it is found to te in that regular state of heal before meationed, it may be earthed. After the suriace is levelled with the back of the sprade, there should be laid on two inches of mould-that out of the trench, if dry and good, will do; otherwise, if to he lrought, and a choice made, that of a kindly lonm is to be preferred. After hasing heen laid on, it is to he beaten closely to gether, and when the whole is finished, the bed nust be covered aboutt a font thick with good oat-sitraw, over which should he laid mats, for the double purpose of keping the ledd dry and of securing the ceveriug from teing blown off. In the course of two or three days the ted should be examined, and if it is considered that the heal is likely to increase, the covering muet be diminitided for a few days, which is better than taking it cutiredg of
la alout a mol the former tim tion) mualroa and ln the cous will have grow ane the autho off close to the trist, fillitig up pressed in level
As muahroo little Irouble, inconsiderable bbundantly pro hitherto been relish, cither in
Nastca:tu America, but is is, the grecul se they tipen, aepa remain torpid ti and so do imas therefore requi who once poss seed in any wa
Pabsler.ore in cultivatio and the conmo ley. Preferenc parsley. This rated, and it wi It is sown in dr arrives at mat attained this st mepuired. Whe and fresh parsle
Racbaril.-
whe of its firm and spreading, t around the min sun. When on keeps growiug aditional size Suckers taken of well, bat the pla plant requires salliks for inse, d the main stock, The earliest sort net Tobolsk, or is later, but rema for delicacy, fulli ness, all iss com simple tneans. in the carly part sulnitted, and co Dlanches, as well is an advantage, and delicate in in pots in darkel plauts two yeurs pinosly is necess: in the open air raluable vegetil) ore ready, it wot vetlager to atte reominended.
SiseKae. name fron hein endy downs wh land. The met Itasas or apacea prepared as for March, when th mure dirit's dious

, and the brick

 o this direction ny years, if well it will grow and treated of is the 1 for this purpose rse, when taken 8 in it the better. ason for meking one all the year tioned should be 1, to ferme.at and y proves too rio. king the bed, be frequently turb ee wecka ; which ${ }^{2}$ parts to get into the abeve time will require some g it with litter ar n deaden its fer. uld be attended to t. As somn as it stean of the dung of ground should The place being ked eut five feet nd south) should ooms likely to te ed twelve or four. well) to prodioce months, provideded a trench should the inould may be t will do for earth. ought from a diso rdy nature will bo the surface, there ol dung, not too 1 ; then lay of the larly over the sur. he fork ; continue the height of fisa ridge of a house, ays or a fortnight, examined towarts some small sharp ad when found of be spawned: for d be liroken reguhalf or two inches the botton of the art ; the same dien uwn, which, in a d, raising the lung the spawn can be
After spawning gular state of hrst After the suriace c, there should te of the trench, if be brought, snd a is te be preferred breat'rn closely to d, the beed nust te t-straw, over which
 vering from being diree days the led idered thist the beou t he diministurd for sing it entirelf od

Ia about a month or five weeks (but frequently within the former time, if the bed is in a high atato of cultivation) mushrooms will most likely make their appesrance, and in the conrse of cight-and-forty hours afterwards they will have grown to a sufficient size for use ; in which canse the author recommends that, instead of cutting them off close to the ground, they be drawn out with a gentle of crist, filli:g up the cavity with a little fine mould, gently presed in level with the bed."
As mushrooms may he said to cost no more than a liftle trouble, manure, and space for growth, at what an inconsiderable cost might not this excellent vegetable be abundantly procured! No product of the garden has bitherto been less attended to, and few afford so high a relish, ci:her in their substnntial form or as ketchup.
Nanterolem, or Indinn cress, is a native of South America, but is not tender: it is used occasionally (that is, the green seed-vessels are) as a pickle. These, when they ripen, separate, und drop on the ground, where they remain terpid till the spring. Thus the plant sows itself, and so do most of the garden ornamental varictics. It therefore requires no minute directions; and any one who once possesses a plant, can multiply it by sowing sed ia any wny or place which may suit his taste.
Panslar.-Eeveral speciea and varictios of parsley are in cultivation; these are the plain and curled-leaved, and the common and the broad-leaved, or Hamburg parse lep. Preference ought to be given to the curled-leaved parsley. This vegetahle is one of tho most easily cultirsted, and it will long keep the ground with little trouble. this sown in drills in sny spare patches of border, and arives at maturity the next season. When it has attained this state, qprigs may be taken from it when required. When it becomes rank, it may be rooted out, and frsh parsley sown.
Rnctanh.-Thi- is a large vegetable, grown for the sake of its firm leaf stalks. The lenves are very broad and spresdiug, to entch finoisture, and shelter the ground around the main : i m the exhausting heat of the aun. When on : . i. l, it requires no trouble, but keeps growing $:_{i}$ i' out runs up to seed. 'To give additions! size "W she stems, cut off the secd stalk. Suckers takra from known and approved plants succeed well, but the plant can casily he raised from seed. Each plant requires considcrable space. In taking away the alaka for use, do not cut them, hut wrench them from the main stock, so as to take them out by the socket. The ealicst sorts in repute are Burk's scarle, and the seen Tobolkk, or yollow stalked. Radford's scurlet Goliath is later, but remains in season till August; it surpasses for delicacy, fulluess of flavour, and extreme prodnctiveness, sll its competitors. Rhubarb may lie forced by very simple aceans. A common method is to cover the plant in the early part of the year with a box, to which air is alnited, and covered with a little stable-manure. This planches, as well as bringe forward the stalks; lint that ia an advantage, as it renders the vegetable more tender and delicate in llavour. Some bring forward the plants in pots in darkened forcing-houses, and, for this purpose, plants two years old are most suitable. Watering copionsy is necrisary in the carly stages of growth, whether in the ppen air or under hoxes. As rhubarb forms a raluable vegetalle for tarts in spring, lefore gooselerries are ready, it would not he misspent time or trouble for a antager to uttempt forcing by the simple menas above reammended.
Sar-KıLe.-This is a peremial vegetable, deriving its name from being founl growing in a wild state on the Endy downs which horder the southern coasts of England The methow of garden culture is as follows:Dinde or spaces for single rows should be trenched and perpated as for uspuragus; and at any dry period of March, when the surfice earth will work freely, one or mue dill's should be drawn by tho line, two inches deep,
and the seeds scattered along the drill; or, the line being strained tight, five or six secda should be inserted in rings two inches deep, made at the distance of two feet eqjart The seede are then covcred $\cdot{ }^{-} i t h$ enrth, and when the plants become strong, they are is the thinned of supernumerarics, leuving one or two of the strongest remaining eighteen inches or two feet asunder cevery way. If the plants be weak, it will be prudent to retain double the number. During the first season, nothing more nitl be required than to keep the bed or row fiee of weede In the following spring, if the plants stand nearer to each other than eighteen inches, the surplus number should be carefully raised, and trinsferred to another prepared space, planting the crowns of the roots two incles below the surfaco. Eighteen inches to two teet, according to the strength of the plants, may be the regular distances at which they aro to remain. The first bed, if pots be placed over tho crowns, will yicld a modernte supply of blanched kale during April or May of the second spring.
Sca-kale may be forced at various periods, commencing with November, by inverting large pots over the plants, and covering those with warm dung, or dung and leaves, to excite and maintain a heat in the pot and soil of about 55 degrees. Sea-kale, like other plants, subjected to heat, can be, aa it were, educated and made to conform to induced habits. Thus, at first, it secins to remain long torpid, even though the heat be considerable; but after a sccond season, provided the gardener be himself regular, the plants will yield to the stimulant almost to a day, though it loe comparatively mild; hence sea-kale is at commend from December to March by heat, and then the succession can be imsintained during Ayril and part of May by the colc beds or rows. As soon as the kale in cut from one c: more roots, a sharp, spade ahould be thrust through it, so as to cut the plant level with tho surface.
Sprnach is an annual, of which there are many varieties. The following are the principal kinds:-1. The round-leaved, smooth-seeded, which is sown chicfly for spring and summer crops. 2. The triangular-leaved, prickly-seeded, or winter spinach-it is sown in Auguat, stands the winter, and continues in full bearing during spring and till midsummer. 3. The Now Zealand spinach, a plant very ditierent from the true spinuch, and now neglected. 4. The white beet spinach, cultivated only for the leaves. The round-leaved shoulid be sown aiout the end of January, and again in February and March, for successive spring and sumuner crops. The triangularleaved is to be sown at the end of July or first week of August, and the lenves come into use at the beginning of winter; the plants require thinning and hoeing. The outer leaves only are to be taken during winter and spring, the inner leaves forming in their turn an ample succession. The seed or fluwer stalks will become apparent in the early part of the summer, and some of the best plants, male and female (for spinach produces both separately), should le left to perfect the secds.

Veoetaile Manuow is n species of gourd (eucurbita) cultivated extensively of late years. It was brought originally from Persia, and was particularly noticed by Mr. Suline, in the Ierrictliurul Transections, vol. ii., where he described the best culinary variety as bearing a " fruit of miform pale-yellow or light-sulphur colour, when full grown, abuut nine inches in length, four inehen in diameter, of no elliptic slespe, the surface being ren dered slightly uneven hy irregular longitudinal ribe, the terninations of which uniting, form a projecting apex at the end of the fruit, which is very unusual in this tribe." There are other vurieties which produce fruit that weigh twenty or thirly pounds, ohlong in figure, and quire green during growth; this is coarse in flavour, and in no respect equal to the small cream-coloured variely.
Sow in pots of my light soil carly in Auril, treating
the planta exactly as cucumbers under glass. About the middle of May, transfor tnem to a bed of rich earth over a tranch filled with warm atable dung. Protect the plants by a hand-glase or frame. which, if the shoota are ts run on tho ground, should bes raised by four or moro bricks, giving air freely. When danger of froat iaasea, semove the light or framie.

We have secn the best pinnte nailed and secured to a wall, as trees usually are. They bear profusely in sum:mer and autumn, and are not subject to be injured by damp. The seeds are sown on the spot at the end of May, and one strong plant remains, being stopied once or tivice at the tips of the advaneing st yots, of which six are enough for each plant. It would be wise to place a large spare light or two sloping in front till midsummer, and again early in September. Glass diminishes the direct solar power to t'ie extent of from 8 to 12 degrees, but it wards off the nrimary nttack of frost, which is futnl at once to these $p^{\prime} \quad \because$ If it be desimble to snve seed, preserve the fruit \mathbf{p} cau fermed on a plant reserved for the purpose.

horticultural monthly calendar.

Having in almost every instance mentioned the scasons for sowing, planting, transplanting, and otherwise attending to the culture of vegetalles in the kitchen-garden, it would only be waste of room to repeat directions, as is usually done, in connection with tho different months. It is hoped, therefore, that the following general references to the months will be sufficient:-

January.-'Trench nud delvo up all open groundr, if the weather permit ; and in warm exposures, sow articies that are to be brought forwnrd carly. February_-Continue turning up the ground designed for early crops; eowing mny ge on a little more briskly. Martit.-This is a particularly busy month, being, from its open and drying character, favourable for all works of preparation. Peas, beans, asparagus, onions, carrots, \&ic., aro sown; and various articles are transplanted fom frames. April. -A continuance of preparing, sowing, nad planting; loeeing, thinning, and clearing out of iveeds, zequire also to be attented to.

May.-The main crops are now to be aown, carly pens earthed up and staked, and voung plants transplatiod. The garden is nov supposed to havo assumed its pertert summer garb, with all things nolvancing in their early and mid-stages of growib. June. . sow kiduey boans, runners, \&ec; water growing phans, if required; hoe potatoes, cabbages, und peas; and thin out bods. July. -Siow broccoli for the last time; nso turnipx; lettuces, sce; and prepare all the unoconied plots of ground for autuinn and winter crops.

August.-Comnence now to sow for the erops of next year, auch as onions, early cabhageu, and persley; also winter epinach. Fiarth celery ; howe nind thin turnips; eut down atems of gathered artichokes, and generally clear out all stumpe and stalks of used pinnts, for their continuance exhausts tho ground to no proper purpose. September.- I'lic kitchen gardener has now got his piineipal labours in cropping over, and his chief work is con-
tinuing to sow for winter and spring successions the ah digs potatocs that seem ready, and takea cars to cut down and cleas off weeds.

Octoher.-The garden having been prepared far spring vegetubles, sow what was left over lnst month, including celery, nsparagus, also carly peas and heans. The cmb. bages and savoys require 10 be enrthed up as high as the leaves. Removo carrots and other roots, which alore awny for winter use. November.-If temprate and open, a littlo sowing may be continued in sheltered bors ders; but frost usually sets in early in the month, and puts n stop to cropping operations, December:-During the latter end of November, and the open period of thing month, tho chief operations nre digging, manvang, of trenching vacant ground, and attending to tho prepara. tion of composts. In frost, the labour exerted on the plants nced ouly be protective; and the gardener usually occupies much of this period in pruaing his trees, and attending to the moro delicute phants in frumes and sheb tered borders.

Wo have now presentcl a skr ch of the principai vegetahles grown in the kitchen gardens of Eugland, wilb the modes of general treatment, and the seasons suitation for theiz culture. It may be necessary to add the ob servation, that kitchen gardening, except among skilled professional men, is still in a backward condition in all parts of the British islands; and that, except in and about London, the people generally cither do no: know what fine vegetables are, or very seldom see them. Much has been dono by horticultural societies to promote hetter knowledge on the subject, and taste is cridently improving ns respects all the products of the garden; nevertheless, the bulk of the prople nre still far behind their continental neighbours both in the cultivation and preparation of culinary vegetables. In order to produce a sensible improvement in kitchen gardening, we shauld require to impart a knowledge of what vegctables can be made to perform by proper cookery - whint relish can be given to a plain diet, at scarcely a farthing of more erpense, merely by nediug a few sprigs or slices of some highly flavoured plants. In the articlo Cookery, we have sttempted to throw out a dew ureful hints on the best means of preparing vegetal:les, and would here add the recommendation to all jerroous in un humble condition of life, that, if circumstances at all permit, they should endenvour to rent and cultisute a small garden for the rurpose of rearing at leisure hours a supply of kitchon vegetables, as well as a choico of tlowers, and al least small fruit. Tho directions ulforded in the preced. ing pages (and in the two shects which follow) bare been drawn up in a great measure for the use of this class of people, nad those in a somewhat higher sphere; nad though these directions may not apply in any indiri Jual instance, they will, it is hoped, lead the mind to the true principles on which garden-eulture ss to ie conducted. and by thought, diligence, alas experieuce, onch fersen will in a ahort time attain that amount of skill which wif bring his operations to a succersful issule.

Flowisas are and have in all as and tast 3 , for the ond the cancy. ing from being p justly reckoned whith, by leading ral beanty, snd d sccumations, has Jeneficial teadenc alite open to the and the peer, the industrious artisan poyment by indis knomn, on every d)wer-pot or orn bouse and exquisi The natural gr of flowers, have a prets, and volume aswciations of fee ats objects are ca iuproure the feelin ing, we hope to es this agreealla vie would refer, for on whiject, to the elen Pooiry of Iife. ments of this lady ar more ralculst "From the majes ters of the garden god of day, to the that is said to el showers, thero is from its loveliness, dissical assuciatio
"As the weleon thins our first rez the praises of this contrast it presen pleasing of contrus on why mankind besuties; but a fa unwiation by wh torning spruig. parlting of the an But it vanishes coverlid, lien the irve an emblem o Vus. 1.-67
iccessiony; bo whe prepored for spring t month, inclading loans. The cab. up as high as the
roots, which a -If temperate and ll in sliclered bor. in the month, and Decentber,-During peen period of thin ing, manving, or ng to the prepara• ur exerted on the ic gardener usually aing his trees, and in irames and shet
h of the principai 19 of England, with the seacons suitable ary to add the ob ept among skilled rd condition in all at, except in and ither do no: know m see them. Mach eties to promote 1 taste is cvidently icts of the garden: are still far behind the cultivation and In order to produce irdening, we should it vegetables can bo -whut relish can bo arthing of more er. 4 or slices of some ticlo Cookery, we asefui hints on the ind would hers sdd in an humble con ot all perait, they ate a small garder e hours a supply of of of flowers, and a orded in the preced which follow) hare for the ase of this what ligher sphere; apply in any indiri. tead the mind to the e is to ie conductad. rieuce, anch parson It of skill which wit

THEFLOWERGARDEN.

Fuowras are the ornament of vegetable existence, and bave in all ages been cultivnted by persons of leisure and tast 3 , for the pleasure which they yield to the eye and the sancy. While generally healthful and exhilaratmg from being pursued in the open air, flower-calture is jusly reckoned to bo a pure and harmless recreation, which, by leading to the tranquil contemplation of naturat beanty, and diverting the mind from gross worldly scepatious, has a positively moral and thercíore highly lemeficial texdency. It lias also the advantage of being alike op'n to the pursuit of high and low, the peasant and the peer, the over-toiled man of business and the industrious artisan. It may be followed with equal enpyoment by individusls 0 . both sexes, and, as is well known, on every imaginable scalc, from that of a siogle dower-pot or ornamental border, to the princely greenbouse and exquisitely varied parterre.
The natural graco, simplicity, and attractive colouring of flowers, have afforded endless themes to morolists and prets, and volumes have bee'? penned to show how many wanciations of feeling, simple and sublime, these beauteots oljects are calculated to excitc. As our desire is to inprove the feelings as well as to instruct the understand. ing, we hope to cscape blame for pausing an instant over dis agreealile view of the value of flow ${ }^{\text {n }}$-culture, and would refer, for one of the most glowing eulagies on the wibjet, to the elegant work of Miss Sarah Stickney-the foetry of Iife. According to the well-expressed sentiments of thin lady, fow natural ohjects are more poctical, er more ralculated to refino the taste than flowers. "From the majestic sun-flower, towering above her sistere of the garden, and faithfully turning to welcome the cod of day, to the little humble and well-known weed that is said to close its crimson eye before impending showers, there is scarcely one flower which may not from its loveliness, its perfume, its natural situation, or its dusical assuciution, be conside red highly pectical.
"As the welcome messcuger of spring, the snovivdrop sthins our firat regari, and countless are the lays in which the praises of this litte nodest flower are sung. The conleast it presents of green and white (ever the most plasing of coutrasts to the humam eye), may be one renon why nankind azree in their diniration of its simple besutics; but a far inoro powerful reason is the delightful umaciation by which it is connected with the ideu of retuming sping. Perhapes we have thought long of the nulting of the snow that impeded our noonday walk. But it vanishes at lnst; and there, beneath its white coverid, lies the delicate anowdrop, so pure and pale, so irue an cmhliem of hope, and trust, and confiJence, that
Vus. 1.-67
it might teach a lesson to the deaponding, and show the ush less and inactive how valuable are the atirrings of that energy that can work out its purpose in mecret and under oppression, and be ready in the fulness of time to make that purpose manifest and complete. The snowdrop teaches also another lesson. It marks out the progresm of time. We cannot behold it without feeling that another spring has come, and immediatcly our thoughts recur to the events which have occurred since last its fairy bells were exnainded.
" It is of ittle consequence what flower comes next under consideration. A few apecimens will serve the purpose of proving that these lovely productions of nature are, in their general associntions, highly poctical. The primrose is one upon which we dwell with pleasure proportioned to our taste for rural scenery, and the catimate we have previously formed of the advantages of a peaceful and secluded life. In connection with this flower, imogination pictures a thatched cottage standing on the slope of the hill, and a little woody dell, whose green banks are spangled all over with yellow stars, while a troop of rosy children are gamboling on the same bank, gathering the flowers, as wo used to gather them our selves, before the toils and struggles of mortal conflict had worn us down to what we are now, and thus presenting to the mind the combined idcas of nataral enjoyment, imnocence, and rural peace-the more vivid, bocause we can remember the time when something like this was mingled with the cup of which we drank-the more touching, because we doubt whether, if such pure drops were still there, they would not to our taste have lost their sweetness.
"The violet, while it pleases by its modest, retiring beauty, possesses the additional charm of the most exquisite of all perfumes, which, inhaled with the pure and invigorating breczes of apring, slways brings back is remembrance a lively conception of that delightful season. Thus, in the language of poetry, 'the violet-scented gale' is synonymous with those accumulated and sweetlyblended gratifications which we derive from oduurs, flowers, and bulmy breezes; and, above all, from the contemplation of renovated nature, once more burating forth into beauty and perfection.

The jasmine, also, with its dark-grcen leavea and littlo silver stars, saluting us with its delicious seent through the epen casement, and impregnating the whole atmosphere of the garden with its sweetness, has been sung and celebrated by so many poets, that our associations are with their numbers rather than with any intrinsic quality in the flower itself. Indeed, whatever may bave first established the rank of flowers in the poetical world, they have becomo to us like notea of music, passed on from lyre to lyre; and whenever a chord ia thrilled with the harmony of song, these lovely images present themselves, neither impaired in their beanty nor exhausted of their sweetness, for having been the medium of poctic feeling ever since the world began.
"It is impossihle to expend a moment's thoo:cht upon the lily, without recurring to that memorable passage in tho ssered volume- Consider the lilies of the field how they grow. They toil not, neither do they sfin; nnd yet I say unto you, that Solomon in all his goory was not arrayed like one of these.' From the little common flower called heart's ease, we turn to that well-knowi [mssage of Shakspeare, where the fairy king so beav : fully describes the 'little western flower.' And who forget-me-not has a thousand associutions tender and
$\boldsymbol{Y} \mathbf{Y}$
620
touching, but, unfortunately, like many other sweet thinga, rade handa have almost rabbed it of its charm. Who can behold the palo narcissua, atanding by tho siient brook, its stately form reflected in tho glassy mirror, without losing himself in that most fanciful of all joctical conceptions, in which the graceful youth ia descrilied as gazing upon his own beauty, until he lecomes lost in auimiration, and finally epamoured of hinself; white hopeless Echo sighs herself away into n sound, for tho luve which, having centred in such an ohject, was neither to be hought hy her caresses nor won ly her despair?
"Through gardens, flelds, forests, and even over rugged mountains, we might wander on in this fanciful quest after remure ideas of pleasurable sensation connected with present beauty and enjoyment; nor would our search be fruitless, so long as the bosom of the earth afforded a receptacle for the germinating seed-so long as the gentlo gales of aummer continued to waft them from the purent atem, or so long as tho welcome sun looked forth upon the evor-blooming garden of nature.
"One instance more, and we have done. The c lady rose; us poeta havo designated this queen of benuty, claims the lateat though not the least consideration in speaking of the poctry of flowers. In the poctic world, the first honours have been awarded to the rose, for what reason it is not easy to define, unless from its exquisite combination of perfume, form, and colour, which has entitled this sovereign of flowers in one country to be mated with the nightingale; in another, to le chosen, with the distiuction of red and white, as the badge of two honourable and royal houses. It would be difficult to trace the sipremacy of the rose to its origin; but mankind have so generally agreed in paying homage to her charms, that our associations in the preeent day are chiefly with the poetic atrains in which they aro celebrated. After all the jains that have been taken to procure, transplant, and propagate the rose, there is one kind parpetually blooning around us through the aummer months, without the aid or interference of man, which seems to defy his art to introduce a rival to its own unparalleled benuty-the common wild rose. Blooming in the sterile waste, this torely flower is seon unfolding it- fair leaves where there is no heauty to reiket its oven, and thas calling back the neart of the weary travelter t- ínoughts of peace and joy -reminding hiun that the witderness of human life, though rugged and barren to the discontented beholder, hus also its aweet flowers, not the lexs welcome for being inlooked for, nor the lems lovely for being cherished by a hand unseen."

To these elegantly expressed sentiments, nothing need De added uy the writer of these pages.

Laying out of plowir oardens.

Flowers are cultivated in the borders and parierres of gardena of a mixed kind along with kitelsen vegetables and fruits; and this may he said to be the general plan in those grounds of limited space belonging to persons of moderate means, and limited in the cxtelit of their possessiona. Many, however, cultivate flowers in gardeñ exclusively appropriated to them, and also in the isolatod clumps which decorate ornamental lawns. In whichever way, the method of culture is clearly the aame; and therefore it is unnecessary for us tc enter into particulars with reference to all the aizes and kinds of gardens in which flowers may be grown.

The directions given in the previous sheet on the laying out, shelter, and exposure of kitchen gardens, apply also to flower gardens. The noil should be rich, dry, moft, and partially improved with decomposed peat and Iraf mould; the exposure should be towards the sun; a free air should be allowed to play over the ground; and means ahould be at hand for procuring a plentiful supply of pure sof water for irrigation. Every flower garden, ako. Ahculd fossess a small store of fine washed sand 24
a reatorative, and for scattering oeneath the tiner ainds
of flowers when in lloom, as a protection from en of flowers when in bloom, as a protection from creeping vermin. Besidea the utenulls usually employed, the flower gardener should have a pair of small scissorsto clit off lecsyed leaves, and some atripes of mat for tying up
certain drooping plants.

The greatest difference of taste provails on the subfed of disposing the various parts of a flower-pot or gardem Straiglot-lined bordera, ovals, circlea, and tancy figure have each their admirers; and wa aloould advise every one to adopt that form which will be most effective in striking the cye. If the garden in seen from a parlum window, as is often the case, the plan most agreeable's to lay out the foreground as a patch of well-shaven green which is fresh both winter and sumneer; on ita furthet side thene may be a semicircular border; then a walk and next parterres of such form and size as will suit the oxtent of the ground. If the ground contain kitchen vegetables, they should br, out of sight of the windom of the divelling-honse, of at least not brought ostentis tiously forward. "It is more difficult," rsys the author of the Florist's Manual, "than may at first sppeas, k plan, even upon a small acale, such a piece of ground nor, perisaps, would any but an experienced and scienifict eye be aware of the difficulties to be encountered in the dis posal of 1 few shaped bordera interspersed with turf. The nicety consists in arranging the different parts 80 os 10 firm a connected glow of colour; to effect which, it wif be necessary to place the borders in such a manner that, When viewed from the windows of the house, or from be principal entrance into tho gardeli, one border chall not intercept the beauties of another-nor, in avoiding tha orror, produce one still greater, that of vacancies betwiu the borjera, forming amal! avenucs, by which tho whole is separited into broken parts, and the genersl effect loa Another point to be attended to is the just proportion of green turf, which, without nice ulservation, will be too much or too little for the colour with which it is blended, and, lastly, the breadth of the flower-borders shoold nad be greater than what will place the roots within the read of the gardener's anm without the necessity of treadian upon the soil, the mark of footsteps being a deformity wherever it appears among flowers."

Whether all the flowers of a class-such, for instance, as violets, hyacinths, dc.-should be cultivated together, or intersnersed and mingled with othere, is ancther mation tor taste to decide. The preferable plan seems to be th form a choice varinty in borders and other spots, but alio to cultivate n quantity of certain sorts in compstmenu by themselves. Nicill juliciously olserves, on the chovina of flowers for berders-"'Plie plants are arranged in mingled flower-borders, partly accurding to their size and partly according to their colour. The tallest are planid in the back part, those of miduling size occupy the ceater, and those of humble growth are placed in front. The beauty of a flower horder, when in hlom, depends very much on the tasteful disposition of the plants in regard is colour. By intermingling plants which grow in wo cession, the bearty of the horder may be prolonged la some wecks. In a botanic garden, the same planicar not lee repeated in t' e same border; but in the comon flower garden, a plant, if deemed ornamental, may be often repeated with the best effect; nothing can be fines for example, than to see many plants of doublo scark lychnis, double aweet-william, or double purple jacoben'

The Dutch, who are among the best flower gardenar in the world, ave lately begun to copy the Englashia ornamenting tnrf lawns with pluts of various kinds a flowers; but in all their large and regular gardeas, bey still dispose each kind of flowers by them relven, "Til ridicule this plan," saya Hogg in his "'reati "n on Flowens " because it exhihits too great a mameness i 'd formality like a nosegay that is compored of one $s t$ of 的wens only, howevar awees and beautiful they , ity be, thy
we the pover to nut andoubtedl patter in what for oblong-wher in tike the flowe ratioualy diapose lightiful opectacle, ill, in some par Dutchman; and unch my snem earnations distin double blue viole polhing of differ the less trouble y spatate, you hav wise their fragral they are not lost pproach them." accurding to iaste to lecommend the be cown or plante Somo persone, for or platiting crocu phabet, a spoon, entially vulgar t
A. arror not thall be planted, maris or . velty, uppearance when to dissppointment make a choice of will be beautiful those which will b to ensure a aucces to eutumn. The improving even th careful culturo to and brilliancy of in our climate.
gemralal charac
All fowering mist in the vegeta which the flower that are the object plaet which cons the corolla; it con called petals. Tly tils, or organs of otear); and to b the development getable growth. the way of bein The design of t size and strength tually to bloom; then, to mention, nigour to the atem bud and the san start: be ful. 5 . . posed than 50 degrees t but from that to 0 buds, if duly pro be rapidly develo infuencos, flower gene in winter; t perfection in thei yield thein sceds the artificial clius dinegarding seaf onwitur or aprin
". has lieen t satly chorked
eath the iner aind ction from ereeping ally employed, the small scissors to clif
of mat for tyiag
evails on the rabject lower-pot or ganden and lancy figuren oliould advise every he most effective i seen from \& parlutur of well-shaven grea rrer ; on itn furbe order ; then a walk 1 size as will suit and contain kilchen ight of the window not brought astente ult," ssys the autho y it first appear, ha piece of ground rienced and scientife acountered in thedis ersed with turf. Thw lerent parts so as 0 effect which, it wil such a manner thas he house, or from the one border ehall pat -nor, in a voiding the of vacancies betriu , by which the whole he general effect lat lie just propotion of srrvation, will be boo 1 which it is blended er-borders shoald aod roots within the read necessity of trembine ps being a deformity
s-such, for instance, re cultivated together? hers, is ancther matta : plan seems to be a d other spots, but alw arts in compartment bserves, on the choine ant's are arranged in rding to their size and Che tallegt are planted size occupy the centre placed in front. The hloom, depends verg the plants in regand to which grow in soo may be prolonged fa , the same planicus; but in the common ornamental, may lo nothing can be finet, ants of double scark juble purple jacolen," best flower gaudenen I copy the Elugusti as of various kinds a regular gardena, bey by them olves. " Th is "reation on Flowen meness 1 'id formality of one $s t$ of dowes ul thay .ay be, the
the the porrer to please, because they want variety. It ourt undoubtedly be aeknowledged, that aprterre, no watter in what form-whether circular or aquare, elliptical a oblong-whore all the shrubs, plants, and flowers in of like the fowers in a tastefully arranged bouquet, are rioualy disposed in neat and regulated order, is a delightral apectacle, and worthy of genoral imitation. fill, in some particular casea, I am diaposed to er Dutchman; and I would have my bed of hyacin tie binch my anemones, my ranunculuses, my pinks, my arnationa distinct, and even my beds of hollyhocka, doulle blue violets, and dwarf larkspure distinct, to eay aothing of different sorts of roses. Independenlly of the less troublo you have in cultivating then when kept repaate, you have liesuty in masses, and you have likewise their fragrance and perfume so concertrated, that they are not lost in air, but powerfully inhaled when you oprosech them." Leaving thie queation to be settled courding to iaste and other circumstances, we have only to ecommend that no flower or herb of any kind should be sown or planted in figures resembling familiar objects. Some persons, for example, will be seen sowing annuals of plating crocuses in the figure of a letter of the alphabet, a spoon, a ship, s house, \&c.-a practice su csentially vulgar that it cannot bo too loudly condemned. As crror not uncommon in decidiug which flowers Hall be planted, is to select numbers mercly for their raniv or .. velty, without reference to what will be their appearance when in bloom, and which generally leads to disappointment. Unless for botanical illustration, make a choice of flowers on two principles-those which will he beautiful when in bloom, although cominon, and those which will bloom at the [esticular sensons required, to ensure a succession of variegated beanty from spring to autumn. The true amaie'or gardener takes a pride in improving even the common at flowers-urging them by carful culture to the highest state of perfection as to size and brilliancy of colouring of which they are susceptible in our climste.
emiral character and treatment of flowers. All flowering plants belong to the division Pherogamia in the vegetable kingrlom; but it is only those in which tho flower is conspicuous, beautiful, or odorous, that are the objects of garden culture. The part of the plant which constitutes the flower, bloom, or blossom, is the corolla; it consists of several divisious or leafy parts, cilled petals. The corolla encloses the atamens and pistilh or organs of reproduction (sce Viontable Pirvirosoar); and to bring these to perfection, so as to effect the development of the seeds, is the prime object of vegetable growth. When the seeds are perfected, or in the way of being so, the corolla languishes and dies. The design of the flower gardener is less to proluce size and strength in hin plants, than to cause them effectwelly to hloom; he wishes a fine corolla. It is proper, then, to mention, that whatever tends to give excessive vigour to the stems wilf prevent the formation of flowerbod and the same result will follow from atunting or stari. plant. To induce flowering, the plant must be fuly , posed to sun and air ; at a lower temperature than 50 degrees the blooms cansuot be expected to open; hat from that to 65 degrees, the sap will ascend, and the buds, if duly provided with moisture and fresh air, will be rapidly developed. When frecly exposed to aeasonal infuencoa, flowering plants sppear withered and nearly gone in winter; they begin to shoot upin spring; come to perfection in their bloom in summer; and languish and yield thein seeds in autumn. But if treated properly in the artificial clituats of a grecnhouse, they will be found disregarling scoeonal influences, and perhaps blooming mwinur or spring.
${ }^{i}$. has heen remarked, that when plants have heen shtly cherked by frost or dry cold air, they sounar
come lnto bloom. "This," raya Mr. Rennis, in his At phabet of Gordening, "arisea evidently from the puip being concentrated irstead of being expended in the pron duction of new leaves and brunches, while perhaps part of the effect may be owing to increased excitability. On this principle the carly potato, which doea not flower freely, may be made tr do no hy removing the tubers; and, on tho other hand, the fuhars are increased in the late sorts hy picking off the flower. The grenter the quantity, then, of gocd healthy pulp which can be prepared by the leaves, the more really vigorous and healthy will the plant become; and as flowering and fruiting exhaust a great quantity of this pulp, and, of course, tend to weakon tha general system of the plant, it follova that the artificial prevention of flowering must pren serve in the plant the digested pulp which would have gone to nourish the flower and the fruit. Thus, by pruning off tho duxuriant shoots of melons, \&c., the pulp induces, the shoots to spring into flowers and fruit. Upon this principle is fyunded the practice of treating bulbs so t. 3 to cause them to bloom vigorously, by cutting off the flowering otem ns soon as it appears, in nome cnaes, and in others so as to have the blonsonis evolved when places in water, taking eare to encourage the growth of the lceves by rich soil and free exposure to air and sunshine. In this way the greatest quantity of strong pulp is stored $u p$ in the bulbs, and luxuriant blossoms are produced the succecding reason. The practice, consequently, of some unskilful gardenera, of trimming off the lenven of snowdrops, erocuses, and tulips, after the blooming is over, for tho purpose of rendering a border or a bed neat, is very lad; and it is not much better to tic up the leaves, $s 3$ is also prepostcronsly done, for in this way they cannot be duly exposed to the air and the light. The same princi. plo w. 'I apply to all other flowering plants, When a flowering hranch or stem has been produced, and has bogun to ahou the flower buils, it must be considered that it can only bow fincly in proportion to the quantity of healthy pulp, either previously in the branch, or from time to time prepared liy the leaves of that branch. Consequently, if there are two or more flowers on the braneh, each will require its due proportion of food; but af one or more of these be artificially removed, all the spare pulp will go to feel the one, two, or more blossoms which may remain. On this is founded the practice of thinning out the flower-buls from the bunches of auriculas, polyan. thuses, chryannthemuma, and other plants, in order to increase the size and beuuty of those which are left to expand. It is consequence of the sama principles that free expos (o) air is indispensable for producing fine dowers, inasmuch as they depend for nourislament on the pulp, which without these cannot be formed. Ihe vivid colours and pleasant odour of flowers depend on the same causes-for in the shade these are both fecble."

Flowering plants are usually divided into the following kinds:-Annuals; plants which require to be sowls annuslly, as they live and bloom only one season. Biennials; which do not blossom till the second seanon after sowing, remain a certain time in perfection, and then dic; they are proluced ly seed, but some of the fincot double varictics are contineed by cuttings. Perennials are phants which continue to grow and blossom annually Indigenous plants ; those which are natives of this country, and may have been perfected by culture from a wild state. Errotics; plants of foreign origin, which have been intionluced into this country. The greater number of our fine flowers and fruits are exotics, Many of these inave been acclimated, or accustomed to our climate, and rell. dered hardy ly a course of culture; but others require to exist in green-houscs and hot-houses, or under glase frames, for at least a part of the ycar. It would appear that esch region of the globe possesses plunts as distinus tive in their feutures as the different races of mens. On thim subject Mr. Loudon rematkn-" 1 'he native countries of
plantes may often be dimeovered by thelr features, in the mame manner aa the national diatinetiona which are observalle in the looks and colour of mankind, and which are effecied chiefly by elimate. Aslatic plants are renas'nuble for their auperior leatiy; Afrlean plants for the'.c thick and aucculent leaves, ss in the case of the Cacti; and the American plante for the length and amoothnens of their leavea, and for a mingularity in the shape of the flower and fruit. The flowers of European plents are but sarely beautiful. Plants indigenous to polar and mountsinous regions are generally low, with small compressed leaves, but with fivwers large in proportion. Plants indigenous it Now H. tland (or Australia) are diatinguishable for amall and dry leaves, that hnve offen a shitivelled appe, rance. In Arabia they are low and dwarfish; in the trehipelago they are generally ahrulhy, and furnish ad with prickles; while in the Canary Islands, many plante, which in other cou, es aro merely herbs, asaume the part of shruba and trees."

The different kinds of flowering plants aro either herbaceous (green herbe) or asrubby, the stems of the latter consiating of small wooly fibres. A deciduous tree or shrub is one which casts its leaves evary wintes and in recovered in spring. An erergreen is a ehrub which retaina ita leaver during winter, but caats them in apring as the new buds come out. A fibrous-rooted plant is one whose roots send out small fibres; polyanthuase are oxamples of this class. A tuberons-rooted plant ia one whose root forms amall tubere or lumps; dahlias, ranunculusea, and anemonea are oxamplea among flowers, and the potato among kitchen vegetahles.
The prevailing colours of flowers are yellow, orange, white, pink, searlet, red, hlue, purple, and many are varicgated or composed of different tints. l 'roper culture, with pure air and sunaline, increase the brilliancy of the tints, and give massiveness to tho corollas. Plants of a kindred epecies may, likewise, be improved hy hybridizing or crossing, the general principle of which is the artificial application of the pollen of one plant to another. By this meana, nome of the most beautiful flowers have been originated. Change of aoil and climate, however, are the graat meana of improvement. As long as it is confined is its nativo hatitation, the corolla of the plant and ali its other appu-tenumes are meagre and generally unattractive; but whe. nourished in a cultivated soil, and all its wents supplied, the whole prant atrengthens and expanda, and the corolla flashrs on the eye in all its brilliancy of colour. The clanges effected on the daisy, the rose, and the violet, will here occur to remembrance as atriking inatances of metamorphoses by culture and change of habitation. Spraking of the laws by which a change of colour is proluced, Dr. Lindley, in his Introduction to Bolany, olserves"A blue flower will change to white or red, but not to bright yellow; a bright yellow flower will become white or red, but never blue. Thus the hyacinth, of which the primitive colour is bluo, produces abundance of white and red varicties, but nothing that can he compared to hright yellow; the yellow hyacinths, as they are called, being a sort of pale yellow-ochre colour, verging to green. Again, the ranunculua, which is originally of an intense yellow, sports into acarlet, red, purple, and almost any colour hut bluc. White fowers, which have a temdency to proluce red, will never sport to blue, although they will to yellow; the rose for examiole, and the chrysanthemums. It is probable that white flowera, with a tendencyoto produce blue, will not vary to yellow ; but of this I have no instance at Land."

Improvement in the brilliancy or change of colour, is not effected without a certain loss in the odorous properwor'ien of the plant. It is remarked, that cultivation es rally renders the odour lem intenoe, and sometimes
altogethor destroy it: Thus the pleasant odan wild viclet is not to be found in the heart'renaw.

Propagation.

Fluwering planta are propagatod in varinua wayt-by mowing meede at tho propor neasone, by dividing the rook by suckera, layern, pipingn, cuttings, and bud-gnating.
Dividing the Reot.-This is one of the mast simph methods of propagntion. The root of the grouing plant ia partially uncovored, and one or more portiona are me moved; the root is then covered up, snd the remoned parts trnnaplanted in sof earth prepared to receive them Nino-tenthe of herbaceous perennials are trealed in thit way.

Suckers.-These are young planita thrown up from the roots of the main plant, round which they cluster. They may to removed by taking up along with then a part of the root. They phould be removed in spring, sfer the plant has begun growing, and immediately planted out If any flower-buda be developed on them, take i'hem f_{1} no as to give streugth to the plant.
Laycra.-Sume plunts, ss, for inatance, strawheries mend out layers or runners along the ground; these han joints, if wo may enli them such, at certain points $;$ and where any joint strikea the earth, it takns root, and bo comes the centre of a new plant. Thua a iunning plan will specdily cover, as with a network, a largo spaced ground. Nothing is more easy than to propagate ty causing the layers of some plants to take root. In the ase of the carnution and sinisar plants, fix a stem as ou of its joints to the ground, with a hooked stick of per covering it slightly with mould, and giving it a lith moisture. Roots will, in gencral, strike out in a fer weeks; and at the end of the season the plant is mad for being cut from its parent, and transplanted. When layering is tedious or diflicult, propagation by division α the root or cutings is preferable.
Pipings.-Propngation by piping is an expeditions mole of ruising young planes. 'The following is then method prescribed in a amall and useful work, entilud Erery Lady hir ouen Flouer Gardener:-"Take of be upper and young part of cach slioot, close below a joint, with a sharp knife, and cut eucis off at the third joint, en, litlo knob; and then cut the top leaves down pretty short, and take off the lower and discoloured ona When you have piped in this way as many as joo require, let them stand a week in a tumbler of niter, which greatly facilitates their doing well. Indend, i never failed in any pipings, slips, or cuttings, wich 1 allowed to sosk aral seecll in water provioua to platimg When you plant the pipings, let the ground be neri, dug, and raked very fint ; dibble no hole, but goluy thrust each jiping half way down into the soff earib round each, to fix it in the bed. Water them oflen, if the weather is dry, but moderately, just to keep them moist ; and shado them from the hot sun in the day. If pipings are covered with a hand-glass, they root eaten by tliree weeks than those which are exposied. Lajing, piping, and slipping, are done in June and July. The plsnts will be well rooted and fit to plant out in Onries." Slips are shoots wrenched ofl at a joint, instead of being cut, and are treated in the same manner as pipings.

Cuttinga.-A cutting is a strong shoot of last yeu' growth, cut from the parent stem or hrauch, and atia the ground. The cutting shouid be about six incom long, and cut off slantingly and smoothly. The will in which the cuting is inserte! requires to be dry or ad too moist. Roses and noneysuckles are atnong the chas of plants propagated by cutings. 'The operation should le performed in Junuary or February, bo that the cutiug may root and vegetato in the opening of spring; but several montha are required to bring the cuttings to atate fit for trassplanting. Some cuttings of fown stalles may be set as late as May and Juic.
mahag.-T ued in connect pplicable to Budling in a if ng the frouh-c bereath ie ba known by its and not a bud. bal on the sel mow 'red it wol in all I Ixclitheorl mall alip of ba le freely, it is lorma anion. the bark of the pose, and the w the e int.
The annexed

ding. a is the b wit; b the aten shield attached teaf fut away.
Stirubby plant anatice of this, nore appropriat

secse

Flowering pla mecies and vari than fill the pre sonably be expewhich ase mos open air. A pe his garden only sorts every year to be the capahi mencing to mak or for still sm should also reco variety of differ which are ama and the other ro they recele. and nix differe mingled border which will prese

Some annual The hardy «ind. without antifici: more tender wil prored by hein of the delicate ttanly kept un speak. The gr the end of Mn ohould he fine, ng sown, cover of mould ; pea: the surface. I oft water oceas: ow in freeh an
pleandnt odown if :
o heart's-an.
in various wayn-by by dividing the roote s, and bud-grafting. p of the most simple of the growing plant mord portion are mom
up, and tha remored pared to receive them iala are treated in thir
ta thrown up from tha ch they cluster. They If with them a part of d in spring, after tha mediately planted oot n them, take ihem
instance, strawheries 1e ground; these hay at cortain points; and it takes root, and be Thus a zunning plan vork, a large apaced than to propagate ty to take root. In tha lants, fix a stem atome hooked stick or pey and giving it a lith , strike out in a fer eson the plant is revig transplanted. When pagation by division d
ing is an expeditions The following is tho d useful work, entitite lener:-" Take of the ot, close below a joint, of at the third joint, a p leaves down prety and discoloured ones way as many as yon n a tumbler of welep, oing well. Indeed, s, or cuttings, which er previous to plating. the ground be nemig e no hole, but genly vn into the soft eanh Water them ofen, il ely, just to keep them lot sun in the day. It -glases, they roo eathet are exposed. Laying June and July. The o plant out in Orvte." - joint, instead of being manuer as pipings og slioot of last yeut n or brunch, and seia d be shout six inchay smoothly. The soil a juires to be dry or ed les are among the cias 'I'he operatioa shoull ary, so that the cutting pening of spring; bat ring the cuttings io 1 ne cultinga of flown and June.

Buding-This is tne method of propagation chiefly eed in connection with fruit-trees; but as it is likewise upplicable to roee-bushes, it may here be deacribed. Budding in a specien of grafling, mad consista in insortlig the froahocut extremity of a omall twig or bud benesth 'ee bark of another plant. A luaf hud, easily known by its tapering point, ahould be alone selectel, sad not a bud on which a flower is developed. The beaf oa the relected bud is to be taken off, for if it newi 'ned it would exhaust the gap, and the busl would in all uselihood wither and c'ie. Along with the bud, a mallalip of bark ia to be taion; and if this bark aepanatefreely, it la a test of thero being pulp cnongh to form anion. The alip of bask ia to be inserted leneath the bark of the other plant, in a slit made for the purpose, and the whole tied with a strip of mat to keop out the ait,

The annexed cut repreaents the various parts in bud-

ding, a is the bud cut out, with a slice's of bark attached to it; b the stem, with a slit in thr bark to receive the shicld a!tached to tho bud; \boldsymbol{c} t'so und inserted and tho beaf cut away.
Shirubby plants are also pror sgated by $i n-a r$ ching: hut a notice of this, and also of orii:tary grufing, will be more appropriately given in Information on Thees.
eglect flowens for tie oanden.
Flowering plants are now so numerous, both as respects species and varicties, that a bure list of them would more than fill the present shect; nll, therefore, that can reasonably be expected from us is a few hints as to those which are moat approved, and culivated chietly in tho open air. A person with little experience should stock his garden only by degrees-a sinall number of different sorts every year, according to fancy, and what he finds to be the capahilitien of the soil and exposure. In commencing to make a choice for a modorately sized garden, or for still smaller plata of ground and horlers, we should slso recommend the plan of cullivating a mixed rariety of different colours and dilferent heights; those which ars amalleat being in front or ncarest the cye, and the other rows rising in height and massivencess as they recede. With as few an four colours, four sizes, and six different periods of coming into bloom, a mingled border may be entablished with ninety-six sorts, which will present a pleasing assemblage to tho eyc.

Annualen

Some annuals are called hordy, and others half-nardy, The hardy dinds will grow and blossom in open borders, withost anififinl heat or protection; those which are morc teniter will also grow in the open air, but are improved by being lrought forward under hami-glasses. Of the delicate chass if amuals which must be constanly kept under glass framos, it is not our purpose to apeak. The greater numerer of anmanls may be sown at the end of March or begiming of April. 'lhe soil thould be fine, and have a warm exposure; and, on beig nown, cover the seeds with only about a half an inch of mould; peas and lupines should be an inch below the surface. If the weather bo dry. irrigate with pure wof water occasionally. I'ake care that the seed you now is fresh and good; the way to test its quality is to
throw it into a glase of water; If it be worthlems, it wid awim; if good it will aink to the hottom.

Among the vast number of annuals that offer theniselvea to the choico of the gardenar, the following, eachs having varictien as to colour, may be mentioned an taking the lead in the half herdy kinds:-African marigolil, French marigold, Chira aster, marvel of Peru, clirysunthemum, aweet sultan, Indian pink, love apple, gourls, bottle gourd, convolvulua, yellow balmin or touch-menot, nmmranthus, ten-week gilliflower, white ten-week stock, cannacorus, and Chinese hollyhock. L'ardy kinds:-Adonis flower, emindytuft, larkapur, Jupnes, sunflower, havatera, puppy, major convolvulus, nasturtium, 'Tangior pea, sweet pea, winged pea, Lobel'a catchtly, dwarf lychnis, Venus's looking-glose, Virginian stock, heart's-caso, anapdragon, mignonette, xeranthe. mum, purple jucobasa, Clarkias.

If annuala are required on a more extended scale, tha best $p^{1} n$ is to leave the seleetion to a respectablo nurseryman. Such a person will at least present a copious list to make your choice from, and mention the size or height to which the plants will r. oectively grow. Mr. Looudon in his Encyclopudia of Girdeniag, quotea a list by Mr. Swindon, a Brentford nurseryman, consisting of nearly ninety hardy annuals, distinguished in rangea necording to heighte. From this wo make the followe ing extract-for the aske of clearness, leaving out the Latin names:-
"First range-from 8 to 12 or 14 inches high.
Cape marigold: purpis and white. Jsige caterpilfar ; yelo low, und siagular pod. Venus's looking-glass: tight purple.
 yellow, and singular pod. Dwnrf varigguted lyelinis; erimson,
nul white. lleart's ease purple nud yellow. Hatf-moona, or moon-Irefoil; white, and siagular pod. Blua meadow lyelinis; sky-blue. Dwari Virgin's stoek: purple. Smet herlgrlogs; yellow, an ${ }^{*}$ singutar poci. Woodruof; light-blat. lled hawkwead; pa'. red. Large hetgeloge ; yellow, and ain. gular pod.

Second range-from 12 to 18 or 20 inches high.
Onk of Jerusalem; yellowish, with fragramt sinell. Small white cantyluili clear while. long-liorned devil in a busin; yellow, and singular pod. Coavolvulus rolnor turight blun, yelth yellow eye. Large purple candyluft ; lighit purjle: White tobel's catelafly; reidisil white. Auneal sinapdrugon; purple antl yetlow. Senrlet of wing peras: dark and lighar red. burple nith jellow. searlel or wing peas: dark and ighlred. minor; blue and white. Red L,oliel'a calelitly ; brigha red. Dwarf hasturtinta: deep orange, Brond Spanish aigelia, with hrown seed; deep lifue. Red llos Adonis; dark red.

Third range-from 20 to 24 or 28 inehes high.

Spanish nigella, will hilnck seed; light btue. Spanish hawkweed: pale yeltow and purple eye. Ittue Stoldavina halm; deep hilue, and fine sernt. Anmal rest-hnrrow; pale red. Doulte Itonum nigala; white mixed with blue. Small running hasturlium; dayk orange. Neule tanrioram: yellowish, no smelf hut to the over curians. Rocket larkspur: pink nat white. Sweel-scented lipines: bright gellow. White Atoldavian baltn; fair white, and frugram smell. Duteh hupines; fine blue. Annunl linre'setar; pale yellow. Purple jacalon'a; purplish-red and yrilow eye. Dutch ranumentus marigold; sulphur colour. Red-topped clary ; pale red, and pink leaves.

Fourth range-from 2 ts $2 \downarrow$ or 3 feet high.

Belvidere : yrllowish-a hamisome plant. Small var "gnted cora-poppy; varions, ral nad white, se. Dontile uprig it larkspur; blue, blush. \&e. Cyanus minor; blue, crimson, \&c. Thom upple; while, and stughtar potl. 'rinee's feather' dark crimson. Crown-lurkspur: pale pink. spotted. \&e. llmey senlins: pale blae, and glohalar pod. Portugal lychnis ; pale rell. Stanld blue lupures bright blac. Love lies a-theedhas; lir.ght red. Ranuneulus-nirr gold : duep orange. tloney wort; hark parple, and singular shape. Strawherey spinach; brighi red frau.

Fift ranga-from 3 fo 4 feet high.

Venetian small-flowered mallow : purplish-while. Do, .o criman inged-leaf poppy; dark erimison. Thall narrow-lenf wall-flowar; bright yellow. Arach: deep eximson. Donhis siripped carnation poppy : red and white. thas sweet trefoll duat-colour. Red lavatern; light rinageable red. Branching Inckpur: blue and white. \&c. Tall white tur thes ; chrof white. Donble black ea-nation poppy ; rasecolour. Small l'eruvian nusturtium ; dark nrange. Lord Anecr's pens, fine whe. White lavatrina: siluw white. Dwaif donble and znilied yetlow smadowre: drep yellow. Blaoder kelumat os. sulphar aud purpla eye, with singaiar pod.

Sixth range-Atam 5 to 7 or 10 five high.

Tall double yellow eunflowar, with black. eced; deep yellaw. leanathd laty awert-seentad peasi pale red and white. Arach; sulphur-eoloured. Purple weol-Ecented pens : dark minl lighi pupple. Tall Intian permiearial brghit crimeon. t'ainled linly rown pran ; hinck and white. Convolvulas inajor ; line purple, Whate orown peas ? etear whito. targn Indian nanurDurn ; dark and tight orange. 'Tall chouble brimatone nuntownr! aulphar-coloured. White swelescentest pesa; clear white. I'Ian' 'rangier peant finn erimeon. Tail orisnas! mallow i parpla, painted Lady Tangier was pale red and white, curlet beana ; fine scarlet. Curled leaf apright mallow ; white singed with purple."
Whather tender or harly, all annualy should be carefully trimmed and kept from straggling. Some will require thinning. Premerve the strongent bloseoms for soed; and resnove withered blooms to add vigour to those which remain.

Hiemulals and Perminals.

The difference lertween hiemuials aml perennials is in many inatancea very ill defined. A biennial is maitl to be a plant which, when sown, does not hloom till the following spring, and dies out in the conrse of autumn. This is true an reapeets nome hiemisis, but it is equally certain that many will sursive anil hisom year ater year, the same as perennials. For instance, carnutions are called biemuink, although it is notorious that these plants will grow and multiply by roots in the anme spot, year after year, with only ordinary culture. Another cirrumntance requires notice. No treative on gatelening that we have seen aulficiently recoguses the power which bicuninla and other phants possess of continuing thenetves hy tropping their own seeds on the spot where they grow: by which means, in point of fict, many biennials, and annuals ulso, poseens much of the virtue of peremnials. In all treatises, far two much siresen is lad on the necessity of artilicial propagation. In most instances, biennial and perenial flowering plants simply die off from the top to the botom of the stems at the beginning of winter, and the roots remain dormant in the ground till revived by the warmith of the ensuing apring. Except, therefore, us respects thinning, anul propagating by a division of roota, and tramplauting occaaienally for the suke of change of soil, the unprovemaional gardener has little or nothing to do in the way of multiplying the number of his plants, or artufically keeping III, the apecies during winter. Of enurne, we hero refier wo gardening operstion in the British ixlands, where the winters are generally so tempernte that every kinul of root is safe in the ground, exeepting thone of a tuberous nature, auch as potatoes, dahlias, ranuuculusen, ice., which the frost would renth and deatroy. The case is very tifferent in the Netherlands, Norch and Central Prance, and several other continental countries, where bulbs would perish if left in the ground in winter, and where even hardy evergreens require protection. The hurel, for example, remains unscathed in the open air at Edinhurgh during winter, while at Brunsels, five degrees farther south, it must be wheltered.
Among biennial plants suttanle for ortinary flower gardens, are included the following, each having several varietiea:-Cameroury hells, carnations, French honeyunckie, globe thistle, hollyhorks, scathun, sweet-willinm, rose campion, wallfower, Invatera arlorea, purple digitalis, and stock gilliflowers. Nane of these are very beantiful tlowers, hand none more so than carnations.
('urna'ions.-D'The earnation is an eleganaly formed fower, with a slender stem and howson at top. earh blowsom consiating of a convolution of petals like the rowe. Aa a number of ntens grow up together, the show of brilliant heads is consideratble. Of the carnation, Hogg obwerves-" Of all the llowers which adorn the garden, whether they charns the eye by their branty, or regale the sense of smell by their fragrance, the earnation may lee justly maid to hold the first rank. The ethathess of its growth, the brilliancy and diveruity of

Its colours, and the aweetross of its peifures, never for to attraet our regard and admiration. The tullip, thenemp styled the queen of the garden, cannot boast of wors admirern; thay may, with propriety, be considered tho two manterplices of nature ; and though rival beauties, niny ba anid to ahare the sovereignty of the gurden equally ho. tween then!; yet it must be admitted that the carnalion himeprendent of its fragrance, has this sdvaitage ever in rival, that it continues longer in blooil, and that, when planted lin pote, it can be remuved to decerate the grean house, the colnservatory, or the drawing-room."

There are many varicties of the curnation, hut all an arranged in three clames-liakea, lizarres, and piquetleas Flake-carnationa posesess lut two colours, with lore artipes through the petala. Hizarren afe variegated to colour, with irregular atripes and appots. Piquetion have a white ground spotted with parple or some uthen colour, and are serrated on the wedges ; they are then mone common. Aceording to anmiteurs, the finest cannation Nhould have a flower at least three inchew in dianneter with the ellges of the petula waving or sumouth, ne sarrated. The petals must ill the calys, hut nol be burating ; if a calyx burst, the flower has lieen inpee: feetly cultivated. "'The culyx,"suy" Hogg, "shouph bo at loant one inch in leught, terminating with brood pointe nutficienty strong to hold the narrow bates of the intials in a clowe and circular hoty, Whatever evlous the dowern mayy he pimberssed ol, they should be perfecthy distinet, and diaphesed in long regular stripes, hruaden a the edgo of the laminn, und gralually lercuning naromen us they approach the claw of the petal. Bach peen nibund have a lue propertion of white, one balf a nearly so, which should lwe periectly clear, and fire from apots. Biaiares, or such as contain twa cubar upun a white grownd, are enterneed rather preferabli to thaken, which have but one, exprecially when their coloun are remarkally rich and very regularly distribued searlet, purple, and pink, are the three coloura mal predominant in the carnation. When the pink take's very high in colour, it is dintinguished hy the appellation of rose flake."
The fillowing, which we copy from an agteath horticultural treatise, "The Mause:Garden," are the plainest dirertions we have meell resprecting the cultura of carnatioms:- - The hemt moil for camations is gow houm, enriehed with well-rutsed stable-dlang, and quak ened with a little samel. The quantity of manure on only be determined ly the previous sirength of be ground; if made too rich, the thowers will iowe theif fin colours; it left too phor, they will want vigour. . . recent mannre should ever come near a line plant. La the ground le prepared luflore winter wih dung, ond, rough furrow lait up to the frowt. In April give afras digging. and plant in rows three feet by two. Tha willd is to make room for layers, without which a fin How of earnations camot te maintaned abeve one you As the plants shoot up, they must tre tied to ne.ug gren rods; and in order to have a tine blow, supection flower-huls muat be pinched oil, leaving only thee a four to earh stem. The young shoots near the ground which do not run to dower, are denominated grass and from these the lasers are selected. The opperation is somewhat nice, bin when rightly tone, is always nos cesslul, and good howers are thax preserved snd mulis phicd from yeur to year. 'Towarda the end of July, die up the ground alwit the plants, and bur with the sails little old well-wremulit compost. Huve at hand a shay peliknife, a trowel. and a numbur of sumall pers whan angle at the heat : piceen of firm will do, or wool of in more strength than to tear pushing into the gronel Scoop out the earth in the form of a basin aroond ed plant; select the strongent grassy shoots for layens, ad remeve such as are in the wiy; erop the top learra a inch from the heart, and pinch oll all the resh, twing ase adide of 1 Anve. the top, al middle Set II into the hottoin be peg I place narth, sud mak watering. I'l by the end of poln if the suil winter ; but if till apring, and them up, slopin as to throw oll this plant liy p atuck in the gr the sbove metl and as pipings experthent ina teep the slips sizo trin the into old elastic them s hanelgl then earth to a days, it lxing t sir promotes th ciple, that the dertion whicl requites," II to capand and shoud le tied lnto the grournd Hallyhocks:plant, and exer will, shefter, un of twelve or fo of eight. It thirk stem, alos blostoms; ant suitable to ornir beriss, or the e ery various, a ble sorts lailu seeds ol' holly 1 or Octoler the gruand where clased an hien a number of y Walijlourer:plant, those flo being most 1 should have t is sery pleasin "To insure," "a succession to the double not otherwise July, pinch off or six c.achea i crop the leav dibble tho slip: shaled by tre water, and sh Sol one will fuaior, of onte kial, nuly be From what the sopious li te sectioned roots, and libri mus, and inelu nuture; th the plants.
Bulual:s-R
perfucie, never hy The tulip, though unot boant of thet re conaldered the (we garden equally h. d that the carnamion,
in advantage over in point, and that, when - decorule the gree ing-room." rarnation, but oll an rres, and piquetters colours, with larea 18 are vaniggated arpits or Iiquetten onrplo or some when he finest cannation iluches in diameter ins or smooth, no - calyn, but not th er lias lieen inper WIogg, " should bo finating with brow Harruw baves of tha

Whatever coloun y slould be perfecty or atripes, loroadect a becoming nanowe petal. Each petal white, ono balf a etly clear, and fay contain two colver ruther preferable on y when their colown egularly distributed three colours mond sen the pink flake in ed by the appelation
from an agreadia te- Qarden," are the especting the cultura - canthations is grow ble-dlung, and quid. atity of manure con olus strength of be res will lose their fra 1 want vigonr, X ar a tine plant. La er with dung, nd 1 In April give a fred feet by two. Thas ithout which a fint itsed above one yrat re tied to neat grem e blow, sujpertlow caving only three or ots near the groond, ominated grass; and

I'he operation is lone, is always sob reserved sad multio the end of July, stran unr with the sill lave of hand a shar s small pergs withas ill do, of wool of 50 ng into the gromed a basin aroand ead woots for layess, and , p the top lesves in all the resh thing
wen to poel the atern. Begin an inciolon on the at er aide of the shont, a little helow the mecond joint that, the top, and cut upwarda till the joint is alit in the midule. Set the polinted extremity macle liy the alit Inte the bottoin of the excavation, and there fix is with the peg I place the head of the whoot erect, fill in the earth, and make it firm, and finish the work with a goal watering. 'the youns planta will be ready for removal by the end ot autumis, when they may lee net in floworpots if the soil is too damp, tund apt is eaune rotting in winter; but if sufficiently dry, tho layera may romain till spring, and it will the of une before winter to earth them up, sloping and lwating the moulis alout them so as to throw off the ruin. Although the propsuation of thia plant hy pipings (as the grass moota taken ofl and stuck la the ground are called) la ly no means an more aa the above method, yet of a number aume will take ruot; and an pipings are nere easily procurod than phants, the experinent may he made. If eurried to anme dintance, weep the wips in water till they swell to their proper size; trim them as above direeted, and met them firin into old elastic compust ; water plentifully, and set over thon a handglane, first throwing water on the glase, and then eatls to darken it , and lat it wot be atired? for wome daya, it being found that adeitioney hoth of light and air promotes the striking of slips-probalsly on this prineiple, that the sick, having no appetite, must avoid the dection which requires food an well as that which food requires." We may uld, that carmations require roon to espand and blaw ; bud when fully grown, the stalks shouid le tied with a strip of bass to a small atake sunk fint the ground at their nide.
Hollyhocks.- I'he hollyhock in a splesidid flowering plant, and exceechs all others in talluess. With good will, shelter, and-propur exposure, it will attain a height of twelve or fourteen fret, and gemerally remehes sewen of cight. It is a substantial herimaceoun plant, with a think stem, along which, to the top, aro the broud showy bloswoms; and liom thin attractive appearance it is very suitable to ornament fronts of cotages, cdaings to shrubberics, or the centre of elamps in lavion. 'Ilho colours are very various, as pink, dark phrple, yellow, \&e., the domble sorts being the richest and most estermed. The veds of holly hocks are sown in May : and in Stptember or October the young plants are trasmplanted into the gruand where they are intended to blowsom. Athomah clased as lienninls, the plante will spring and bloom for a number of years.
Watifoner--I'locre are several sorts of this fragrant plat, those flowers which are dark und most massive bring most hishly estemed. Every cottage-garden should have two or three walldowers, as their pertiane is very plating, and ther rulture no way troubleswae. "To insure," says the author of the ". Manst-(iarden," wa succession of the best lured (and the inethod anplies to the double flowering, which yielda no seed, and cannot etherwise he preserved), nhont the begimaing of Suly, pinch off a hundred nliph or young shoots of five or six azehes in length, taken only trom the finest stocks; crop the leaves, und strip the rest of the stem hare; dibble the slips, so prepraced, into a liod mewly dug, and shaled by trees or a north wall. Sprinkle them with water, and shade any part to which the mets. bass necerss. Not one will go back, an: il. thas way a bountiful profuoior. of one of the swertest llowers, and the best of its kiud, may be had from year to ycar."
Frem what are usually called bisonials, we turn to the ropious list of prownials, which may vory properly te sectioned into those with bullwus roots, tulerons roots, and librous roots-the latter by far the most numomus, and including phants of a hertaccous and shrubly uature; th these may be added elimbing and aquatic plants.
Ellabia-Ruotin Fluwsus.-In this class are in-
oluded the hyachuth, narcisaus, fris, lliy, tullp, ne owdrop and crocu, with their kindred variefiea.

The Hyncinth ham a tupering bulb, ahoots up lung green leavea, and hi the centre in a atalk on which tha Hoon, In the form of bella, grown ald round, eauning it to droop or bend. There are aeveral varietien, diflering in eolour, in hue, red, and white, but the blue la the most common. 'The hyacinth in a favourite of the Dutch, by whon it has, like the tulip, been brought to great perfection. The beat kinda lave duabie fluwern with brilliant colourn. A andy suil and naline atmosphere, with a warm expowuro, aro fiavotrable in developing theme propertles. In the Hritiah ialanda, they will endure the winter in the ground, and are antong the carliest hos:3oming plantr of epring. In Holland, the bulbs are lifted and carefully wtored during whiter.

Of the Nacisens there are many varieties, which include duffodils, whito narelsaus, jonquila, and polyanthus narcissi. The chief difference it in colour and sizo of petala. Most have a lightish.yellow flower, with a deeper yelfuw cup. A fino narcianus has tall and firm leaven, und from the centre springs the round tubeolike atalk, on the top of which ia the bright yellow bloom, with putals spreadiag out like rays from a star. Some eend I! two llower-stalka, whd the criterion of excellence is mameivenesm and diatinetness of colour in the cotolla. Of the polyunthus speeies there are at leant a hundred aorin, sulphur-coloured, single and double, white, \&e. like hyacinths, the bulbe remain in the ground duing winter.

Of the hir there are also various kinda, nume low and others tall. Hut alwaya beautitul from the deliency of colour. The Pursian iris is low, with delieate blue and viohet bloswoms. 'I'he Chaleedonian iris is more tull, distinguished by the great size and magnifience of ita flower, which is a purple-blue striped with white. The Enslish iris is of still greater height, and has flowera of donble the sizo of the former. None requires much sun.

The Lily is a plant equally tall with the larger iris. There are many species, with dififerent coluurb-white, orange, and carmine. The orange, speckled with dark dots, is the more common. This plant will grow and bhom with litule sun, or under the shade of trees. The eflect of the orange blowom ia pleasing among green plants which require to be aet ofl by a contrast.

The Tulip is the pride of the garden, or at least stand pre-eminsut in general estimation. Like most other bulbs, it is a nutive of the Levunt, and wus brought to its perfection in Holland, where tulip-fancying was at one period a mania, and the bulb is still a large article of trade. The linest tulip-gardeus are at Hanlem, which ban a warm nud waline climate, with a soil light and rich. liound the roots and over the beda sand is freely scuttered, so that the tulips seem as if growing from a sandy liach. In planting in this country, fullow the same practice. Ilefore planting, take off the brown outer rind. Plant in Octoher or early in Nuvember, so that the plant will hossom in April. In forming a bed of tulipis, the bulbs should be set at a distance of seven inches apart, and in straight rown, tuking care to mix the ditferent colours. To raise from seed, or to improva the varieties by cronsing, aro works of time, and not to the thouglit of in orditury circumstanees. Bulbs can be ohtained from wurserymen at a price ranging from five shillings a dozen to five guineas a bulb. Half-a-crown rach is a common price for tolerable bulbs; but, of courec, all depends on taste. The following is Hngg'a criterion of a fine variegated late tulip:-"The stem shonld be strong, elastic, amil erect, and about chirty inclues nbove the surfare of the bed. The flower shonld be large, and composed of six petaln: these shuuld proreed a little horizontally at first, and then turn upwards. froming aloost a perfect cup, with a round bottom. rather widest at the top. 'The three exterior petali
chould the rather larger than the three interior onea, and hroader at their hawi all the petals should have jerCectly entire adges, free from notefi or merratiure t the top of oach should be liroal and well rounded; the ground colour of the flower, at the bottom of the enp, mhonlid be clear whites or yallow, and the varioum riehoroloured stripes, whieh are the pribcipal ornament of a fine tulip, ahould be regular, bold, und dintinet on the maryin, anut terminath in the broken prointa, elegantly feathered or pencilhed. The centre of each leaf, or petal, shomidd contain one or more bolil blotches of striper, intermixed with anall portions of the original or brociler colour, abruptly broken into many irregular oltuse printa. Some florints are of the opinion that the ecneral stripen or blotehes do not contribute to the leanty and elegance of the culip, unlean confineni to a narrow atripe exnicly down the centre, and that they ahould be perficetly free from any remains of the originat or lireveder colour. It in certain that meh apour very benutiful and dofieate, eapecially when they have a regular narrow tinthering at the evige; thit the greatest connomseura in this flower unaminoualy agree that it denotes suferior morit when the tulip abounds with rith colouring, distributod in a diatinct ant regular manner throughout the flower, except in the buttom of the cup, which, it cannot le dian puted, should be a clear bright white or yallow, free from atain or tinge, in order to conatituto a perfect flower."

In order to have tulipa in nay thing like perfertion, they require a vast denl of carc. As atrong sumatibe iujuren them, they must either be placed in nome mbuly aituation, or covered with a slight awning from the sun's rayn. 'They must, also, on no necount be allowed to go to seed, for in that case the bulb is exhansted and done. I'o prevent this catastrophe, they should be watehed when they appronch perfiction, nuld the head and stalk cut off. A usual signal for cutting is when they conse cloaing at aunset, or when the edges of the petals exhibit the slightest appearance of withering. 'Ihey khould be cut rather too early than too late. After cutting, admit the aun to the stems; and when these wither, whirh may be in June or July, lift the bultos and lay them aside in a dry, airy situation; there let them remain till the period for planting, which is the end of Oetober or begioning of Noventer. If the huths reguire to be sent to a diatance, twist euch separately into a piece of paper; in this ntate, and kept dry, they will remnin dormant, yet fresh and rendy for planting, for years.

I'he Crocms and the Snowdrof are two amall hultons plants, ao well known for their hardy growth that little need be asid of them. Crocusea are very various is co-lour-blue, yellow, white, and ao forth; antl the principal thing to attend to in planting is mixing these colours in a plewing variety. Whon the blom withers, remove it. but do not cut away the numerous small green leaves. Crocuses, like all other bullous roots, require ofcasional transplanting: this may be done in Octoher.

Tenanocr-Rooten Fionsean. - In this class the Dahlia (named from Dahl, a Swedish botanist), hoth from its heauty and aize, ileserves the first glace. It is a native of the temperate phains of south America, and requires a dry and airy situation for its growtlı. 'I'he tubers at the root resemble long potatces, and as they spread to some distaner, the plant miould have a free eface of from two to three tert all rounl. The sterns, at and near the top of which are the rose-like bossoms, riee to a height of four feet, and repuire to be supported oy stakes. A new plant may be procured by seprarating - part of the root, to which a atem is attarlued. Front ut oner blights the green stalks; and when these seem utterly withered and dried, carefilly lift the tuhers and place thern in a drv aifuation for the winter. In May they must be sprung on old manure under a glass frame, end then vlanted out and vecasionally watercd. Dahtias
are now foumil of almoat every colour- the Acme, white variety edgeel with erimmon; Amanda, rony bile. Ariel, white nind lilac; Auguata, purple: Cothtem if Liverpool, acarlet; Kinchantrea, creany edged chery I.ord Althori, dark puce; Yellow Perfectiou; Peerlew White ; and mo on.

Hemuneulurs-'I'his ia a atoek beanity in all pardena and it has onme humilreds of varieties. 'Th tubets are anall, and reyuire to be treated like thowe of the dahlia The hilosson reasmbles a comprut amall rowe, of a fin tish form. 'Jhe mail in which the planter are placed re quiren to the fiuc and ingood heart. In planing ranum culumes and dahlias, the colonra should be arranged io un to produce an agreealio varicty.

The Marrel of Peru is a very fine tap-rooted plant rising to a lecight of two or three feel, and bearing beantiful tranaient llowern, differing in colour, ns pink, white anil yellow, nerording to varletiom. 'Tlere is a aurces anon of blosmoms daily, the oll onee dropping off and new wet ulvancing. In lta native climate, the howsoms do not open till after the heat of the day is over, ahont four o'clow ; the plant io therefore viewed an a kind of time-measurer, and is called the IVent hudia fow orlons.

Finaots-Rontsin Fiowkis.-The genera, apecies, nad varinties of Howering planta with fibrons roots in clucle the greater part of vegetuble proluctiona. A few of those mont grized are all we need notice. Take, fint the humhle trisy, which has been cultivated up fram the wild gouem or daiky, the "wee motent crimson. tipurel Hower," and in now foumd in two printipal varie tien, the mottled crimson num white, and the purs crim son. This plant is the lurdiest of the herhaceons tribe kerps lonkest in boous of miy, and may be propagated to any extolle by apparntion of roots.

I'inks are another univerash fivourite; thry may te viewet as an inferior kind of carnation, and are divided by florises illos the three classes-damuak, cohns, and phen sant's eyc. The criterion of a tine pink in cdeas white petala. laced with crimson purple. und finely bartat don the ellges. 'The brawhes of ktalks reguie" lying to nakes; aul they should le cultivated, so as, if posible, to avoid bursting the culy x.

The l'rimerre family incluiles keverul pretty thawering plants-all, as is helieved, eprung and cultivated up from the wild primrose (primula valenrix) and cowslip. There is no great brauty in the primroses as a garden plant, but it is useffil an an carly tipring llower, and sutceeds the cruens in giving colour to the lurders. The highest culivated of the race is the Iolynnthes, which semak up ateme londed nt top with a hunch of pedunclos, brown, rel, and yollow. 'The colour lonost almired is that shated with a light and rlark rich crimson. resembling velvet, reliesed by a bright golden lime. 'I ho efwrime (primula atricula) is a larger plant, but varying in ob lour, and more Ilelicate in muny resperts. It llourishes bert in rich soil from old turi and roted cow-naug. The chief coloure are red, jink, erimson, white. Whie, appiosereen, and mullorey. On the petals there is a tine meal, which is injured and marked by dreps of rain or artificial irrigntion; and therefiore fower-tanciers the care to Nhellor the plants with a ghase frame, and allow no trops from the wate ring-jan to touch them. Whea treated with attention, \boldsymbol{n} hod of auriculas may be rendered very heantiful to the rye.

The . Incmone, when double, is a pretty flower, with a number of flattish petals fonming a cup, in the centre of which is a great number of long amall petals claster ing over each other. The Iomelin, in its diflerent varie ties, is a fone tall showy flower; that which is most common is the cardinal flower, with splendid scarlet ble aoms. 'flo I y.hnis is another pretty acarlet flower, put amall in size. The Swret-Hilliam is deserving a plate in every garden; it may be had of varioua colours, dad

Ing from deep esi of pramidal bel and white, in a which should als fers. It may be Noorne as won terbacoous l'eou disk, another yond supporting
The Trulet fan ari'trane stad! wild violet (yiol Prench, the cultiv (thought), and the garden luan la beart'mease; and has attained a 1 mr sespects sizo ant book to us for son Alwer, we canno ligible direetions rison's Floricult method of propluy outuinn, which in weather aro mo poutlets, on accon the first week in rich roil, raised a off all superfluour ready, by strippin ting close below must apring; for cay to that joint, Aher tha bed is carding to their tally stirk, numbe of tha owner. 'I pooted in ahouts for blooming in in a frame.
"The moil in is a compost of tor part, leaf mo eighth; but peat as it burns up th chould be woll in aid gluge by ha the heap, and in sithation hext ada shetered from th in the marning, the calours.
"Transplantin doing an an error up with a ball of with it. Now, which it grown, particle of earth we take up with planted again co eituation, as its the stem. To p better to wash av sgain with its ro reek food fior itse larger flowers.
"Tha fullowin cultivation:- It Calenel Dundar Feronia, Haidene, Magnet, Miss J Platonia, Penelo perb, Triumph, minister Abhey,

Vuil I -PN

In-the Aemm, randa, rony lile, e) Countess if y edged chery
fection! Peerlem
y in wil Rardene 'Th tuben are we of tha diahlia Il rose, of a lat itn are placed re 1 planting ramuno d be arrunged no
tajp-rooted plant, nid hearing hemo. r , ns pink, white lere in a surcep opping off and ate, the blowoms pay is over, atont iewed as a kind H'ent India fous
genern, пресіes fibrous roots in. lnetions. A few icc. 'Take, first Itivated up from monlent crimson. 0) pritucipal varie. al the pure crim. herbaceons tribe, ay be propagated
ite; they many le , and are divided x, colns, and phen. thk is clase white incely fertatud on rejbis: tying to an as. if posible,
protty flowering iltivated up from I cowslip. There a garden plant, Irr, unil succeeds rn, The highest which sembup 'duncles, hrown, almired is that uson, resembligg 'J'he duricula it varying in co is. It floarishes otted cow-riung. *on, white. Hue, intala there is a by drops ol rain ver-tanciers take rame, and allow them. When may be renderd
tty flowet, with יp, in the centre If putale cluster. 4 ilillerent varie ich is most com. tid searlet bict. arlet flower. but aerving a place ta colours, dand

Ing from deep ecimson to light pink. The Compoisula, or yyramidal beil-flower, ilı ita diffirent varietion, blue and white, in a graceful flower, with pendant bella, which should also be found in all tattefuliy Inid out borberh. It may be kept long in flower, hy cutting off the Hoom an mon as they begin to wither. The large terbscous l'eony, with its brilliant and deep crimson diak, another choice flower; it requires littio eare beyond supporting with ataken.
The ludet family, which now embrapen whint are termed bart'ranse and punsies, is a cultivation from the original wild violet (viola alorata and rinla friculor). Hy the Prench, the cultivated vioiet or heart'n-eane in culled pienode (thought), and hence our nume panuy. No flower in the garden has lately engaged so much attention an the hear'meame; and by means of culture and hybridizing, it has attained a mont extroordinary degree of perfection ma nopects nize and richmese of colour. As many may pook to us for aome distinet information on thim beatifil Aower, we cannot do better than offer the following intelligible directiong on the sulyect from a work of merit, Harninn's Fluricullural Culinat:-4 The ment approved method of propngation in by taking off young slips in the autunn, which is the bent time, an then the ground and weather are mont suitable for the formation of youog pootlets, on account of Ita dampnens and duilneas. Ahout the first week in October a hed in prepared of light lint rich moil, raimed a little above the path, ill order to drain of all mperfluous moisture. 'I'he cuttings are then mnde realy, by stripping them of their under leavea, and cutfing close helow the botton joint, from which the ronts must apring; for if thia is not done, the cutting will de. ray to that joint, which frequently destroyn the whole. After the hed is prepared, the cuttings are arranged aconrding to their varietios, each sort being marked by a tully stick, nunbered or named according to the pleasure of the owner. 'I'he cuttings will the found to be well rooted in about aix week, when they may be planted out for blooning in the spring, or potted to keep over winter in a frame.
"The moil in which the pansy is found to flourish best is a compast of cow-dung onc-half, fresh loam one-quartar part, leaf mould one-eighth part, and coarse sand oneeizhth; but peat aoil should on no nccount he intermixed, as it burns up the pansy rompletely. 'I'hene ingredients shauld be will mingled together, and puritied from worms and sluge by laving line-water frequently thrown over the heap, and in a whert time it will be fit for use. T'he situation lest adapted for the heart'serease is one which is phetered from the midday sun, bit which receives a little in the morning, as then it is not so powerful as to injure the colours.
"Trumsplanting may be performed at nny senson, hut in doing нo an error is prevalent. We see the plants takent up with a ball of earth nround them, and planted again with it. Now, as every thing deteriorates the soil in which it grows, and na the pansy entirely pierces cevery particle of earth its roots can reach, therefore that which we take up with it must be entirely exhausted, nod when phanted again can receive very littlo food from its new stuation, as its roots do not ly nature atracgle far from the stem. 'To prevent this starvation, it would be much better to wash away all the soil from the roots, nud plant it again with its roots unconfined; then it would be able to meek food for itself abundantly, and therely produce mueh larger flowers.
"The fullowing list contains some of the best varicties in cultivation:- Argo, Augusta, Anne Eliza, British Qucen, Colonel Dundas, Onptivation, Dandie Dinmont, Eelipse, Feronia, Haidee, Henrietta, Imogine, Jewess, Livia, Laura, Magnet, Miss Jane, Miss 'lowers, Paul Pry, Peter Dick, Platonin, Penelope, (queen of the Whites, Relinnce sujecr, Triumph, Victoria superha, W ycomb Abbey, Weatminister abbey, Windsor Castlo, White Perfection, Li-
Vomil \rightarrow PiN
heral, Aeme of Perfection, Ringleader, Revenge, Victury Mian May, Glory of North Durhem, Heanty of the Wear." 'lo thin we may add the Fair Maid of Perth, and L.ord John Rumell.

Bunvaat Gannay Peantam-Among these the Rofe unquentionably dimervea the firat place, having from time inumomorial heen a favourite in every garden. There ars some hundreda of apecies and varictien of romen, anong which are included China rown, hardy elimbing rowem, mons romen, melect double Scotch roses, red and white rones. The Chima rowe In delieate, with few petala in the dlower, and yields a mueceasion of blownoma monthly through a great part of the year; it in hardy, and ia green and Ilourishing in winter. Anong red rosen the mees rome is the mont heautiful, and next it may rank the cabo hage tove; but both are excelled in fragrance by the lenves of the Euect liviar, a rose shrub, which, for the sake of itm delicioun odour and harily green lavena thing of moment in making up a bouquet-albovid have a place in every garden. All kinds of rome-buahea are exhatative of the roil, and should the frequently manured, if not tranmjlanted to fresli mould. In order to keep them in bloom, cut off all blosmoms which acem about to wither. 'Itie branches require careful pruning. For udoruing the walle of summer-houses, cottagen, \&c., the Honeynuckle excela, and shomid, both for its beauty and frugrance, by all menna have a placo in every gaiden. however humble. The hu, eysucklo is a trining 「ant, and has a tendency to clic.b in a apiral dircetion from right to left, which requires to be accommod ted. The llop, which in sometimen grown in gardens, and allowed to climb on tall polen, twinen in an oppos 'o direction, or left to ricelt, or with the s:sh, and thip peculiar teniency, nlso, must not bo frustrated, but a.mosted by atr") of linss. In point of massivencss of green autface, honeysur a in eurpassed by the Janmine, a tall s"ワn: Is slirul, growing up in numerons branchee, which. 'risig well covered with small narrow lenver is very suitable for leading up werpandahe or concealis, \because es of wall. It does not adhere, and requires nnilin : \ddagger winn carefully treated, it massive green and eleganty drooping small branches have a pleasing effect. Iry, the most pertinacious of climbing plants, will grow almost nnywhere, und only requires pruning, to keepit within bounds, every winter or spring.

Among the various tall bushy shrubs most npproprinte as an ormamental back ground in gardena, are the difierent species of Limurnstinas, Azalens, Rhoriodendrons, and Lilacs. I'lue Lunrusitita yiclis a plentcoun crop of smali variognted blessoms. The Arbutus is likewise a brautiful slirub, but more suitable as man embellishonent in Inwne; it has small swhitish bell-shaped flowers, and yields a strawherry-like truit in warm exposures. Perhapa nll ont-of-aloor exotic slirubs should yield the palm of beanty to the dibiss sangninemm, n plant profusely adorned with small red hossome .hint appear in spring. It reacmblea the corrnint, and ras! arf. its herries in our climate

Evemunfissi--Thi, is a class of shrubby plants, more atitable for the onnamental front-plots of dwelling-houses, or for approsches and lawns, than for gardens; because, although the eraen of the leaves is pleasing in winter when other vegetation is dend, these plants are very exhaustive of the soil: aften prevent the sun from getting to the thorders; and keep the ground in a litter with fallen leavea at a time when trimness is expected. Many species of everцrevis are now cultivated in gentlemen's grounds; but those which are most generally estemed for ornamental plota or other limited situations, are the various tribes of laurels, ulaternus, arborvite, holly, juniper, and box. With preper care, any of these may be litted and transplanted into situations more agrecable to the cye, eithes at the leginning of September or May, when young shoote are preparing to burst forth. The plan is to dig all rourd them, at a distance equal to the compass of the branchea,
duking the trench to a point beneath the sola of the plant; then lift them bodily with the whole mass or ball of earth round the roots. A pit must be prepared for the reception of the bell, and when placed in its new aituation, fill in the reat of the pit with fine earth, laying the rootlete straight, and parking in ull neatly to the surface. A copious atream of water must now be poured from a watering-pot upon the newly placed mould, round the aten; this carriee the particles of earth to the rootlets, surrounding each with its proper nonrishment and giving solidity to the plant. If likely to be exposed to winds, the plant should be enpported in some manner.

Conchuding retoarks on the Garilen.
The preced 1 g are the priacipal flowering plants nnn al and perennial, herlaceous and shruhby, oually grown in open gardens in England and Scothand; and, if wo have fuiled to do so, we wish now to impress on the minds of the euprof 'ssiounl flower-eulturist thres main principles which sloould govern his labours. 1. Let him, by every reasonable attention to gail, culture, and ether circumatances, endeavour to produce the finest corollas of which any given flower is susceptible: 2. Produce these tlowers only in their proper season, and throw away as litile time as possible in farcing blooms at unnaturn? periods: 3. To maintain a garden, as far as possible, in continual heauty, try to keep up successimal variety, for in that is exhibited the experience and foresight of the gardener. The directions given in the foregoing pages, and in our foricuitural calendar, it is hoped, will assist in leading to this arrangement, on which so much beouty depends; and, as a further sid, we offer the following hints furnished ly a correspondent to the "Gardener's Chronicle:"
Secesaitonal Vamiett.—"It is the degite of every one who possesses a garden to have as much variety of colour and auccession of gayety throughout the season as the situation and means of tho possessor can accomplish; yet, in viewing most gardens, even where expense is not an object, hordera devotell to the cultivation of particular plants may frequently be obocrwed to be only attractive when such plants are in blosson, and looking bare, if not uasighty, after the blossom is over.
"Supposing equal skill in the cultivation of plants in general to exist among gardeners, the great superiority in effect of one garden beyond another, consists in the distribution and arrangement of the planta thenselves, so that a auceession of blossom, and a due contrast of colour whould, where practipable, keep every horder furnished even to the end oi autumn. In this respect most gardens are deficient. Succession is not attended to, exeept for the more limited space and favoured apots near the mailwion, or in frout of the censervalory. In most gardens it is considered sutficient to keep any border where plants have blossomed free from weeds and neatly raked. To the mind of the gardener this border tells ita own history, If the beauty of which he had boasted but a few weeks玉. ce; but the visiter or casual observer, who walks through che garden, only seeking to please his pye with varied gayety, makes no allowonce for the past, which he has not men; and renarks, that though me parts are beautiful, a great portion of the ground has wothing worth looking at.
"By the following method, the co:pparative gayety of the acene may be kept up, and a reiief to the eye, not without interest to the cbserver, proserved. Mix the seeda of the following annuals:-

Mgingrite,
Carmation pop
Cornation poppy,
Panaler hatimus.
Dwart Outclig opry
Fratult yopisy.
33ranchine Inrkspu.
Euchochohaa 'aliforaicu, 1)o, l'ruicen, Curtranila apecisham, Inniflun, varieties, Aastirtiufl.
Cemturea ryanue, of va-
rious colours.
Theam's ease,
Clarkin pulchella, to. whisa. Gorlena of nil sorts, Anithioum mela,
Do. pintlenum,
Do. rersicolor,
Collinain bicolor,
Cormepiniz lincioria.
Touvolvilam thinor.
Gillit tricolor, End other spectes.

* Then let this mixture of aeed to very thinly entiond upon the borders early in the mprise; it need not lates fere with any ordinary work on the borders that may hes required afterwards; and in placea where the ground may be disturbed, many of the seeds will only appes, at a subseupuent period, and consequently flower later in the autumn.
" Most of these annusis will continue flcwering until the frost killa them, and, if not removed too soon, will lenve behind them oufficient aned for years to come Every gardener hna remarked the strength, the brauty, und the effect of gingle plants of aelf-gown annuals thal sping up oecasionally in a flower-lworder, and have escapol that destruetion whieh the merciless hoe, in the hand if the undiscriminating jabourer, inevitably entails upun them; yet if the intelligent lubourer is properly instuctod he will soon learn to confine his extermination to weeds, and his skilful eye will spare the annuala at proper in tervals.
"One casc yet remains of inueh consequence to present as well as to future elfect, though generally but little ot tended to: this is the frequent examination of all annugl us they expand their first flowers, and the pulling them un, unless, in habit, form, and colour, they are fit to ro muin for stock. Crowded as annuals generally are in the patches sown in gardena, their true character and besuty are seldom seen; and if among the mass sown, some few blossoms appear more striking than the rest, sud the seed of these is considered more wortliy of preservation, it it generally too late to take away the worthless witheut de stroying the plants most desired; and the seed so saved from the most select variaty is but little better than that from the other plants.
" i'he system now recommended gives the advantage of separation and a power of selection, with the certaint that a selected plant will, by its position as a single plant, not only blosson in beauty and vigour, but afford that abundant harvest of gond seed which will amply repay in future yenrs the trifing care thus proposed to be bestened upon it."

Gaitden-W a les.-In the previous narticle on Kitcney. Gainesino, we have recommendel wollis to be thret feet broad, laid with gravel bedded on hord cinders, and edged with dwarf-box. As an improvement, some plact a lied of stones berneath the cinders, or at lenet the uppe gravel, and on this point all munt, less or nore, be govemed by circumstances. Where it can he afforide, auphlulu pavement may be employed instred of all other meterial In the neighlourhood of London, where finc yellow Ken sington gravel can be obtained at little eost. it is layet employell, and forms a treautiful walk, the yellow contas. ing finely with the green of the plants. On the subizer of garden-walka and borderings, the author of withe Manse Gurden"" offers the following recoumuendations, ii which we unite :-
" In making walke amonget ahrubs and flowem, dy: ness and variety of edging are the chief things to be pia moted-these not being here, as along a fruit-wall, forthe sake of the trees, any weruple as to the burying of stomm and there ought to he none as to the troulle of a two feet exceavation ; for every cart-luad of eorth so sesedis worth money, and the eonvenience of dif positing steme in place of the earth will save a great expense of carmana Box, though tirtrome, if there the no ollere, is by fun the brent edging for general use; but the planting of it is offen huugrid or done at a merlicest expenes. Take op with a ppale a portion of the ellging that has grown tom oll, and part the roots : one yard of the olld will erru for ten of the new-a sulply that is not oltuined two the nurseries without cost. in parting, tear all the old

[^49]wh downme that the roots be gle fibre is it is not ne dould be abo excavation \boldsymbol{w} on either sid I nicety, usi windings ea beat all smuo ting, With inches, pullin green tops of above it not another. T few plauts be the earth is a The reverse not the tops appeareace t wme set like proceed, and dle. The ef remarkable it small repute to be and is than unmea teeth, or the Box may he der; in Febr op by new avoid rotting may be set in
"For othe gets deforme planted: who verve for the of pairing, an or prinnose d an uld tree e green linc ly or ivy at som tree, where dipped, mak of ivy to r sheuld it he the tree is th its timber. may be kept parting of t make a bean most brillian must have h bright sky-h is also fine, place where or where 0 nothing so sullers no in bly strona: nuich a place of its growt The write process:-" arviling of truble of anp stratum face of the clean ly sift ting quit ol thod, the to gruvel, whic
very thinly seatiened ; it need not inter. borilere that may io here the groond may Il only appes, it flower later in the
none ficwering until oved too soon, will for years to come, rength, the besuty, sown annuals thit cr, and have escapod hoc, in the hand if itably entails upna ; properly inatructed rmination to weels, nuale st proper in.
requence to present nerally hut little at. nation of all annua' d the pulling them r , they are fit to re. generally are in the haracter and besuty hass sown, sonie fem he rest, sud the seed of preservation, il is orthless without de. 1 the seed so sared ttle better than than
ivestle a dumnsered with the certainty ion as a single plant mur, but affiond that will smply repay in posed to be bestowed
article on Kitches. d walles to be thre n hard cinders, and vement, some plac or nt least the appe or more, be govemed e afforded, asphaly f all other motetiol ere fine yellow Ken te cost, it is la!gely the yellow contras. its. On the subijent e anthor of "the recommendations, in
and flowers, ins. ief things to be pros g s fruit-wsll, for tho e burying of stober e trouble of a tron of earth so saved is of ojprositing stones expense of carriage. other, is hy far the te planting of it in expense. Take up that hes grown tox f the old will serve 3 not obtained tmm ng, tear all the old

Guin down into the amallest shreils; throw away every and that in thicker than crow-quill, and cut off all the roots beneath the uppermost tier of fibres; a single fibre ks enough ; with none the plant msy do, but it is nat necessary to try it. The planta so trimmed hould bo shout four inches in length. Having filled tha axcavation with stones, all to four inches left for gravel on either side of the walk, dig the surface, set the line to a nicety, using many pins at every turn, to make the windings cany; hring the level exsctly to the line, snd beat all smooth and firm. so that the earth may stand cutting. With a trowel, cut by the line to the depth of three inches, pulling the esrth towards the walk, and lay the green tops of the plants to the line, setting their heads above it, not more than one inch, and all toucling one another. The roots will vary a little in depth, but let a fow plants be held exact at the top with one hand, whilst the earth is spplied to the unequal roots with the other. The reverse rule of evenneas, providing for the roots and not the tops, is frequently adopted; hence the straggling appearaoce that cuaues-stome leaning out, and others in ; sume set like a tree, having a stem from which branches proceed, and others having loranches sunk up to the mildle. The effect is a strong feeling of indignation; snd remarkable it is, that though correctuess of lining be cf small repute in matters of taste, yet, where a line ought to he and is designed, few things are harder to be endured than unmeaning deviations-as in the csse of ill-set teeth, or the sttempted lash of a clunsy handwriting. Box may he planted in September, October, or Novemoer; in Felruary, Msreh, or A pril. 'Io wet elay, brought up by new trenching, cosi-ashes may be added; snd to avaid rotting by long moisture without growth, the plants may be set in May or June.
"For nther edging, sea-pink is very good, but it soon gets deformad with blanks, unless taken up and replanted: whereas box, annually elipped in autumn, will verve for the half of a lifetime. London-pride admits of pairing, and will last for five years; coarse polyanthus or priarose does well beneath trees. Should the root of an old tree come in the way, it is easy to keep up the green line lyy planting periwinkle, which needs little soil, or ivy at some distance, and leading the runners past the tree, where they will take root all the way, and being elipped, make a handsone appearance. The propensity of ivy to run up the tree is easily counteracted; but should it lie indulged, few things are more beautiful, and the tree is there rather for ormatwent than for the value of its timber. Double-daisy and cowslips may be used, and may be kept any length of time by occasional lifting and parting of the roets. Hepatica, blne and red mingled, make a heuatiful edging, and will last an age: but the most brilliant of all is dwarf gentian; it lssts long, but must have half a foot in breadth, to secure plenty of its bright sky-blue flowers. The pansy or tricoloured violet is also fine, but must be replanted every year. For sny place where the walk gets smongst high shrubs or trees, or where a sloping bank is of ditficult keeping, there is nothing so fit for a low hedge as butcher's-bruom ; it sutfers no injury by drop or slisde, and grows immovaWh strong; and not agreeing with the shears, it is in wich a plare inoro suitable in the natural sluggishress of its growth."
The writer now proceeds to speak of the gravelling process:-" In the gravelling of walka, any rule for the arviding of unnecessary expense, and the sobsequent trouble of weeding, must be a desirable olyect. Let the op stratum of stoues le such as are raked from the surface of the garden in dry wrather, and made perfectly clean ly sifting, which is by fir the readiest way of gretling quat of them in cleariag the ground. By such method, tho top stratuin being of small stones, much less gruvel, which perhaps must he brought from a consideraWo dintance, will auffice. To have no unnecessary car-
riage, the gravel at the pit or river side must undergo onfe sifting with a search one jnch hetween the wirea, disposing of all large pebbles. Of stuff in this state walk are commonly made, and the result is oyil continually. The sinall mand is a seedling hed for all manner of weeds, and the coarser part compacted with it renders hoeing slmost intpracticable; nor is the work well over till, in showery weather, there is need to begin it again. Thu the coarso and fine work to each other's handa, the one giving birth to weede, and the other protecting them. Divide and govern; dissolve the compset, and the conquest is easy. Use a quarter-inch search for second siffing, and apply the coarse to one part of the walks, and the fine to snother. The coarse, it is truc, does not bind; but that ia the besuty of it; it will not graw one weed for many years. No feet are idle un such a walk. Every one who comes into the garden doen some good: the gravel is centinuslly shnflled about, and an immense deal of work is saved to the hoe. For dryness it is ad-mirsble-a property which makes the roughness a plear sure, as every one feels in walking on the ecu beach, though much rougher, and not more dry. "nd now for the small sort, which is almost pure sand, and in most cases will be three to one of the gravel; it biinds and grows weeds, but the Dutch hoe pares it as casily as moss is scraped from a tree. For the wheels of a little coach, such walks have 1 le smoothness of marble; and, as to the raking of leaves, on gravel the work is imperfect; on this as neat as the sweeping of a floor."

GREEN-HOUSE PLANTS.

These are of various kinds, both herbsceous and shrubly, and require to be distinguished from the proceding, only beeause they are exotics, too delicate for open-air exposures in all weathers, and require to be kept in a tomperature above the freezing-point. This is done by placing them in a conservatory or green-hotise, which is a light fabric, covered with glazed frames, and, if necessary, heated a slight degree in winter by meana of flues or pipss of hot water. The most spproved situstion of a green-houst is against a wall with a southern exposure; and, if possible, placed in connection with a range of artificial vincries or hot-houses. In many instances, s conservatory is connected in a very sgrecable way with the pnrlour of a dwelliug-house, by whict. Ita beauties are enjoyed without the troulle of going out in bud weather or during the inclemency of winter. All the plants are in pots; and, whenever it can be done without risk of injury, the frames sre opened and free exposure permitted. At the country-seats of various English noblemen, conservatories sre formed on a magnificent scale, so as to sllow the free growth of even tall trees, such as the palm nid other large tropical planta,

The most beautiful green-house flowers usually cultivated are Camellias, Geraminms, Fuchsias, and those of the Cactes tribes, to which has lately been added the Azalea Indica. The Camellia, or Camellia Joponica, is a woody shruh, yielding splendid rosc-like flowers, of colours varying from white to ret. 'The Geranium is a well-known herbaccous exotic, with clustering bunches of flowers of diflerent coloure. The Furhsia, introduced from Chili, is a handsome shrub, of dillerent varicties, yichling exceedingly beautiful tlowers, of a bright crimson hise; and the manner in which these flowers depend from the btanches, like drups of ladies' ear-ringe, has a siugularly gracefol effect. The C'adi are an interesting kind of exotics, distinguishiole by their thick and auostuntial heaves or fronds, on which usually grow emall and sharp prickles; the tlowers ure splendid. Bestided these, we may enumerate, vither for their great benuty of blossom or frugrant odours, the Nerium, Jusairioms. Garilenia, Daphue, Meliotropiam, Acacia, Mimosa. Eiv. calyptus, Diosma, Gnidia, Xeranthemum, Bignouia,

Pendiora, Amaryllis, Aladiolua, and Calceolarius; the hetter very beautiful and suitable for open air in aumner. - An aity parlour or drawing-room, with windows facing the ann, may be considered a domestic green-house ; and these apartments, as is well known, may lof furnished with flowering plants, which will hloom and thnve if cortaln precautions be adopted. Flowera of nearly every kind may be thus treated, and made to form an elegant ormament, and means of delightful recreation, in a dwell-ing-house. Accorling to their nature and size, they are planted in earthenware pots, or small wooten tubs or boxes, filled $\mathrm{t} p$ with the appropriate mould, which requires occasional renewal, at lenst in part, with the romoval at the same time of the outer rootlets. Bullous plants will grow and blossom in glassea filled with water; but the plants are necessarily weakened by the process. The glasses should be dark coloured, for the roots of the plante are injured hy light.
On the subject of the cultivation of flowers in windows, we find the following useful ohservations in an oxcellent periolical, the Gardener's Chronisle:-"The three principal things requiring consideration are air, light, and moosture. Planta kept in windown naturally extend their branchea and leavea to the light, and they thereby hecome one-sided; and it is wrong to endeavour to make them otherwise by frequently turining them, at the plants will an constantly turn their growth to follow the light, which not only weakens them, but epoils their appearance. As for planta receiving no perpendicular light, it is more natural to spresd them out, forining one good face or tier of healthy foliage to the window; for well-balanced heads under such circumstances are alnosi out of the question. Place them as near the glass as possible; of course, windows having a south aspect poness the greatert advantage.
"Judicious watering of plants in rooms is perhaps the most important feature in their management; and it is unfortunately in most casen ill understood, leing too often given mechanically, as it were at stated times, whether required by the plants or not; and, by a too cager desire for their weltare, they are frequently surfeited to death with water, wisich is justly terined 'killing by kindness,' and is practised with success, eqpecially liy ladies, from a false apprehension of their wants. In summer this carnot be easily accomplished, unless the plants are allowed to stand in saucers constantly filled with water, which, by overloading them with juices, will soon engender sickly sott growths, unauited for the production of tlowers r healthy foliage. An exception to this rule is the growth of annuals in pots during summer: they, if well Irained, may stand in feeders; lut these, whonever used, should be half-filled with fine gravel or sand, which may be kept in a state of moisture. The best and only general rules that can be adopted are-in wizter, keep plants aot then growing fast rather dry ; in spring, increase the quantity with their activity and the sun's power, keeping them in a medium state of moisture; in summar, water daily; and in autumn, decrease with the length of day and the returning torpidity of the plants, unti! the dry state of winter is again reached. All this resolves in the following:-Plants when groving fust may have free supplies of water, which must tw leswened as their growths approach maturity, and cease, or nearly so, when that is sttained, until the return of their growing season. As regorde air, similar rulcs to those given for waturing may oe fillowed; and indeed they are analogous. In umeter, when the plants are not growing, large supplies of air are not ao important, enough being ustually given by the room door. As spring advances increase the quantity, earefully guarding againat the cold of mornings and ever:inge, or cutting winds; and if the plants are placed out in the middle of fine days, take care $t w$ bring them in before the chill of evening comes on. After the first or exond week in May, they may be oet outside for the
aummer ; and towarda the end of Septomber, or an nom. as heavy cold rains occur, they should be plared again ho their quarters for the winter, setting them out of doon when fine, or supplying them with plenty of air by the window, until the cold weather and decrease of moistum at the roots bring them to a state of comparative resh it should be remembered in apring and autumn that the plants muat not go out to-day, because they were placed out yesterday, but the weathor alone must deternine: audden changes muat at all times be avoided. The leares of plants act aa lungs, by which they breathe; if they becone dirty, their respiration is impeded; therefore an occasional careful sponging will be useful to them. In spring and eummer allow them the full benefit of geniad showers, which will do them more good than any artif. cial watering. Never use spring water if sof or rain water can be had; and alwaya let it be ahout the same temperature as the air in which the plants are growing It should hardly be necessary to mention the removal of decaying leavea and flowera; the last are exheusting as well as unsightly.
"One principal potting is usually required, end after warde as often as the plants may fill their pots with roota or scem to require it. The nost important thing is good soil, which, if composed of three parts loam of a filbrous open texture, with a fourth dung, most planta will thrive in, using plenty of drainage to allow water to puss of readily. Never auffer the surface-soil in the pots to he come hard or moas-grown, but let it be loosened occasionally with a piece of stick.
"Succulents are well auited for growing in rooma, an they are not so impatient of cither air or water as most other planta; and tho abundance of their leautifyl flowen renders them objects of interest. Cactus speciosis, Jenkinsonii, flagelliformis and speciosissimur, Mesembry. anthemums, and Flowering Alocs, leserve epecial notice
"Green-fly is apt to infest tho young shoots or under sides of the leaves; to deatroy them, moisten the infected parts, and dust with Scoteh snuff, or brush them off a soon as detected with a feather, or dip them in tobaceor water. Fumigation with tohacco will also deatroy them."
To the foregoing is added the following list of flowen for pots, with the periol of their blossoning :-
. For Suring.-Snowdrops, Russiun violets, early tulijw, crocus, narcissus, hyacinths, henrt's-ease, miz nonette, mimulua moschatus, ranunculus, anemone myrtc.
"For Summer.-- Γ^{\prime} 'aurgoniums, mignonette ten-went stocks, Clina rosea, double wallfowers, pinks, carnationi cactus, aloes; annuals, as nemophila, schizanthus, out linsia, \&e.; myrte, heliotrope.
"For Autumn,-Yelurgoniums, lokelina, campanulas salvias, hydrangea, verbena, fuchasias, petunias, calceola rias, myrtles, heliotrôpe.
"For Hinter--Chrysanthemums, pelargoniums, helio trope, myrtles, fuchsias, aloes, eactus.
"C'reepers suitalle for training round the ontside of uindoics.-Rhoulochiton voluhile, maurandia sarelasana luphosperinum scandens, convolvulus myjor, truprefina atrosanguincum."

DOMESTIC CONEERVATORIES

If the atmozplere of the apartment in which fowen ing plauts are kept he liable to vitiation by the action of coal fires, by the breathing of the inmates, or other cin cumstances-in short, if the air is not preserved pare, it is clear that the plants will languish, and afford litite plensure to their amateur kecpera. In order to remeds these and other disadvantages, a plan has lately lxen invented of keeping plants in a secluded box, forned chicfly of glazed frames, in which nituation they grow fourish, and perform the remarkable function of presert ing their owis atinosphere in a state of purity. Thin
keng an axcee we beg to off Chamlerr'ı F "Any persol the most aplen no the sun's lig rate a misconi besuty of :neir drough all the wisgnificant as moderate circu cparatus, colis a size accor capaity of a We shall supp ta window Procure a atro ind a half feet no top is wan prepared to res 0 be made in wilh lead or z placed o glasshape; it shoul loping top, an wards on all must he framed employed for may cause a When great is uscd, ond th must be made bor, and in suc nsile of the c loor on one sid At as nicely as vices to permi Nom and the the case shoul painted, to pre the finer the plants, Wher are to be plac front of a wind everal hours o tus lase been date, is represe

We now co the bottom of ware, to a d Next, lay a st in the remain wish a portion crden-plot is Leese in the ue with a waterin cill the soil the nd by the two
ber, or at mace plared ugain in a out of doon y of air by the ase of moistur arative reat. It atumn that the ey were placed oust deteranine led. The leaves resthe; if they ; therefore an 1 to them. In enefit of genia thanl any artif if soft or rain about the same ts are growing the removal of e exhausting u
dired, and aften pots with roota nt thing is good am of a fibrous lants will thrive ater to pass off the pols to be lloosened occa
ng in rooms, as or water as mos beautiful flower actus speciosua nur, Mesembry e epecial notico hoots or under sten the infreted ush them off ap nem in tobaceo a destroy them." g list of flowen ing:
violets, earl: enrt's-ease, mis ulus, anmone,
onette ten-weds ninks, curnations schizaulhus, ont
ias, campanulas tunine, calceola
argoniums, helio-
I the outside of dia durclaysan onjor, trypaulura
in which flowes by the action of tea, or other ciureserved jure, it and afford lithe order to remedy has lately hen led box, fonned ation they grow ction of preserp of purily. Thin
beng an sxecedingly intereating department of foriculture, we beg to offer a full explenation of the subject from "Chamtern's Edinhurgh Journal," No. 422 :-
"Any person, whether inhabiting the most humble or the most splendid dwelling, provided it be freely exposed to the aun's light, has it in his power tu rear and cultivato miscolianeous collection of plants, to enjoy the besuly of ineir appearance, and to watch their progress through all the stages of their growth, at an expense so insignificant as to be within the means of every man in very moderate circumstances. To do this he muat provide an apparatu, cousisting of a box, with a glase-case over it, of a aize secording to his desires and means, from the capaity of a small trunk to that of en ordinary closet. We ahall suppose he wishes one of a small size, to stand at a window in an apartment of limited dimensions. Procure a strong wooden box, three feet in length, ane and a half feet in breadth, and nine or ten inches deep; po top is wanted; it should he painted, or otherwise prepared to resist damp. Two small holes for corks are to be made in the bottom. The ledges should be covered with lead or zine, and slope inwards. Over the box is placed a glass-case, resembling a garden forcing-frame in dhape; it should mensure eighteen inches high up to the sloping top, and then the top or roof should slope inwards on all sides, to meet in the contre. This caso must be framed with lead or zine, whichever be the metal imployed for the ledges of the box. Difference of metal may cause a galvanic nction injurious to the plants. When great clegance and durability are required, brass is used, and the box is made of mahogany. The case must be made to fit with nicety upon the ledges of the bor, sud in such a way that moisture will flow down the inside of the case into the box. Tho case should have a door on ene side to open and shut at pleasure, but also to fit as niccly as possible; there must, in short, be no erevices to permit a free interchange of oir betwixt the nom sud the interior of the case. The glass panes in the case should be fitted with eare, and the putty well painted, to preserve it from the action of tho moisture. The finer the glass is, tho better will he the view of the plants. When we add, that the box, with its glass cover, are to be placed on a four-footed stand or low table, in fronl of a window which is exposed to the sun during several hours of the day, the entire fabric of the apparalus has been described. The apparatus, in a complete sate, is represented in the annexed figure.

We now come to the preparation for the plants. Iay the bottom of the box with pieces of broken earthenware, to a depth of two inches, as an open subsoil. Next, lay a stratum of turfy loam an inch decp, und fill In the remainder of the eppace with good soil, mixed witi a portien of peaty loam and sand. Tho artificial garden-plot is now reaily to recoive the plants. Set these in the unual manner, and then ahower over them with a watoring-pot from three to four gullons of water, bill the soil be pretty well saturatel, and the liquid runs aff by the two spenings in the bottom. When this is
done, cork up the holea, place the case on the box, and the operation will be finished.

A question will here readily occur-What spectes of plants are best adapted for these domeatic greenhouses ? We are fortunately enabled to answer this inquiry by refcring to a learned paper on the subject by Mr. Ellia, which was read to the Botanical Society of Edinburgis January 13, 1830, and afterwards puiblished in the "Gardencr'a Magazine," vol. xv., and also as a separate pamphlet. According to $\mathrm{t}^{\prime} \cdot \mathbf{3}$ gentleman, the plante most suitable are "those which partake largely of a cellular structure, and possess a succulent charscter, and especially those which have fleshy leaves; whilst, on the contrary, the continued humidity is unfavourable to the development of the flowers of most exogenous plants, except such as naturally grow in moist and shady situations. Plants, thorefore, which have to grow and bloom in cavernous and moist situations, or at least in moist and warm climates, are beat adaptod for these casce. However, within this class of vegetables there are many beautiful and highly luxuriant plants, which it would afford no small pleasure to conteinplate. The following is a list of plants from various countries; which were set in a box under Mr. Ellis's directions, and examined from nine to twelve inonths afterwards:-

Botanical Names.
Chamerops humilia
Gentiana verna
Adiantum Capillus Veneris
Primula furinoma

Seoties

Verbascum Myeoni Androsace villosa

Chamerons Palmetto Dionea Atuscipula Surracenia purpurea

Fpigæa repens
Testudinaris elephanuipes

Khododendron ehrysan-
thum thum Chameerstus Cyens revoluta Sepenthes tistithatoris Cypripedium venastam insigue Agnve geminiflora © Goodyera discolor Eehnoearins multupt. eperaviana
nyriacantha
*) Ormosa
Otrini canilith \quad Mrexico Epiphyllinm truncatum Cerens flagellifornis Lyenpodium smonife. Thm marked Cuba Those marked thum * are gro pended irom the roof of the plant-case.
Plants, after the first preparation, require little or no care; the case need only be opened for the removal of ded leaves, or for a little trimming when required. Plants in open flower-pots are exposed to the vicissitudee of change of climate, and require constant watering; but the plants in these cases seem to be indepenient of any change of temperature in the sir, and water themselves. The moisture rises by the sun's influence from the moistened earth, cherishes the leaves of the plants in its ac̈rial condition, and during the cool of night falls to the earth again like rain or dew. In this manner there is a constant succession of rising mul filling of meisture, in initation of the great processes of nature daily going on in the fields around us. The plunt-case is a little world in itself, in which vegetation 1 supported solely by the resources originally commusieated to it.

Not the least remarkable point in the econorny of the case, is the preservation of atmospheric purity. To all who reflect for the first time on this aubject, it will seem incomprehensible how the plants can possibly thrive and hlossom without the occasional interchange of fresh air with the atmosphere. This certainly docs appear extruodinary, yet it is nscertained by exper:ment that no auch reinvigoration is reciuisite; to account for the phenomenon, it will be neecessary to renember that while plants inhale oxygen from the atnoophere, and expire carbonir acid, their lenves poseess the remarkahle property, in conjunction with the sun's light, of retransforming the carbonic acid into oxygen. At night, when the light of day has departed, the expired carbonic acid may be detected in the neighbourhood of phants, and hetice one culuse of injury to health by breathing uight-air; but when the morning sun again bursts upon the scene, a great chemical process conmences in the atmosphere-the cntbonic acid in decomposed, oxygen is evolved, and all nature rejoices in a re-creation of its nupropriate nourishment.
With reference to the elosed conservatory, we now ses that the deterioration of the atmusphere will be daily counterncted by an epposito process of purification: so that aididst the vieissitudes of perpetual change, tho air is mainuined in a state of nearly uniform consposition and purity, and serves over and over again for all the purpuses of vegetation. It may, hovever, be stated, to prevent misconception, that the more purr the air of the apartacent, the plants will have the better chance of thriving, because these must necessarily be an interchange to some extent betwixt the air of the room and the case, in conseruence of the daily expansion fron heat and nightly condensation from cold. This interchange will be effected by the minute crevices in the apparatua, and therefore requires no special provision.

bock and aquatic plants.

If apace and means permit, a flower garden may bo much improved by introducing a piece of artificial rockwork, and a small pond; becauss, in comection with these, cortain highly interesting plants may be reared or kept, which would not answer in a plain eartly soil or aurface. In order to increase the cffect, the pond should be at the hase of the rock-work, and receive from it the trickling of water which has been conveyed to the summit in pipes. Let the rock-work possess a natural appearance, with rugged sides, and perhaps be ten or twelve feet digh. Rocks of the snme kind and colour should be placed together; if intermixed, they seldom wear a natural appearance. A dark cave, pene(rating into the thickest part of the erection, is not very difficult to construct, and, when encircled with ivy, and nhabited by a pair of horned owls, which may be carily procured, it will form a most interesting object. Rock plants of every deseription should he profusely atuck around, and, in phe sbort tivelve-month, the wholo scene will exhibit an impress of antiquity far beyond anticipation. The undertaking, when completed, will present a field of varicd and interesting study, and more than compensate for all the attention and outlay westowed upon it, the aquatic and rock plants, which formerly were "far to seck ard ill to tind; will tha be brought within the range of every-lay observation; the wagtail, oxcye, and stonechatter, will he astracied Wo the sfot, unt, perhaps, hecnuse they are lovers of the picturesque, but because they find cevery thing here suited to their nature; and colonies of the wild bee will eoon be seen and heard around the interstices of the rocks, and heavily lalen with their winter store.
A weeping-willow adjoining and one or two mountainanhes, wilh add materially to the leauty of the acene; ond. If the spot be airy, there might with advantage
be planted, on or about the top of the aminence, variety of what is uaually called the Scottish thisth. This tall elegait plant will not thrive in lox or damp gituationa, and prefera a bracing to a warm atmosphere hence, though a beautiful object in borders, it will bo found difficult to brisg to perfection in some situations It may be reisarked that thore haa heen aome unces tainty as to which is the true Scotlish thistle, or ths figuried in tho national emblazoument. Mr. Dovaston, in a communication to Leighton'a ilora of Shropahire, states that, in a tour of Scotland, ho asked many per sons which was tho Scottish thistle, and fuund many different opinions. A Hebridean gentleman pointed to the C'arduus eiophornts, and Sir James Grant, at Inver. ness, modicated the Carduus nutana. For our own part, we do not believe that, when the cmlilem was adpopted, any prrticular species of tho plant was meant : the leading idea was the selt-defending power of the thistle, as cinblematieal of tho deterinination of Scotland, though poor, to submit to no injury or offence without retalia. tion.

Among the priants suitabie for growing from the arevices of the rocks may bo mentioned various leaths ant musses, the Valerinna diccia montana, Trifolium alpestre, Thymis vulgaris, Epilobium alpinum, Camjanula cervicaria. Alyasum cnlycinum, and Viola bans. tica. Many plants might be mentioned as suitable for the marsiny borders of the pond, as the Acorus, Littorella, Lychnis flos-cuculi, Saxifraga irrigata, EpiInbium angustifoliun, Primula farinosa. nud ε_{0} forth We should recommend ths unprofessional gardener, in replenisling either a rock-work or pond with appropriate plants, to consult a nursoryman shilled in tho sulycut; as soil, air, climate, moisture, and other circumstances, require careful consideration.

bahnex plots in towse.

The attempt to bave a neat and flourishing garden or garden plot in populous towns, is very often defeated hy the abuelance of smoke and other impurities in the atmosphere; for, as repeatedly mentioned, pure air is ersential to the proper growth of plants. It is found, however, from experience, that certain kinds of shrub) and Howering herbs are less delicate in this respect than others; and that, with a reasonsble degree of enca, open plots in towns inny be rande to yield a surface of vegetable bloom and leacty. On this branch of fowerculture, so important to many town residents, there appeared, some time ngo, a well-written paper in that useful publication, "The Magazi:n of Domestic Economy," lescribing the experience of an amateur florist; we tala the liberty of extracting from it the following passages :-
" Whep I first took possession of my garden [in town), Ifound it encumbered with old lilacs and laburnumg the common aster, and other ordinary plants. These I immediately removed; by my west wull I planted a Buddea globosa, and a Virginia crecper; and by ay syuth wall, which was partly covered by a vine, 1 planted the jasminum revolutum, the small white clematia, nnd the pyrus Japonica. The latter grew luxuriantly, and bore an ahuadance of flowers, which, glowing upon the light wall, colivened my prospe.t is winter. I had a great deal of the sonth sun ir ay garden, hut none of his morning heame rrached it, and there wasn eorner which never had a gleam at nll. In this spot I planted a quantity of roots of the lily of the valley, and they lawerd well, although late. The laurusti.sus also grew well with me; and I should stor gly recommend this pretty shruh, together with the launel inatead of thuse deciduous shrubs which we sec in town gardens. The latter becone very shabby aa they grow old; neither the lilac nor syringa fower well in confined situations; besides this, the untidy appearance of thein
hi.ling lenves i
quickly, and, w quickly, and, of the latter P , as to nailing 4. dimaya a: hanc dould be cut every autumn, - woman's rea tiag ourselvea liclous acent of As regards pere ers have ende induce it to flo meny a health bud, and watc notwithstandin vencea rosces, ! town; but it is a very pure air colour varica sphere. I am gi:en by botan but I have tied the tose do heo and nne surpa alestial ! I belis gard to gpring rate in the city the crocus, citl irve undisturl my border scw nepatica and mones also I pined away afi replaced, and quished. Ther of inises, all of dantly. The p the fist place, for years settlo cren then is gr nir. My luudd golden balls, nt what to do witl is not more co standarl ; it wil a considerable and there is n leaver and flo fowering shrul, old-farlioned n varictics ... dec eidering with oe supphed by nola, for insta ontiy in the cit not at all part bignonia giand trumpet-like bl steam-engine. when in the at it hans: I sank and deap secelof its depth wis my foots. As them plentifitll alded more so nishing tall ar coloured blosse sisted me saic The siveet-sceen me, and the tig 1 lied one yea
he amincane, Scotlish thisth, in lox or damp rin atinosphere rders, it will bo ame situstions on some uncer thiatle, or thas Mr. Dovaston, a of Shropshire, aked many per ad found many man pointed to Grant, at Invelor oar own part, m was solopted, neant : the lead. of the thistle, as cotland, though without rctalia.
wing from the various lesthy tana, Trifolium alpinum, Cam and Viols bana. red as suitable as the Acorus, a irrigats, Ep and ao forth ional gardener, nd with approskilled in the id other circums
hing garden or often defeated nparities in the ed, pure air is 3. It is found, sinds of shrol in this respect degree of corc, eld a surface of anch of flower. esidents, there paper in th31 omestic Economateur flonist; it the following
aden [in torn), and laburnuma, ants. These I wll planted q ar ; and by my by n vine, I nall white cletter grew luxufowers, which, my prospe.: is th son in iny reached it, ans enm at all. in the lily of the Inte. The laushould sírou gly with the laurilh we ace in town y sh they grow vell in confined arance of their
G. ling lenves is a grest annoyance. My jasmine grew quickly, and, with the clematis, aoon covered as much quill as I could afford to them; tho great inconvenience of the latter plant is, that it requires frequent attention ss to nailing up, and this, where there is not a gardener dways a: hand, is troullesomo; as, although the stem should be cut down withln three feet of the ground every gutumn, yet the youms shoots soon grow boyond woman's roach. However, it is worth while puttiag ourselvea to a Jittle trouble for the sake of the delicious seent of the flowers of this pretty trailing plant. As regards perennials, I dare say all who rere fond of flowers have endeavoured to nurse the Chins rose, and indace it to flower in the town. I have grieved over many a haalthy plant which refused to show a single bud, and watched the gradual wasting sway of otherf, notwithstanding my unceasing caro. The common Provence roses, both white and red, flower well in the town; but it is vain to attempt the Chins-it requires a very pure sir. and I do not know any flower whose colour varics so much with the quality of the atmosphere. I am but slightly acquainted with the names gi:en by botanists to tho numerone varieties of roses; fut I have ticed many of them, and found the Tuscan, the tose de Meaux, the Tudor, the Jittle early crimson, and one sarpassing them all in beauty, the Bengal celestial (I believe), flower extremely well. With regard to spring flowers, the snowdrop I could not tolerate in the city-the smoke robbed it of all its beauty ; the crocus, either the mice or the sparrows would not i.ave undisturbed; and, after replenishing the edge of my border several times, I gave up the matter. The bepatica and gentianella flowered well with me; anemones also I had of very good colours. Heart's-eases pined sway after the first year, but they were easily replaced, snd they wero too ornamental to be relinquished. Then followed the white lily, and a variety of irises, all of which increased fart, and flowered abundautly. The peony I coold never persuade to flower; in the first place, it does not blossom well until it has been for years settled in a garden, nnd I believe its beauty even then is greatly dependent upon the purity of the ir. My buddlea was every spring covered with its golden balls, nnd grew so quickly that I scarcely knew; what to do with it. I am surprised this beautiful shrub is not more common; it is perfectly hardy, even as a staidard; it will remove well, even when it has attnined a considerable size; it is very easily raised by layers; and there is an nir of grandeur about it, both as to leaves snd flowers, that raises it above the common fowering shrubs of our gardens. But we go on in the old-fashioned mamer of planting onr gardens: the same rstictics .-A deciduous shrubs are taken without considering with how much ndvantage their places might oe supphed by those more lately introduced. The magnola, for instance, grows quickly, and flowers abundantiy in the city upon a south wall; and the arbutus is not at all particular with respect to situation. The bignonia ganditlora also does not withnod its scarlet trumpet-like blossoms in tho immediate vicinity of a steam-enginc. 'To return to my garden, the glory of when in the autumn was the lobellia fulgens, I managed it dus: I sank in the ground, up to the rim, a large and deep seed-pan; this I filled to about three quartera of its depth with rich soil properly mixed, and planted my roots. As soon as the shoots appeared, I supplicd then plentifully with water, and from time to tims added more soil. The plants arew luxuriantly, furnishing tall nad thick stems, with large and lighlycolourd blossoms; indeed, the gardener who had assistel me said that he had never seen finer flowers. The sweet-scented marvel of Peru thrived well with me, and the tiger-flower also. Carnutions and picotees I tied one year, but was so much disappointed in the
result, that I gave them up, although very reluctantly as I believe carnations do not require a very pure air, and I have fancied since, that my failure with them arose from aoms other cause than the moky atnosphere. Dahlias, also, although they flowered very well I gave up. The amaryllis lutea flowered well with me, when once establiphed, and the hemerocalias certlea and flava did the same."

After condemning annuals in general, the same writer goes on to ssy-"I I own I am willing to moke some exceptions myself in favour of the coreopsis, nud such brilliant flowers particularly; the French marigold, too, and the scarlet zinnia, I conld scarcely give up. The lupinus mutablis blossoms well in the town, but it is very liable to be destroyed by a caterpillar; tho easiest method of prevehting which is to strew a little soot around the plant. 'I'he grob, I suppose, will not rise through this: I found it more efliectoal than tobacco, which I aiso tried. 'Jho searlet colutia is much eaten by an insect: I found the same method succeed in this case. I had forgotten to mention that all hulhs of the narcissus and jonquil tribe flowered well with me: the primroso and polyanthue gavo miserable-looking blossorns. I planted the double ponegrannto against my south wall, and it grew well: I left the house befure the plant was old enough to flower. I should notice one great recommendation which Ameri. can shrubs possess to those who are likely to change their residence-they may be removed withont dangoi at almost any size. Mine were planted in a border of common earth, in a hole filled up with pest and loam fit for them; and when a rhodedendron, four feet in height, was removed, it was found that the roots formed a complete ball, none of the fibres having penetrated beyond the soil which was proper for them. The common nnd Portugal laurel may be removed when very large: I have myalf seen one of the latter, which three men and a boy could with difficulty lift, transplented with suceess. Of course it was carefully tended as to water. The scarlet lychnis does not mind the corrupt air of the town; but it will not grow to bu great a height in such a situation as it does in the country. Thers are many other plants which might be treasures in a town garden; experience, however, ia the best teacher in this as well as in more important matters, and if a garden be stocked with the plants I have mentioned, experiments may be made as to others; should they all fail, the garden will still be gay."

To the foregoing we need only add, that much may be done to keep garden plots neat by frequent trimming and raking, and particularly by keeping the plats in grasa elose shaven. To be kept in the best trim, grass should be mown once a fortnight.

FLORICULTURAL MONTHLY CALENDAR.

January.-Little csn be done in the flowrr-garden except the weather be open and dry; but advantage ought to be taken of favourable intervals to render the plots and borders neat; to protect by enarse screenings of leafmould fuchsias, China roses, sart other choice shruba; for though they may not perish by trost, the mulch tends to emich the soil, when forked in.

Propagate, by division of roots, daisies and thrift : protect the beds of hyacinths, anemones, ranunculuses, and tulijs, by a covering of coarse litter. Top-dress auricu$1 \cdot \mathrm{~s}$, nsing n compost of light loam and two year-c!d cowdung, mixed with a twelfth each of sea or river sand, and rotten wood. Plant all the bulbous roots that are still out of the ground.

In heat, sow mignonette, annual stock, pensten. as fusus, gentianoides, and other half-hardy annual sne wo rennial plants, using the propagation- μ, by which means the entire number of scedlings (allowing for previous thinning out) ean be transferred, with roots undisturbed, to the plots or borders. Commence sowing in the lsat week, for hot-h use culture, seeds of Ciloxinia and Geaneria
those, if abtaincid from impregnated plantes, may yield 0.0 and at iking varietiea. Sow also (broken up and sived with sand) the berrien of Psidium Catleyianum; this plant is one of liachocicest evergreens of the atove, or even green-house, or it in not tender.

February.-Attend to the foregoing general directions, and row cut turf for lawns; fork and clion the flowertorders, Plant antemones, gladiolus, pert mial herbaceous nots; and tranafer others, dividing the crown*, to multiply the species, In thia way almost ell auch plants can be increased. For oxamplos of this division of roote, seleet the primrose, aingle, double, and the polynuthus. Transplant the rooted layers of cernationa, nlso the divided roots of campanula, tobelia, lychnis, mullpink, and dianthus ancusis. Sow in nild heat ary annual thaver seeds, and of auricula $\mathrm{s} \cdot \mathrm{d}$ mimula, in bexes or pans. We include the beautiful primula ainsusis. Excite choice dahlia roota, placing them in hot-bes frames, or iia troughs or pots of old tan, or any light mefiat subsiance, on the floor of a stove or vinery an work.
March-Sow annuals, including bolsam reed, collectod from the best double fowers. Plant boxedginga, wing much pit-sand; also evergreen ahrubs of every de. *cliption. Tramplant autumn-sown annuals into pots, and protect then, till fresh-rooted, under glass; as (harkis o" every kind, Calliopsis, (Enothera Lindleynna, iniknouxas, Nehizanthua piunatus, and porrigens. Sow in the bust week, in the open ground, and at the same time, a ixit of each in heat, or at lrast under glase, stocks, fix. glow: (Thina-aster, Clarkia, dahlia. campanula, larksi/ur, penste:a'), anaraathas, tobacco, an! alf the hardy a:muasin 'inate cutinct of hydrangea from the topis of the ahoots. These, it ib. buts be full sometimes will pro-
 pure heath mould, or lenformen? and smati. Uise small pote, na ior relargonia.
Aprit-- I'tisnt dahlia re-air a riellyemanured loam, holly hocks carvations, bectua y and jee nuiats: at this
 cever. Campatatas (ibe tall pyramilat) raisel by cuttiegan of the coots in attuma, may now bo transferred to pots of loan and leaf-anould; and as the plants grow, they are ta be consinuly slititel, till they come into pois, wherein they will blooin protusily. If placed ia the oorders, they vas reguire in peculiar treatment. Sow in a pot the sece- of this varicty of cempmula (seedings frequently produce the tinest fimess; they require profuse watering); aloo the scels of the pansy or hcurt'rease, to procure varietics. Pripagate ly cuttings, as sii acted for seraniums, or by sing'e eyes, the Deythrina as ta Galli, and hurifolia. It propagation pote, usiug the sarne soil, all the snlvias, verbenes, woctets, double wei-fiuwers, and evrry species of fuchsis that has produces young wood. 'I'ry every plant by cuttitags place:! in waice phials, three parts filled n ith rain-water. Bud China, noisette, and moss-roses, on dyg-rose stocks. Di. vide the roots of dahhas, either cotaining one single tuber with a sprouting eye, or twist out very cautiously a single shoct, so as wdetach its bise and the latent buid it contains, plantiny it in the smallest pot of sand and leai-nould; a gentle hot-bed will lacilitate the protrusion of roves.

May--This is the season to stock the flower garden wilh those plants wìich have been prepared during ausumn, winter, and spring; and therefore transfer, froos the cropagation pots, amuals s aised in thens, by lifting the whola mass, and depositing it in a spot prepared in he Sorder: thus trouble and loes of time are obviated. Suw a few anneal seeds in the open ground for succestion. Plant the parterres with groups of fuchsiaa, calceolaria, petunia, Neapolitan violet, very ; and at the latter end, form massca of the scarle: and many less prized but bear" varieyated gerania, are, Diomedg couspicuuta, ucuientum speciosum,

Moore's vistory, Dennis'a rival, \&c. \&cc. Propagate, by cuttings, the China rosea of every kinal ; plant thern tho joints deep, in a ahady eituation ; almo culceolarias of the ahrubly kind, Peruvian heliotrope, \&c.: by divialon of the roots, Neapolitan violet, placing them in beds of mas nured loam, twelve inches apart; the heart's-cave of the heat vurietics, in ahady situaticna; the aoil, rich loum and leaf-mould. These favourite prize-flowers requira a fin quent rinewal of aoil; they dwindle if retained in one site, and degenerate to the condition of the pror weak flowers of former years. Propagate, by alips, lychnis double rocket, and wall-flower ; thin out the superabuand ant shoots of aaters, autirrhinuns. frenstemons, phlox, and indeed of every luxuriant herbaceots plant.
June--Propagate, as duritus the lute tamoth, and plant young aide-shoots of the hest helolius, is slaty hardent under a hand-glave. The piziaga of pincs place! io sundy carth, are to be clomely c.wosd in the some way, till completely rooced. Sislpigios in aceceds best inat fis open air; tho plants shoult he now tarned out of fote
 'e arranged in a north asjart; the pots th land or 3 cie, strutuon of cont-ashes. Azitesas, necacia nrmata, ond bome anch plants, are greacly influrovel by being tomed ont: ef ! ats, nud plantud with entire balls in an open peath beruics.
Juig.--Bud roser on wild nte kr. A protty atect is produced by insurtiag or:s or two bud. o. the cicp-red Clina in than common fibua rose. The former is antenght ened in its hatio, mut the differnt finter of the two riest are very plousing- Popagate, by cuth .. 'he Chinent azalcas, half-sbrubby culceolariat, linume, perlargonams fuchsias, myrtles, and other exotia diruhs, layer corme timas in sandy eurth, with a little chalk; peg them neat the incision with hooks of furn-leaves. Sow the seed of mignonette in small pots, for winter; also, snnual floter seeds for hoom in September.

August.-Bud. as before, but not the China rose Plant seedling berbaceous plants, cyelamens of every kind, offiset bulls to satin streugth; repot nuriculas, re. moving the suckers, und detach the black ande of old roois with the finger und thumb. Sow the seels of all the annuals mentioned under that head in a previous page. Use gentle heat; ald any other favourites, as ma dia elrgank, mimulus, the white night-flowering peturia, tnll nad dwarf l.ark spurs. Sew the seed of the hest pan. sics. Take cuttings of all the fine pelargoniums that are out of flower early in the month; also of calceolanis Alrubly and half shaulivy; of antirthinum caryaphy. loides, penstemon gentianoises, \&cc.; these require no heat, but should be phaced in a cold frame.

September.-Plant the crocus and some other bulse Tranfylant herbaceous peremials and pinks to perma bient heds, if perfectly root'd. Propugate, liy eattings, China roses in the open borders; and by slips petaniss helistropes, salvias, grania, calcolatia, \&c.; they require only a hand-glass and light soil. Sow auricula seed in puns in the green-house; also Clarkis, collinsia, cheldene, and other amuuls, to be preserved in pots all winter. If the pyramidal campanula be out of flower, take ex oun of the fineat roots, blue and white; break it to pic: and and half filling a large pot with loam, place the pieces on the earth; fill the pot with loam, and keep, it merrely protected from frost ali winter. Raise every geraniun or ather green-house plant now in open ground, and repol them in soil suitable to each. Cat back to low buds, uell situated, the horse-shos . "nium, and pluee all the plants unider glass, to recover ir . . ine removal; make cutting of the lest amputat
ts of germium. Gradully reen-house plints.
:he end bullis of hyaciuth common jonquil, and daffuil ; also shrubs of every destrip generdly succeedi iu spriug
ankiagh, an befor alled with is corr eurth, should bo arth, under the plauts begin to 8 and placed in the now be taken in, ment, by the fire rako up the Per and leaf-mould. attention; it is ce a seedling variet etrike freely in handsomest of t fully potted in P October and Nov room: the fluwer-
Aurenber:--B about and above blareaten. sercel be inased as mu

Tas hardy fru mlinary descript kinds-kernel fr the principal ; st ploun, and cherry diluerent species, berry. The kil trees, and other All the garden proved ly a long -thid being a lr ergaged the un stience and prac till tho present rimace has sugrc jag their prolv speak.

OENER.
Pruit tices a orchard, in whicel msume any hei, trained upou wa cular manaicer up Vus. 1-69
c. Propngate, by ; plant thiem two culceolarias of the c.: by divialon of m in beds of ms heart's-ease of the oil, rich loman and ers require a fie f retained in one of the poot weak by slips, lyehnis t the superabund cinons, phlox, and lant.
month. and plant in w! sily borent pincis place in in the soine nay cuel.s best in tio arned out of P te ${ }^{2}$ pixhe. noy man (1) tand on a die acin armata, and d by being tumed s in an open peath

A protty , sect d. 0 . the aterpere fortier is attctgth of of the two tose
'he Climent the, pelargonism bs. Jayer corma k ; prg them nea Sow the seed of Iso, annual flotel
the China rose clamens of every cpot nuriculas, re black ends of old w the seepla of all ead in a previous favourites, as ma flowering petunia, ad of the hest pan. pelargoniums that ilso of calceolarias, hinum caryophylthese require an ne.
some other bulte l pinks to perma. gate, ly cuttinge, by slips petanias, \&c.; they require \checkmark auricula seed in collinsia, chulone, onts all winter. If tower, take 1 ". ois ik it to piceta and 3 the picces on the it merely protected eranium or othe? d, and repot them to low buds, well place all the plants al; mako cuttings milum. Gradually se plants. bulbs of hyaciath, uquil, and daffaill of overy demerip acceen iu apring
auting, ws before, if not completed. Hyacintha in pots, Giled with a compoat of light loam, aand, and vegetable earth, should he plunged to the rims in ashes, or light ourth, under the glass of a cold frame; and when the plants begin to grow, the pots ehould bo raised, cleaned, and placed in the green-house. Grecu-house planta must now be token in, and be gradually inured to winter treatment, by the feadmission of air and abatement of water. Take up the Persian eyclarnon, and pot it in loam, sand, and leaf-mould. There is a geranium which merits much attention; it is colled the scarlet glohe, and appears to be ssedling variety of Pelargonium zonale: cuttings of it atrike freely in the open border early in summer; the handsomest of those, taken up in September, and care. fully potted in poor loamy soil, will flower throughout Octoker and Novomber, placed in the window of a suouth room: the flower-head ussumes the ligure of a Guelder rose.
Nutember:--Bulbs; plant ull, employing much sand about and above the bulls. Protect fuchsiss, if frost braten. screened leaves form tho best subatance to bo jusced as mulch. Dahlias should be digged up in
niry and dry weather, when quite dry and clean; pre eerve the tubera in dry sand; damp is the woret enesy of tho dahlia.

Dercmber.-Protect beds of tulips, hyacinths, und other choice bulbs or roots, with a layer of saw-dust mixed with eand, or with abhes. Saw-dust alone has lieen found the most effectual protector to the roots of potted plants in frames, the pota being plunged in it th tho rima. If dry weather permit, lightly fork the surfacw of plots and borders; but at any rate, if it be frosty, scatter some light manures around the stems of shrubs and the more tender plaits; it will tend to enrich the ground at the first apring regulation. Secure begoniae and other plants which die down to the mould, by placing the pots in a temperate dry cellar.

Our recollection has been much assisted by referring to the excellent calendar at the end of Mr. Mantel's treatise on Florirulture, published in "Baxter's Library of Agriculture and Horticultural Knowledge," a work which we should be happy to recommend to every whirer of rural cconomy.

THE FRUIT GARDEN.

Tus hardy fruit usually produced in gardens of an mlinary description in Britain, are of three leading kiads-kernel fruits, of which the apple and pear are the principal; stone fruits, including the peach, apricot, pluan, and cherry ; and berrics, of which there are many difierent specice, as the gooreberry. currant, and strawberry. The kionel and stone kinds are produced from tres, and others from shrubs or more tender plants. All the garden fruite, of whatever sort, are greatly impoved by a long course of cultivation from a will state -thid being a branch of vegetalle economy which has erigaged the unremitting attention alike of men of sience and practical gardeners from a remote antiquity till the present time. Of the hast means which ex x_{1} etimee has suggented for cultaring fait '. use, and bringing their proluce to wersetin, we non propose to spab.
genert anforment of pruis tiers.
Fruit teey are grown as independent plants in an oreciard, in which case the tree is suffered very much to msune any lacight or bulk that natura permits; aloo trained upon walls, or constrained to grow in a paticular manaer upon artificial palings called cspulicr's. In Tus.I-69 annual digging, mingled the lower layer with that int-
mediately above it. (See article Land Improvemase:-

In the course of these prepurations, let the soll be well deared of stonea, meliorated by winter frosta, and enriched with old inanure. Bear in remembrance, that fruit trees numt never be excited by new and undecomposed manure. The material applied both heforo plantmg and also while tho tree is growing, should be loam, mixed with a thoroughly rotted compost of leaves, \&c. Some persona, following an old prejudice, place n paving atone a certain depth beneath to prevent the root of the thee from penctrating into the subsoil; but this is only waste of labour; for if the deacent lee col'i, ari ted. the roots will proceed laterally, and penetrate du*, wards as soon as they can conveniently do so. By giving a proper dupth of soll, und keeping that soil in heart, no fear ueed lie entertained for the tree receiviug jujary from tho subsoil.

When we any that depth of ecill is ndvintageous, it is necessary to guard againat an impression being formed that deep planting is also requited. In genern!, the ruots of trees should be placed near the surface. Mr. M-Intowh, in his very benutiful work, "The Orchard'," oders the following caution on this aulject:-"Deep planting is un ovil much to be guarded ugainst ; end many of the disappointments which have attended the fruit-grawer may be traced to thi* cause. As some c. j terion for the guidance of the unateur, we would wit?, let every young fruit tree, of whatever kind, be planted it henat three inches above the ground level; that is to say, let the part of the atem which was level with the si.rface while in the nursery, be kept three inches ulove the general surface of the ground when it is planted, ard let the earth be heuped up to that height around it. for a couple of feet or so, in the form of a little ciillock. Trees of larger size nay be rather more clevated. This applies to soils of the ordinary deseription; bat in damp soils, the elevation shouhl be still greater. When trwes are set in a pit, which should always be r_{4} third larger in diameter than that of the extent of the roots, wo thint they may be all spread out to their full extent, without being doubled or turned round, they shonld be apreaci as regularly no possible, and the botton should be in de perfectly level: by this means, the roots will have a l:onizontal direction given to them, which they will afterwards ma atain. The intention of this arrungement is to induce them to extend themfelven near the surface, and to prevent their extending downwarda into a bad or eald subsoil.

Propagation-Graning.

Fruit trees may be propagated by needn. layers, cuttinge, budding, suckers, or graftiog. By any of these methods, a material object of the culturist is to improve, or at least not deteriorate, the quality of the plant. In atate of nature every fruit is inferior to what it will becone by cultivation. This disposition to improve is taken adrantage of by gardeners; sad by attending to various circumstances in the eccnomy of any individual plant, they are able to produce and propagate the best varieties. The principal men es enployed is to select such varietica as have attained a certain degree of perfretion, and then crossing two of the most nearly allied, fil order to prosluce un intermediate varicty. 'The discovery of the sexullity of plants, an a atablished hy Linmaus, has rendered thia a comparativeiy simple operation to akilled gandeners. The following is a short expusition of the method given by Mr. M•Intush, who quotes from other authorities:-
"I'lse means used in the process of artificislly fecundating the stigma or female parts of the hlossom of one 6. wer with the pollen or male duat of mother, have been beautifully described and explained by Knight and oibers. 'That eminent pomolugist has obtained thasands of apple trees from needs. "ny of which are of firnt-rawe quality, ly cutting out the stamens of the blos-
soms to he impregnated hefore their own pollen war $\eta_{\text {a }}$ cnough for the purpoac, and afterwards, when the atiginu was mature, by introducing the pollon of the other pre rent, either by shakiug the pollen of it over the fowel contalning the stigms only, by introducing the fowe when deprived of its petala or coloured leaves, or hy transferring the pollen upon the point of a catnel-bait pencil from the one flower to the other. By these meam he prevented the posibllity of the natural fecundation of the blossonn within jtself, and thua greatly incresed the chances of obtaining intermediato varietien by making use of two distinet parents.
"Thia process is called cross-impregnation, and is in its nature highly crioun. Jr. Lindley deacrites the action as follows:--" Pollen (the male dust) conaints of extremely minuic hollow balls, or bodters their cavity in filled witb fiuid, in which swim particles of a figure in rying from spherical to oblong, and having apparentif sy. untaneous motion. The stigua (the female organ) is composed of very lax tianue, the intercellular pasaget of which have a greater diancter than the moving par ticles of the pollen. When a grain of pollen conies is contact with the atigma, it hursta, and discharges its cone tents among the lax tissue upon which it has fallem The moving partieles desicend through the tissue of the style until one or two find their way, ly routea alecialy destined hy nature for their service, into a little opening in the integument of the ovulum or young seed. $0_{\text {not }}$ deposited there, the particle swells, inercases graduaby in size, neparutes the radicle and cotyledons, and findy becomen the embryo-that which is to give lirth, whea the seed is nown, to n new individual. Such being the mode in which the pollen intlucures the stigma, and subsequently the seed, a practical consequence of great importance necessarily follows, numely, that in all cam of cross fertilization, tho new variety will take chictof after its polliniferous or male purent; and that, if the same time, it with aequire some of the conatitutional po culiarities of its mother.'

Hlustrating these principles ly a reference to the pro pagation of varietips of epple-trees from sceis, Nt. M-Intosh observes, that "tho kinds of apples that it would be advantageous to eross by artificial impregnt tion appear to bo those which have a great many qualin tics in common, and sone ditierent qualities. Thas, it would be proper to cross the Golden pippin with otho pippins, and even with some rennets, hut it woail he inproper to cross it with codlinge or the larger groning kinels. The mumeroue varieties of pippins raised ty Kuight and others, have luen olitained by the atoro sule. It is, no doubt, true that a small apple-say, for example, the Golden pippin-crossed with a much larga gort, will produce a variety sificiently distinct from ba other; but it is almost equally certain that this new of ricty will he of inferior quality to either; 'the qualitia of both purcuts,' ns Mr. Youdon has very justly ob served, of so very opposite natures heing, as it were, rudely jumbled together in the oftipring.' "

Granting-its Theory.

firafting, which is a practice of great antiquity, is the union of two phants in a growing state, through the me dium of the circulating juices. It is now a well-knoma fort in surgery, that if a piece of a finger which has bevis accidentally chopred off be immediately applied to the stamp whence it was acevered, and the wound pro lerly botnduged, it wall adhere nind become part of the living memther an formerly. Thin, then, is grafting in the nnimal economy, and it is analogous to the grafuy of one vrgetalle on another. The only dissimilants is that the piece of finger is reatored to .ts own atuaph wherear the vegetaluce union ia between two distiad treer. But this is a point 0° consequence; for tis probable that if two perma. qually good ben's
mont to have a f jleese might res wight have on hi Gardeneri assi perpetuation of nsured by sowi able rapidity, the 8. Accelerating tl in producing the fruits : and 5 . Ch and renewing its
When a tree vigotias roote, a improve its fruitf part of the stem are ingrafted, wh the fruit-bearing priariple, the sor ably alike as resp and pulp vessela, take place in the to effect any imp be a certain diff? ample, the wild ap to be eaten, form graft can be mude by nusserymen fr able fact teada to cal principles on gratting. On this plare, the explan tion as the scion in conatitution, tha and, on the cantr difference between of tha former inp a budded on the apon plums, and acion is, in regard ns if it had not be hand, a great incr pears upon quine white thom, and Fond absorbed fro communicated alo under no circum the one and the o tures had been m peded in its ascen in their descent, w cretion which la at tility. No other i the scion upon th contrary takes plar municates some po searcely have con or they would hav municated from t the pear is in nea entered the roots it undergoes mus of the perr-wher secretions natural unuption than if Noul of the individ
These explannt test upon an as:u rooth sulfiers no ch mork to the scion tion wl! it rearh otreng douhts on t the fact brought t cal unalysis. Unt naural, aud any

THE FRUIT GARDEN.

n pollon vat ma when the stigins 1 of the other po t over the flowe! ucing the fown red leaves, of hy it of a ramel-hal By these meam atural fecundation greatly incretsed inte varicties by
gnation, and is L lley deacrihes the dust) consints of ess ; their cavity les of a figure having apparenils c femsle orgen) reellular passige a the moving pato of pollen conies is discharges its coor bich it has fallen th the tissuc of the by routes precist? ito a littic opesing oung sced. Onos ncreases graduali ledous, and finist to give birlh, when

Such being the :s the stigma, and nsequence of great ly, that in all cmas y will take chicts it ; and that, at the e constitutional po
eference to the pro. from secuis, M_{4} of spples thet it artificial impremr a great many qualin qualities. Thus, it pippin with othe ton, but it wowl lo the larger growian pippine raised ly ined by the abore hall muple-say, for with a mach larga ly distinet from be in that this new in het; "the qualitio has very justly ob heing, as it went ing.' "
cat antiquity, is the :e, through the we now a ivell-knowa A finger which be nediately mplied os and the wound pro become $1^{\text {ratt of the }}$ then, is grafting in yous to the grafuy only dissimilaritr is to .ss own hump tween two distind nequarnara for tit rually good bea
wne to have a finger chopped off at the aame time, the ploces might reapectively be changed, and each person night have on his hand the finger of his neighbour.
Gardeners abaign five reasons for grafting:-1. The pepetuation of varieti:a of firut, which could not be insured by sowing seed: 2. Increasing, with considernole rapidity, the number of treen of nyy icerired nort : 8. Accelerating the fructification of trees which are tardy in producing their fruit: 4. Improving the qualitiea of fruits: and 5 . Changling the sorta of fruit of one tree, and renewing its productiveneas.
When a tree lecomes old, but has atill healthy and vigonas roots, and it is thought advisable to renew or improve its fruitful qualities, it is cut off acroas the lower part of the stem, and forms the stock on which scions are ingrafted, which scions taking root, become in time the fruit-bearing branches of the tree. An a general principle, the eorta to be united require to be considerably alike as reapects disposition of woody filre and anp and pulp veasels, so that no deched interruption may take place in the ascent or descent of the juices. Yet, to effect any improvement in fruetification, there must be a certain difference between the varietiea. For cxample, the wild apple-tree, which bears only crabs, too nour to be eaten, forma one of the best stocks on which a grat can be made; and for that reason alone, it is grown be nurserymen from secis. The notice of this remark. able fact leads to a consideration of what are the radical principles on which improvement is effected by grafting. On this intricate subject we offer, in the first plare, the explanatione of Dr. Lindley :-"In proportion as the scion and stock npproseh each other closely in constitution, the less effect is produeed by the later; and, on the contrary, in proportion to the constitutional difference between the stock and the scion, is the effect of the former important. Thus, when penrs are gralted ar budded on the wild species, apples upon crabs, plums upon plams, and peaches upon peaches or ainonds, the acion ia, in regard to fertility, exactly in the same state as if it had not been grafted at all; while, on the other band, a great increase of fertility is the result of grafting pears upon quinces, peaches upon plums, apples upon white thorn, snd the like. In these latter cases, the ? Ond absorbed from the earth by the root of the stock is communicated alowly snd unvillingly to the acion; under no circumstance is the communication between the one and the other as free and perfect as if their nse tures had been more nearly the same; tho aap is inlpeded in its ascent, and the proper juices are impeded in their deacent, whence arises that accumulation of secretion which is aure to be attended with inerensed fertility. No other influence than this can be exercised by the scion upon the stock. Those who fancy that the contrary takes place-what the quinee, for instance, nommuaicates some portion of its austerity to the pear-can ecarcely have consitered the question physiologically, of they would have seen that the whole of the fool communicated from the alburnum of the quince to that of the pear ia in nearly the same state as it was when it entered the roots of the former. Whatever elaboration it undergoes muat necessarily take place in the foliage of the perr-where, far from the intluence of the quince, secretiona natural to the varicty gn on with no more inkruption than if the quince formed no part of the syskul of the individunl."
These explanations do not appear satisfactory; they rect upon an assumption that the sap taken un the the couks suffers no chemienl clannge in its passage from the stork to the scion; that it ia never altered in consti u thin ull it rearh the leiי. We confess we entesmon atrong doults on thite . 1. , wiul should be glad to see the fact brought to the [i, st al : 3 new ment by strict chens: eal analyais. Until this 1 . Inne, all theory must he cossadtirah, and any expressior. of epinion useleas. Mr.

Knight, who made many valuable discoverien in prome logy, coinciles with Lindley in nacribing ir creased fertility in the acion to the parual obatruction of the deacending sap; hut this does not ciear up t'ic difficulty as to improvement in the variety and flavear of the fruis by grafting, whieh we should think arow. in some man ner of way from a chemicai alteration in the juices. Knight arrives at a practical conclusion worthy of the notice of fruit culturista; that although inereaned fertility is produced by a decided difference between atock and seion, it is at the expene of durability ; "but it is eligibla wherever it is wiahed to dimirish the vigour and growth of the tree, and where its durability in not thought important."

All thinge considered, therefore, it is preferable to ingraft the scion of any approved variety on a mound atock, properly prepared for the purpose. As already observed, crab atocks sre often grown to form the foundetion of goosl apple-trees, and so are seversl other stock propagated by professional gardenera from seeds and layers. We may now describe the manner in which grafting is performed.

Scian Grafting.
Grafting ia performed in two principal wnyo-scion or slip grafting, and grafting by approach, or in-arching

Fig. 1.
Of the first kind we ave examples in the above repre sentation, fiy. 1 . Three modes are shown- i, and r, in each of isch the process consists in placing a scion in an opening or cleft of a growing stock: n is cuitw whip grafting, b side grnfing, nn \dot{c}^{*} - tongue grafting. Dy either method, the scion may bo a shoot of a single year's growth, cut fom a tree in a healthy condition. The seasen for the operstion is about the middle of March, when the sap is rising and the buds beginning to be developed. The grafting ahould not take place immediately un cutting the scion; after removal from its parent stem, place it in the ground for a few days, po that it may be partially exhausted of its juices, and be more ready to receive the ascending sap from the stock. Keep it in dry ground, and not exposed to the sun. A scion may be brought anfely from a diatance, by being atuck in a raw potato. Before applying to the stock, cut the extremity of the scion afresh.

Pongue grafting, by which a tongue or sin aned is the sloping cut of the scion is inserted in c. corresponding notch of the stock, is the more common nethod of procelure. It is performed when the atock is yonng, so inat the scion which is added forms the stem of the future tree. The cut in both pieces requires to be smooth, and the joining ao nent, that the bark on one side of the scion muat be even with the bark of the stock. Having joined the two pieces, bandage them together with a flat strip of mat, but not so tightly as to prevent the circulation or expanaion of the fibre. Over the bandage, plaster all round a handful of sott nulliesive materiai, formed of ciay, cow-ding, ind chopped straw, tnking care not to disturb the unned edges. This mass will form a hardened homa
and may remuin till inldaummer, when, the ution being complete, it may be removed.

The principle upon which the external plaster in applied to the junction, is that of exeluding the atmonphere from the wound, and is thun acientifically explained by Renuie I- It is to prevent the oxygen of the atmonphere from getting to the fluid pulp at the joining, where it wonld unite with the carbon, and form carbonic aeid gan, and thereby rob the pulp of ita solidity. The exclusion of light in neccassy on the same account; for, as in the case of a finger cut, the oxygen would unite with the carbon, and prevent the thiekening of the matter of the blood. On the same uccount, moiature, by supplying oxygen, would he injurlous; and dryners might aet both by exhausting the pulp and by causibir the cilies of the bark to whivel and gape, which w... | alit, the ell-

 before stated with referencti $\omega \mathrm{m}$ gral l_{L} ig), that no eompoeition, whatever may be sail of ita peculiar power of healing, can act in sny other way than this, any more than the farrago of plasters and anlvea for healing flewl wounda and cula, which are only gool in so far as they keep the lipe of the wound together, and exclude oxygen and light."

If the grafting has been properly performed, and oilut circumatances le favourable, the scion in two yeara will be in bloesom, and yield a crop of fruit. What ita quality will be, must depend on the nature of both atock and scion. If t - ecion be of a fine variety, that will remain; and if the ato k se equally fine, the quality will be im. proved. Tus excellence of the exion, however, is the prine consi'eration, for it in the part which is immedietely enncerned in the production of the fruit.

For an account of the process of budding, which is nalagous to grafting, we refer to the previoua article.

In-Arching.

This is an ingenious mode of grafting, by which one growing plant, without removal, is made to strike upon enother plant, and thas form nuoion. It may be performed in various ways, as represented in fig. 2 ; for ex. ample, two branches of a tree may be bent no na to meet and atrike upon a wound in the main stem, by which a gap will be filled up; cne growing tree, either from the ground or a pot, may lie led to unite with another; or everal auckers may be led from the grominl nech-wise to , otrike upon a point in the stem, thus bringing fresh aid

F.g. 2.
to the productive part of the tree. By incane suclit ns there, quickset hedges mighis be tinckened likir a wet--ork, so as greatly to improve their appearance and prosective qualitics.

mervel fruit tryeg.

Kerne! fruits, or pomes, as they are scientifisally wamed, include the apple, pear, quince, and several
others; thow which require any notice here are rep in rieties of apples and peara.

The Apple.

The appie-tree in of univeral European growth, and Is believed to have been introduced into Ilritsin by am Romans. It was greatly cwltivated in the gardeas of monasteries during the midille agea, and from that nource the greuter number of our cultivated vanetien have drawn their origin. 'The crab, or wild apple, in the type of the fruit when left to degenserute, and to whird It would apeedily return, lut for constant cultuis and croasing. Culture, without croawing or grafling, in found to prevent an immediate return to the crab; ind there fore, when an limproved varioty is obtainel, it will viel aceds proluctive of a similuc varicty. The extent, home ever, to which varisties may be prewerved without rroming, has never been arenrately determined, an the pratire among profosaional gardeners ia not to riak degeneray in the fruit, and they uniformly remort to one or ether af the methods of grafing above mentioned. Tha appica tree, if tavoured lyy a good moil and elimate, will live t: great ago, two humdred years heing not an onomad duration in a fruit-benring condition. Some orrhat a.j! have been reported to be a thouanad yearsole
she veruties ur cultivated npples are now innume rable. In 1834, the eatalogue of the garden of the How tieultural Suciety of 1 ,ondon dencribed 1400 vanisties and there are most likely as many more. 'I'he numerus varieties are of three chici' sorts-apples for the table, or to be eaten raw; spplee suituble for buking and other calinary purposes; and apples for cider. Table apples are agnin subllivided into those which will kesp, and those which will not. The choice kinds at present in. clude Ribston pippin, which will keep till March, buti in its prime about Christmes; the Downton nonparei, Searlet pearmanin, and Blenheim olange. The Kespich colling and Hawthornden are early ripe, but the fruit will not keep beyoud Octolser. The Nunsurh is a fins apple, and remaina good In Octoher. 'I'he Old nonpared in in every respect denerving of its title; its flavour in high and musky, and it keeps long; few applea bring such a high price in the ma.kev in February, Othen choice long keppers to he named nre the Scarlet nonnar reil, the Golden harvey or Brandy apple, the Winie pearnuin, and the Easter npple, commonly called Prend crah. To this aloort liac hundreds might be added; but those who enn grow whit we have enamerated, and bring them to their full complement of hearing, ean m quire no others as stork trees. It must, huwever, alays lie borne in mind, that what will auceeed well in on garilen may not do wo well in another, and that enerience as to soil and climate, independently of adrie from skilled neighbours, will in every case be necesur! in the propar conducting of the fruit ganden.

Mr. L.oudon, in his "Encyclopsedia of Garlening." mentions, that for coltage gardens, where the soil and situation are favourable for the production of the uppla, the following sarts are recommended by Mr. Thumpon: _-" Il bere tha space will admit of only one tree, the tex is the Ribston pippin; where two, the Ribston pippia and Dutch miguonne; where thee, the Wormsley pip pin, Ribston pippin, and Duth? inignonne; where fourf the Wormsley pippin, King of the pippins, Ribston pin pin, and Dutch nignonne; where five, the Wormst? pippin. King of the pipping, Ribaton pippin, Old nongreil, and Diswnton nonpareil; where six, the Wormitg pippin, King of the pippina, Ribston pipyin, Alfrestm Old nonpareil, and Downton nonpareil; where seem, the Wormsley pippin, King of the pippins, Ribaton pip pin, Alfreston, Dutch migroonne, Old nunpareil, is Downton nonpareil." Beyond this, Penningtan's red ling and any other good sorts miny be ailded. The um writer continues-a It often happena that one or mow
way san be trai ualuyt some wal ases, the propel reila, end, if a la fordshive foundlin which on often ki ples, the C'ourt pe pons oxpand ve farourable circun avereed, the Bed rohsitute, or the hander; the Nurt kitchen use. Fo this rase is more sodilig." 'To the the cottanger will copieus-bearing to

Stant

Stapilards are in epen ground, Standards. The figure to the tree, fertile or mature they appronch to entife extent of best in every respe out the aid of th fruitul xpurs, the duous wood shath least mo curtuiled rould render the prolific fruit-beari jection, or in the ${ }^{6}$ in the "Penny Cy tree be a free gr strong pippin, fron ty shortening the the point of ori atrengh; where t ahoald nat le redu iaches of their bas be cut to within n Tawth of the lran - ap is impelle
e sure to gr
The foregoing retical principles groundanet for p the caltivatica of mangement of a plexd at the anol selves; it will th annot, in its rou tree wssunies a cert developmints in a contemplated; an neously, without while a fourth, in continuca for yca: We have scen same period and anc of which evin or less extent per with the hunaun g must be individua This experiment. adduce the pract George linalley the Orchard," \& oo a.b siocks are derous fruit than larger iruit but ar winda Trees for

here and wein

peen grow h, and to Britain by H_{a} The gardenn of and from that stivated varietice wild apple, in the ate, and to whird atait cullure ud grafting, is found erat; ; ind there ined, it will yind The extent, how. without rroming, , as the prosicia to risk degeneray to one or other a ned. 'Tho applea mate, will live t , not an unumand 1. Some onthand hounnend yean old are now innume anden of the How ct 1400 varifitie c. The numinerow pa for the table, m baking annd obm ler. Table apple ch will keep, and ads at preent in. alll March, bul ownton noppari4 ge. The Kestid ripe, hut the fuit Nunsuch is a fine The Old nonpuect itle; its flavour is few apples brim Folviuary. Dithe the Siarict nonge apple, the Minta 1only ealled Frend ight be alded; bo e eliomernted, wax of heuring, can io st, however, almy eceed well in om uer, and that empo enulently of adine y case be necomer garden.
dia of Gardenim: where the soil wid uction of the apl by Mr . Thumpena ly one tree, the exe the Ribston pippiu the Wormsley pip nonis ; where fout iplyins, Ritsonn fip five, the Womit? pilpin, Old nony : six, the Wurasia - pippin, Alfretan ureil; where sera ippins, Rithton pip Olis nouparail, wh Pernington's mex a alded. The mm that one on mor
meen an be tralned nguinat a cottage wall or roof, or andurs sone wall appertaining to a colluge: In thene meat the propel sorts are, Kibaton plypina, Old nonparelle end, if a large kitechen apple be required, the Bect gaddhice foundling. In nituations liuble to apring frouta, batdanire oo ofen kill the blomomn of the geur rality of apples, the Court pendu plat is recommendalile, as ita blospome expand very late in the seanon. Under lesa favoumble circumatances, where the Rilston may not arceed, the Bedfordshiso foumdling will be a hardier moccedite or the king of the pippins, whish in atill monnlut; the Northeru greening muy be planted for lato hithen use. For an autumin upple, perhapa none in this asse is more to bo recommended than the Keawick codiling." To these olvervationa we need only add, that coding. the cotager will do well in all cuses to prefer one or two reppionsbeariug treen to a number of fanciful varietica.

standurts.- t'raning and Training.

Staplards are thone treen which grow indupendently in open ground, and are elassed as Large and Dwarf Standards. The propur olject of cultivation is to give figure to the tree, of whichever kind, and lring it to a figurile or toature conlition. Apple and pear-trees, as they approach to inaturity, develop sloort epurs along the entire extent of the branches, and those spuars are the best in every respect which nre produced naturally withont the aid of the pruning knifie. But, in addition to fuituil qums, the tress produce a greut number of superfuous wood nluoots, whirh, if not entirely removed, or at kast po curtailed as to convert them to beuring spurs, would senter the trec almost uselews; in short, to elfied prolific fruit-braring, the shoots must be kept in subjection, or in the state of spurs. A writer on this sulject in the "Panny Cyclopedin," urticle Apple, olverves-" If a tre be a free grower, on a freo stock, as the crat, or a stonis pippin, from seed, ull the lenders will be cheeked by ahurtening thein buek every year to a distunce from the point of origin. which varics according to their Atengh; where thry aro very strong, the leading shoots atould not he reduced more than within twelve or fifteen inches of their base, liut when they are weuker, they may be eut to within nine inehes. By this menns the onward Enwth of the liranch is momputarily arrested, the ascend-
ap is impelled into the lateral buts, gone of which
e sure to grow so show as to become productive." The foregoing dircetions compriso a view of the theoretioal principles of pruning, and it affords an exceilent rooundwntk for practice; hut those who are strangers to he cultivatica of fruit trees, and, as such, undertake the management of a plantation, will bee surprised and p.rpleed at the anomalios whieh continually present themwelves; it will then lee gelfevident that the garjening sanaut, in its routine be learned from isohas; that one tree wsumes a certain mode of growth; another preduces Jevelopments in an order which haw not been foreseen or contemplated; anuther forme its fruitful spurs speontineouly, without sulicitation or the adoption of means; while a fourth, in degpite of the most rigid foreshortening, continuss for years to yield nothing lut growing shoots. We have scen numbers of apar trees purchased at the ame period and treated upon the same priniples, cvery one of which evinced a huhit or conatitution to a greuter or leses extent peruliar to itself; dus 1! is with trees as with the human genus-to te in any degree known, they must te individually and diligently observed and studied. This experinental fant lwing admitted, we may safely adduce the practice of pruaing recommended by Mr. George Linulley for divirf standurds, in his "Guide to the Orchard," \&c. (1831.) He observes, that "dwarfs an cu b siocks are much inore ulapted for large and pondernus fruit than stundards, ss they not ouly produre larger inuit but are less liable to be hlown down by high ninds. Trees fur this purpose should bave their branches
of an equal atrength: those which hove been graned ona year, or what are termed by nurnerymen maiden plants, are the bent ; they should not be cut down when planted. but should atand a year, and then be headed down to the length of four or six inchea, according to the ir atrength; these will produce three or fuur shooth from each cuk down braneh, which will be nufficient to firm a head. At the end of the necond year, two or three of the best 1) I of theso from eacli branch should be selected, and whortened back to nine, twelve, or fifteen inchea each, according to their etsength, taking care to keep the head perfectly bulanerd (if the exprewsion may be allowed), so that ene side aball not be higher or more numeroue in ita branches than the other, and all must be kept an near as may be at an equal distance from oach other. If this regularity in forming the head be attended to and effected at first, there will be no difficulty in keeping it so antorwarde, by olmerving cither to prune that bud immediately on we inside next to the centre of the tree, or that Immediately on the outride. By this means, viewing it from the centre, the liranches will be produced in a parpendicular line from the eye; whereas, if pruned to a bud on the right or delt side of the branch, the young shoot will he proluced in the same direction, so that if the brauches formed round a circle be not thus prunel to the eyes on the right successively, or the left successively, a very material differrence will be found; and the regularity of the tree will be destroyed in one single year's pruning."

What is hero suid refers only to the leading shoota which firm the figure of the tree; other-aide shoota (literals)-are duveloped, and these require constant regulation. "In pruning these Juteruls or supersumeraries, they should te cut down to within an inch of the bottom, which will generally cause the murrounding eyce to form natural blowsom spurs; but where the tree is in a vigorous state of growth, branches will prolubly be prom duced instead of spurs; if so, they must all be cut zut clese, except one, which must le shortened as befure. In ull winter pronings, care muat be taken to keep the spure short and close, none of which should at any time exceed three inches; cutting out cleun all the blank spurs, which have produced fruit the previous summer, to the next perfect bud below."
It would perhaps le impossiblo for any writer to improve upon these directions generally ; they comprise all the essentials for producing a balanced dwarf standard, that is, a tree low in stature, furnished with ten or twelve regular main hrancles, proceeding at a short distance from one central stem, each branch garnished from base to sumnit with fruifful spurs. But experience has instructed us to caution a pruner not to expect too much, but to watch the figure which his tree affects, and the course of its supernumerary shoots. If it evince a decided tendency to lorm short spurs naturally at a very early period, he may prune short, as Lindley directs; but if its habita be so luxuriunt as to produce woxd-shoots after each proning, it will he wise to defier the summer cutting of the spring shoots till the middle of July, instead of performing it at or before midsummer; and then either to snap the shoots or to cut them to a l'mil situnted at laast five inches from their lase. This yruming, late aa is the senson, will generally cause ca h shent to break its leading eye; in August, therelore, thas new shoot is to bo checked by nipping ofl its point; and linally, in September the spring shoot is aguin to be cut at the eye, below the one ut which it was linst pruned in July. In this way the viguur of the tree will be moderated, and several of the lower buds will probully enlarge, while the leading bud only expands into a growing shoot. If these lints be understood and acted upon, a young pruner will experb mentally le taught to apply them, and hereby aceuire the tact to discover the censtitution of his trees individuully, and to coax them into a condition of maturity. At the winter regulatica when the bude begin to awell, it will
te easy to discern the fruitful cyes; and where any of snese are dinocrncd, the shoot projecting beyond them muat be entirely amputated; and thia mny be done with aafety, for spurs, when once fully formed, rarely break into barren ahoots, though one of the eyes may do m_{0}

Wall.Trpining.

The r"scumstance of appieatrees producing fruit only on the outer parte, which are freely expmeed to the ninn and air, has led to numeroua contrivancen for expoaing the inner as well as the outer atemu. Ono method, an in well knows, la the training of the tree in a flat shape agalnat a wall-a plan alao advantagenus for enjoylug the heat, whirh the wall raliatem as a rellector againet the branches, A difference of opinion exista an to the consparative merita of training the main atem in a aerpentiue or in a atraight upright direction, and alao whether the branches should be Ird perfectly horizontal or with an upward alope. If the height of wall promit, the upright etem and fall stape, an repreaented in IIg. 3, weem the

Fig 3.
most advantageous and certainly the lrast troublesomo plan, and we would recommend unprofessional gardeners to attempt no other. Where the wall is low, the branches ahould proceed more horizontally; and the top being restrained by pruning, these lateral stems will gain greater vigour. In either came, the branches, great and small, will require to be held in their aprointed situations on the wall by stripes of list and nails. The nailing should not be to tight as to prevent expansion in growth, or be otherwise injurious. Iron mailn rust and disfigure the wall, therefore naila made of zine are preferable. When - branch at any timo becomes loose, it ought immodiately to be refixed.

Fispatieru.

These are rails generally formed of upright ana crossbers of woond, but sometines made of cast iron. The beat are of wood -d of from four to five fect in height. To thase the crees are trained as on a wall, the chief differonce Leing, that instead of being nailed, the branches are usually tied; the fasteninga are soft hemp-cord or strips of basa, lut twigs of willow answer much better. The aituation of espatiers is generally along the sides of wulks; and if the trees be curefully trained, they have a neat effect. Care must be taken that they do not prevent the sun and air from reaching the kitchen vegetabies. When properly managed and well exposed, espalier-treen, obmerves Neill, "generally produce excellent fruit, the sun and air having access to both sides of the tree; they commonly afford abundant crops, and the fruit is not apt to we shaken by high wind. Farther, they tend to hide the crops of culinary vegetables from the eye, and to renfer the k then garden as pleasant as an avenue in the slirubbery."

The fullowing hints on espalier training, by the author
of the " Manue Ciarden," appear so eminently umefuit its we take the liberty of giving them a place here. Fint as to cultivation-" Have the ground well trenched and manurefi [taking a crop) of iegretablea the fires seanon], and plant the treen three or fonr feet from the walk, and twice an near to one another an they alouidd afterwardabe when full-grown. The verour for thls clow planting are, that the value of a fen :. is more than tha ex perme of the treea; your rain are aconer covernd; and when the trees begin to mret und incommole one another, you enn then, having aspertained their vorious qualities give scope to the hent, by diminishing or rooting out tha lean worthy. For one or two years afler the meecting has taken plare, you may drlay the pain of execution by al lowiug tho young shoots to pass one another on the op posite nides of the rails. To incur no more expense than in neceneary, tho ntakea may be placed two fect apart, in which came the annual shoota will require to beconducted from one resting-place to another by pieces of lath or wild brier, or willow of two years' growth. 'Thrse conductors require a firm and separates tying, distinet from that which funtens more loonely the living wood; they thus give strength to the rails, and provide for straightem training than is commonly done by having the stake twire as thickly met, and consequently at double the ef. perse of timber.
*Supplementary to both wall and eapaliers is the fi. lowing device, whicls has prowed eminently suceeseful:Supposing that you have more gurden ground than is necrasary for the supply of vegctables, and that some part of it may be aphared for a green shody walk amidnt sherum mingled with standard fruit-trees, ons the south side of 1 row of eve. aruens, impervious to the cye, let a dry atolie wall he raised to the height of four or five feet, and coped with larye stomes, merely for strength and durability. Flant this on the north side with ivy, to assist the screen of shrubs, and in a whort tione not one stone will appear. From the south side tuke away nll tho good soil to a depth of two fiet, a breadth of five feet, and a length equal to that of the wall, which may be sixty or a hundred fect, as you find convenient. This excavation, it is to be urbderstow, runs close by the building, the foundation of which must, of courne, have been secured by perhaps: foot of depth, and which will yet be uninjured, as the stones that cast up in removing the eartl will imurectiately lee thrown to the base in room of the materials taken away. Thus an effictunl provision is made against the apringing up of docka, nettles, or other troublemene weeds; the earth removed will be an invaluable treasure, whether for making compost or helping a thin noil, and the excavation itself will afford a most convenient recep. tacle for the immenso quantitios of stones whel, occut in trenching or raking the garden. Suppose the filling up in this manner to be nearly completed, let a row of large thin atones, set on edge, ruu along the southern boundary, and rise two or three inches above the aurface of the ground. This will serve to lieep the mase ont stones distinct from the earth, that thero may be wo mingling in the process of digging. You have then on the ene side of this excavation the low rdging, and on the other a wall of four or five feet: and the design is, in the course of time, to fill up, with the riddlings of the garden or with clean stones, in whatever way, the whole space from the summit of the low edging to the top of the wall, to pret sent an inclined plane facing the south, and nearly at right angles to the rays of the sun. On this [which s in reality a mound leaning against a wall] fruit-trets are to be trained. Before the bank is completed to its proper slope, the trees may be planted along the southem boundary, and truined fir two or three years upon pola laid from the edging to the top of the wall, according to their future destination. When the surface of the sloping bank is raised within nn inch or two of its proper heighth let a layer of coarw aitted gravel be laid on the top

Thas wift much the reflected hoat, earthy purticeen, - fre the purp cota be planted, a pies of pearas will opalior pails laid by two alight apar the other at the lo ducer a beautiful wall, and adding evergreen mhrubos. wer the manner of real anugnewa of thetr glowing hlo the quality of the edvantagen with doubtedly much the open thowers like tho daisy of often scattores the nhow. Exporicu this contrivance places very low flected, might poss and nectarines m take all that they

Tho pear-tree, wild atate in all donesticated and tendency of the tr In much longer in and on a dry soil conturies, Tho cuttings, buddhig nised from seeds opecios is also con

The observatiu ple-treca apply ey thing more need general culture. causo the pear is as a standard, wil sition to all rest mother must be deform his trees thete will seidon foreabortening or may be useful; b become fruitful u ing or budiling, it development of t terals to theon, wh pruned very little, ally, not sooner t nion in a letter to in April, 1833 :littlo used upon t the horizontal bra trees that are to b upright shoots to daly,"
The finest pe Beurré do Capia Baster beurré, a which here oceu word for butter: dhow how much neighbours for po ing pear-trees, th sulted, suljeet to tomed, also tlou
nty unefici, tha * here. Fim If Trunched anil 10 fires ceason? 1 the wallz, and Ia anterw ardo bo close planting - than the or coverd; and wle one another, rious qualitea, rooting out tho the meecting has xecution ly al. ther on the $o j^{\circ}$ re exprense than o feet aport, in to tre condurted eces of lath ot
2. These con. g, diatinct from ng wand; thy ef fur atraighter ing the stake double the es.
aliers is the 和 y muccessfut :ground than in Ithut some purt 6 anvidst thruwh mouth side of let a dry stone fret, and coned and churability, msist the screen we will appreas. al soil to a depph lingth equal to a handred feet, 1, it is to be un. e foundation of a by perthapx injured, as tha h will innrectio of the materina is male agains cer troublenone duable treasure, a thin ssil, ond nvenient recep wher'، accurin to the filling up a row of large thern bounday, sulface of the *s oî stonee dis no mingling in on the ollo side the other a wall the enurse of garlen or with spare from the he wall, to pree and neurly at this [which us fruit-trees are cal to its proper the southera gars upan pola II, according to co of the sloping - proper hrighth id on the top

Thu will much improve the appearance, and increane the rellected heat, and being free fromn sumall wand and earthy partectes, will give no hirth to anuual weede.
of far the purpose of training, should peachen or apriade be planted, a clome trellis will be requiaite; hat ajplee of peara will require nuthing more than comman propalier raila laid en the gravel, und held in their platess by two wight spara running acrowa, one at the top and by onher it the hetom. In the meun time, the ivy proo duces a beantiful and heneficial effiect, surmouating the wall, and aidling to the closenesm of nhelter cauned by the evergreen ahrules. It mocald be clipped along the top atker the mamer of hox-edging. Nothing can exceed tho real nuugnews of the trees so placed, or the beauty of theirghwing hownmas spread wut under the eye: and the quality of the fruit comen fully up to the theoretic avantagea with which it is favoured. The lieat is undoubtelly much greater than that of the best wall, and the open fluwers find, in their humble height, a shelter, like the dainy of the field, from the sweeping blast which ofen scaters the petula of a highar tree like a slower of now, Experience has fully proved the suitallenens of this contrivance to all elevated mituations, In some places very low mol warm, the heat, no powerfully res fected, might possilily twe too great; but in that case figs and netarines might be so exposed, and would certainly wase all that they cam get."

the pear.

The prarofree, wise that of the npple, is found in a widd atate in all parts of Europe, and has been mimilarly domestiested and improved into nany fine varieties. The cendency of the tree is to a hamisumo pyramial form. It in much longer in attaining maturity than the apple-tree; and on a dry soil it will survive and contimue fruitful for centuries. Thu tree may be propayated ly seeds, layers, cuttings, budding, and gratting; it is more frequently nised from seede than tho apple, but grafting on its own epeciee is also common, and is generally sucecssful.
The observativna already oflezed respecting soil for appletrees apply equally to thone of the pear kind, and nothing more need here bee saill vither on that sutjeet or on geeleal culture. The proning, however, is ditierent, be:cause the pear is a very independint growing tree, and, es a standard, will assume its own natural tigure in opposition to all restraint. All branches which lash one another must be removed; but unless the proner cutand deform his treers in his uttropts to create fruitful spurs, there will seddon be a redandancy of wood. A little foreshotening or distbuding in the epping and semmer may te useful; but, in general, as the pear can seldow become fruitful under seven or cight years from the grafting or ludding, it will be pralent to watch the gradual developinent of the matural spurs, and to cot bark the laberals to them, when forned, and not before. Mr. Kuight pruned very little, shortening the muin shoots occasionally, not sooner than July. He thus expressed his opinion in a letter to a professional gardener on the sulject, in April, $1833:-\sim$ I would recommend the knife to be bittlo used upon the young pear-treen, particularly upon the horizontul branches. As a general rule for pruning trees that are to be kept low in gardens, I recommend the upright shoots to be shortened about the beginuing of July."
The finest pears are the Jargonelle, Marie Loouise, Beurré de Capiaumont, Bearré Diel, Glout morceau, Easter beurré, and Beurré rance. The word beuré, which here occurs several times, is from the French word for butter: and that, as well as the other names, dhuw how much we are indebted to our continental neighbours for perfeeting this delicious fruit. In selecting pear-trees, the nature of the locality must be conoulted, suljeet to which the jurgonelle and others menvoned, also th.e Windsor, are general favourites. The
, aunmor, autumn, and winter bergamotu are nue excollol for rieh muakinems of flavour. The pear requiree a warmer climate than the apple, and hence nowe uf the flner sorts, which grow woll an matatidula in the nouth and ventral parts of England, will refuire a wall and alelker in northern or nore kevin wituationas.

orchards.

An orchard is a piece of ground apecially devoted to the rraring of fruit trees, principally apple and pear, and is freyuently un appendage of the Eaglink farm and manor house. It should bo a well-fenced enclowure, and if there be room for a choiec, its ailuation ought to be on the side of a dry knoll, sloping to the south-ceastward the best moil in a frem wandy loan of cighteen inchen in depith or upwards, repooing on a subwoil of dry gravel on rock. If the ground be wet, it must be thuroughly drained in the tirst phace, as no fruit tree call enswet its purpose if the eoil te otherwise than dry. A damp clayey subsoit muat he avoided; and the deep rich soil in the lowest dip of a valley is the worst sithation to bo chosen; for, though it may be whettered against wind, it is most liable to keop the treed in a growing natate too late in the autum, and to be weverely assuiled hy late frosts in the sizaing, when the trees are probucly in thower.
Shelter is necessary to orehards against the autumnal south-west winds; but this is best obtained by high hedges or forest trees planted on that side. Winde from any other quarter need not be so much dreaded. Shettering hilla at some distance are an advantago, so as the crchard is not in the lowest dell at their base. Many orchards are almost burren, the treea covered with mone and lichen (a ine harbour for insects), only from their being too much sheltered, and deprived of a free curreat of drying air.

Aa in orehard in unally a pasture for sheep, cown, or other cattle, the treed to be planted in it inuat be standards; that is, trees trained in the nutsery, with a clear stem six or seven fert high, irom the top of which the branches diverge, und out of the reach of cattle. Sometimes the stocks are firat planted, and when lairly eatablished, are worked, that ia, grafted or budded at the desired height.

If an orchard is to be formed out of an arable field, the ground may be prepared by the plough, laid into bands or ridges of eight yards wide, the trees to occupy the midille or crown of each ridgo, these lying south ant north. The trees should be plated in riglat lines, fiv , six, or eight yards asonder; and the whole area aur rounded by a deep diteh and hawthorn hedge.

When the trees are planted (which should
the end of October), the ground may be laid 1 a crop of harley or outs, and grass secha in the sju:and so remain.

If an orehard is to be formed in a grass field, it is drained, if necessary, and clesed with a hedge and ditch as above; the trees are either planted in trenched pits or in trenched borders ; that is, borders six feet wide are traced south and north, and regularly trenched fifteen inches deep, the turf being turned to the bottom. Along the midule of these borlera the trees are put in at the distances already mentioned. This done, the broken ground is sown down with grass sceds, and the treas stukel down and protected against cattle if they are in any danger. The pits, six feet square, are trenched and planted in like manucr.

In phanting the trees, the ordinary care must be bestowed as well in taking them up as replanting, each should be set on a little mound of the lineat of the seil, on which the roots should be regularly spread, and kept near the surfuce-for deep planting muat be carcfuly avoided; the uppermost fringe of roots should just be within the turf, but no deeper; and thoy ghould be
encouraged to take a norizontal rather than a downright direction.

Orchards pinnted in either of these methods, if carefully performed, answer very well, if good care is taken of the trees till they are fairly established and ean prolect themselves.

The fruits chosen for such orcharils are apples, p nars, plums, and cherries, nad of these, such as are known to thrive, and are most fruitful in the neighbourhood of the intended orchurd : for all fruits are not equally thrifty in the sume locality, and this is a point deserving the considerntion of the planter.

Such orcharls are planted chiefly with n view to the service of a family, any redundance beinu sent to market, or sold on the trees to the fruitmonger; but when fruit trees are planted as a special source of prolit, a very different plan is followed. An a're or two of snitable lani, with a proper exposute, is fixed on ; the whole is trenehed fifteen inches deep, and thoroughly elrained, if nevessary. The surfice is levelled and haid into beds ranging south and north, mid nhout twelve feet wide; along the modite of these trees are planted; and the iutervals are oecupied by two rows of sinall fruits, eitner gooseherrios, currants, or raspierries. Some of the intervals may have a rank of filberis introduced, which, when kept as low bushes, and properly spurred on, are us protitable as any other kind of oreharil fruit.
Such an orehard is intended to be a perfect thieket of fruit trees: all, whethet yielding large or small fruit, must be kept as dwarfs, and trained in the buch form, Of course the sorts which are naturally of a dwartish habit are preferred, and if not dwartish by mature, they must be mate so by art. The bush form is ohtained by encouraging the lateral growih of the branches, und depressing by some meant or other those which have a tentency to grow upright. A suticient number of branches ia gained ly pruning while the trees are younc, and so disposed tinat they may ageregately form a rotumd, compact, bit mot over-crowded head, shading a eirche twelve or fourtien feet in diancter. more or less, areording to the truitfiluess or individual strength of the trees. This close plantrous and low stature of the trees render them a shelter to each othor, hoth against the frosty winds at the time of flowering, and against the equinoctial gales of autumn.

The surface of this orchard is never dug. In dry summers, n mulching of half-deroyed littery-dung is epread moler the trees, and hoed in in the winter. Strawherries are introduced when the trees are young, but the gromed must not be exhansted by surface-eropping.

The sucerss of suth a fruit garden depends wry m:ch on a proper seloetion of the kimes, and on the skill of the manager in keeping the trees fruitful and dwarfish, withont the applieation of the knife: for this is quite practicable, and is an art which must be had recourse to in the treatment of dwarfed trees.

Citer.

In Herefordshire, Devonshire, and mdjoinine distriets in Eughad, orchards are maintained primeipally for manufueturing a heveraze from thair probluce. Crefer is the liguor made from apples: the treerg in most extimution for the purpoae beine the Nesv loxwheld, the Wilding, the Chorry Pearmain, and the Soltes und Red Nurman. A fer the ripenmalphes are shaken from the trees, they are allowal to romsin in heaps for a ronti: on the ground. to become inellow. "llue process of manufiseture into cider, which then commeneen, is descrited in the following surcinet manner in the "I'rung Cyclopardia:"-
"Cider is manufactured with very rude mnehinery by the follewine pronoss:- -I'ne aples are thrown into in eacula stone trough, usuallv about eighteen feet in
diameter, called the chase, round wmen the rumer a heavy circular stone, is turned by one or some times two horses. When the fruit hua been gnixic until the riud and the core nre so completely redixed that a liandful of 'must,' when squeezed, will all pan without lumps between the fingers, and the maker seea, from the white spots that are in it, that the pips hars been breken, a square horse-hair cloth is spread utiler a screw-press, snd some of the must is poured with prila upon the hair, the edges and corners of which arg folded inwards, so as to prevent its escape. Ten of twelve of these hairs are piled and filled one upon the other, nnd then surmounted with a frame of thick boards." Upon this the screw is slowly worked down by a lever and with the pressure a thick brown juice exudes from the hairs, lenviug within them only a dry residue, whict, in years when apples are scarce, is sometimes mixed with water, ground again, and the liquor pressed aut as before. 'This latter product is called 'water cider,' a thin, unpalatable liquor, which is given to the labourers carly in the year.
The cider is received by a channel in the frame of the press upon which the hairs stand, emptying into a flat tub called a 'trin.' From the trin it is poured with luckets or 'racking cans' into casks, placed either out of doors, or in sheds where there is a free current of air. In about three or four days, more or less, according to the heat of the weather, the liquor nsually will ferment; the thick heavior parts will subside as a sediment to the lottom of the cask, and the lighter become bright clear cider. 'This should then he 'racked' or drawn off into another eask, and the sediment be put to strain through linen bags, and what oozes from them should be re. stored.

It is during the fermentation that the management of eider is least understood, and there is the greatest huzard of injury. It is necessary also to know what fruit will by itself make good cider, which kinds should be ground together, and what proportions should be mixod. but it is in the preservation of strength and flwour after the ciler is ground that the principal diff. eulty consists: sliaht fermentation will lave the liquer thick and mopalatable: ropid fermentation will impair boh its strenesth and durability; ceressire fermentation will make it sour, harsh, and thin. Other things heigg egual. that cider will probably prove the hest in which the vinous fermontation has proceeded slowly, and has not bern confomided with the acetous. 'lone remedice used in eases of eider not charing ure either yeat or the addition of cider its a state of fermentation, isinglass, egge. or agnart of fresh hlood stirred uj with the liquor, in which hast rase it is to be racked on the following day. 'Fhese do not always prove effectual, but the common evils are axcess or rapidity of fermentation; and if a hefter quality than farm-house or 'fanily drink' is sught, ciler reguiress sa much care to present its berge spoiled, that the beat und most eareful makers frequently have it losked at doring each nighl for some weeks ater it is mate; gnd if the hublling hisming noise, the sign of formentation, Ineconess frepuent or tow lond, the liyunt is tmon hu'fly racked off into another cask; this cherk ofton requires to be repeuted severnl times; but although, at rach racking, some portion of the strength will be fori, the hody, thavour, nud swertmess, will chide be retained. It is not the habit of the fitherer to nild sugar, treatlo, hranty, or any eolouring matter, to the liquor; it is ouly mlutarested in the hands of eider dealers and publienas, who will not lose a horshemd; and if me has turned sour, or has been otherwise da naged, it must be - doctored' in order to render it marketadle.
 a levise prees is used, and "reed." anthrushed siraw, is siread atewigr presk is uscd, and "reed inithrasied siraw, is gread in frames for expresesing oil from olives is adea cealla the same

At the begin cellers, where, in casks of gr even 2000 ga than smaller v cider better. ll thea fit for sa though it will r : eer is requir September or pecfer an earlio Mar; a greater but a considera thes that will l
Good cider i may tos had at above is. 6d. p is alsa a pleasa iustances alino champagne.

The finest this division; plum, the che Under these w viow of each, to the catalogt and Kitchen ${ }^{\text {a }}$ vator," a smal Mogers of the Besides the all the trees within a hard, chatine pulp; division which peach and nee of the slinond, family, and th constituted a d

Both are nal try in the yeul that period. Ea Melting Peach with more soli termed cling st fruit, but arra prefer to simpli dismiss the cli deeming them their scasoll, true melters.
The peash tones, and m thined; therel from seed are what a secullin to trust to th would urge c intinate with and certain m get as much tix with fruitful th of a grod ancl found to be nectarin c are of trees that and w insert muscle plum trees in this tion is perfort buds swell,
Vor. I.-7

At tha beginning of Januntry, the cider ls moved into eellas, where, by largo growors, it is frequantiy stored in casks of great capncity, containing 1000, 1500, or evan 2000 gallons; these aro chenper in proportion han emaller vessels, and aro thought to preserve the cider better. In March, the liquor is bunged down; it is thea fit for sale, and may be used aoon afterwards, though it will greatly improve by keeping. If bottled r :ere is required, it should be hottled and wired in the Scptenber or October after it is made; some persons prefer an earlier time, the end of April or heginning of Nav; a greater degree of efferwescenr is thus attained, but a consilerable loss accrues from the number of bottles that will hurst."
Good eider is a remarkahly wholesome beverage, and muy to had at a very smail price, the bost not being above ls. 6d. per gallon. Pcrry, or the liquor of pears, is algo a pleasant and wholesome be verage, nod in some fustances almost approaches the quality of sparkling champagnc.

stone fruit taees.

The finest wall fruits of the garden are included in this division; these are, tho peach and nectarine, the plum, the cherry, and all their numerous varicties. Under these well-known names, we shall take a cursory view of esch, referring the reader for minute particulars to the catalogue in Lindley's "Guide to the Orehard and Kitchen Garden," nand to tlent of the "Fruit Cultivator," a sinall work of great merit, hy the late Mr. Rogers of the Southampton Nmiery.
Besides the familiar term. stone fruits, botanists refer oll the trees which loar fruit with a kernel contained within a hard, bony shell, surrounded by a rich nual saccharine pulp; this, consequently, would cunbrace that division which has the alenond tree for its type. The peach snl nectatine were till lately considered a species of the almond, but they have been separated from that family, and the peach. with its variety, the nectarine, consituted a distinct genus.

Peach and Nectarine.

Both are natives of Persia, introduced from that country in the yoar 1562, and extensively cultivated since that period. Each admits of two leading sub-varicties- the Meltiug Peaches and Nectarines, or frie stones, and those with more solid hesh adhering to the nut, and therefore termed cling stoncs. The Frenth consider them as one fnit, but arrange them under four divisions; but we prefer to simplify our description as above, and shall even dismiss the eling stones altogether from our catalogue, deeming them comparatively worthless, being later in their season, aid of a flavour altogether inferior to the true melters.
The peach and nectarine enn be raised by sowing the dones, and many excellent varieties havo been so obtained; therefore it is not a fact that the trees raised from seed are wildings: but us there is no certainty of what a seedling may ultimately herome, it is not prudent to trust to this medo of propagation; and thongh we would u:ge every pratical gardener to mako himself intionate with the process of hudding - that nuproved and certain mothod to perpertuate approved varictier get as mueh tine must thus elapse hefore a wall be stocked with fruitful trees, we think it advisable that he purchase of a good and trusty nurseryman such vatieties as are found to be adipted to the locality. The peach and nectariue are seldom grafted; it is usual to sellect buds of trees that are approved bearers and of fertile halits, and ω insert them into young vigorous stocks of the muscle plan or seelling peach. Nurserymen raise their teecs in this way, preferring the plun stock; the opernlion is performed late in July or carly in August. The buds swell, hut remain turpid t.": the spring of the fol-
Vol. I. -70
lowing year, at which time the head of each buthed treo ia cut back to an inch above the inserted bud, which then expands, and forma ono or more shoota. Trees in this condition are called maidens, and many prefer such: but in general tho nurseryinnn prunes and trains them into form during the two aucceediug years, when they are sold as trained trees, at a price varying from 4 s .6 d . to 7 s . each. The mode of training thus consmenced is usually that which is called the fan or peacork's tail. It is formed upon the principlo of rejecting a central stem, and of leading all the main branchos and their secondaries to assume the figure of an ex panded fan. It is to obtain such trees that wo recommend the planter to purchase the truined plants of the nurscry garden. But there is another very excellent method of forming a tree, called the Seymour training, from the namo of the gardener who introduced it. This plan requires a central stem, from which all the main sloots are trained at angles, varying according to the height of the wall and the vigour of the treea. The branches are led to the right and left alternately, at as nearly equal distances (about nine inches) as possible, and when a tree grows kindly, and the pruner is a man of dexterity and foresight, a handsone well-balanced tree is the result. To obtain these Sieymour trained trees, the planter must purchase maidens, and cither train them himself or employ an adroit pruner who is willing to attend to the required directions. We shall now state the principles upon which all judicious pruning is founded.
The peach produces its fruit upon the spring wood of the previous ycar; occasionally, ubo, if the habit of the tree be very vigorous, upon secondary shoot3 from that wood; but this is by no means desirable under ordinary circumstanees, hecause it proves that the tree in toe luxuriant in young wood, which, being developed atter min-summer, can scarcely becone duly mature. A tree cannot ho expected to produce or support a crop of fruit in a period short of four or five years from the buddiug; but duting that priod, the sit of the gardener should be employed to lay in six or more regular Lranchea to the right and left, which will form the skeleton or figure of the tree, mad remain the permanent supporters of the young-bearing wook. In the fan method of training, secondary fruitful shonts are pernisted to form at the under as well as the upler sides of these main branches; but in the Seymotir training, the fertile secondaries are led off from the upper sides only; all those which break from the front (called forc-rights and breasi-1woal), or from the back next the wall, ur from the under side, are olliterated as they nppear, vither by pinching them off with the finger and thumb, or ley amputation with a sharp, kuife; this process is termed disbulding. The funatity of wool to be retained, year after year, so as to stai., a regularly increasing proportion of fruit, without crowding the tree with redundant woud, is chicity produced ly the judicious use of the knife in disbuddings. We will suppose the example of a tree trained in the nursery during two ycars, then planted in October against a wall fronting the south or south-east, and cut back in February following, so ns to leave all its bratuches about sis inches long. The shoots of the firsi spring form the luases of the permanent branches, and are to be nailed, os they advance, in the most regular order. leaving theen at their fill length till Fe brongy of the second year, when the strongth and condition of the tree are to be consulted. As a first rule, we are taught, and espericuce sanownas the rule, "that every shoot is to be shortened in proportion to its strength, hy pruning to the point where the wool is firm nul well ripened, by which all the pithy wood is removed, causing a mupply of that which is bettet ripened for the cusuing yenr." But, in order to liacilitate the ripesing of the wood, it must he traind thin, retuin. ing those shoots only that may be required for the ensuing ugg thase sthoots onty that may
year. After two years' growth in a good soil, we may reasonably expect that six or eight permanent shoots, a yard or four feet in length, will be formed and trained in, on each hand, and that all those branches are furulshed with three or nore secondaries laid in at nearly equal diatances from one another, and which, by the end of June, muy be a foot or more in length. The tree will continue to grow till the end of August; but dishbudding must be effected repeatedly, so as to leave it pretty nearly in the form and condition just described.

It has then becomo e bearing tree, which condition implies a series of strong wondy branches of two, threc, or more years old, that have produced other shoots in the apring, which, when ripe, are of a deep redlish-hrown tint on the somny side. These latter are the fruitful ahoots, and they never lear twiee; but, if neglected, run on to an uncertain length, sending forth other weak laterals, which might indeed bear a little fruit, but such as could never compensate for the ruin, or at least, disfiguration, of the tree. It is a maxim anong gool proners, that a peach tree should be green throughout or all over ; that is, every space, eves elose to the main stem, has one or more leafy and fertile shoots. This maxim would he violated in two seusons were all the shoots permitted to estend themselves, and the tree would be found bare; every part of the centre becoming verdant and productive ouly at the remote extremitics; hondreds of fine peaches and necturines can be found in this condtion; and, in fact, the greater proportion of those in private gardens afford irrefragible evidence of neglect or want of knowledge.
The thearing-shoots, therefore, must be shortened to twelve or fourteen inches, if strong, and the weaker to eight or ten inches, or even to half that length, if very slender. The pruter should cot sloping from bwhind and a little above a trelle eyc-that is, an eye with a shoot-bud between two blossons, if there be such; for a branch or shoot not in a mature or bearing stute has no treble eyes; but in furnishing a tree, it is not needful to cut away the wood-shoots as useless; because, by proming buck to an cye seated satier low on the shont, two goud fertile shoots may be provided in lien of a barren ane. A single sharp-pointed eye is the origin of a woodahoot; the blossom-bud is more round; but by deferring the winter regulation till late in Fehruary, the condition of the two will be no longer doubtful.
When it bas once been so pruned, the leading branch will break its extreme buil, which will thus elongste that branch; and the fruitful laterals will abo developee several minor shoots. It is from the last that a selection must be made to effect two oljects of tho greatest importanec. The first is, to attract hie sap along the entire showt, in arder to nouribh the young fruit upon it; and this will equire that the shoot at the extreme point, or ut leant one beyond the uppermost fruit, be permitted to extund itself, and be nailed securely to the wall, when it shall have acquired some strength and toughness. The second object is to provide a shoot to succeed the one now bearing fruit; and in doing this, the lowest should be selected, because it will, by its situation, replace the prement shoot in a manner most confurmoble with the gardener's maxim lefore alduced, and tend to keep the trey compact and fertile-close home. A third shout ought alon to the retuined, to guard agninst emergency or accident ; all the others should be removed, by disl)uding, early in May. In July, aloo, a genernl regulation must tahe place ; when, by removng unclens mbotw, and nailing thoner retained, the truit will her duly exponed to the sun's raya. Tinus the growth of dhoutd und fruit proceeds; and if regularity and order te maintainel, the tree will, year alior bear, chongate, mid add brawd to bruilh, retanang complite verdure throughout. A few lines from .. 'l'he tiade," by Gi. liadley, will sullice to rompiete our concise divections:-" Should soung showes,
indicating extraordinary vigour, anywhere mene thein appearance, they should be immediately cut out, unleat where a vacant part of the wall can be filled up; because on excess of vigour in one part of the tree cannot lo supported without detriment to the other. Pesch trees when in a state of health and vigour, generally throw out latersls from their stronger shoots" (he means serondory laterals, before alluded to) ; "when this in the case, they should not be cut off elose, but shortened to the last eye nearest tho branch" (this is, in fuct to spur them, in the hope to convert the lowest hud into a fruitful one); "and if there is room, one or two of those first proluced may he mailed to the wall; or the middle shoot may be cut out leaving the two lowest laterals, and allowing them to take its place, thus frequently obtaining two fruit-bearing hranches, when the former one would in sll pry 'abiity have been wholly unproductive.
"In the thinning of peaches and necturines, an in. deed any other drupaceous fruit, it is necessary to proced with caution, as they are apt to lill off after having at tuined a considerable size. In order, therefore, to secure a crop, it will be the hest way to thin them st three selparate times; the first, as soon as tho fruit is of the size of a hazel-not; the second, when of the size of a small walnut; sind the third, as soon as the stone has become hardened; after this, it rarely happens that either peach or nectarine falls off hefore it is matured."
These directions apply in every part to the order of training by the Seynoour method; for all the hearing wood of one year must be replaced, if possille, by young shoots procecding from the base of that wood; this fart if appreciated, will of itself render any odroit man an able trainer und proner of the peach tree.
Peach trees are hot too liable to loe molested by insects and tnildew; the former are usually some species of the aphis, commonly called green fly, though, as in 18.40, it was lhack. Some trees doubtioss escaped; bat those which were attached suffired to an extraordinary degree, insomuch that the erop dwindled and the growith of the: trees was eluecked-three distinct bromls having suceeded each other hetwern the middle of April and July. They obstinately resisted every hind of wash, though in general toluceo water is effietual. Scoth snutf and fumigation failed; and at last prenature cluew shortening was resorted to, and thus the new wood wat seriously iujured. Wie allude to this fact, as being in striet aceordance with the concomitant visitation of the back aphis that locally destroyed the hemn cuop, and doo formed kidncy-heans, peras, and even the nettes and othirs weeds of the tields and lanes. A disease produced ly frost, which is called "the Hadeder Might," frequenty swells and distorta the louves of pearlh trees; we are aequainted with no other remedy but that of timely hand-piching. By these attacks the regular training and figure of the treea ure much disturbed; and at times an entire season may be irretrievably lost.
W'ith reaject to soil and preparation of a horder, what we have naid under the head apple ajplies strictly to the peach. As wall-peaches must have a border, we can de vise no pha more elleetual or simple than that of cleaning out a spuce of the required length, of cight to twelve feet in lireadth, the depth of soil at the wall to be twenty inches, sloping to fittern inches-making a fall of five inches from back to front. To affect nmple drainaye, the hottom should le paved, us before recommended, with chalk or fragments of stone, \&c., rammed hard, and inclining to a uldhe or stone drain ruming pracallel nith the wall, to carry away the xupertluous water from the leel. A natural rubsiatiom of chalk or rock would suffire but in that case dyth of suil muxt he provided. The Ixcd itself nhould consint of the rich but hot clayey barn and torf, of a common or pasture, baving in it no hasnure whatever. The trees may, inderd, bee tup-drested eve: winter with littery manure a yord or more round the
boles, and so d bove the collar will alao be a g and of this any mu.ch in the ve will be seen bla parched to aridi rated, and its va a tree in a pit 2 wall, and 30 in ditain a suffici Hundreds of fil gust by one tree about the period aphides in their lect, wa havo set of all the bearil usual upplicatio tween February drance of the

staction of a fac

1. *3ellegarde
2. *Chancel'or
3. Laie Adini،
4. Wilruge, or 0
5. Fairehild's 1

The rrees msr uiable to the 1 ti

It is believed, that the npricot Latin name, Ar of a plum snd plam-Prunus either upon th Lindley says thr the former ; but better, and endt de: and if he that all the be withnut having
The operatio the most rendily good budiler. tween the third and showery we selected from sh the in ofli, a piece be retimed, fro ought to detach ere of the bud. out which a but every kind of b peach, or any tre or shrub wi
The best var ont. fruit highet of higt. tlavour oval, and capa 4. The Roman

As to pronin sforsed ly ha from a main ste ation, soon athe abtain new bra May or June a otber, removio *inter promina en inclees, the aore or less as June follow ed up; because - tree cannot bo Peach trees crally throw ou neans secondar is the case, the I to the last eye ur them, in the (ful one); "eno t profuced may may be cut ou lowing them te wo fruit-bearing 1 all pr, 'ability ctarines, ans in ssary to proceed after having ab refore, to secur them at three a fruit to of the of the size of a s the stone hias pens that either vatured.' to the order of all the learing ssible, by young wood; this fort adroit man an
molested by in tly some species y, though, as in
ss escaped; bat t11 extracrdinary and the growth t brockls having Hle of April and kind of wash, iectual. Scoth premature close new wool tras inct, as being in visitation of the an rop, and do mettes and other ase proluced by ght," frequently a trees; we are that of timely ilar training and and at times an

of a border, what

 co sitrictly to the prder, we can do 1 that of clearing cinght to twehe tall to he twenty hig on fall of fire ample drainace, onme nded. with ed hatd, and in ir paralld with water from the ck moatd sutice, provided. The bot clayey luatn in it no manure un-ilresed eve: more round theand thus, by disbudding and winter-shortening, reguo larly formed head is obtained, upon the shoots of which short fruitful apurs are duly and progressively developed. In all winter prunings and curtailments, the longest ahoot that is retained ought not to exceed cighteen inches in length; thence diminishing, according to the strength of each, to nine, or even aix inches.

These rules comprchend the essence of all the best practienl directions; but one remark, which we seldom meet with, appears important. The apricot tree comes early into bloom, when very few leaves, if any, are expanded; and it frequently faila to set or retain its fruit. This failure we havo remarked particularly with low trees horizontally trained. On tho contrary, when the tree having a six-feet main stem without a branch is then trained with a central leader to the height of from twenty to forty feet, and suffered to branch obliquely to right and left, the crop of fruit is frequently very great. We alse saw, at the end of March, nfter the severe frost of 1838 one solitary branch of a tree which had been trained upon the breast of a vinery chimney, with fruit larger than nutmegs, and folingo fully expanded, while every other branch remained torpid as ony of the exposed tree of the garden. These facts prove that the higli wall of a dwelling, and the proximity of a warm chimney, are most favourable to the productiveness of this very fickle tree.

The Plum

The common plum of Britain is the type of this genus, Prumus; but we cannot believe that this wilding is the parent-stock of those rich and luscious fruits which have been so long cultivated throughout Europe. Plums are propagated by budding upon the common plum stock; and for standards, Lindley rerommends the insertion to be made nine inches from the ground, when, under favourable circumstances, the buds will produce vigorous shoots, standard high the first year. Open standards require little attention; they should be di veated of all the superfluous shoots by proning them out close to their origin, just before the season of spring growth. But wall trees and espaliers are to be treated as espalier pear trees; that is, by training them with a central stem, and a series of hotizontal branches procerding from it on earh side, nine inches apart. These brazehes are not to be shortened; and the spurs which form natirally upon them are to be kept short and compact as they advance in length. Artificial spurs may be obtained hy Iuly foreshortening: but as fertility is promoted by whatever checks the luxuriance of the wood, it will, we thinn, ise preferable to train in the supernumerary laterals, depressing them below the horizental level till some naturnl spurs are formed near their origin, and then to ent the shoots lrack to the lowest spur.

The plum ripens in September and October. Of the earlier dessert plums, the Green gage and the two Orleans are the hest. Coe's Golden drop, and the Goliath, come into senson in Octoher; and for preserving, wo name the Winesour, the Violette hative, the two varieties of Magrum bonum, and the prune Damson. The Imperatrice is the best late plom, lieing delicions in November. The soil already mentioned is favournble to the plum, though the tree will prosper in one of more binding quality.

The Cherry.

'Phe cherry-tree, or Cerasus, as it was called by the Romans, has been known as a cultivated tree for at least three centuries; orehards, the produce of which was sold at a ligh price in the year 1540 , existing to a large extent in Kent. This circuastabe conferred the name of Kontish cherry on that peculiar speries. Lindley cnumetates and describes twenty-eight, and Rogers twenty-five different kinds of cherries; among which
the best for general cultivation are the Kentish, the Myy-dako, the Grafien or Bigarreau, Herrison's heart the Black heart, and Morella. All may bo grown an atandards, but tho May duka and Morella produce larger fruit when trained against a wall.
Standard trees form their own apurs, and require only a little thinning out of superfluoua branches; but wail trees muat be treated as the apricot and plum, avoiding, howevor, to shorten tho leading branehea. The Morella requires a somewhat different treatnent, because it not only bears on spurs, but, like the peach, on young wood of the laat spring. Mr. Rugers offers some rennarka in the form of anecdure, which are deserving of attention:In the Surrendon Gardens, of which he had the charge, ua north wall ten feet high had a border twelve feet wide, and very shallow, reposing on loose rubblo rock. The soil was a dark hazelly loann, of rather inferior qualixy : the roots were very near the surface, those nearest the stem actually above it. Five trees were originaiiy planted, but subsequently the second and fourth were removed, leaving the centee tree at thirty-two feet from the end ones. Even at this distance the branches met ; and in their progress, being kept very thin of bearing wood, tho crope weve magnificent." The trees were simply planted on the natural surface of unprepreded ground without any manure or deep trenching. "Neither was this border evir dug with apades, hut slightity stirred with huat forks, and having a little well-roted horse-dung bestowed every second or third yeer. There cannot lee a more mistaken notion and inji. rious practice, than overloading and poisoring the fruit-lordera with rieh dung. In the early training of the Morella, the knife Eluuld be used freely, to gain a sufficient number of leading branches-thinning out the laterals, but never shortening them."
The cherry-tree grows to a large size, and its wood is highly valued by turnera and musical instrument-makers, from its snitalheness for heing bored and formed into mooth tubes; in the luxurious East, it is much used for the tubes of tobacco-pipes. The fruit of the cherry ceens less impaired by growing in a wild state than other garden fruits; in scolland, the wild cherries, called graus, are stuall but fine flavoured; and in Germany, the favourite liguor Kerschenusser, is distilled from the juice of this species of fruit.
berry-beaning tregs and shruns.
In this division will be comprised the Currant nnd Gooseberry, both memlers, with all their now innumeralle varieties, of the same family or genus, Ribcsthe Raspberry, Strawbery, Cranberry, and Grape-vine.

The Curram.

The currmut is a native of Britain; nevertheless we are indelted to the Dutch for the great perfection to which it has now arrived. The Dutch red and white currant are unquestionably the test pooduce of the garden ; the Naples black is preferred. Currant-trees prosper only in cool climates, and they are someswhat athitrary in their choice of a situation even in our own moist country ; they grow to sul astonisting perfection in the rich moist vales of the middle countirs, lut the lerries dwindle in hot and arid stuations. A loan such as has been so frequently mentioned. will atso suit the currant, mut it likes manure ; and this can le advantagronsly sund freely applied as a tup-dressing in Novemture, to rerain on the duffice till after the pruning in Fotruary, when it should lue lightly forked inso the soil without diaturling the rowts.
Mr. Kulght raised three or four hundred trees from oeda in the course of his wcirntific experiments upon erossings, hut of threse very fow excelled their parents. One of them, the Repl crystul, is superior in all respects. We have uleo raised currants frot seeds, and have ac-
quired one fine white variety, but have thua been instrected that seven or more years elapse ere the plants become fruitful, and therefora that propagation by cuttinga in greatly preferable. Take cuttings of the young spring wood, with a small heel of the older wood attached io it ; divest it of all the buds excepting five of the upper. most and those of the heel; dibble holes six inchea deep in a shady bed or border, and fix a cutting firmly in each hole, by preasure and watcring. They succeed perfectly if planted in August, provided they be kept moist and entircly shaded, or in o north aapect ; hut the senson extends thence to the beginning of March. Tha aoil allould be rich and light. Cuttinga may be paced at first where they are intended to remain, or they may be transplanted after they liecom' rooted plants, cutting away all but the upper whorl ot roots: in either case, crit back to two or three buif the shoots made the first spring, and aubsequently pr' ne on every side at an our side bud, to make the bus'. apread at top, and render it open towards the centre.

I'rune for fruit just after the huds begin to avellnever before February, or the birds will reduce the ex. pected erop; and in pruning, shorten all the leaders and spur in the laterals, till the bushes appear like deformea masses of scrubly twigs. The long pruning is comps. ratively worthless.
By these spurrings and shortenings, the trees progreat some what slowly, but the fruit is produced in messive clusters from the numerous spurs. The skelcton of each hush ought to consist of nine, twelve, or fiftecn bearing branches, diverging at equal distanees from three lorer short h. hs, which emerge from one main eentral stem; this is the 'rest form of a neat bush, and the knife should he exercisel to krep it open in the middle. If the spring shoots push very vigorously, the first high tind generally breaks down more than half of them; but this natural pruning is frequently advantageous. The hack currant reguires a still more moist and cool site, and that the wood be kept young, but never promed of spurred. Whatever shoots hecome black and scaly must be cut entirely out, loaving those hearing hauches only which are of a delicate brown colour. The trees require frequent renewal, by taking vigorous euttinge, for old wood produces small berries. If the soil and site be congonal, and the tores be young, the berrics are frequently seen nearly as large us small black cherries

The Gooseberery.

This universally known shrub is a native of Britain, and therefore much more easily cultivated than exotice it is, indeed, so hardy, and stitahle for even ken eli mates, that remarkably little fostering is reçuired to keep it in perfection. After a long cerurse of euture, there are now hundrels of varietios of gomelberies; still, the kinds which kep thecr place in pultic extination are few in sumber: these are the old rougt red, dark purple, gr+en, and yellow gouselorries; they are still preemp. nent in flavonr, but as the gennine culture of al! is the game in puinciple, a few simple rules will instruet be grower in all that he need perform to obtain healthy and productive bushles.
To propagatc, take cuttiuga of any chosen sonts eigh
 pis cre or heel of the older woot; they nee insetted alaid the end of O-totere to the depth of three inclive. The situation slowld the shaly, the "arth raber sandy, and each cutting mould lie fived firmly in the weil. 'th customary to remove ull the humbe exerptiany four or fie at the tof", which are lof to form tha heat. proaluend from one © witral stem: but we prefer to ser une the rawb ing of the cutting ly rectaining the lowert, and planting it four or five ludad decp. It is frum thewe Pudst that no
 spring, nature will nut be idle nud whenever the era
meak, snil shoots thastrongest andt all the ethers bot? three or four eye It will be desirab dem, es soon as growth, that ther port thes.s. A ce think to obtain or as, by destroying ne believo that t cutting are to be disclain it. Wh can be spurred sloorten the leadi Fchruary, a certs hould be retainer tro and three yes renewing the tre oblained from atrs as atcm.

The raspherry land, but has bee choice sorts arefavour, ripe in J porth wall, can tracted some week rety bristly wood in flavour, luscior 3. New Double-be berry than strict timely pruning, a autuinn. The ra up from amonst th plants. The frui always be cut dov the young shoots ers (of which for ahould be seleete yrass, changing ti be taken to rem from the wande diould be a rich tow, should stang nay be supported north; ancl, conf successional shoo urfering with tha

The strawherr: Britain, and is to wild state in une tangled shrubby other northern ec ray, among who abundance; it p South America, Cunda and No is shart, very g was the delight Latin its name conifiemt of th purhaps from th common surnam and the well-kt which is borne of out name stri it has been trac bueath the berr out others alleg
mreak, syil shoots elongate, it will he time enough to select the strengest and best as a leader to form a atem, obliterating all the others both below and above tha surface. Should three or four eyes break at the upper part of a cutting, it will be desirabla to remove all others lower on the dem, es soon as it shall be manifest, from the vigour of growth, that there are good and sufficient roets to support thes. A central stem is mest desirable, and peoplo think to obtain one, and to prevent the growth of suckwh, by deatraying the lower ouds in the first instance: we believe that the want of sucen s and the lons of the eatting aro to be traced to this practice, and therefore we disclaim it. When the head is formed, gooseberry-trees ran be spurred as directed for currsnts, avoiding to shorten the leading branches; or at each pruning in February, a certain quantity of the last year's wood slould be retained, and a corresponding portion of the two and three years' old wood cut out; thus, as it were, renewing the trees annually. Larger berries are thus obrainel from atrong young wood than by the spurring ss stem.

The Rnspberry.

The raspherry is a native of some counties in England, but has been greatly improved by culture. The choice sorts are-1. Red Antwery, fruit large, of high Alavour, ripe in July; but by being planted hehind a porth wall, can be retarded, and the season thus protracted some weeks. 2. Yellow Antwerp, light coloured, very bristly wood, of luxuriant growth; fruit admirable in flavour, luscious; peculiarly adapted to the dessert. 3. New Double-hearing; it is rather nn autumnsl raspberry than strictly a double bearer; still, by due and timely pruning, a second crop is frequently obtained in outumn. The raspberry is propngated by suckers taken up from anons those which rise in abundanca from strong plants. The fruitful shoots bear bit once, and should alrays be cut down in August to admit nir and light to the young shoots of the summer; and from these suckers (of which four or five nre amply sufficient) some should be selected to renew the stock every five or six year, changing the soil and situation. Care a -uld also be taken to remove the disorderly suckers which rise from the wandering roots. The soil for this plant should be a rich light loan. The plants, if placed in row, should stand a yard or four feet asunder. They bay he supported by strong stakes made to slope to the north; and, confining the benring shoots to them, the guccessional shoots will riso perpendicularly, witheut inurfuring with the others.

The Strawberry.

The strawberry is one of the few fruits indigenous to Britain, and is foond, like the hilberry and juniper, in a wild state in uncultivated spots, chiefly in woods and on tangled shrubby banks. It is likewise found in sll the other northem countries of Europe, particularly in Norray, amony whose rocky mountnins it grows in grent abudance; it prevails slso in the temperate regions of Suth Americu, and abounds in the colder elimate of Cuada and Nova Scotia. This delicions small fruit is, in short, very generally neattered over the earth, and was the delight of ancient as well as modern times. In Latin its name is fragaria, which is supposed to be canificint of the fragrance of the fruit; the French, purhaps from this source, call it froise, and hence the conmon surname of Fruser, which is of French origin, and the well-known hiraldic object, the atrawherry, which is borne by families of that name. The origin of our name atrawbersy is much leas obvious; by some, it has been traced to an old practice of placing atraw beneath the berries to keep thein clean while growing; sut others allege that it originated in the circunstances of the berries being anciently threaded on straws, and
offered for sale in that condition. The atrawberry is one of those plants to which naturo has given the means of extensive multiplication. From the main bush or stems there spread forth tentacula or auckers over the surface of the ground, and these faatening themaelves by a roet at every joint, as many new plants spring up as there are jointa. A single bush will in this manner, if, not kept within bounds, soon spread over a moderately sized gardan. From this abundant growth of the strawberry, it has been inferred that the fruit is of essential importance as an article of food in summer; but this is ecsrcely philosophical; for to what plant has nature given the means of propagation more abundantly than the dandelion, and what is so little nsed or held in leas esteem by mankind? Be this as it msy, the strawberry is universally aeknowledged to be exceedingly wholesome and refreahing as an occasionsal summer diet, and it is also allowed to posvess certain medicinal properties, which give it a atill higher value. With respect to these medicinal qualities, Phillips speaks of it as follows:-"As a dietetic froit, the strawberry affords but little nouriahment: the moderate or even plentiful use of it is salubrious, and recemmended to those of inflammatory habits Boerhasve co.siders the continued use of this fruit as one of the principal remedies in cases of obstruction and viscidity, and i_{12} putrid disorders. Hoffinan furnishes instances of some obstinate diseases being cured by strawberries nnd other mild, sweet, subacid fruits, and affirins that he has known even consumptlve people cured by them. Linnæus informs us that, by eating plentifully of strawherries every duy, he kept himaelf free from gout. They promoto perspiration, and dissolve the tartarous incrustations on the tecth. Strawberries ahould bo taken aparingly by these of a cold inactive disposition where the vessels are lax, and cireuIntion languid, or digestion weak." The medicinal qualities of the strswberry appear to us to consist somewhat in the abundance of amall hard seeds on the fruit, which act mechanically on the stomuch and bowels, and also in the weakness o? the sub-acid; in other words, the pulpy subatance is of a simple and harmless nature, remarkably easy $r i$ digestion, wnd at the very least cooling in its effects. Taken in moderation, it will save the use of some kinds of modicines, and, as an alterative from hard food, it cannot be too highly commended.

In most jarts of England, strawherries are eaten olone, or dipped indivilually in sugar, before heing put into the mouth; snd to suit this mode of consumption, they are brought to table with their stems, which form shanks to bold by. Bu: in Scotland they are consumed in a far more wholesair manner. There they are brought to table stripped of their stems, and are ladled ont and eaten with a plenterus infusion of cream and sugar. "Strawlerries and cran" is, in fact, one of the grond national treats whici strangers may reckon opon seeing set before them in the esrly weeks of luly, and to which generslly full justice is done. In the neighbourhood of Edinburgh, there are a number of suburban villages deriving celebrity from their extensive strawberry grounds, and to these parties proced from town to enjoy the fruit in perfection, that is to say, along with the richest and most delicious cream. In the vicinity of Duhlin, the celehrated "Strawberry Beds" in the same manner attract immense crowds of persons in the summer evenings, when the fruit is in its pritue. Those who are accustomed to nee strawberries only in the small pottles in which they figure at Covent Garden market, can form but a feeble idea of the node of consumption at cither the Scotch or Irish metropolis.

Of lote years there have been many changes ond improvenents in the strmwberry world. Fifty or sixty years ago, only sbout a dozen aorts were known, those of the largest size being called hautboys.* According to borti-
*So enlfed from being originsliy found in tiu haud bois or high unods of Bohemia.
cultaris's, there aro now some hundreds of select varetiea, produced hy crossing, change of aituation, and other circumatances. An old and reapectable atrawberry, known as the Old acarlet, was introduced frum Virginia m 1625, and has been the prolific source of several varieties. Tha Austrian sparlet, the Roseberry, the Scotch acarlet, the Aberdeen aeedling, the Grove-End acerlet, tho Downton, Sir Geerge Mackenzie's I ste scarlet, Nova Seotia scrilet, Prolific hauthoys, and Keen's seedling, may 3 e noticed among hundreds of others. Latterly, some poor sorts may have been banished from the market, and given place to Keen's scediing, which combinen good fiavour with largeness of aize, and is an excellent bearer. The object in cultivating so many varieties ia to obtain a succession of fruit through the season, some sorts ripening and being really for market in May, while others come to maturity in the course of June and July. It should be understood, however, that it is only in the neighbourhood of laondon that the auccessive cropping of atrawherries, or the foreing of them at particular seaeons, is methodieally conducted on a large scale. In most parts of tho country, the vicinity of Edinburgh includod, the fruit in its different varietica comea almost at once into tho market, the season lasting about three weeks, and then n!! is over. Tha exeeeding precariousness of the crop, from the chance damage of rains, makea the rearing of strawberriea a buainess of little proft, and lately it han been abandoned by a number of our market gardeners. This ia a circumstance to he regretted, and we ahould hope that, by a greater attention to the cultivation of late sorts, which would not arrive at maturity till late in July and in Auguat, a greater degree of auccess in rearing might be secured.
The following comprehend the general directiona for culture:- The acasons for planting are March or Scptember. The soil that all affect is a rich unctuous loam, trenched to the depth of two feet. The hest nnd atrongest rooted runners of July are always to be preferred; and these ahould be planted at the periods above named, with all their roots, into beds or borders recently prepared. Many persons retain their bela or rows, during an indefinite number of years, in a tolerable etate of fertility; but the triennial syaten appeara to combline overy alvantage, while it aveids tho twe extremes of amual renewals and of protracted duration. When a lod is formed and in full bearing, it will require an annual surface-dressing of loam and tranure, two parts of the former to one of the latter, early in the winter, to protect the plants and receive the new ronts, which always are ennitted just below the lowest leafstalks; in March the old leaves ought to be all ent off, leaving the hearts untouched; and the heda should le eleared of litter by a wooden rake. Prior to the fruit becoming ripe, the mowings of a lawn or of any soft gress laid over the surface, will prevent the berries from being soiled ly mould or worm-casts.
Triennal Systemi of Planting.-1. A plot or border of earth being tren-lied, as before directed, select, after the firat rain of Sepuember, a quantity of atrong and wellrooted rumer-plants, and, with a garden fork or trowel, eet them one by one, fresh from bed. in the new ground; 'f in single horder row, a foot apart; if in a led, at the same distance plant from plant, but the ranks two feet anunder. Fix each plant firmly, and give water over it from the rose of a watering-pot. If a eet of plants be Huas inerely transferred without much disturbance, and watered three times, few will fail. Hoe the gromed oecowionally; and prior to or during the fint frost, sprinkle mone nauure over and around the plants, and lightly pass the worden rake over them. Suffer no blossom to expaud in the following apring, hut lenve the plants to aequire strength. Stir the ground occasionally, and cut off all runuers.
2 In the second Reptember, prepare and cumplete a rerremponding plantation. Manure and dress the plants
during winter, and those of No. 1 for the neconu taw and in Mareh trim off the old leaves, and rake the aner face. Let the plants of No. 1 bear their full complen ment, tho fruit of which ought to be early, abundant, and of first-rate quality.
3. In September, repeat the work, and thus enmplete the pinntations. Treat this and No. 2 exactly as directed for No. 1. In the following apring, suffer No. 1 to breat a second crop, No 2 its first erop, and obliterate the blos aoms of No. 3. In the Eeptember of the fourth yen, dig up all the plants of No. I, turn the ground, manure, and replant it. Thus the routine will he compleced; and thus, year after year, there will be a plot progressing in one of the threo atagea ; and if, with each approved ts. riety, a similar routine course be adopted-and especially if a plantation be formed in the three axpects, east, gooth and north, the last undel a hedge or fence, to screen it from the south sun-the senson of atrawherries can le extended between the latter end of May and the middio of August. For tho latter pei:od, Knight's Liton is peculiarly adapted; and they who can at that time command a supply of a fruit ao fine and beautiful, will base ample cause for sclf-congratulation.

The Cranberry

This is a amall wild fruit, whitch may be easily cultivated in gardens; tho piant is so exceedingly productire that 1.10 bottles (five bottles to the gallon) have been known to grow within a space of two and a half square fect. The berries are used chiefly for tarts. Crantergy plants require a very moist aoil, and if placed near pond, so much the hetter. Give them some bog earth and in dry weather let thera be frequently irrigated.

The Grape Vine.

The vine, from the juice of whose fruit wine is made by a process of fermentation, is a plant of castern origin, which, in the course of ages, has been introduced into all the countrics of southern and central Elurope, aloo Eng. land. Requiring a fine climate, it will not trar fruit in the epen air farther north than York, and it is only in fine seasons and in good exposures, that its fruit is worth eating even in the southern parts of Britain; in genema, the grapes grown in gardens alout London are small, ond not presentable at table. In the north of France and Germany they are little better, and we do not really get fine grapes of a proper size till we reach Itnly or liotogal. In England, however, grapes produced in hot housea surpass in size and flavour the fruit of the Portugal vines.
Throughout the continent, the practice is to grow wine in large ficlds, either on plains or the sides of hills which are fully exposed to the sun. They are trained in rows, tied to stakea, and are pruned to a height of amod four or five feet; on the Rhine, they mellom excred thre or fuur feet; and, at a distance, the ground has somewhat the appearance of theing coverell with staked lyuns of peas. In Ituly, tho vines are trimmed to n greater heipht, and are made to cling to horizontal palinge, as if from the roof of a hot-house.
To those in the southern parts of England whadegite to rear the wine in gardens and on wnlls, we offer the foilowing directions:-Whe varieties most suitahle for culture are-l. 'The White swect-water, with rund teries, somewhat tinged with yellow, and faintly streaked witb ret on the sunny si:?. 2. The White anseatiuf, bunchas rather loose, herriea . ot very large, yellowish, and ghoundo ing with aacehariue, ine. 3. The small blaek clustef with berries between red and purple, closely parkel, serg sweet, and luscious in flavour. 4. Turner's lardy, or tho Eapecione, a fruitful tree, and very certain hearer; leriea of medium size, rarying from dark-red to deypinht-purpta.
Mr. Henre's tratise on the vine has added importano ance to the culture of this gracrful tree. min bis than
sreu: light ups fortid ua to rec ann only obser brick-walled lind, need be noil, but will gr chalk or rock o formed with a be rendered mo exalted in fluvo A sound tur rendered open and a portion and promote ita troduced by ders disance to repl thus little expen But if a new le consucuered, it wil in the first insta
Vines are pro by layers, placed the plants to bo light rich sandy eand, in equal without loss of rines of kuown are themselves a bald eyes on the ita base a amall kason for plant thod very simple in front of the n eatire cutting. mould and whit waise the louttor tick; then inser centre of the hol compost, which the shoot by poit Make the groun the appermost b andeglase. If two cuttings in a break, and attait atronger crly sh below ground. conce spinalling, forute growth lraf, as also the the main shoot. tine regularly na to prevent accide the wind.
As the aspec twen snuth-east the uttings, if droughted and nished with ront shoot will greev roummon frice, of September, let three lowest hud and over the roo arring progress sure two equal eight to ten feat tally right an:l secure them by s or under. retain dicularly. In s urreugth; thus, i tiand measure of ncos, and the ey
, he easily cultiongly productive (lon) have been d a half sifuan rts. Cranherry placed near some bog earth, y irrigated.
nit wine is made of castern origin, troduced into all urope, also Enge not bear fruit in ad it is only in its fruit is worth tain ; in genera', on are small, and of France and lo not really get Italy or Poto roduced in hot the fruit of the
e is to grow ring e sildes of hills, cy are trainedia height of abut lom excred three |d has somewhat stakel brans of a greater heighth lings, as if from
gland who desite , we offer the toisuitalle for culthe round terries, (ly streaked mith iscadiue, hunche vish, and atround all black clester, sely packel, rery er's harily, or the a luener; lerries to derpinhepupples added importano . rud has itrom
apart, cut the ahoof "Li" " of the fence, removing alan the remmins of all latce ', and tendrils. The two hortzontals will perhaps be rather slighter, yet if they be fully ripe, and furniahed with hold eyes, they may be lef three or four feet long on each side of the short main stem, but all the buds on the under siles of each must be ent away; mulch the ground as before; and in March following fork in the manure.

Jearing Condtimn of the line.--The fourth apring will find the vines in a fruitful state; but previously, the treen prepared for a dwarf fence should be so pruned as to retain but three horizontal branches on cach side of the main stems, about cighteen inches asunder, the inter mediate branches being cut back to their lowest bold eye leyond the stem. This eye is designed to produce a new shoot, to take the place of the bearing shoot, which, after the fruit is taken, must le cut away. Thus the vine will hencetorward produce, year by year, two sytems of branches, one of which will comprise year-old hearing wood, the other a corresponding seriea of green weod, which will produce the fruit of the following year. This description would almost suffice to clucidste the halits of the vine; yet, to leave no doubt on a subject which involves the entire theory of pruning, it will be understood that this tree bears its fruit solely upon the green shoots of the present ycar, which spring from the eyes of the palc-brown wood of the previous y car When therefore, a vine is of age, and has acquired sufficient strength to support a cron of fruit, it will generally be wise to provide a new series of bearing wood every year lecouse the fruit of new wood (in the white varietie particularly) is always superior. In this horizontal alternate system for low ${ }^{\text {c }}$ nces, each new brunch may safely be permitted to extend itself at least two joints beyond its predecessor, always remembering to cut hack, early in the matumn, to a short distance above a bold cye seated on perfectly ripe wood; for thus the tree will acyuine strength and extent at the same time; and experjence proves that, in ordinary circumstances, the fertility of a tree should be moderated, and kept below the supporting power.

The trecs on the secoud system of training for high walls must he pruncd in a similar manner, and upon corresponding principles. In the nutumn of the third year three out of four branches will he cut down to the lowest bold eye, and a few vertical shoots, from thirty inchea to a yord apart, will remain; and these also must be pruned to a strong eye situated on mature wool. This system will furnish new hearing-wood every year, increasing in length as the power of the tree augments; while, nleo, the low horizontal stems will extend fradually in due proportion. At first one, or at most two hunches, must be permitted to vemain upon each upright branch. In the fifth season, n grater crop may be taken, always, however, remembering to restrict the fertility of the vine, for by so doing, its segetating power will keen in the advance, till, in the end, the entire fence will be filled with vigorous hranches, annually rencwed, from which a very heavy crop nany be gathered, withont tasking the vine a any ilegree that shall produce detility.
The spur aystem of pruning hack the bearing sho it annually, may occasionally he adopted with black graper, and not without alvantage; yet the system of yearly riw newal lenves the vine at the entire command of the pruner, and procures large clusters of fruit. The few emarks ahove offered anter fittle iato minutise, but they clucidate cenarn principles; and if applied practically, wilt, we believe, lead to improvement in grapragrowing. We again profess to be much indebted to Vir. Hoare, and recommend his treatise to every cultivator of the vine.

The fruit of the vine grows in clnsters or bunches, as many, perhaps, ss a hundred sranes in the bunch. It in not iesirable that so many should cluster together. for when numerous, they are apt to le very small, ant to be
en compact in the mare, that those within do not ripen. Bunches with hany grapes, therefore, ahould be thinnel, by clipping out thone of the amalleat eize, which will allow the othera to grow to the proper dimensions. In very many instancea, grapes grown on walla in garileus are spoiled by vermin, tha listerstices in the bunchess being often filled with apider's weha and insecta of different kinds. All this is a reault of cardensness in not keeping the walla clean, and proning and otherwise intending to the bunches. As a proventative, let the walla in winter be lime-washed, including all branches of the vines, and luke mome pains to remove all vermin which appear in the fruit senson.

Forcing.-Of the growing of vines in hot-houses or vineries, it is not our intention to ajpeak; but for the clase of persons whom we address, the following account of a method for forcing vines in humble edifices, given by Mr. M-Intosh, in the "Orchurd," seems so suitable, that we take leave to offer it :-" In many parts of the continent, and even in aome few instances in this country, vinesare forcel in very humble edifices. The Dutch, Flemings, and Germana use pits, often not exceeding three or four feet in depth. These are fonctimes heat hy dung or tan being plared within them, which give out a mild, humid heat, serviceable to the vine whilo the buds are breaking; and this, with the propor husbanding of the solar hest hy judicious ventilation, is often found aufficient co produce ripe grapes at an early period. Other instances occur of auch pita being heated liy a smoke flue, to which very moderate fires are applied. But what is most novel in these pits is, the vines lying planted outside-the sood that ia to produce the fruit is trained under the glass within, while the young wood for succeeding crops is allowed to grow without, where, under a brighter sunsline than we enjoy, the wood becomes perfectiy ripened, and when the crop is gathered, the old wood, or that which prodaced fruit this year, is entirely eut out and replaced with the young wood bitheriogrowing without the pit. Vines ere also ripened on the continent ly hasing glass framea placed against the wall on which they grow, alout the time the fruit is half or three parts swellom, at which period those glasses are oot in use which have freen etmployed in forcing early crops of melons, sulads, dec. The solar heat collected by this contrivance ripens the fruit well, and folly matures the wood for the following season. We have it in contemplation, tounded nom the suecess of this :node, which we have oflon witnessed on the continent with adoniration, to ereet a portable strueture in the new gandena buw preparing for lis tiracy tho luke of Bucelouch, at Dalkerith labice, and of which the fole lowing biet descripthon will pherey a sutheient idea:Suppesing a south watl, hoils hollow and heated with hot water (as all our walls are to lee), be planted with the early ripening sorts of grajes, late peachers, and some of the best late ripening pluns, such an tioe's (iolden Drop, \&cc. The trees not to berexcited in maning (which should never be attempted with hot walls), hut rather retarded in their blosomina, by keeping the branches as far from the wall as pasinible till they begin to blossom, it which time they are to be laid in to the wall, and the bloswom protected with thin canvas awnings, particulariy dering night. In July, at which period the roof-sashen of the early forced peach-louses and vineries will be removed, these are intended to be employed to cover the above wall in the following manner:-A permanent stone curl, twelve unchea high or more (or a wooden plank of the same beight will anster as well), is laid along parallel to the bottom of the wall, and at two fee' rlistance from it. 'Jhis curb is furnished with a groove as, inch and a half deep and three inches wide, to receive the bottom rail of the sushea, the top rail to run in a corresponding groove, in a batten of wood fixed to permanent brackets near the top of the wall, the distance between the top and hottom grouses w be equal to the length of the sashes, the botion
rail of each aauh to be furnished with t vo orase rontera, to farilitate their movement. 'TW glasses, it will thos ap pear, will atand perpendicula, "t the wall, and at twe feet from it, and ventilation und the neceasary operatione of pruning, gathering, sce, can be carried on frotn wito out, the lights being made to pass each ather in the grooves, an in the manner of what is called harrack wis dows. The concentration of solar leat in August, Sep tember, and Octolser, with the power of applying fire heat hy meane of the hot water pipes in the wsils, which muy be safely used as soon as the glanses are put, will not only ripen our hest uutumn fruits, but also mature the wool and buds for strecceding erops. Grapen nnd plume may be prolonged lyy thin mode, we think till Christman or indeed until the glasses be required to loe sgain pution the ear'y forcing-houses; and our thest Flemish pears, late peaches, and nertarimes, which do not otten ripen well in England on the open wall, and never in Scotland will be brought to the liphest perfection. Ilot walla wo have fong ugo proved to be of little or no valuo in spring but their efficacy in autumn no one can doult, and theit utility will bo greatly inscreased by laving this covering of glass before them."

For information reapecting the construction and manage. ment of hot-houses and green-houses, we refer to loudon's "Fin ychopredia of Gardening," alao to the beautiful worla of Mr. M•Intosh (Orr \& Co., London).

miscellaneous Fnuits.

The following are fruits which cannot be atrictly ranked nomong the preceding classes, and are grown almost en. clusively in gardens of a high under:-

The Fig

The fig-tree is a delicnte exotic like the graje-vino, and great care is required to bring crops of the fruin to matu rity in the open uir. 'Ihere are many kinds of the fa tree, hut the greater number are adapted to culture only under glass. The following are four excellent kinds:The Brown Ischia; fruit lurge, rather glohular; browe pulp; purptish-rad; very richs in flavour, athe melting; ripens in August. Brown Najles, cohnur brown with. out and within; n hardy f-nitful tree. 'Jhe Large Bloo or D'urple Fig, like the Brown Niples, ripeus about August. It is one of the hert fig-tuees; fruitlong and nf regular tigure ; palp rod ; of ich nad fine flavour. Lee's Perpertual Bearer, which is well qualified for gentle foreing in pots. The best soil fire fig-trees is a light fresh lown; but the chief easential to pronne ferility is a hard and dry bottom of chalk, gravel, or artificial pavement; a dry substratum and little depth of soil (that is, from one food to eiphteren melies) are therefore what the gardener mus provide, if he expecta to render the trees permanents fruitful.

Culhar and Training,-Brth are extrearly casy Rogers says, und very jusily-1 'That the hnife ia sehom wanted" (that is, in slorteming; though rom the es. treme laxuriance of the wool, it is frepuently necessary to cut out many entire shoots); "pinching of the point of the young shoots during the monthe of May and Juna with the thumb and finger, is the mo-t eflectual pruniug." Mr. Knight restricted himself to compressing the point of the green shoots till the suhstance vas feit to yied under the finger and thumb, by which presemes achers is given to luxuriance, and the milky sap is dwerted tothe embryo fruit, which lies embedded at the base of cach teaf-stalk.

But to secure fruit in due season, the pruner must te collect that, in Italy and the south of Europe. two cond of figs are produced yearly. 'Those large figs which sta scen on fruitful treea here late in summer, are developad in spring, and would ripen early in a warm dimate; int our winters check their progress, and gemorslly destroy thens. The crop which ripens in A 'rgust is derchand
dele in the preced! dmost invisible, Ir minations of those of compresmed: th properly been ter:i displaced by midd een that two mis and these, If the t an mentioned. nil ant innd dow into molerate con among and scross with a mint or enint
In April, train ing wood; fund us to curve forward at directed. Not one wood hecome redu the fruit should la will manitestly be to at the regulation

The filbert is be common hazel-nut. they produce male year on the same t catkins that become pollenthouring flows als of the firtile nu pruned-spurred, a be taken to res ve crimson point 's varietics of the Skiuned, anil the 0 are the methods of sutumb, are cither the places where three or four years, inches of the grou thoots are profluce ting dowa, ure gels length. Regular fi by placing a small shoots are fiateried yeat, as the lush apy spring fron the e! utumn, when they whilst, olso, the leva shortened lwo-third la the following the base of the ama seding autumn, in the lealing trained spurs the fruit mosy in number yearly, and inelting; r brown wib te Large Bho ripens abou uit long and o! flavour. Lee's a gentle forcing he fresh lom; is a hard and vement; a dry , frow one fod gardener must 's permanenty
xtremely ensy knife is sellora I from the eto cutly necessary Lu of the point - May and June ettail pruning." sing the poisto is tidt to yied ressuture a chock s diverted totio te base of cach
muner must ie rope, two coly e figs which are -, are dreclopxd rut climate ; lut cherally destroy ast is devimatio
de in the preceding sumniers, ond in extremely minute, | away. 'he largest are removed; the lesser remain almost invialhle, In September t it ls situate near the terminations of thowe green shoots which have bean plached or compreased: therefore the large green figa (which have properly been terined stcrilizing encumhrances) shouli be displarnd by mid August, and then it will frequently be een that two minute enniryoa form in lieu of the one; and these, if the tree be protected, will ripen at the senson mentioned. As to protection, it will be proper to unnail and lomil lown the upper shoota, so as to briug theon into moderate compass, then to pass a few flate bands among and across them, and finally to cover the whole with a mat or eninvan sheet.
In April, train in, straight nad regularly, all the learing wood; and aa the trees grow, sullir the breast wood to curve forward at ite pleasure, pi: 'i' ' 3 the points ana directed. Not one shoot is to be eut risistre ; but if the wood hecome redundant, aoine branels s which obseure the fruit should le ontir y removed, reserving that which will manifestly be fertite, and which can be duly trained in at the regulation of the following spring.

The Filthere.

The filbert is believed to be an improved variety of the comanon hazel-nut. Both plants are monaccious; that is, they prodare male and fruitful bossoms very carly in the year on the same tres. but separate from each other: the cotkins that hecomo visilile in autumn are the males or pollenbearing fluwers: the crinson threads are the pointals of the fertile nut-bearing flowers. As the tren are proned-apurred, as ${ }^{\circ}$ s termed-in autumn, care must be taken to re- ve a number of catkins, otherwine the crimson point ls . ill tiail to perfect the nuts. The ehief varieties of the inomert are the Red-Skinned, the WhiteSkinned, and the Col or Bareclona-nut. The following are the methods of culture;-Strong suckers, tuken in sutuma, are cither planted in the uursery, or at once in the places where thry are to remain; and these grow three ar four years, and are then cut down within a few inches of the ground. From the stem severat strong dhoots are produced, which, in the second year ufter cutting down, are generally shortened by one-third of their length. Regualar figure and on open tead are procured by placiug a smatl hoof within the bramehes, to which the shoots are fastened at rigular diatances. In that third year, as the hush npprowhea maturity, short shoots (spurs) spring from the eses, and are sulfored to grow till the utumn, when they are cut back nearly to their origin, Whilst, also, the lading shoots of the previous year are shortened two thirds.
In the following spring, several small shoots arise from the base of the amall branches whish were cut of the preseding autum, in consequence of the curtailment of the leading trained bramehes, and upon these secondary spurs the fruit masy be expected; these shoots augment in number yearly, insomuch that many muat be cast.
being m fertilo in their habit. Many decay yearly, but whe!'i.r they do so or not, those which have bormn fllberts acc always cut away, and a freah succesaion provided as futuro hearera. Tho leading shoot is every yoar shortened two-thirds ol inore, if the tree be weak, and the whole height of the branches must not exceed alx fee ${ }^{+}$. In order to strengthen the tree as much as poasible, the suckera of tha roots are eradicated, by exposing the roota, at a moderate diatance from the stem, to the frost. The excavation in the spring filled with imanure.

The crops thus produced are sometimes enormoua, lollowed, however, by intervals of barrenness. We have not heretofore adopted the method of pruning, leaving the treea trose to the order of nature; but It is right to try experimests ; aud when a row of young treen exists, a comparison might readily be obtained, by pruning alternate trees, or one of every three treea, by the "spur-system;" always, however, observing to keep the hedd of every tree open, and to cut away jts upright cen tral leader.

The Mutberry.

The millerry is a native of Italy, introdueed in 1648 lhe suw ure of ita flowers and fruit is very singular; like the nat and fillert, the males are distanet from the females; the latter do not aiways expand st the same : me as the males, and therefore are not fertilized. The alyx swells and becomes fleshy ; each individual contains one or two secda; and a congeries of these swollen or gat. form what is supposed to bo a single mulberry. Th ere is but one known species of the black mulberry, and this thrives best in loam, of the quality so ofen named; but the led ought to be deep, and to rest on a dry sandy subsoil. The fruit sometimes fails; and on this subject Rogera observes, that fertility may depend very mush on the warmth of the weather at the time of blossoming, and on the circomstances of both male and fimale flowers coming forth at the same time; sometumes, also, the male catkins ilrop before the fruit hlossoms ex pund. Wiiliama, of Pitmaston, suggests that "no tree re. eves more benefit from the spade and dunghill than the uublisery ; it ought, therefore, to be frequently dug ul:out the roots, aod oecasionc!ly assisted with manure." Others consider a velvety piece of turt as the lest site; and eertainly if the finest fruit fall, grass turf must preserve it clesn and sound. We have known several ald tren a curf never dug or disturbed, which always bore ima and fine crops; on the other hand we have seen younco treas on dug and enriched ground fail year after year. Ben the buds expand in this third spring, it is desw she to obtain four shoots on each side of the upright stem, and all the shouts that will break from the twe horizontals, which latter are to bo led upright, and secured as thoy advance.
V_{61} 1. $=07$.

ARBORICULTURE.

The Oak.

Scientificully, as well mepphalaly, the term Trefs inctudes all those plants which reach a considurabls otature, and possens stems more or less solid. Thay are, as all muat know, by far the graadest otjeets in the organic worli, and they are not amongst the leust elcgant. The tiviler produced in the stems also renders then of very great importunec in many of the arts cuttivated hy man, nod in none more so than in that which han enabled hinn from nges leyond historical record to transport himsilf across the bosom of the deep, and comsmunicate from one land to another the various produrtions of the earth.
Trees are divided, with a regard to their structure, into two great dissç. Sh, whe, which spring from seeds of more than one lom: n 1. soow hy additional layers on the outside oi the of, mat ate if of thene reavona respectively called Dicoyleftor : ar lxogenous Trees; others, which spring tora wals of one lohe only, and grow by alditions in the marior of the stem (palm, sugaromene, *tr.), are called Monarerigh tonmes, or Endozenoms 'Trees. As our tecalise regurds the practice of arbori ulture in our own country, where there are few trees of the latter kind, we muxt he understood in all reneral descriptions to refer to the former only, unless the contrary is mensioned.
In the organization and organic functions of trees, as well as in other plants, there is some gencral amangy to those of animath. When eut across, they apitair in the naked eye composed of fibres or thrrady subutance; but in reality the substance of trees is almont altugether compoeed of vessich or tutes, through whick the satp flows, like blood in the veina of an animat. Seven millinns of these vessely have hern comuted in the surfare of a square inch of wond! The wessels in Irees, like thene in animals, are of dilferent vizes; but it has lwern aser eained that there is nothing in teees performing the same functions as the heart in the Bigher chasses of animaly -t Eat is, propelling the bow throushout the system, and, by its return ngain to tho heart, completing the cirerlation. The vessels simply eatend from one end of the tree to the other, sometimes joining with parth other. athe veins and arteries of animals do, sud, morewer. exhibiting rircles which, when the tree is cut across. bave the appearance of rings. One of these circles of vensels grows round the outside of the tree (under
the bark) every year, and le called alburnum, or : woont, while the inner and hardor matter is called tivers mes.
A tree consista of four principal parta-the Root, the Trunk, the Branchen, and the Lenves.
The Root collsists of two parte the holly or bult of the root, ind the long branch-like fibres, great and amall, which disperse themeclye aliread into the woil. The Imody of the root diffess, intis 114 substunce from the trunk, but the rootlety terramale in etender ppongy threala, fitted for alsorbing the sa; of the rarth, und sending it up into the rootlots, whence it asecrady into the trunk It is olservel that the carth is only exhaunted of in nourishing matter in the neighleurhood of those wot extrenities of the rook.
The Irund is called by Linneus amdex afreneims, of ront above gromind, an ithastration perhipe more fanciful than real. In common language, the trimk io offen mamed the fule: nud it is this part which affords the timber for which thout trees are reared. "The trunk, and also the bramehes, are coverred with birh, consisting of series of thin layers, our of which is formed (next he timber) every your; while in tie outside of all is a very thin hayer of a ditherent substance, called the epidermis or coticle, analogous to the outer skin of the human lundy. The new inner layer which is fiormed every yenr, receives the name of hiber; it was on hisa substance that the macients, before the invention of printing, wero necrutumed to write; and hler, it is well known, is the lutin word for a book. Within tha lurk is the wood, romsisting chicfly of vessels, greut and sumall, which may the torn usualer from each other, and which are employed in conveging sap to the apper extremities. In the very centre of the trunk is a small space tilled witb a soft suthstance called $p^{\text {z }}$ h, which is nupposed to the a reservoir of nutritions mather for the development of the hucls in spring.
'ithe lrumetes require no further notice than that they precincly ressemble the trunk in every resperet, exept that they are upon a minot seale in point of size.
Thae Iraires consist primeipully of tissue, like the trunk, with vessels thronghout, and mu exteriat entick conshoping the whole ; and they are connected with the brameh by a small stalh called the motule. 'Ihe leaf is ouc of the most important grats of the whole treer By a most curious proerss, net perfectly known to us, the cruble sip rises through the wool, in the manner jus deseribud, and is elaborated or prepared into juice of more nutritious sort, ly the leaves. That precess, ac cordines to some, is effiected by mosans of walternate comracion and dilatation of the sap-wesselis, and, still more, ly a pespiratima, perecputible and impereptible, in the heveres, aind hy the action of the athosplete; but, sceorting to others, it is rather ther exhalation from the leaves. than what are property their respiratory func timas, hat ethierts the ascrot of he crude sap. It is then converted intu proper nalp, or combtum, and, lwing fited for the nurition of the whole tree, it descends ly the returning vessals of the leafestalk, and the bongitatinal vestels of the rimb or imer lark. At lengh it reacien the roms, which originaily suphlied the cruble sap itenfis 'This clatmonted sap in life human fiest digested into elagle; and us it furmas line only real nouridhement of the tree, it lyepomes upparent that the phant must decay if stripsel of its leaves.
Surh is an outhin of the economy of trees, of which a more minute arcount bas bern already given in the article un Vigetable Puraioloui.

In a vivw of arbori monlling to their unen produce straight timy the various tribes of crooked timber for k dec, as the oak, we 3. 'Trees willch givo t bolly, thorn, nuh, hi Hard-wool trees, us bolly, and yew. 5. willow lime, horne-ch Aexiblo suckers, and noms, potes, \&cc., as these may be added wood, ratinwood, and for omamental purpoos
Acrording to motly as of three kinds woded. These whi coniferous, from their the sake of clenrness, ment, contining ourse gated in Britain.

Restno

There are three tri the Abiétina, has for isfland-the Pinum, A there are severnl spec cular lenves, their con wood. Each may II need. The moro com
Sopch Pine, or Pit generally straight tre part of the stem, the 1 top of the plant, thes indigenous to the $\mathbf{H i g}$ is generally used com the greater proportion Europe, whero a vari For strong beams ane this timber is exceed and whiteness of fibr inferior streugth-thin On account of the he pine, much of Canadi being thus devoted t no way qualify it.
Spure Firs,-The of the Coniferse, the fir, a tree which uttai and furnishes white is also very suitable Vorth America prox white, red, and black connected with ship-1
The Sifuer Fir.--'I displays a greater de and becomes a majos this country the silv ornament on dressed awer if planted close clear butts of timber, helieve, heen tried is the gilver fir timber The common silver fi lock spruce, have "ee the gew-leavel, Fislue balsam, are only in
Thr Larch.—Of tI pecies y rown in Bri comin m is the larix beautitit in figure of

OLABAIFICATION OF THEEA.

In a viluw of arbericulture, trean may be classified acconding to their usex; for example-1. Treee which produce atraiglot timber for masta and long planke, an the various tribes of pines. 2. Trees which afford rooked timiner for knees or bendn in the ribis of slulps, \&ce, the pak, sweet chentnut, broad-leaved olin, dec. 3. Trees winch give tough piecea of timber, ns the yew, bolly, thorn, ash, hickory, maple, laburnum, \&c. 4. Hard-wood treea, as the oak, bech, plane, waluut, toox, bolly, and yew. 5. Solt-woonl trees, an the poplar, large willow lime, hormechestnut, \&c. 6. Wood grown for fesiblo suekers, nul apray, to form hoops, haskets, leoeoins, potes, \&ce, as the dwarf willow, birch, duc. To thene may he ndided woods of forcign growth, as rovewood, natinwoond, and mahogany, which are employed for ornameatal purposes.
According to another clansification, trees are nrranged af of three hinda-resineun, hard-wooded, and moftwooded. Those which aro rewinous are also termed coniferous, from their producing meeda in conew. For the ake of clearness, wo will adopt this simple arrangement, contining ourselves to trees which nuy be propagated in Britain.

Resmons or Coniferona Trees.
There are three tribes of thene trees, one of which. the Abietina, han four genera cultivated in the Inrifish istands-the Pinun, Abien, Iarix, and Cedrus. Of each there are nevernl npecies, all distimguished by their spicular loaves, their cone-like aeed-poda, and their resinous wood. Each may be ensily raised in nurseries from seed. The more common species is the
Sotrd Pine, or Pimus syluestris.-This in a tall and generally straight tree, with few branches on tho lower part of the stem, the leaf apparatus being confined to the top of the plant, these forming a massive clump. It is indigenous to the Highlands of Scotland; but little that is generally used comes from the forests in that quarter, the greater proportion being imported from the north of Europe, where a variety of it attains great perfection. For strong beams and apars required by house-builders, this timber is excecdingly suitnble ; but for sinoethness and whiteness of fibre, it is excelled by a tree of much inferior strength-the Canadian pine (pinus resinus"). On acconnt of the heavy import daties levind on forcign pine, much of Canadian timber is employed in its stend, being thus devoted to purposea ior which its properties os way qualify it.
Sprue Firs,-These aro a well-known gents (Abics) of the Conifere, the more common being the Norway fir, u tree which nttains great height, hut no great butk, and furuishes white deal and spars of inferior size; it is also very suitable for masts and poles of ail kinds. Xorth America produces three specics of spruce, the white, red, and black, each esteemed for particular uses connected with ship-buitling.
The Silver Fir.-This tree, called ateo tho Pitch Fir, displays a greater depth of brauches than the other firs, and becomes n majestic tree on nrriviug nt full nge. In this country the silver firs are only seen ns oljects of omament on dressed ground; lut how they woulh nuewer if planted closely torether, mil prumed up to form clear butts of timber, is umertain. this baving never, we selieve, heen tried in these kingloms. The puality of the silver fir timber of British erowth in yet to be tested. The common silver fir, the batm of Gilead, and the hemlock spruce, have ecen tong in our pleasure-grounds, but the yew-lesved, Fisher'n, Doughas's, und Praser's doublo belsam, are only in nurserien or in pine preserves.

The Larch.-Of this valuable geous there are several pecies s rown in Britain and other conntries; the more cominon is the larix ecropera. 'The farrh is the most beantitul in figuro of any of this class ol trees; shooting
otraight up, it elegant atem, tapering to point, in fue nished with pendulous bramelies, ornamented with deli cate drooping ppray. Its qualitiea are rapid growth, flexibility, snd durability in situationa between wat snal Iry, a circumetance perhape attrihutable to the quantity of reain in itn fibre. In many parts of the country it in grailually superseding the conmon fir, over which n posнenses a greut superiority in point of ornamental eflect.

The Colar Sarch.-Thin tree ia remarkable for ite fong horizontal and often crooked branches, and the greut musa of dark green apieular foliage with which it is covered. It is a native of the mountainn of Libanus and other high ndjacent regiona, where it attaina great butk, and grown to a very long nge. Froin its solemn axpect, it corme a anituhla accompuniment to cematerios or eccleniastical tulk'ings, and also for nequesterod giena in mountain seencry, or for extenaive iawns.

Itard-Wooded Trees.

In this class aro included large number of trees with 'ich every one is familiar. 'Tho list embrace - k, \& 1 , elm, beceh, chestnut, walnut, common, btain ash, whitebeans scacia, birch, teh laburninn, bolly, hazel, box, elder
and yew. The following are the prin-
"his tree (the quercus of Linneus) is the

mout

 if all the timbor treea grown in Britain, not on. . inctune it is a hnrdy native, but for the many important purposes to which its durable timber, its ngtringent bark, and even its nutritious fruit, are applica ble; and, morcover, for thu delight which it givee to the eye in sylvan landscupes, the oak being the most pieturesifue tree of the forest, when it has arrived at its inature nge and form.There nre two sorts in our woods, whether naturnd or planted-namely, the stalkleнa, and the stalked-fruited, one o^{f} which may the only a variety of the other. I'lif former is said to be the old Druidicat British or nasmi oak, though the latter is more frequently met with, espe. cially in woods which have been jlanted in remots ugen by the hand of man. The latter, or stalkedfruitenl, is niso of quicker growth, und ia altogether what may be called a more clegant treo when full-grown. The quality of the timher of both, when any differenco is ohservable, is more owing to the difference of soil they have grown on, perhaps, than to any specific difference of the trees.

Brsiden these two common sorts, which are natives, there are thirteen other species which are exotiesBamely, the willow-lenved, the evergreen, ash-teaved, cile-cupped; itex. of which thero are six slarubby varioties; chentmut-leaved, scarlet, velanida, white, Italian, durmast. Luccombe, nod the 'Turkey, of which there are four varieties. This last is a fine frec-growing tree, and deserves n place in every plantation. The other exotics nre chicfly planted for ornamental purposes, not being yet considered as foresters.

All the species are readily raised from their acorns (oak-corns) when they enn he procured; and in default of these, most of the foreign sorts may be grafted on the common. The young plants are transplanted twiee or thrice in the nursery; nall when four or five years from the acorn, may go to their fimal stations. Any kmd of damp clayey soil is suituble for the oak; but a good loam, or gravelly loam, upon a subsil of blue terruginous chay. produes the linest timber in the shortest timw.

The \mathcal{A} / h (Fraxinus, I .) is ulso a very valuable hardwood tree, ita timber being useful for many rurnl purposen and particalarly for inplements and marhines. The common ash, heing prolifie in ripening seed, is dispersed pretty generally over the face of the British isles; it is, nevertheless, much better managed when vlanted for

IMAGE EVALUATION
TEST TARGET (MT-3)

Photographic Sciences
Corporation

Mmber or for underwood, unmixed with any other eort of Iree. It ahould never be allowed a place in a hedgorow, nor on pasturo-land, as its numerone aurface-apreading roots engrows to themsolves every particle of nutritive moisture, to the destruction of all other aurfece-plants.

An ash tree io in Its prime when, by free and vigoraus growth, it has attained diameter of about twenty inches; for though on rich gravelly loam it will continue to increase until it is four or five feet in diameter, it had probably begun to rot at the core long before it has arrived at that vast bulk. Therefore, in arder to raise ash-timber of the most valuable description, it is necessary to sow or plant a piece of land of the above character thickly, placing the treea alont two feet apart. These will rise rapidly; and as soon as they uppear to be choking each other, one-half of the poles may be drawn, and the rest allowed to atand till they arrive at a marketable size, which is when they are from eight to twelve inches in diameter, and from torty to aixty feet high. When groun'/ ash is of these dimenoions, it is suitable for every mechanical purpose where flexibility and extreme toughness are required.
seed ahould be gathered in the autumn, and immediately sown in nursery-beds; or the sowing may be deferred till spring. Sonse of the sceds may not rise till the secund or third year; but as aoon as the seedlings are five or six inches high, they should le rowed out to gain strength till finally transplanted. 'There ure several varieties of the common ash, one of which is the crecp-ing-branched, but which, by grafting it high on the tall atem of the common one, is made a rather ornamental weeping tree. Other apeciea are the yellow-harked, curled-leaved, various-leaved, and a great many other axotic species.

The Elm (Ulmus, J..) is a lofty tree, valuable both for its use in the arts and its ornamental appearance. The emall-leaved or English elm is generally preferred for planting, particularly in hedgerowa, avenues, and the like. This tree is not a foreater, never being seen but about dwellings, or where dwelling-housea have formerly stood. It is probably an exotic, as its seeds never ripen in this country, and is therefore propagated by muckera, which rise sbundantly from the old roots, which circumstance makee the tree so eligible for hedgerows; for where once planted, fell the principals aa ofen as wanted, a succession of young atems constantly appears. They are also propagated by layers, and often by grafting on the common wych-elm, especially when wanted for dressed ground, or for avenues where it is desired that no suckers should be seen.

Besides the common wych-elm, found wild everywhere in the hedges of Britain, and which grows, where allowed, to a large size, yielding large lutts of coarsegrained but useful timber, there are several other sorts raised in nurseries, namely, the cork-barked, anooth, declininge branched (a truly picturesque tree), spreadingflowered, the white, and eeveral others. All the clins delight in a gravelly loam, or in any soil which ia not too wet, and they are well worth the planter's attention. No tree bears lopping or ehredding better than the elm, it peing hardly possible to hurt it by dismemberment. It is saised from meed when produced.

The Beech (Fagua sylvatica, L.) is a native forest tree, eccurring most commonly on the chalky districts of the cingdom, When full grown, it is a beautiful and atately trex,, and its timber is convertible into many kinds of doinestic articles, very durable when polished by the cabinctmaker, and equally so if kept conatantly under water. The beech is a very fruitful tree; and its mast or nuts, Wgether with acorna, used formerly to futten vast droves of awine and herds of deer, the then common food of the eudel lord and his vassals. The seeds are gathered after the huake open, by beating the branehes with poles which ched the mat upon lurge cloths apread upon the ground
under the sreess Meny are sold to the oil-mililers, whe express an oil from the seed useful for lampe and other purposes.

Young plants are resdily ralsed from the seed sown on beda, and covered with loose soil about an inch thick. Like other scedlings, they are, when five or six inchet high, rowed out on fresh ground, till large enough to be traneferred to their final stations. The beech is not at all fastidious as to soil, so ss there is some portion of calca. reous matter present ; but a suhsoil of chalk or limestone is most congenial. There are several specieu; the white A merican, the dark-purple, and the iron-coloured-lewed are ornamental, and are propagated by grafting on the common.

The Chesinut, or sweet chestnut, sometimes also called the Spanish chestout, is a splendid forest tree, exceeding all other British plants in its huge mass of folinge; it in also valuable for its timber, which is but little inferior to the oak. In the aouth of Europe it is chiefly regarded as a fruit tree; but here, even in the south of England, in the finest summers, the fruit ripens but imperfectly. As a timber-tree, hawever, the Spanish ehestnut deecrves to be more generally planted than it has been of late years; and for a coppice or underwood plant it has no superior. For the number, the straightness, and durabi lity of its poles, it excels all others, when a litte trouble is taken to keep the growth properly regulated with respect to the purpose for which the crop is wanted. When timber or ornmment is the object, the trees must constantly be divested of the shoots, which are apt to rise from the collet of the stem. A loamy gravel seemr to suit this tree best; and young plants are easily raised from the nuts, diblled in rows in the spring, and, while in the nursery, kept free from bottom shonts.

The Winlnot-This is chiefly regarded as a fruit tree, but it is no less valuable for its excellent timber, which, from its lightness and durability, is well adapted for gurstocks. And where its fruit is of no great value, and especially where it does nat ripen, if planted among olher forest trecs, it would be driwn up into a shapeable single stem, as valunhle as many others. Young trees are readily raised from the nuts, like the chestnut, and are similarly managed.

The Sycamore is a hardy native tree, which ettains as large size, and has the property of growing more quickly than most other hard woods. It is employed to form houschold utensils and objects in tumery. The maple is a species allied to the sycamore.

The Mountain Ash, familiarly known in Scotland a the vowin-tres, from its beautiful clusters of red rowann or berries, is a tree of small dimensions, hut elegant form, and is grown principally for ormament in shrub. beries.

The Acaria.-This is not only a highly ornamental, but also a highly valued timber-tree, when allowed to attain a proper size. Though a native of Virginia, and there called the lorust-trce, it has been recommended as i coppice plant for thie country, because of the very quick growth of ite young shoots, which rise from roots aftef the atem is cut over; and for the excellent and durable quality of the poles for fencing, and particularly as prope for haps and ather trees. But whether planted thickly for underwood, or in more open order for titnler, the acacia requires much attention from the pruner during the first five or aix years of its growth. It prowlers large luxuriant lateral shoots, which are but sligltity attached to the stem, and which, if not stopped-lhat in their points pinched off when they are about one fout long-are very likely to ne blown off by tho wind. Thin care may cease after the tree or pole is ten or twelve fet high, for afler that height, the growth becones moderath. Young plants are raised from seeds or loyers, and thrwe on any light sandy soil. The timber is highly prizel by millwrights for coge, \&cc.

The Wilo caltirated a upon it whi he met with woods; but chased by t rious article forming nut to be neglec place smong atones, sown tumn or in the ordinary planted.
The Horn an inferior or and durable, and cart-wrig unless it has It is alao a pl ing screens o from the ke every year -
The Eiveh. useful as a ec a hesutiful an duced into or the compositi varieties, not the black Am ly raised from from layers, a
The Holly overgreen, wi prickly points. great age, hut white and har and for maki varietics are g
The For (as an evergree per moil and cll feet. It grow, is imported for crose grain in auface is $8 s_{8}$ on this aceoun The Yrue (7 as sn orname cedar, it forms solamn feeling for making bo

In this ela alder, poplar,

The Horscbenuty of its grown tree in and the nuts species of thi and the pale-fl ore essily raise genus is calle wound snd sm last are magni conapicuous Avenues of th Geneva, are o fower. The apon the coms oniy shrubs.
The Lime, meutiful leafy

oil-millers, the

 ampe anis other se seed sown on an inch thiek. e or six inche! ye enough to bs sech is not at all portion of calce. alk or limestone ecies; the whito -coloured-lenved, gratting on thetimes also called tree, exceeding of foliage; it is little inferior to chicfly regarded oth of England, hut imperfectly, hestnut deserves has been of lete plant it hat no ness, and durabin en a little troublo q regulated with crop is wanted. t, the trees must which ara apt to any gravel seems are easily raised apring, and, whila 100ts.
led as a fruit tree, nt timber, which, adnjted for gungrest value, and ented among othet a shapeable single Young trees are chestnut, and are
e, which attains a ving more quickly employed to form ery. The maple
n in Scotland a ers of red rowam ions, but clegant ninment in shrub-
ighly ornomental, when allowed to of Virginis, and recommended as : of the very quirk e from roots aftet ellent and durable rticularly as propa er planted thickly er for timber, the the pruner during wh. It prousces are but slighty stopped-that is re about one for y the wind. This ten or twelve feet becomes moderate. layets, and thrur ia highly prized by

The Wild Cherry-trec-This hardy native is seldom altirated an a timber-tree, nor has it that care beatowed upon it which it really deserves. The best specimena to he met with are those which have risen by accident in woods; but when auch are felled, they are readily purchased by the cobinst-makera. As mentioned in a prerious article, the wood is very sultable for boring and forming musical inatruments. It is therefore a tree not to be neglected by the general planter, and ahould have place among others. Young plants are raised from the tanem, sown thickly on a bed of good soil, either in autumn or in apring, and afterwarda rowed nut, to receive the erdinary nursery treatment, until fit to be finally planted.
The Hornbeam.-Thin is timber-tree, but it ranks es on inferior one; its timber, however, is remarkably tough and durable, and consequently invaluable to the plough and carr-wignt. It is a acrubbed tortuous-growing tree, unless it has some pruning bestowed upon it when young. It is also 8 pretty good hedge-plant, and useful for forming screens or houndaries in gardena. Plants are raised from tha keys, or seed, of which plenty are proouced overy year is old trees.

The Jirch.-This is another inferior timber-tree, but ueful ns a coppice plant for many rural purposes. It is a heautiful and elegant tree, on which account it is introduced into ornamentul scenery, especially if water he in the composition. Of the common hirch there are several varieties, not to speak of the poplar-lcaved, the tall, and the black American. Young plants are most conveniently raised from seeds, and the exotic species are raised from layers, or by grafting on the common ons.

The Holly (Ilex aquifolitem, L.) is a remarkably hnrdy evergreen, with anooth shining leaves furnished with prickly points. It is native of Britain, and attains a great age, but seldoin reaches a large size. Its timber is white and hard, which renders it suitable for veneering, and for making mathematical instruments. Different varieties are grown as ornamental shruba.
The llax (l'urus scmpervirrns, L.) is generally grown es an evergreen shrub, but when planted out with a proper woil and climate, it attaina a height of from 20 to 30 fect. It grows to pertection in Turkey, whence its timber is imported for use in all cases in which exceedingly fine cross grain is required. Sawn acress and planed, its unface is as smooth and fine as polished metal. Box is on this account employed for woodengravings.
The Yew (Taxus baccatn, I.) is more frequently grown as on ornamental shrub thnn a forest tree, and, like the cedar, it forms alant suitahle for places consecrated to solemn feeling. Its timber is very tough, and is adapted for making bows and staves.

Sof-Wooded Trses.

In this class are included the horee-chestnut, lime, alder, poplar, and willow.
The Horsc-Chestnut.-This tree ia only valued for the beauty of ita flowera and the majestic port of the fullgrown tree in park scenery. The timber is very inferior, and the nuts are only useful for deer. There are several apecien of this tre6-namely, the amooth, Ohio, ruddy, and the pale-flowered. All these have prickly fruit, and are easily raised from their large nuta. A section of this gonus is called Pavia, or buck's eye, their fruit being mond and mooth. But the flowera of some of these last are magnificent, being of a glowing red, and are most couspicuous in the spring or beginning of summer. Arenues of these trees, as scen in the neighbourhood of fieneva, are of the most splendid description when in tower. The pavias are often propagated by being grafted upon the common horse-cheatnut, and some of them are moly shrubs.
The Lime, of which there are neveral vap eties, in a mutiful leafv tree. grown chiefly for ornsmen, and very
auitable for avenues. Those which asve moat effect are the red-twigged and broad-leaved American, the latter possessing elegant pendulous flowers,

The Alder.--Thia tree requires a peculiar locality, thai is, a damp bog-earthy soil-is Lut seldom ranked among forest trees, and, except to occupy a apot where nothing much better will grow, is seldom noticed. It is mont profitable kept as underwood; large poles, suitable' for the surner, or for pile or planking for bridges, fetching a good price. Of common appcies there ere four varietion, together with the hoary-lcaved, oblong-leaved, wave. lesved, glaucous, with several varieticn of these, and soms shrubby opecics, the most of which are propagated by cuttings, of by grafting on the common one.

The Poplar.-There are several npecies of this tree, at the common black poplar, the trembling poplar, the Lombardy poplar, end black Indian poplar. They grow rapidly, and rise to a great height, but narrow in mase, so as to be very conspicuous in hedgerows and landscapea, The timber is of little valuc; but where undrainable spots are wished to be decorated with atately trees, no better kind can be chosen.

The Willo 0 (Salix, L., and usually called the Saugh in Scotland) is an extensive genus, comprehending thoed ahrubly species, the osiers, used for basket work. A few species of the willow attain to the height and character of trees, the best of which, as yielding very good timber, is the white or Huntingdon; and the crack-willow make excellent pollards, furnishing every five or six yeara large crop of poles indispensable to the farmer. Another of the tree willows is that elegant plant the Babylonion or weeping-branched one, which forms so nuitable an accompaniment to pieces of water, whether artifinial or natural. The common osier is the sort moatly cultivated for the basket-maker, and the annual crop of rods from eatabliahed stools pay the owner as well as any othe crop on the farm. 'They are all propagated by cuttinge

OROWTH OF TREES.

Trees grow apontaneously in all countries in which soil and climato will permit, and, as is well known, form forests of many hundreds of miles in extent on the North American continent. Whatever be the peculiar nature of any apecies of trees, it appears that the dimenciona and form of all are more or less 2 ffected by their relativa situation. If crowded, they havn a tendency to grow tall and alender; if left abundance of zpace, they extend in breadth. 'I'he comparative absence or possession of ain and light causes these distinctions. In a forest, each tree strugglea upward, for its leavea to get a sufficiency of pure atmoaphere and aun's rays, and therefore becomen all stem and top; whereas the tree in an open ground shoots out branches nearly from the bottom of the trunk; and attaina grandeur in ita mass of foliage. Trees which are freely exposed ere also much thicker in the trunk than those in foresis. This arises not only from having plenty of air and light, but from being exercised by winds. The well-underatood principle in the animal economy, of exercise atrengthening a limb-as, for exemple, the legs of dancing-master or the arm of a blacksmith-is extended to the vegetable kingdom, in which those plants that are gently moved to and fro by winds arrive at greater perfection of fibre than those kept altogether atill.

In connection with this remarkable effect in the eon nomy of plants, it is to be observed that all expoed trees have the largent roota; because, being liable to be blown over, they require to take a much firmer hold of the ground than if they were ahelteted on all eiden; in other words, the sction of the tree, and the free air and light, cause numeroun branches and a large breathing apparatua of leaves, and the tree muat have correb ponding mass of roots for the supply of sep.' So exact is this corresp ndence between the exposed and undate
cround portime of the tree, that the extent of rooter may alway be judged of by the extent of branchea, the one being of the anme breadth an the other. The practieal lemeon acquired from thase facte is, that to have trees with large bushy beada, they muat he planted widely; and if wanted to be tall and slender, they should be crowded.
b.The generally thin soil and comparatively ungenial climate of Britan, render this country unsuitable for the frowth of the more delicate and fine kinds of foreign umber; hut all the foreat treen already noticed, when planted and attended to with some degree of care, attain great perfection. The buslness of planting is seldom performed by the unprofessional culturist, being more advantageoualy left in the hande of nureerymert, who rear the trees from seeds, layern, or cuttings, in gruunds act spart for the purpose, and at the proper time tranafer them to the locality where they are to remain. For the sake of general information, we offer the following nbcervations on different departments of this interesting cubject.

onnamental plantations.

Even on the smallest possessions, a aprinkling of forest trees in the hedgen or corners of the enclosures gives a dignity to the apot whieh otherwise it would not posses. There cannot be a more cheerless object in a landscape than a house, however substantially built and furnished, standing naked and slone, without a sheltering tree or bush to indiente either the taste or competence of the occupiers within. The lowliest but, enviponed by two or three ajed oaks or thorns, is an interesting apectaclo, and far more delightful to the cya then the proudest palace unaccompanied with lofty trees.

To eecure these embellishments, planting on an ornamental cala is necessary, and much good taste must be orought to bear on the risbect. It is now allowed by all Who have atudied landscupe gardening, that, in the part currounding the mansion, trees should not be dotted about at equal distances, nor in lines; they should not be placed an blinde to the principal windown, hut so arrnoged as to form irregular glades, diverging in as many directions from the house as eas be done with effeet and propriety. Thess glades should always be laid out with reference to eome distant interesting object, or some ariking featare of the surrounding country. The offices, which are generally in the rear, or at one end of the aouse, ahould be hidden by a acreen of trees and ahrubs; ,nd all eye-eores, visible from the windows or elsewhere, ahoukd also be screened by plantation, which has a double advantage, namely, hiding a deformity by oprofitaWhe screen.

When it is intended to increase both the beauty and the value of an estate by planting, and whether for the personal interest of the proprietor, or with a view to that of poeterity, ordinary prudence will direct him to fix on those parta which are the least valuable for agricultural purposcs. The precipitous slopes of an undulating surface, where cultivation is difficult or impructicable-moist swampy hollown-or the ridges of bleak hills lying to the northwand or eastward of the auperior portions of the park or parke, whether arable or pasture land-will all be found the mont eligible for convernion into woolland. And while such plantations yield the finest shelter and covers for game, they keep rapidly adding to the real value of the eatate.

Whenever a project of planting is entertained, if only to occupy wate or worthless ground, it is not sasy to eparate the idea of ornament from the utility of the deagn, if it be no more than estallishing an acre or two of coppice. For even ouch a feature, especially in a naked country, requirew a little attention in the execution. Coppice, whea properly etocked with the right eortes of plants, only appears in all seasode as a thicket of ahoots of nearly equal heigt Consequently, the eye of tante would con-
demn the plantation as too lumplsh, and wantang in riety of outline. But thle, though but a trifing defots may be easily obviated by plenting tufts or groupe of trees, variously disposed, to remain for timber, of the same thing may he efliected by leaving at the first foll few groups of the most promising saplings, here ana there irregularly over the area. Thase permanent groupm will nnt injure much of the onderwood, while thsy will give as much variety to the whole as msy be necenory, This point, however, will be again edverted to whan describing the manner of laying down underwoods,

As the beauty of many places constitutes thair chief value, and as that beauty is mootly if not entirely owing to the tasteful disposition of the plantations, it behoven avery improving proprietor to study well the genius and character of his property before ho begins planting on : large scale. The safest plan, in order to avoid taking sny step which may afterwards be regretted, or to ho done over again, is to sketch an iden, or upon ths map, a comprehensivo design, embracing evory thing that may be done with propriety. This being well digested and settled in the first place, may be ealled the general plan, and of which as much only as is moat obviously called for, and practiesbly expedient, may be firet of all executed, leaving the more distant and lesa neceasary apera. tions to be done as time and opportunity may allow.

Such a gencral plan of planting an estatc, whatever its extent may be, requires a considerable scquaintance with the principles of landscape gardening, and can only be designed and executed properly hy tbe owner himself (who can do wothing wrong in this way, 60 as he plemes himself) or by a professional adviser.

It has already been obecrved, that some proprietorn may only think it advisable to plant the inferior portion of their acres, while others, who are determined to has a tastefully planted park or a highly embellished estale, place their groves, or groups, or single trees, on any elin gible spot, without regard to the quality of tha soih whether the worst or the vary best. In this case, every thing is saerificed to obtain sueh a disposition of the trees as will produce the most atriking pictorial effect; and such kinds only sre selected ae blend harmoniously with each other.
The charactor of the general surface aurrounding a mansion fixes the style of planting and the kinds of trean If the surface be moderately undulating, having eary swelling knolls and gently falling hollows, without aspe rities of any kind, such a surface is soid to be beautiful, and consequently the "Inntations should be besuliful also; that is, compos ees of the finest foliage and most elegant forms. f, on the contrary, the sun rounding country be v.i.v in character, and marked with bold and rugged features, as naked rocks or cliffs, deep ravines or glens, \&ce, then a different style of decoration must be puraued-as planting in irregular masses all the most grotesque, rugged, and sombre-tinted trees that can be orlected, in order to harmonize with the natural fea turc of the country. Such scenery is said to be pictoresquc ; and where such tracts of country are chosen for a manorial residence, and the grounds are laid out and planted by a skilful gardencr, the scenery is much more interesting to the eye of taste than any other, especially if water chance to be in the composition.
Great changes occurred in tho style of planting during the cighteenth century. Up to the beginning of tha reign of George I., all transplanted treen were arranged in right lines, as single, double, or quadruple avenues, os vistas, or as houndaries to the enclosed grounds bebors ing to royal or other palaces, collegen, and other puinlic buildinge. But about this time it was discovered that very few ranks of trees were to be seen in the works of the great maxters in the echools of painting; a new ides was entortained, that, in sll real scenerv aboul to be created in the parke of the nobility and gentry of th
british Iales, \mathbf{r} dific, formal, a innce of cond avenue in the fore the axe o ont they were zew avenuea he old regule were ewept av guished by the Ginet.
Soon after great many rí etreme Irregul performers got day. Kent, w ing gained mi moun "Capabi was universally gardens and gi doms than any His aim was t and general st which purpose ther built or p out upon a nak gardens were r bush, or other was shaven off,
In this proce opposite extren result ; instead embosoming sh kedness and e) exposure detrac whatever might wave a partial vier of the wh the honour of I dene, which rem taute and judgm ers brought dis ward imitations.

The scvere Brownian style most astensihlo , father and sons the style of E . oearer to the the boll have be panded into a le lost its continuio lengthened form dergrowths, wh again introduced merly smoothed more abrupt, br hanging trees, a

The different mig down wood the number of a $*$ planted. To quired, anil thes cite that thay be minees, or be ea near neighbourh is inteniled to bo cal; but the latte
To taise fore only choosing anclonure; this srel, und freed

whitung in n

 or groups a timber, or the the firct fill, lings, here ana rmanent groupa while they will y be necesany, verted to wher derwoods utes their chiof entitely owing ione, it behores the genius and de planting on a to avoid taking retted, or to he t upon the map thing that may oll digested and he general plan, obviouoly called firat of all exe. necessary operamay allow. eatatc, whatever jle acquaintance ag , and can only e owner himsel? , ev as he plemeosome proprieton o inforior portion termined to have mbellished estate, trees, on any eliality of the soil, t this case, every sition of the tree corial effect; and armoniously with buld be beautiful finest foliage und contrary, the sun and marked with cks or cliffs, deep tyle of decoration lar masses all tho ted trees that can A the natural fen. said to be pictu y are chosen for a are laid out and ery is much more other, eapecially n.
of planting during beginning of the cen wcre arranged druple avenues, m 1 grounds belong , and other puinic as discovered tha n in the works of nting; a new ide nerv akout to b and geutry of

Oritinh Iales, ranks of trees were inadmissible, as being too dific, formal, and not sgreeable to nature. Thua a senunce of condemnation wae passed upon every private arenue in the country, and they quickly dieappeared hefore the axe of the woodman. A few only were saved, ont they were curtailed in length; and now, very few new avenuea are planted. Along with the avenues, all he old regularly laidoout terraces and flower-gariene were swept away, to make room for new style, distingriahed by the prevalence of irregularity and curved outlinet.
Soon efter this revolution in landscape gardening, a greet many ridiculous pranks were played in obtaining etreme irregularity, and tortuous lines; and soma of tha performers got severcly handled by the eatirists of the day. Kent, who began the revolution, diod without having gained much reputation; but his euccossor, the famous "Capability" Brown, becamo highly eminent, and was universsily employed. He did more in altering the gardens and grounds of the country-seats of these kingdoms than any other professor before or since his time. His aim was to produce unmixed beauty, by neatness and general amoothness, especially near the house; for which purpose he cleared away every obstruction, whether built or planted, in order to set the mansion fairly out upon a naked grass plot or lawn. Even the kitchen gardens were removed as far off as possible; and every bush, or other appearance of inequality of the aurface, was shaven off, to produce the wiahed-for amoothness.
In this proceeding he and his copyiste fell into the opposite extreme; instead of beauty, brildness was the result; instead of intricacy, tamencss; and inatead of the embosoming shelter of surrounding groves, complete nakedness and exposure to every wind that blows. This esposure dotractad from the consequence of the building, whatever might be its size or style of architecture ; becaue a partial display is always more interesting than a view of the whole at oncc. Nevertheless, Brown had the honour of laying out many benutiful parks and gardens, which remain to this day as monuments of his good tade and judginent; but many of his immediate followers brought discredit upon his style by their very awkward imitations.

The severe animadversions published against the Brownian style, tended to correct some of Mr. Brown's most ostensible errors; and tho works of "Iessrs. Repton, father and sons, Loudon, und others, having improved the atyle of English gardening, and brought it much aearer to the principles of real taste. The clump and the belt have been greatly modified; the first is now expunded into a less formal group, and while the latter hus lost its continuity, it has been increased in depth, and its lengthened form as a boundary judiciously broken. Undergrowths, which were swept away by Brown, are argin introduced; and the banks of lakes and rivera, formerly smoothed down to the water level, are now left more abrupt, broken, and irregularly fringed with overhanging trees, and aquatic shrube und herbs.

planting forest trees.

The different methode pursued in establishing or laymg down woodland, seem to have been determined by the namber of acres or nature of the ground intended to x planted. To secure a full supply of the plants required, and these of the proper sort and age. it is requiwite that they be previously raised from seed an the promines, of he easily procurcd from a nursery-man in tho near neighbourhood. Where a great extent of planting is intended to be done, the former plan is mast economical; but the latter, in general, is the most convenient.
To raise forent trees from seed in an eacy affuir; it is only choosing a piece of good mellow soil within mome unclonur:; this must be trenched or double-digged, laid srel, and freed from stonea, sec., by the rake, divided
into beds four feet wide, with one foot alleya between In the month of March, sooner or later, according to the forwardness of the season, the sceds may be sown either in drills lengthwise of the bed, and deeper or shailower according to the size of the seed; that in, nearly an insh for amall, and an Inch and a half for large seeds, such at acorns and chestnlitr; or small seeds may be awn broadeast, by withdrawing with the rake towarde the alleye alout an inch of the surface each way. On the fresh soil, the seeds are thrown as regularly ee possibio. and covered by having the removed soil again drawn over regularly and amoothly. The seed-lede must be guard. ed from birde and mice; and if the weathor be warm. and parching winds prevail, they should be covered occasionally with mats, and also watered, if necessary.

Scedling treen are uaually transplanted into rows in nursing beds, some in the second; others in the third year; and there to stand till planted out for good, which should be done when they have arrived at a proper sizethe nature and condition of the ground intended for them, as already observed, determining this point.

The aurface to be planted may either be in a atate of nature, and covered with heath, or with a turf of some kind or other; or it may have received some kind of preparation, as paring and burning; or ploughed, digged, or deeply trenched. It is almost unnecessary to sdd, that the first is in the worst, and the last in the beat condition for the reception of young trees. Thare are many cases, however, where there is no choice but the firet; and yet the succese which has attended such undertakinga as planting a naked hill or a barren common is a direct encouragement, and proves that such naked portions of the country may be in a few ycars covered with useful trece.

When a large extent of such description of land is istended to be planted, it must necessarily be executed in the most economical manner. The first step is forming an effectual fence against cattle, without which in no caso should planting be attempted. If the enclosed surface be acclivous, and covered with ehort herbage and thin staple, two or three ycar old plants of larch, Scotch fir, birch, intermixed with a few onk, beech, and ash, may be inserted by a one-handed tool somewhat like a coopcr's adze. One or two blows of the tool raises a triangular piece of the aurface, under which the root of the plant is properly placed, and the raised sod turned back ard trodlen down with the foot. In this aimple and cryeditious way of planting, many hundred acres of billy land have been atocked with trecs; and though many of the plants are liable to suffor, if a dry summer follows the planting, a majority are sure to succeed, which well repays the cost. When such ground is level, an opening is made by first cutting the turf in the shape of a cross, and turning back the four cornera from the centre, breaking up and making a hollow for the root; when the tres is placed upright, the turf is returned to its place and trodden firmly down.

There is yet another method of planting rough unprepared ground, called pitting. The eurface-covering is first cleared off, the pit broken up with a mattock, and the loose earth thrown out with a apade; the tree is then placed, and planted with the removed soil. This method of planting is expelitiously performed when the ground works kinilly ; but if wet or clayey, the husiness is more difficult, the holes requiring to be opened, and the land draincd, long before the trees can be planted safely.

All the abuve inethods of planting forest trees are ouly had recourse to when the ground cannot be prepared in a aperior manner. And notwithatanding the risk of being defeated in such attempts, it is quite certain that in numberless cases they have aucceeded admirably; spd very valuable woods now ornamenting both Er gland and Scotland have been raimed by theme simple modew of planting.

Whan it ia intended to plant a field which has heen or may be ploughed, it is got in ordor by receiving a thorough fullow, to clear it of every kind of weed. The ploughinga (with a atrong toan and plough) aloould be male an deeply an possible. Supposing the land to he got In perfect order by the middlo of October, if intended for tinuber only, the trees may be immediately plaited; but if intended for underwood as well aa timber, the lapt ploughing may be deferred till January; and if the ground the then pretty dry and mellow, the whole may to inumedintely nown broadcast with a mixture of seeds, and harrowed in, after which trees noay he planted at the distance of four or five feet. The mixture may consiat of the seedn of oak, ash, beech. Scotch fir, and birch; and If a sprinkling of columon furze be added, it will be no detriment. If Spanish chestnuta are :-iended to be a part of the underwoud (for which 1 ,ey ahould alwaya le preferred), the seeds elould he dibbled in, as they are too large to be covered by the harrows.
This method of laying down woodland, if carefully performed, is alwaya successful, as there is not only a full number and choice of trees for timiner eatablished, but the field anawers the purpone of a nursery for many years, from which may be drawn unlimited numbers of young trees for planting elsewhere. The fineat and most profitable woods we happen to be acquainted with were laid down in this way alout the year 1775.
The next successful inethod of planting firest trees in placing them on deeply dug ground; for if digging the practicable it is proof that the land is in a good cendition for their growth. The action of the spade furms a lied sufficiently deep for the generality of the best sorts for timber, and the loosened state of the soil rendera tho planting cany.
But by far the beat preparation of the ground is trenching it eighteen or twenty inchea deep. The surface, which is usually covered with vegetation of aome kind, or the remains of vegetation, being turned to the bottom of the trenches, forms a fine nutritious stratuin for the routs to luxuriate in; besides, the staple being opened and intermixed so thoroughly, admits all atmoapheric onfluences, without which no plant can thrive.

When trees aro planted upon either a dug or a trenched surface, seceda may also he sown and pointed in. for undergrowths are always valuable for aome purpose or other. This is particularly necessary when the plantations are required as covera for game; and in park acenery, hawthorn, holly, and juniper berries, should always be sown when the trees are planted.

When ornamental plantations are made in a park, and especially if they are in view from the principal windows, they are wished to rise as quickly as possible for the sake of inmediate effect. The trees, therefore, receive extruordinary treatment. The ground ia not only carefully and deeply trenched, but a mosi likeral dressing of good roten dung and vegetable mould-the first trenched down, and the latter dug into the surface-is bestowed, and which of course excites the trees into much atronger and more rapid growth than if only the ordinary expedients were employed. But this auperior and expensive practice is seldom necessary, and much seldomer executed.

Planting on Bad Land.- The preceding directions are nufficient in all casea in which the land is tolerally dry, or which may he rendered auitable by a little preparatory culture; but when the ground is moist, and harren of all uceful produce, the following methode of preparation will tequire to be purnued.
The firse thing to be done with a piece of wet land is on drain it, and then enclose it with fences. The drainlug operations will consiat in making wide and deep ditches around the la id t, receive and carry off the rater, and into these enaller cross drains are to be led. (f'or a minute acrount of the bext methoda of draining, wo nater to he anticle on Lasi Inpansment). If the
drains he finished in Octoher, no an to allow the woler n run off for three monthe, planting may begin wbour the midule of February, provided the weather be dry. Mi would recommend," ways a writer on this subject, "strong plants, three years old; for I have seen many amall thina stuck in among rank grase, but I have rarely seen any of them grow. The ordinary way of planting does well enough for the fira; it ia dono in thia way:-A cut in made at right anglee to tha line of the labourera' keth ancther is made at right anglea to that, and the soil raised; the root of the plant ia inserted; and the apmber being withdrawn, the aoil is or ought to be firmly trodiden down around it. I aay ought to bo, for very often litiu not. The laoourers ought :o have the inportunce of thin reiterated upon them; and I would, if posibible, alway havo a bla man in preference to a little one to wield the spade. There is on emplasia in the tramp of his footh which, for the auccess of the young tree, is invaluable. The other mole of planting is more tellious; hut whene the proposed plantation is small, I think it is worth while to give all the additional trouble. This method connist in making pita for the reception of the plants. A square piece is dug out, the plant is placed in the midde, the soil is broken and put round the roots, turf is cut in troo and lwing turned upside down, the hatves are placed ore on each side of the stem of the plant, and firmbty traden down all round. This, it will be aeen, is trdius. Three planta may be planted by the first method for every on by the second; yet, whero the planta are large, it is worth while to bestow the endditional labour: especially in plank ing trees of the deciduous kind, this method ought almary to be ndopted. I have always found it advantageous io plant pretty close ; lut care muat be taken to begin earty to thin, otherwise the young trees fall into consumption Ground treated in the manner now described, be it netee so wet, will grow fine trees; that is to say, if there is any thing like a moil at all.

Let us next suppose the ground to be planted to con. siat of a thin poor soil on a hard close bottom. To phant such ground juat as it hies, is a piece of the most consummate folly. Far better burn your young plants ut once: they never will grow to any thing. The plat which I have now to propose has a most formidab oljection againat it-it is very expenaive. But let the proprietor arrange the matter in this way: instead of planting, bay ten acrea in one year, let him plait onds four. It is far letter to have a few trees thriving, than ! great many pining out a miserable existence, to the dis figurement of the fuce of nature and the bitter regret of their owner. The firat thing to do is to set about trentr ing the ground. To the ordinary move of trencbing there is a most decided objection. That part of the wid which is at all good, is mercileasly huried at great labour and expense, and the hard till, which has alout na much untrition for plants as freestone rock, is lrought op to form the sail. This will never do. We must keep the soil which is at the topatill at the top, and stir the if twelow. At first sight there is some difficulty bere, but the diticuly must be overcome, and that may be done by a tittle calculation an to arrangements in the maturof digcing and filling up the trenches. The cost will he only a little moro than that of ordinary trenehing, and it is vastly superior to it. It would almo be an advantige as each trench ia cleaned out, to give it a rough consed picking along the bottom, which would make the soil nlthough never ao wet before, dry and sweet nh a ganden The lest time for performing this operation is in the montha of February and March, and then ouly when the weather is dry. It would to well if planting eould io carried on simultaneously with trenching. And see the the plants be put in deqper than usual, and well trod round the atem.
Ground thus treated will produce the fineat trees. Then will grow fast, keep free of mose, be healthy indme buth
ad atralght. unenching, to planted, in or hooly away. overy dhower the will, cartie gan which the litle mouths, lng food ; and should grow it you will have ing an orname By the other m where the soil then do more
1 have now after-treatmen commendel. If bedgea to p frat three year fice from wee board like hed thing. I nevo have breadth, top. But let aper they art trenched it wil that is, to cut ping any of th place of being which, if adop ycars after they be cot over abc month of July pinch off all 1 and the one y stem. This h healthy tree, w have had oak, have made beal year. Trees ciently straight I have general process :-You knife as near firt branchen. with new bark triluting to a f promoting the sern trees twe ted by this si muny hundred
If the hints confident that propietors wh trees will be rai management,
beaty or value
P_{r}
When woo material, part labour of pru enough that hulk-they sha most valuable leagth, is far knotty one of absolutely nee them fairly off, growth. The using a mixtu priuripals and de layd ta ju Vol. $1 . .72$
illow the wruer in begin about the ther be dra. I B aubject, «moman nany small thing 'e rarely $\begin{gathered}\text { been any }\end{gathered}$ lanting doee wela way :-A cut ne labourera' feet hat, and the moil d ; and the mpind be firmly trodiden for very ofen it inportunce of thi forsihle, alway 0 one to wield tramp of his foot tree, is inveluable allioun; but when k it is worth while is method convist plants. A squam n the middle, the turf is cut in tro vea are placed one aud firmly troden is tedious. Three thoil for every one re large, it is worth especially in plant ethod ought alway it adventageous to aken to begin eand into consumplion scribed, be it nerea say, if there is ay
, be planted to cos bottom. TTo plans e of the mast coor. ur young planta a thing. The plan a most formidablo asive. But let the Is way : instead of let him plant onty ees thriving, than xisternce, to the dis the bitter regret of to set about treach. mode of trenchiage hat parr of the oou ried at greet labour has alvut as much k. is brought op to We must keep th top, and stir the in - difficulty here, bot hat may be doneby s in the matur of

The cost will he ry treoching, and it ;o be an adrantage it a rough poanse of puld make the soil I sweet na a garden operation is in the then orty when the planting could bu iing. And see the sual, and well tod
efineat trees. Thes healthy inster mand
ad atright. It would be advimable, even with this unening, to oper draine throughout the whole that in planted, in order duat the nurface-water may be carried trody awey. Land, when thus dried, hecomes richer by rery diower that falla. The water, in percolating through ne wil, carries down with it a fresh supply of oxygen the which the roota of the trees, with their thousands of itite mouths, are gaping to receive aa their most nourishing food; and being thus fed, in it not natural that they hould grow apace and be in good health! In this way you will have in six or eight years fine plantationa, forming an ornament to your property and a shelter to the firlds. By the other method you uluay plant thousands of treen; but where the soil is positively wet, ynu will naver aee any of them do more than make an incffectual attempt to grow. 1 have now a few observations to make regarding the ater-treatment of trees planted in the manner now recommended. Thay must not he left to themselves; and if healges be planted, they will require much care, for the first three yesrs eaperially. They muat be kept perfictly fiee from weeda, at whatever expense of labour. Thin, boord-like hadges, cut close upon each side, are nat the thing. I never saw any so trented do well. They must have breadth, and should be tapered on both sides to the wp. But let un attend to the trees. Exactly a year after they are planted, whers the ground has been terched it will bo requisite to give it a partial hocing, that is, to cut down all tall weeds which may be overtopping any of the trees. Should any of the hard wood, in place of being green, become yellow, there is a plan which, if adopted, will completely restore them. Two yeara after they are planted, let them, in March or April, be cut over aliont three inches alove the greund; in the month of July a careful person must go through and pinch off all the young buds except one, the healtisiest, and the one which offers fairest to shout into a main stem. This has a most magical effect. It insures a healthy tree, with a free bark, and perfectly atraight. I have had oak, ash, and other timber thus treated, which have made besutiful shoots of upwards of two feet in one yeat. Trees which are on the whole thriving and sufficiently atraight, but which sre getting hard in the hark, I have generally improved very much by the following process:-You enter the point of a common gardening knife as near the root as possible, and run it up to the first branches. In a year or two this cut will be covered with new bark, an inch or two in breadth, grently contriluting to a free circulation of the sap, and consequently promating the health and the growth of the tree. I have sern trees twenty and thirty years old materinlly beucfitted by this simple process. A hendy labourer will do many hundreds in a day.
If the hints I have now given be followed, I am quite confident that they will save much disappointment to propietors who are disposed to plant, and that many fine trees will be raised on situations in which, by the common management, they never would have attained to either beatity or value."

Pruning and Thinning Ptannatinns.

When woods are planted na sources of profit, a very material. part of their sulsequent management is tho labour of pruning and thinning the tro's. It is not enough that trees grow and the annually increasing in hulk-they should also be assinted to take the finest and most viluathle forms. A round straight butt, of moderate lengh, is far more useful and saleable than a crookrd knotty one of twice the size. To have fine timber, it is ebsolutely necessary to bestow a little trouble to start them foirly off, during the first ten or fifteen years of their growth. The best method of raising a plantution is by using a mixture of different sorts, which may be deemed priuripols and strondarice. The first are those for which Ho land is juidged most suitable, the accond are nurses
Vol. I.. 72
or supernomeraries, intended to be drawn out as moun an they presa injuriously upon the principals, or when they heve attained to a useful or saleable size.

To have tall and straight stema, the treen muet bo planted thickly at firat; that lif, only alout four foet apart, or evan lens. In thle ordar they shelter and prompt each other to sacend; and if in the apring the woodman pays his annual vivit, armed with a light keen hill and a narrow turning-rave, he may direct the growth with the best effect. Every lateral branch which appeare to be attracting ton much of the powers of tho plant, and eapocially if, as already observel, it be contending for supromacy with the leader, should be sawn off clore to the thole as aoon as it has attained a dismeter of one inch. Such a wound will be soon healed up, and present no flaw when the tree is cut up at the saw-pit. All branches of a amuller size need not be removed, for they serve to en large the trunk, and have no effect in distorting the grain until they attsin the size when they should be pruned off. If branches are allowed to remain until they have soo quired a diameter of from two to four or more inchen, and then cut off cither close, or, what in mucl worse, at some distance from the bole, the timber is aura to be deteriorated. Such wounds, it is trua, will be healed over in time, but the timber will be wanting in its bent pro-perty-nsmely, soundness and freeness from knots. All brunelies originate at the pith of the moin stenn; and whether thisy are alive or dead wien the tree in felled they are equally oljectionable in the ratimntion of the builder or mechanic. The knots in fir timber aro less obje"tionable, because they aro preserved sound ty tho resinous quality of the sap; but neither are they desira be, if trees can be grown with a clear uninterrupted grain
The most valuable part of a tree is the bole, and the longer and freer from knots this is, the more saleablo; and if any or cvery tree may be made to grow into fine sound boles of fifteen or twenty feet in length ly a littlo such nttention ns ia recommended above, it is surely well worth the troulle and expense.

All species of the hardy pine and fir trike intended for profit sloould be planted pretty thickly; the supernumeraries thinned when young, but leaving a full number of priacipals to grow up to a marketable builk, or until they cense to thrive, when they will all be realy for the axe together; for such woods cannot bear to he thinned gredually like other trees, being particularly liablo to die if they lose the protection of their neighbours. When planted as uurses among decidnous trees, they are easily kept within bounds, and from damaging the other trees, by pinching off, from time to time, the leading budn of their liranches. This induces a spray-covered rather than a naked stem, and thus maintaining their character an nurses. By the same means, fir-trees mny be formed into impervious screens, or sheltering hedge-like boundaries, very useful in many cases of rural improvement. Reapecting the pruning of fir-trees planted for profit, and which nre intended to grow up with clear-grained butts, a rule has been lsid down by planters which is easily followed, it is this-prune off the lower branches every second or third year, always leaving five tieve of branches to form the head. This regular method of keeping the butt divested of its lower branches, anal continued up to the highest convenient beight, will ecrtainly enuuro firit butts of elear-grained timber, as all tha knots will he smill, and all near the centre of the axis. The fine clear-grained butts imported from America and the north of Europe, are trees which were never prunod; but having grown upin very close order, the lower spray was consecutively killed by the want of air and light, shut out by the closo canopy of branches above. This is gaitr ing sound timber ly aceident, and which may be done in any country, hut by no means in such a short ume at may be done by hand-pruning.

In very many instances, trees are suffered to remain ma

INFORMATTON FOR THE PEOPLE.

Ohe groand considerably seyond the time they should be Clled and put to the proper object of their growth. Thoy are seen to get rotten at the core, or the branches are seen th die; still, from an unwillingness to remove what may the viowed as old friends, they are allowed to remain till accidontally destroyed. Instead of following this practice, we recommend the proprietor of forest timber to have hia wood periodically examıned by a person akilled in tinner, who ahould mark all the treea that meem ready for removal, and let them le removed accordingly. Unless for particular reasona, every tree should be cut down on arriving at maturity, and a new one planted in its stead.
Trees grown for ornament in lawns, require no other pruning than what inay he necesmary for the removal of potten or decaying branches; and in general it will be foond advisatile to leave each kind of tree to nasume ita own natural form. Ornainental trees are alwnys most beautiful in their proportions when the branches and apray reach towards the ground; but thile will not be the case if cattle are allowed to browse beneath and around them. These animala nibble away all the foliage and apray within reach, so as to form in park wcenery what is called the browsing line-an even bottom of foliage, any thing but agreeable to the eyc. The only plan of avoiding this inelegance in to exclude browsing animals altogether from ornamental grounds; but thia is attended with opposite evils, and takes away that pleasing onsemblage of forms which is the great charm of woodland cenary. Where cattlo or sheep are permitted to browse, all young trees, at lenst, must be protected for mome years by circular palinga, otherwise they would be disbarked, and generally deatroyed.

To ensure dryness of timber, it has been found a profitablo practice to disbark the oak end larch a jear or two before felling. On this point Montenth, in hia " Forester's Guide," says he in decidedly of opinion, that the larch treated in this way at thirty yeara of age, will be found equally durable with a tree cut down at tha age of fify years, and treated in the ordinary way

Transplanting Treas

Treca may be lifted from one place to another or tranaplanted. The art of accomplishing this exceedingiy delicato operation in tre culture, was some years ago brought to perfaction by th: late Sir Henry Steuart, of Allanton, whose treatise is the best authority on the eubject. The transplanting of a full-grown tree has, in all agea, been decined next to imposaiblo; and when it was attempted, the operator thought it necessary to cut oft a great number of tho lorasches, (and consequently the leaves,) from an ides that, if suffered to remain, they would require more sap than the roots could supply in their new situntion. Of course, just in as far as they doprived the tree of its branchon, or, we may rather may, of its leaves, they deprive it of the principal organ of its existence, and it invariably decayed to e correaponding degree. The lopping was fike a cutting off of the lungs in a human being; and it would be na ehsurd to expect a man in that atate to be licalthy and etrong, an it was to hope for vigour in the atripped member of the foreat.
Sir Henry Btcuart, having studied the internal structure of treen, began, a good many yeara ago, to practive the art of transplanting on what he justly calla the preservative principle: that is, without mutilating either roots or branches, an was universally practised till his time. Hia seat. Allanton House, is aituated on an irregular alope, on the right bank of the river Caller, which is a tributary of the Clyde. The neighbouring ground, though divervified, has no very picturesque natural points, but he contrived, by the removal of large trees, and forming an artificial lako and rivcr, to andire in come meanure the miracle of bringing new
and pleturenque ncenery into aetual oxidence, in a almost endlens variety of combination.

The following are the rules to be attended to in the trangplanting of trees. The bent aeason for tranaplams ing la certalnly during the monthe of October and Non vember; for though treea may be trangplanted in any of the winter months when the weather is mild and moint, they never do so well as when remeved in tha firut-mentioned months. Taking up a tree requirea an much care as replanting it ; the appale and the pictmattork are both necessary to raiwe the roots from their sent; and as the noost tender fibree are the most active and useful, the gronteat care should be taken to pas serve them entire. Neither should there delicato abres be exporacd to a dry or frosty air; they sheuld be kept moist and shaded till again put into the ground. Tha root should be placeil no deeper in the new place than it was in the old; and all the ramifications laid in theis natural positions, and imbedded in the fineat of the carth.

Trees may be transplanted from the age of ons up to ten, or even tiventy or more yeara; hut when they an from four to six years from the seed, they are, both from age nnd bulk, in the best condition to te reinared successfully. In planting with the one-hanifed tool, the snalleat-sized plants must be used; for pitting, plants from two to three feet high may he chosen; and on digged, ploughed, or trenched zround, the young trees may be from two to six feet high, in which cass the tallest may need propping against the south-west winds.

Whan aingle treea are to be planted on a lawn, a space of from four to six feet must be stripped of the turf, and roiled back; the soil within should he deaply broken up and excavated, to receive the full spread of the roots. A heap of richer losm or composit is laid in the centre, on which the tree is placed and the roots are covered with the same, and watered to consolidato the earth about the fibres. Tho other soil it then thrown on. and tho turf returned to its place and betem down firmly. Singlo trces should be staked; and if on a pasture, a cradle will be requisite to defend them from the browsing or rubbing of cattle.

Much has been written on the subject of trankplant ing largo treet, and many surcessful exploite of thin kind have been performed both in past and present times. Shudy groves have been formed in the shart space of n few months; proving that, with carr, akill, nad jhysical force properly directed, any tree of mode. rith size, say from twenty to forty fuet high, mas be transplanted with snfety and success. One precaution very much facilitates the execution; it is that of dig* ging a circuiar trench at a proper distaner, say aix feet, romind the trunk, and drep enough to be below, and to cut through all the roota except three or four of the largest, which are len at equal distances to act as spuns for the better security of the tree when placed in its new situation. The trench, after the stumps of the roots aro cut smoothly off; is filled with prepared compost, for a new fringe of roots to strike into, and after one or two years the tree is in a condition for removal. In doing thia, a decper treuch is made on the outsido of the first, into which the mould from among the roots is drawn, until the whole is loosened from the soil; the apur roots are aleo followed out and laid bare. The method of raising the tree by a machiue is mentiond beneath. In replanting, much depends on laying oot the roota, and firmly ombeddiug them in moistenod carth, and also adding a pretty heavy covering of soil round the stem, to keep the tree atcady agauat wind.

Every tree about to be planted requirea a little prup ing; broken roots ahould be removed, and tho hed may require thinning. The branche should be equally

Menacel! and If mant It should b two stema ahould fre need no thi d the lower spra

This machine nor. timber-truck alo-tree of a pai constructed, at le as of alne inch mubtantial, and Gred. The pole inchas muare, wi reduced in thich chould be at le greater the purel drengthened by mounted with un mod, it is back nied and made
wheda rest in th tha roots, though in realy, the at applied to the 1 trea, pulled to th the woil; and w drawn away, roo prepared for its the new openin und, if the root mer position
oxhitionce, in a attended to in the on fer tranaphant Octaber and N naplanted in any ther is mild onil n removed in then a tree requiren alle and the pick. e roots from their o the most activ be tnken to pra ens delicato abrey y ahculd be kepd the ground. Thu now place than tiens laid in their the fincat of the
sge of one up to at when they at d, they sre, both ion to le retnored one-handed two sed ; for pitting, y be chosen; and round, the young h, in which case st tho south-tres
ted on a lamn, stripped off the whould lo desphy he full spread of - compost is laid ced and the roota red to consolideta her soil is then place and beaten taked; ond if on defend them from
vet of transplant exploits of this nast and present ned in the short with care, akill, iy tree of mole. et ligh, may he One precaution it is that of dig. thee, say six feet, be below, and to , or four of tha - to act as spurs on placed in its stumpes of the 1 prepared com e inta, and after tion for removal. le on the outside among the roots 1 from the soil; laid bare. The ine is mentional s on laying oce n ilt inoistened ovy covering of steady agaraft
res a little prus , and the head hould be equally

Whacec!; and If any onc appesiri to be a rival to tha armen it should be cut of clome; so those riming with monemishould be deprived of the weakest. Theme mente only epply to deciduous apecies ; the pines and on need no thinning when transplanted, unleas some of the iower apray in dead.

Machina fer Tranepisning Trees.

This machine is formed on the principle of the commoc. timber-truck, heing atrong lever uttached to the axbetree of a pair of wheels. The tatter are atrongly andetree ef a pair learf five feet in diameter, and with a sis or nine inch tire. The axle-tree If correspondingly aubstantial, and to lta middle the pole or lever in aecurely fixed. The pole should be made of the best ash, eeven inchen square, with the edgea planed off, and somewhat reduced in thicknees towarda the end. The length mould bo at least ten feel, for the longer it in, the greater the purchase in raising a tree. The pole is drengthencd by side bracea let into the axle, snd mounted with an tron eyeand ring at the point. When mood, it is backed agsinst the tree, and the pole is nied and mate fast thereto, as hore represented. The

wheels rest in the hollow made by baring snd loosening the roots, though not upon any of them; and when all it realy, the atrength of men or that of a horse, is applied to the pole chain, which is, together with the tree, pulled to the ground, the root being lifted out of tho soil; and when thus borne on the machine, it is drawn awsy, root foremost, to its new place, previously prepared for its reception. The wheels are drawn into the new opening, the po'c and tree are set at liberty, and, if the root be hesvy, the tree will resume its formor poition with but very little assiatance. The machine is then loosened froin the tree, and removed
out of the way ithe roote are then laid out carefully and embedded in loose soll, well concolidated and watered, which inishes the planting.

When a machine is made on purpose for removing large trees, the axle-tree may be inade to fit a pair of cart-whecis for a temporary purpose; but the axie should be formed with atraight, not drooping, ends, as they are usually made, becsume this rentere raising the pole much eanier. Upon the uppor sido of the azle there should be a thick block of wool bolted, to give more olevation to the root when drawn along; and on thim an old suck, or a thick band of atraw, is bound, to prevent chafing the bark of the tree.

Renovation of Decayed Trees.

In favourshle circumstancea so reapects soil and climate, tree seem to be immortal ; but in our own country, these favouring circumatances are afforded on a limited acale, und consequently we can show no trees which are beyond the reach of decay. A time inver riably arrivea when they begin to show symptoma of decay, snd the means to be adopted to prevent, an far as possible, the occurronce of thila evil, require now to be noticed. On this delicate and important department of arboriculture, we have great plessure in laying before our resders the detail of a proccss discovered by tho late Sir IIenry Steuart, communicated in a letter to Adıniral Sir 'T. Iivingaton, Bart.
"Dran Sin,-A grecably to my promise, I shall now give yon sn idea of my method of reviving or resuscitating old trees, which has often succeeded with myself, and which I have rocommended to others; but there is no account given of it in the notes on any trestise on the application of the acience of physiology to practical tree-culture, and particularly in removing large trees for ornament or use.
"The decay of old treea, both in England and Scotland, bas been a subject of general complaint during at least a century ; and it is observed, with regret, that their place does not promise to be very speedily supplied by exiating woods and plantations. The gencral cause of the decsy of trees are twofold. The first procecds from disesses to which sll woody plants are subject; the second, from extreme old age, but more frequently from their having exhausted the pabulum within their reach. The pathology of the vegctable tribe, in this renpect, differe materislly from that of the human apecies. Among the sons of the forest, there are no vicious efiorts made by individuals, as smong us, by means of disease, to shorten life. There are no gourmands nor aenazalists, by fatal indulgences and artificial luxuries, to bring on premsture old sge. The lawa of nature in trees are allowid fairly to operate, and their existence, therefore, . be reckoned on, and even prolonged by art, to an luitefinite period. It has been said that the roots of trces in a favourable soil will go abroad in search of their food at a distance from the stem equal to the entire height of the tree taken from the ground; and wherever this is found i hold good, trees will live to a very great age, especialy in a deep sand calcarcous soil.
"Of your two fine old trees at Weatquarter, Stirlingshire, which I lately oxsmined-s holly and a doubleflowering thorn-I must say that they sppear to me te have ileclined chiefly from the lutter of the two causes above mentioned, namely, their having exhausted the food or pabulum in their imnedinto neighbourhood; and, in the case of the thorn, in some messure from the ground being overatocked with other plants, that greatly crowd apon it, even to the exclusion of light and atr, without which no plant can flourish. As to the holly, it seems atunted anil hide-bound, and ser ds out no free shoots at top, auch is a tree in health, in so fine a soit and climate, ought to do. The terminal growthe of the
thorn, also, have begun to decay; and If aome malutary rosanaly. be not speectily adopted to exrite the nooss to fresh action, it in plain that the evil will ere lorg extend to the greater hranches, and as a necosary consequence to the trunk iteclf.
"The first thing that I should recommend to be done with this nolide thorn, ia to eut awsy the ivy that now urongly sdheres to it. That parasitical plant has covered nearly the whole external surface of the stem. It already interceptes the kindly infuence of the sun and air from the bark of the tree, under which the finer vescols of the desconling sap lis, so that it may le suld to prey upon the very vitula of the plant. The next nlject should he, to clear the grounil, for a consideraile apace, of overshadowing slouls and bushen. So venerable a tree, standing single, weuld be the most graceful ornament of the verdant turf that surrounded it.
"The mecond Ling that I would do would be to dig a mach round the tree, not exceeding three and a half a four fiet out from the stem; which trench should be five feet broad at least, and as deep an to penetrate through both the avil and subsoll, however deep either may be, until you reach the rock, gravel, pure sand, or ohdurate clay (Scol/ire, till) that may lie lelow. In deing this, the workmen may fearlessly eut through all the roots they meet with, leaving only three or four great ones, on the south and south-west sides, to act an cubles in resisting the aevere winds that usually blow from those quarters in every part of the island.
"Next, het whatever parts of the trench that consist of good earth, or of eartis capalile of being casily made so, be thrown aside, and the samal or gravel, if any, be wheeled away; so that you may obtain a depth in the trench of twe fert or more, if the soil peranit, of wellmixed mould. For this purpose, let good compoat or rieh garden mould (of which I asw abundance near the apot) be intinnately mixed, by two or three times turning, with the better parts of the contents of the trench, adding about a thiril part of good well-rotted dung, so as that a proper chemieal action may be oxcited throughout the mass, and the whole rendered fit for the fool of plants. This done, let the trench be filled up with such compound somewhat ligher then the original soil; and let the apace which has been left untouched, of four feet out from the atem to the ellge of the trench, be covered eight or nine incher deep, with the wame prepared and friable compound, pointing it in with the apade only about three inches deep, so as not materially tu injure the roots. In order to complete the process, let all the dead wood le carefully pruned away from the branches with a saw, but dressing the extremities afterwards with a sharp liedge-bill.
"In the following spring, all mons or other impurity should be scraped off the bark, and the entire stem well washed, two or three times, during the summer scason, with map and water and a son brush.
"By following the alowe method, which, however olaborate it may appear in the description, will be very casily reduced to practice, I feel confilent that many fine old treos in gentenen's parks, that sre now allowed to decay, might have another century added to their exintence; because the extension of fresh pabulum at pl-isure to greater limits, would be a lalour well repaid, ania attended with little expense, and as little difficulty. There are few persens who would not lestow more labour than this on a favourite tree; and there are perhape fower who will not adauit that it might eavily he applied to purposes of general utility as well as local ornament. The principlea on which this process has been institutad are in accordanco vith the laws of animal as well as vegetable phyviology, and will be confirmed by practice, if they be aliowed in govern the procesa. I have uniformly found that thi roots, where cut through in the opening of the treach, will send forth ant imuense body of vigoroua
ramifications, of from a foot to fifeen inches in haral during the firat nuxd accond monthe after the operilim, with thousande of capillary rootlots emanating frem them, all which will go abroad in eenrch of pap, for renovatiag the vigour of the tree. In a tree of canaiderable ath auch as the twa above alluded to, at your beautiful place it is to he ubserved, that much ngure cannot be expected to tre made, during the frat your, in the elongation of it terminal shoots ; and for this plain reason, that effeet must ueceswarily he preceded liy their caunes, whethen they lie on the surface or otherwine ; hut tho leaves will speedily becoma larger, and of a deeper green colour, than fer some yeara past; and hy the sutumn of the sceonil year, it will be admitted that the tree is in nome sort ahout to renew its youth.
"During the early puart of the first seasun, the nen mould whould be allowed to remain quite undisturthen, but tewards the end of tha yonr, the gardener or formede may cautiously look in, and he will obsecve the wonder ful efliots towaris the increase of leaves, sud, ly comen quence, towaris a fresh supply of sap, that lir plant wild even then have made ; and sher the second yrar, the m novating procesa will appear still moro atriking.
"Theme direetions apply equalily to toth the thoen and the holly at Westquarter, with this difference, that, in cos silleration of the far greater exposure in which the lation is pluced, I should not adviso that the trench lee opened nearer than withln five feet of the atem; also, a greater number of large roots (to act an cables in supporting ting tree), say five or six, ahould be left entire, rutaing acrom the trencl.
" The month of February or beginning of March, os cording to the acesoon, before the ascending sap trging n atir, would of course be the best time to carry into effect the methods of resuecitation alove detniled; and ns. 16 lamlon IIouse is at ne great distance, I should have mad pleasure in paying you a vinit, and directing the mereco tion myself.-With grent exterm, I remain, dees sit Thomas, your most faithfu! servant,
"H. Stricamr"

Cappice and Feneca

Coppice or underwood is either natural or planted Natural underwools appear to the the remains of ancient furcuts, which are kept enclosed, and are felled perimith cally at long or shart intervals, according to the parpowe for which the stuff is to be applied. Plantod underwoxit are cither willow bolts for the hasket-minker, hoops be coovers, hop poles, poles for fencing and hurdle-making, stakes and lipadere for hedging, broons, huy-take, and mop handles, spray for birch besoing, fagole for lrickmaken and bukers, kindlers, and other firewood, and withes for binding fagots, \&cc.

Thriving and well-fenced and well-managed under. woods are convidered more proftable than timler-wools The first are very soon a aource of income, and as sud are sulject to tithe, which han caused many acres of then in Fangland to he allowed to grow up into wools, whish are frec from tithe. But tlmber and coppice may to united; the standard trees to stand thinly, and if kept pruned up, the undergrowth ia not much hurt by thin shade. Mixed underwoods are cut every five, seven, vt ten years, unless they are entircly of ook, when they wo allowed to stind longer, for the sake of lasing laget poles, together with the bark, which lant is t.e principd part of the value of tue fall. When such a fall is mash every superior-looking well-placed pole is left as a stor dard, if standarde be wanting; these at last become fim trees, and are felled in their turn.

The most profitable underwoxi in that which has bers planted, and each sort of tree kept by itself, having te gard to the quality of the zoil moat suitable for each, il there be any difference. For inatance, ash and Epanub chestaut should have the driest epots; oak and birch thom
alde were more An the worts whou mon this net onl mpper vee the farm moch add to their The ground alic me manurt as pople. Wet land piches hetwrer, wala and giva the mhoduce themel mod hawthoi 1 , ne Go lirat in a ueefu in riquest about o Bune of our or trees, and noine of dmber ; suith are der roee. I Large muth prizel for v
The shrub usal buythorm, which, a very effertual pi be planted when on the top of a dr mere, the rows will palinge. 'The wa by throwing oyt i is to keep the gro quently neglecte branchen anumually ket of these precea kcragry, and alm deeep, and even hag and prunisg, plante when noce Latterly, furze much advantage will grow ouly w muceeds lest in n

Ans

It has leen nu Parsalloge y , that cut tranaversely in ust of a numbier no many layers o uxis ; and that. as itia pussille to as the number of the most celehrated b peass from a work this method of as wres, that the n aod liable to muct ducted with the gr condensel into a guesed at by mee followa: When which I can see th it, extending from thin paper I mark of the pith, the h where it grow, an the marh in a str overy ten yrius, an years' intervals auce, gives me the Wr, and multiplyi
The liarned p penols of increve inspection of whit zown rapidly wh ake a regular ma cocounted for by

Inches in loark
fer the epenthe onating from them ap, for renoratia conniderathe the ur beautiful place e elongation of in :asoll, that effect r caumes, whether out the leaver mil per green colour, lie autumn of the the tree in in tome

- Beuson, the new quite undisturbed anrdener or forester oserve the wondet rea, und, by conu. , that the plant win econd year, the no ntriking.
th the thorn and the ence, that, in cop in which the later e trench he opened m; also, 3 greater of in supporting the tire, rumhing actom
ning of Mareh, wo aling sap beginin to carry into effect ctriled; and no. 4 should have mudy recting the exeeo remain, dra: sid
"H. Stacary."
natural or planted remains of sncient are felled perialis. ling to the purpow lanted underwosh et-maker, hoops foy and hurdle omaking, , hay-rake, and mop ots for lirickmakes pod, and withes for
ell-managel under. than timber-woods come, und ss sud many acres of then into woods, which d coppice may bo hinly, and if kept nuch hurt by then rery five, sevea, s oak, when they at e of lisving larger ast in the principal such a fall is mside e is left as a starp at last become fine
hat which hasbets oy itself, huving te Litabla for each, is e, ash and $\Sigma_{\text {panub }}$ oak and birch thaw
stich we more mniti; alder and willow the molatent. All the eorth ahould be phanted very clowily together, inwa thin not only increncen the length and noniter hut inpry ves the form of the poles, eircumatances which very ruch add to their value.
The ground whonld the prepared for underwood in the manncr as for timbertrecs, either by the plongh or paile. Wrt lend is umually laid into beda with narrow fitches hetwer, the noil out of which mervea to ralse the vali, and give the roots more scope. Several wild elirulue bhodure themeelveu among underwood, particularly hazel and haswhol it, nether of which are much nhjected to, an the Ifat in a unefisl coppice plant, and the lant la nlwaya In mquest about a farm.
Gune of our onumental shrube arrive at the helght of then and aome of them proluce excellent and beuutiful dmben; wich are the cyprean, holly, lahurnum, and gueldot rowe. Large scantlings of the mecond and thitel nre wuth prizel fir vencering.
The nhrub usully employed for living fencea in the mawhom, which, by proper treatment, may be rendered a very effectual protection to fields. The whruls should be planted when youns, according to the required line, on the top of a dry bank; and, till they attain a suflicient dre, the rowe will repulre to be protected from catile by palinge. The way to cause the plants to increase in bulk, by throwing opt lower branches to form a compart heige, is to kep the ground free of weeds-a duty far too frequently neglected-and prune tho outer matruggling branchea annmally, when tho anp is down. Fron negg. lect of these precoutions, thorn hedges are frequently thin, scaggy, und ulnoas uscless in preventinur the exit of dheep, und even cattlo from enclosurea. [3osides weedling and pruning, thicken opert apaces by inserting new plants when necesmarv.
Laterly, furze or whing have been employed with murb advuatage as fencer, lint this hardy native shrub will grow anly where there ia great fredum of air, and arceeds lest in northern climates.

AOK AND BIZE OF TRERS.

It has heen mentioned in wur artiele on Veoztanle Parnolono y, that if a tree (of the exogenous kind) be cut transuresely and cxamined, it will be found to conast of a number of cylinders enclowing one another like so many hayers or coneentric circles disposed round nn ans; and that, an a circular layer is deposited every yoar, it ia possible thaseeranin the age of the tree by counting the number of the layers. M. Decandolle, one of the most eclehrated botanists of modern timen, has, as njpears from a work on the nubject, paid qreat attention to this nethod of ascertaining the age of trees. If observes, that the method of rerkoning no.. alluded to is aot lishle to much error, but the inspection must he conducted with the greatent care; for the older circles berome condensed into a mass, and their number can ouly be guessed at by measurement. "My plan," anys itr. "is follows: When I have got a section of an old uree, on which I can see the circles, I jlace a shect of paper upon it extending from the centre to the circumference. On this paper I mark every circle, showing also the situation of the pith, the bark, the name of the tree, the country where it grew, snd any other necessary olserrvations. I om mari in a strongor manner the lines which indiente every fen yours, and thus I measure their growth at ten years' intervala Measuring from centre to cireumierence, gives me the circles; dombling this I have the dianeWr, and multiplying by six I have the circomference."
The learned professor then presents a table of the penods of increjsp in the diannter of various trees, an inspection of whith proves that every tree, alter having jrown rapilly when young, seems at a certain age to take a regular march of growth, which may perhaps be wcounted for by aupposing that young trees bavo inore
room to oxpmend in, wre lese prensed by to roote ind hennchea of their neighbours, and may net have γ unt trated down to a hard, arid, of ntherwise nofavourable moil ; and ulmo, that as treem advance in age, they atill con tinue to form layern as thick an they previounly did sabecquently to the period of rapin growth. If nuch tables were mistiplied to a nufficient extent, at we have ne doult they will be in courme of titne, they would forms data from which, by uecertaining the circumference of tres, lta age might he known without having recourne to the destructive procem of cutting decp into the growing timber. "If", maya Decaudolle, "one cannot get a tuan* verae mection of a tronk, then one muat mepk for old apecimens of euch kind, the ilute of whone planting in known, meanure their circunference, deduce their average growth and calculate from them the age of othur treen-f the same kind, niways kecping in mind that young tree grow finter than old ones," Decaudollo citer instancea of treed whose ages have heen ascertained aceoriling to the rulea here luld down. Some of these we shall present to the reader, along with lescriptionn of other treen obtained from a variaty of sources, particulurly American publb cations.

A certain Faobab tree of Africa is considered by IIumbokit as the olilent organic monnment of our planet ; and Adannon, a diatinguiahed botanist, by ingenious calculations, has amcertuined ite nge to be $\$ 150$ years. The method adojted by Adunson for finding itn nge, wan by making a depp cut in the wide of the trink, and counting the concentric ringe. by which he ascertained how much the tree had grown in threc centuries; und having already learnel the growth of young trees, he established hil general law through the avorage growth. The enormoun dimensions of tho trunk of thin tree bear a striking disproportion to the other parts. Examples of the upecien Lave been seen, which, with a trunk ninety feet in circumference, were only twelve fert in height. A atill lurger was sern by Mr. Golberry in the valley of the two Gagnacks, in Africa; it was thirty-four feet in diameter. The tlower is of the aame gigantic proportions as the tree. Such rolossal inasses of timber might be hollowed out into by no means ntruitened dwelling-houses.

One of the mont celelrated trees descrihed hy travellera of recent times, is the cireat Lrigon irre of the island of 'Tenerifle. It derivesits name of drugon's-l/lood, by which it is popularly known, from the circumstance of a liquor of a de. p red rolour like blood flowing from its hoary trank during the dog-days. This exudation soon becomes dry and brittle by the action of the atmosphere und is the truo dragon's.hlood of tho apothecuries and other venders. The wonderful size and appearance of this tree excited the admirntion of Humboldt, who thus describes it:-"We were told that the trunk of this tiew, which is mentioned in 8 mot very ancient documents as marking the boundarics of a field, was as gigantic in the fiftecuth century as it is at the present moment. Ite height nppeared to us to te ahout tifty or sixty feet; itu circumference urar the reots is forty-five fect The trunk is divided into a great number of branches, which riae in the form of a candelabrum, and are terminated loy tufte of leaves, like the yucera which adorne the valley of Mexico. It still bears, every year, both leaves and fruit. Its aspect feelingly recalls to mind that eter. nul youth of nature' which is un inexhanstilife source of motion and of life." 'Ihis giant phant was laid prostrate by a tempest in 1822.

The fact here nuticed by tho leamed traveller, that the tree annually bore leaves and fruit, alliods intubitable proof of a very remarkable circum tance comnected with the segetable kingdom. In mare and all other unimala we find an organization and a process of life going on whicls are destimed to cease at a certain period. But it in otherwise with trees. They appear to pusites the power of growing on for ever without exhibiting any symptons

Cecay, unlem from seedidental or extrancous causes. We chall quote the worde of Decandolle on thie point :-- Aa them is formed every year a ligneous depoait, and evenerilly new argana, there la not among the vegetable cereation place for that haninesse or rigilility, that obotruetion of old and permanent organa, which conatitute properiy the denih of old mge, and, eonmequently, that being the enoe, trees can only die from accidental cnumes. Treee do not die from age in the true senee of the word ; thay have no fixed perioi of exintences and, eonmequently, come may he firmend that have arrived at an extraonlinary age." But although in tree thus pomenmen in itwelf the dementh of continual strength and youth, numerone cancee atep in to interrupt or deatroy fith exintence. In eorrothoration of whit we state, we need only allucte to the fiets, that suil is of limited depth-that, below the woil, there are usually hard atrata, which the ferlera of a plant cannot penotrate-that roots intererowing encumber each other, and check vegretation-bremiden which, there are other deatructive and ohatructive causen which we need not occupy the realer's time hy apecifying. Coneequently, aithough what the Fronch philompiner anys in quite true, that " nome (trees) may be found that havo arrived at an extrnorlinary age," yet, every circumatance considered, we a:e not to be aurprined if the number found ohould prove exceedingly small, compared with the immense extent of the earth't surface which in covered with forest trees.

Cypreames of gigantic dimenalons are met with in Moxico. At Atlexo there is one neventy-aix feet in girth; and another at St. Marin del 'Tuli, in the province of Oaxach, which is one hundred and righteen fret in circumference 1 Thin in larger than the Iragon tree of the Canaries, and all the banbabe of Africa. "But." may" Humboldt, "on examining it narrowly, M. Anza obacrves, that what excites the admiration of travellers is not a eingle individual, but that three united trunk form the famous Satino of Santa Maria del Tuli". The fact of the threffold nature of the atem neems to have eacapod the notice of some writers; it in of importance in determining which is really the largent organic monument of our planet. There is another cypress at Chapultepec, in the same region, which is aaid to be one hundred and eeventeen fret trn incless round, and the younger Derandolie conviders it even older than the boolnt of Adanson. If the meanurement here given be correct, and the tree consiath only of one stem, we are entitied to regarl this Mexican cyprens an the mont gigantic and ancirnt tree hitherto dineovered on the giote. Hunter anya that in 1776 there exinted in the garien of the palace of Grenada cypresses that were celebrated even in the time of the Mooriah kings, and which were named Cupressos de la Regna Sultoma, from a suitaness who was meen nitting under it with a lover, who wan ono of the Abencerrages. They are suppowd to be eight or nine hundred years old. Strabo mentiona a Perdian cypreas in girch as much as aive men could span, and he brlieved it to he two thouand five hundred yrara old. But this muat have liven guese-work; at least we are not asware that he made the computation after the akilful manner of Adanson or Decandolie. Miehaux, a Frenehman, has publixhed a aplenNid work on the foreat trees of the United Nitema, He mays that the largest atocks of the cypress are one hundred and twenty fret in height, and from twenty-five to forty feet in circumference, ahove the conical hase p which ot the surface of the earth is always three or four times as large as the continued diameter of the trunk. Cypresses are among the trees in the moth of Europe which live to the most advanced age; and the cuntom of planting them in cenctenea and consecrated ground, enaurea rempect being paid to them, and thus affords botanimis the meane of meanuring tnem.

Yown are believed to te the most ancient trees of Great Britain ; and no doubt can exist that there are

Individuals of the apecies in England as ond ate the troductios of Chriatianity, and, there is avery ment believe, a very great deal older. It io the oplnim an Decandolly, that of all European treea, the gew ha thy which attains the greatent age. "I have memared the deposite of one of seventy yeorn; CEthafien has mon oured one of one hundred and finy yearel and Vhallow hisa mensureci one of two hundred and eighty joms Thewe three measurements agree in proving that ing yew growa a little more than one lina annually in tha firct one hundred and Any yeara, and leas than a limy from one hundred and finy to two hundrel and iffy If fop very aged yown wa take the average of mae ling annually, it is probalily on admiamion teyond the linth; and thus, in eationating the number of lines and yann an equal, wa make them younger than they renliy ant" We think thim reamoning yery plaunible, and point om to such of our readera na miy have opportunitles of mos ing old yew trees, how easily they may ancertain thet age.* The line here apoken of in one-tenth of un inat The circumference may he taken juet ahove the ham a the true; the third of thin meanurement givee the tion ineter, anil every inch of diameter is equal to ten yem There are four mesiurements of venurable yews in Rap Innd-those of the ancient Absey of Fountaina, me Ripon in Yorkaliire, which yewe were well known a eariy an 1155 . Pennant mana, that in 1770 they ${ }^{4}$ m 1214 lines in diameter, and, consequently, were mon than twelve eenturice old. Those of the churchyond Crowhurst in Surrey, on Evelyn's authority, were lan linea in diameter. There are two remarkahile yewimo in the same cemetery, end if they le the same whird Fvelyn refera to, they munt le fourteen ennturien and half old. The yew tree at Fortingal in Perthahin, nientioned liy Pennant, in 1770, had a diametro of s5e9, linen, and, consequently, we must reckon it at froa twenty-five to twenty-nix centurien old. The gend Brabourn churchyard in Kent, has atthined the oged 3000 yeara ; but that at Hedsor in Bucka zurpase all others in magnitude and antiquity. It is in fill health, and mearures ahove iventy-neven fect in dimo ter; consequently, necording to Decandolle's method d computation, this yow han reached the enormous oge ot 3240 ycara! In all likelihood, thia is the most ancieat upreimen of European vegetation.
The cim attaina a very large mize, and han a merg rapid growth, hoth in Europe and America ; hut the ela of the latter country has a much more majestic appens ance than that of Europe. Michuxx charactenizs itw "the mont magnificent vegetahlie of the temperate zone.' A apecimen mentioned by Decandolle, which grew ma the town of Morges in Awitxerland, meapured severtiee feet acven inches in diameter, and was estinuteel at him hundred and thity-five yerrs of age. He informa that it grew on an average three linca and a half ynuly; hut dividing ita growth each century, it grew sir lime annually the first, two and a half the secend, and tm and three-fourths the third; and thia growth agrees mith that of those elins planted by order of Sully, before the Chambera in France. Every one who has it in tin power to ascertain the rate of growth of trecs oughty do no, as he is therehy not only gratifying a rational io riosity, but conferring a benefit on acience. Wherva the age of on alm or ather tree is correctly knnka, in girth should be taken, ond a plain statement of the op cies of tree, the nature of the soil where it gren, it diameter end age, tranamitted to any joumal, the gpaid

- We are aware that at the trilish Asnociation which meta 18W, paper was rrart contradiciory of Decainfolle'a enmy Iation regariting yew treem. nud mating that he mate thon Irees too young. and the young irees 100 old. The experimens naserted liat the mean iverage of the number of lines whid a ireat increasell in in year, was iwo, or one-fifh of on inat But Decandolle is the higheat tulhoring, and we are inclind to altide by bis opinioll till further experimente have bour made.
> which Waglow adides the atten mille only hy men that genera One of the maduetiona is t diva of botanimt momponel of nun α which ore of of Nabudlah, n danding a releb The trulition of gome old. It in that wea vinited Crea's officers. In oumber to 30 ach of these is banging toota to of thin remarkal mhis "Puradise that of whome aves aprons" al

The fig. Iree,

Rul nich an a In Malahar Branelhing to About the no Migh over-ar

The lime in the appean capable c andolie has mome this tree, which wich was plant the bette of Mor inchen, which wo metric growth. of the growth of tree had not fou aenerer the truth lime at four linew bee of times of lis have the circumf I hall mention Chaille, near Me síres, which i (about 50 feet), handred anel thi the Grisons, alren measured 51 feet late to be five hu of Depeham, ne yarda in circumf temberg, which. of prope, and wh circumference. and amall leaves fater than the in regard to the me mentioned wis 90 feet in he half from the gro Hurling as of nea now known in E
The Oriental the largent size, tained. In the v from Constantin mind one which Roman naturalist had a hollow tru toe conaul Licin

thon the the

Io the oplivion have the yew in the have me netured the Oithafen haen mea reara 1 and Viellos and eighty yom proving that the ine annually in the nd leas than is lim hundred and fify everage of owe lim n heyond the truthe, of linea and yean an they really are" sible, and point pportunitien of mos may ascertain thept ne-tenth of an ined it above the haed nent givea the dis - equal to ten yem rable yews in lap of Fountaine, ney ers well known a in 1770 they mex quently, were mom f the churchyard of uthority, were lay emarkalile yewi wh le the same whird een centuries ant ngal in Perthhin, I a diameter of 2 sel reckon it at from old. The yee of attained the aged n Bucks surpase uity. It is in full acyen fret in diame andolle's method of the enormous age of is the most ancient
ize, and han a ref meriea ; but the tha ore majentic appens (x characterizs it the temprrate zone" Hle, which grew nea mearured meventem as estimated at thm ge. Ife informs a ea and a half yraty ry, it grew six lixe he second, and in - growth agrees with of Sully, before the who haa it in pth of trees ougbty tifying a rational o scicice. Wheme correctly knnwa, in tatement of the op 1 where it grew, it y journal, the sprid nacisation which me: Decundialer comis That he mate tes on
old. The experimeor oumber of line wha number of ine ond ind. on one-fifth of an ind
y, and we are inetul Y, and we are ine
x perime
ane of which is tit take eegninance of the vegetable We al certain that mnny of our readorm in thrir power. Indeed, Decandoila earneatly moe tha in the mitension of English botanists to the oubject tritis only hy an estenaive accumulation of individual tres that general lawis can be eutaliliahed.
One of the nout curious and beautifui of nature's productions la the Hanian or Burr treo, the Ficun Indies of botaniats. Each tree formm in Itself a grove, mapomed of numerous atems connected together, some ahich are of the wise of a large tree. On the inlanil d Nobudish, near Buroach, in IIindowtan, there in atill ctanling a celebrated banian, called the Cuborer liort. The tralition of the nativen la, that it is three thouanud ruas old. It lasponed hy aome to be the name tree thel was viaited by Nearchum, one of Alexaneler the Greatin officers. The large tiunke of this tree amound m namber to 350 , the siniller ones exceed 3000 , and each of thewe in constantly menaling forth branches and banging roota to form other trunkw. The circurnference of this remarkalile plant ia nearly 2000 feet. Milton, In his "Paradine Lost," has described one of theme treea athl of whose Iraves our firat parenta " made themwive aprone" after the fill.

"Acxin they chone

Tha figetree, not that kind for fruil renowned, Bul angh ab al lhit day, wh lutinnn knowna In Malabar or fieran, apreade her ainia, Branching so tronil ind long. that in the ground The beruliug iwige inke rond, nul inughera grow About the inother-irece, A pillamed ahatle
High over-afched, and echoing walhs beiween."

The lime in the Eiuropean tree which, In a given time, oppears capable of arquiring the largeat diameter. Des. andolle has some observations on the rate of growth of this tree, which may prove uacful. He anya-" that which was planted at Frihourg in 1478, on ocenaion of the battle of Morut, ha4 now a diameter of 13 feet 9 inches, which would give nbout two linea of annual diametric growth. 'This is ahout the rute of the incruse of the growth of an oak, and therefore I suppose the tree had not found a favouralile aoil, and it would be nearer the truth to calculate the annual growth of the lime at four lines. There are in Europe a groat number of limen of large size, and it would bo interesting to have the circumference of those whose date is known. I shall mention for their size that of the Chatean of Chaille, near Mellea, in the department of the Deux Sines. which in 1804 mmasured 15 metres ronnd (about 50 feet), and which I suppose was then five handred and thirty-eight years oll ; that of Trons in the Grisonn, alroudy celobrated in 1424, which in 1708 measured 51 feet in circumference, and whieh I calculote to be fivo hundred and eighty-three years old ; that of Depehnim, near Norwich, which, in 1664, was 81 gards in circumfercnee; and that of IIenatadt in Wurtemberg, which. in 1550, was ao large as to have need of props, and which, in 1684, was 37 fiet 4 inches in circumference. One must distinguish briween the large and small leaved limes, as the former appear to grow fater than the latter." There appears to be a miatake in regard to the Depeham line. We suspect it is the sume mentioned oy Sir Thomas Browne, whieh, he says, was 90 feet in height, and 48 feet round at a foot and a half from the ground. He also describes a poplar near Harling as of nearly the amine dimensiona. The largest now known in Fingland growa in Moor Park, Herts.
The Oriental plane is one of those trees which attoin the largeat size, luit the rate of its increase is not escertuined. In the valley of Bujuikdére, whout three leagues trom Conatantinople, there is a plane which calla to mind one which I'liny has celcbrated. According to the Raman naturalist, there was a plane-tree in Iyycia which had a hollow trunk capacious enough to aecommodate tae cunaul Licinius Mutianus and eighteen followers,
who found within th ample cavity e retreat for the night. This living vegetahle grotto was 76 feet in eip eumferenee, and the aummit of the tree resembled a small foreal. The plans at Conatantinople ve 150 finet round, and within it there in a cavity of 80 feet in eifo cumforence. This transcends the tree of Pliny. There are other very large oriantal planee mentioned by Olark and othere, and one of vast size was lately noticed by Mr. Quin in hie voyage down the Danube. For the information of our readera, we may mention that, in the eastern maten of the North American Union, the tree is called Button-wood, anil in the weatern ataten Ay camore. Under the latter appellation, Mr. Flint, the dirtinguished geographer, stylea it "the king of the weatsrn foreath It la the largeat tree of our wooly, and rises in the moat graceful forma, with vast preailing lateral branchen, covered with lark of a brilliant white. A trea of thia kind near Marietta (Ohio) measured ifj feet in diameter. We have meen one on the llig Mlami (a river), which we thought atill larger. Juige 'J'ucker of Mimouri cut off a aection of a hollow trink of a aycamore, and applied a roof to it, and fitted it up en a atudy. It wan regularly sylindrical, and when furniahed with a stove and other arrangementa, made an anple and convenient apartment." But luildings of a more exteno aive dearription than the above have been constructed out of this tree. We learn that a hollow trunk of an enormoun sycumore was litted up with the reyulaite appendagen, and made use of at Utien, in Now York atnta an a retailoshop; end it was afterwarda carried to the rity of New York for ahow. We extract from the "New York Truveller" the following notice of much another extraordinary domicile, or in ali likelihood the maine an that made uae of at Viirn. It wan exhibited in the aloon of the American Museum in New York. "A syenmore tree of most singular and extraordinary wize has been brought to this clity from the weatern part of this atate. The interior is hollowed out, and will comfortalily accominolate some forty or fifty parsonm It ia splendidly furnished as a sitting-room, and containa overy article of clegance and urefulnese. It has a handsome piano, aofia, glasses, and mirrora, of fit and beconing stylo, and is decorated with pietures and fancy articles," The reader is not to class this arcount with the many incredible trans-Atlantic stories which are imported into this country. We have no reason to dould the fact; hut it acems quite clear that the apartmenta must have leen hollowed out of the tree turned leugthwnys, ite diameter affording sufficient height for them.

There are still sume tress of a very remarkable alze or age which remain to the described, but we can only briefly notice the most celelipated of them. In the Garden of Oliven it Jerusalen', there are now exiating cight olives, which can lee proved by hiatorical documente to have existed anterior to the taking of Jerusulem by the Turke, and which, consequently, miset be at least 800 yrars old. A writer in the "North American Review" romarka, that the largeat ouk, and indeed the largeat tree he has seen in thut country, is an oak about twenty-seven feet in circumference at the amallent part. Its age he computes at not less than 500 years, so that it muat have been a majratic tree at the time when Columbua discovored the Western World. We wish he had told us its girth immedintely nobove the base lut it is quite clear that thia oak must be a atupendous organic fabric.

In 1804, Decandolle anw at Gigean, near Montpelier, in Frunce, an ivy, the trunk of which near the buee was six feet round, and whose iminensity he saya, wan truly atonishing. Another ivy. only forty-five yeara old, was only seven and a half inches round; so, taking it as a general type, the apecimen at Gigean. in the year 1804, ought to have heen of the age of 435 ycers. We have nowhere scen mentioned an ivy of such colossal

Amentions. A writer in the "North American Review" montions wild grape-vinea of enormous size. He says that, while in the eastern states, and, we may ardd. in Europe, it "rarely grows larger than a stout walkingexick, in our weatern atatea it sometimes surpnasen in diameter the bsly of a fuil-grown man. Thia fact we have verified by netual ineasurement."
England nt one period porsessed many noble and remarkalile osk-trees, the romaina of which are in some inatances still to be seen, while in othera they are only remembered by tradition. Close by the gate of tho Water Walk, at Magdalua College, in Oxford, there grow un oak, which perhaps atood there a snpling when Alferl the Great founded the university ; for thin period only inchudes a space of nino hundred years, which ia no great age for an oak. This tree, however, ean almost proluce historical evidence for the age assigned \$t. About five hundred years efter the time of Alfred. Willimn of Wainfleet expressly ondered his college to be founded near the Great Oak; "and an oak," says Gilpin, "could not, I think, be lesa than five hundred years of age to merit that title, together with the honour of fixing the site of n college." When the maguificence of Cardinal Wolsey erected the handsone tower which is so ornamental to Magdalen's, this tree might probably be in the meridian of its glory, or rather, perhaps, it had attuined a green old age. At a subsequent era, in Charles II's time, thia fomed tree was much injured when the present walks were hid out. Its roots were disturbed, and from that period it declined Gast, and beenme reduced by degrees to little more than a mere trunk. But the faithful recorda of history have handed down its ancient dimensions. Through n apace of sixteen yaris on every aide from its trunk, it once tlurg its boughs, and under its magnificent pavition ould have been bleltered with ease three thousand men, theugh, in its decayed atate, it could for many years do little mare than shelter same luckless individual whom the driving shower had overtaken in his ovenirg walk. In the summer of 1798 , this magnifieent ruin iell to the ground, alarming the college with its ruahing sound. It then appeared how precariously it had atood for many years. Its grand tap-ront was deenyed, and it had held of the earth only by twe or three roots, of which none was more than a couple of inches in diameter. From a part of its ruina a chair has leen tande for the president of the college, which will long preserve its memory.

Near Worksop grew an oak, which, in respect both to its own dignity and that of its aituntion, deserves honourable mention. In point of grandeur, few trees equalled it. It overspread a space of nincty feet from the extremities of its opponite bough. These dimensions will produce an area capable, on mathematical calculation, of covering a squadron of two hundred and thirty-five herse. The dignity of its atation was equal to the dignity of the tree itself. It stood on a point where Yorkshire, Nottinghamshire, and Derhyshire, unite, and apread its shade "ur a portion of each. From the honourable station of thua fixing the boundaries of three large counties, it was equally respected through the domains of them all, and was known far and wide by the honourable diatinction of the Shire Oak, by which appellation it was marked among cities, towna, and rivers, in all the larger maps of Engtand.

In a glale in Hainlault Foreat, in E:aner, atout a mile Arom Barking vide, stands an nalk, which hax leen known through many centuries by the name of Fairlop. The trulition of the country traees it half way up the Chrisciun era. It is ntill a molle tree, though it has now suffered greatly from the depredationa of time. Ahout a yard from the ground. where ite rough fluted stem is thirty-six five in circumference, it dividea into eleven vant anna,
yet not in the horizontal manner of an oak, bnt ratheat that of a beech. Beneuth its shade, which avemprend nn aren of three hundred feet in circuit, an annual fain was long held on the 2d of July, and no booth mas and
fered to be erected heyond the extent of its boughe fered to be erected heyond the extent of its bougha
Not fir from Blandford, in Norsetshire, once slood, tree, which five or six centuriea ago was probatly in in muturity, and known by the name of Damory's Ouk At the ground ita circuinference was sixty-eight feet, zna aeventeen feet above the ground its diameter was foun yards. As thia vast trunk decuyed, it hecaine hollon, forming a cavity, which waa fifteen feet wide and serem, teen feet high, capalle of holding twenty men. I'ruing the civil wass, ar. . till after the Reatoration, this cave mas regularly inhabited by an old man, who sold alo in in In the violent storm in the year 1703, it suffered greatls, many of its noblest limbs having been torn from it it
the year 1765 , thia once magnificent production of natum was cut down and sold for fire-weod.

Queen Elizaticth has in more than one or two to stances communicated her name to oak-trees of great rixe in England. Gilpin mentions one of those oaks which grew at Heveniugham in Suffolk, of great dimensiong but in his time creatly decayed. In Elizabeth's time in was hollow, and from this circumstance the tree deires the bonour of being handed down to posterity. That princess, who, from her enrliest age, loved masculim amusements, used often, it is said, in her youth, to hite her ntand in this tree, and sloot the deer as they pased and hence it acquired the name of Elizabeth's Oak. sit Thomas Dick Lauder, in his notes to Gilpin, meations onother of these oaks of Queen Elizabeth, at Hunting field, also in the county of Suffilk, measuring thinty-foun fect in girth at tive feet from the ground, and which, slas in the days of yore, afforded a atation for the princess in the sporta of the field. "Huntingfield," says Sir Than mas, "was, for a considernhle peried after the Nemman conquest, the estate and residence of an eminent fanily of that uame. It afterwards descended to the De h Poles, Earls of Suffolk, and, in the time of Queen Eliza heth, was the property of Itenry Lord Ilunsdon. Quen Elizabeth ia anid to have leen entertained at the ond mansion by Lord Hungdon,' and to have enjoyed tho pleasures of the chase, in rural majesty. The approact to the heuse was over an arm of the river Blitle, which watera the park, and then through three great squan courts. A gallery was carried along the whole length of the building, aud, opening upon a balcony over the parch, gave in air of grandeur and variety to the front. The great hall was huilt round six straight massy oak, which originally upheld the roof, as they grew; and upon these the forentera and yeomen of the guard used to hang theit nets, cros-bows, hunting-poles, and other inplemente of the chase. I'his gives a most curious pieture of them inantic notions of these ollen times. In later years, the roots being decayed, the shafts were sawn off at the bottom. and the roof was supported either by inequiu loga of wond or by masonry ; and part of the long git lery, where the queen and her attendants used to diret themselvea, was converted into a cheese chauller. Elish beth is said to have been much pleased with the retire ment of this park, filled with tall and massy timber trean lut pnrticularly with the oak, which ever aflerwardo bon the appellation of the Queen's Onk. It stood nbuut two lowshots from the old romartie hall; and tradition in rorda that Elizabeth shot a buck, with her own hand, frow this tree. The upper part of the main atetn of the tran is now considerably shortened thy age and accilenks. Thw limbs, however, are lold and picturesque ; and it sill carries many boughe, mad enough of foliage to censtiun a consideralle hrad. The truak thickens as it rise, n that, at seven feet from the ground, it measures alow thirty-three feet in circumference. Anether oak, aulled
ω Dute's Wal A the ground, th no hundred an dmong the menta in Englas te oax in the I the anmw of S William Rufua, your 1100 . Th inge proportion elghteenth centu wss in all likeli vil of years eml tory of the cour ill that of Georg andent tree at le cradicated, and, monumental ator Delaware, with a
Tha Skelton (ben connected sill arvives, am Shrewshury, at fiom that whict was fought the fo belween Henry I Harty Percy, sor naned Hotapur, It is recorded by this celebrated W the Skelton Oak which hos been ti transaction in wh now hollow in it people. It divid which have been cumference, at a otherwise propuit
Scotland, thous one time possesse large trees of va hawthoms, \&c., \& the history of the burgh, in his ca mentions several in Annandale, m ffleen feet girth, the same size, stu whore the level o parish of Strathb braches of whic fiteen feet in gi aak in the Mary in Haddingtonsh sures about fiftee about fourteen. on the estate of wall atraight osk in eighteen feet al eleven feet six is upering graduall, And the Kepping nd which is mu tmenty-one lieet a into two tranclie sutiuches, and fo high, and covers These two trees great forcist of J the midule of II in 1786, eightee mankable for its but none of tl Hallace 's Oaks, $V_{\text {al. }} I_{\text {I-id }}$ which oversprad uit, an annual fain no booth was aut of its bougha, shire, once alood 1 was probahly in its of Damory's Onk ixty-eight feet, and diameter was fort it became bollow, et wide and serem nty men. lyurag ation, this cave wa who sold ale in in , it suffered grealls, n torn from it. in roduction of natum
an one or two is k-trees of grest sima f those oaks which § great dimensione Elizabeth's time i ce the tree derine 10 pestcrity. They c, loved masculino her youth, to take leer as they passei, dizaleth's Ouk. sit to Gilpin, meationa zabeth, at Hunting reusuring thirtyfoun ind, and which, alsa, for the princess in ield," says Sir Tho 1 after the Norman f an eminent famity aded to the De in ime of Queen Elim d Ilunsion. Qucen ertained at the old , have unjoyed tha sty. The approach river Blithe, which three great square the whole length of lcony over the porch, to the frout. The at massy oakn, whid ew ; and upon thee d used to hang their other implementer of us pieture of the - In later years, be pre nawn off at the 1 either by inegula part of the long gat dants used to diren rese chaunker. Elizs ased with the retire 1 nuassy timber treas ever afterwarda boon It stood about twe 11; and tradition m h her own hand, frow rain atem of the tre - ond accilente. The resque; and it sill - foliage to constitum iickens as it rises, m d , it messures about Anuther oak, culled
${ }^{4}$ Duke's Walking-Stick, at the same place, is in girth a the ground, twenty-une feet, end rises to the height of mop hundred and eleven feet from the ground.
dmong the trees deriving celebrity from historical weats an England, one of the most conaiderslle note was the oak in the New Forest in Hampshire, sgainst which the arrow of Sir Walter 'T'yrrel glanced, which killed William Rufus, mon of Willisin the Conqueror, in the weat 1100 . This osk-tree, which was of exceedingly farge proportions, survived till about the middle of the elghteenth century, at which period of its finsl decay, it was in all likelihood nine hundred years old-an juterwa of years embracing all that had occurred in the history of the country from the reign of Alfred the Great dill that of Gearge III. This exceedingly interesting and ancient tree at length going to utter dec ay, its stuinp was radicated, and, to preserve the memory of its site, a monumental stone was erected upon it by the late Lord Delaware, with sppropriate inscriptions.
The Skelton Ook is another of those trees which have been connected with historical transactiona. This oak sill survives, and stands sbout a mile and a half from Shrewsbury, st the spot where the Pool road diverges from that which leads to Owestry. Near this place wa fought the famous battle, on the 21st of June, 1403, tetween Henry IV., king of England, and th's forces of Hurry Percy, son of the Earl of Northumberlgnd, surnamed Hotspur, along with those of Owen Glendower. It is recorded by tradition that, prior to the engagement, this celebrated Welsh hero mounted the tree, now called we Skelton Oak to make his obeervations. The tree, which has been thus in some degree associated with the transaction in which took place the death of Hotspur, is now hollow in its trunk, and can contain about a dozen people. It divides into two enormous limbs, both of which have been fractured. It is thirty-seven feet in eit. cumference, at a foot and a half from the ground, and is otherwise propotionally large.
Scotland, though by no mesns a woody country, at use time possessed, and indeed still possesses. many fine large trees of various species, as osks, elms, yews, firs, hawthorns, \&cc, some of which have been celebrated in the history of the country. Professor Walker of Edinburgh, in his catulogue of remsarkable Scottish trees, mentions seviral very fine oaks. An osk at Lochwood, in Annandale, messured at six feet above the root, was fitees feet girth, among s number of others of nearly the same size, standing not less than nine hundred feet sbore the level of the sea. An oak at Blarquosh, in the prish of Strathblane, in Stirlingabire, the spresd of the branches of which was uinety feet in diameter, measures fiteen feet in girth at four feet from the ground. An akk in the Marquis of 'Tweeddale's grounds, at Yester, in Haddingtonshire, at nne foot from the ground, meaoures about fifteen feet five inches; and at six feet, it is about fourteen. The tree cslled the King of the Wood, on the estate of Fernyhirst, near Jedburgh, is a besutiful ull atraight oak of eighty feet in height. The girth of it Weighteen feet sbove the roots; and at fifteen feet, it is elaven feet six inches in cireumference; and it gocs on upering gradually for nearly three-fourthe of its height. Aud the Kepping or Trysting 'Tree, which growe near it, and which is much more picturesque in form, measures twenty-one tiet above the roota; it speedily divides itself into twe hrunches, which measure respectively eleven fret wainches, snd fourteen tieet. It is upwards of severwy feet high, and covers an area of ninety-two feet in diameter. These two trees sre confidered to be remanats of the great forest of Jedwood. An oak which stands near the nuiddle of Inch Marin, in I anch Lomoml, measured, In 1786, eighteen feet one inch in girth. This tree is mamkeble for its fine expanded head.
But none of these trees have sttained the celebrity of Wallsev's Oaks, two trees of conmiderable antiquity, one Val. I-TS

In Stirlingahire, the other in Renfrewshire. The former which la now completely gone, in 1771 measured twentytwo feet in circumference in the trunk, and grow upon a little knoll in Turwood. From surrounding veatiges, is is helieved that this oak nriginelly mingled in the scene of Druidic worship, at a far remote period of our history. But ita celebrity depended on events of a much lster date. When that illustrious hero, Willinm Wallace, roused the spirit of the Scoteh nation to oppose the tyranny of Edr ward, he often chose the solitude of the Torwood as a place of rendezvous for his army. Here lac concealed his numbers and his designs, sallying out auddenly on the enemy's garrisona, and retreating as suddenly when he feared to be overpowered. While his srmy loy in those woods, the oak which we are now commemorating was commonly his head-quarters. Here, it is said, the hern generally slept, the hollow trunk being capacious enough to afford shelter not only to himself but several of his asoociates. 'I'his tree was thence afterwards known as Wallace's (lak. 'Tnere is another Wallace'a Oak at Elderslie, in Renfrewshire, near the place where Wallace was lorn. It is a very noblo tree, tweaty-one feet in circumference at the grournal. It is sixty-seven feet high, and its lranches extend forty-five feet east, thirty-six west, thirty south, and twenty-five north, covering sltogether nineteen English poles of ground. Trudition relates that W allace and n large party of his followers hid themselves from the Euglish among the branches of this tree, which was then in full leaf. It ia a custom in Scotland to indent smsll portions of the wood of this famed tree in snuff-boxes, along with perhaps minute portions of a tree said to be planted by Queen Mary at Ilolyrood, and bately removed-of another tree which the saine queen sat under near Crookston, while witnessing the battle of Langside-of the rafters of \therefore Illoway Kirk, celebrsted by Burns-with pieces of varions other trees and timbers either brought into notice in history, or some way connected with the populas liternture and traditions of the country.

It is a very remarkable fact, that the trunks of large oak-trees are frequently dug nut of the ground in Scotland, both in the mainland and islands, at places where there are now not only no trees of an ordinary size, but where, in the present day, trees will not grow. There is no way of sccounting for this, but by supposing that the climate has very much changed aince the period when all was one universal foreat. Some veny large massex of osk (says Sir Thomaa Dick Lauder, in his notes to Gilpin's work) were brought up by the dredging-machine employed in decpening the line of the Caledorian Canal, in Looch Dochfour, from under sixteen feet of gravel which lay at the bottom of make. One of these fragments measured thirty feet round; and though it manifestly nppeared to be ondy a small portion of the original tree, it was calculated do eontain about two hundred and twenty cubic feet. Pt was black as ebony, and perfenily fresh nid harl, Although there are fine thriving oaks in Scotland at this moment, yet few of them appnosch the dimensions of these frugments of the older time.

The best elin we havo recorded as of Scotish growth, was that in the parish of Roxhurgh, in Toviotdale, called ther 'Prysting-Tree, which was measured in the year 1796, and found to be thirty feet in girth. The ruins of thia noble tree still nemain at the Friars, near the old castle of Roxburgh. The most phasible tradition regarding the origin of the name of the 'Trysting-I'ree is, that the lairds of Cexsfond and Feruyhirst, with a number of Scotish gentry, assembled there in 1547, to meet .he Probertor Senvenset, during his rough courtslip of the young Queen Mary, and to sivear homage to the King of England. There can be no doubt that he wan there: and this spot, which was near the old priony, was cettainly very likely place for such on assembluges 'The Trysting-Tree was also famous, in later cimes, wa
the acene of much innocent pleapantry. After the Re formation, and until the present house of Fleurs was built, in 1718, the family of Roxburgh made an occasional reaidence of the remaina of the roligions house at Friara, which was then celled East Roxburgh. The ganlens belonging to it were kept up until the year 1780, when old Coles, who was butler to Duke John, ploughed them up, and destroyed mame beautiful vestiges of antiyulty. In these gardens there was a raised walk, called the Linver's Walk, between two rows of old elmp, forming a vista, which ternninated with the Tryating.Tree, whither the beaus and belles of these old timea used to resort, to enjoy themselves, on a summer evening, and to eat the fruit, which was slways sold during the absence of the family. Upon these occasions, the gentlemen were often mado to walk blindfolded in the alley; and if any one lailed to grope hia way from one end of it to the other, without diverging from tho grasa into either border, he was immedintely fined in a treat of fruit. What a picture would Watteau have made of ao admirabla a subject! Many a courtship was brought to a happy lermination at this antiquated Vauxhall.
At Newbstle Abbey, the seat of the Marquis of Lothian, a few miles south from Edinburgh, there are some remarkably fine large thees, most probably pinnted by the monks prior to the Reformation. "Professor Walker measured a beech at thia place in 1789; its trunk, where thickest, was scventeen feet in girth, and the span of the branches was eighty-nine feet. He thinks that it must have been planted between 1540 and 1500. It was blown down a ahort time before the year 1809. It contained upwarda of one thouaand measur-
ahle feet of timber (twonty loode, or twenty-five tema) and it is with reason reckoned among the largus leceches that have ever grown in Bcotland. A heech Taymouth, of a like size, and seemingly coeval matb thin, wan blown down when it had reached above an teen feet in girth. The large beech at Ormiston Hil in Haddingtonahire, the bole of whlch we remember have seen scooped nrtificinlly out into a shelecthoone waa measured on the $10 t_{1}$ of May, 1762, and found to be eighteen fect ten inches. We believe it was quait entire when it was destroyed by a hlyh wind. A liry beech near Oxenford Castle, in Edinhurghabire, pu measured on the 6th of June, 1763. At the heighto three feet from the ground, it was nineteen feet on incles. This fine tree was then decaying. Profesi Walker bnys that the leech wne not copiously phanes in Scotland till a little before the Revolution; and tu trees planted nbout that period do not form, in man places, considerablo timler, as at Inverary and othy places. But the four trees last mentioned, which sp pear to be nearly contemporary, are of a much mon remote era. They scom to have heen planted eingl and merely as curious foreign trees, in the gardens is some eminent persons. From their dimensions and manner of growth, they mny be presumed, at leasit to have bech planted between 1540 and 1560, so that the may yow be estimated nt hetween two hundred and forty and two hundred and aixty years old. From the state of the Ormiston Hall nad. Newhotle trees, it my be concluded that the beech, if it meets with no accident will grow with mound timber for at least two hunded and fifty ycara."

THE HORSE.

Tha Horsf, well known an one of the most beautiful and useful of animals, in classified, according to the arrangements of zoologists, in the order Pachydermata, of which it constitutes a fanily-the Equida, along with the zebra, the ass, and severtil other animals. The l orse, as a disnnet apeciea, differs from other members
f the genua, not only in a few particulars of plysical structure, but in its superior strength, spirit, and tractability. Of the absolutely natural character of the horse, however, nankind posmess no certain account; for, in all the instances in which the auimal is found In a wild state, the race appears to have been generally derived from a domeaticated stock. The form and general qualifications of the animal are of a high order, and pecuiarly suaceptible of cultivation by art. The sensea of mell and sight are remarkably acute, and the clearnew of perce pion, excellence of hemory, patient en-
durance, and gentleness, are not excelicd in any oblba of the lower aniunals. 'The horse is altogether herivo rous, for which the structure of his tefth and lips i adapted; but he does not rumimate, and has only out atomach. Ilis native country is believed to have been Tartary, whence the species has spread over the rookd and separated into different varictics.

variettes of horses.

Horses exist in numerone varietics, distinguishbih by aize, strength, colour, and other qualifications, the result most likely of peculiarities of climate, food, ud hobits. The following is a lorief notice of the leading varieties in which the animal is found :-

Horses in a State of Nabure.
Horses are found in a state of nature, living as wid nnimals, in various parts of Ainerica, Asia, and Afia In the vast plains of South America, immense tmop of wild'horses are to be found, which have all sprung from emancipated individuals taken to that country the Spaniards. 'Ihe geograplical rnage of these heme extends from the shores of laa Plata to Patagonia. They have increared in wuch sotonishing rapidity, that the are to be met with in tronjs of many thousands. Ner rally gentlo in disposition, these wild horses neser attuk other nuimals, but nlways act upon the defensive. Thein wide pastures antiefy their appetites, and, when the fod of one district is exhausted, they have only to shift then stations to places where it is more abundant. 'they me weldom to be taken by surprise; but, if attacked, the w
cilaut rarely unite in defen eal their enen annes usually Ons or more 0 watch while th of approaching arighing : upo either reconno pess of the wi mallion who is
In the dese Russin, there a bave sprung f acks fraquen crossing them sid to be the hound in the are the descen usod at the sie the 'Turks by waut of forage belonging to I'hey are now ane manner have remained the river, are 0 their food; the swampy that fiver, the who chan a moras mountain distr from which the found in the p the same sour the Clkraine.
In South A horser being e or in what the enclosura of y close, that $n \mathrm{~h}$ In these, howe fined, but are natives, howe door of their h which is fed o additional hor bitant of the and fetches on preceding day are grazing a bucked for the been once use fed with maize The las\%o is power in the to use it from done, sad he cient strength gives the follo
"The Iasso of the United plaited thong, ter, snd forty plaited like grease. It \mathbf{h} inch and a hal passed, and th or native peon be uses the las waldle-çirth; band, leaving in a coil, and He then swin
or twenty-five tomi) among the largey cotland. A hesch emingly coeval whid d reached above ain. hich we remember to into a shelter-hoom ay, 1762, sand foond - helieve it was quite high wind. A large Edinhurghshire, We
3. At the heightof as nincteen feet of decnying. Profers not copiously planied Revolution; and the not form, in mant Inverary and ohtey nentioned, which up are of a much mon been planted $\dot{\text { ang ly }}$, ar, in the gandens of heir dimensions and presumed, it leas, bo id 1560 , so that the on two hunired and cars old. From be ewhottle trees, it may cets with no sciden at least two humdided
excelled in any otber is sltogether herbio his teeth and lips i te, and has only out believed to have beea pread over the world es.
reses.
ieties, distinguishowh er qualifications, the of climate, food, ud notice of the leading and :-

『ature

nature, living at mid rien, Asia, mid Afria rica, immense trop hich have all sprum n to that country rauge of these herth in to l'atagonia. They us mpiulity, that they by thousands. Xat Id horses, never athed 1 the definsive. 'Therf en, and, when the food avo only to shiff then abundant. 'I'bey en t_{1} if attacked, the u
calsut rarely coner off victorious, for the whole troop anlta indefence of their comradea, and frequently either var their enemy to preces or kick him to death. Wild anrees usually retire to tho confines of a forest to repose. Onv or more of their number are olways awake to keep watch while the rest are asleep, and to warn thoir fellow of approaching danger, which is done by loud snorting or arighing; upon this signal they start to their feet, and ether reconnoitre the enemy, or fly oft with the swiftness of the wind, followed by the, ritinel, sand by the utallion who is patriarch of the 'ue
In the desert tracts along the
of the Don, in Russia, there are numerous troops : . wild horses, which have sprugg from emancipated progenitors. The Cossacks frequently take these, and breed from them, by crossing them with their domesticsted horses, which are aid to be thereby greatly improved. Pallas says they thound in the vicinity of the Palus Mseotis. These herds are the descendants of the Russian horsea which were usvel at the siege of Azoph in 1696, when taken from the 'Turks by Peter the Great, who was compelled, from wnint of forsge, to set at liberty nearly the wholo horses belonging to his cavalry, to seek food for themselves. l'hoy are now quite wild, and associate in troops in tho atne manner as other wild horses. Those herds which have remained close to the alluvial and fertile banks of the river, are of a largo size, owing to the rankness of their food; the ground in these situations is so extreraely swampy that no solid edifice can be erected nenr the river, the whole surrounding country being little better than a morass. The herds which inlabit the higher mountain tistricts have all the appearance of the horses from which they sprung. It is supposed that the troops found in the plains of Great Tartary are descended from the same source as those of the banks of the Don and tho Ukraine.
In South America there are no regular stables, the horess being either kept in pastures, which are fenced, or in what they call rorrals, which consist of a circular enclusure of rough posts, driven into the ground so close, that a horse cannot pass through between them. In these, however, the mares and foala are never confined, but are allowed to graze about at frecdom. The natives, however, uaually keep one horse tied at the dow of their hut, to be reqdy in case of immediate need. which is fed on a scunty meal of maize st night. If an additional horse is wsuted, the gaucho (or mative inhabitant of the plains) gocs to the corral with his lasso, and fetches one which may linve been only subdued the preceding day; or he will go to the plain where they sre grazing at freedom, and bring one which he has backed for the first time; and when these horses have been once used, they are either put into the corral and fed with maize, or returned to the plain to feed at liberty. The lasso is a very simple contrivance, but of great power in the hands of the gaueho, who is nceustomed to use it from his youngest years, or at least to see it done, and he puts it in practice as soon os he has sufficient strength to use it. Miers, it his Travels in Chili, gives the following account of it :-
"The lano is a missile weapon, used by every native of the United Provinces and Chili. It is a very atrong plaited thong, of equal thiekness, half an inch in dianeter, and forty feet long, made of stripes of green hide, plated like a whip-thong, and rendered supple by grease. It has at one end an iron ring, about an inch and a half in diameter, through which the thong is passed, and this forms a running noose. The gaucho, or native peon, is generally mounted on horseback when be uses the lasso; one end of the thong is athixed to his addle-girth ; the remainder he coils carelully in his left hand, learing nbout twel ve feet helonging to the noose end in a coil, and a half of which he holds in his right hand. He then awings this long noose horizontally round his
head, the weight of the iron ring at the ond of the noose assisting in giving to it, hy a continued circulas motion, a sufficient force to project it the whole longth of the line."

It is sometimes necessary to break in a number of horses at onee : in this event, they drive a whole herd of wild horses into the corral at one time. This acene was witnessed by Micrs, who thus describes it:-w I'ho corral was quite full of horses, most of which weru young ones about two or three yeara old. The copilar (ehief gaucho), mounted on a atrong steady horse, rode into the corrsl, and threw his lasso over the neck of a young horse, and dragged him to the gato. For some time ho was very unwilling to leave his comrades; but the moment he was forced out of the corrsl, hia first idea wss to gallop away ; however, a tinnely jerk of the lasso checked him in the most effectusl way. The peons now ran after him on foot, and threw a lasso over his fore-legs just above tho fetlock, and, twitching it, they pulled his legs from under him so suddenly, that I really thought the fall he got had killed him. In one instant a gaucho was seated on his head, and with his long knife, and in a few seconds, cut off the whole of the horse's mane, while another cut the hair from the end of his tail. This, they told ino, was a mark that the horse land been onco mounted. 'They then put a piece of hide into his mouth, to serve for a bit, and a atrong hide halter on his head. Tho gaucho who was to mount arranged his spurs, which were unusually long and sharp, and while two men held the horse by his ears, bo put on the saddle, which he girthed extremely tight. He then caught hold of the horse's car, and in an instant vaulted into the saddle, upon which the men who held the horse by the halter threw the end to the rider, and from that moment no one seemed to take any further notice of him. The horse instantly began to jump in a manner which made it very difficult for the rider to keep his seat, and quite different from the kick or plunge of our English horse : however, the gaucho's spurs soon set him going, and off he galloped, doing every thing in his power to throw his rider.
"Another horse was inmediately brought from the corral: and so quick was the operation, that twelve ganchos were mounted in a space which I think hardly exceeded an hour. It was wonderful to see the different manner in which different horsea behaved. Some would actually screnm while the gauchos wero girthing the saddle upon their baeks; some would instantly lio down and roll upon it, while some would atand without being held, their legs stiff, and in unnatural positions; their necks half-bent towards their tails, and looking vicious and obstinato; and I could not help thinking that I would not have inounted one of those for any reward that could be offered me, for they were invariably tho most diflicult to subdue.
"It was now curious to look around and see the gauchoa on the horizon, in different directions, trying to bring their horses back to the corral, which is the most difficult part of their work; for the poor creatures had been so scared thero, that they were unwilling to return to tho place. It was amusing to see the antics of the horses: they were jumping and dancing in different ways, while the right arm of the gauchos was seen flogging them. At last they brought the horsea back, apparently subdued and broken in. The saddles and bridles were taken off, and the young horses trotted off towarde the corral, neighing to one another."

There is a remarkable difference in the dispositions of the Asiatic and South American wild horsug: those of the former country can nover be properly tamed unlese trained very young; if taken when adults, they frequently break out into violent fits of rage in ofter life, exhibiting every mark of natural wildness; while thowe of America can bo brought to perfect obedience, and
aven rendered momewhat docile, within a fow weeka, nay, eometimen daya. It would be difficult to necount for this opposition of temper, unlees we can suppose that it is mfluenced by climate.

The Arabian Horse.

The Arabian Horse is considered to occupy the highout rank among the numerous cultivatod varietica, and Imbodies that qualification in its purest condition, known in England by the term thorough-bred. By the wandering tribes of Arabia, he has been skilfully subdued and domesticated, and exhibits, with grast beauty of figure, apirit, docility, and intelligence. The pure Arahians are comewhat amaller than our ruce-horses. acldom exceedlog fourteen hauds two inchea in height. Their heada are very benutful, clean, and wide between the jaws; the forebend in broad and square; the face flat; the muzzle short and fine; the eyes prominent and brilliant; the eare amall and handsome; the noatrils large and open; the akin of the head thin, through which may be diftinctly traced the whole veina of the head. The body may, as a whole, be considered too light, and the breast rather narrow ; but behind the arms, the cheat gencrally awella out greatly, leaving imple room for the lungs to play. The shoulder is superior to that of any other breed; the scapule, or shoulder-blades, incline back wards, nearly in an angle of 45 degrees; the withers are high and arched; the neck benutifully curved, and the mane and tail long, thin, and flowing; the legs are fine, thin, and wiry, with the pasterns placed somewhat oblique, which has led eome to suppose that the strength was thereby leasened, which is by no meana the case; the bone ia of uncommon density, and the prominent muscles of the fore-arm and thigh prove that the Arabian in fully equal to all that has been said of his physical powern.

The Arabe of the desert have made the breeding of horsee their sole occupation for agea bygoue ; and, from their strict attention to certain rules, they may he justly reganded arthe first breedere in the world. They take infinito trouble in grooming their steeds, and are extremoly regular in their hours of feeding them morning and evening. They get but little drink, and that ia supplied to them two or three times a day; they concsive that much wator not only dentroys their shape, but also affects their treathing. In apring they are paatured on dry aromatic herbage; and during the reat of the year they are fed on barley, with a mall quantity of straw; ${ }^{\bullet}$ and they are the hardient horses in the world. The Arab trains his horse by kindness, and never on any occasion atrikes it; the consequence is, that the animal shows a degree of affection and tractubility in which most Britiah horsee are quite deficient. The Arab horso is employed only for riding, and possereces great fleetness.

The following interesting account of the hardihood of the Arabian ia givea by M. Chateaubrinnd, in his Travela in Greece-u They are never put under shelter, but left exponed to the mont intemee beat of the sun, tied hy all four legs to wakes driven in the grownd, so that they cannot atir. The eaddlo is mow taken from their backs. They frequently drink but ance, and have only one feed of barley in twenty-four hourn, This rigid treatment, wo far from wenring them out, gives them sobriety and apeed. I have often admired an Arabian steed thua tied down to the burning sande, his hnir loosely flowing, his head iasred between bia legn to find a litte ahade, and stealing with hie widd cye an oblique glance of his masver. Relesso his lege from the ahackles, spring upon his back, and he will ' paw in the valley, he will rejoice in tis atengeth, be will swallow the ground in the fiercunens of his rage;' and you recognine the original picture of Job."
The Arabe are exceedingly particular regarding the paligres if their horwes; and they bave amongst them a
breed which they declare has deacended from a hone of King Solomon. It most not, however, be suppowed than all the horses of that country are of the finer kinine; fix the Araba have three diatinct breeds: the two luferian kinds, they way, were intmoluced from Indin and Greeos The superier kinds they call noblen; nnd they ue never sold without n pedigree, which is more scrupuloualy
tended to than with human beings in Europe.

Britibh Race-ttorse.

The British Race-Horse is n cultivated breed, originally aprung from the Arabian, and to which is traced thin quality of being thorough-bred. The skins of meatorten are telicate, with short hair, usually tending to the bright brown or bay generally characteristic of the horsee of the East, and sometimes the gray, prevalent likewise amongt the Arabs and Barbs. I'hey are frequently cheotruy which may be looked upon as a mixture of the don ot tan colour of some of the races of Northern Europe will the finer brown or bay; and sometimes, though rery rarely, they are of the bright black connmon to the great horses of the plains of Germany. They are of medium height, rarely exceeding fifteen handa. Their form is that which an almoet excluaive altention to the property of apeed has tended to produce. They have the broad forehcad, the brilliant eycs, the delicute muzzle, the ex. panded nostrils, and the widn throat, characteristic of their eastern progenitors. Their light body is comparr tively long, and suited to the extended stride. Thei cheat is deep, so an to give due space to the lung, but comparatively narrow, preventing the fora extremitien from being over-loaded, and the limbs from being throma too far asunder in the gallop. Their shoulder ie obligee, to give freedom of motion to tho humerus, and theit haunch is long and deep, beyond that of any other known race of herses, indicating the length of those bones of the hinder extremities on which the power of progremion essentially dependa. Their limba are long and musculas to the knee and hock, and below, tendinous and delicate; and their pasterns being long and oblique, give elasticity to the limhs.
The pedigree of race-horses is alwnys a matter of consequence to the breeder and purchaser of these animalk, and is preserved with the same degree of care as the gencalogy of many noble family. By jockeya aed others, therefore, a list or stud-book is kept of the sima and dams of their horses, which can be exhibited if no. quired. The pedigree of many fine racers of the present day is tmed through stud-books to the Datey Arakina, a horee purchased by a Mr. Darley at Aleppo, from which it was imported to England. One of its immediate deo acendanta was the famous Flying Childers, bred by Mr. Childen of Carr-House. This beautiful facer in reputed to have been the fleetest runner ever knowa in England, or perhaps in the world. On one occasion, he ran round the course in Newmarket, which mesores 3 milen, 6 furiongs, and 93 yards, in 6 minutca and 40 meconds.

Horse-racing, which, in the opinion of competent judges, is unnecessary, an far as keeping up servicatho breeds of horses is concerned, is usually spoken oies be turf, from ita being performed on atretches of turfagmond at Newmarket, Epeom, and various other places. Among an ille and in many instances a profigate clasp of $\mathrm{p} \cdot \mathrm{c}$ sona, this rport, as it is termed, affords scope for a mod extensive system of fraud, betting, gambling, and gc.enal disenluteness of behsviour; in a word, this cruel pastima may be described us a great canker lying at the not of society in England; and, countenanced by the high in rank, is at the present moment not the leaat effective of the many drage on mocial edvancemen!. The framen and conservatorn of the laws of the turf, are the memben of an aseociation called the Jockey Club, whoee prisipipl betting-rooms are at Newmarket, nind at the eatabliaimact
d Mr. Tutteren aclemen, genth efy of all ahade nees; and ther dyan to pay the gere. When w largely supported by the higher ch leged degeneracy neing, with all madered a disgryo
pide burbarism, slon prize-ighting, w doned.

The Hunter necoborse and bone; but chane characecter. The place to one of even the thoroug roas sportsmen. nok as an sad urength with fle pay be briefly ao fin and arched, and compact, the him over diffic outward. He is and exercise. T wark above thre ran, lie ought ce We cordially coin evelty of abusin aivable, and doe fully as his mas disding to yield until nature ia much oftener th binted hia distre and falteringly b than give up on whip and apur, the hunter may who 'tis mercifu yyptoms of ex drooping pace, and heayy bearin noise. The ine beating of the h ond the lunge ar anvulsive motio vi tent action to The man who p ulfer the punish ful Kinouredge.) The Charger ties of tbe hun which he would - rough ecintry.

The protar ki the hunter, poss the nature of the the breeder. 0 there may be sai spint and form, therefore the at ulnost ondefina celebratel for th wen so many of the lreeds have atse of the road which was at or F be oupponed tha te finer kinds; for : the two lufferion India and Greeco, and they ate never re acrupuloundy at Europe.
ed breed, originally hich is traced thy kina of race-horse pding to the bright of the horses of the ht likewise amongs equently cheatinus, ture of the dua of thern Europe wilh times, though very pinmon to the great hey are of medium da. Their form is ion to the property hey have tha broad ate muzzle, tbe ex. th, charactoriatic of t body is compart aded etride. Thein e to the lungs, but ne fora extremitiea from being thrown choulder is oblique, numerua, and their of any other known of those bones of ower of progression long and muscular linous and delicate; lique, give elasticity
nya a matter of coner of these snimala, gree of care as the By jockeys and ia kept of the घires be exhibited if n acers of the present he Dailey Arglian, Aleppo, from which f its immediate deChilders, bred by beautiful racer is ner ever known in On one occasion, be , which measores 3 6 minutes and 40
nion of competent ping up acricicablo lly epoken of is the tches of turfoground her places. Among nigate clasp of prscope for a mod mbling, and geteral 1, this cruel pastime ping at the root of ced by the high in the least effective of ient. Thr framen arf, are the members lub, whowe priacipal at the establicimeal
d Mr, Tatterval in London. At thewe plapes of resort, asklemen, gentlemen, turf-speculatora, sharpera, and jockypo of all shades meet to bet on the result of certain noes; and there, also, they attend on certain settling dyys to pay the losees and receive the gains of their wagetre Whan we find so open a aystem of gambling largely supported, and rendered in appearance rexpectable, byrgely the higher classea, need we feel surprised at the alleged degeneracy of the bulk of the lower orders 1 Horseneing, with all ita train of evila, may certainly be conadered a diagrace of the age; and, as one of the relics of barbariam, along with cock-fighting, bull-haiting, and prize-ighting, we should rejoice to see it for ever abandoned.

Hunters-Saddle-Iforses.

The Hunter is a combination of the thorough-bred noe-borse and balf-bred horsea of greater strength and bane; but changes are continually taking place in ita charecter. The older rece of hunters has been giving place to one of lighter form and higher breeling, and evee the thorough-bred horse is now employed by numerous aportsmen. In his inproved atate, the hunter may nak as a saddlc-horee of the first clasa, comlining arength with fleetness. The prime qualiites of a hunter may be briefly aummed up-head amall, neck thin, creat fim and arched, a light mouth, broad chest, body ahort and compact, the hocka well bent, power behind to push him over difficultiea, and broad well-made feet turned outward. He is prepared for hia dutiee by phyaic, air, and exercise. To do him justice, the hunter should not work above three daya a week; and, after a hard day's run, be ought certainly to have two or three daya of rest. We cordially coincida in the fallowing remarke on the creety of abusing this noble animal - " It is very conarivable, and does sometines happen, that, entering as fully as hia master into the aports of the day, the liorse diedains to yield to fatigue, and voluntarily presses on, until nature is exhausted, and he falla, and dies; but much oftener the poor animal has intelligibly enough binted his diatreas; unwilling to give in, yet painfully and falteringly holding on. The mercileas rider, rather than give up one hour's enjoyment, tortures him with whip and spur, until he dropa and expirea. Although the hunter may be unwilling to relinquish the chase, he who 'is merciful to his beast' will soon recognise the ajmptoms of axcessive and dangerous diatress. To the drooping pace, and ataggering gnit, and heaving fiank, and heavy bearing on hand, will be added a very peculiar acise. The inexperienised persson will fancy it to be the beating of the heart; but that has almost ceased to beat, und the lungs are becoming gorged with blood. It is the anvulsive rootion of the muscles of the belly, called into iv dent action to assist in the latorious office of breathing. TLu man who proceeda a single nule atter thia, ought to wifter the punishment he ia inflicting."- (Library of Ciseful Knoutledge.)
The Charger or Cavalry Horse partakes of the qualities of iba hunter-great strength and spirit, without which he would be unalile to bear the toil of warfare in - mugh ccintry.

The propar kind of Saddlo-Horse is only a variety of We hunter, prossessing less or noore bluod, according to the nature of the work required of linin, and the tuste of the breeder. Of the great varietice of saddle-horses, there may le said to be a chain of connection, as reapects spitit snd form, from the racer to the cart-horse; and therefore the station which any individual oecupice is atnost undcfinatile. 'The saddle-horses of England are celebratel for their lieauty and action; and nowhere are wen so mony of elegant forms as in Loudon. Latterly, the lreeds have lieen tending to greater lighteness, the axte of the roads not now requiring the a! ength of limb which was at one time necessary.

Cosch-Horses.

The better kind of Coach-Horses owe their origin to the Cleveland bay, and are principally lired in Yorkehire, Durham, and the southern districts of Northumberiand, and some few have been produced in Lincolnahire. The coach-horne is produced by a cross of the Cleveland mare with a three-fourth or thorough-bred home, whlch is ponsessed of sufficient aubstunce and height. The produee of thase is the coach-herse of the highest repute, and most likely to possess good action. 1fia points are advantageously plsced, with a deep and well-propurtioned body, strong and clean bone under the knee, and his feet open, sound, and tough. He possessea a fine knce sction, lifts his feet high, which gives an elegance to his pacea and action: he carries his head well, snd has a fine elevated crest. The full-sized conch-horse is, in fuct, only an overgrown hunter, too larga for that eport.

The carriage-horse, reduced to drewing stage-coachee, is generally used in a very disgraceful manner. Urged with a heavy draught to the height of his speed, and almost incessantly wrought, whipped unmercifully, and poorly groomed, his fate is often melancholy in the extreme. It ought to be recollected that, in proportion an the load or draught is increased, so is the animal's fower of speed lessened; and therefore to make him botl. draw a heavy weight, and run also, is to put him beyond his natural powers, and his muscular energy suffere accordingly. We shall aftervarda advert to tha principles which ought to regulate both draught and apeed.

The Hackney.

The term Harkney, in common use, is employed to denote a kind of horse fitted for general services, and is therefore understood to exclude tha horsee of the highest treeding, as the thorough-bred horse and hunter; and there is further associated with the idea of a hackney, nn animal of moderate aize, not exceeding fifteen hande, and possessing action, strength, and temper. Our present breed of hackneys have a considerable portion of racing blood in them, varying from a half to seven-eighths. The latter are too highly bred for the general purpose of a rosdster, as their lega and feet are rather tender; and their long paces and straight-kneed action are ill-adapted for the road, being more fitted for cantering and rumning than the trot, which is the distinguishing characteristic of a good hackney. Indeed, they ahould never be permitted to go at any other pace than a trot, which is undoubtedly much better adspted for the road than cantering.
Nothing is more essential in a hackney than sound atrong fore legs, and alan well-formed hind ones; his feet must he quite sound and free from corns, to which hardrididen horses are very liable; and he ought only to lift his fore legs moderately high. Some are of opinion that he cannot lift them too high, and conccive, while he is possessed of this quality, he never will come down. There is a medium, however, in this, as a horse that raises his fore legs too high in troting is always disagreeable in his action, which greatly shakea and fatigucs hia rider; losides, he batters his hoofa to pieees in a few years. The prineipal thing to he attended to, is the manner in which the hackney puta his feet to the ground; for if his tocs first touch the road, he ia sure to be a stumbler. The foot ahould come flat down on the whole sole at once, otherwise the horse ia not to be drpended upon in his trotting. A hackney should be particularly even-tempered, and not given to atarting. The thoroughbred hack ney ought to possess two qualitics, indispensatilo to the safety of the rider-he ahould never aly at any thing on the road, nud hia motion at a trot ahould be much more amooth than that of a half-bred herec.

The Cert-llorso.

The Curt-Horses of Great Britain are extrel rely variable in print of size as well ua in shape : differing in 3 c 2
atmost every coanty. One principal character, however, in waight, to give more physical force in the draught.「hey ahould not he above sixteen hands high, with a light, well-shaped head and neck, short pointed eara, with briak sparkling eyes; their chests should be full and deep, with large and atrong shoulders, but rather low in front than otherwise. The back ahould be atraight, and rather long, but not too mueh so, as thia alwaya impaira hia general atrength; the animal should atand wide on all his four legs, and considerably wider behind than before; he ought to have great pliability in tho knee-joints, and be able to bend them well, which assiat in producing a brisk and active step in walking, a quality of much consequence in a eart or wagon horsc. 'The height to be deaired in a draught-horse, however, will depend upon the purpose for which ho is to be employed.

In -the midland counties of England-Warivickshire, Derbyahire, Leicestershire, Lincolnshire, and Nottinghaminiro, there is a very large breed cslled the great carthorse. It was bred in tho lowland rich alle vial pastures of the plains of theso counties, from the Flemish and Dutch horses, with the larger English breed. Mr. Bakewell introduced horses, and also mares, from the Netherlands, and thus produced those fine animals with Belgie hlood, both on the side of the sire and dam.

Tho very large horaea of aeventeen hunda and upwards, are only useful for the purposes of brewers' drays, wagons, and the slop-carts of London. It is, however, doubted if they answer the better for their gigantic size; and all who have written on the sulject consider that they aro inferior in point of strength, on account of their lulk; for by the feeding which is required to increase their dimensions, little of muscular tibre is produced, the growth being principally in the cellular tissue nad fat; and tho additional quantity of food required to keep up their syatem must more than counterbalance any advantage to he reaped from their size. Latterly, considerable paina havo leen taken to insprove the qualities of ordinary cart-horses, among which wo include those required in agriculture. A breed called the Clydesdale is highly valucd, for either eart or plough. Animala of the Clydesdale breed reach to a large size, and are not unfrequently to be met with sixteen and a half haods high. These animala are atrong and hardy, but their heads are coarse, and they are rather flat on the sidea and hinder quarters. The usual colour of these horses ia gray or brown. This breed ia aupposed to have originated about one hundred and thirty years ago, between tho common Scotch mare and the Flandera horse.

Ponies.

A horse beneath thirteen hands is called a pony, hut thia definition is not very strictly attended to, and the same thing may be said of the galloway. The old Scottish galleways, which took their name from the district of Galloway, in the south-western extrenity of the country, are now nearly extinct. They were stout, compact anlmals, aure-footed, and of great endurance, and on these accounts invaluable in travelling over rugged and mountainoua districta. 'Ihe beauty and speed of the galloway were aupposed to have arisen from the breed having been the produce of the Spanish jronets that escoped from the wreck of the Spanish armada, and these, crossed with our Scotiish horses, gave rise to this estomed lired. But we apprehend they were famous at a date long prior to that event, as this district is known to have supplied Edward I, with great numbers of horses, This breed celdom exceeded fourteen hands in height: their colour was generally bright bay or brown, with black legs, small head and neck, and their lege peculiarly deep and clean. A compact stout-huilt pony, of from thirteen to touteen hands high, and possebsing some of the qualilications of the (ialloway, is called a cob, which is valuable as a steady saccr, at an easy rate.

The amall ponies of the Hhghlands :1 Sce tland and Shetland (usually ealled ahellies) may almost be termed wild animala; for they go at large in herda on the hill and wastea, and are not shod till caught and put into training. They are doclle and tractable, and being very aure-footed, are the heat adapted for boya' riding. Of their remarkable aagacity in passing forila and dangerous mo rases, numerous accounts have been given. The Rev. Mr. Hall, in his "Travels through Scotland," mentions, "When these animal come to any boggy piece of ground they first put their nose to $i t$, and then pat on it in a pe culine way with one of their fore feet; and from the sound and feeling of the ground, they know whether it will hear them. 'Thry do the same with ice, and deter. mine in a minute whether they will procced."

The Welsh pony is more handsomely formed than that of Shetland; has a smull head, high withers, deep round body, and excellent fect. The Exnmoor ponics are also very stout, hardy, and useful in the fatigues of rural sporting. The ponies of Dartmoor ure likevise a hards aure-footed race, well adapted for riding in wild districts. The ponites of Norway and Sweden, which are of a dingy crenm colour, and of which there are now occaaional importotions to Brituin, are considerably larger than the Shetland or Welsh brecdr, but also hardy and very docile.

rearing of horses.

The breeding and rearing of horses are carried on professionally in England, chierly in Yorkshire; but many private gentlemen and formers also aldress themselves to it as a means of pecuniary profit and the inprovement of their animal stock, We do not pretend here to ofler uny specific directions on this branch of our subject, it loing one in which the puhlic at large are not paticu Iarly interested, and a few observationa sec:a all that is necessary.

The eircumstance which the breeder of horses requires to keep most in mind, is, that the qualities, good or bad, of the animal are hereditnry, Finely made horses produce finely mude deacendints, and vice rersa; hary cart-horses never produce animals possessing the qualities of racers. 'Thus, the bone, blood, and general make are directly transmissible; and, in the case of crussing, the produce is found to possess in proportional share of loth aire and dam. Cross-breeding between extremelo differ ent horses is not found advantageous: it is a geuerally recognised principle, that the nearer the resomblance be tween the parents, so will the produce he more satisfac. tory. Mr. N. H. Smith, in his Obscrvations on Eretìng for the Therf, remarks, that "the stock of some mart will frequently partake most of the dam, and that d othera most of the sire ; and aometimes one foal will par take most of the mare, and the next perhaps most of the horse, \&c. It also occasionally hapjens thst the produce hears some resemblance to its grandsire, grandam, or otbet distant kindred; and although this does nct perhaps often occur, so as to be very perceptible, yct, as ther qualities must, in a lesser or grenter degree, descend to their progeny, it has always had its due weight, and hace the value and partiality to hood, or ancestral exeellenes, transmitted through many generations." Ife furtherdscruea, however, "that he is disposed to nttribute more in general to the doun than to the sire, inasnuch as he isde cidedly of opinion that a good mare put to the wors thorough-lred horse would be much more likely to pro duce a runner, than a had mare fut to the noost fishionable stallion in Fugland; and therefore a person proseses ing good marts may bring any atallion into repute." The grand aim of the lireeder must be the propagating ofescellenees and avoining deficts; but this is not to be necomplished, as tenjucts importunt alterationa, all at onst; improvements in this, as in every thing else, beina the work of time and a judicious experience. Inreding in
manta, as it is ca dededly perniciou The season fo bat in some case gentation ia gene minn with tho earliser or later drength of the o renoval, it requi rided with soft n
The operation tharough-lired co is an operation \mathbf{w} retorinary surgeo recommend it to four or five mon it may very , pro twelve months o der the horee mo date, snd to devo quired to perform it may be suppor lowering of spirit recognised in En numbera of hors lept in good con Bredking, or re is 8 most import If previously aco breaking will be begun to be brok two years, and a woma at three, an ing hores is u ri person who is w ajudieions cours chiliden, gentlen principle of man: ing is a powerful strapped on the each other.
The young ho bis back is moun cess of subduing the litted tuckle eridently able to Ggura ; too early backed for life. great caution sh bosely, the crup dangling. In : xcasion to be tr wible to employ.
Having, by t brought the anin bim thai ho mus vant to an indul leach ham his pac with slow and re bolt, bringing h Atter he has bee pan, goon to the canter and gallo paces, that is, h: an unguinly hot the time being the breaker con ing the animal pace to another of the rein. La ter sliould be el ar offleg forems upficas the call pheasant bluade
:1 Sertland und slmost be lermed herde on the hilla ght and put into le, and being very 's' riding. Of their and dangerous mogiven. The Rer. atland," mentions, gy piece of ground, pat on it in a pe. et; and from the 4 know whether it ith ice, and deter. rocced," mely formed than ligh withers, detp Exmoor ponics are he fatigues of rural - likewiss a harly, rg in wild districts, hi, which are of a cre nre now occa. considerably larget put also hardy and

nre carried on prorkshire; but many dress themselves to 1 the improvement retend bere to oller of our subject, it ge are not particuas see:a all that in
or of horses requiren alities, good or bad, ly mile horses proo vice rersa; hery sessing the qualities d genersl make ste ase of crossing, the tional share of loth en extremelv difiter. 3: it is a generally the resemblance be se be more satisfas. vations on Ereeding ork of some mates dam, and that of es one foal will par perhops most of the ens thst the produre e, greadam, or othen ers net pertaps ofteo et, ss ther qualities cseend to their prom ght, and hence the ucestral excellenees ss." Ile furtherobto attribute more in masinuch os he is de gut to the worst more likely to pro to the most fastion re a person passos n into repute." The propagating of er his is not ta be ne rations, all at onar; ing clse, beine the ence. Ilreeding in

Qunt, as it is callod, or between close relationships, is dediedly pernicious, and ahould by ull moesne be avoided.
The aeson for mares is about February nnd March, bat in some cases it continuea later; and the term of getation is generally over eleven months, The foal remina with the mother till weaned, which takes place eatlier or later according to the quantity of milk, the drength of tho animsls, and the scason of the year. On renoval, it requires to be carefully attended to, and prorided with soft nourighing diet.
The opeation of cutting is seldom performed on tharough-bred colts, but with all others it is common. It is an operation which ought liy all means to be left to tho reterinsry surgeon or skilful farrier. The best authorities recommend it to take place with young cart-horsea when four or five months old, but if for carriage or light work, it may very properly be postponed till the animal is itrelva months old, The use of the operution is to rendel the horse more suhnissive than if left in an entire date, and to devote him altogether to tho work he is required to perform. The advantages, whatever they are, it may be supposed aro in some measuro lessened by the lowering of spirit. Tho practice, however, is universally recognised in England as one indispensable where great numbers of horses are congregated, and required to the bept in good condition.
Breaking, or reducing the young animnl into obedience, is a most important point in the education of the liorse, If previously accustomed to bandling, the difficulty of breaking will be much lessened. Racing colts are now begun to be broken at one yeur old, and saddlo colts at two years, and are finally and fully broken and trained, some at three, and few lnter than four years old. Breaking horses is a regular business, and is best lef to the person who is well accustomed to it, provided be follow a judicious eourse of treatment. As in the training of children, gentleness yet firmuses ought to be a prevailing pinciple of management. The eliicf apparatus of breaking is a powerful bridle or hearl tnckle, with boots or pads strapped on the lega, to prevent them knocking against each other.
The young horse is to a certain extant trained before bis back is mounted, all tho preliminary part of the process of subduing being accomplished while he is led ly the lijted tackle. His back is not to he mounted till he is eridently able to endure the load withont injury to his Ggurs ; too early mounting is apt to make him hollowbacked for life. In putting on a saddle for tho first time, great caution should be taken; let the girths be drawn bosely, the crupper smooth, and keep the stirrups from dangling. In short, the animal requires on this trying ecasion to be treated with as much kindness as it is posible to employ.
Ilaving, by the various means which are adopted, brought the animal into subjection, and in effect taught bim thai he must in future act the part of a dutiful serrant to an indulgent hut firm master, tho next atep is to teach ham his paces. These are partly artificial. Commence with slow and regular walking, whenever he is inclined to bolt, bringing him bock to the steady paco you desire. After he has hicen areustomed to slow puces on a inrthodic An,goon to the slow trot, then the quick trot, and lastly the cater and gallop. By no means allow him to mix these puces, that is, half-eanter and half-trot, which would be an ungainly hobble; but let him know thas he must for the time bring keep to one kind of pace. The skill of the breaker cousists in enforcing these lessons, nud teaching tho suimal to change readily and neatly from one pace to snother, by little unore intimation than a twitel of the rein. Lawrence recommends that "a graceful canter should be encournged, commencing with the proper offleg foremost, and the nug accustomed to bo pulled up ficus the canter to the trot without unseemly and unphanant blundering. The lessons uhould not be too long
or fatiguing, but the young allimal kept in as eheerfu. and easy a state as possiblo." 'The first ahoeing ought to be performed with great care, so as to alarm the animal as littlu as possible."

The Teeth-Age.

The horse attains maturity at five years ofd, and he is in his primo till elght or nino. If no unfair play be used, his age inay be juilged of from his teeth, or, as it is called, mark of moulh. We shall give a short eccount of this part of the animal's economy.

At five yeara old, when the teeth have been fully doveloped, the horae possesses six teeth in the front of each jaw, called the incisors or nippers; it is with these teeth that he bites. At a short distance from each end of the row of incisors, and in cach jaw, thero is a solitary canine tooth ; these canine teeth are teclunically named tushes. At a greater distanco inward in each juw, and on each sile, there are six grindors-the whole apparatus being designed to bite or crop the herbage, to tear and to chow. At fivo and a half years old, the nippers aro marked by a natural eavity formod in the substance between the outes and inner walls, and it is the presence or absence of these dirkisli marks that certifies the age of the animal. When the horse reaches six yeara, the marks in the two front nippers in the nether jaw are filled up, and the tushes ard blunted. At seven years tho two nippers next the middhe ones are also filled up; at eight, the two outor ones ere filled up also, and the tushes aro round and shortened. Tho lower nipper teeth are now all smooth; the marks aro gone; but in tho teeth of the upper jaw marks romain a year or two longer. At cight yenrs the disgracs. ful practico of Bishoping-a term given from the namo of the inventor-is often resorted to, for tho purpose of imitating the olliterated marks. An engraving tool is employed to cut the surface, and a hot iron is then applied to givo a permanent dark stain. This infamous trick may impose on the ignorrnt; but a person skilled in horses can ensily detect tho imposition, from the stains being dillused around the marks, and other appearances.

As a horse, if well treated, remains in excellent work ing condition till twelve and even later, the disappearanc: of the marks on the teeth is often of little consequence. Some horses are as valuable to their owners at fiftees years ns they are at eight; and for ordinary saddle-work, ten or twelve may be considered an age sufficiently young. It is important, however, that tho teeth are enpable of mastication; for if the animal is unable to chew his food properly, ho cannot be kept in good condition, or fit for the periormance of his duties. In consequence of the very general nbuse of horses, few live till twenty-five years old, und the instancea of any living till above thirty ore rare.

Terms applied to IIorscs.

Horsemen employ terms to horses which are not strictly adhered to in ordinary languago. A malo horse left uncut is said to bo an entire horse, to distinguish it from the gelding, or cut animal. A female horse ia alwaya spoken

* In connection with the breeding of horses, we may sny a few words respeeting mutes, or the hybrid offspring of the horse und ass. The mule-proper is the produce of a ninle-ass nod mare; when the parans are the horse and she-ass, the producs is ealled a hinny. The male is the superior animal, partaking to a lurger degree in the qualities of the horse ; it is more re bust, plump. nud hardy, and beller adapted for all the ordinary purposes of riding and draught. The hinny is more thinly mathe. has a lougr head. and is ntogether more like the ask thnn the horse. Sulcs of bolh kinits five to a very old agee, alld when propirly traned, they ure tractable and very serviceahle animuls. Jicre arecomparatively few males in Brinin; but in Spn:n, and some oher countries ai southern Furope, atso in Spunsh America, hey aye numeroas, and are used in carriges of people of the thighest rank. According to a well-known principte in naturnt economy, by which intermixture of k nired spereios is nol allowed to go beyond a single step, and onty ior one generation, mules do not breed; and the slock requires ta be kcpl uy by a recurrence to the common purennge.
of an a mare. A young male horse is called a mit, and a young female a filly. Thorou gh-irecl, as alreaty noticed, in applied only to horsen (we inclute mares, of courne) whose pedigree can be traced to an Arabian origin, without atain or any common intermisture. When the pedigree of the racor is to a certain degree atalned, the animal in called a cockfail. The term blood is of more loome aignification, but what le generally underatool by it in a horso which is thorough-bred, or of the blood of the Arabinn, and consequently showa a fine spirit and action. A horso wany ho balf-bred, three parta bred, and wo on. accoriling to his pedigree. The half-bred is produced fiom a raser and a common mare. Some of the bent rilling-horacs are of this stamp. The term uefler horse is applied to racers who are sble to carry the higheat weight.
Honen are measured by hands, four inches heing reckoned to the hand; the meanure is taken at the fore leg and ahoukler. To all the more prominent parts of the body and members certain technical names are applied; for example, to take the fore extremitics first, the muzele includen the lips, mouth. and nostrils; the withera are the aharp protuberance over the shoulders between the back and neck; the breast is the counter; the arm is the upper part of the fore-leg, but enveloped in the musele of the shoulder; beneath it is the fore-rrm, which is the higher part of the visible leg, and extends downward to the kure; below the knee we have another stretch called the shank, which extends to the pastern, or, as we might call it, the ankle ; the fetlock is behind the pastern ; beneath are the feet. A few of the hinder extremitics are named as follow: the croup, which extends from the loins to the mot of the tail or rump; the flank, extending from the ribe to the haunches; and the leg or thigh, which reaches down to the hock or middle joint of the hind leg, corre. aponding to the knee in the fore-leg. The left side of n horse in celled his near side; and his right the off sile.

The grenter number of British horses are of a dark colour, inclining to black or brown, but of innumerable ahadea. One kind of brown is called bay, and another the chestnut ; a yellowish chestnut is termed the sorrel. The roan is a blending of red and whitish tones. The gray is a mixture of white and black hairs, and in old age becomes altogether white. The dark colours are the moat eateemed for their physical qualities, and patehce of white on the lega are considered defects or foul markings.

etable management.

The horse, as has been alrealy mentioned, possesses very delicate senses, and is nice in its hahits, in which reapect it differs very materially from black catle. In a tate of nature, the aninal weems to be leat nilapted for a mild and genial climate, and to rejoice in frecoorn and apere. When reduced to domestication, as it is with us, care should be taken to violate as litle as possille its natural tastes and habits. Its delicacy of constitution, augmentod in no amall degree by an artificial mode of tife, should warrant the beat attentions of its kecpers; and whatever be the nature of its work, it should le treated with kindness, regularly fel, and supplicd with pure water, sllowed a eleanly and well-ventilated halitation, and its body and limbs preserved free from dirt and sill offensive matter that may cling to them. The leading features of management may be defined as follows :-

The Stable.

The stable varics in size, according to the number of tornea kept. Of whatever dimensions, the situation ahould be dry and airy ; if in any respect damp or fatid, the animata will assurodly. contract disease. When the stable in calculated to contain many horses, it is sellom regciler in temperature, from the fuctuation of numbers in it at any one time. T., avoil this defect, tha hest size, in ordinary circuustanbes, is that which will accominodute six or eight hrsea, leaving plenty of room to each.

A stable with a row of atalla only on one add, 1 better than one with double rows; if double, the prace between should not be lewa than eight er ten feet whido Bixteen feet is a proper width for a stable with a ningo row, nix of the feet being allowed for the depth of tin stallh; each atall should alno bo nix feet whle, but com monly five and a half are only given. The floor of tha stalls shnuld be neatly paved, elope very little from heal to feet, and he bounded by a guttor, with gratingew in carry off all liquid refuse. The gangway, or apers leyond the stalls, should be also paved in a neat manar ner; and care ought to be taken that rats are effectivily excludell from the walls or any part of the flooring, The atalls slould he lined with amooth wood. The mable shoull have only one door, and that not opposite a stall; it ought to le at least four and a half or five feet wide, and eight feet high. A pinchedneas in any of these details is far from economical.
The inner wulls of stables are often kspt shamefully dirty. They ought hy all means to be well whitewashed, at regular intervals, in order to extinguigh vermin ond wipe off impuritics. The interior ought to be well lighted with windows, which should be kept clean, ond never permitted to remnin in a broken condition. a little carelessness in this respect may occasion the lom of a horse ; for broken windows in stahles are about a dangerous to the health of the inmates as broken windows in a dwelling-house.

When we say that the stalle should be well lighted, we certainly oppose one of the most vulgar prejudice reapecting horas management. In most Instances staliles are kept as dark as dungeons, greally to the injury and diseomfort of the inmates. It is imposible to understand what can be rationally designed by key. ing horses standing during their waking hours in the dark. Nature never intended any thing of the kind; and wo sny the practice should be aholishel. Mr Stewart pleads as warmly as we do on this point. "A horse was never known to thrive better for being kept in a dark stable. The dealer may hide his horse in darkness: and perhaps he may lelicve thnt they fatten sonner there than in the light of day. But he inighta well tell the truth at once, and buy that he wanta o keep then out of sight till they are ready for the market When a horse is brought from a dark stahle to the open air, he sees very indistinctly ; he stares sbont hin, and earries his head high, and he steps high. Dark stables may thus suit the purposes of dealers, but thry see certainly not the most suitable for horses. They are said to injure the eyes. There is not perlisps an animal so liable to hlininess as the horse. It esnnot be sid that darknesy is the cause; hut it is well known that the eyes suffer most frequently where there is no light Whether a dark stable be pernicious to the eyes or not, it is always a bal stable. It has too many invisble holes and corners about it ever to be thoroughly clenned. All these things considered, it is evident that the stabio ought to be well lighted." The preferable plan of light ing is by skylights, made to open when required for the sake of improving the ventilation.

May-lof and Racks.

The hay-loft, or place of deposit for hay, ought not as is usuaily the case, to bo over the stable, but aljis cent; and a chamber, tevel with the floor of the sable, is preferable. The reason for this is, that the hasy mav be preserved free from the breath of the animals and effluvia which rises from the stalls. Lawrence strongly apposes the use of hay-lofs over stahles:- Accord ing to the gool old and present custom, it is the no ceptacle of all kinds of impurities as well as hay the excrement of cata and mice, and exuvis of spidem and the accumulated and sacred dust of perhapa half a century. Add to these trifles the perpetually ane ending
darande in steam dryung, and exh. wery pure and in tho mack, in and moisture o frosh to the hor monn. near the at gangway and u daar of all encun neddles, or lumb vo the proper meod, let them b no oponing to th in amsll quantiti Hay-racks of of iron, the bar aher, The rac of the stall, bec the corners. A wone of hsy, wi the form should from the wall, horse. A rack kept too clean ; ald bits of hay

The msnger, food are eaten, i not be larger t about nine ine mangers, travers ourdly large, as they injure the form snd dimer much less impo of eleanliness. are more fastidio of food froin a been blown upo horse's inanger and at all event order.
The manyer athle-kcepers this seems to be iu a slovenly pro cacious. It is ohould have a if they fecl the if any horse wil refreshment. in one corner at ahaped like th: can be made to proper. A was run off the wat pure from the aninal's mouth how this very plahed.

The good h being partly drs u. A horse not lie down at valus ; for it is the day that he a bed for the ar ing parts of a form it well. out when the mets may auit
VoL li. $\rightarrow 74$
on one inde, ouble, the apmow yr ten feet wide ble with a sing the depsh of the t wide, but com The floor of the little from beew with gratinge to igway, or apere I In a neat man ts are effectually of the flooring vood. The mable not opposite half or five feet dneas in any of
kept shamefulty ell whitewashed, uish vermin and ught to be well e kept clean, and en condition. orecasion the low bles are about a 8 as broken wim
be well lighted, vulgar pipjudices most ingtances, es, greatly to the
It is impossible lesigned by keq. ing hours in the ling of the kind; alolished. Mr 1 this point. "A er for being kepa ide his horse in e that they fatten But he inight as that he wants to ly for the market itable to the open abovt him, and h. Dark stables ra, but they se orsees. They are crhaps an animal t cannot be said well known that there is no light. o the eyes on not, o many invisible oroughly cleaned. t that the stable ble plan of lighto required for the
hay, ought not, stahle, but adjr or of the stable, lint the hay mar the animals and ivrence strongly bles:- Accord om, it is the so well as hay cuvie of apidern, ' perhaps half a tually amending
doodo of ateam from the atabling helow, contaminating, drying, and exhausting the hay of its fragrance, and of wery pure und beneflcial quality. Hay should remain in the stack, in ordar to hive it in its utmont fragrance and moisture of "slity, to be cut often, and taken frem to the hortw tiore being a clean end cool haymon, near the stanle, to contaln ainall quantities. The gangway and walls of the stable should be perfectly dear of sll encumbrancen of chests, pails, brooma, shelven, addes, or lumber of any kind, for which extra roome se the proper place." In cases where hayloft: are med, let them be kopt as clean as possiblo, and allow po opening to the racks. The hay must be brought down in umall quantitien and placed in the racks.
Hay-racks of the best material and form are made of iron, the bars rounded, and two inches from each ahef, The rack need not traverse the whole breadth of the otall, because in such a plan rubbith collects in the cornern. A size to hold from a half to a whole stone of hay, will be sufficiont in most instances: and the form ahould be that of a convex or bulged grating from the wall, placed a little alove the head of the horse. A rack of this or any other shape cannot be kept too clean; the bare should be daily rubbed, and all odd bits of hay removed.

Mangers.

The manger, from which the corn and other kinds of food are caten, is ulso best made of cast-iron, and need not be larger than a foot in length and breadth, and about nine inches deep. Tho old-fashioned wooden mangers, traveraing the extremity of the stall, are abourdy large, and as they sometimes are aplintered, they injure the animal when feeding or at rest. The form and dimensions of the manger, however, are of much less importance than being kept in a high atate of cleanliness. All horses are nice feeders, but some are more fastidious than othera, and will not partake of food from a foul manger, or one even which has been blown upon. Let the groom, therefore, keep his horse's manger as clean as ho would do his own dish, and at all events do not allow it to get duaty or out of arder.
The manger is only for dry food. Some attentive wahle-keejers also provide a manger for water, and this seems to be highly judicious. Drinking from pails is a slovenly practice, independently of its being inefficacious, It is now allowed that horses, when atalled, ohould have a little fresh water heside then to drink, if they feel the desire to do so; and it may be doubted if eny horse will drink whose nature does not need this refreshment. Be this as it may, a good plan is to have in one corner at the head of the stall, an iron manger, shaped like that for corn, and into which puro water can be made to flow from a pipe when the groom thinks proper. A waste pipe beneath should be provided to run off the water which is left, or which becomes impure from the dropping of particles of matter from the unimal's mouth. A little consideration will point out how this very conveuient arrangement can be accom. plahed.

Bedding.

The good horse aleeps in a lying posture, his legs being partly drawn under him, and his hearl remaining uf. A horse that habitually slecps standing, or will not lie down at night, is usually reckoned to be of little value; for it is indispensable to doing his duty during the day that he reata well at night. The preparation of abd for the animal, ought to be one of the most pleasing parts of a stable-keeper's duty $;$ and he should perform it well. The hest bed is made of wheat-atraw, toit when that is dear, or cannot be got, the etraw of nets may sult the purpose. The more oven and less VoL I, -74
rumpled the litter, the better. The bed nhould bémede level, or aloping slightly from the sides and head to wards the centre, and be completely free of hard lumps All ought to be minooth, clean, eof, and the depth of libter perhapa meven or eight inchen.

Kivery morning the aniled litter in to be taken away to the dung-yard, and the clean portion separated and placed at the head of the atall, of in some other convenieht aituation, ready to he employed again at night. It is disgraceful niggardlinewn to bed horses with foul litter, or to atint them of what is required for their comfort, and seldom falia to bring itn own puniahment in the injured health and appoarance of the unimal.

Ventilainn-Cleaning.

Ventilation, or means for the proviaion of frenh uir, is of the first importance in the economy of the stable. Small epertures at different places should be mude in the walla, to allow the entrance of pure air, and the encope of such as has been vitiated. A better plan for the romoval of the foul air, eapecially from stables in which a number of horses are kept, would consist in leading it awny in a tube from the roof to the flue of a fire. (See our article Ventilation.) Ar* chitects, generally, do not make any provision of thia nature in atables, and as few atable-keepers think of instituting such an effectual process of ventilation, we can only here state, as a general principle, that meanu of eome kind should be adopted to keep the atmosphere of tho atable in en equable temperature, end as pure as possible, both night and day. We invite attention to the following observation on this point by an intelligent writer :-
" If the atable is close, the sir will not only be hot, but foul. The breathing of every snimal contaminatea it : and when, in the course of the night, with every aperture, even tho key-hole, stopped, it passes again and again through the lungs, the blood cannot undergo its proper and healthy change; digeation cann-tt be so perfectly performed, and all the functions of life aro injured. Let the owner of the valuable horse think of his passing twenty or twenty-two out of the twenty-four hours in this debilitating atmosphere. Nature does wondere in enabling every animal to aco commodate itself to the situation in which it is pleced, and the horse that lives in the atable-oven auffers less from it than would scarcely be conceived possible; but he does not and cannot possess the power and the hardilood which he would acquire under other circumatances. The eir of the improperly close stable ia atill further contaminated by the urine and dung, which rapidly ferment in the heat, and give out atimulating and unwholesome vapours. When a person first entera an ill-managed stable, and eapecinlly early in the morning, he is annoyed not only by the heat of the confined air, but hy a pungent amell, resembling hartshorn; and can he wonder at the inflammation of the eyes, and the chronic cough, end the inflammation of the lungs, with which the animal, who has been shut up in this vitiated atmosphere all night, is often attacked, or if glanders and farcy ahould occasionally break out in such atables? It has been ascertained by chemical experiment, that the urine of he horge contains in it an exceedingly large quantity of hartshorn, and not only so, but that, influenced by the hent of a crowded stable, and possibly by other decompositions that are going forward at the same time, this ammonincal vapour begine to be rapi'ly given nut almost iminediately after the urine is voided. When disease begins to appear among the inhahitants of these ill ventilated places, is it wonderful that it should rapidly spread among them, and that the plague-apo shoull be, as it were, placed on the door of such a stabla?

When diatemper appeara in apring or in autumn, it is in very many canen to be traced firmi of all to nuch a pesthoune. The horsea belonging to a omali eatablinhinent, and rationully treated, have it cemparatively coidom, or have it lighltly; but among tha inmates of a erowded wtable, it is mure to display itedf, and there it is moat of all fatal. 'I'he experience of every veterinary surgeon, and of every large proprietor of horsen, will eerrolorato this atateinent."-(Library of Ciseful Knouderge.)
The more cleanly the stablo ia kept, the more easily will it he ventilated. Stahles are in general kopt in a most uffensively foul condition. In the first place, they are often ill-paved, and the refuse of the animala geting imbedded in the interstices of the stones of the stall aul gutter, hereps upa constant exhalation. Then thero is no proper provision for disposing of the foul litter and urine. It is customary to rake out the uned litter and oher impuritiss to a dung-leap immediately outside the door, and there it steams and losea ita value, be siden being a nuisince to passengers. Jnstead of this bad econony, let all be raked or shovelled out to a dung-pit covered in from the outer atmosphere, so that every particle of the anmmonlacal gases may bo preaerved. Into this pit, let a mmooth channel from tise otalla convey rapidly and eflictually all liquid refuse. Any man who willingly allows the diquid manures of his atable to run to waste, may with great justice le mid to be daily pieking his own pocket. Should the gaseous olnur le intrnse, and the quantity of litter in the heap incapable of absorbing it, add now and then a spadeful of earth or any abborbent material that will decompose.
The atalle should bo clean swept, brushed, and thoroughly ventiated, every morning, leaving impuritien neither on the ground nor in the atmosphere. Good feeding and regular exercise may partly neutralize the effects of uncleanliness; but in the event of opidemical inflnenza, glanders, and other diseases, these effects become sadly manifest ; and then, as Mr. Stowart humanely observes, " the proprietor begins to look alout him. It is time for hin to know that God has not given hiin absolute and unconditional control over his fellow tenants of the earth. Oppression has wido dominions, but there are limits which cannot be passed; and death reveals the operation of a wise and beucficent law."

Shable Furniture-Stablemen.

Every stablo is to be provided with proper receptacles for hay and straw. The oats, peas, beans, bran, de., should be kept in one large chest with divisions, or eeparate chosts, and if possible be placed in an apartment separate from the stable. For small stables an adjoining room should be fitted up neatly for the accommodation of the corn chest, the sadules, and other apparatus; all saddles, bridles, and small articles being properly hung on hooks on the wall, or placed on other appropriate supports. A cuptoard for combs, bruslies, dec, will be an advantage. If the stable be not supplied with water in pipes, a well should the at hand.

Horsas require to be under the charge of persons who understand the business of attending to them in all their varied wants. Some persons seem to imagine that any ooy or lal will do for taking care of a horse. This is both inhumane and had puliey. Where only one horse is kept, a stealy lat, under the directions of his master and instructed in the line of his duty, will often be found sufficient; hat he requires constant looking atter, for all young persons, and some old ones too. are disposed to play pranks with horses, and rob thems of their food. Tho ordinary class of oatters are und regularly instructed in the qualitirs and wants of the horse. All they know is cmpirical, and their preiswices are frequently absurd. Let all such persons,
therefore, be eatinated at their junt value; ond a comunitting your horse to any of thera at an inn, wey that the does hia duty both an respecta cleaning and ferch ing. A kind master always wees that lits hurse gets in proper measure of corn, and atanda hy till he eats in
In mallen in which two or more horses are keph a regular groom should the emplojed; und thiar peran whould resitle elose by tise atable, no us to be always at hand. The qualificatious of a groom ought to le steadineus of conduce, promptitude in in cane of difificulty, openness to adwieo or iustructiona, experience in well. managed stalles, tante for cleanlincss: and he should bo as denirous of making his chargo comfortable as he wovld be of his own perroon.
In large establishmenta, there are head and under grooms, strappers, and stable-hoys-the latter a kind of loose appendages to the coneern, who act as drudzco to the supicrior Sticers, and look forward to promation, In estabisishuenta of moderate size, the groom and Iriver or conchonan, are the only finnctionaties. It is the duty of the groom to attend to the horeses in every particular, when in or alout the stable, and when taking exercise. The duty of the driver is more particolaty to keep the chaise or other velicle clean, and also to clean the hariens.
If ull horaps were goom-tempered, or rendered dacifis by kind treatment, they might be advantageously lef at liberty in their stalls; circumatanecs, however, require that they moould be restrained; hut this should be done with as linle pain to them as possible. The hater or rein from the liead gear should be led to a ring at the head of the stall, leaving the animal it liberty to lie down in an easy posture. The rein, whether of rope or chain, should not be tied to the ring. It should go through the ring, und drop down with a plummet at the extrenity w keep it down, yet allowing the auimal to pull it up or nllow it to sink at pleusure. A shorter halter may be employed during the day than ut night, so as to kecp him from straggling backwards into the passuga or gang. way.

Some horses are most restive in restraint, and comnit tricks to lowsen themselves; and others, by awkwardess of movement, get cast, that is, belumbly:d or crampeet when lying; and it is necessaity to employ will and fore to raise them to their feet. A soft bed and ablual ance of room are the best preventives for this kind of accident.

Grooming-Dressing.

The akins of horses are liable to become clogged wibl a scurf of dried perspiration, along with particles of dust and mud, which collect and lodge among the lairs. It is of great importance to remove these impuritiea by cusrying and brushing, for the sake of the health of tho animal, independently of the value of the operation as respects the appearance of his cont. The degree to which this species of grooming is carricd, will of course very much depend on circumstances; but, as a general rule, it should take phace cvery morning befure the hose is led forth to the tabour of the day.
The grooming is conmenced while the animal is is his stall, his wrapping-rloth, if he have one, beiag re moved, and the restraining rein being letigthencd, to allow his standing a little hack into the gangway. If restive, his head must tre tied up. All refise haviug been previoukly removed, a little of his belling may be drawn out for his lind-feet to stand upon. The firs thing done is to curry him with a curryomb-a fal iron instrumerat, with rows of short blunted teeth and a hausle; by bring drewn along the surfice of the baly and linibs, it rakes up the lumpls of hair, and gencmilly loosens and lrings up all extrancous substances. The groon comamences with the neck and shoulders; next he goes to the bo!y, hinder quarters, belly, and legs, bult
doce being trea any cune be une la application in tally grooned, bing with the ct performing the other hund, wit essary. After ply the brush in in, from head to whay the cont been introduced bruali; and it ce more casily appl shauld the hor trice a year, th rultbing with a
Afer the cur to coint the fore the hairs lie str if the legs or f washing with prowth of a yel wisp. We ha groomed rescula lose their health indging beneath cheerful appreara nance to being barsh treatment siderately, they grateful fir tho
The cleaning the maraing gro atblo in a state in to be at rest bill it becones ment of the bloo dually, and pre of the skin. T animal, lie may ing is prefersble
After the hor: and feet should aponge, and als mud; but after tharaughly dris harse with wet unusual to wsilk a practice most chauld not the a
Whaca the ho may be throwni diath used in s used for winter. torsea with the then, perhaps, t ond without an eling. The use Gron cell. and gorse has to sta ongcaist, his to ma ailed eleth, 1 lible of injury drefves that, a long ridingpat of the ani

Nature give mane, for the usea; bat man protection, hav reuson as fiar a
valuo; and on at an inn, sen uning and freath is harse gets ito 14 he eats it prees are keph, a nit this perown - to be alwaya In oughe to in asco of difficulty, ricnee in well. had be abould bo hle as he would
rad and under. latter a hind Pact an drudza d to promation. the groom and timatices. It is horses in every nd when taking re prartieulaty to ad also to clean
ndered docile hy agrously left at nowever, require should be done The haller or to n ring at the werty to lie doxn of rope or clain, so through tho the extrenity w to pull it ap or - balter may be t, so as to kerp passage or gang.
int, and commit by awkwardues red or crampel mphy skill and loed and abuirb for this kind of
me elogged with partickes of dust ir the hairs. It apurities by curwe halth of the In operation as Tho degree to d , will of coarse ut, as a general lefure the horse
he animal is in e one, being to levigthened, to a gamgway. If reliuse harimg beiding may be pon. The first Ty-romb-a flat nited teeth and a inee of the boly r, and gencally Ahstances. The oulders; next be ', ynid legs, halid
adou being treated allke. The curry-comb munt not in wy cese be used roughly, and with thin-skinned horaes in application muat be very gentle. If the horse be regulusly gromed, and ita work not dirty, a gentle serubbing with the curry-comb will in most cases suffice. In perfurming the operation, a bruah may be held in tha other hand, with which to clear out the teeth when necessary. Afler tho curry-conbb has gone its rounda, apply the brush in turn, going over the wholo surface with iff from head to heela, to remove ali raised impurities, and to lay the cont smooth. Lately, a rough hair-glove has bech introluced into use an an improvement upon the brush; andit it certninly poasessea the advantaga of being more easily arplied to nooks and noruera than the bruah. shoold the horse be changing his coat, whieh he doce twice a year, the curry-comb must not be used at all; a rubling with a straw-wisp being perlapss nufficient.
Afer the currying and brushing, the groom proceeds w conb the fore-lock, mane, and tail, so as to make all the hairs lie struight. This finishes the grooming, but If the legs or feet be white, thoy will perhape require mashing with warm water and soap, to prevent the prowth of a yelliw appearance, and then dried with a wisp. We have ouly to add, that if horses are not grooned regularly in this manner, they will inevitably lose their health, or he troubled with parasitical animala longing beneath the hairs; and never have a glossy and cheerfal nippearance. Some harsea havo a great repugnance to being groomed, but this generally arises from hardh treatnent while they wero young: if treated considerately, they will feel pleased with the friction, and grateflal for the attention bestowed on then.
The cleaning of a harsi afor work is us necessary aa the morring grooming. When a herse is brought to the stablo is a state of perspiration, it should not be taken in to be at rest all at once, but be walked gently alout till it beciomes moderately eool. This allowa the excitoment of the bloud-vessels and muscles to bo allayed gradoally, and provents any sudden stoppage of the pores of the skin. To assist in drying and cooling down tho onimal, he may bo seraped or rubbed with wispe. Wisping ia preferable.
After the torse has been walked and wiaped, his legs ond feet chould tee washed with water and a brush or aponge, and also his belly, if it bo dirty with sparks of mad; but after any such washing, every part ahoald be thoroughly dried with a freah wisp. Never leave a borse with wet legs or feet. In the country, it is not unusual to walk herses into a river to wash their legsa practice most detrimental to their heallh, and which chould not be ullowed.
Whea the horse has been eleaned and dried, the eloth may be thrown over him, and tied to his stall. The cloth used in summer should be more light than that wed for winter. It is customary for groons to exerciso borsea with the stable-cloths wrapped round them, and then, perhaps, the noxt hour they are taken out saddled, nad without any eloth at all. This seems an inconsisteneg. The use of cloths is to protect the animal's loina fros cold, and is unnecessary in fine weather. If the goose has to atund still out of doors, and the weather he ongenial, his loins ought by all means to he protected by an oiled eloth. to keep ont wet. The horse is very susceptible of injury by expeesure of the loins; and it will be oberveu that, to shetter that part, cavalry soldiers wear - long riding-cloak, which falla lowsely over the finder pat of the animal.

Trimening.

Nature gives the horse a beantiful flowing tail and mane, for the furpose of whisking off lice and for other uses; but mankind, in taking the ereat re under their protection, have, in many instanees, ayd for no good reason as lar as we ars aware, deprived it of these grace-
fut personal appendngen. The moat contemptible ploce of this rash interference has been the doeking of the tail, and causing it to cock up, thus leaving the rear of the animal exposed. The tail should be lef flowing to a polnt, and only trimmed to a limited extent; and the same thing may be said of the mane. Nature han likewise given the animal long hairn on the legs independently of the fetlocka. These varioun appendagea have likewien not been given unnecemarily; they nnawer as a kind of thatch to carry off the moisture which trickles down the Wera, so aa to keep the feet dry and the lege warm. Tlieno parts, therefore, should be trimmed sparingly, and the fouler the work, the moro ahould be lof on. Any trimming should be executed tastefully with a comb and pair of aoinaora. It is custonary to elip away tha long hairs about the eare and muzzle, but this alson must be performed with great diserotion. Theso hairs have their uses, those about tho ears in particular, and harm may te dona by their removal.

Manageneat of the Feot.

When the horse has been stabled for the night, It wut be the duty of the groom to see that the hoofs, above and below, havo been cleaned, particlea of sand removed from the crevices of the sheves, and tho feet generally in a good condition. Tho feet have a tendency to harden and crack, and thus a good horse may trecome lames. The fore faet are most liablo to this berious evil. To prevent hardures and soreness of feet, it is eustomary to stop them at night with a soft moist material, most comnonly pieces of horso-dung, which is crammed into the sole. Nos special directions on this priat can be givens for aome thin-soled horses do not require stopping, and the litus feet are seldom in need of any thing of the kind When the frog is liable to thrush, the feet require to be kept dry, and cleaned and attended to with peculiar care. To prevent over-dryncea of hoofs, as well as to prevent the undue action of moisture, it is advisable to anoint the horny part of the feet with an ointmeut made of tar, fish-oil, and lices-wax, melted together in equal proportions; but this should not bo done unless it it absolutely required. If well washed and kept clean, the feet will seldom require any of this kind of varnishing.

When at large in a wild state, horses, as may be aupposed, go barefooted liko all tho other lower animals. The hoofs grow with a slight curve up in front, but thin does not seem to impair thair apped. If domeatieated horses were alwaya to walk on turf, and not be obliged to carry or draw a weight, their leot might remain unshod; but the circumatances of their condition make it neeessary to protect the hoofs from tear and wear by menns of aloees. Horse-slioes have been used of many different slapes and materials; but it is needless here to speak of any others than the iron sloos in common use. The alue must bo of weight conformable to the powers and uses of the animal, but exactly to suit the curve of the hoof, flat and of equal thickness, and be secured by nails to the hoof. The proper paring of the hoof before shoeing, and the ahocing itself, are matters to be left to the diserction of regular farriers. As a general principle, caro must be taken not to drive the nails into any tender part, and the hoof should be as little broken as posssible. A gentleman's horac should be shod at regular intervals, and a shoo never sullered to come oll from too long usage.

Exerciso.

Every horso ought to be exercised daily in the open air. The exerese should to in the carly pan of the day: when not exercised by work, he must bo waiked oat and trotted on purpose. An authority already yuted observes:-"The horse that, with the usual atmble fecding, stands idle for thereo or four days, a is the case in many astablishmenter rust sulfer. He is dis

INFORMATION FOR THE PEOPLE.

greed to fever, to grease, or, moat of sll, to diseanee of the foot ; and if, ater there three or four days of Inactivity, tie la rdblen faet and far, is almoat mure to have luflansmation of the lunge or of the feet. A gentleman of trademman'a horse auffers a great deal more from idleness than he doen from work. A atable-fed horme should have two hours' exercime every day, if he la to be kept free from dinesser. Nothing of extruordinary of even of orilinary labour can be elficeted on the rond or in the field without sufficient and ragular exercise. It in thla alone which ean give energy to the syatem, or develop the powers of any animal. In training the hunter and the rsoehorse, regular exercise is the most important of all sonsiderations, however it may be forgotien in the usual management of the stable. The exercised horse will diacharge hia task, and sometimes a apvere one, with eare and pleasure, while the idle and neglected one will loe fatigued ere half his lalour be accomplished, and if he be puahed a little too far, dangerou inflammation will ensuc. How often, neverthelese, does it happen, that the horse which has stood inactive in the atable three or four days, in ridden or driven thirty or forty milen in the course of a aingle day 1 This reat is offer purposely given to prepare for estraexertion-lo lay in a stock of strength for the performance of the tank required of himi and then the owner is aurprived and dismatisfied if the animal is fairly knocked up, or, posaibly, becomee weriounly ill. Nothing is wo common or so preporteroue ma for a permon to buy a horse from a dealer's utable, where he has been idly fattening fur sale many a day, and inmedistely to give him a long run after the lounds, and complain bitterly, and think that he has been imposed upon, if the animal is exhausted befure the end of the chame, of in compelled to be led houne auffering from violent inflammation. Regular and gradoally increasing exerciso would have mado the same horne appear a treasure to his owner. Exercise should be nomewhat proportioned to the age of the horwe. A young horse requirea more than an old one. Nature has given to young animula of every kiad a dieposition to activity ; but the exercine must not be violent. A great deal depende upon the manner in which it it given. To preserve the temper, and to promote health, is should be moderate, at leant at the beginning and the termination. The rapid trot, or aven the gallop, may the resorted to in the midille of the exercive, but the hore must be brought in cool. If the owner would meldom tntruat hin horee to boya, and would insiat on the exercive being taken within aight or in the neighbothool of his residence, many an accident and irreparable injury would be avoided. It should be the owner's pleanure, and is his interest, personally to attend t all these thinge"-(Lib. Use. Know.)

Wutering and Feeding.

A hore should be exercised a little after being watered. He ahould on no account be allowed to drink when heated, particularly if heated to the extent of perspiring. The only refreabment allowed in these circumatances is a rinaing of the mouth, and the muzzle may be washed and relieved of froth. When not permitted to take water of his own accord in the atall, let him be offered a paul three or four timen a day; and sfter drinking copiously at either a puil or pond, he may be trotted or gently canvered. the motion being generative of heat, and at least prevents any chill.
Horsen are fid on differnt materials in different countries; bue pronally on the various kinún of grasses and coreal gruins. 'e Gernans give them feeda of brown bread whits on : rei, y; ins India, rice and spices are
 frod are oata and way. wist: inferior proportions of heans, peas, cut ntexw, and walo. The quanity and nlso the reture of the fined wide devend on the hatisto of the ani-
mal, and the work to which he la put. If tha wort a hard, he muat be fed to a conadiderable nitent on ant which are more nutritious than most othar articlen in use: but if the work be light, alighter dist of hay, with perhape only a amall quantity of oata, will auflice. The otomach of the horee being small, he cannot eat much a a times and it is always preferable to feed uim ofen, and at regular intervala, than to offer him lesge fueds at ine gular perioda. There in another reason for uffering amall feeda; the horse nauseates food which he han hiowa upon or prevlounly touched, and will accordingly reject it if offered a second time, or allowed to stand leenide him For varioum reawona, therefore, it lo better to give him only a little at a time, so as to leave none hohind, I the animal he a poor feeder, or apt to wate his frod, the more care inuat tre taken in thle reppect.

Oate ought to be mound, old, and dry. If muaty, re ject theun. In almoat sill casen it is preferable to have them bruined; for loy this they are more easily digented and nourishing than if lefl whole. It in now cuntomany to mix oote with chaff composed of the cutting of ciover or mesadow hay, and the straw of wheat, oata, or barley. In some atables a machine is kept to cut theso materinia The length of the cuttings should be shout half in inch Bruised oats have a tendency to scour the animal; but the infusion of ehaff counteracts this quality.

Of hay, clover, and meadow hay, little need be maid They should be mound and sweet-flavoured, without eny mustinees. The hay should, if pomaible, be a year old and well asved for use in an adjacent atack. Some horses are fond of peas; but they require to be given s, it caution, as thoy are apt to swell in the atomnch. Almost all horsea are inordinately fond of carrots, which, when adminintered in small quantities do not purge the animal, and improve his cost. A respectable authority staten that "for agricultural and cart-horaes, eight pounda of outs and two of beann should be alded to every twenty poundm of chaff; and thirty-four or thirty-mix pounds α tho mixture wilf be aulfirient for any moderate-bized horse [daily] with fuir or even hard work." In this esti. mate, no hay is supposed to be given. When the hone in fed on the last two articlen, huy and oats, four feeds, or nine or ten pounds of oata rer day, will be a fair alinw. ance, during winter, and in the case of molerate wort; but, in rummer, half the quantity, slong with a propos. tion of green herbage, will suflice. Many gentemen follow a general rule of allowing twelve pound of onta per day to each riding-horse, and this is given in thre or four meals. A pony, having but moderate work, will be well fed on six pounds of oata per day, with a fair proportion of hay, Lasterly, sago has come into use as an urticle of horse diet ; and wo believe it is highly nutritive, and may be employed to ecrtain extent to super. sede oats, or to be mixed with them. It whould be par tially softened by pruparation.

Several nerious discasen arise from improper feeding, particularly at intervals during hard labour ; and on this point we refer to our observations on

In consequence of tha gurergi in' thanagement and ill treatinent of horsep. A A. $\quad \cdots, \quad$, 4 a numle
formidable discases.
mon. Hequert occurrenc
are glandern, inflammation of the lungs, broken-wind inflanmation of the bowels, and certain illnessem of the feet and lega. Referring our readers to larger workn on the Horse for full information on these diseasea, and re commending all unskilled persona at once to hund ovel their harse to a veterinary aurgeon when unwell, we pro pone only tu give a few hints as to the beat meant of provention. The institution of schoola of veterinary aurgery, at which the anatomy, peculiar nature, and dis eaves of hores are explained by men akilled in thin im.
patant drpa.tma Copoving the qu ad neving them

Thian in a disena ding the effeetas doned hy breathi na irritation of ecompanied by nighy infectioun, When not remev tury, a disease alled firey-luadn dengeroto inaladi rentilation.

The more orli and is cansed by in reality the gral ere only parallele in the human apr great impropurily cold dr".
tin in thersto nyart nabl-, und
 bis own fowk 6 , in the street at nil do mo, make a pra riage fate in the intead, :nflunm foin various caul grged the most ne time ago, tho Hi premiuin for the plaints generally awaried to Mr. Thirak, Yorkahire numbers of the \mathbf{Q} of the parts of the made known to I burses, that we ta in our pages.
After showing ponition to diseane ployed in heavy d tion of the anima "The post-horse, work, are more lit the nerven, and condists of rapid the animal of lon flammation of the as I shall present the character of domach of the proportion to his quires, than any for hime is anpply lervols; wherein capacious atomac digested for hour eanizge.horse, ha tion and the tim cessarily short, o they return to th may for a time b 3 affected by t they recover the daits of their ta contrary, has foo Gilled with atr

If the wort is intent on onk her articles is et of hay, wiut I suffice. Thu rot eat mueh a' uins often, and se fivedu at ine offering mall he has blowa cordingly reject and beade him er to give him ne bwhind, If tee his frod, the

If musty, te

 aferable to have easily digented now cuntomary atting of clover onts, or barley these materisia ut half an ineh. the animal; but ity.- need be mida 'ed, without any , be a year old t stack. Some to le given x it tomnch. Almost its, which, when urge the rinimal, authority atates ight pounds of to every twenty y-six pounde of y moderate-rizel (." In this estiWhen the horm oats, four feeds Il be a fuir allow. moderate work; a with a proporMany gentlemen - pounds of onta 5 given in three lerate work, will y , with a faif prone into use an an is highly notio extent to super. It ahould be par
mproper feeding, our; and on this
metant dopa.tment of ecience, hae been of great ume In meprosing the qualitios of horwes, preserviog their lives, and avilug them from much needlese dintrees.

Gtenders.

Thia is a dimenes of the nowe, in some measure resemding the effectin of a cold. It in belioved to be oceco doned by breathing villated air, and taken the form of on irritation of the delicate membranes of the nowtrile, ecompanied by an offensive diweharge, Glanders is tighly infectious, and inay be communicated hereditarily. When not removed In time, it will perhapa terminate in Grey, disense of the veina, which causen swelling adled fircy-ludu. The preventive of either of these dugerol: inaladien, le cleanlineme in the atable and puro untilation.

Inflammaton.

The more ordinary inflammation in that of the lungn, and is eausel by mudden changes of temperature; it is in reality the grand disordor of the horse, and its effects we only paralleled by thone of pulmonary consumption in the human npecirs. Already we have spoken of the great impropr.ty of exposing hormen, while heated, to oold dry allowing them to stand any length of tiry in th: rjus. A P, 11 culd or moist weather, is equally alyort nable, und poustively cruct. No gentleman havin theneper regard for the health of hia horsed, or fur his oin ${ }^{(r) k} \cdot \mathrm{f}$, will permit bis hormen to stand waiting in the street at night ; and many in London, rather than do $\mathrm{m}_{\text {, make a practice of not employing their own car- }}$ rige late in the evening, and procure a hackney-coach inteal. Buftummation of the lunge, however, will arise fola various caunes beaiden cold, and those havo engaged the mont merious attention of voterinarians. Some time ago, the Highland Society of Bcotland offered a premium for the beat essay on tho inflummatory complasts generally of farm-horsea, and the prize wan awarded to Mr. Matthew M. Millurn, Thorpfield, near Thiak, Yorkahire, whome paper appeared in one of the nombers of the Quarterly Jourmal of Agriculture. Soine of the parta of the eneay appear to us eo worthy of being mede known to persona who have the manageinent of hurse, that we take the liberty of giving them publicly in our pages.

After showing that there ia not any particular prediso paition to disease in the breeds of horsen usually emploged in heavy draught, nor in the particular conformation of the animals, Mr. Milburn proceede to nay, that "The port-horse, and auch as are required to perform fast mork, are more liable to attacka of diseases of the brain, the nerves, and the lungs, aimply because their work conists of rapid and powerful exertion; the farm-horee, the animal of long and steady oxertion, to gripes, inflammation of the bowels, and stomach-ataggers-results, s I shall presently show, of a management unsuited to the character of the labour we require from them. The somach of the horse is remartsably small-smaller in proportion to his size, and the quantity of food ho requires, than any other domestic animal. Nature intenda for hia. as supply of nutritioum food, and that ot ahort istrruls; wherein he materially differa from the ox, whose capacious stomach will contain food which will not be digested for houra. The post-horse, the hunter, and the eaniage horse, have food of the most nutritious description and the time durint which they are worked ia necessarily short, owing to the extreme exertion required; they return to their food; and although their appetite may for a time be impaired, anil their atomach and bowyo affected by the general dehility of the system, yot they recover their tone as socill as the rent of the fraine dmits of their taking foml. The farmer's horse, on the contrary, has food of a lese nourishing nature; his rack - Gilled with utraw, or at beat with clover; the plough-
man rises eariy, sivea him a feod of corn, and leada him to his work, where he continuen for mevan, alght, and aven nine hours, and hil whole tlay'a work is completed before he in allowed to eat. Wi de not find the ox, worked under aimilar circumstancen, co aflected in the wtomach and bowels, siniply because hin eapacion atoinach, when Alled, requiren many hourm to empty, waile, as we have meen, it is different with the hormo. Debililuted and hungry, the horme returns, and his rack is pientifully mupplied, and a good feed of com given bim, and the is left to himaelf; he eats voraciously, half mas' ticaten hie food, loada him debilitated atumeh, and hia ligestive organd meakened, and permanently is jured. This course is repeated-a habit of voracity is acquired, and at no very remote period the food lodgem and obatruet the pyloric orifice (the pasmase from the stomnach to the bowelf), fermentution ensuef, gas by evolved, the stomach is diakended, he grows slugglsh and sleepy, drops bia head upon hiv manger; or he is delifloun, and evinces that the syinpathy which exists between the stomach and the brain has excited the later organ; he rolls, pawa, and in aeized with convulsionss at longth he expires, and he han died of atomach-atog gers. The halfinanticated fool has irritated the boweln, extra exertion of the nuweles has been required to proo pel tho fueces to the rectum, and cholic or crnmp (mpasms) of the buwels has followed, of a course of continued itritation, or of continued cholic, or both, has eniled in inflammation of the bowela. I renicuiber a beautiful farm-horse, which, owing to the distance of part of the farm to which he belonged from the builto ings, wan worked the long hourn dencribed, and finished hif day's work before his bait. He was constantly subject to attacks of the gripes, which were subdued; but be died of stomach-ntaggern. The wame stable, then wo often subject to diseases, in now, ly a chooge in the syso tem, completely free from thein. Another case, however occurred; a beautiful compact little mare was constantly afficted by cholic; she eventaalig died of in flammation of the intentines.
"There are other parts of the management to which horsen employed in agriculture aro subject, which inuluce diseases of the bowels. For instance, a boy returning from work, with heated and sweating horses, to save himself trouble, allows them to drink copiously ut some pool or atream he pasees. Suddenly oice or mope of the horsea exhibit symptoms of gripes; they suddenly lis down, roll about, look at their sides, rise up, eeem rolieved, and again apeedily relapse; the sudden application of the cold water has produced apesms in the bowela, through which it has passed. This is neglectod, or perhapa gin or whisky, aided by pepper, in administered an a remedy, and severe and general inflammation of the bowels is the result; this is mistaken for anothor attack, and again the poison is administered and tha inflamas tion increased, and death follows. The horse of henvy work, too, is longer exposed to the inclemencien of the weather than tho animal of light work. In the former, the rain ia allowed to fall upon him for hours, and it is allowed to dry upon his buck; the aympathy between the akin and the alimentary organs is known to every groom ; obstructed porspiration, and consequent irritabjlity, is conveyed from the ons to the other, and diseas is the consequence. It is truc, the latter is also partly exposed to tho rain, but for shorter periode, and the wisp and brush are liberally applied when ho entera the atable; a deterinination of blood takes place to the skin, perspiration is excited, and disesse thus prevented.
"Of the best means of preventing these diseases in farm-lıorsea, we will now treat. We have attributed the peculiar liability to them in farm-horses to mismanagement, with the exception of certain ingtanecs of peculiar formation of the animsls; and although the farmer muat nocessarily work his horses longer hours than the horse
of rapid work is enpable, there is no neceruity for depriving the anlinal so long of food. No herse should work more than five or six hours without a bait. If we examine the history of the stablea of large farmers, whose fields necessarily lie at a great distance from the buildings, and where they are worked long in consequence, and compare it with thst of small farmers, under the contrnry circumstances, we shall find a striking difference as respects the health of the animals. The case referred to above, strikingly illustrates the truth of this observation. But it may he asked, how is it possible to bait the animale so fir from home? The difficulty seems to be in proenring fool upon the spot; for if this is not done, the precaution will be neglected, and, at any rate, the land will be occopied by it. This, however, may be remedied. In the case, for instanec, of a field Intended for turnips, which has to be worked during the spring, a part of it, half an acre, or in propertion to the size of the field, may be sown with winter-tares, a few of which may be mown off, and given to the animals green, without carrying them from the field, interfering with uny crop, or wasting any time in carrying the horses to a distance. If the field le intended for summer fallow, the spring tare will answer, and which may he used in the same manner, instead of allowing the poor animals grecdily and indiscriminately to crop the ?enves of the hedges at every turning, froin the impulse of hunger. There is another casy way of baiting which some carters adopt, and whinh might be applied to the farmer's horse, especially when carting. It consists in securing a bag, containing corn, over the nnimal's mouth and nose, ly a string, which passes over the poll, and is loeally denominnted n 'hose-ong,' or 'horse-poke,' and which should be removed when he has finished his fced. To prevert the effects of the wot upon the skin, an unexpensive glazed cloth mny be thrown over the horse's back, and secured to the collar and traces. This may by some be considered very troublesome, but it will he found, that when it is once leggun, it will be considered no more trouble than earrying the rest of the harness, and if disesse is prevented, the trouble amounts to nothing. To counteract as much as possible any habits of greely feeding which the horse may have aequired, his ccrn should he mixed with chopped straw or chopped clover, which will secure its proper mastication, and prevent many troublesome complnints, as well as render all the nutrition of the food available. These may be substituted by an admixture of elean chaff with corn, a plan which is pursued in a farm stable with which I am acquainted, and is found a useful practice. - It would save the animals much time incating, if all their food was chopped, and perhaps steamed; but on this subject we have not sutlicient data to determine with aceura.v."

The cure, it has heen hinted, must generally be left to the veterinary practuioner, whose chief object should be to empty the stomnch. In severe cases, an ounce of Inodanum and a drachm of pounded ginger, in a quart of warm ale, inay le used with probable success.

Broken-Windedness.

When the breathing of n horse is rapid nnd laborious, It is said to be thick-minded and when it breathes irrecularly, the inspiration taking one effort and the expiration two, it is called broken-winded. Inflammation of the bings from cold is the cause of thick-windedness, the condition of these organs preventing the full action of the air-tubes. 'This complaint, if not removed, will most likely terminate in the broken-winded condition; but broken-windedness will take phace without this premonito:y svmptom. 'The main cause of broken-windedness is sharp work after over-foceling-causing the animal to run while his stomach is full. The distended meubrane presses upon the lungs, and causes a rupture
in the air-cells, by which aeveral celle are thrown mot one. Thus the breathing is at once reatucred irregula by imperfect muscular action in the parts.

This disease is almost invariably the result of shes carelessness in the persona whose duty it is to superis tend the feeding of the horse. The case standa as fot lows:-"Suppose a horso to be a gross fecder, and is have filled his stomach with straw and hay, and proven der that occupies a great bulk, and contains little now rishment, tho lungs are squeczed into a less than the natural compass. Let the horse be now suddenly and sinartly excreised; more blood must bo purified, and in the violent eflort to accomplish this, somo of the cells givo way. Therefore we do not find brokenewinded horses on the race-course, for although every exention of speed is required from them, their food lies in siadl compass, and the stomach is not distersled, and the lung have room to play, and care is taken that their exertion shall be required when the stomach is nearly empty. Carriage and coach-horses are seldom broken-winded, unless they loring the discuse to their work, for they ton live principally on corn, and their work is regular, and care is taken that they shall not he fed immeuately lefore their work. 'The farmer's horse is the liokerewinded horse, hecnuse tho food on which he is fevis bulky, and too often selected on account of its chesp. ness; because there is little regularity in the manare inent of most of the farmer's stables, or the work uf his teams; and because, after many an hour's fasting, the horses are often suffered to gorge themselves with this loulky food; and then, with the stomach pressing upos the lungs, and almost impeding ordinary respiration they are put ngain to work, and sometimes to that which requires considerable exertion.
"This discase depends as much upon the crampod state of the lungs, from the pressure of an over-gorged stomach, in the ordinary state of the animal, as on be eflects of over exertion. The agriculturist knows tha many a horse becomes liroken-winded in the straw-zad There is little nutriment in the provender which he there finds; and to obtain enough for the support of life, he is compelled to keep the stomach constantly fulh, and pressing upon the lungs. Some have come up fres grass broken-winded that went out perfectly sound.
"The cure of a broken-winded horse no one evernir nessed; yet much may be done in the way of pallation The food of the animal should consist of much nutiment condensed into a small compass; the quantity of oats should be increased, and that of hay propertionshly diminished; the bowels should be gently relaxed the the frequent use of mashes; the water should be given sparingly through the day, although at night the thin of the animal should be fully satisfied; ond crerris should neter be taken when the stomach is full."(Lib. Lise. Knou.)

Curb-Mog.Spavin-Bone-Spavia.

The hock-joint is particularly liahle to derangemoth so as to render the animal unsound. One of these afife tions is called curb, which arises from over-enertion of to lignments, and takes the form of an enlargement fex inches beneath the joint of the hock. A mere serimes complaint of the hock is the bog-iparin, which take phace from over-exertoon, and is ant inflsmmation in the vesicles containing the lubrienting material for the jont 'Clais disense is almost incurable; ond the poom animad is in general only fit for ordinary mad moterate work all the rest of his life. The bone-spavin is a still more formita. hede discase. It is an aflection of the lwones of the hade joint, caused by violent action, or any kind of shame which throws an undue strain on certain lizaments, and leranges the setion of the lones. A bony deposit take phace, the joint is atiffened, and the conserurne is I lamencss or stifl motion in the hind lega. Blistering, a

- :ounter-irit cribed for the to overioad the no is to preve planits.

Horees that occasionully ge that is, purgativ havo been too when they get work, when the when they are g is a bran-mash. with boiling wa to the onimal as hay. About ho comasereial trav and fed on con night; nul this gool condition.
When a work must remain icllo ly s dose of ph four to nine drac formed into a ro It requires to be o push it over the mas. Sometimes map. An luour o should be given, oa his return to tl wher from which will take it.
We should con explanations of th recommend all un sons not to atten but to call in at or

ADPICE
The purchasin very serious dillie trickiness of deale muintal's constitut cire that may be this important pa tioas of authoritie fidence. Mr. Stev entited, ". Advice should be in tho sion to make pure admonitions :-
"In buying a h stteaded to, is the animal possesses: with goad conform luable. Its absenc is he discovered b arod disappointem slice to obtain one be set to the work if he is iutended sherald have no co work well in comp alone.
"Sume horses are dilficult to man dishlayed when a masons for having if that canoot b mgarding tho nni gractal ajpearane

- ounter-iritant, and rest, aro the chief remedies prearibed for the complnint; but the beat thing of all is not on overload the horse, or put him to any violent exertion, to na to prevent nct only this but othor aimilar complayits.

Phynicking

Horses that are attended to with the greatest care occasionally get into n condition which requires physic, that is, purgativo medicine ; as, for example, when they have been too long on hard fool and require a laxative, when they get into a heated state of hody from constant wrk, when their howels get overloaded or disordered, or when they are getting too fat. The most simple laxative is a bran-mash. Bran is put into a pail and softened with boiling wnter; when cooled sufficiently, it is given to the animal as the last feell at night, instead of corn or hay. About half a pailful is a dose. Horses used by comnercial travellers or others during the whole week, and fed on corn, are indulged in a mash on Saturday night; nud this, with the rest on Sundny, keeps them in gound conilition.
When a working-horse is lamed, or becomes sick, and must remain illle for a few days, he requirea to be relieved by a dose of physic. Generally, this censists of from furr to nine drachoos of Barladues nloes, powdered and formed into a round moistened inass, fit to be swallowed. It requires to be ndmini terel by a skilful groom, who will push it ever the thront ndroitly without animing the aninal. Sometimes the powder is mixed with a little Castile seap. An hour or less nfter taking physic, a bran-mash slould be given, and then the horse be gently exercised; on lise return to the stable be may he offered a drink of whter from which the chill is taken, or as warm as he will take it.
We should consider it imprudent to offer any further explunations of the inateria meclica of horses; nad again reoommend all unskilled or but partinlly instrueted persona not to nttempt doctoring their horses themselves, tut to call in $n t$ once the advice of a veterinary surgeon.

advice in purchasino a horse.

The purchasing of a horse is ordinarily a matter of very serious difficulty, in consequence of the proverhial mickiness of dealers, and the many defeetive points in the animal's constitution which cannot be seen with all the cire that may be bestowed. In offering any hints on this inportant particular, we must refer to the instructions of authorities whase testimony is worthy of confilence. Mr. Stewart has written a valunble little manual, entitled, "Advice to the Purchasers of Horses," which stould be in the hands of all who have frequent occasion to make purchases. The following are a few of his adinonitions :-
"In buying a horse, one of the chicf requisites to be attended to, is the degreo of nervous energy which the aaimal pussesses; nud it is the union of this energy wihh good conformation that mnkes many horses invatualle. Its alsence or presence, however, is not likely to ve discovered by the purchaser without a trial, and to sroud disappmintment in this respeet, it is therefore advisshe to obtain one prior to purchase. The horse should be set to the work he will he called on to perform; and if he is intended for the saddle or single haruess, he bhauld have to companion on his tring, for many horses wark well in company that are downright eluggards when alane.
-Some horses have an umpleasant way of going, or are ditificult h, maviege, or have some viee which is only diglayed when at work. These are so many more manos for having in trial prior to striking a largain. But if that callnot be oltained, some sort of condlusion regarding the animal's spirit moy he drawn from his gencral appearance. The way he carries his head, his
attention to aurrounding objects, hia gait, and the lively motion of hia cara, may all or each be looked to as indi cative of 'bottom' or willingness to work. It is only however, in a private atable, or in that of a reapectable dealer, that these criteriu can bo depended upon; for in a market-place, tho animal is too much exeited by the cracking of whips, and the too frequent applicution of them, to be judged of as regards his temper. Neither must the buyer be thrown off his guard by the amination which horses display at an anction; or om coming out of the stuble of a petty dealer; for it is a fact which cannot be too well made known, that there are many unprincipled dealera who make it their business, iefore showing a horse, to 'put sone lif. in him,' Hat is, they torture him with the lash, till, hetween pain ond fear, the poor animal ia so much excited as to hound from side to aide with his utmost agility, at the least sound or movement of the bystanders."

This writer continues, in relation to the hend and other parts of the animal:-"The head, us being a part not at all contributing to progression, should in the saddle-horse be smanl, that it may be light-the nostrils expanded to adanit plenty of air, and the space between the branches of the lower jaw, called the chamel, should he wide, that there may be plenty of room for the head of the windpipe. In the draught-horse, a henvy head is not, as far as utility is conecrned, an objection, for it ennbles him to throw some weight iuto the collar ; and hence, exceptirg its ugliness, it is rather an advantage if he is used entirely for draught. But it makes the saddle-horse bear heavy on the hand of the rider, monkes him liatle to stumble, and, when placed at the end of a long neck, is apt tc wenr out the fore feet and lega ly its great weight. The neck of the sadde-horse should be tlin, not too much urched, and rather short than long, for the same renson that the head should be light: und, in the draught-horse, it may be thick, stallion-like, and sufficiently long to afford plenty of room for the collor, and for the same reason that the head may the large in this animal. The windpipe should be large, and statding well out from the neck, that the air may have an casy passage to and from the lungs. The horse used for both earrying and drawing should have a head and neek neither too light nor too henvy.
"That the saddle-horse may be safe, nond have extensive netion, it is necessiary thut the withers be hish. This advantage is indicated by the horse standing well up teforo; and it is usual, in showing a hoose, to exaggerate the height of the toreland, hy making hin stand with his fore feet on a somewhat elevated spot. A horse with low withers app;ears thiek and cloddy nhout the sloulder. In the ass and mule, the withers nre very low, and the shoulders very flat, and this is the reason why they are so unpleasant to ride, and why it is next to impossible to keep the sadhle in its proper place without the aid of a crupper. High withers, however, are not essential to the racer or the draught-horse. The former loes all hie work by leaps, and that is performed best when the horse stands somewhut higher behind than before: neither are high withers necessary to the draught-horse ; but in the roadster they are as inportiant as the safety of the rider is, for a horse with a low foreland is casily thrown on his kuees. In the dranght-horse, this tendeney towards the ground is olviated by the support the colliar afforla.
"The chest should be deep and wide in all horses, tut especially so in one intended for quick work, in ordor that there may he plenty of room for those important organs, the lungs.
"The lmek slould not be too long nor too ahort; for though length is favourable to an cxtended stride and rapid motion, yot it orakes the herse we 't, and nuable either to draw or carry any eonsiderable weight. On the other hand, if the lairk the too short, tho horse's action must be confiued; and shorthutked horses, in generah
make an unpleasant ncise when trotting, hy atriking the ' ness. Broken knees do not impede a sound warman' shoe of the hind foot against the ahoe of the fore one: and thougli they are in general very hardy, and capable of enduring much fatigue, and of living on but little food. yet a back of middling length is better hy far than one ammoderately short or long. The back aliould be nearly etraight.
u In the saddle-horse, and where asfety is desirable, the position of the fure leg ia worthy of attention, It mould be placed well forward, and descend perpendicuJarty to the ground, the toe being nearty in a line with the point of the ahoulder. The pastern should neither be turned in nor out. When they are turned inwarda, the horse is in general very liable to eut the fetlork-juint by atriking the opposite foot against it. The draughthorse nay be excused though be leans a little over his fore legs, but the saddle-horse will be apt to stumble if he doea so."

Minute attention should be heatowed on the examination of the fore legs mud feet; these, in furt, are the great trying points. If the fiet be not round and full, su as to atand firmly and fatly on the ground, and if tender or thin in tho hoofa, the aninal is not to be trusted for saddle-work. Mr. Lawrence on thia subjeet remarks"The feet of sadille-horscs, lie they ever so sound and good in nature, detract greatly from the value of the nag, unless they atand even on the ground; since, if they deviate inward or outward, the horse will either knoek or cut in the speed, that is to sny, will strike and wound the opposite pasterns. either with his toe or hia heel; and if he bend hia knees much, and is a high goer, will cut the inside of the knee joint. Nature has been very favourablo in the hinder hoofs, with which we lave seldom much trouble; but there is, now mad then, a most perilous defect in them; namely, when the horse is so formed in his hinder quarters, that he overreachen. and wounda his fore heels with the toes of his hind feet." The defect here apoken of will be observed to cause an unpleasant claturing noise in trothig.

The fore legs, from the kneea downwards, should be clean made, sound and flexible at the joints. Bstl usage tnocks up a horse, or fouotera him; and his legs, heing in a kind of benuinbed state, will either wholly or partially refuse to pertiom their oftice. By ease and physicking the horse recovers; but hia syatem has heen shation, and he is apt to come down. 'lhis is a fearful defect in a harse; for no one is fur a moment safe on his back. Weakness in the ferlork-joint will also cause a horse to wtuinble and come down, and is therefore an equally serious defect. When the horme stumbles, so as to come down on his knees, the likelihood is that the kneer aro broken; and it is well known that wounds of this nature never heal over to resemble the original. The horse with broken knees is, in short, dsmaged for life, at least in as far as he is a marketable commodity. A good horse, however, may be thrown down on his knees by a bad riber, merely from his head not heing held well up while running or quick trotting downhill over a hard road. Such a circumstance as this ought not in genersl to injure the character of a horse; but it is indisputablo that it does oo in the estimation of buyers.

Honses are sold either with or without warranty. At malea at repositories, the terias of warrafly are generally announced in a public manner; but when the sale is private, no warranty is binding which is not expressed in writing in the receipt. The princijle that a prico above ten pounda warrants a horse sound, is not now recognised as binding. The warranty must be something dillerent Irom a nuere underatanding or illusory custom. "When a horme," says Mr. Lawrence, "is nimply warranted sound, that does not eatend either to his qualificationa or dispostion; it merely guaranties that the animal, at the time of sale, is neither lame, blind, hroken-winded, or in any prafect dincawd, or han any invending cause of unsound-

We offor these hints on warranty with much diffikleno for the rules on the aubject are conatantly attering by legal decisiona.

THE DUTIES OF HoRsEg. Draught.

The horse is equally willing to make himself useful as a beast of burden or draught ; but his powers are best adupted for draught, and purticularly on a level road The formation of hia body does not suit him for elimbing or going uli-hill with a lond; and his strength is almayg exerted to greatert ndvantage when he can throw bin centre of gravity forward as a makeweight. The amount of loat whith he can draw in a wheeled vehiele, depents on the arrangement of the lond to the pull. The pulting point is across the shoulders, and the more asd vantageous method is to make the tine of traction prow ceed direct from the shoulders to the load-in no ahape bent or distracted from its course. The loat should be placed lower than the line of the shoulders, thus making the line of trnction go by a struight alope to the seat of resiatanee. 'The lond should not be at a greater distance than will allow ticedon of motion to the hind legs. II the load be placed too low, a part of the power will be uselensly sjent in lifting it.

According to tho calculations of James Watt, the weight whicit a horse cun draw, called a horse poter, is $\mathbf{1 , 9 8 0 , 0 0 0}$ ths. raised one foot high per hour, or 33,000 lbs. raised one foot per minute. The weight is supposed to hung at the end of a rope passing over a freely moving pulley. This cnlculation is based on conadetation more favourable than those which usually attend torse-labour. There are, in reulity, no rules to guide the imposing of loads on horses; for every thing dependa on the degree of friction on the wheela of the carriage, the nature of the road, and the strength of the animal in question. One thing is certain, that a horse always exerts his power better by himself than when yokel with othem 'The load which it requires four horses to draw united!?, if dividet, could twe drawn with equal case by three. The following olservations in the Scotsman newspaper (Jum 1839), referring to the operations of Sir C. Stuart Men. teith, deserve to bo noticed:-
*Fron the expericnee this gentleman has had in th use of animal power upon common roads, he is of upi. nion that the nost ceonumical mode of employing hores in druught is to give every horse his own carriage, and that he should solely depend upon his own exertions in drawnes the load, as otherwise it is well known that it is diflicult to find cither mans or beast equally willing or enpable to make the same excrion, or to have the same npirit or motion; and nt the same time never to exced six miles on one stage, nud to be jerformed twice delly. Fu a stage of three miles and a half, Sir C. Stuart Mer teith employs wugons weighing eighteen ewt., in which borses druw three tona. The road is in general upons declivity of one foot of fall for every eight sixteen, of eighteen feet, with several ascents of one foot in ever! thirty fert, up whicli a horse draws the load of three tonis and a wagon of eighteen ewt.; but in order to faciliate the ascent, a continuuus line of asmelatone railroad is fird laid down, upon which a plate of iron, six inches milk, by a quarter of an inch thick, is fixed down. In ondet wenable a horse to bing a load of three tuns down any rate of descent, a friction-break has twen employed. sinilar to the one in common use in Belgium, from which Sir C. Stuart Menteith derived this important application The lireak is a strong plank, fixed to the hark of a cat or wagon, which, by means of a screw, the carter pressen againat the two hind wheels of the machine, so as io give a mufficiency of friction to retard the too rapid dew acent of the carriage. Ihia plan lats been empleys with great sucecsa by Mr. Croal coach proptietor in Elior
wigh, from the au nas now used it m wigone. The mc lying axle to the of a coach, and w with a bevel wheel by a winch by tl moving from his se coach, the livea al served, as the guar :unning away with as it were, of the w two hind whecla hreak. This kind with perfect gecuri at any rate of at wagons, weighing adopted in conveyil one horse would immenae horses d_{1} tons one cwt., in n the ahat horse is ol tuming out of on greatest crucity to jocted."
The larger the reasonable proporti dostacles on tho ro easy to tive horses. ever, have often b them run fairly in has been to make t the axle, and to ca esech extremity to a is of importance to best when its tire is are at right angles jects attaight out. of a hoop: a hoop on ,the tim, require licep it moving that go round in a cire wheels may be a lit are gool, that is sci
The power of dr: at which he is co power to most adv at the rate of from bour. If he go at draw. As a gener load should be hal bled, the load shou hold as correct for : procured from a ho stages. A horse i miles at a time an last at least four equal power which well understood by pages have now unes. Such a fact travellera. Wheth niding, the horso work in two distin mother in the afte He should also, to during the whole o loads, a listance la considered a suff

The art of riding of inatruction, and Who have not bee
VoL. I. -75
vergh, from the auggestion of Sir C. Stuart Menteith, who nes now used it more than fourteen years upon his coalwingone. The mode adoptod by Mr. Croal is to fix a lying axte to the plank pressing upon the hind wheels of a coach, and which is turned by an upright shaft, with a bevel wheel connecting the two shafts, and turned by a winch by the hand of the coach-guard, without moving from his seat. Were this break applied to overy coach, the lives and limba of thousands would be presarved, as the guard would be able to stop horses when sunning away with a carriage-as it if thought the treble, as it were, of the weight of a coach is to be drawn, if the two hind wheets are prevented from revolving by the hreak. This kind of break enablea a coachman to drive with perfect security down a descent of any length, and at any rato of speed. If the employment of horse wagons, weighing from twelva to thirteen cwt., were adopted in conveying coal through the atreets of London, one harse would do the work of two; at present, four immense horses draw threo chaldrons of coal, or four tons one cwt., in a wagon weighing two tons; so that the shatt-horse is obliged to draw a weight of six tons in tuming out of one street into another, which is the greatest cruelty to which a poor animal can be subjerted."
The larger the size of wheels in a vehiele, within a reasonable proportion, so is the friction in overcoming abstacles on the road less, and so is the draught more esyy to tine horses. The bencfits of large wheels, however, have often been completely lost by not making them run fairly in an upright position. The custom bas been to make them dished or bevelled outward from the axle, and to cause the axle to lean downward at cach extremity to accommodate this peculiar shape. It is of importance to understand that a wheel always runs best when its tise is of equal diameter, when the spokes are at right angles to the axle, and when the axle projects straight out. This is exemplified in the trundfing of a hoop: a hoop which is perfectly upright and even on, the rim, requires less force to send it forward and keep it moving than if it were bevelled, and inclined to go round in a circle. For the sake of convenience, wheels may be a little dished, though now that the roads are good, that is scarcely necessary.
The power of draught of a horse depends on the rate at which he is compelled to proceed. He exerts his power to most advantage at a fair pull, when moving at the rate of from two and a half to three miles per hour. If he go at a greater speed, he is less able to draw. As a general rule, if the speed be donbled, the bad ahould be halved; and if the speed be twice doubled, the load should be quartered; yet this will only hold as correct for short distances. Much work may be procured from a horse if he be impelled only for short stages. A horse in a stage-coach, running only five miles at a time and then resting for a few hours, will last at least four times longer than another horse of equal power which runa ten miles at a time. This is well understood by all stage-coach proprietors, and short *ages have now ulmost everywhere superseded long ones. Such a fact should also he known to all private ravellers. Whether employed in a gig, chaise, or for nding, the horse on a journey should take his day's wark in two distinct stages; ono in the morning, and mother in the afternoon, when rested and refreshened. He should also, to remain in good condition, hnvo a rest during the whole of Sunday. In journeying with light loads, a distance of from twonty to twenty-five miles la conaidered a suffieient day's task.

Riding.
The art of riding or equitation forms a regular hranch of inatruction, and is seldom well performed by those who have not been regularly taught. It is not to be
suppr sed that any thing we can say can aupersede the instructions of the riding-school; but it mny be of use to offer a few hints on the aubject from tha beat authorition.

Riding should be performed in that manner which in least caleulated to oppress the horse and fatigue the rider, and which will be most socure for both parties. The first principle in horsemanship is, that the horse and his rider should act and react on each other, as if governed by one common feeling. To attain this end, the rider must acquire the knack of halancing himself properly on the animal, and establishing the means of making himself understood through certain movements of hand and body. A good horseman will act according to the following directions, given in Walker's Manly Exercises:"The phace of the rider's seat is that part of the saddle into which the rider's budy would naturally slide were he to ride without atirrups. This seat is to be preserved only by a proper halance of the body, and its adaptation to even the most violent counteractions of the horse. In relation to the thighs, the rider, sitting in the middle of the sadule, must rest. chiefly upon their division, vulgnrly called the fork, and very slightly upon the hips The thighs, turned inward, must rest that upon the sides of the saddle, without grasping; for the rider's weight gives sufficient hold, and the pressure of the thighs on the saddle would onty lift him above it. The knees must he stretched down and kept back, so as to place the thighs several degrees short of a perpendicular; bnt no gripe must be made with them, unless there be danger of losing all other hold. If the thighs are upon their inner or flat side of the saddle, both the legs and the feet will be turned as they ought to he. Thus turned, they must be on a line parallel to that of the rider's hody, and hang near the horse's sides, but must not touch; yet they may give an additional hohl to the seat, when necessary, and the calves must act in support of the aida of the hands. The hcels are to be sunk, and the toes to be raised, and as near the horse as the heels, which prevents the beel tonching the horse. As to the body, the head must be firm, yet free; the shoulders thrown back and kept square, so that no pull of the britlle may bring them forward. The chest must be advanced, and the small of the back bent a little forward. The upper parts of the arms must hang perpendicularly from the shoulders, the lower parts at right angles with the upper, so as to form a horizontal line from the elbow to the little finger. The elhows must be lightly closed to the hips, and, without stiffuess, kept ateady, or they destroy the hand. The wrist must be rounded a little outwards. The hands should be about three inches from the body, and from the pommel of the saddle, and from four to aix inches apart; the thumbs and knuckles pointing towards each other, and the finger-nails towards the body. When the rider is in the proper pesition on horseback without stirrups, his nose, breast, knee, and instep, are nearly in n line; and wifn stirrupa, his nose, hreast, knee, and toe, are in a line. The man and the horse throughout are to be of a piece. When the horse is at liberty, or disunited, as it is termed, the rider sits at his case; and, as he collects and unites his horse, so he collects and unites himself. There must, however, be no stiffincss of manner more than in sitting on a chair; for it is case and elegance which distinguish the gentleman."

Riding, to one nccustomed to it , is best pertiomed with a curb and snafle bridle; the curb, however, being only employed to bring the animal up by pressure on the mouth, when occasion requires. As some horses have a much more delieate mouth than others, the nature of the britle must depend on circumstances. In holding the rcins, n union of firmness, gentleness, and lightneas. is the essential requisite. The foregoing anthority alludes to the manner in which the reins are to operate on the mouth of the nnimal:-_ The hand being con nected with the reins, the reins to the bit, the bit operst

Vol. 1.-75
ing in the curb on the bars, and in the snaffin on the lipa, the rider eannot move the hand, and scarcely even a finger, without the horse's mouth being more or less affected. This is called the correspondence. If, moreuver, the hand De held steady, as tho horse advances in tho trot. the fingera will feel, by the contraction of the reins, a slight tug, occasioned by the cadence of every step; and this tug, by means of the correspondence, is reciproenlly felt in the horse's mouth. This is called the appuy. While this relation is preserved between the hand nnd month, the horse is in perfect obedience to the rider, nnd tho band directs him, in any position or action, with such ease, that tho horse geems to work hy the will of the rider rather than by the power of his hand. This is called the support. Now, the correspondenve or effective communication between the hand and month-the nupuy, or atrength of the operation in the inouth; the support, or aid, the hand gives in the position or action, are nlways maintained in the manege and all anited paces. Without these, a horse is under no immediate control, na in the extended gallop or at full apeed, where it may require a humdred yards to pull before we can stop him. The degree of correapondence, appuy, and support, depends, in horsea otherwise similar, on the relative situntion of the hand. The act of rnising the rider's hand increases his power; and thia, raising the horse's hend, diminishes his power. 'The depressing of the rider's hand, on the contrary, dininishes his power; and this, depressing the horse's head, increnses his power. On these depend the unitedness or dismitedness in the action of the horse."

Much may be done to animate a horse, either in riding or drawing, by addressing a cheerful worl to him, instead of the lashing and scolling with which he is too fiequently visited. If a horse requires correction or irging by the whip, he should only te touched lightt! behind the girth and saddle, never on any account on the head or in a foro part of the body. Some cartera atrike their horses with sticks over the head and legs, and yell to them like savages-two practices equally detestable, which we should be glad to see abolished. We have also scen riders so lost to humanity, as to whip their horses when restive over the head and ears. Should a rider find that his horse designs to baffle him, he must be pressed by the legs, urged lightly with the spur, and kept in his proper traek, but not drawn up with the eurb, or terrificd hy abuse.

The nost common pace in road-riding is the trot, which in effert is a rapid walk, and most difficult for a rider to perform with adiress and a small degree of fatigue to hisnself. In slow trotting, the body should adhere to the saddle, and when it liccomes fast or rough, the body may be raised at tho proper moments to ense the jolting. This rising of the body, however, is to be a result of the horse's action, not an effort of the rider. The proper method is to rise and fall with the leading foot, the body rising from the seat when the leading foot is elevated, nnd falling when the foot sinks. Unskilful riders make an unnecessary effort by trying to rise and fall in the saudle.

In the course of cither slow or fast riding, the horso may trouble his rider by plunging, slyying, or restiveness. If he kick and plunge, ait upright, hold on ly the legs, and do not vex him ly any lsshing; when lef alone, he is not long in coming out of his freak. When he shies, or flies to one side, as if afraid of something, press hint on the side to which he is flying. keep up his head, and lring him into his track. Pressing both legs against his *:des will generally keep him from runuing hackward. When he beeomes restive, that is, turns round, and has a dienclinstion to go in the way he is required, the rider most keep him in his track by dint of pressure, a tonch \checkmark the spur, and the hand. If he has becn accuntomed
to spurs, nnd finds that your heels are not provilied muth these appendnges, your case is very hopeless. Wim must allow Walker to point out the course to he purnood with a reative horse. If he perslats in turning round the rider must continue "to attack his unguarded side, turn him two or three times, and let the heel and spon, if nccessary, assist the hand, before he can arm or defced hiniself against it. If he still refuse to go the right wny, the rider must take care that he go no other, ond imhne: diately change his attack, turning hlm about and roining him backward, which the horse is easily compelled to $\frac{1}{}$ when he seta himself against going forward. In thiso contests, the vider must be collectecl, and bave an eye to the aurrounuing objcets; for restive horses try their p) nost to place their riders in awkward situations, by sidling to other horses, carriages, the foot-pavement, the houses, \&e. In this case, the rider, instend of pulling him from tho wall, must hend his head to it, be which his sido next the wall is rendered concave, and his oh most endeavours to do injury aro prevented. The in stant, therefore, that the rider perceives his hores sidlimg to any ohject, ho must turn his head to that object, and hack him froin it. Thero nre some horses who set themselves like stocks, setting sll enlenvours to move them at defiance. There, happily, their defeuce can in no wny endanger the rider. It must, hovever, be converted to pruishment. Let them stnnd, mako no attempt to move them, and in a short space-frequently lees han i minute-they will move of themselves."
The aine author recommends tho rider to remina perfectly cool in ail these awkward circumstances, "When passion," bo olserves, "possesses the rider, tt prevents that concord and unity tuking placo which ever shoold sulsist between the rider and his horse. He should at ways bo disposed to amity, and never suffer the mos olistinate resistance of the horse to put him out of tem. per. If the contest does not demand his utmoas exes tion of strength, he should be able to hum a tune, or con verse with the samo composure and indifference though his horse wero all olvedicnee. By these meang the instant a honse finds hinself foiled, he desists, having no provocution to contend farther, and is abashed at hin own weakness. It is the absence of passion which, nildel to cool observation, makes the English the bea riders and drivers in the world."

Neither in the abovo section nor elsewhere have m snid any thing of the accoutrements of the horse, as all articles of this kind must be left to the taste of the party concerned. The harness made by nll sadders is now both handsome and commodious, nnd so well caleulated for the comfort of the animals, that it would be super. fluons to say any thing respecting it, firther than to mom commend its always being kept clean and glossy, and that it nowhere galls or preases unduly on the snimalt bokly. A properly bred and carcfully treated hore is proid of his harness as well ns his coat being kept in good condition: and these, like other points in the economy of this highly usefill animal, we press on the attention of all whose duty includes the care of horses.

In concluding this cemprehensive treatise, which at pires only to be a manual for horse management in artio nary circumstances, we have much piensure in refer. ring for full information on the sulject to a variety of excellent treatises of recent diate : mnong others-"The Horse," in the "Farmers' Seriev-Lilirary of tefofu' Knowledge," which we have occasionally quoted; "Star he Manggement," and "Advice to the Purchagers of Horses," hy Mr. Stewart (Blackwool and Sons), two volnazes, which can be recommended for their gros practien! utility; also, Walker's "Manly Exercise"" (W. S. Orr and Co., London), for instructions in Egur tation.

Next to the horse useful animal which and retain perinanel of which it is the fel antia, in the class A the animala ruminat and have manmen o roung. In the ox 4 sjpecies, all more or 1 of tho domesticated eultivation are now other of its genern, benst of draught, its leen domesticated a times, in somo cot rauk of n divinity, extrence venctation.
The domesticated and nuljazent parts nisterially altered fr by elinate, peculiar subljection, its hony power, its ferocity : proved. Our obser refer chiefly to the have been effected able of these altern giving milk. In a dinnks into mn in of suckling is ove sake of its milk, an from it by artificial ressels collarge, an romo a prominent manner, by constan tivated species of and rendered suital tantly made on it. that those milk-yic different varieties fom the influence unnecessary to inq milk, but of a thin less milk, hut of a th:n, the cow-keet question for him to In general, nenr milk is considerable mas which will giv of what sort. Pri

Next to the horse, the cow is justly valued as the most useful animal which man has been able to domesticate and retain permanently in his service. The ox tribe, of which it is the female, belongs to the order Ruminanti, in the class Mammalia, these terms inplying that the animals ruminste or chew their food a seeond time, and have mamine or teats with which they suckle their voung. In the ox tribe there are different genera and species, all more or less differing from each other; and of the domesticated ox, the varieties from the eflect of cultivation are now very numerous. 'I'he ox, in one or other of its genera, and for the sake of its labour as a benst of draught, its flesh, or the milk of its fumale, has leen domesticated and carefully reared from the carliest times, in some countrics baving been raised to tho runk of a divinity, or at least held as an object of extreme veneration.
The domesticated species of oxen common to Britain and adjacent parts of Europe, is, in all its varieties, materially altered from its wild parentage. Influenced by climate, peculiar feeding, and training in a state of subjection, its hony structure is diminished in bulk and power, its ferocity tamed, and its tractability greatly improved. Our observations in the present sheet will rffer chiefly to the cow, on which very great changes have been effected by domestication ; the most remarkable of these alterations has been in the capncity for giving milk. In wild state, the udder is small, and shnnks into an insignificant compass when the duty of suckling is over; lut when domesticated for the sike of its milk, and that liyuid is drawn copiously from it by artificial means, the lacteal or milk-secreting vessels enlarge, and the wder expands, so as to berome a prominent feature in the animal. In this manner, by constant exercise, the economy of the cultivated species of cows has been permanently altered, and rendered suitable to the demands which are conmantly made on it. Yet it is important to remark, that those milk-yiclding powers are not equal in the different varipties or hreeds of cows. Some breeds, from the influence of eirenmstances which it is here unnecessary to inquire into, give a large quantity of milk, but of a thin or poor quality, while others yield lesg milk, but of a good or rich quality. Whether, then, the cosv-kepper wish grantity or quality, is the question for him to solve in making a selection of stock. In general, near largo towns where the demand for milk is considerable, the ohject of dairymen is to keep ows which will give a large yuantity of milk, no matter of what sort. Private families in tho country are
usually more regariful of the quality of the article they wish a little milk which is good, some fine cream, and perhaps, slso, some sweet butter and cheese, and on that necount are moro careful in the choice of their cows. The following is a list of breeds which may aid the selection of cowa in these different respects.

breeds of cattle.

The breeds of cattle throughout the United Kingdom vary in different districts from the small hardy varieties of the north Highlands, to the bulky and handsome breeds of the sonthern parts of England. It has been customary to elassify the wholo according to the comparative length of the horns-as the long-horned, short homed, middlo-horned, crumpled-horned, and hornless or polied breeds. Besides these, there are many intermixed breeds. The middle-horned cows, which are found in the north of Devon, the east of Sussex, Herefordshire, and Gloucestershire are among the most valualle and beautiful varieties of the animal.
The intelligent suthor of the work on Cattle, published by the Society for the Diffusion of Useful Knowledge, thus describes what ought to be the proper form and slapio of cattle:-" Whatever be the breed, there are certain conformations which are indispensable to the thriving valuable ox or cow. If there is one part of the frame the form of which, more than of any other, renders the amimal valuable, it is tha chest. There must be room enough for the heart to beat and the lungs to play, or sutficient blood for the purposea of nutrinent and strength will not be circulated; nor will it thoroughly undergo that vitnl change which is essential to the proper discharge of every function. We look, therefore, first of all, to the wido and deep girth about the heart and lungs. We must have both: the proportion in which the one or the other may prepouderate, will depend on the service we require from the aninnal; we enn excuse a slight degree of flstness of the sides, for he will be lighter in the forchend, and more active; but the grazier must have width ns well as depth. And not only about the heart and lungs but over the whole of the ribs, must we have both length and roundncss; the hooped as well as the deep harrel is essential; there must be room for the capacious paunch, room for thes materials from which the blood is to be provided. The beast should also be rilbed home; there should be little space between the ribs and the hips. This seems to be indispensable in the ox, ns it regards a good healthy constitution and a propensity to fatten; but a largeness and drooping of the belly, notwithstanding that the symmetry of the animal is not inproved, are considered advantagcoua in the cow, because room is thus left for the udder; nul if these qualities are accompanied hy swelling milk veins, her value in the dairy in generally increased. This roundness and depth of the barrel, however, are most advantageous in proportion as found belind the point of the clbow more than between the shoulders and legs; or low down hetween the legs rather than upwards towards the withers: for the heaviness before, and the comparative bulk of the coarser parts of the nnimal, are thus diminished, which is always a very great consideration. The loins should be wide. Of this there can be no doubt, for they are the prime parts; they should seem to extend far along the back. and although the bely should not hang down, the flanks should be round and deep. Of the kips it is superfluvem 0.5
to say that, without oemg ragged, they should be large; round rather than wide, and presenting, when handled, plenty of muscle and fat The thighs should be full and sing, close together when viewed froin behind, and the farther down they continue close the better. The legs may occasionally vary in length according to the Costination of the animal ; but ahortness is a good generuil rule, for there ia an almost inseparable connection thetween length of leg and lightness of carcuss, and sliortnegs of leg and propensity to fatten. The bones of the leg (and they are taken as a sample of the bony structure of the frame generally), should be simall, but not too amall-small enough for the well-known accompaniment, a propensity to fatten-sinull enough to please the consumer; but not so small as to indicete delicacy of constitution and linhility to disease. Lastly, the hide -the most important thing of all-should be thin, but not so thin as to indicate that tho nnimal can endure no liardahip; movable, mellow, but not too loose, and particularly well covered with fine and aof hair."

Of the various breeds nnd cross-breeds of cows now In use, there are a few which enjoy the best reputation. We inay nome, for example, the Oll Yorkshire Stock, a cross hetiveen tho 'Tceswater and Holderness breed; the Long-horned or Lascashire lirced, the Short-horned or Dutch brced, the Middle-horned breeds of Devonshire, Sussex, and Hereford, the Ayrshire breed, the Alderney breed, \&c. Some of these merit particular attention. We should first point to the

Devonshire Cow.-The Sovonshire is a handsome breed of cattle, well set upon their lega, strnight along the back, amall muzzle, generully red in colour, and both as oxen and cows, they feed well at an carly age. The cow is mucb smaller than the bull, but roomy for breeding, nnd is distinguished for her clear round eye and general lnveliness and neatness of features. Fed a the fine pastures of north Devon, the cow yields a

ich quality of milk, and in reasonable abundance. The north Devon breed prevails in some parts of Somersetahire, and has been introduced into other quarters of the country, but is not considered suitable in situations greatly differing from its native country as respects clinate and berbage.

Herefordshire Cout.-Tho Hereford breed of cattle is erger than that of north Devon. It is hroad across the

Hereford Cow.
ind quarter, narrow at the surlon, neck and head well proportiesed, horns of a medium aime, turnal up
at the points, colour deep red, but with face and mom other parts generally white, and countenance cheerfu. and sagarious. This cow is reckoned among the bem in England as reapecte tose production of milk, ind when too old for thit purpose, i. fattens to a greatet weight than the north Ievons.

The Galloway breed of cattle is well known for various valuable qualities, and easily distinguished ty the want of horna. It is broad across the back, with i very slight curve between the head and quarters, broad at the loins, the whole body having a fine round appear. ance. The head is of a moderate size, with large rough ears, chest deep, legs ahort, and clean in the neck. The prevailing colour ia black, those of this colour being thought the moat bardy, although this varies. This breed is highly esteemed, as there is no other kind which arrives at maturity so soon, and their flesh is of the finest quility. The milk ia very fine, but ia not obtained in very large quantities. Great numbers of this brced are sent annually to 8 mithfield market; and it is remarkable that they are generally in as good condition nfter the journey as before. The Suffolt dun, also a hornless brced, is supposed to he a variety of the Galloway, from their genernl resemblance.

The Ayrshire breed, which is considered the mow valuable in Scotland, is of the small sized and midde horned race: its origin is unknown, as it has been lowe

As rshire Bull.
settled in the county from which it deriven ats nanit In inodern times, the breed has been improved by judicious selection, coupling, and gencral treatment The common characteristics of this excellent variety of cows are thus described by Mr. Aiton in his "Sarvey of Ayrshire:"-" Head small, rather long and narrow a the inuzzle; eye small, sinart, and lively ; homs small, crooked, and set at considerable distances from eadd other; neck long, rather slender, tapering towards the head, with no loose skin below; shoulders thin; for quarters light; hind quarters large; back straight, broad behind, the joints rather loose and open; carcas deep; hegs small, short, with firm joints; udder capa. coous, stretching forward; the milk veins large and prominent ; teats short, all pointing outwacds." The Ayrshire cow is very docile, feeds well, is easily managed, and, as a dairy cow, is equal to any otbet. It is inferior, however, for feeding, to the Devon, Ser sex, and Hereford breeds.

Ayrshire Cow.
Many of the Ayrshire dairy cows, when properls
will yield from 6 wimmer. The q from $1 \frac{1}{2}$ to 6 gallo of the milk yield annun. It is only wach a quantity as be calculated os th 2) gallone of milk ounces to the pot About 26 gallons pounda to the ato yield 30 stones a £18 per annum for The Short-hornea value, both for mil varieties of $i t$, know they have been rai large in the carcuse loins, chine full, le meck deep, but in lour generally red flecked, bide thin. grained, retaining tt stance is in request royagea.

Regarding the n Dicksou, an eminen extensive expericnee - It has been freq cows are had milke 60 deficient in milk not proceed from th the short-horned kin much as the milk by perty of giving milk ment of flesh, the s deep :ailkers. Indee the general secreting been increased, the creased with the pov requisite is to enco which is most wante sire an impossibility t fat, and milk, nt the in desiring a large se and a large secretion cow. Accordingly, been acquired by s from six to sixteen q and they are such co main dry abnve six time of calving. I shot-horned cow wh the flush of the grass for two seasons. A a short-hnrned bull i a day daring the be milked five times a thus considered it o Dixon regarding the cows as a dairy stock borned bulls has of I countics of hoth Eno cever, a well-confirme all others appears to lnited Kingrlom for ture, is the Ayrsliire a parallel under us cumatances, either fo Wer. But the ever-ve thelter, and the quali well as the winter Always have an effec The Inproved Kic
will yield from 6 to 8 gallons per dny during a part of the aummer. The quantity varies much during the year, fom $1 \frac{1}{2}$ to 6 gallons, or more; and the highest average of the milk yielded by this breed is 1000 gallons per annuar. It is only some of the finest cows that will yield much a quantity as this, and froms 500 to 750 gallons may be calculated as the most gencral yearly produce. Every 2f gallona of milk will afford 1 pound of butter, of 16 ounces to the pound, or 8 gallons will give 3 pounds. About 28 gallons of inilk will give a stone of cheese, 14 pounda to the stone, and a good mileh cow will thus yield 36 stones annually, which, at 10 s . per stone, is L18 per annum for this article alone.
The Shart-horned or Dutch breed is considered of great palue, both for milking and feeding. Thero are many raneties of it , known by the names of the counties where they have been raised. The best of these varictics are large in the carcuss, well proportioned, broad across the loins, chine full, legs short, head small but handsome, aeck deep, but in keeping with tho size of the body, colour generally red and white mixed, or what is called flecked, hide thin. The flesh of this breed is thick, close grained, retaining the juices well; and from this circumslasce is in request for victualling ships going on long voyages.
Regarding the milking qualities of this breed, Mr. Dickson, sn eainent cattle-dealer, who has had the most extenive experience thronghout the whole country, suys - It has been frequently asserted that the short-horned cows are had milkers; indeed, that no sort of cattle are कs deficient in milk. But this deficiency of milk does not proceed from the circumstanee of the cows being of the ahort-horned kind. Had the flesh been neglected as much ss the milk by the eminent breeders, and tho property of giving milk as much elierished as the development of flesh, the short-horned cows wonld have been deep nilkers. Indeed, it is not to be doubted that, where the general secreting powers of the animal system have beea increased, the power of secreting milk will be increased with the power of secreting tat; all that seems requisite is to encourage the power of that secretion which is most wanted for the time. It would be to desire an inpossibility to desire the full development of flesh, fst, and milk, at the same time; hut there is no absurdity in deairing a large secretion of flesh and fat at one time, and a large secretion of milk at another, from the same cow. Accortingly, this is the very character which has been acquired by short-horned cows. They will yield from six to sixteen quarts a duy throughout the scason; and they are such constant milkers, that they seldom remain dry above six weeks or two months before the time of calving. I know n Scotch breeder who had a shart-horned cow which gave fifteen quarts a day during the flush of the grass in the summer, and never went dry for two seasons. A cross between a Gallowny cow and a short-horned hull in Berwickshire yielded twenty pints a day daring the best of the season, and she had to be milked five times a day to keep her casy." We have thas considered it our duty to give the opinion of Mr. Diron regarding the value of the short-horned breed of caws as a dairy stock, seeing that the demand for shortbrned bulls has of late years been great in mony of the counties of hoth England and Scotland. It seems, howcrer, a well-confirmed opinion, that the breed which of all others appears to he gaining ground throughout the United Kingdom for alundant produce on ordinary pasture, is the Ayrshire kyloe, which is described as without a parallel under a similar soil, elimate, and relative circumstances, either for the dairy, or feeding for the shamWen, But the ever-variable circumstances in climate, soid, theler, and the quality and quantity of the pasturage, as well ss the winter feeding and general trentment, will alwaya have an cffect upon the stock.
The Inproved Kerry is ans Irish breed, of rather di-
minutive aize, hardy, and which can subsiat on acanty pastura. This renders them exceedingly well adapted for hilly pastures, and for cottagers who may not have the best food to offer thelr atock Their milk and butter are rich in quality, and for their aize they are gnod milkers. They are quict eneugh when let alons, but if the least Irritated, no fence can contain them. The Irith cows have inproved very much of lato yeara, in consequence of crossing ; and they aro now in many respecta thourlit equal ts the breeds of either England or Scotland.

The Long-horned or Lancsshire is distinguished by the length of its horns, the thickness of its bide, and the large size of its hoofs. It is far from belng a handsome animal; nor is it hehl in very general estimation either for milking or fceding.

Highland breeds.-The cattle of the Highlands of Scotlind are of small bulk, and very hardy. The most esteemed are those belonging to the Western Mighlanda and Isles, called the Argyleshire breed, and frequently kylocs. It is thought that this breed might ho much improved by judicious crossing, as was seen in the case of the Ayrshire kylue, formerly mentioned. This breed is rather handsome in appearance; the horns are long and upright, head large, neek short and deep, legs of a good length, and the beef is in general estimation. The cattls of the Highlands and Isles are bred on an extensive scale of farming for the purpose of sending to the southern murkets. Small in size at first, they increase in bulk as they are transferred to a more genial climate and richet pnsturage as they proceed southward, till, by annuad stages, they reach the neighbourhood of London, when they are large and heavy. The brecds may therefore l_{6} considered more an object of culture for the shamblea than the dairy.

The Alderney breed of cattlo is awkwardly shaped, with short bent horns, and light red, dun, or fawn-coloured skins. The appetite of the cow is voracious, and it yields little milk, but that is of an exceedingly rich fitality, and the animal is on that account preferred ly families who do not regard the expense of keep.

Remarks on Breeds.

We have thus briefly treated of some ot the many hreals of cattle considered valuablo as dniry stock in Britain; hut we pretend not to give any decided opinion as to which is best. The merits of each kind have been vigorously contested by their respective advocates, and it would be extremely difficult to decide between them. Upon the form and qualifications of a perfect cow, it ouglit to be ohserved, that whatever breed is selected, there is a wide difference between the form of one meunt for fittening and that intended for the dairy; The first should resemble the ox as nearly as possible; while the latter should be long and thin on the head, with a brisk quict eye, lank in the neck, narrow across the shoulders, but broad at the haunches; and there should be no tendency to become fat. The udder should be large and full looking, but not protroding too tar behind; the teats all pointing ont and downwards, equal in size, nnd rather lone and tapering. A cow with a high backbone, large head. small udder, and showing an inclination to become fit, will be found to be a bad milker. This deseriptiont npllies to all brecds; and of conrse the difterence between a cow for fattening and one for yielding milk will be comparative.

Mr. Aiton mentions the following as the most important qualities of the dairy cow:-"Tameness and docility of temper greatly enhance its value. One that is quiet and contented feeds at ease, does not break over fences, or luurt hetself or other cattle, will alwiys yield mora nilk than those who are of a turhulent disposition. Te render them doeile, they ought to he gently treated, fre quently handled when young, and never struck or frignt ened. Some degree of hardiness, however, a souml zon-
ditution, and a moderate degree of life and spirlta, are qualitien to be wished for in a milch cow, and what those of Ayralire generally poseeas. Some have thouglit that a cow living on a small quantity of fool was a valuable quality, but that will depend on tho quantity of milk given by the cow that eats little compared with those that out much. If the cow that eats little gives na much milk at tho one that eats more, it certainly is a valuable quality t but of this I entertain doubts, whieh forty years' experience and observation have served to confirm. Speculative writera affirm thint some cows will fitten as well, and yield as much milk, when fed on conree na others will do on rich food. Cows that have been rented and fed on coarme pasture will yield some milk of a good quality, and from which the best butter moy be extracted; while a cow that has been reared and fid on much better Qaature, would, if turned on that which is had, give ecarevy any milk. But if a cow that hus been accustomed to feod on onll prasture be put on that which is netter, she will greatly increase in milk, and fatten much Gastor. If two cowa of the same age and condition, and which have been reared and fed on fookl of eupal quality, are put, the one on bad food, and the other on that which is good, the latter will yield four times the milk, and fatten four times faster than the former. A cow need not alwaya be fed on green clover, cabbages, and cauliflower; hut she wilt neither futten nor yithl milk if ahe geta no better fare than rushes, bent, mal sage grass."

A wriker in the "Farmer'a Mugazine," a few yeara ago, presented the following doggrel lines, as combining what are popularly considered the good points of a cow, such as is common among the shorthormed breed of York-ahire:-
"She's long in her face, she's fine in her horn, She'll yurehly get iat without eake or corn: She's elemin in her jows, wad till in har reme, She's heavy in dank, and wide in her lom.
"She's broad in here ribs. and fong in her rump. A straght and far back, withoul wer a hump; She's wite in her hips. and ention in her eges. She's fine in her shoulders, aud thin in her thighs.
"She's light in her neek, and small ind her tail. She's wite in her breast, and good the the puil, She's fine in her bone, and silky of skisuShe's a grazier's without, and a butcher's within."
To ensure the perpetuation of valuahle qualities in cown, it ia necessary to lireed from good butls of a similur variety to the cows. 'The heifer or young cow, if properly pastured, should legin to breed at two years, or not beyond two and a half years old. The cow is at her prime at from four to six years, and declines into old ape at ten or cleven years, when it is customary to fatten her for market. Dairymen, in selecting cows, prefer those which have had their third or fourth calf when they have attained their fifth or sixth year. The bull is in his prime at three yeara, and should not be used ofter eight or aine years old.

General management of cows.

Calving.

The cow goea with young nine calendar months, or 270 days; but this length of time is linhle to variation, from the effect of circumstances. A calf is most likely to gurvive and be houlthy which has gone exactly the nine montha. Cows come into senaon at different periods of the vear, in which atnte they remain for a fow thys, after which the affection ccases, hut it afterwarda returna in three or four werks. The farmer watches these pejools, and permits the company of the bull at such a timse an will produce the young at a timo of the year when grass is plentiful for the nourishment of the mother. This should be an alvanced period of spring, for the cow will reguire nourishing diet some time before the drops her calf as well ns afterwarda.

A cow may be kipt in milk up to the time of her
calving, by daily taking a quuntily from her; but the most injurious to the fextns, and the excitement of the now upon the old milk ia apt to produce locai inflammation In towns, where dairymen care nothing for the calf, and must have milk at all risks, cown are olten meltoated by heing milked to the last; but no one who conductu dairy on proper principles wili be guilty of this inhu manity. 'I'he beat plan is to allow tho cow to go grada nlly dry, and not milk her at all for six or cight wreh before calving. 'This will keep her in a reasonably good condition, and savo extrn fool, which it is not advantageous to give on a luxurimint scale, because high feeding at thia periond may induce intlammation and fever at calving.

No animal is so liable to abortion os the cow: it take pluco at uncertain periods during the preghancy; soma tinues it occura from friglit, tenaing by other cattle in the field, or over-high condition; but nlso not unfrequently from some bat habit nequired hy the animal. It hat been found that the habit is infectious; and when once it has got among a pareel of cows, it can be banished only with the greatest difficulty. In all cases the aborted foetus should the laried deep and far from the eow pasture; the cow physicked, and ita parts washed with chloride of lime; the cow-hoose thoroughly lime-washed and othe wise puritied; and lastly, tho cow fattened and sent to market.

If in a atato of hralth, no difficulty will occur at the parturition ; but should the caso be otherwise, we prefen leaving the cow-keeper to ask assistance from a person of practicat skill, or veterinary surgeon, than to offer any speculative ndvices on the sulyect. With respect to tha treatment nftor colving, we beg to puote the following directinns from the volume ou Cattle, "Library of Usfol Knowledge:"-"]'urturition having been accomplished, the eow should be lelt quietly with the calf; the licking and chaning of which, and the eating of the placenta, if it is soon discharged, will employ and nmuse her. It is a croel thing to separnte the mother from the young s soon; the cow will pine, and will be depuived of that medieine which natuce designed for her in the moisture which hangs about the calf, nend even in the placenta itself; and the calf will lose that gentle friction ond motion which help to give it the immediate use of all its limbs, and which, in the language of Mr. Berry, cincrease the languid circulation of the blood, and proluces a gemid warmath in tho halfexhousted and chilled litto animal: A warm mash should be put before her, and warm gruel or water from which some of the coldness has been taten off. T'wo or three hours afterwarils, it will be prudat to give an nperient drink, consisting of a pound of E_{p} som salta and two drachms of ginger. This may tend to prevent milk fever und garget in the udder. Atter. tion ahould likewise be paid to the state of the ulda If the teats are sore, and the bag grierally hard and tende, she should be gently but carcfully milked three or fout times every day. The natural and the effectual precens ntive of this, however, is to let the calf suck 'rer at leas three times in the clay if it ia tied up in the cow-hoven or to run with her in the pasture, and take the teat when it Heases. The tendency is inflammation of the whet is mush diminished by the calf freguently sucking; ot should the cow he feverish, nothing sooths or quicts ber so much as the presence of the little one." For in structions respecting the condition and disuase of emat nt and ntter calving, we must refer to the valuable wor above quoted.

Trentment of the Crilf.-If the calf be a male, andis to be pastured and fattened for market, or to be bredy a working ox, it should be cut between the first and third months; if delerred later, the operation is daget rous.

Whether calves are kept for veal or for stock, they are begron to twe fed in the same manner, by suckim milk from a dish. As they naturni'y seek for the tat
when their now attendant may milk, and this w macking. "The Economice")," firt, to render them from loatl weoke they sho the corv, locally with serum: an gradually ine male to dicink all meana give muther; and let cow, locally term Kpop abundance in a place that is ture, neither too quite dark, excel thein food. If it sportive, and will med to the wall, cannot hang the escape at the to they will do moro than a week's fee till thoy become grow to the ben manse can genera to advance in th rede, and the mi should be kipt fr milk may be nbun daring the lust richest part of th to bring it to the milk begins to fall eggs and others infusions of hay, these additions are to the greatest per the flesh, web, an of late yenrs bee weeka, boiled nnd and to great advan m, and gradually rery fond of cluth If a calf happens mer, when the pr wont admit of tha are sometimes, eve ward for two or milk; and in Nov they are fattened pield a great retı the ligh markets well managed, in yield when sold, is ola."

The cow-house of moderate temp calle for the con slope gently towar clear run of a gut side. The stalls tll rafuse carried :os little litter is a of atraw beddling. when soiled, is to The only fastenin round the rack, pout, but easily n
ev; but the lo tement of the inflamnation. r the calf, and mislte tated by ho conducta, of this inhu. w to go gradu. or eight wrifu eanonably good t advantageoun feeding at thin at calving. cow : it takes yancy ; some er cattlo in the t anfrequenty nimal. It bas and when once in be hanished ases the aboted he cow pasture; vith chloride ol hed and othes ed and sent to

II occer at tho cwise, we prefer - from a person ran to ofter any respect to dia a the following ilifary of Useful a accomplished alf; the licking the placenta, if nuse her, lt is in the youngse Ieprived of that in the moisture in the placents friction and mon te: use of all ith Berry, 'increase roduces a genis ed little animal' and warm gruel s has been takea will be prudent a pound of E_{μ} This may lend - udiler. Atter ate of the uden, hard and tealet, -d threc or fout effectual prexo: suck her at leas n the cow-hous, ie the teat when ion of the adder ntly sucking; the or quicts bet one." For in. diserases of coms he valuable work

be a male, andis

 or to ber bredus on the first and eration is dangewhen their nows in put to the dish, the fingern of the, room for the animal shining its position. I'le fceding attendant may hs put into their mouth when in the manger or stone trough is on tho ground, and ought to milk, and this wili set them going in the art of artificind be kept fres of all impuritios; for though tha cow is not nucking. "The milk" (anys the author of "Clerien so nice us the horse, it has a disinclination for food not Economics"), "ahould be given to them sparingly at fresh and cleanlv. first, to rendor their appetite more keen, and prevent them from loathing at their food. For the first two weoks they shouid be fed on tho milk first drawn from the conv, locally termed the forebroads, which whomels with serum: and as they grow up, the quantity of milk - gradually increased to an much as the colves can lie male to drink. After the first two or threo weeks, by all means give them plenty of milk, warm from their mother; and let it be that which in luat drawn from the cow, locally termed afterings, which are much richer. Krep alundance of dry litter under them. Have them in a place that in well aired, and of a uniform tempernture, neither too hot nor too cold; let the apartment lo quite dark, excepting when the door is opened to give then food. If thoy enjoy tho light, they become too portive, and will not fatton. Tako care they are fastened to the wall, in such a way, hy 'swivels,' that they annot hang thenselves. Never lot them make their escape st the door, or, by their running nnd jumping, they will do more injury to themselves in three minutes than s week's teeding will make up. Don't keep them till thoy become ton old, becnuse, when they begin to grow to the bone, they require more milk than the manse cou gencrally produce; and whenever they cease to sdusuce in the fattening process, they begin to recede, and the milk for a week or two is lost. Tloey ahoold be kept from four to seven weeks, according nis milk may be abundant and rich. If a calf be kept long, during the last two or three weeks it will require the richest part of the milk of at least two or three cows to bring it to the highest pitch of fatness. When the milk begine to fall short of the calf's appetite, some mix eggs and others peas-meal into their food; others try infuaions of hay, oil-cake, and linsecd; bat nono of these additions are approved of by those who feed calves to the greatest perfection. Meal is understood to darken the flesh, web, and lights of the amimal ; but sago has of late years been almost, from tho first two or three weeks, boiled and mixed in ita liquid state with the milk, and to great ndvantage. Begin with a snucerfal of it or wo, and grudually inerease the quantity. Cnlves are rery fond of clatk, and they also fieel the want of salt. If a calf happens to be dropit about the middle of summer, when the processes of hutter and cheose making wont adnit of their being fattened to perfection, they ars sometimes, cven at the manse, brought sparingly forward for two or three months on whey and skimmed milk; and in November, when venl is very high pricel. they are fattened at considerable cost, and sold so ns to sield a great return, owing both to their weight and tha ligh markets at that geason of scareity. A calf well managed, in ordinary scasons and prices, should yield, when sold, six or seven shillinga for every week it is old."

Cow-house-Cleaning.

The cow-house should he airy, and well ventilated; of maderate temperature, and kept very clean. The aslle for the cows should be paved with small stones, slope gently towards the foot, where there sliould be a dar ran of a gutter to carry off whe urine to a pit outside. The stalls must be daily sernped ant swept, und all refuse carried out to the dung-heap. In general, fir ton little litter is allowed. The cow should have plenty of straw bedding, kept in a cleanly combition; and this, when soiled, is to le mixed with the dung for manure. The only festening for the cow should be a chain to go round the rack, with the other end round an upright pow, but easily movable up and down. and allowing

Except in dairios of a high order, it is customary ta keep cowa in a shamefully uncican condition. The floor of thoir hubitation is filthy, the walls ragged and full of vermin, and the hides of the animala duaty or barkened with dirt. Persons who keep, are not aware of the lons they ineur from allowing in to live in this uncleanly state. Some poople seem to think that they do quite enough for their cows if they give them food and shelter; but besides this, they require to he kept very cleanly, though seldon indulged in that luxury. Tho cow should bo curried daily like the horse: its hide should be freed from all impurities, and relieved from every thing that causes uneasiness. When you see a cow rubhing itself ugainst a post, you may depend on it that the animal is ill kept, and requires a good scrubbing. Irritation of tho skin froms impurities nlso causes them to lick themselves, n habit which is injurious, for the hairs taken into the stomach form a compact round mass, which mny destroy the animal. If well curried, any dmiger from this eatastrophe is avoided, the henlth is gonerally improved, and this improves the quality of the milk, besides increasing the quantity. A coltager might casily make two or three ulillings more of his cow weekly by attention to this point; and if he at the same time took pains to prescrve all the liqnid retuse of the cow-house, he might double that amount. How strange to reflect, that many decent and wellmeaning, but ignorant and rather lazily-disposed peoplo, are suffering a loss of four or five slitlings weekly from no other cause than this! It is long, however, before old habits are cradicated, and new and better ones introduced.

Fceling.

The cow requires to bo supplied with an abundance of food, not to make her fut, which is not desirable, but to keep up, a regular secretion of milk in the rystem. 'I'he feeding must be regular, from carly morning to night, and pure water must also be offered at proper intervals, if the cow has not the liberty of going to the water herwilf.

Regarding the nature of the food of cows, although soiling, or artificial feeding in the house, is nt all timea economical, there can be no doubt that the best milk and hutter are produced by cows fed on natural pasture; and ulthough the quantity of milk is not so great, yet the butter has a sweet tasto, never to be discovered in the produce of soiled cows. It wss formerly the case in Scotland, and the practice is still continued in some parts, to put the cows out to grass in spring, in such an emacinted state that a considerable part of the liest season was gone before they yielded the quantity of milk they would otherwise have donc. On well-enclosed froms, it is the custom of many to keep their cows out both night and day, from May till the end of October, so long as a full bite can be oltained; and some bring them into the house twice a-diy to be milked. In moorish and unenclosed districts, they are put under the charge of a herd through the day, and are brought into the byres during the night. Soiling, or fecding entirely in the house or court-ynrd, is but selfom practised, except by some farmers in arable districts. Although complete soiling is only occasionnlly resorted to, yet a consideruhle quantity of rich green food is served out to the dairy stock in their stalls at night, and in the hent of the day, by such farmers as bring their cows into the house nt these times. This mode of fecding is move especinlly followed when the pasture begins to fail ; the second crops of clover and tares, cablages, coleworte
and sther garilen produce, are all given to the cows in the soume at thim period. It in upon this systen that the whole pesfection of the Flemish hushandry ia founded, and it conld lie put In practice, with the most leneficial reaulte, in many other countries, In Holland, the cows, when fed in the houne, have their drink of water invariably mixed with oil-cake, rye, or oat-meal. Imiry cowa are allowed to be much injured by heing denied a due aupply of nalt, which is sald to improve the quality and linerense the quantity of the milk. In the beat managed dairies in Scotland, when the cows are taken in for the winter, they are never put ont to the fields until spring, when the grasm has risen mo much as to afforil a full L.te. In the moorish district, however, they are put wut to the fields for some hours every day when the wearher will permit. In these districts, the winter food is tirnipa with marsh meadow hay, oceaslonully straw and boiled chaif.

In the richer distrietn, turnips and straw are given and occasionally some clover hay in apring, or when the cow have calved. Upon this sulject nothing need hes added, but that the quantity nad quality of the milk will ee in proportion to the nourishment in the fiod. Whito turnips afford a good quantity of milk, but thoy inpart a very disacrepable taste, which may be removed, however, by steaming or boiling the turnipa, or by putting a emall quantity of disalved saltpetre into the milk when now drawn. The puality of the milk depends a great deal on the cow, influenced, however, by the fool slie cats. Linseed, pens, and oat-meal, produce rich milk; and a mixture of bran and grains has been recommenied as food in winter, Brewers' grains are anid to produce a large quantity of milk, but very thin, the quality being somewhat similar to that sold in large towns, yielding neither good eream nor hutter. It has heen found of some importance to feed cows fropuently -three of four times a-day in summer, and five or six in winter, and to give them no moro nt a time than they can eat cleanly,

What hats been atated regarding the feeding of cows applies princijally to those kept on lairy farms. In establishments for the supplying of large towns with milk, the method of feeding is somewhat dilfercnt; there the practice is to feed them chiefly on distillers wash, brewers' grains, and every sort of liquid stuff that will produce a large quantity of milk, without reference to its quality. 'The Edinhurgh cow-keepers begin to feed with grain, dreg, and bran mixed together, at five o'elock in the morning. feed again at one o'rlock afternoon, and a third time at soven or right o'clock in the evening ; grass in summer, and turnips and potatoes in winter, heing given in the two intorvals. The grass is laid upon the straw, in order to inpart to it a certain flavour, and mike it palatahle; it is eaten after the grass; and in winter, straw or hay is given after the turnijs. Purt of the turnips and potatoes are hoiled, particularly when there is a seareity of crains.

The following is inentioned in the "Farmer's Magazinc," vol. xv., at an improved mode of ferding milela cows, near Farnhum, in Surrey :-" G in to the cow-stall at six c'clock in the morning, winter and aummer: give mach cow half a bushel of the mangel-wurzel, carrots, turnips, or potatoes, eut ; at seven o'clock, the hour the dairy-mid comes to milk them, give rach some hay, and let them fead till they are all milked. If any cow refuses hay, give her something she will pat, stich as grains, carrots, \&e., during the time she is milking, as it is absolvely neressary the cow should feed whilst milking. As soon as the woman has finished milking in the morning, turn the cows into the airing ground, and let there we plenty of ficsh water in tho troughs; at nine s'clock, give each cow three gallons of the mixture (us under-to eigh: gallims of grains add four gallons of been or pollari); when they have eabn that, put some
hay into the criba; at twrive oclock give each thit gallona of the inlxturo us before. If any cow lonks for more, give her another gatlon. On the contrary, if ahe will not eat what you give her, take it out of the man. ger, for never, at ono time, let a cow have more then whe sill eat up clcan. Mind you keep your mangers clean, that they do not get nour, At two o'elock, give eact cow half a bushel of carrota, mangel-wurzel, or turnipw; look the turnipn, \&e., over well, hetore you give them to the cows, as one rotten turnip, \&c., will give a bad tame to the milk, and noost likely spoil a whole dairy of bob ter. At four o'clock, put tho consa into the atall to be milked; feed them on hay as you did at milking-time In the moraing, keeping in mind that the row, whise milking, must feed on momething. At slx o'clock, give ench cow three gullons of the mixture an lefore. Rark them up at eight o'clock. Twice n week put into each cow's feed at noon n quart of milt-thast." The writer of these directions adds, that the daily exprense of sub, sisting each cow on tho alovo fied would be about tho shillings.

Milking.

Cowa are milked twice or thrice a-day, according to circumstances. If twice, marning and night; if thrice, morning, noon, and night. They drould not go too long ummilked, for, inderendently of the uneasiness to the poor animal, it is se verely injurious.

The act of milking is one which requires great car. tion ; for if not carefully and properly dunce, the quantity of the milk will le diminished, and the "nality inferior, the milk which comes last out of the uddet leeing ulways the richest. It shonld, therefore, be therwidy drawn from the cows until not a drop moro car be ottained, hoth to ensure a continuance of the usual susply of milk, and also to get the richest which the cown allord. Cows should be soothed by mild uange, capecially when youag; for to a person whom they dislike, they never give thri? milk freely. The teats should be always clean washed before miking, and when tender, they ought to he fomented with warm water. Tho milking and manageurent of the cow should, in these circumstances, bo only intrusted to servat's of charucter, on whom the utnost reliance can be p ucd. In the mouthern and midand comaties of Englar: J, it in a common practice to employ men to milk the cows, an operation which seems betten fitted for females, who are likely to do the work in a more gentle and cleanly manner, which is of cssential importaner.
I'lue writer in the "Farmer's Magazine," ahove quoted, gives the following explicit directions to the dairy-mad in regard to milking :-" Go to the cow-wiall at seven o'clock; take with you cold water and a sponge, and wash rach cow's udder clean luefore milking; dowse the udder well with coll water, winter and summer, as it braces and repels heats. Kerep your hands and arms rleat. Milk each cow as dry as you can, motning and evening, and when you have milked cach cow as yoo stpposer dry, hegin again with the cow you first milled and drij, them earh; for the principal reason of cows failing in their milk is, from negligence in not milking the cow dry, particularly at the time the calf is taken from the cow. Sulfar no one to milk a cow but yous self, and have no gossiping in the stall. Fivery Satus day night give in an exact account of the quantity of milk cach cow has given in the weck."

THE DAIRY.

The dairy should he cool, airy, dry, and free from verınin of all kinds. To prevent the intrasion of flies the windows or ventilators ought to lo covered with : fine wire gauze. The floor should bo laid with smooth glazed tiles, and also tho lower part of the walls; the benches on which the milk pans are to be placed an
, we when made of a oroud. The ceiliny the floor, and finisl arliaary dwolliny ha me of tile, un it te quable. Cleanline quasce in dairy inan ather, may canse cor nised the produce o public estimation. 1 mote cappeinlly whe in boiling water, and If mith shonld happ generated will injur into it; but if washe been dissolved, the a
The utenails of principal are milk-p milk, sivves for strail the cow, disines for making the bitter, cherse, whene are lik ens, and presses ; a: guired, which it is a 6, m, thesc versels, throughout Gireat In there is little variatio of wood; but in som Scotland, it is now t! of castiron, wood lin earthenware. Mapl England for the man its lightucss, and Ireit geater stylc. In Hol monly made of bras be preferred to woo either of these mater tasiet cleand. It ha rels, that, being glaz. ating upon the glaze bowever, is searecly tronzur acic' than th and in some parts of ond never uljected to wee, and they coso be ad cleanly qualities have seen it stated th
Checee-presses are weights, accordiag to preferred for this pur, A lever was a metho bing placed in a hol fulcruta, and one or end of the pole produ press censisted of a a which was raised an tackle or a serew. present is a lever w little space, is casily being better regulate sulker.
Chuming is now, performed by machin power, s: stached to near the dairy. Chur a aen one hundred y establishment. 'The auce of a barrel plate used-the plange b with a shaft and the common handupright with a plun which are turned by Wise a cradle is mu

VuI. I.-76
each inles ow lonks fon trary, if mho of the man. ore thun whe ungers clean, k, give enct, , or turnipo; give them io a a bad tate lairy of bob e stall to bo milking.time cow, whilet o'clock, give efore. Rack ut into each The writer rense of sub. e about two
according in t ; if thrice, t go too long iness to the
es great cauthe quantity y inferior, the g always the Irawn from cined, both to of milk, and Alord. Cows when young; er give their cleun wastird whit to he for and manage necs, he only a the utinost and midlond ice to employ scems better the work in of essellial
above quoted, te dairy-mail rall at seven - sponge, and g ; duwse the ummer, ss it whs and srina moning and h cow as yoo first millked rason of corss not milking calf is taken cow that your Bery Satur e quantity of
(ou when male of atone or alate, nud about thilty inchea onoud. The ceiting should bo at least elght feet from the foor, and flivished in every reapect like that of an adinary dwelling house. A mlate roof in preferahle to ane of tile, an it tenda to keep the temperature mora equable. Cleaniiness is of the moat easential conseqquabice in dairy mauagement, and, if not atrictly looked Ant, may conse censiderable loan. It is this which has naied the produce of the dairies of Holland so much in public eatimation. Every articlo in which milk is placed, more eapeciully when mate of wool, ought to he washed in builing watter, and a little aoda or lime dissolved in it. If milk shoutd happen to sour in any dimh, the acid thus greneated will lujure any which may le afterwarda put into it; but if washed with water in which an alkali has been dissolved, the acil will bo destroyed.
The utenails of a dairy are very numerous. The principal are milk-pails, shallew coolers for hulding the milk, sieves for struining it through after it is tuken from the cow, disheres for skimming the cream, churns for making the lunter, scales, weights, de. For making carete, were are likewise ladders, vats, tubs, curd-breakens, and presses; and various other antieles will be reguired, which it is almost impossible to cnumerate. In form, these vessels, with a few exceptions, are alike throughoat Great Britain; and even in other countries there is little variation. The majority of them are mads of wood; but in some of the best duiries in England and Beoland, it is now the practice to have the coulers made of cast-irun, wood lined with tin in tho inside, or glazed carthenware. Majle is the wool generally used in England for the manuficture of these dishes; both from its lightness, and heing easily cut, it can bo finished in a geater style. In Holland, the milk dashes are very commonly mude of hrass; and certanly brass or iron is to be prefercel to wool, because the dishes mado from cither of these materiats are more durable, and can be casier cleand. It has been objected to earthenware vessele, that, being ghazed with lend, the acid of tho milk acting upan the glaze forms a very noxious poison. This, towever, is searcely carrect; it would require a much droorger acit than that of milk to decompose the glaze; and in some parts of England lead has been long used, and never ulijected to. Zinc pans are now conning into wee, and they can be saffly recommended for their cool and cleanly pualities, lesidea being economical. We hase seen it stnted that cream rises best in zine pans.
Cheesc-presses are usuully mado of stone of varinus weighs, according to the size of the cheese. Granite is preferred for this purpose, on account of its great weight. A lever was a method long practised, one end of which biag placed in a hole in the wall, the sinker acted as a fulcrum, and one or two unhewn stones hung on the end of the pole produred the pressure. Another kind of press consisted of a stone weight placed upon the sinker, which was raised and depressed either by a hook and tackle or a screw. The kind most commonly used at present is a lever with a double whicel, which oceupies litte spsec, is cusily workel, and allows of the weight being better regulated than by a stone placed upon the saikcr.
Charning is now, in all large dairy estahlishments, performed by machinery, worked either by horse or water power, is: ottached to a thrashing-machine, if there is one near the dairy. Churns vary in size from ten to fitty, and aven oae hundred gallons, according to the size of the estabishment. The plunge-chum, which has the appearance of a harred placed on its end, is that most commonly used-the plange being worked by a lever connected with a shatt and crank, moved by a wheel outside. The common haod-churns are of various forms, either upright with a plunge, or horizontal with arme inside, which are turned by an iron handle. A ehurn formed lize s cradle is much used in Canada, and has been Vor.. I. 76
strongly recommented for milopt it in mutry. It is recked regularly by a chilid ni by aot , whe may thus he usefully employed while amusin, ! If. ireat enre aheuld be taken to wauh ehurns the aughly with boiling water, both immediately after 11 \& have heen unel, and before they are agnins to be pul uperation: and those churns which admit of leing curily eleatend are alwsys to he recommended, even athough they mould not be so elegant in conatruction.

DAIRY PRODUCE.

Milk.

Milk consists of threa materials blended together, called in science the butteraceeus, lactic, und acrous kinda of matter, which can be separated by artificial means, so as to firm buttcr, the milk called butler-milk, and serum or whey. The whey in little else than water, slightly satline, and is generally the chief ingredient in the milk. When taken from the cow, milk should be removed to the dairy or milk-house, and after being sieved, placed in shallow pans, to throw up the butteraceous matter termed cream, which, being lightest, Hoats on the top.

The following observations on milk and its management, made by Dr. Anderson, in his "Recreations," are worthy of the consideration of cow-keepers:-
"Of the milk drawn from any cow at one time, that part which comes off at tho first is alwnys thinner, and of a much worse quality for making butter, than that afterwards obtained; and this richness continues to increase progressively to the very last drop that can be obtained from the ulder.
"If milk be put into a dish and allowed to stand still, it throws up cream; the portion of cream rising first to the surface is richer in quality and grenter in quantity than that which rises in a second equal space of time; and the cream which rises in the second interval of tine is greater in quantity and richer in quality than that which rises in a third equal space of time; that of the third is greater than that of the fourth, and so of the rest; tho cream that rises continuing prugresaively to decreaso in quantity nad to decline in quality so long aa any rises to the surface.
"'Thick milk always throws up a much smaller proportion of the cream which it actually coutains than milk that is thinner; lut the cream is of a richer quality ; and if water ho added to that thick milk, it will afford a considerably greater quantity of cream, and consequently more butter than it would have done if allowed to remain pure; but its quatity is, at the same time, greatly debased.
"Milk whieh is put into a bucket or other proper vess sel, and carried in it to a considerable distance, so as to be much açitated, and in part cooled before it be put into the mitk-pans to settle for creum, never throws up so much or so rich cream as if the samo milk had been put into the milk-pans directly after it was milked.
"From these fundamental facts, the reflecting dairyist will derive many important practical rules. Soma of these we shall enumerate, and leave the ${ }^{4}$ rest to be discovered. Cows should he milked as near the dairy as possible, in order to prevent the necessity of carrying and rooling the milk before it is put into tho ereaming dishes. Every cow's milk shoukd be kept separate, till the peen liar propecties of each are so well known as to admit of their being classed, when those that are most nearly allied may be mixed together. When it is intended to make butter of a very fine quality, rejeet entirely the milk of all those cows which yield cream of a bud quality, and also keep the milk that is first drawn from the cow at each milking entirely sevarate from that wheh is last obtained, as the quality cf the butter must otherwise be greatly debased, without materially augmenting its quantity. For the same purpose, take only the cream that ia first separated from the first drawn mitk. Butter of the very best quality can only be ccononucally made in thom

3 E

INFORMATION FOR THE PEOILE.

dairies where cheeme in almo made; because in them the beet part of ench cow's milk can be met apart for throwing up cream, the beut part of this creain can he tuken int order to be made insw butter, nad the remainder, or all the rest of the milk nad crean of the dairy, cun lie turned into cheese. 'The apmotancous meparation of cream, and the production of butter, are never effieted but in conmquence of the proluction of aed in the milk. Hence it in, that where the whole milk in set aport for the serpuration of crennt, and the whole of the cream in separated, the milk must mecenarily have turnell mour lwfore it in made into chorese; and no very excellent cheene can be made from milk which has once attuined that atate."
We now pass un to n consideration of the most valuable ingredient in the dairy producc-

Buller.

Butter is made of erean, freed from tia milky and meroun propertien. This is effected churning. some fimagine that no butter cun be good except such aa is mado from freah eream; but this ia a mistake, na cream requires to have a little aeditity lefore the butter will form. The length of time which the cream should stand before churning has never been clearly ancertwined; from three to meven dayn, howover, may be considered as the proper perioxl. A inore important mater than the length of time which eream requires to stanil, is the elegree of temperature at which the cream will turn into butter. This han leen amertained from experiment to be from 45 to 75 digrees of Fahrenheit. In Holland, when the cream in tiso cold, hot water is put into the churn to ruise the temperature to 70 or 75 degrees. The hest quality of butter is ohtained at a temperature of 51 degreea, acecording to experiments pefformed by Mr. Pooler; and the greatent quantity at a temperature of 46 degrees. During tho process of churning, the agitation will increase the heat to about fivo degrees more than it was when the cream was put into the churn. Mr. Pooler is of opinion, that the greater quantity of butter is obtained by the incrensed heat causing more milk to remain amongst the butter; and this, of course, must decrease its quality.

In aome of the dairics in the neighbourhood of Edinburgh, and in all those nenr Glasgow, the butter is made by churaing the cream and the milk together. This is done in oriler to oltain the buttermilk, the demand for which is always great in large cities. When the milk and crean ure to be churned together, the milk is kept in the coolers for from twelve to twenty-four hours, und then poured into a milk-tuh. It remains hero until required for churning; and will, during this time, have coagulated. If a certain quantity of milk is put into the milk-tub, and bas coagulated before any more has creamed, the coagulated milk must in no way be disturled, or, if the two quantities are mixed together, tho much fermentation may be the consequence. 'I'he milk is not churned till it has become acid; and when once coagula. tion has taken place, it should be churned as early as convenient. If tho milk has not fermented before churning, the buttermilk will keep for a much longer time, will havo an agreeable taste, and will hear to be mixed with a little water. When the milk has fermented before heing churned, the buttermilk will never he so good, nor will it keep for such a length of time as the former.

The operation of churning, whether it be of cram alone, or cream and milk, is performed in the samo manner. The milk requires more time than crean to complete the process, from two to three hours heing condidered necessary, while crean alone may be effictoally churad in an hour and a half. It is necessary that tho - oration whould be slow in warm weather; for if done wo hastily, the batter will be soft and white. If tho cream is at too high a temperature, the churn should be cooled with cold apring water, t reduce it to the proper
degree of heat. In winter, again, the uperation of tham ing ahould lin done an quickly as pescillon, the artien la ing regulary and the churn should be warmel, to nin the tempernture of the milk or crean. The air which gencrated in the churn mhould he allowed to esape, on it will impede the procena by the froth which it createm
Afer the churuing io performed, the hutter atoond be washed in cold apring water, with a little salt in it two or three times, to extract all tho milk which may ba lonlging alout the musa. It in said by mone that the butter retainas lian aweetnesa much longier when no wom is uned; und othera attirn thint the washing improves the thavour. The extraction of the milk from luther will in duce its weight; hut it appears from the experinuentad Mr. Pomler upon the temperature of the cream, thas the Iess milk which is in the buter ith quality in proporionan bly improved. Kneading and beating the butter mo much render it tough and gluey. After the milk ban Isen earefully cextracted, if tho butter in to he malted it alongld he mixed with tho dinest salt, in the proportion of tell ouncea to the stone of fourtecn jounds, mora or ha according to the time tho butcer in to les preserved. The butter and galt mould be well mixed together with tha hand; and in Ireland it in customary to add a littu ab patre. A compronad of ono part nigar, one parn nitre, and two parts of the lexst Spanish mall, finely powdend together, has lsen highly recommended for peserving butter. It is used in the proportion of one nunce to the pound : and it is saill to give a thavour to the butcer wimid no uther kind ever acquires.

For makiug butter casks or kega, tho woond of the lime-tice is highly recomareded, at containing na arit; and after it the white oak and the ash. When nowd contains acid, it acta powerfully upon the salt in the but ter, converting it into lrine. Fir lans also leen revos mended for mating casks; and, indecd, any wood will unawer if twiled for a fow houra, for by this procesw wa pyrolignous acill will be entircly taken out.
In salting, the butter should never be pai into the tirkins in layers; but the surface ahould the lef eveng day rongh and unbroken, no ns to unite letter with that of the saccerding chuming. The quality may likevin bo better preserved ly covering it over with a clean liven cloth dipped in pickle, and placing it in a cool situation

Battermilk.

Thia is the liquid which remains in the chura ater removing the butter. If akimmed milk has heen emphord for clurning, the buttermilk is thin, poor, and easily nours; but if from the churning of the entire milk, bis buttermilk is more thick and rich, and is considered lp man:y a delicioua beverage. Good butternilk is at id events exceedingly wholesome and nutritious. In la land, it is largely used at meald with potatoes; in Seot land, it is more frequently employed as a relible with oatmeal porrinlge; and for this parpose large quantioa aro brought to Edinhurgh, Glangow, and ether tuman, from the aljoining raral districts. In Euglaud, the bur termilk of thrmers is usually employed in feeting pish

Corstorphine Cream.

This is a preparation of milk, which derives its nase from Corstorphine, a villago three miles west from Bis burgh, where it was onte made in perfection. 1 cm m sists of the curd of soured or lapperad milk, from which the whey is poured, along with fresh eream and a lith sugar. In former times it was a favourite supper dide in Ediaburgh, but is now ultogether out of use.

Devonshire Cfonteat Creann

This is a prepraration of the rich milk of Dovoreding and may be saind to be a kind of half-formed t ther, sact is the soliduess of its consistency. In Vancoureh "Survey of Devonshire," the following is descritud a
to mate of purpar yout isto tin or (welve quarth each following murning tse atternoon, upon funace, or otherwi ponthe fire, they re srean in supposed whirb being gentl Walie, amall air-hul? approach of a moili moved from of the reminur upon the a it may be removed the canc, into an hand with a atick is fixel a sort of pe and with which al eparated from the buth csacs lieing and aonner to coug way, when churne erectal dayn in gal mer a andere valual be frat sulted in th entsized "gb-bhup coreral with a pie buy up about half exem, before chur of Devon."

Cheene may be whole mill: ; the o place to separate nals. This is afte by the iuflusion. of cr whey, which is wbstance is found nll, which is furme has been fed on m or twomach baga o then; others emp cew hatultuls of sa then rolled up, and are kept for som atomach is never : it is a twelvemon naid to swell the e l'he usual way of to add to every a brive, and two lem Late, and give the quantity is made a it has stood at le paring remoet, reec sas follows :-
"Tyke the ma rf its contents, sa jur for three or fo tako it from the ja to is to le replac hould be pierced and allowed to r Wlep wanted ior bhas, og rose, an fuls of salt, are to iov; when the hit en cool. The ma togecher with a 1 the longer it rel better will the ren ufficient to turn aiary county in \mathbf{E}
ration of flimem - than artion lo the sir which he sir which a
to escape, of is Is it crentem
utter mhould bo 4) sale in it, two which may in noune that the When no water ug impraven the is butter will m experiments of creams, that the y is proportionan the butter ho r the milk bat to he nalled, i be proportion of is, trare ar fon iremerved. Tha so ther with the ude a little anth ; one part nila tinely powdered for presiceving ne ounce to the he butter which
he wond of the taining no acid - When wood salt in the bub 40 been reeam. ally wood will this procesa tha $1 t$.
ee par into the I be left every better with that ty may likexima tha a clean liven a cool situativa
he chura atee been emplopat oor, und caily entire milk, ith s rousidered by rmitk is at ad itious. In lio atoes; in sou a relish mild arge quantitia d cther tomis ghand, the but on fecling pigh
erives its nama ent from Elisir ction. It cmos llk, from whith am and a lith te supper diat f use.
to mole of furparing this delicions article :- The milk wput fato tin or earthen pana, halding about ten or twelve quarth mach. 'The evening's meal in placed the following morning, and the morning'r milk ln pliseed in we afternom, upou a broad iron plate heated by a mall furnace, of otherwise over atovea, where, exponed to a gealle firc, they remisin until after the whole boly of srem in auppoaed to hive formud unon the nutlice; which being gently removed lyy the eilge of a noon or lade, winall air-bubbles will begin to rise, that denote the approach of a boiling heat, when the pans inust lie remuved from off the lieated plate or stovea, 'The cream reminn upon the milk in thin atate wutil quite cold, when If may le removed into a churn, or, an in more frequently the came, intu an open veamel, and then moved ly the hand with a atick about a foot long, at the end of which is fised a sort of peel from four to wix inflies in diameter, and with which alout twelve poonds of hutter may be eparated from the buttermilk at a timo-the bitter in byh casen lieing found to separate much more freely, and sooner to cougulate into a inasa, than in the ordinury way, when churned from raw cream that may have been ereral dayn in gathering; and at the nane time will annwer a more valuable purposo in preaerving, which should be first anted in the nuual way, then placed in conveni-en-sized ggg-nhaped carthen crocks, and alwaya kept covered with a pickle, ntade strong enough to float and buy up nhout half out of the brine a new-laid rgge 'rlais cream, before churning, is the celebrated clouted cream of Devali."

Cheess.

Cheese may be made from cream alone, or from the whole mill: ; the object in either cuse being in the first place to separate thar serum from the other mate. ninls. I'his is elfected hy rurdling the cream or milk, by the infusioh, of an acid, the refune being the sermin cr whey, which is of acarcely any value. No neidulous oubstance is found an suitablo for cordling milk as renwh, which is formed of the gastric juice of a calf that has becu fed on milk. Somo persona prenerve tho mawn or atomach bags of ealves with the curd contained in them; others employ the stomach baya alone, putting a fer hatalfuls of salt into and around them. They are then rolled up, and hung in a warm place to dry, ant are kept for nome time lefere they are used. The momach is never made use of in Gloucestershiro until it is a twelvemonth old; for, if used before this, it is said to swell the cheere, making it full of eyes or holes. Tho usual way of preparing the rennet in England, is to add to every aix skins or stomarhe two gullons of brine, and two lemons, which take away any unpleasant taste, and givs the renirt an agreeable flavour. A large quantity is made at a lime ; and it is never used until it has stowl at lenat two months. A method of pre. paring rennet, recommended by the late Mr. Marshall, as follows :-
"Tuke the maw of a newly-killed enlf, and elean it of its contents, salt the bag, and put it into on carthen jur fur three or four days, till it forms a pickle; then wake it finn the jar, and hang it up to ilry ; after which i. is to lae replaced in the jar, the covering of whichs should be piereed with a few holes to almit the nir: and allowed to remain in the jar for twelve months. W?:m wanted t or use, a handful earh of leaves of swoet fons: on rose, and bramhle, with three or four handfuls of sall, are to be boiled together for a quarter of an sout, when the liquid is to be strained off, nad allowed to cool. The mas is then to be put into the liguial. together with a lemon stack round with cloves; and the longer it remains in the liquid, the strmger and better will the rennet $b s$; half a pint of the liquid is nufficient to turn filty gallons of milk." As almost every sairy county in Englund has its own particular method
of ateeping and salting the maw and froparing th rennet, we ahall ably give the unethod pripabed in Ayro ahire, the nont important dairy dintrict In Scotland. 'The wownach of the calf in examined, anl all impuritien such ne atraw, removed froin the curdled milk. Two handfuls of aale are then put into and around the bag, which is hung lin a warm place to dry thoroughly. If In aeldom uaed befors it in a year old, nud even a longer periud in thought to improve it. When wanted to preo pare renuet, the bag in out into amall pleces, and put into a jar, with a haudful or two of malt, and a quantity of boiled non water, cooled down to nhout sixty-flve degrem, or new whey taken oft the curd in put inte the jur. I'he quantity of wnter or whey wili vary according to the quality of the yirning f and if it is that of a newdropied calf, three English pints will be enough; but If feel for four or five weeka, two quarts will he alous the quastity required. I'hia in allowed to stand in the jar for two or threp days, and in then ntralned off, and nnother pint of water plared upon the maw, which, after standing three daya, in added to the flirnt infusion. If any impurities appenr in the liquid, it ahould be carefully atrained through a sieve, and tho whole can be botiled and used as winted. A glassful of whisky is somethues put into cach loottle; but thin is not commons 'I'lo liquid thua prepared may bo uned either imoneds ately, or kept months if required, and a table-apoonful will coagulate thirty gullons of milk in the course of ten minutes; whereas the Englimh rennet require nearly tharee houra for this purpone.

Dwnlsp Checs-Dimlop cheese has of late come into very general repute; and although nowhere no well made an in the parish of Ayrahire, from which it deriven ita nane, it in now manufactured in Galloway, in the countien of Renfrew, lanark, and Ayr, and is extending to others. The checses are male of varlous sizes, from a quarter to balf a hundred weight; and the process of making them is us follows :-Sweet millk for Dunlop checse is remposed of all tho milk as it is yielded by the cows without having the cream separated from it. When so many cowa are kept upen a farm that a cheere cun bo made overy time they are milked, the milk is passed through a seive into the vat, and formed into a curd by the rennet. But when the cows are not so numerous an to afford milk suthicient to form a checse ut each milking, it ia put into the coolers about six or ciglit inclies deep. At the next milking the crean is mimmed off; and withont heing heated, the milk is put into the curd-vat along with that juat drawn from tho cows. The milk is then raised to a temperature above blood heat, or in summer to 90 degrees, and in winter 95 degrees. If congulated much warmer, tho curd becomes too adhoe sive: wome of tho butternecous matter is lost in the whey, and the cheese will be found dry, tough, and tusteleas. If too cold, on tho other liand, the curd, which is then sof, does not part readily with the serum, and the cheese is so wanting in firmness that it is difficule to get it to keep together. Fiven after the utroost care has been taken to extract tho whey and give soln dity to the cheese, holes, which in provincial language are termed eyes, whey-drops, and springs, frequently break out, and render the cheeso either rancid or insipid.

It is sot enough that the milk he bought to a right temperature when tho rennet is applied, but the milk mast be liept neither too hot nor too cohd from the time it is taken from the cow. The temperature of the milkhonse ought to be kept as ofual as possible, never rising above 55 nor sinking below 50 derereses. In operationa so critiend as those of the dary, where any mate rial afteration in the temperature will aflect tho quality of the cheese, this onght at al times to be aseertsined. Instead of this, the general practice is for thed y
maid merely to pass hir fingers through the milk, than which nothing can be more uncertain. A thermometer ought not only to he in every milk-house, but also in every byre, as oxtremes of heat or cold, or sudden changes in the temperature, have a great effect upon the secretion of milk.

About a table-spoonful of the liquid rennet is considered sufficient for 100 quarts of milk, and the curd is formed by it in twelvo or fifteen minutes; but in some dairies, the curd does not appear in less than forty-five or sixty minutes, although double the quantity of renuet is used. This must he owing either to a want of strength in the rennet, or from some peculiarity in the berbage upon which the cows have been fed. The curd, when formed, should be broken with the skimming-dish or the hand as soon ss possible, but without pressing as the least violence has been found to make it come off white, and thus weaken the quality of the cheese. The whey may be run off by lifting the tub gently on its edge, and allowing it to flow into a vessel placed beside the tub. The curd should then be sllowed to stand until the whey had gathered in another part, and this is also poured off.

When quite freed from the whey and the curd has acquired a little consistency, it is cut with the cheeseknife, gently at first, and more minutely as it hardens, after which it is put into the trainer, a square vessel with smald holes in the bottom, and a cover to fit inside. The lid is placed upon the curd, with a cloth thrown over it, and pressure is applied according to the quantity of curd; and in this state it is allowed to stand for about half an hour. It is then cut into pieces about two inches square; the whey is arain discharged, and double the former weight is placed upon it. This process of cutting it smaller every half hour, and increasing the weight until the pressure is 100 lbs , is continued for three or four hours. It is then cut very small, and thoroughly salted; thirteen ounces of salyto twentyfour pounds English of the curd being sufficient.

A clean cheese-cloth, rinsed in warm water and wrung out, being then placed in the chessel, the curl is put in, and half a hundredweight laid on it for an hour. It is then put under a press of two hundredweight, where it remains during an hour and a half, after which it is taken ont, and a fresh cloth plucd in the chessel. The cheese is then placed upside down, and laid, with increased weight under the press, letting it remain three or four hours in the press at a time, and at eseh shifting get a clenn dry eloth. Some have shortened the process of pressing by placing the checse, when it comes from the press for the first time, into water heated to about 95 or 100 degrees, where it remains till the water becomes milk-warm. The cheese is then dried well. and acrain placed under the press.

When ultimately taken from the press the cheeses are generally exposed for about a week to a considerable degree of drought, turned over every twenty-four hours, and rubied with a dry cloth. They are then removed to the store-room, which should he in a cool exposure between damp and dry, without the sun lering allowed to shine on them, or a great current of air admitted-this gradual mode of ripening heing found essential to prevent the fermenting and swelling of the cheese and cracking of the rind. The mode of sweatIng cheeses, after they come from the press, and before they are laid up to dry, although cominon in Bughad, is not upproved of nor practised in Ayrshire. Yet Dunlop cheeses do not crack in the skin except when the milk las begun to weidify lufore boing coagulated, or when they are exposed to too much drought at first. Whey springs, or eyes, are seltom scen in the cheeses of Ayrshire. Cheese, like butter, is sumetimes coloured with an infusion of annato, but the prartice is far from neing comano. The Dunlop or Ayrshire cheeses have
not so high a flavour and spicy taste as some of ine Fnglish, owing, perhaps, to the inforiority of the pasture, and to tho greater pains taken in the English dainies to give the cheese an acrid taste.

Cheshire Cherse.-It has been remarked, that al though goorl initations of the cheese made in the Fng. lish counties have been proluced elsewhere, yet in no trial has a checse possessing the true Cheshire flarong been made. 'I'his is attributed to the abundance of tha saline particles in the earth, resulting from the nume rous salt springs in that county. Cheshire is almos entirely a dairy county, its arsble husbandry being neither extensive nor of a superior character. It in said to possess thirty-two thousand dairy cows; the quantity of cheese made annually is estimated at eleven thousand five humdred tons, and tho average quantity afforded by each cow at three hundred pounds, in making the elleese, the practice followed is to set tha evening's milk npart till the following morning, when the cream is skimmed off, and two or three gallong put into a brass pan, which is immediately placed in hot water and rendered sealding hot. Half of the milk thus heated is poured upon the night'e milk, and tho oher half mixed with the eream, which is rendered thinner by the mixture. This is done by the dairywoman while the other servants are milking the ceny; and the morning's milk being immediately added to that of the previous, evening tho whole mass is set to gether for cheese. The rennet and colouring being then put into the tub, the whele is well stirred, and a wooden cover put over the tub, with a linen cloth thrown over it. It in general requires an hour and a half before the milk curdles; and if the cream ahould rise to the surface in this time, the whole must he agis well stirred, which is dune overy timo tho cream risen, until roagulation takes place.

When the curd is formed, if it be firm, it is cut with the cheese-knife, and then cut across, making tho incisions about an inch distant from each other. Tha curd is then hroken by the duiry-woman, until every part of it is made as sinall as pessible, arout foty minutes being generally spent in this process, when tho curd is left about half an hour to subside, covered oret with a cloth. After this, the curd is put in a favourable position in the tub to drain, and a weight of alout sinty pounds put upon it, in order to press eut the whey, which is drained to the lower side of the tub aml lalled out. When well droined, the curd is tumed upside down, and pressed as before. It is cut into pieces of ohout nine inches square, which are pilcd one absue snother, and pressed both with the hand and the weight, so long as the whey continues to flow.

These pieces are then eut into threo parts of about the same size, which are broken very small, sud solted at the rate of enreo handfuls to each. They are thet put into a cheose-vat, furnished with a coarse cheeso cloth. The curd is heaped in the vat in a conical shapo the cone being covered with a cloth, to prevent any cura from falling off. As soon as the curd adheres fogether, a weight of about sixty ponnds is put upon it, and sereral iron skewers are stuck through it by holes in the sides of the vat. T'hese holes are made in order to allow any whey remaining in the curd to escape. Tha weight and skewers are then removed, nud the cand is broken us small as possible, half way dowa the rat I'he pressing and skewering are again repeated, and clean cloth is put over the upper part of the curd, which is then taken out of the vat, and put into it again upside down, and broken half way down as before When no more whey can be extracted. the curd it turned in the vat, and riused in warm whey. The curf is still kept above the edge of the vat, being hound round with strong tape to keep it in a proper shaps 'I'he cheese is next put into the press, which has gent
rally tie power of fo and is then well skev of Iwenty inches lon vat is furnished with derrers; luid after press, the chcese ia clran cloth. It is tur for forty-eight hours, doth, sad is then p vered with salt, whe pasition being reverse the vat, it is put int same breadth as the placed on the salting days, being well salte is then washed in wiped, is placed on mains shout seven d dried as before, and ru After this, it is place cheesct-rootn, and rubl the first aeven days.
These cheeses var vearly a hundred ar quantity of salt made certain; three pounds thought to be about tl ast in the salting hou much saltness during artain, though much tuins.
Glouerstrr Cherse.which is held in suel male in the vale of arcellence is said to de the land, and the grea managrement of the made in this vale son bundred tons, and eat bunured and fifty pou months of May, Junt manafacturing is as fo
When the curd is co it is cut gently and slo and after standing, to eut at this time into to it first. This cutting is being made near to ca lited with the skimmin a kuife in the other ha is now allowed to settl the whey is taken from hair sieve, the dairym curd so that all the wh pressed down with the cheese-cloths of fine ca half an hour. It is the it to amall piecea, thus and rubbing with the h - grat improvement in

The whey is rext ed pul as comprectly as p. the rat just so far that with the edge. A chee nt and a little hot wa has a tudency to hird prevent it from crackin the vat into the cloth, susbed in whey, the is furned to the vat. Th ret put into the press f und dry cloths applied It is then replaced in tht rally performed about t
ally tie power of fourte, n or sixteen hundredweight, and is then well skowerec with strong wires, eighteen of twenty inches long, and sharp at the pointe. The rat is furnished with holes on the sides to receive the akewers; hid after being about half an hour in the press, the cheese ia ngain turned, and supplied with a clesn cloth It is turned agnin and again soveral times for forty-eight hours, each timo supplied with a clean doth, and is then put mid-deep into aalt, its top corered with salt, where it remains for three days, its position being reversed each day. When taken out of the vat, it is put into a wooden boop or girth of the ame lireadth as the thickness of the cheese, and is placed on the salting bench, where it stands about eight dsys, being well salted luring that time. The cheese is then washed in lukowarm water, and after being wiped, is placed on the drying bench, where it remains sbout seven dnys; it is then aguin washed and dried as beforc, and rubbed all over with swcet butter. After this, it is placed in the warmest part of the cheese-toom, and rubbed each day with sweet butter for the first seven days.
These checses vary in size, being in some dairics nearly a huudred and forty pounds in weight. The quantity of salt made use of during the process is uncetain; threc pounds to a checse of sixty pounds is thought to be about the amount; but much of this is_{s} .ost in the salting house. Whether the cheese acquires much saltness during the stceping and rubbing, is onartain, though much salt is expended in these operatonls.

Gloucester Chese.--The double Gloucester cheese, which is held in such high repute, is almost wholly malo in the vale of Berkley in Gloucestershire. Its ercellence is said to depend inuch upon the quality of the land, and the great attention which is paid to the manarement of the dairies. The quantity of cheese made in this vale annually, is about one thousnnd two huudred tons, and eaeh cow is cstimated to yield three hundred and fifty pounds. It is usually made in the months of May, Junc, and July, and the process of manufaeturing is as follows:-
When the curd is considered firm enough for breaking, it is eut gently snd slowly into squares of about an inch; and after standing, to allow the whey to gnther, it is again cut at this time into larger pieces than before, and slowly ut first. This cutting is gradually quickened, the incisions being made near to each other. The lumps of curd are lifed with the skimming spoon in one hand, and cut with 3 knife in the other hand, while suspended. The curd is now allowed to settle about a quarter of an hour, when the whey is taken from it by being poured through a fine hair sicse, the dairymaid, at the snme time, cutting the curd so that all the whey may csenpe. The curd is then pressed down with the liand into vats, covered with largo chesse-cloths of fine canvas, and placed in the press for balf an hour. It ia then put into a mill, which crumbles it to mall pieces, thus saving the labour of squeczing and rubbing with the hands; and this operation is thought 1 great improvement in the muking of checse.

The whey is rext completely extracted, and the curl put as compactly as possible into the vat, beaped above the rat just so far that it can be pressed down to a level with the edge. A cheese-cloth is then spread over the nt and a liftle hot water thrown over the cloth, which has a fudency to hurden the outside of the cheese, and present it from erucking. The eurd is next turned out of the vat into the cloth, and the inside of the vat being washed in whey, the inverted curd with the cloth is rcturned to the vat. The cloth is then folded over, and the rat put into the press for two hours, when it is taken out, end dry elethe spplied through the course of the day. It in then replseed in the press until salted, which is genenilly performed about twenty-four hours after it is mods.

In salting, the cheese is rubbed with fincly powdered salt; and this is thought to make the checse smoother and more solid than when the snlting process is performed upon the curd. The cheese is after this returned to the vat, and put under the press, in which more than ons are placed, the newest one at the bottom, and the oldest on the top. The salting is repeated three times, twenty-four hours heing allowed to intervene between each; and tho cheese is finally taken from the press to the chcese-room in the course of five days. In the ehecse-room it is turnid over every day for a month, when it is , Jeaned of all scurf, and rubbed over with a woollen eloth, dipped in a paint made of Indian red or Spanish brown snd small beer. As soon as the paint is dry, the cheese is rubbed once a week with a cloth.

The quantity of salt employed is about three and a half pounds; and one pound of annato is sufficient to colour half a ton of cheese.
'I'he true characteristics of double Gloucester consipt in its great richness, together with the mildness of its flavour. The single Gloucester differs in no respect in the nenking from the double sort, exeept that it is thinner; the weight of each seldom exceeding twelve pounds, while the double is generally about twenty-two pounds This cheese is sometimes made less rich by being mixed with skimmed milk.

Stilton Cherse.-This cheese is made by putting the night's cream, without any portion of skimmed milk, into the next morning's milk; but those who wish to make it very fine, add still more crenm; and thus its richness depends upon the quantity of cream made une of. Butter is also suid sometimes to be used in its manufacture. The rennet is then added without any colouring; and when the curd has formed, it is taken out without heing broken, und put whole into a sieve or drainer. In the drainer is is pressed with weights until all the whey is extracted, nud when dry, put into a booped chessel. Tho outer coat being salted, it is then put into the press, and when sufficiently firm, it is taken ont of the chessel, and bound tightly in a cloth. This cloth is changed every day untr the cheese is quite dry, when it is removel; and the cheese requires no further care except oceasional brushing and turning. The Stilton checse, although small, not weighing more than twelve pounds, requires two years to bring to full manturity.

Parmrsan Cheese.-This famous cheese is manufactured in that part of Italy which lies between Cremona and Iodi, comprising the richest portion of the Milanese territory. The cows are kept in the house nearly all the year round, and fed in summer with cut grass from the rich irrigated mesdows of the country. Some of the cheeses aro so large as to contain nearly 180 Jhs and the milk of 100 cows is required to pruituce one of this size. This chece is made from tho milk of the evening, which is skimmed in the moming and at noon, and the milk of the morning, which is also skimmed nt noon, I'hese two milks nre put together into a large copper caldron, which is laung on the nrm of a lever, and can be taken off and put on the fire at pleasure. The milk is heated in this vessel to about 120 degrees, and then removed from the fire and kept quiet until al' internal motion has censed.

The rennct is then added, and in an hour the curd wil? have formed, when it is agnin put on the fire and heated to a temperature of 145 degrees. While heating, the mass is loriskly stirred, till the curd separstes in small pieces, when part of the whey is run otl; nod a little saffron added to colour the cherese. When the curd is suff. ciently broken, nearly the whole of the whey is teken out, and two pailfuls of cold water are thrown in. The tem peraturo is thus reduced so fur as to allow the dairymen to collect the curd, by passing n cloth under it and gathering up the corners. It is now jressed into a frame of wood, placed on a solid platform, with a heavy weight on
tie top. In the course of the night the curd cools, parts with the whey, and assumes n firm consistence. The next day ono side is rubbed with salt, and the succeeding day the chesese is turned, and the other side rubbed in the oume manner, this alternate salting being continued for forty days. After this, the outer surfare of the cheese is pered off, the fresh surface rubled with lingeed oil, the convex sido is coloured red, and the cheese is fit for sale.
It appears that this highly estecmed checse is altogether moda from akimmed milk, and yet all the pores are filled with an oily substance. This seems too rich to be imparted by the hutteracpous matter of milk which has been deprived of its cream, nad it is gencrally supposed that seine portion of oil is mixed with the curd. This, howeicr, has not heen ascertuined to be the case."
Suiss Cliersc.-The finctst checse mode in Switzerland is that of Gruycre, in the canton of Friburg. It is rich in quality, and generully flavoured with n powdered dry nerb, the Mclilotus officinalis. The cheeses weigh from forty to sixty pounds each, and are exported in largo quantities.
Mr. Laing, in his work, "Notes of a traveller," thus alludes to the primitive dairy operations of the smnll pastoral farmers in Switzerland :-"Each parish has its alp, that is, its common pasture for the cows of the parish, and each inhnbitant is entitled to a cow's grazing, from June to October, on this common pasture. Few, however, have cows in zufficient number to repay the lahour of attending them at the summer grazing in the nlps. The properties are too small, in general, to keep more than five or six cows all winter; and few can kecp more than three. Yet these small proprictors contrive to send cheese to market us large as our Cheshire dairy-farmers with their dairy stocks of forty or fifty cows; mad, as the prico of Gruyere cheeses shows, incomparably better in quality. Each parish in Switzerland hires a man, generally from the district of Gruyere in the canton of Frilmurg, to take care of the herd, and make the cheese; and if the man comes from Gruyere, all that he makes is enlet Gruyere checze, ulthough made far enough from Gruyerc. Oue cheessman, one pressman or assistant, and one cowherd, are tonsidered necessary for every forty cows. The ounners of the cows get credit, each of them, in a book daily, for the quantity of milk given hy each cow. The cheeseman nnd his assistants milk the cows, put the milk altogether, nud make cheese of it; and at the end of the sabson each owner receives the weight of cheese proportionable to the quantity of milk his cows have delivered. By this co-operative plan, instead of the smallsized, unmarketahle cheeses only, which each could produce out of his three or four cows' milk, he has the same weight in large markstable cheese superior in quality, hecause made by peopile who attend to no other business. The cheeseman and his assistants ure paid so much per head of the cows, in money or in checse, or sometimes they bire the cows, and pay the owners in money or cneese. In October, the cows are brought home, and the home grass-lands having been mown for hay twico during the summer, the winter food is provided, and a very sinall area of land keeps a cow, when the home grass has not been burdened with summer grazing. The pasture in there alps, or summer grazings, is abundsnt and rich. In some of the upper valleys, inhabited winter as well as summer, but in which the corn-crops are secondary, and dairy produce the main object-ns, for instance, Grindewald-a man with a house suitably situated is permanently cestablished for recciving the milk of tho neighbourhoox. Each family takes care of and milks its own cow or cows, kecps the milk wanted for family use, and sends the rest of it daily to the checseman, who gives

[^50]each family credit for the milk deliveren each Jay; and the cheese made during the senson is divided, or van usually the checse is marketed, and the money divided and in this way chceses of great weight are manofio tured, although no one cow-owner has milk criough to make one of marketahle size. I went one warm fore noon, while aacending the Rhigi, into one of these dain houses. From the want of dairymaids or females aboon the plnce, and tha appearance of the cow-man and hid boys, I thonght it prudent to sit down on the bench out side of the smoky dwelling room, and to ask for s lown of milk there. It wns brought mee in a remarkably deman wooden bowl, and I had some curiosity, when, cletn or dirty, my milk was swallowed, to sce where it rame from The man took me to a sepurate wooden building; and instend of the disgusting dirt and sluttishness I had ex pected, I found the mont unpretending eleanliness in bis rough milk room; nothing wns in it but the wooden us sels belonging to the chiry, but these were of unexep. tionable nicety; and all those holding the milk wem stnnding in a broad rill of water led from the neightoon ing burn, and rippling through the centre of the room, and prevented, by a little side sluice, from running too fuil, and mingling with the milk. This burn running threugh gave a freshucss and cleanliness to every article; althound tho whole was of rude construction, and evidently for use, not show. 'The cows were stabled, I found, at sone distance from the milk-house, that tho eflluvia of thei breath and dung might not taint the milk. Chese i nlmost the only sgricultural proluct of Switzeeland hat is exported; andit is manufactured by these small fanmen ccrtainly as well, with ns much intelligence, cleanlinean and advantage, as by large farmers."

Whey.

Whey, or the thin watery serum of milk, is of a pub greenish hue, and snline in taste, and forins an agreeabla heverage when cool. Some dairy-farmers in England ate io the habit of extracting a little butter from it; but with carcful management, this practice would be quite un necessary, as it is only when the milk has heen cong. latel too hot that nny quantity of butter will remain in this liquid. In Scotland, tho whey is used na food brite farmers and their families in making oatmeal poridat ant a saving of nearly one-third of meal is effected whem the porridge is made of whey instend of water. By boiling, what is called float whey is obtainel, which, whee mixed with a little sweet milk, is thought lithe infriorto curd. Whey is also very valuable in feeding swine; wed it is estinated that the whey of three or four cows win in the course of one season, with little additional ford fatten a pig to the weight of twelve or fourteen stonas

london datry management

The quantity of fresh milk annunlly consumed in British metropolis was lately calculated to be $39,4010 \times 4$ quarts, costing $£ 985,500$, and lwing the proult ce of 12 m cows, kept principally in large dairy cstablishments ind parts of the environs. The milk is gencrally of the hea kind when drawn from the animals; but, hetseen te dairy and the consumer, it passes through several hard each of whom takes a profit upon it, and increses quantity of saleable liquid hy large infusions of mata chalk, \&c. In the condition it asually reaches the pribic it is shamefully adulterated. The charge of deterimith the quality of the article is seldom made upon the co kecpers, whose entahlishments arr, for the most part, dels of good manngenernt. As it many be interesting our readers to hinve some account of these large dime we present the following particulars :-
The two largest dairy estalibishiments are thosed h Flight (known as Laycock' dairy) and ol Messts, Hhata Flight's is one of the curiosities of Iondon; it cum fourteen acres of ground, surrounded by a high wall, ω
inctraing luildings In the cow-house antole of which ar pely varied ; at on diog have turnips. © fattenitg for mark articles. All are ct is an haspital for ur The milk-house is daily with hot wate
With respect to Jalington, Mr. Loud uire," has comdense tent and moilo of m «The numbier of co exceeds, on an nvert time these individua thousand cows in sarfare on which th two or three arres. f dout one inch in si dian of the slope; ns gutters, and the m wheling out of the drinking to small ca walls, at the hems that the one trough throughout the whol twenty-four feet wis high; the roof of til tion, and with pmoes ton ties, for light. along the centre; on onl a half wide, and the sides. 'I'he cow ahich rings run on the stalls; tho comm in haring iron rods in manger. formed of st izze of those used for shout eightepn inche Lend of esch stall. dose th each other, a bonit a foot in breadt miv. The lotton of nigher than the upl formed by the upper ron cisterns, which c ristern serves two cov shels, but adjoining n trougha are supplied manner which can be not stop to offier a dest a woolen cover, whi cows are eating their the same tiane, and the upper end, and at of aheds, is the dairy about twelve feet squ the middle or senlding and the inuer or mill pasage from the last. - square yard, kurro the cows when they h atherf for store anil br bie purfues of consulu which oceasionally re miann in the demand. with brick laid in ceom tedve feet leep. Th durest tires; and, ns is ing to the pigs when g an faund most protita masking. Beyoud thi
ach day; onc
viled, or very oncy divided: are manufio
ik crough
to warm form
of these dering females aboo -man and hin the bench out sak for a boom narkably dean whnn, clen or 0 it came from building; and ness 1 hades anliness in this he wooden vee re of unescep the milk wew the neighbow a of the room runaing too fuil, unning througd rticle ; although al evidenty I found, atsone eflluvia of thri ilk, Chrese is switzerland the :se Bmall famen nnce, cleanlinem
ilik, is of a plath rums sn agreetb in England areis on it; but will ald to quite un bas been conge r will remsin t ced as food by the atmeal poridee is effected uhm of water. B_{1} nel, which, diea ht little infeniorto eding swine ind or four coms wil c additionst fow fourteen stona

Ent

consumed in th to be 39,42100 prodice of!? ablishments in nerally of the tax but, lietweea the gh several lask nad incresese to Ifusions of wive, reaches the portion ge of detericiom de ulion the a the mast parn , be interestion nese large diriak
s are those of h
of Messst, Khads Conlon; it conern y a high wall,
incnuing luildings for the different purposes required. In the cow-house there are upwarda of 400 cows, the ntinle of which are fed in stalls. The food is very properly paried ; at one time they have mangel worzel; then they have turnips, carrota, cabbages, and clover; and when foteniig for market, they are fed on oil-cake and othe articles. All are curried daily, Adjoining the cow-house an heapital for unwell cows, or cows which am calving. The milk-house is kept beautifully clean, heing scouered daily with hot water.
With respect to Rhodes's dairy, which is situated at satington, Mr. Lotodon, in his "Encyrlopsedia of Agriculune," has conderused the following deseription of its exent and node of management from various publications: -The number of eows kept by the present Messrs. Rhodes aseeds, on an averaye of the year, four hundred : at one tine these individuals are said to have had upwards of a thousand cows in their different establishments. The surface on which the buildings are placed is a slope of two ar three arres, firing the east; and its inclination is dout one inch in six feet. The sheds run in the directian of the slope; as well for the natural drainage of the gutters, and the more easily scraping, sweeping, and wheling ont of the manure, as for supplying water for driaking to small cast-iron troughs, which are fixed in the walls, at the heads of the cattle, in such a manner as Lhat the one trough may be supplied from the other throughout the whole length of the shed. The slieds are tweaty-four feet wide; the side walls about eight feet high; the roof of tiles, with rising shutters for ventilation, and with panes of glass, glazed into cast-iron skeleton tiles, for light. 'Tho floor is nearly flat, wisth a gutter aloag the centre; and a row of stalls, each seven feet and a half wide, and adapted for two cows, runs along the sides. 'I'he cows are fastened by chains and rings, which rings run on upright iron rods, in the corners of the stalls; the common mode being departed from only la having iron rods instead of wooden posts. A trough or manger, formed of stone, slate, or cement, of the ordinary size of those used for horses, and with its upper surfice thout eighten inches from the ground, is fixed at the lead of each stall. Four sheds are placel parallel and close to each other, and in the party walls are openings, ohout a fout in brealth and four feet high, opposite each ow. The bottoen of these openings is about nine inches nigher than the upper surface of the troughs, and is formed by the upper surface of the one-foot-square casttron cisterns, which contain the water for drinking. Each cishro serves two cows, which, of course, are in different shels, but adjoining and opposite ench other. All these troughs are supplied from ono large cistern by pipes, in a maner which can be so readily conceived that we shall not slop to offer a description. Each of these troughs has a wooden cover, which is put on during the time the oowsare eating their grains, to prevent their drinking at the same tiae, and dropping grains in the water. At the upper end, and at one corner of this quadruple range of sheds, is the dairy, which consists of three rooms of about twelve feet square: the outer or measuring-room ; the middle or sealding-room, with a fire-place and a hoiler; end the inner or milk and butter-room, separated by a pasage from the last. At the lower end of the range is a square yarl, surrounded by sheds; one for fattening the cows when they have ceused to give milk, and the otiers for store and breeding pigs. The pigs are kept for the purpuse of consuming the ensual stock of skim milk which occasionally remains on hand, owing to the fluctutianas in the demand. 'This milk is kept in a well, walled with brick luid in cement, about six feet in diameter, and tedve fect tleep. The milk hecomes sour there in a very durd tit e; and, as is well known, is found most nourishing to the pigs when given in that state. Breeding swine are fenad nost protitable, the aucking pigs leing sold for masting. Beyond this yard is a deep and wide pit or
pond, into which the dung is emptied from a platform of boards projecting into it . The only remaining building wanted to complete the dairy estallishment is a house or pit for containing the exhausted malt (grains), on which the cows are chiefly fed. Messrs. Rhodes have a building or pit of this description at some distance, where they huve a smaller establishment. There are a stackyard, sheds, and pits for routs, straw, and hay, a place for cutting hay into chaff, cart-sheds, stables, a counting house, and other buildings and places commen to all such establishments, which it is not necessary to descrihe.
"The cows in Rholes's dairy are purchased newly calved in the cow market held in Islington every Monday. They are kept as long as they continue to give not less thnus two gallons of milk a day, and are then fittened on oil-cake, grains, and cut clover hay, for the butcher. The short-homed breed is preferred. partly for tho usual resson of being more abundant milkers than the long horns, partly because the shortness of their horns allows them to be placed closer together, and partly because this breed is more frequently brought to market than any other, The Ayrshire breed has been tried to the munler of 150 at a time, and highly approved of, as atlording a very rich cream, as fattening in a very skort time when they have left of giving milk, and as producing a heef which sold much higher than that of the short horns. The difficulty, however, in procuring this breed was found so great, that M:. Rhodes was obliged to leave it off. 'The length of time during which a cow treated as in this establishment, continues to give milk varics from six montlis to the almost ineredible period of two years. We were assured of there being at this moment several cows among the 300 which wo sami that had stood in their places even more than two years, and continued to give upwards of one gallon of milt daily.
"The treatment of the cows in Rhodes's dairy differs from that in most other establishments. The cows are never untied during the whole periol that they remain in the house. In most other establishments, if not in all, stall-fed cows or cattle are let out at least onca a day to drink; but these animals have clear water continually lefore them. They are kept very clean, and the sheds are so remarkally well ventilated, by means of the openings in the roofs, that the air seamed to us purer thon that of any cow-house we bad ever before examined probally from its direct perpendicular entrance through the roof, this, in moderate weather, heing certainly far preferuble to its horizontal entrance through the side walls.
" The prineipal food of the cowa in Rhodes's dairy, sa in all the other London establishments, consists of grains; that is, malt after it has been used by the brewer or the distiller. As the brewing seasons are chiefly autumn and spring, a stock of grains is laid in at these seasons sutlicient for the rest of the yenr. The grains are generally laid in pits hottomed und lined with brickwork set in cement, from ten to twenty feet deep, about twelve or sixteen feet wide, and of any convenient length. The grains are firmly trodden down by men, the hoaps being finished like hay-ricks, or ridges in which potutoes are laid up for the winter, and covered with from six to nine inches of moist carth or mus, to keep out the rain and frost in winter, and the heat in summer. As a cow consumes about a bushel of graius a day, it is easy to cakulate the quantity required to he laid in. 'I'he groins are warm, smoking, and in a state of fermentation when put in, and they continue fit for use for several years, Weconing somewhat suur, but they are, it is said, as much relished by the cows as when fresh. It is common to kecp grains two or three yaurs; but in this estainishment they have heen kept nine yars, and fonnd perfietly good. The exclusion of the air almost preventa the increase of the fermentation and conectuen! lecom-

information for the peofle.

proxition. What is called distiller's wash, which is the remainder after distillation of a decoction of ground malt and meal, is also given to cows, but more frequently to such as are fattening than to those in milk. 'The present price of hewers' grnins is fourpenec halfpenny per bushe!; of distillers' grains, on account of the meal they contain, ninepence a bushel; of wabh, thirty-six gullons for sixpenec.
"Salt is given to the cows in Rhodes's dairy at the rnte of two ouncea cach cow a day. It is mixed with the grains, which ara supplied beforo milking, about three o'clock in the morning; and in the afternoon, about two o'clock, just before milking. Of green food or roots, portions are supplied alternately with the grains; and in winter, when tares or green giass cannot be procured, after the turnips, potntors, or mingel-wurzel have been eaten, a portion of dry hay is given.
"The produce of this dairy is almont entirely milk and cream for private fanalies and for public hospitals and other institutions. A number of the public establishments aro supplied directly from the dairy by contract; but privato familics are principally aupplied by milkdealers: these have what are called milk-walks; that is, a certain number of customers, whom they call upon with supplies twice a dny; and they sre thus cnabied to aseertain the average of what their customers consume, and to contract with Messrs. Rhodes for this average. The latter calculate the number of cows sufficiont to give the dealer the supply wanted, and this number the dealer undertakes to milk twice a day, namely, nt threc o'clock in the morning and at three in the afternoon. The milk is measured to the dealer, and should he have milked more than bis quantity, it remains with the daryman; but should the cows have been deficient in the quantity, $i n$ is rade good from the milk of other cows, miiked on account of the contracts of the cstablishment. As the supply of the cows and the demand of the dealers are continuaily varying, it often happens that considerable quantities of milk remain on the dairyman's hands, frequently, we are told, as much as sixty or seventy gallons a day. This quantity is placed in shrillow earthen vessels, to throw up the cream in the usual manner; this cream is churned, and the buttar sold." The skimmed milk, it is added, ns well es the utter-milk, are, as is usual in English dairies, given to the pigs.

general maragement of cattle.

Diseases.

Cattle are subject to various disenses, the result of improper ireatment, or of causes connected with climate which it is diticult to avert. I3y attention to fecding, housing and cleaning, as already noticed, much may be done to prevent some of the more fatal disternpers. Cutthe that have parsed their lives, both day and night, in the open air, are gencrally so hardy that they are not injured ly n wetting of the skin, and are liable to few of the complaints of dairy or stall.fed animals. Cows, boing compelled to lead an artificial mode of life, are the most delicate in every respect, and require the most careful treatment. They should not be left out all night, and when they return from the field wet, it is always a eafe and humane plan to dry them with a wisp of straw. The diseases to which they are most linble aro of an inflammatory kind, and for these the veterinary surgeon prescribes blceding, and jerhaps some medicines to be tuken internally. Leaving cow-keepera to seek the advice of these professional men, or at least of persons possessing practical skill, we need here only allude to three chief disorders for the sake of general informstion. The first we shall mention is

The Ifove.

The hove, or blown, in cattle is a swelling in tho paunch, caused generally by eating wet grass or clover
in warm weather. The substanco ferments, and to membrnne becomes distended by the creation of air n gas, which cannot find the menns of escape ; and if nom tnken off artificially, the animal will be suflocated. Mr Leudon, in his "Encyclopadia of Apriculture," mer tions the following methods of relief from this fatal dis. tension :-
-1 Thero are thres modes of relieving the complaint which may be adverted to according to tha degres of distension mud length of time it has existed. These are intermal medicines; the introduction of a probang of some kind into the pauncli by the thront; and the punce turing it by the sides. Dr. Whyatt, of Edinhongha, in said to have cured cighteen out of twenty hoved conis by giving n pint of gin to each. Oil, by condensing the air, has been successfully tricd. Any other substance also that hns a strong power of absorling air may be advantageously given. Common sait and water, made strongly saline, is a usual country remedy. New milk, with n proportion of tar equal to one-sixth of the milk, is highly spoken of. A strong solution of prepsed ams monin in water often brings off n great quantity of aip and relieves the animal. Any of these internal iemedies miy be made use of when the disease has recently takes place, and is not in a violent degree; but when other wise, the introduction of an instrument is proper, and is now very generally resorted to. The one principally is use is a species of probang, invented by Dr. Munroe, of Edinburgh. Another, consisting of a cane of six fet in length, and of considerable dinmeter, having s bulb ous knob of wood, has been invented ly Eager, which is a more simple machine, but hardly so eflicacious. It is probable that, in eases of emergency, even the latge end of a common curt-whip, dexterously useu, might nuswer the end. But by fir the loset instrument for re lieving hoven cattle, as well as for elystering them, ia Read's enema apparatus, which is alike applicable to horses, cattle, and dogs. It consiats of a syringe, to which tubes of different kinds are applied, according to the purpose and the kind of nuitioal to be operated upna There is a long flexible tube for giving an enena te loorses and cattle, and a smaller one for degs. Tone lieve hoven bullocks effectually. it is ueressamy not only to free the stomach from an accumulation of gas, bo from the fermenting pulaccous mixture which gencata it: for this purpose n tube is applied to the cxtremity of the syringe, and then passed into the animal's sto mach through the mouth, and being put in action, tix offemling matter is discharged by a side opening. When the wame operation is performed on sheep, a smaller tely is made use of. The characteristie excellency of head instrument is, that there is no limit to the quantity d fluid that may be injected or extracted. The same ringe is used for extracting poison from the stomach d man, for smoking insects, extinguishing fires, and ayning ing fruit trees. The introduction of any of these is struments may los "ffected hy the help of an asistas who should hold the horn of the animul ay one hase, and the dividing cartilage of the nose with the other while the operator himself, taking the touguc in his hund, cmploye hia risht in skilfully and carefully into ducing the instrument ; the assistant bringing the bew and neck into such an attitude as to mako the pasup nenrly straight, which will greatly facilitate the opat tion. But when no instruments can be procured, ona cases may occur when, indeed, it is not advisable to th them, as when the disears has existed a consident time, or the noimal has becoma outrageous, or the mach oo much distended with air that there is dame of immediate suffocation or burating, in these instomat the puncture of the maw must be instantly performal which is called paunching. This may be done with to greatest case, midway between the ilinm or hasuch-bwo
and the last rib of the left side, to which the pauschat
dinest a sharp ten is veteriuary practi which will be foun far the most safo, a and quickly, at the atance into the cav casion an equal dist prevated, and the may be removed; wound should be * other allheaive that this operation ssistant cannot be 1 moment abaut doi aflorded by means o lng, a stimulant drin a pint of common horn in a pint of ale tine in slc, may an simulus. When, a some relaxntion of t firsh, therefore, feed iuga, a tonic."
The apparatus mr use, may now be had dealers in agricultur wemploy in emerg without.

The malignart ep aspecies of catarrh, is most frequent in da the country. The wr quated from (liib. Us ture and remedies:nume, in its carlier o frm ; but, disarmed frm times, or at leas nuts for some years guished by some or syraptoms:-
"There will be col many cases for a we other marked sympton anare of this, but he it; and he will be fully before we have dons
"After a few days be added to the cont frequent, and sometim root of the horn cold hack, st others liquid Presently afterwards, aguin and again, is obs the spine, and particu! "The crugh becomes - brown or bloody in mouth; the eyes are : pinda his tecth; there thout the nostrils; an if he does, riaes again The eyes soon afterv pulse remains small, be ration is quicker; the mens on the loins is rem the frame; and the fte ond more fetid. The p bis teeth almost ineess कonvulaive motion; blod be breath, and even tl ted the beast staggers "Tumours and boils Wrun parts, If they Vol. L.-77 and the punce Edinburgh, is y hoved coms condensing the ther subsiance ing air may to ad water, male ly. New milk, th of the mill, of prepared amm quantity of air, itemal iemediea s recently takea out when otheis projer, end is ee principally is Dr. Munroe, of cane of six feet , having a bulbhy Eager, which a eflicacious. to even the larga sly useci, might istrument for or ;stering them, ke applieeble to of n syringe, to lied, according to e operated upn ing an eneria k fir dogs. To it cessary not only lation of gas, bad which gencrata to the extrenity the aniusal's stan put in action, the opecuing. Wha ep. a smallet tex cllcncy of Redi a the quantirad The same $\%$: in the stomach of - fires, and sying any of these is p oit an assixtax mal .yy one haxd e with the othe; tougue in his int nd carefully intes Iringing the bexd make the passu -ilitate the opet bx procured, an ot advisable tom ed a considen geous, er the at there in damp in these intaman stantly performal ybe done winh m or haunch how ich the pauncha
dinewn a sharp ،enknifo is frequently used; and persona dineser a sinary practice should always keop a long trocar, which will bo found much the more efficacious, and by which the most safn, as it permits the air cescaping certainly wid quickly, at the same time that it prevents its enanco inta the cavity of the abdomen, which would ocranco an equal distension. As soon as the air is perfectly
rasion encuated, and the paunch resuines its office, the trocar may be removed; and in whatever way it is done, the mound should bo carefully closed with sticking-plaster ${ }^{*}$ w other adhesivo matter. It is necessary to observe, that this operation is so safe, that whenever a medicnl osistant cannot be obtnined, no person should hesitate asisment about doing it himself. After retief has been a momed hy means of either the probang or the paunching, a stimulant drink may be very properly given: half asp, pint of common gin, or one ounco of spirit of hartshom in a pint of ale, or two ounces of spirit of turpentine in ale, may any of them be used as an nssistant simulus. When, also, the cud is again chewed, still some relaxation of the digentive organs may remain; at frish therefore, feed sparingly, and give, for a few morniulg, a tonic."
Tho apparatus mentioned ahove, with directions for use, may now be had from the principal makers of or veelers in agricultural implements. The cane tube, to cimploy in emergencies, no cow keeper should be mithout

Epidemic Murrain.

The malignart epidemic, generally enlled inurrain, is a species of catarrh, atfecting tho respiratory organs, and is moses frequent in damp elimates or ill-drained parts of the country. The writer of the work on eatte, alrendy quated from (Lib. Use. Know.), thus speaks of its nalure and remedies:-"'There are few disenses that asnmm, in its earlier or later stages, a greater variety of furm ; but, disarmed sonevehat of its virulence in moJentimes, or at least not having appeared in all its ternras for some years past, it will generally be distingrished by some or the greater part of the following eyiptoms:-
"There will be cough, frequent and painfill, and in many cases for a week or mere before there is any other marked sympton. The farmer may not always be avarc of this, lunt he will find it out if he inquires about it; and he will be fully aware of the importance of the fact before we have dons with this division of our subject.
"After a few days, some heaviug of the flanks will be added to the cough; the pulse will be small, hard, frquent, and sometimes irregular; the mouth hot; the ton of the horn cold; the freces sometimes hard and Hack, at others liquid and black, and then very foetid. Presently afterwarils, that of which we have to speak grin and again, is observed-extreme tenderness along the spine, snil particularly over the loins.
uThe ccugh becomes more frequent and convulsive, and - brown or bloody matter runs from the nostrils and mouth; the eyes are swelled and weeping; the patient ginds his teeth ; there is frequent spasmodic contraction diout the nostrils; and the animal rarcly lies down, or, if he does, rises again inmediately.
The eyes soon afterwards hecome unusunily dull; the polse remains small, but it has bccome feeble; the respiInima is quicker; the flanks are tucked up; the tenderunes on the leins is removed; insensilility is stealing ove: Whe frame; and the feces are more loailed with mucus, ond mure fetid. The patient moans and lows, and grinda bis tech almost incessantly; the head is agitated by a conrulaive nations; blowd begins to mingle with the freces; he breath, and even the perspiration becomes offensive; and the beast staggers as he walks.
uTumours and boils now, or often earlier, appear on vafious parts, If thoy are to coms forward, the sooner
they rine the better, for much depends on what becomen of thein. If the animul has sulficient strength for them to go through the usual procese of suppuration, although the sloughing and the stench may be greater than could be thought possible, the heast will have a chance to rocover; but if there is not energy to bring them forward -if they become stationary-and, most assuredly, If thay recele nod disappear, the patient will die.
"The treatment of this disease is most unsatisfactory. If the farmer could be brought to attend more to this eough in eattle, if, here, he had recognised the violent and incresing cough and, although he had not dreamed of murrain, hal bled and physicked the beast on necount of tho eough, the disease would probally have been arrested, or at least its virulence would have abated.
"Tho early stage even of murrain is one of fever, and the treatnent should correspond with this-bleeding. Plyssic should be cautiously yet not timorously resorted to. For sedative medicines there will rarely be room, except the cough should continue. Small loses of purgative medicine, with more of the aromatic than we generally add, will be serviceable, efferting the present purpose, and not hastening or increasing the delility which generally is at hand; but if the bowels are sufficiently open, or liarthoea should threaten, and yet symptoms of lever should lie npparent, no purgatives must be given, hut the scdatives should be mingled with some vegetalle tonic. The peculiar fetid diarrheca must be met with astringents, mingled also with vegetable tonich. In combating the pustular and sloughing gangreneas stage, the chloride of lime will be the hest externa! gpr 1 i cation; while a little of it administered with the other medicines invardly, may possibly lessen the tendency to general decomposition. The external npplication of it should not be coufined to the ulcerated parts alone, but it should be plentifully sprinkled over and alout the beast ; and the infected animal should be immeliately removed from the sound ones."

Red-Water.

This disense, indicated at first by the redness of the urine, is 1 ,roperly inflammation of the kidneys, and arisee from an undue determination of blood to these parts of the animal. The cause of this local inflammation is generally connected with the mature of the food. In many instances, it is found to have arisen from the cattle eating plants of a noxious quality, and which, as it appears, are not confined to any particular species of soil. When in its aggravated form, the disease becomes what is culled black-Water. On the slightest indication of the eatly stages of the distemper, the cattle ought to be immediately shifted to diffe nt pastures, or housed and stall-fed for a short period; ind if this simple precaution prove unavailing in restoring, heulth, each animal affected should be copiously, and if necessary frequently, bled; and let that active treatment be followed up by purgatives, so as to clear out and restore a proper tone to the howels. Should these means fail, let a skilled practitiones be consulted. On no account listen to the absurd advices of superstitious and ignorant people either on this or any other disease of cow or bullock. In every quarter of the country, there are persons who, from total ignorance of the plysiology of cattle, and the natural causes and action of disense, ascribe calamitics of this kind to witcherntt or other supernatural influences. let all such quacks, and their irrational sulvos, be carefully shunned.

Fatlening Catle for Markel.

The stall-feecliug or suiling of catto is considered to possess a veral advantages over feeding in the tields. In field-feeding the animals waste a certain quantily of panture by treading and lying upon it, and by dropping their dung, the grass which grows on the dung spots being ever after rejected; the animals also apend timo in reok

Ing for the herbage which suita their fancy, and much is allowed to go to seed untouched. In stall.feeding, tho whole timo is devoted to eating and ruminating, while no food is lost. and the animals aro brought to a higher conditoon. Anether important advantage of soiling is, that it uses up the waste straw of a farm ns litter, and thus furnishes a plentiful supply of that indispensalle article, manure, for the fields. Some feeders tio up their catte In the stal! while preparing for market; lut others permit them to rooms about on a thick buid of straw in an enclosure in the farm yard, with a shed to retire to for shulter, the freding in this case heing from racks. Unless for a period during the final process of fattening, the straw-yard methot in reckoned the best for herping the catte in a healthy state, and consequently for prodecing beef of the finest kind. The pratice of feeding enttic for a consideratle length of time, in darkened rtalls, on oilcake, carrots, mangel whrzel, \&e., produces, as is wrill known, a grout deposition of fat, ami swells the animals to a mondrous size. The beef, however, of such overfed cattie is never fine. The fat with which it is loadell easily escapes in cooking, and leaves lean of an inferior quality. The lest sign of good meat is its being marbled, or the fat and lean well mixed, when breught to the table, and this is not to be expected from beef fid in an unnatural condition.
Speaking on this sulject, the writer of the artiele Agriculture, in the "Encycloprdia Britamica," ohserves -"The age at which cattle are fattened dejends upon the mamer in which they have heen reared, upon the properties of the breed in requard to a propensity to fatten carlier or tater in life, and on the circumatances of their being employed in breeding, in labour, for the dairy, or reared solely for the butcher. In the latter case, the nost improved breeds are fit for the shambles when aloout three years old, and very few of any large bireed are kept nare than a year longer. As to cows and working oxen, the age of fattening must necessarily be more indefinite ; in most instanes, the latter are put up to fed alter working thiree years, or in the seventh cr eighth year of their age."
Many of the cattle fed for the metropolitan markets, as formerly mentioned, have originally been brought from the Highlands and isiles of Scothund, also from Whies and Ireland. "The Highland eatle often pmess through three different hands or more before they come to the hutcher. They are itr , roved at every slage ly a greater quantity and letter quality of food, instead of lexing suddenly transparted irum poor to rich feeling; and white rach successive owner applics his prosluce to the best all. vantage, and reccives a suitable retorn according to its valoe, from the advance of price, the consumer at least purchases his heef chaper, and of a mach superior quality, than if the catle had beren sent to the shambles from any of the intermediate stages.
"The West Highland eattle make this progress of ener than the larger eattle of the borth-castern counties. Many of them are brought to Dumbartonshire and other places at the age of two years and two years and a half, wintered on coarse pastures, with a small allowance of bog-hay or straw, and moved to lower grounds next suma:er. They are then driven farther south, where they get turnips in straw-yards through the following winter, and in April are in high condition for carly grass, upon which they maho themselves fat in the month of June.
"The larger varieties of the north-cantern counties do zan leave the breeder at so early an age. They are sel6om brought to market till they are three or three years and a balf old, and then frequesply in goobl condition for being fattened either on grass or turnips. A great many ox the Aberdernshire catte are botght for the straw-yards of the sputhern comaties, get a frw turnips through winter and apring, and are either driven to Eagland in April, or fattined at bowe in the course of the ensuing summer.

The Fife cuttle, like the other hreeds of the lambuna aro generally sold to the graziers at three yearse old, tam
ing got a lilieral allowanco of turnips during the ing got a lilern
ceding winter."*

Rule for Seteoung Caute
In selecting eattle for feeding, their qualitics moy bon in nome masaure known ly examining the hide, harne, da "It is well known that the grazier and the hutcher judn of the aptitude that any animal has to fatten from tha touch of the skin. When the hide feels sonf and silly it strongly indicates a tendeney in the nnimal to take on meat; and it is evident that a fine and soft skin mush more pliable, and more easily stretched out to receive anp extraordinary quantity of flcslh, than a thiek or taugh one At the same time, thick hides are of great mportance in varinus manufactures. Inderd, they are necessary in m_{m} | countries, where cattlo are much exposed to the inch menry of the seasons; and, in the best brects of ligith lind cattle, the skin is thick in proportion to thirin mien without heing so tough as to he prejudicial to their oras city of fattening. It appears, from Columella's description of the best kiad of ox, that the advantage of a sof ghin is not a new discovery, hut was perfertly well hnownat the huskandmen of ancient Italy." These are the ob servations of Sir Jobn sinclair, \dagger who ucdels the folloring as a simmary of good points to be attended to ia choon ing cattle. They should be-l. Of a moderate size, an less where the food is of a mature peculintly forting: 2. Of a slaupe the most likely to yiell protit to the farmer 3. Of a docile disposition, without lwing deficient in spirit ; 4. Hardy, und not liable to disease; 5. Eadi maintained, and on food not of a costly nature; 6. Armin ing soon at maturity; 7. Producing consilesable quandi ties of milk; 8. Huving flesh of an excecllent qualit; 9. Having a tendency to take on fat; 10. Haviag a alo uble hide; and, lastly, Culculated (should it be judge necessary) for working." It is thought liest to legin on break-in oxen at threo years old, and to give them foul work at fiur.

With rexpeet to judging of cattle ly their horms and teeth, we offer the following observations frem the "C Clopmetia of Practical Ilusbandry, by Marin Doge (Rev, Mr. Hickey).
"The ordinary goide for ascertaining the precise ay, of cattle is the horn, which is also indicative of to lired; at three years old (this is lnid down as a rut) the horns are peifeetly smooth, after this a ring appens near the rowt, and annually afterwarls a new circle,s that, lyy adding two years to the first ring, the age i calculited; but the contributors to the volume so fo quently quoted, have clearly slown that this is amp uncertain mode of judging; 'that the rings are only dis tithet in the cow; and that 'if a heifier goes to the tod when she is two years old, or a little lefore or ater tha time, there is an immediate change in the hora, ad the first ring apprars ; so that a rral threc-year old mood cary the mark of a four-year olla.' •In the bull they as either not seen until five, or they camot lo raced ot L_{1}^{\prime} nor in the ox do they "appear until he is five yearsw and they are often confused;' bexider, there is alow instrument callod a rasp, which has leen said to mar many an arm ache a little before a large fiar.' Wibed any delusive intentions, however, an agly set in the bra of young catte is offen remedied by filing a little of tex sides of the tips opposite to the direction which it ade sired that the horns should tuke.
"Some men have an antipathy to horns altogetheresd would even carry their dislike so far as to extirptet bea from the brows of all their cattle; they can indulge tei tasto ly paring off the tops of the horns when they in brenk through the skin. Perhaps it is not geaenty known, that the larger the horn the thinner the atall

[^51]"The age is ind wech, to those who the animal reaches yers ofd, no teeth a cat ; at three, two m ing yeare, two in ea do full, though not that period the two not perfectly up. considered, for a full wo teeth."

Method of ascertain
"This is of the not experienced juld directions, the weig trife:-'Tuke a strin spuarr, just lxhitud footrule the feet and rence; this is callec neasure frow the too with the hinder part the back to the fore dinenaions of the fo ond work the figure of the bullock, 6 feet which, multiplied to feet; that sgain mul dlawed to esch supe

Is the Ruminant guished place in give of which have been re man from the earliest last half century, the impraved by the grov of the farners: and patraasige, heen brou nowhere else attaine ciences of amatomy, are expry yesr throw wre, which regulate mproduction of the the hope of atill furth \propto rural econonay.
the 1 awlandia yeare ohd, han
turing the pom
lities may but ide, horns, \&c e lutcher judg intten from the soft sind silky imal to take or oft skin must ba t to receive any ck or tough one, i importacce in ecessary in mol! d to the inch breeds of llightr on to their size, al to their caps ella's descriptoon e of a soft shin well hacwn to ese are the of Is the following led to in choos slerate aize, or: sutiarly foreing; it to the fermer; thg deficient in casc ; 5. Easily ature; 6. Amin aiderable quant. acellent quality: - Having a vala ld it be juiged best to legin os give them full
their homs wad \pm from the "Cs Martin Doyk ; the precise sym ndicative of the down as a aule) s a ring appeas a new tircle, so ring, the age : volume so fo d this is a tery ngs sue enly dir goes to the toll ore or after bsa 2 the horn, wod -e-yeat old woul the bull they 4 be araced of wit is tive years 坆 there is aloon :n said to man - fair.' Withoud y set in the hova us a little off to 1 which it in
ns altogether add to extirpste blea can indulge the s when ther tha is not generwh iner the atull
*The age ls indicated with unerring certainty by the tecth, to those who have juiginent and experience, until the animsl reachen the age of six or seven; until two years ofd, $n n$ tecth are cast, at that age two new tecth are ent; at three, two more are cut; and in the two succeeding years, two in each year; at fivo the month is said to de full, though not completely so until six, hecause until that period the two corner tecth (the last in renewal) are not perfectiy up. The front or iurisor teeth are those considered, for s full grown beast has altogether thirtytwo teeth."
Metiod of ascertaining the Weight of Cattle white Laving.
"This is of the utmost utility far all those who are not experienced juilaes by the eye, snd by the following directions, the weight can be ascertained within a mere trife:-'ruke a string, put it round the beast, standing square, just behind the shoukler-blade; measure on a footrole the feet amd inches the animal is in circumference; this is called the girth; then, with the string, measure from the bone of the tail which plumbs the line with the hinder part of the buttock ; direct the line along the back to the fore part of the shoulder-blade; take the dimensions of tho foot-rule as before, which is the length, and work the figures in the following manner:-Girth of the bulloek, 6 feet four inches; length, 5 feet 3 inches; which, multiplicd together, make 31 square superficial feet; that sgain multiplied by 23 (the number f pounds allewed to each superficial foot of cattle ineasuring less
than 7 and more than 5 in girth), makes 713 pound and, allowing 14 pounds to the stone, is 50 atone 13 pounds. Where the animal measures less than 9 and more than 7 feet in girth, 31 is the number of pounds to each superficial foot. Again, suppose a pig or any emall beast should measure 2 feet in girth, and two feet along the back, which, multiplied together, make 4 square feet; that multiplied by 11, the number of pounds allowed for each square foot of cattle meavuring less than 3 fect in girth, inakes 44 pounds; which, divided by 14 , to bring it to stones, is 3 stone 2 pounda. Again, suppose a caft, a sheep, \&c., should measure 4 feet 6 inches in girth, sind 3 fect 9 inches in length, which, multiplied together, make $16 \frac{2}{2}$ square feet ; that multiplicd hy 16 , the number of pounds allowed to all catte measuring lese than 5 feet, and more than 3 in girth, inakes 264 pounds; which, divided by 14 , to bring it into stones, is 18 stones 12 pounds. The dimensions of the girth and length of black cattle, sheep, calves, or hoge, may be aa exactly taken this way as is at all necessary for any computation or vuluation of stock, and will answer exactly to the four quarters, sinking the offal, and which every man, who can get even a bit of chalk, can easily perform. A deduction must be made for a half-fatted beast of 1 stono in 20, from that of a fat one; and for a cow that has had calves, 1 atone must be allowed, and another for not being properly fat."*

- Caille Keeper's Guide.

SHEEP.

Is the Ruminant order of the Maminalia, a distinguished place ia given to the shcep, the flesh and wool of which have been reco ${ }_{5}$ tised as alike of the greatest use to man from the carliest ngea. In our own country, within the last half century, the different breeds of sheep have been improved by the growing intelligence, skill, and industry, of the farners: and their management has, under high patronage, been brought to a degree of perfection perbinps nowhere else attained. It may lee udded that, as the aciences of anatomy, physiology, hotany, and chemistry, are every year throwing new light on those laws of nawre, which regulate the structure, health, nutrition, and reproduction of the animal kinglom, we may entertain the hope of still further improvement in this department @ rural econony.

DIFPERENT BREEDS OF SHEEP.

The varicties of shecp that now exist in different parta of the globe, havo all been reduced by Cuvier into four distinct species.

1. (Otis Ammon)-the Argali; this species is remarkable for its goft redlish hnir, a short tail, and a mnno under its neek. It inhabits the rocky districts of Barbary and the more elevated parts of Egypt. 2. (Cuis Trageluphus) - the bearded sheep of Africa. 3. (Oris Mismon.) 4. (Ovis Montana)-the Mouflin of America; but this species, which inhabits the rocky mountains of North Americn, is now believed to be identical with the Argali, which inhahits the mountnins of Central Asia, and the higher plains of Siberia northwards to Kamschatka. This leaves only three distinct species of wild sheep as yet discovercl.

It is still a point in dispute from which of these racea our domeatic shecp bave been derived; nor is the question, in our circumstances, of great practical importance, though its solution is very desirable in a physiological point of view. Whether the wild races may be regarded as of one species, ns some naturalists contend, or of dif ferent species, according to others, the best judges are nevt to unanimous that the domestic races of this country are of one species; and what are called different hreeds are nothing moro than varicties, the result of dif. ferent culture, fool, and climate. The influence of these conditions, in diversifying the charncter and condition of sheep, will be adverted to under their proper heads.
The following may be regarded as the principal breals of this country :-1. The Zetland shecp; 2. The Dunwooled ahcep; 3. The Black-faced heath sheep; 4. The Moorland shcep; 5. The Cheviot sheep; 6. 'The horr ed varicties of fine-wooled shecp of Norfolk, Wiitehire, and Dorset; 7. The Ryelard tekef 8. The South down
aheep; 9. The Merine aheep; 10. The Devonahire Notts, Romney Marah, old sibcolnshire, Teeswater, and Old f.eicester aheep; 11. The Now Leicenter and Improved T'eeswater sheep.

1. The Zrtland sherp inh ohits those islands from which they derive their name, and extend to the Faroe Ialanda and the IIdinides. In general, they have no horss. The finert fabrics are made of their wool, which formes a flne fur. 'I'his weol is mixed with a specien of coarne hair, which forms a covering for the animal when the wool falle off. A similar species are known to inhabit the must northerly parts of Europe, from which it is supposed the fine-wooled sheep of onr northern ishands and llighlande have leren derived. 'They are hardy in constitution, and well adapted to the soil and pantures on which they are reared, but would ill repay their cultivation in Lowland distriet.
2. The Dwnoteonled brecd-The dun colour of this apecies is not confined to the wool, hut extende to the face and lega. They semo at one time to buve lwen cultivated very extensively, nid remnants of them still oxist in Scotland, Wales, and the Islo of Man.
3. The Blact-fared heath brred, being the most harily and active of all our sheep, are the proper inhalsitante of every country abounding in elevated heathy mountains, They have spiral horns, their logs and jaces nre black, with a ahort, firm, and compart holly ; their wool is coarse, weighing from 3 to 4 lise per heece; they fitten rendily on good pasturce, and yield the moat dedicions mutton, weighing from 10 to 16 liss. per quarter. 'I'hey still exist in considerahle numbers in the more clevated momntains of Forkshire, Cumberlanci, Westmoreland, Argyleshire, and the central Highlands of scotland.
4. The Meworland shorp of Dcromahire are sometimes termed the Exinoor and Dartmoor, from the ditlivent districts of Devonshire in which they are reared. They have horns, with legs and faces white, wool long, with a hardy constitution, and are sadd to lee well adapted to the wet lands which they occupy. Their wool weighs 4 lbs the fleece; but they are ruther sinall, and in somo respects ill formed.
5. The Cheviot brodl derive their name from the Cheviot mountains, in which they ure indigenous. They are longer and heavier than the blark-faced. Their wosl is fine; a medium thecee weighs about 3 lbas; a carcass, when fat, weighs feplu 12 to 18 los. per quarter. 'Their fuces are white; their lege are lomg, clean, and small boned, and clad w th woot to the hongh. Their only detect of form is n want of depth in the chest ; yet, with this exception, their size, general form, hardy constitution, and fine wool, aro a combination of pualities in which, as a breed for mountain pasturage, they are yet unrivalled in this country.
6. The Horned vuricics of fine uvoled ahecp of Norfolk, Wiltshire, und Dorset.-'his breed of sheep have shert wool, in which they differ from the black-faced wheep, and moorland aheep of Devonshire, and from the Cheviot, in having largo spiral horns. They are not much lighter than the Cheviots, but they are ill formed, and thin, flat in the ribs, and slow feeders; a medium flecee weighs about 2 'bs. It is believed that the southodown will eventually Jisplace them. The Wiltshire sheep are atill heavier than those of Norfolk, being the largest cf our fine wooled sheep; they are said to thrive well in the downs of Wiltshire, but they are also giving ground to the South-downs. The Dorset alueep have horns, white faces and legs ; their three-year-old wethers weich from 16 to 20 ibs. per guarter; their wool is tess fino, but heavier than that of Wiltshire, weighing from 3 to 4 Ibs. the feece. The peculiar advantage of this breed is, that the owes admit the ram at so enrly a period that they generally have lambs in the months of September and Oitober, which find a ready market in large towne for winter uaumptiors.
7. The Rycland hreed derive their name from a south urn diatrict in Herefordshire, which at one time wast ro garded us ineapable of grawiag any thing hut rye. Thim species are white-faced, and withont homs; their genera form is tolerable: they fall short of tho improved heeda in leing more flat in the ribs, and less level in the back their woul is line, weighing from if to 2 lis.; their mys ton is delicato; thoy arrive somo at maturity, and fatien ensily, and weigh from 12 to 16 lhes. per guarter: thin bread has beell crosed by the spanimh Merito. The proluce of this cross ware nt one time in high fume in Fighland, under the name of the Auglo-Merino; and though their wool is said to have leen of a fine quality, the breed has for long declined in popular faveur.
A. The Nowh odumen 1 recri.- This suecies have no homs; their legs and facen gray. 'I'hey have fine wool, which is from two to three inchos in length, and weighs from 2.2 to 3 lins. jer fleceo: they are slightly detiment in depth and broudth of cheat, but their mutton is eacellent and highly flaveured; they ure kinully feeders, and when fat, thas avernge waight may loe stated at from 15 to is lis. per quarter. I'his npecies of sheep have, from tima immemorial, been reared upon the clanky aoils of Sustex, but nre now widely extended, and thrive excellently not only on the chank towns and light moils of Bughand, but on the sheltered lawns of seotland. In a note to the audion from Lord Pithilly, near Nit. Andrews, are the following facts:-" 1 generally kecp about aneore of Southodown ewes for carly lambs; they pusture in the lawn with the black-faced wethers kept for family use. The latnos dropped carly in winter 1839-40, not being wased, were ment to bitinhurgh; ten of the owes lambed aggin in Erptember, 18.10 , and magin in March, 1841. Sonie of theor had twin tamios; all did well. 'I'he Soptemtey lamber I wold in August, 1R41, when eleven bonths old, at :10s. a piece. 1 nseribe the fact of the cwes thriving so well to the dry ground, and to theor lxing pute eary nithe, summer and winter, into as shed, abl well bedded: they have no extra find, cxeejt at lambing time, wheo they get a little oilecake or sliced turnip." 'The above note is highly desorving the attention of breeders of this species of wherp, it testifying to the greatest degrec of fecundity to which I have yet heard.
8. The Merine brect.-This species of aheep in sup posed to have been originally from Africa. Marcu Columella saw n varicty from that country at some of the games exhibited at Rome. He procured some of them lor his own farm, crossed them with the brecha of Tarentum, and sent the offapring of thie cross to Spain. In Spain they moon rose to such perfertion and celetrity, that they attracted the attention of breeders of stock in other nations, and this breed may now be found in every prart of the globe. They were imported into England f: the firnt timo in 17 CS . The Ryeland and other fine-woled hreeds of Englatid were erossed by Merino rams in 199? The Merino breeci, of rams were cultivated with great ean ly his late majer iy, King Crorge III. The sales of bin majesty's atock which commenced in the jear Lew attracted nuch peneral attention in England that a society was formed for promoting the breed in 1811; but the high expectations $v:$ hich were formed of the resultal this cross with native sheep were far from being ral ized. The quality of the wool of the native sheep na improved, but the increased valne of the thece was on inadequate compensation for drfects i_{1} the claracter of the aamals theinselves, which proved leas hardy the the pareat stock, wero slow feeders, and very defectin in form.

The Merisos that have been naturalized in this country retain their natural churacters, except that they be come larger in the caicass, alld the wool longer and heavier, thar in Spain; but the Merino, as a feeding animal, is too eraall pad ill-formed, and the mutondo ficient both in quantity and quality. These points hant
given rive to some guage of Profensor alll contend for the: reneral judgment perfect teamon."
Tha Merino shec mapy with a greal weight and value of lanil think it more alue of the mutto qualificel to judge. under the more rigo never yiell mutton The woond of this lis abeep. In Spain, and that of the ever burge quantity of yo purity with which three-fflhs of its wei 10. The Jrtonshio hior, Tersineter, ant venhaire Notte con called the Dun-dines this is a c enter anim but it yifldes a Heec weighs 22 11ses. por The second variets: sembles the former yidds less wool, and ratinties bave leen both breeds have hee
Tho Romury Ma with white fiuces and quality good of its ki fective, the chest in carse. 'The result , Leirenter is still a poo that though the quan the aize of the animu tendency to fatten o much improved. On brecders say, that be quality of the wool, randered loss fitted to which it feeds.

The Old Lincolns mhaped, slow feeders, a fleece of very heavy were originally derive the rich lands on the derive their name; be is antiely changed and that the eld uni sarevely to be found. a greater wright thas gror-old wethers writ ing a long and heavy The Old lecicenter wooled brevels. On weight; but lwing reg character has cither gether abandoned for 11. The New Serier -Mr. Bakewell of D the honour of forming IIr turnel his attenti animals about the y followed in forming known, as he is said on the aubject. But wav of correcting the ' br breeding for a cou
rom a mulb. time was ro ut rye, Thin their genera roved hreelh in the back s. ; their mas y, and fatlen puntar: thin derino. The high fame ir Mrino; and fine quality, favour.
lave tho herns; ? wool, which weigha from y defiremt in n la pacellent ers, and when from 15 to is ave, from tive pils of Susex, xcellently no nglanil, but on - to the suthot the following i Soutli-dewn lawn with the - 'Tlie lamos ving waded latuhed aqain 1841. Sonie the September en months old ewes thriving cing put wery d well hedded; we time, when "The abow orceders of thin test degree of a the breeds of cross to Spuin. 1 and celetrits, prs of atock in found in erery to England fe: her fine-wolded rams in ti9? with griat can The males of hir he jear 18:4, ut that a soinety 1811; but tho o the result d ont liring tattive shocp ${ }^{2}$ - Arece has as te chararter of pos hardy thas very defective nd in thin cons. it that they be ool longer and 0 , as a farding the mutton de ctse points halt
frou riee to mome pontroverey t bit in the forcible langunge of Profenaor laow-_" It in vain that momo breedern will contend for the wuperiority of the pure Merino: the general judgment of firmers is against then, and with perfect reamon."
The Merino aherp nre cultivated in Spmin and Gere mapy with a grenter regaril to the wool thans to the welght and value of the animal ; but the farmers in ling. land think it more profitable to raime the weight and salue of the multon, and it in helleverl, by thome well gualified to juige, that the hest of the Merino slieep, under the moro rigorons elimato of (ireat Britain, w inlal pever yided mutton equal in quality to that of Spmins. The wool of this bre ed is finer than that of any other theep. In Npain, the fleece of the ram weighes \mathcal{H} thes and that of the ewe 5 liber ; bit this wool havitus nuch a large quantity of yolk, which nheorbs every kind of inspunty with which it comes in rontart, the wool loses threeffatho of its weight by being property washed.
10. The Dewonshire Nulls, Romney Mirrsh, Old liurolne Whire, Treswater, twil Uld l.eirestershire sherp,--'J'se Divenshire Notte consist of two varictics. I'ho one is called the Dur-faced Notts, from the colour of the fine ; this is a carse nnimal, with tat ribs and reooked buck, but it yiohls a fleeco weighing 10 los., and when fat, weighs 22 llas, par quarter when only thirty monthas old. The second variety in called the Hampton Notes; it resenblas the former in many remperts, but is consier fed, gields lena wool, nord han a white firen and legn. lloth varictins !uve been cronsed by the Iecieenter, by which both breds have beren much improveal.
The Romu'y Marsh breedes are very large amimals, with white faces and lega, and yiodel a henvy therce, the quality goad of ita kind. 'I'heir general ntructure in defective, the rhest lwing nartow and the extremities marse. The result of their being cromed by the New Lecicenter is still a print in dispute-one pmoty alleging, that though the quantity of wool has been lessened, nud the aize of the nuimal diminished by the cross, yet the tendency to fatten and their general form have been much improved. On the other hani, nome well-mformed breeders say, that beaides the loss of the quantity and quality of the wool, the constitution of the animal is rendered leas fitted to tho cold and marshy pastures on which it feecls.
The Old Lincolnabiro bred aro large, conrse, illthaped, slow feeders, sud yield indifferint mutton, but a fleece of very henvy long wool. 'lhe 'ferswater hread were origimally derived from the former and pastured on the rich lands on the banks of the 'Teen, from which they derive their uame; but Professor Low remarks, that "it is entirdy changed by crossing with the Dishly breed, and that the old unimproved race of the 'Tees in now scarely to the found." They are very large, and uttain a greater weight than almont any other breed, the two. yrar-old wetheis weighing from 25 to 30 lbs ., atid yielding a leng and heavy fleee of wool.
The Old lecireater in a varicty of the coarse longwooled breds. On rich pantures they feed to n great weight; but being regarded na slow feeders, their general character has either luent changed by croнsing, or altosether abandoned for more improved breeds.
11. The Nen Lsiesster thud Improved Thesuriter brceds. -Mr. Bakewell of Dishly, in the county of lecivester, has the hanour of forming this most importnat breed of wherp. He turued bis attention to improving the form of ferding animals about the year 1755. The exn t method he followed in forming his breed of sluep is not areurately known, as he is said to have ohservid a prodent remervo on the subjert. But we now know that there is but one Way of correcting the defertive form of an animal, mamely, br breeding for a course of years from animals of the

- Low's Etements of Agricullure, p. $5 \mathcal{A}$.
mont perfort form, till the defecia are removed and the propertien sought for ohtained.

The great propertien of the New lecicester for the farmer, nre thoir carly maturity and disposition to fatten, in which they excel all other breeda. They ars less in size than acvernl other broeds, and their woul is beemed inferior to the Cheviot; but this breed in now cultivated with great ancerenn in almost every part of tingland.
'I'hat clase of sherep now known by tho nume of the Improved 'reseswater, is derived from the ald breel. Ita improvement hat been chiefly pllected by crossing with tho Niow Ideierater. 'I'hey nre not an large us the older race, but ure atill the largest of our improved breedn; rolurtive in lambs, nud yifil a good flcece; yet their .orm renders them leas fitted for general cultivation thati the New lacicenter.

CHOLCE OF BRERDA

If the farmer has rendered himself manter of the conatitution and character of the diflierent breeds of domestio alieep, alrendy given, and wiah the genernl and pecinliar dinracter of the climate, soil, nud pasturage of tho locality on which he is to settle, the selection of the breal that will, upon the whole, yirld him the highent profit, will not he a matter of very diflicult calculation. But glasuld an error he committed on this hend in the first trial, very slight experience wonld enable n practical farmer to corrert it, nulens he holong to that clans of personas to whom the lewsons of history nand experipace convey neither knowledge nor correction.
'The breeds lu'st adapted to the soil nnd elimato of the diflierent districte of Great Britain, are arrnaged by that distinguinhed ugriculturist, l'rofessor low, in the follow. ing manacr:-" The breede of sleecp, then, of this country, may lie divided into two clneses- the sheep of the mountains, lower moors, and downs, and the sheep of the plains, "Tho whecp of the firet dase have sometimes horis, nul sometines want them. 'Ihe finest of them have no horms, unarly, the Cheviot and South-down. One of them, the hlack-faeed henth breed, han coarno wool; nother of them, the Moorland sheep of Devonshire, hats long but not coarse wool; and all tho othera have ehort and fine wool.
"t)f the moorland and down breeds, as they may be colled, the hariliest is the black-fneed heuth breed, and this propnerty points it out ne the most suitable for a high and rugged country, where artificial food cunnot be procural. 'The breed next to this in hardy propertiea, but surpassing it in the weight of the individuals, is the Cheviot. Where the pasture contains a nufficiency of grasses, this bred deserven the preference over any other known to 118 for a mountainous country. The next breed dearerving of cultivation is the Southdown. This breed is suited to the chalky and sandy downs of the nouth of Eingland. It is in this reapect a very valuable breed, but it in unsilted to the more rough and elevatea pastures to which the black-faced and Cheviot aro adapted
"'The moorland und down breeds nppear to be the most deserving of cultivation in this country. Of the Inger breeds of the plaina, the New Leicester is the hest adapted to general cultivation, and wherever an improved system of tullage is entublished, this admimble breed mny be introdured. 'The lairester, the Cheviot, and tl:e blackfuced, have for long twen regarded as the breeds best adapted for the diflerent distriets of sicotland. That those three brecds have nearly stome in the same numerical ratio to one anuther for some yrars, is a good proof that each has luren plaerd in that locality best fitted by mature for promoting its health and productiveness. The Lecieseter is admirably adipted to the rich and nllnvial soils of our cultivated plains; the Cheviot breed is peca. liarly adapted to the grassy mountains chietly formed of the transition merios of rocks; then, our mont elevated mountain ranges, formed ihiefly of primitivo rocks, and
eovartd with heath, on which none but the hack-faced, the moat aetive and hardy of our breeda, could aurvive.""
"I'he above arrangementa have generally been arqulenced in as the lest posible by the farmers of scothmil. Hut the elainus of South-downs for the mildile range of the IIIghland pantures in Scotland have been ufged Intely oy a genblemun neither deatitute of talont for ohmervation, and nided by twonty years' practical experience. 'l"hia gentleman, Mr. H. Wataon, Keillor Ferm, shall be allowed to plead the claime of the South-lowns in his own words:-4 Ifaving, during the last twenty-five yeara, been in the management of possession of a connidi rnble breeding flock of South-down ewen, varying at dilli.rent times from 500 to $\mathbf{0 0 0 0}$ in number, nul during that pe. riad having had gool opportunities of drawing clowe comparisons between thint and the other breeth of mountaiu cheep, namely, the Cheviot and black-faced, I have come to the conclusion (and am neting upan it in my own practice), that from a pasture ranging from $5(10)$ to $1: 200$ Feet above the level of the arn, having a molerate portion of green swarl, the rest whin and heather, there can be no more profitable atock of aheep kopt than a llock of Southolowns of the best sort. My chief reamos for having preferred this breed are, that the south-lown sheep, although naturally apirited and active, aro casily controlled by a gool shepheril ; can go over more ground for their fool than any other kind of sheep, without stopping their growth; and when tried liy severe storms in winter, will brave it better than cven the black-facel Highland sheep; and athough reilueed very low in spring, sooncep pick up condition than the other ahort-wooled shecp. As a proot of the south-downs' inclination to fatten, when put to good keep, I may mention a faet, that while I have sellom been able to prioduce a fat Cheviot ewe the came season that she han reared a lamb, I never fail to make good fat of the cast Southelowins off grase. 'I'heir wool is so closely matted on their backs. and about the hearl and neck, as to be almont impervious to rain or snow; hence, so soon as the nturm ceases, they apienr diy and comfortable, theit cont not the least disorilered, and altogether free from that dronked (Anglice, drenched) apo pearance which longer-wuoled slaupe exhilhit even for daya after a winter storm. In all my experience, the Southdown wheep have kept remarkably 'ealthy. I have never seen an instance of rot in my tlock; while, during the last twenty yeara, I have been forced to clear ofl a lot of Cheviot and also of black-faced ewex, from that inscurable disease. This, however, may have been owing more to the unsoundness of the pasture from which I got them than from any peculiarity of the animals themselves. My average loses in the South-down lot han invariably been much under that of any other sheep I have bred. They are hardy, and easily managed at lambing-time; mffectionate mothera, and, on moderate krep, give a great quantity of milk; and if there ia nay inducement for early lambs, they will go with the ram almost as soon as the lamb ia weaned. When crosird with a well-bred Jeicester ram, and brought into good keep, they produce perhaps the mont profitable lamb that is bred, taking wool and carcass into necount. I have for the last ten years put all the ewes I coult spare from pure brecding to this sort of crossing, lambing the ewes on turnips in apring, then turning them, as soon as tho meason would permit, to the hill pasture (the Sillaws) till weaningtime, when the lambs are brought to the in-fietd pastures, and put to turnips for the winter, on which food they are kept for about 'dd per weck each, and kept on the carliest grass in spring; so that in a month or six weeks after they are clipped, they are lit lior the butcher, who values thin cown alazont as high as the pure bred South-down. The w ol is of the finest quality for combing, and fetches the highest price of any British grown wool, generally
rom 2n, to 2m. 2d. pet lb_{r}; and the elip in a goom sean will averag* nlwot 6 lbs. At sixteen monthe old, I hapa nover realized lena thnn Atla. each, wool and mutton, is Smithald, thia cross is much sought after.
"On lande where folling ia found neeresary, the Bouth down wobmits to thia treatment better than any othen breed of sherp; such, intecel, in all cames where I have put them to the test, in their spirit and hardinesa, that nothing shart of ill treatment seems to injurs them Combining thene facts, I can have no hesitation in re commending a Southodown flow of slecep in preference to every other, on auch situations as I have demeribed namely, too high to le oreupied during the whole sernon by a flock of leciorsters, and under thint level which the native hack-fared shrep only ean thrive upon.
"Wo far as I know, it is not yot autliciontly ascertained by experience how fur a eross between the sumbladown and licicestor may lw carried, so as to keep up the acti. vity of the former with the well-known fittorning qualition of the latter. Another train of breeding through the hack-faced and South-d lown sheep, whose halits seem no much nkin. sermas likely to sucered. Ity this rooss, im prowement in quality of wool would be gained, while that of the mintton wonlil not be elcterioraterl."

On the other side, Profeswor Iow remarks:- The Suntholown breed is lerst wuited to the chalky and sands downs of the soutle of Einglind. It is int thix respect very valuable breed; hut it is unsuited to the more rough and clevated pastures to which the Wack-facel and che viot arr adapte:!"*

In Ireland, the lireed ot sherep has beren muth improved since the begimaing of the present cemblary. Ahout that time, Mr. (illey attenderl the colohated fitir at Bulless. loce sud thus describes the Irislisherp of that prriod:"I (am sorry to may I never naw whelh hely shepp as 1 sam therr. 'I'he worst brecols we have in Cireat Britainare much superior. One would almost imagiue that the sheep breveters in Ireland have taken as much pains to breed nwk ward sheep ar many of the people in England have taken to lreed hambume ones. I know nothing to recomumend them except their size, which uight please aome old-fashioned breeders, who enn get no kind of stack large enough. But I will cmideavour to deacribe them, and leave my readers to judge for themstres. 'I'hese shoep are supported by very lone thick ermoted gray legs, their heals long and ugly, with large duging ears; цray faces, and cyers sunk; neeks lons, und seton belind the shonlders; breast narrow and short; hollow toth before ant Isohind the whoulders; flat-sided, with high narrow lierring backs; hited-eguarters drooping, and tail net low. In short, they are almost in every respest contrary to what a well-formed sheep should be," \dagger

But an immense inprovement was soon effected br Mr. St. Ciporge, and Mr. Astley of Odston, who impored a valumble selection from the thorks of the hest breeten of the New lecicestern; and by carefully breeding from these, their sheep soon obtaincil a degree of perfection little inferior to those of Eingland. "They suos: began to let their tups at very high prices. I'luey let thirty ram, in 1800, at $\mathbf{e} \mathbf{1 7 4 4}$. Ona of thrm was to hare beea 150 guineas. Mr. Gasan, wenr 'I'iplowrary, was the pa son who had hired this famous mamal, and hat the misforture of having him murdered the night after be had arrived at his farm, by aome malignant oqusee of the new bromel.

The Irish sheep, since the introduction of the imporad breeds, are now ahle to computer in thre markets with be Finglish breaders. Thare in no cutry in the books of the Custom-ILouse, of shorep exported from Ireland farlen back than the year 1797, and in that year there is a entry of 1875 . The number had incteased in 1814
98.029 ; and the sher pool in 1831 wae 10 54,260 ; and, in of theep, 20,010 I onnually crose the I Ballinasalop, the num 80,000 to nearly 10 bumhandry in Irelane Gidway, Clare, líun thia advance, there i ugement of sheep in in many places peet And froin the proger forty years, there ne future eminence in s tulents andel enrrgies tion of the soil, mres, verted and cuficolsed tiun, from the geniun anil, the mildness of tinn, the number of 1 for inland navigation civilizatinn the most
The rixisy import tish celony, the pros buskanily, entitle it tarming. It hod no utution was of an extr Bengal. The fine amon improved tho In the rounse of two so nuch fur the bet in its stead aresse a it portation of the Leic lowed, which at once cass and the flevere, 1 more for the mution Girst was slow ; thers Ilcreent in 1800, tw first ship. The Me result far excresled with the prevalent st of sherp that yielded Merine of Europe.
From thin prriok, incrased in the col of sheep had am, in 1818, to 170,420 Macarther, the great and who raised the w on his examination 181t-" 'That, to tha he had circulated an brecding animals, all 5 athother guration quantity to the ma sufe I niay fairly est the colony will be weight annually. sate to the court, th supplies have heen about six or seven that from these I borned cattle, und Add the increasing shows tho pragressi in Australia nnd I wool in 1832, to 11 1833, to $3,516,860$. of the wool, the in:

[^52]a gonl mano han old, I have 1 mutton.
ryy, the South tan any othee whers I hary bardineten, that injure them
ritation in in preforenco ave dencribed pel which the on.
tly ascertained
o South-down
"p ufs the arti.
rime qualitien
If through the
habits reem mon
thisa cross, im .
ned, while that
marks:-" Thos
thy anded sandr
4 this respuct,
he raore nough fared and Che
nuch improved r: Ahout that ar at Bullinas that prriod:sheep as I vat llitain ate "uine that the much pains to ple in England now nothing to a might plesse ? 140 hind of our to tescrite for themsilve thick crooked 1 large flagsing ong, and set on I whort; bollon flat-siled, with \times drooping, and n every respe uld be." ooa cflected br 1, who itapored c hest breedea y breeding from e of perfection \% Hool: begank tot thirty rama to have beed ry, was the per I, and had the wight after te 1a.it op phesed od
of the improide markets with the the books of the Ireland farlen car there is a ased in 1811 m
se.029; and the aheen exported from Ircland to Liver. pood in 1831 wan 134,7172 ; and in 1832 amounted to $\mathrm{J4,260}$; and, in maldition to this immenae number of sheep, 20,000 lamba, in good market condition, anually cross the Iriali channel. And at the F'air of Ballinadon, the number of sheep exhibited range from 80,000 to nearly 100,000 . The mont valualile alueppe bushandy in Ireland exists at preaent in Rowommon, Galway, Clare, Iimeritk, nud T'ipperary. Int with all this tivanee, there is much still to the done in the management of shoep in Preland. 'The anil and climate wre in many placer peculiarly adapted for aheep husbumiry. And froin the prugrews Ircland han made within the last forty years, there med be no miagivings reganding her future eminence is whep-luabmalry. Could the mative adeats and encruies of Iroland be directen! to the cuttivation of the mil. arts, and commerce, instead of buiby pro verted and enfiedsent by tioreo anil feverish political agitafion, from the genius of her people, the richorsan of the soil, the midhuess of the climate, her geographical posibiom, the number of her gorts mud harbours, the liurilities for inland navigation, mhe might soon risal in wenttio and evilization the most favoured nation of Furope.
The risies importnnce of Australin, ils loning in Mritiah cotony, the proseress it has already mode in sluenjbushandry, entitlo it to some notice in a treatise ons sherepfarming. It hat no native sheep; mad the firat impurtation was of an extromely ugly and ill-slunged race fiom Bongal. The fine dry and temperate clinate, howrev, mon impraved tho breed in a most remarkalile degree. In the cousse of two or thare yeurs thing were ehanged so auch fir the better, that the hair disappeared, and in its stead nrose a liece of tolerable tineness. An importation of the laricester and South-down breeds followed, which at onee doubled the value both of the eare cass and the lloece, though colouists at that perion bred mare for the mutton than the tleces. The increare at first was show ; there wero only 612. in the whole actHowent in 1500 , tiwilve yenrs after the arrivat of the first ship. Tho Merino were next imported, and the result far exceeted expet ation. Ihree or four crossies with the prevalent stock of the colony, produced a breed of sheep that yiehled wool equal in fineness to the pure Merino of Burope.
From this periokl, the number of free settlers rapidly increased in the colony, and in three vours the number of sheep hal smumeted to 10,157 ; in 1813 , to 55,121 ; in 1818, to 170,120 ; and in 18:8, to 536,391.* Mr. Macarther, the great improver of the Austrahan slicep, and who raisel the wool to a very superior quality, stated, on his eramination on the trial of Colonel Johason, in 1811-" That, to the best of his knowledge and belief, he had circubated among the settlers $\mathcal{C} 20,1000$ worth of brealime animals, nll raiswd ly himself." And in answer to anather guestion he says-" I have sent no immense quaatity to the market to be slanghtered; nud 1 nm sure I may fairly estimate that, from my present stock, the coluny will be supplied with int least 100,000 liss, weight sinnually. It is perhaps proper that I should state to the court, that the stoek from which such large supplies have been olbained origimally consisted only of about six or sevin rows, and ahont thirty ewes; nind that from these I bave rained 1000 or 1200 herad of borned catte, and at least 10,000 or 12,000 sherp," \dagger Ad the inereasing quantity and quality of the wool shows the progressive inprovernent of shereh-hushaniry in Australia nad Van Diemen's Ianhl. They exportid wool in 1832, to the nnwunt of 237,757 lbi., and in 1833, to 3,516,869.t And with regarel to the quality of the wool, the narket price, in March, 1834, for the

[^53]hent Anatralian wool, wat 4 m , 6d. per th., and for the lest Naxon, 5s, Bd, per lb., nud for the lient Apanish Merino, 4 n . jer Ib . 'I'hes facte, which ontweigh all apeculation on the malyeet, prove that sheep, well bred and mannged in Australiu, yield a returin of at leant 70 or 80 per cent. per annum. And as aheep-husbandry must, for a long serien of yonrs, form the chiof branch of rural induatry in Australia, it canot be regarded us unphilomophical to contemplate still higher rosults when wo know that a higher degree of knowledige, cnergy, und elrterprise, will amanlly be tranaterreal from the inother country to the shecp-lushundry of that interesting colony.

tMPROVEMENT OF BHEEDS OF SIEEXP.

The firnt point of esmential importunso to be attended to hy the whepp-farmer in every purt of the glole, is the selection of a bred whose vize and constitutional qualition hest racord with the climate and the pistures on which they are to fred. An error of uny magnituile on this point would tw attended with fatal afficets on the health and productiveness of the flork, and thus ruin the finances of the farmor.

It is true that shecpean exist in almost every country, and may lm sail to rearh nearly from the equator to the proles. "They arr found nppronching the eternal snows and iry harriess of the arrtie regions; they are found at gront elevationn in the Cordilleres of South Americe. and in the still more clevnted Himalayn Mountains of Asia. Yet though sheep ean bo reared within an inmense range of lutitude nud tempernture, it is equally true that the climate and soil fix the limits within which our domestic breels can be cultivated with advintage I'he chimate wears down the rocks, and thus forms tho suil, and hence the natural pasturen of all countries.

The climate, and the condfition of existenee which it induces, nilfect, with irresistille foree, the sitrueture, healih, and reproductiveness of men and unimala from the equator to the poles. The laws of nature eamot be transgressed with impunity. But this condition licing aceu. rately aljusted, the next oljeets whith the shef-farmer oucht to krep steadily in view, nre the quanity and quality of the inution and the wool. Nature lins perhaps forbiden that the same sheep should, in uny circumstances, yidh the grentest wright of the best mutton, and a thece of the grentest value. 'Itho farmer will ho able assily to determine, from the country, climnte, and various other considacations, to which of these he should dirert his chicf sttention. In Fngland, for example, the farmer finds it more prolitable to promote tho weight ant quality of the mitton than the wool, white the firmer in Spmin and Germany finds it his interest to attend more to the wool than the mutton.
The properties most dosirable in tho sheep are1. Size ; 2. Form; 3. Farly maturity; 4. Constitutional hardiness; 5. Proluctivenens; 6. Disposition to fatten; 7. Lightness of offal; on each of which points wo shall proreed to trent in detail.

1. The size of the sheep must be regulated by the climate, the pasture, nad tho steepnesn or levelness of the tands on which it is to feed. One rule never to he violated is, that the size of the sheep should hear somo refrence to the nature of the pasture. And very heavy sheep aro unsuited to very clevated and precipitous mountain ranges.
O_{1} the sulject of size, a practical question of very considerable importnnee is still undeterminei, and that is, what is the ratio of food consumed ly a large animal mal one of moderate size. The result of an cxperiment is given loy 1)r. Parry, where it is fatated, that by breeaing small mheep) instead of large ones, the numbers wer: increased from (66) to 890 ewes und lmmbs, and the pro fit from $£ 450$ to above $£ 784$. But thin experiment, an $\}$

- Communications to the Boar 1 of Apriculare, vol. " 151°
all othera that have heen tried, have never contained all the elements necenary to determine the quention with stry thing like philineophieal aesinney.

2. The furm of the sherp whould consiat of that happy combination of anatoonical atrueture on which the heulth and productivenews of the animal depetid, and the pointa of practical men munt be tented hy this internal anatomical atructure. That eminent aurgeon, Mr. Cline, in his Communieatienn to the Boaril of Agriculture, atateo-." That the lunge of an animal are the firnt olyjecta to be attemded to, for on their nize and moundneen the beath and atrength of an aminal principally lepend: that the external indications of the size of the luugn are the form and nize of the chewt, and itm breadth in particular: that the head mhould be small, am by this the birth la facilitated, and atfords other advantagen in feeding, and as it generally findicatea that the nomam in of a good breed: that the length of the neek mould be in proportion to the wize of the andinal, that it may collect its foosl with ease; and that the muselen and tendonn should le large, by which the animul in enubled to travel with greater facility; and the bonen mhould be amall and elean."
We tany here add a dencription of the hest proportione of a Cheviot ram, hy the late Mr. Culley of North-umberlazal:- Hin heal whould be fine and small; hin nomtrila wide and expanded; his cyes prominent, and rather bold and daring; ears thin ; hia collar full from the breast and mhoulilera, but tapering gradually all the way to where the neek and head join, whiels should be very fine and graceful, being perfectly free from any coarse leather hauging down; the shoulders broad and fill, which must wt the anme time join so cany to the collar forward, and chine backward, an to leave not the deast hollow in either ploce; the mutton upon his arm or fore-thigh must cone quite to the knee; his legs upright, with a elean fine bone, being equally clear from cuperfluous akin and coarse hairy wool, from the knee and hough downwards; the breat broad and well forward, which will keep his fore leges at a proper widenows; his girth or cheat full nod drep, and instead of a hollow laehind the ehoulders, that part, by sone callied the fore thank, anould be quite full; the back and boins broud, flat, and orraight, from which the rihs nust rise with a fine circuInr areh; his belly atraight, the quartern long and full, with the mutton quite down to the hough, which showht neither stand in nar out; hin twiat or junction of the inside of the thighoserep, wide, and foll, which, with the brond breast, will keep his four legs open and upright; tho whola horly coverel with a thin pelt, and that with tine bright not wool. The nearer any breed of sheep cones up to the nlave deacription, the nearer they approinch towards excellence of form ; and there in little doubte, hut if the asme attention and poins were taken to improve any particular breed that has been taken with a certain variety of the Lincolnshire, the same advantagea would be obtained." ${ }^{-}$
3. Eirrly Neturity is a property of great importance th the farmer who lireeds and feeda all his own sheep fire the shanhles; they not only make a duicker return for their ford, but yiehd a ligher profit to the breetler than show-feeding animuls. This valuable property of enrly maturity can lo intured hy breeting. fomb, and teatment. The New Laticester breed possess this property in a hizfier digree than any other of our domestic lireeds, and they also yield a greater quantity of muton on the same puantity of food than any other lireed.
4. Cons iucion al hardmeen. - In a rigoroun climate, and in bleak and elevated mountains, in which artificial find eannot be obtained, thin quality is indimpensable. Hut a furmer will reldom make a wrong relection in cireunstenoes mo obvious.

- See Culley ra Live-Stock.
b. Produrtivenems-'Thin ia a property wieth chamen terizea sume varieties of pheop und other animames, in may. ine extended by careful selection in breeding, enil froni food and trentment. Pets have almoat Invarielly twin lamisa. The draft owea from the mountaing of Scotland have genc cally twina when taken to a midber elimute, and kept on supurior fooml.
A. Dizposition to F'alten--'lhia property lo of my great importance to fecders, as hin whees can he math Tht for the market hoth in a ahorter period and with a hea quantity of fiod. None of our donestic breedo pomen thia quality in greyter perfiertion than the Now lerients ter; thim quality nlmo may be ancertained by eraminimeng the dejth and breadth of the chent, according to gn John S. Nibright. And the great John Hunter Guvil that eany corpulence was coneomitunt with mmall boneen it in also accompanied with a pliuble, solt, and menlion skin.

7. Jightnees of affal.-It in obvinum that, to whatepe extent the weiglat of the ollal can he diminished, that value of the animal is fucrenaed. The pertiection of an animal in, when the dead weight of all the eatable pors approachea the neareat to the weiglt of the aniaul when alise.
The following atatement of the live and dead meight of a Devonahire ox, aged 3 yeara and 10 monthe, will explain the manner in which these accounta are dram up:-

Tallow
 tlile

lleai and rongua
llenfi, liver, and langa,
Fert,
Finfaila mid blood,
Carenne, or four surflers,

Principles of Breceling.-The fundamental and eamen tinl principles of improving niny of our domestic ulimm by breeding, conaist in a nkilful selection of those malen nand frmalen, the union of whone qualities will remose the defects and induce the properties desirel. The sheep-farmer ean weither raise nor heep hits flow in the highest perfection of which the elimate ond pasture ad. mit, without a rigid adherence to this primary principle. It was upon this principle that Dakewell formed his cele brated broed of aheep, and it in the ouly primeiplo upan which nuy breed cun be raised to the highest perfection of which it admits, Lrreding in and in, as it is called, hus given rise to a long controveray, which our increas ing knowtedge of the physiology of the animal econemp, sudd n wider induction of facts, carefully olserved and accurntely recorded, will speedily bring to a fial closa The tiacts now colloctid from a wide nurface, nud athered ly men skilled in the sciencers of physiology and ans tomy, as well as by practicul brecherx of live-stock, estuWish the important fuct, that, breeding hy toc near af nities, the offapring degenerates. It is a law of nature and opplien to men und aumals, and even plants. Tho accurate experiments of Mr. Knight estahlisht the fart that in the vegetable an well as in the nuimal kinglom the offyring of male and fromale plants, when not re lated, possess alway more strength and vigour thas those of near aflinities. Sir John S, Sibright tried man experiments hy breeding in and int with dengs, fowlo, anc pigeons, and found that the ollypring unitiornily degene rated. \dagger Sir Jolan Sinclair relates an experinent with pige, which he enrried no far that the females amod reased to hreed; and if they did breed, the offprim wes mo minall and delicote that they died as soon as they were born. \ddagger 'To breed, therefore, from tho name race but of different families, is now estuilished as the odf system that will eecure the highest results in the dition ent breeds.

- Code of Agriculture, p. 02.
\& Sen si- 4 Sibright's E.alav, p. 13.

Cmonns.-This nequires many col mes. The clima ane and constilut gucel. To lieren mol augmenting or aus entefprice, an othmpt to ilisrear from anethes som fool and climate rater of the exp dze is gained ly and liability in dias qualitiea of a race gelves to the wail o in pasturage and deen long a native attention. Were owes with Iowleent under two fital il eate for the elinunt atempt was made thequality of the ing thein with Cla plete failure.
The influence of that the male hium of the oflypring th foll accordiuce wit the arrangencints the domestic aniun in a fas shorter per Thero is another f. by one connection generation than it important claange fected, uulcas the of fift generation. Age of the Pure apring.-Sone very mone yeara ago, it tend to establish, n. pring of a young years old, will in ge old ram ond youn Could such a law of imпuenнe advan country, but partic country as Australi number of stiock i portance. There ject in the first n agriculture," enntai made in France, niews are extracte Frangaise," vols. x resting experiment mado in France, Charles (ifron de I of the Agriculturn July, 1826, to divi parts, so that a gre choice of tho propt of thein. Two of their flocks to breor the results lave no occonlance with th uperineent was co Ho recommended y of ewes from whic number of females during the senson they ohould have m while to the flock VoL. 1. 78
w'sich chanes
er aningalta it breecling, minf
nost invarinally mountain of ien to a niller rty to of my a can be main andil with a beu
breecla poneea ve New lereen 1 ly eramining cording to 8 Hunter frund th armall boness A, and mellon
int, to whateren diuninininted, the wrifection of on ic eatabile pros te aninual when
nd dead weight
10 monthe, will
unta are dram omestic atimath of those malm ics will remaro Ilesirell. The his flock in the and prasture ad. imary priaciple. formed his cale principle upo chest perfection P, as it in called, ich our inerrazo uinnal economa - observed ant to a final cloce ner, and altented flogy and ant live-stuck, estb by toc neat alis law of nature a plints. The tablish the fart rimal king 2, when not is nit vigour than ight tried mang logy, fowhe, sti iformly degeele xperiment aill females slmos 1, the offopring as roon as they the same mech cd as the only Its in the difine

Comonne.-This in a meana of improving a breed that nequires many concurring circumstuncen to enaure nuce equ The climate and the fool muat aceord with the ane and conatitution of the animal that in to be proquech. Tol luerease the mize of a breed onalieep, withwot augmenting or lmproving their fioot, would he a ruinnus enterprime, and in the face of all principle. The ath mpt to iliereane aize hy cromsing with heavier ramn thon ansther country ruluirea alan great care that the Conl and elimate the nolapted to the condition and chanuter of the expeeted race; for it is in proportion an dize ia gained by crowing, that delieney of conatitution end linbility to dineane are increaserd. The conatitutionul qualities of a ruce of sheep will not accommonate themcelves to the will or climute of a country differing much in panturage and temperature from that on which it has oeen long a native, without time, great care, akill, and atention. Were we to arome our mountain Chevint evee with Lefeesater ruma, the cilitpring would labour under two futal disadvantageg-a conatitution too delifnote for the climante, and a arice alove the pasture. An gteingt vas made in Scotland nome yeara ngo to raise the quality of the wool of our mountain eheep by crosming them with Cheviot rame, and the result wan a complete failure.
The infuence of Sex.-It in now generally ndmitted that the mate hav a higher intuence on the chneructer of the ollapring than the females. 'This luw is in hrantiful accordance with that beneficent denign so visilte in the arrangements of nature, an it enalios man to bring the domestic animals to their most profitable condition in a far shoter period than if the law hat been reveriod. There is another fact perfectly extablisherd, that the mule by one conncetion has a higher influence on the serond generation than its netual futher. This shows that no inportant clange in the clinracter of a breed can be effected, unless the crossing in continued until the fourth or fifl generation.
Age of the l'urents ; its Ffferen on the Sex of the Offe-pring.-Sotae very interesting experimenta were begun sonne years ago, the resulta of which, so far an they go, tend to establish, as a general law of nature, that the offspring of a young ram and eve, of from four to five jeara old, will in general lwe a frminiue, while that of nat old ram and young ewe will in general be masculine. Could such a law be practically acted upon, it woull be of immense advantage to breders of stock in everv country, hut purticularly to broedera of stock in saerh a country as Australia, in which the rapist iw rease of the number of stinck is an olject of nurch paramount importatce. There is an able paper on thim curious nubjeet in the first number of the "Quartenly Jomrnal of grieultare," eontaining the resulas of the experiments made in France, from which the following facts and riewe are extracted. In the - Anmales d'Agriculture Fraçaise," vold, xxxvii. and vxxviii., some very intemesting experiments are reroviled, which have lately been malo in France, on the breeding of live stock. M. Charles Ciron de Huzarcingues proposed, at a mecting of the Agricultural Society of Sererac, on the 3d of July, 1826 , to divide a flock of sheep into two equal parta, so that a greater number of mules or femalisg, at choiee of tho proprietor, should be produced fron cach of thein. Two of the members of the socicty offered their flocks to to come mubjects of his experiments; and the results have now been communicated, which are in accordance will the nuthor's expertations. The first usperment was conducted in the following manner:He recommended very young rams to be put to the flock Owes fron which the proprictor wished the greater namber of females in their offspring, and almo, that during the season when the rama were with the eives, they ahould have more abundant pasture than the others; while to the flock from which the proprietor wished to
obitain male lambe chicfly, he recommenised hing io put atrong and vigoroua rams four or five years ofd. The following tabular view centains the result of hia experiments, which are highly in favour of the viewa of M (iiron:-

"Tho general law, na far as we are able to detect ith neemia to be, that when animula are in good condition, plentifilly supplied with food, and kept from breeding as linst ne they might to, they are most likely to produce frimales; or, in othar worla, when a race of atimala is in circumatances favournble for ita increase, nature produces tho greatest number of that sex which, in animale that de not pair, is most elficient tor increading the num. ber of the race. But if they are in a bal climate, or on stintell pasture, or if thry have alreally given birth to a numerous olfapring, then nature, setting limite to the increase of the race, produces more males than femalea, Yet, perhaps, it may be premature to attempt to deduce any law from experiments which have not yot been sulticiently extended. M. Giron is disposed to amerite much of the effect to the age of the ram, indeprendent of the condition of the ewe."* The author of this treatise has uniliomly observed, that in every favourable seazom, when his stock was in ligh comulition, he had a muck. larger number of female lambs than of males; and in one of tho most finvourahle acasons that has occurred during his own personal experieuce, the female lamhe exceeded the mates to the number of ninety, in a flock of bul ewes. The ewes had no artific:al food at any scusof of tho year; they lived entirely on the natural grasses of our mountain pastures. They got bog and lea lay in snow storms, hut nothing else.

GENERAL MANAGEMENT OF SHEEP.

The management of shecep must be varied according to tho nature and character of the brecd, the soil and elimate, character of the pastures, natural or artificial the pasition of the furm in reference to marketa, and whether all the slicep upon the farm can be prepared for the butcher, or must all he sold tean, as is the case with those farmers whose flocks suhwist entirely on the natural grases of our memetain pastures; and whether early lambs would he profitable or otherwise. These and many other circumstaneos must regulate the proper time for admitting the rams to the ewes, nnd hence the lambing season, the propar time for washing, sharing, dipping, amearing, \&ce. Different numes are applied to sheep at different perinds of their age. A young sheep remaina a lamb from birth till the first smearing time. From this till the first elipping it is called a hoy. From the first to tha second elipuing it is termed a gimmer. It is now

[^54]3×2
called a young ewe, till it hears its first lamb. When spring. The ewe will occoaionally refuso to atace male wheep are cut, they are denominated ueddera; and, mocording to their age, are cailed wedder hoga, \&c. At three gears old, the wedder is in its prime for mutton.

Lambing.

The period at which sheep begin to breed is in tho utumn of the second year after birth, when both rains and ewes are at their maturity. In the British islands, the company of the ram is perinitted at the beginuing of October. The ewe goes with young about 152 days, or between twenty-one and tiventy-two weeks, and consequently the lambing senson is at the beginning of March. It is of high importance that sheep, during gestaion, mould be managed swith peculinr gentleness and care, De rash use of the dog teing attended with the most pernicious consequences. Tho ewes should be well but not over-fed, as the ewes being in too high condition greatly increases the risk in lambing. Though parturition, being a natural process, cannot be regarded as a disease, still, in shcep, as well as in many of our domestic animals, it is attended with some risk; nod in certuin states of the atmosplace, and ewes in toe high condition, the lose is often very considerable from inflammation.
"As the period of parturition approaches (observes an intelligent writer in the "Pemy Cyclopadia"), the attention of the shepherd should increase. There should be no dogging then. but the ewes should be driven to some sheltered encl sure, and there left as murh as peas sible undisturbed. Should abortion take place with regard to any of them, nlthough it does not spread through the flock as in cattle, yet the eve should be immediately removed to another enclosure, and small doses of Epsom salts with gentian and ginger, administered to her, no great quantity of nutritive food being allowed.
"The ewes should now be moved as near home as convenience will permit, in order that they may be under the immediate observation of the lamber. The operation of clatting, or the remowal of the hair from under the tail and around the edder, should be effected on every long-wooled ewe, otherwise the lamb may be prevented from sucking ly means of the dirt which often aceumulates there, and the lamber may not be able at all times to ascertain what ewes have actually lambed. The clatting before the approach of winter is both useless, cruel, and dangerous operation.
"The reriod of lambing having actually commenced, the shepherd must be on the alert, yet not unnecessarily worrying or disturbing the ewes. The process of nature should be permitted quielly to take its course, unless the sufferings of the mother are unusually great, or the progress of the labour has been arrested during several hours, or eighteen or twenty hours or more have passel since the labour commenced. His own experience, or the tuition of his elders, will teach hin the course which he must pursue.
"If any of the newly-dropped lambs are weak, or ecarcely able to stand, ho must give them a little of the milk, which at these times he should alwaya carry about nim, or he must place them in some sheltered warm place; in the course of a little while, the young one will probably te able to join its dam. The Inmbing-field often presents at this period a strange spectacte. 'Some of the younger ewes, in the pain and confusion and fright of their first parturition, alandon their lambs. Many of them, when the udder begins to fill, will searell out their offepring with unerring precision; others will search in vain for it in every part of the field with incessant and piteous heating; others, again, will hang over their dead offapring, from which nothing ean separate them; white a few, strangely forgetti.s, that they are mothera, will graze unconcernedly with the rest of the flock.'
"The shepherd will oftrn have not a little to do in oriler to reconcilo some of the mothers to their twin off-
ledge one of the lambs. The shepherd will hasce to mo concile the little one to its unnatural parent, or to find a better mohher fur it. If the mothers obstinately refuse to do their duty, they must be folded by themselves untu they are hetter disposed; and, on the other hand, if tho littlo one is woak and perverse, it onust be rapeotedly forced to swallow a portion of her milk, until it acknow ledges the food which nnturo designed for it."

Male lambs are eut nine or ten daya after hirth, Weaning or removal frous the mother takes place from three to four months afler birth, according to circura stances. In weaning, the ewes and lambs musc be sepu rated so for that they will not hear the bleotingy of each other. The lambs are at first but on the tenderest herbage that can be selected. Somo ewes may have so much milk that the udders will swell when deprived of the lambs, and this will require to be attended to by the shepherd at this trying season of idis 'hours.

Food.

The kest kind of food for shecp is nutritious graser pasture, growing on a dry and firm soil. The sheep is most assiduous in picking up food, and will ronge over a great space in quest of the herbage which it is foni of. In the IIighlands of Scotland, and in Australia where the herbage is scanty, the sheep farm requires to be very large-twelve miles in length and breadth is no unusual size of a Highland shecp-farm. In countries liable to be covered with snow in winter, grass, hay, or some other vegetable material, inust be preserved for the subsistence of the flocks when their ordinary walks are under a snowy mantle. Natural meadow hay and turn nips are used in Scotland for winter keep, when ordiang resources fail; and the employment of these, in the cas of heavy drift, sometimes saves large numbers of sheep If the flock ean be conveniently diven to a cleared hay field, such is done in preference to carrying food to the animals: there should be one field for the ramas and son other for the lambs, or for sheep in a weakly condition A genernl rule for sheep intended for the butcher is, that they should never lie allowed to turn lean, but be kept in a constant state of improvement ; and that kiod of food should be seleeted that will bring the animals to the highest plofit in the ehortest time nud at the leasterpense. In well-managed store-farms, sheep are nor allowed many kinds of food little thought of in former times, and are, besides, provided with troughs of pum water, and a trough of salt, that thiey may lick when their taste leads them to that indulgence. In all arificial feeding, the food should be free of dirt or ang in sect apawn.
Heedless farmers are sometimes apt to purchase and keep more sheep than they can conveniently feed on their grounds, which causes a serious evil. T'o overstad in farm, where artificial food camnot be ebtained, is one of the most fatal errors a farmer can commit. It doa not only diminish the quantity, but also fouls und dere riorntes the quality of the food. A farm may be ores storked for a few years, but death will by and by no only lessen the numbera, but diminish to a great exted the health and productiveness of those that sumine Avarice and ignorance have tempted not a few farmen to carry on this unequal straggle agninst the lawnd nature and humanity for years, hut it has always endeh as it ever must, either in the farmer's ruin, or reform tion of his plan.

Iferding.

The tendency which most sheep have to ramble, net ders it necessary for them to be attended by a shephent and his dog. The duties of a shepherd are very irkoow, and seaguire to be performed by siman of firm resolction, good temper, and discrotion. To keep the flock mithin
hounde may b the way of pre not be harass. wild beosts. ture, the shee Heness, and to as a friendly F who dn ne ${ }^{4}$ ex fock to ita gro the dog after t to their ewn lii it down as a that there shou dog. Much alt per breed, and gives little tong knack consists further extremi dowly before hi pointed out. A and the word, Inder-bred dog chasing them ! parpose. All i the important du A first-rate she farmer, and he him.

In those dist important to affc are jutting or o will crowd unde from harm ; but cessary to erect atone, to which On the exposed circular foldés, loc cut, or parcel of forned of a stone and is placed on drifted. Besides farm smple and ous sortings of st ${ }^{n}{ }_{3}$, and drafting These folds are adic palings.

The winter cos spring or carly in of being suckled to be falling off To sove the wool the practice to s when the lambs gel.al. In any the new wool is Previous to aheer and washed in a of impurities. Ss this operntion. be put into a clen ahould be velectect formed a day or to for the purpose. to break or tumb) neaty, and witho Austrelian H'no bas writter directio respecting the nus agke the followin
to klinc 11 have to re nt, or to find mately refuse inselvea unth : hand, if the se repeatedly til it acknow it."
a after birth ses place from g to circum must be sepa bleatings of the tendered s may hove so en deprived of aded to by the troughs of pars may lick when ice. In all arib f dirt or cay ir
to purchase and eniently feed on iil. T'o everstad obtained, is ere commit. It dos fouls und dete rim inay be oree 1 by and by no tó a great entent se that survirt not a few farmen inst the lawid as alwayz ender ruin, or reformer
ve to ramble, sea ed by a sheptrent are very irksom of firm resolution b ha lock withis
hounds may be trouhlcsome, but much may be done in the way of preventiva; and at all events, the nheep muat ot be harassed and chased as if thay were so many wild beaats. Being naturally of a timid and gentle nature, the sheep ought to be treated with a degree of genldeness, and taught rather to look up to their ahepherd as a fricodly protector than a tyrant. Lazy shepherda, who do not exercise a judicious foresight in keeping tha fock to its ground, try to remedy the evil by hounding the dog after the stragglers, besides giving no small toil to their own limbs in running. We are dcairous to lay it down as e rule, well known to all good shepherds, that there should be only a rare and cautious use of the dog. Much alao dependa on the dog being of the proper breed, and well trained to his duty. A good dog gives little tongus; he is seldom heard to bark: his great knack consists in getting speedily and quietly round the further extremity of the 'flock, and then driving thein sowly before him in tha direction which his master has pointed out. A wave of the hand in a certnin direction, ond the word, There, are usually enough as a sign. Ender-brel dogs bark at and fly upon the poor animals, chasing them hither and thither, without any rationnl purpose. All such doga should be destroyed as unfit for the important duties whieh they are intended to perform. A Girst-rate shepherd's dog is invaluable to the store farner, and he ahould grudge no reasonable price to get him.

Shetter-Sheepfolds.

In those districts which are exposed to storms, it is important to afford shelter to the flocks. Where there are jutting or overhanging rocks or bushea, the sheep will crowd under their lec, and so far protect themselves fron harm; but where thy country is bare, it will be necessary to erect artificial walla or enclosures of turf and stane, to which they can be led io casea of emergency. On the exposed hill-sides of Scothand, it is usual to build circular folds, locully termed stells, of aufficient size for a cul, or parcel of sheep. The stell is a rude enclosure, formed of a stone and turf wall about four feet in height, and is placed on a piece of ground known to be seldom Urifted. Besides these, there should be on every sheepfanm ample and conveniently situated folds for the variutus sortings of sheep, such as for weaning lambs, shearm_{3}, and drafting or drawing out any animuls required. These folds are ordinarily constructed of llakes or movable palings.

Shearing-Woot.

The winter coat of the sheep begins to be ragged in spring or carly in summer, while the lanbs nre in course of being suckled; and towards June, the wool is seen to be falling off in lumps, or caught in every bramble. To save the wool in time, and relieve the nnimal, it is the practice to sheer them about the middle of June, when the lambs have been weaned, and the weather is gel.al. In any case, however, it should not he done till the new woel is observed to be pushing off the old. Previow to sheering, all the sheep should be collected and washed in a running brook or pool, to rid the fleece of impurities. Some shepherds employ a little soap in this oferation. On being washed, the nnimals shound be put into a clean field or fold to dry. Fine weather ahould be selected for washing. The ahearing is performell a lay or two atter, ly means of large sheers made for the purpose. In shearing, care should he taken not to break or tumble the wool, but to take off the fleece natly, and without injuring the skin of the animal.
Austrilian Wionl Manisement.-Mr. Walter Iluchanan bus writure directions to the wool-growers of Australia respecting the managenient of wool, from which we oake the following extract:-- It is of groat ynportance
that the feece ahould be well washed, that the wool may be brought to market with as bright a colo ir an possible. Every conveniance, and a very plentiful supply of pure water, should thea efore be provided a running stream being most desirable. I'he preferuble mode of washing is that which is performed before shearing, according to the German manner. Some growers have tried tha plan of washing after the fleeces have been shorn and sorted, and, as is aupposed, to have used tepid water, following the French and Spanish method; but this has not been approved of by the buyors generally, and particularly by those who buy for combing purposes.
"The breaking of the fleece and washing after shear ing, give the wool more the appearance of Spanish than of German wool, and it ia consequently reduced to a lower atandard of comparison. It ia well known that the sheep of thoso German flocks that are best washed, are, after that operation, driven into some shed strewed with clean litter, o: penned up with hurdles on clean grase; that the utmost care is taken to prevent their expoare to dirt, or whatevar else might tend to sully their whitenesa; and that they are not shorn until a sufficient do gree of moisture is deposited in the fleece, by perspiration, to impart a sof handle to the wool. It may here be added, that it is very important, if possible, to prevent the sheep from filling their fleecos with grass seeds, broken leaves, and other extrancous substances, which cannot be removed in the operation of washing, and which are productive of labour and expense in every procesa of manufacturing, in some cases, indeed, render ing wool almost unsalcable. It may be here observed, that so conscious are the Spaniards of the superiority of the German mode of washing and assorting, that they are making every effort to introduce it.
" In order to assimilate the Austrulian wool as much as possible with the German, in preparing it for market, the fleeces ahould not be broken, but merely divested of the breech and stuined locks, and so assorted or arranged, that each packaga may contain fleeces of the same character as to colour, length of staple, firmiess of hair, and general quality.
"If the washing has been performed at the aame time and place, and with an equal degree of care, the colour is likely to be uniform, and it will then only be necessary to attend to the separation of the fleeces as to length, fineness, and general quality : but if a larger grower has flocks of different breeds, and fed on different soils, care should be taken that the flecces be separated, first as to colour, and then again as to length, fineness, \&c.
"The fleeces, being assorted, as alreally suggested, ahould be spread one upon another, the neck of the second fleece being laid upon the tail of the tirst, and so on altermately, to the extent of eight or ten fleecea, according to their size and weight. When so sprend, the two sides shoulo be foiled towards the middle, then rolled together, beginning at each end, and mecting in the centre, and the rall or bundle so formed held tugether by a slight packthread. The bagging should be of a close, firm, and tough nature. 'The material hitherto most generally uaed has been sail canvas, which very ill resists bad weather on a long voyage; and when received here, even in favourable condition, is so dry and crisp that it will tear like paper: a thicker, twilled, more bexible, und tough material, woukl be preferable. I'he size and form of the package may he in length nbout nine feet, und width four feet, sewed up on the two long sides and ut one end, the other end lieing left open, and the sheet so formed baing suspended, with the open end upwards, to receive the hundles, made up ne betore ditected, which are to be put in one at a time, one of the tlat sides of the roll or bundle being put downwurds, and so on in suteession, being well trod down, until sulliciently filled for the mouth l^{s} be closed. 'Ilis is the German mode of packing; but

It is doubtful whether amaller packages, of tho dimensions that have been hitherto sent from tine colonies, may not be more convenient for so long a voyage. The nperation of screwing should be discontinued where it has heen practised, us the serew pressure, and remaining compressed during the voyage, occasion the wool to be caked and matted together in a manner that is highly prejudicial to its appearance on arrival. The practice, also, of winding up each fleece separately, and twisting a portion into a band, is productive, in a minor degree, of the aame picjudicial effeet; and it is to avoid thia that the making fierman bundlos of eight or ten fleeces ia sug. gested."

Qualities of Wool,-Improving the quality of the wool, or at least of not allowing it to deteriorate, ia now on object of as grent importance to the British atore-farmer es in raiaing the weight of the carcass. The finest woola are those purchased for making broad cloths, merino, and mousseline-de-laine fabrics (laine is the French word for wool). "The wool of which good broad cloth is mide," observes Dr. Ere, in his "Dietionary of Arts," "aloould be not only shorter, but, gencrally apeaking, finer and softer than the worsted wools, in order to fit thein for the fulling process;" and to judge of this degree of fineness, great nicety of discernment is required. "There are four distinct qualities of wool upon every sherp; the finest being upon the spine, from the neck to within six inches of the tail, ineluding one-third of the breadth of the bsek; the second covers the flanks between the thighs and the shoulders; the third clothes the neek and the rump; and tha fourth extends upon the lower part of the neck and breast down to the feet, as also upon a part of the shoulders and thighs, to the hottom of the hind quarter. 'These should be torn usunder, and sorted iminediately after the shearing.
"The harsliness of woola is dependent not aolely upen the breed of the saimal, or the climate, but is owing to certain peculiarities in the pasture, derived from the soil. It is known that, in sheep fed upon chalky districts, wool is apt to get coarse; but in those upon a rich loamy soil, it becomes soft and silky. The ardent sun of Spain renders the fleece of the Merino breed harsher than it is in the milder climate of Snvony.
"All wool, in its natural state, contains a quantity of a peculiar potash-seap, secreted by the nnimal, called in this country the yolk, which may be washed out hy water alone, with which it forms a sort of lather. It constitutes from 25 to 50 per cent, of the wool, being most abundant in the Merino breed of sheep; and however favourable to the growth of the wool on the living nnimal, should be taken ont soon after it is shorn, lest it injure the fibres by fermentation, and cause them to become hard and brittle, After being washed in water, somewhat more than lukewarin, the wool should be well pressed, and carefully dried."

The quantity of wool imported annually into the United Kingdom, a large portion of which is now from A ustralia, has latterly been about $60,000,000$ lbs.--a quan. tity not nearly equal to that proluced from native flocks. As the imported wools are chiefly of a finer quality than those of native growth, so far is the large importation from injuring the llritish wool growers, that it is the means of giving them higher prices for their commodity. It han been satisfactorily shown ly eloth-makers before a parlinmentary committee, that unless they imported foreign wool to mix with that of Britain, they could not produce the finer class of goods, and, consequenily, that British wool would be much less in demand.

smearing.

Smearing in a process of anointing the skins of aheep -ith certain ingreslients, principally for the purpose of rendering the animal leas liahle to injury from winter oid (the unguent being a alight counter-irritant), and of
destroying the vermin whick. lodge among the room of the wool. Smearing with a mixture of tar snd huttem was general in Scotlend in former times. The prupor. tions varied in different diatricts; but in general 6 lbw of butter to a gallon of tar were deemed sufficient for twenty sheep. The time for laying on this salve was in thenty of Octoher and beginning of Novemb rr, before the rams are admitted to the ewes, which, in t ie mountain farme of Scotland, is in general almut tho 22d of November, The smenring with butter and tar l.as very much do clined of late years, and various other preparati-ns, such as butter and oil, turpentine, arsenic with a solutiou of soft aonp, and various other haths, are used instead of butter and tar. Which of the various haths now in vem ore the best, it would be diffisult to determine, as cach bum its advocates. On this, es on other anbjects, tha stars farmer, without running raahly into experimenta, ought to have his mind open to well-considered improvements, and adopt such measures as are aupportod by respectablo authorities.

DISEASES OF SIIEEP.

The sheep is aubject to a great variety of diseases but the most formidable, and by far the most destruo tive, is

The Rot.

It is unfortunate that in the early stages of rot thadia pase gives no external intimation of having commenced its destined fatal career; for it is at the beginning of most disesses that homan skill is most efficacious in arresting their progress. But sheep in the early stages of the roth instead of showing symptoms of disense and decay, ac. quire a great tendency to fatten, which has been tumed to advantage hy Mr. Bakewell and others. But afterthe disease has undermined the "general health, the snimal becomes listless and unwilling to move, leaves its companions, and sinks rapidly in flesh ; its eye becomes suak, dull, nad glassy ; the wool comes easily from the skin, the breath lecomes fetid; the bowels variable. at one time loose, with a black purging, end at another costive; the skin hecomes yellow, and sometimes spotted with hlack; emacintion now becones more rapid; general fever is inducel, nond death ensues. There nre varions metionds by which practicnl men endeavour to ascertin the incipient symptoms of the discase, but the two fot lowing sre the mnat general :-

Tlie first is by hmudling the sheep on the small of the hack, and if the flesh feel firm and solisl, the animal it juiged sound, but if the flesh feel flably and soft, ond give a crneking sound when rubbed against the ribs, the animal is unsound. The other method is by examining the small veins at the comers of the eyes, and if filled with yellow serom instead of blood, the nnianal ia pros nounced unsound; but the greatest practical tact and talent will rot always ensure aucecss in diseo eering the early stages of this insidious diseare.

Appearances on Dissertion.-'The whole cellular tisve is filled with a yellow serous fluid; the muscles sre pale, and appear as having heen macerated, being rott ond fiably; the kidneys are infiltrated, pale, and flaceid; tha mesenteric glands diatended with n yellow serous Aluid; the lungs filled with tubereles; the heart enlarged and softened; the peritoneum thickened ; the bowels are aftes distended with water, and sometimes grown tngether. But the liver is the primary seat of the disease; its whot atructure is in different statea of discase; one part is scirrbuss and indurated, and another sof and ulcerated, and the bilinry ducts sre filled with flukes. This appeas to the author the origin of the disense which has involed an many organs. and effected nuch a vast disorganization of the ivhole arionat frame.
('muses of Rot.-In endeavouring to ascertain the cave of this divease, it seems unnatural to begin by inguining
whether lhose p ta the biliary du the discase. I fasiola of Linn the planuria of have been found horye, ass, hog, d animala, and eve of a brownish-ye divested of its fin pinhead to an in inch in brendth.* as po dist:nction spawn ol eggs of bers in tha biliary found in every pa seen in the dung rous in that of a many other of th of tha intestines, cannot or do not in his very valuab his opponents, "From all this d drawn, that ns liv without, they mu particular states o originate we cann the place to hazar: be found thnt the ir ceded by tuberculo
That Frommon the sheep is a stron lock must know th when he states tha cation between rect cominunic. $\mathrm{M}:$ Blacklock' F unphilosophica. cannot reach the must, of necessity, of the animal they axying that the fluk cular slates produc egrs of the flukes e to be hatched by th as these eggs could the liver from witho the liver lays the eg them when diseased tion is absurd. But pursuing this interes state his belief that by the liver of the by means not yet a vified in the liver ex cus. The case witt mt in his sheep, by p previously fonded fo cutnstances must con cuused ly scanty foo masy be sta ved to de that tha sheep has a fat in the carly sta colusex act as a stinu degree of intlammati the progress of this if well-sticated factn no eountries, ead to the wil and pasture, and chief agents in causi

- Labrery oi U
- Biacktrick's
thether llose paraltes which are found in such numbers the buliary ducta of the liver, are the canse or effect of We discase. The parasitea named the liver fluke, the factiola of Linnsus, the distoma hepaticum of Rudolphi, the planuria of Goese, are not peculiar to the aheep, but have been found in the biliary ducts of the goat, deer, ox horse, ass, hog, dog, rabbit, guines-pig. and various other nimala, and even in the human being. The parasite ia of a brownish-ycllow colcur, and resembles a small aole divested of its fins; in size it may be seen from that of a pindead to an inch and a quarter in length, and half an inch in breadth.* It is supposed to be a hermaphrodite, as po distinction of sex has yet been made out. The sparn ol eggs of this parasite are found in greut numbers in the biliary ducts of the liver; these eggs are also found in every part of the intestinal canal, and very often seen in the dung of a sound sheep, though always numerous in that of a diaessed one. This animalcule, and msay other of the entozoa, have never been found out of the intestines, but this ia not positive proof that they cannot or do not exist ont of the body. Mr. Blacklock in his very valuable treatise on sheep, after laying flat all his opponents, comes to the following conclusion:From all this data, the conclusion must at once be drawn, that as living flukes cannot reach the liver from without, they must, of necessity, be produced only in perticular states of the animal they jnhabit; how they originate we cannot of course determine, and thia is not the place to hazar! a physiological conjecture ; but it will be found that the r appearance in the bile is always preceded by tuberculous deposits on the lungs and liver.' \dagger
That Frommon fonnd the fluke worm in the foetus of the sheep is a atrong fact, blo. not decisive; for Mr. Blacklack must know that, although he is anatomically correct whon he atntes thai there is no direct vabcular communieation between 'i. intal and maternal side, yet the indirect eommunic ${ }^{*}$., be sufficient. And besides this, $M:$ Blacklock' $F \quad \therefore \quad \mathbf{x}$ on this point are extremely umphilosophica: : "cen he says-"That living flukes cannat reach the liver from without, they (the flukes) must, of necessity, be produced only in particular states of the animal they (the flukes) inhalit." This is just saying that the flukes inhabit the animal before its particular states produce them. This must mean that the egys of the fukes exist in the liver of the sheep, ready to be hatched by the peculiar states of the animal; and as these eggs could net, according to Mr. Blacklock, reach the liver from without, the only other alternative is, that the liver lays the egge 'vhen in healthy state, and hatchea them when diseased. This wont do; equivocal generation is alsurd. But tha limits preacribed forbid the author pursuing this interesting inquiry farther: he must simply state his belief that the ove of the fluke are not generated by the liver of the sheep, but find their way to that organ by means not yet ascertained; but these ova are not virified in the liver except under certain atates of that visrus. The ease with which Mr. Bakewell could induce $\mathrm{m}:$ in his sheep, by putting them on ground which he had previously flooded for that purpose, showa that other circunstances must concur to produce the discase. It is not cwused by scanty food, as has often been alleged, fur sheep may be sta ved to death without producing rot; the fact that the sheep has an extraordinary tendency to acquire fat in the carly stages of the diwease, shows that the cunsex ect as a atimulant at first, and originate a slight degree of intlammation in the liver, as the first step in the progresy of this fatal disease. But the nurnerous and well-attested facts now obtained from various climes and countries, ead to the conclusion that the nature of the mil and pasturs, and the character of the ecasons, are the ehief agents in causing rot. This view is confirmed by
- Labrary or Useful Knowleitge, p. 4.14.
- Biecklick's Treat.se on Sheep, ip 2it, 212 .
the fact, that rot is most pre nlent in wet acasous, and is nearly confined to landa subject to be occasionally flooded with water at certain scasons of the year, and to aoils naturally moist and marehy. Moist and level lands of roo tentive soil, from which water is alowly evaporated by the aun, and a temperature favourable to the decomposition of vegetable matter-on such lands, when not thoroughly drained, rot may be said to be indigenous, while on lands that are dry and hanging, the disease is unknown. The nature of the plants which the soil produces is not so important as the plants being kept in a morbid state by that degree of moisture and heat favourable to their dee composition. These views will be amply verified by any one who will take an accurate survey of the midland, eastern, and southern counties of England, in which the disease is most destructive. Besides supporting the views here advocated, the following passage from the pen of M_{4} Harnmond, the founder of the vetcrinary schoel in Egypt, is highly interesting to every sheep-farmer :-" It appear every year in Egypt after the falling of the Nile, and it follows and keeps pace with the subsidence of the waters; desolation and death accompany it wherever it passes, and it annually deatroys at least 160,000 sheep. As soon as the waters of the Nile subside, the pastures which were submerged are speedily covered by a tender rushy grase ${ }^{\circ}$ the sheep are excecdingly fond of it, and they are permitted to feed on it all day long; in the course of a very little time they begin to get fat, when, if possible, they ar: mold; their flesh is then exceedingly delicate, but soon after this the discase begins to appear, and the mortality commences. The discase ja more frequent and fatal when the sheep are fi st turned on the newly recovered pasture than when the rround becomes dried and the rughy grasa harder. But if the sheep pasture in the midst of mud, or on the borders of the marshes and canals, rot attends every step; the rot ducg not occur in elevated countriew, where the sheep feed on dry aromatic herbage. The Bedouins sell all the sheep which they can before they quit the Nile, for then they are in high and prime condition, after which they lose not a moment in reassembling their flocks and driving them back to the desert."*

Preveition and Trealment of Rot.-If the true causes of rot have heen accurately given, every farmer has in his own hands the most efficient means for ita prevention; on all lands that can be defended from being flooded with water, and on all lands whose levels admit of thorough drainage, the manner and amount of drainage must be determined by the position of the land, whether level or hanging, and by the character of the soil, and the quantity of the moisture to be removed, and on all these points tis farmer must decide for himself, or be guided by the advice of a competent judge The only indispensahle rule is, that the drainage muat be thorough, in order to be effectunl ; and if the drainage is carried to this point, the farmer will have the pleasure to see the rot, that dreadful scourge of his flock, disappear. This important point is established by practi cal men whose testimony cannot be impeached, that there would be no rutten sheep found, even upon the most apongy lands in the country. The treatment of rot is confined to narrow limits, from the curious fact that sheep, in the early stages of rot, acquire fat with singular rapidity; the hest thing the farmer can do, as soon as he finds his flock tainted, is to sell them to the butcher'for what they will bring in the market; from the condition of the slieep, this forced sale may be attended with considerable loss, but it will be a loss inferior to that austained in the vain attempt to effect a general cure

Tainted fiocks have recovered, it has been nlleged, by being sent to pasture on solt marshes; but though the efficiency of such pasture were admitted, it is a remedy which only a fow farmers could obtain. To change the

Acork to a mort dry atd elevated part of the farm, when thin is practicable, has oeen attended with favourable recults. The free use of salt is univerally admitted to he the best medicine within the reach of the farmer for checking the progress of this deadly disease. That many curen have been effected by the proper use of salt, is atteated by persona of the higheat claracter and intelligrice. Sir John Sinclair states, that at Mr. Moseelman's farm at Chenoi, bey'ond she Wavre, he found that salt was used for sheep, and that, by allowing them to lick it, the rot was completely cured.* And aa tre only explanation of sheep taking on fat rapidly, in the early stage of the disease, is, that the digeative organa are stimulated for a timo by inflammation of the liver, perhapa the disense might be checkod is limine by copinua blceding; but the disease can accareely ever be detected at that period in which bleeding v id be proper, and bleeding late in this, as in almost at, uiseasea, is fatal. But in this disease the sheep-farmer must direct hia energies and care to the prevention rather than the cure, though some of the remedies just mentioned may be of aervice at the acginning; yet, from the insidious nature of the disease, is can underinine the constitution before it is perceived, ω that extent which no known remediea can reatore, so that every shecp-farmer must rest hia hopea of saffy, not in curativea, but in the vigorous use of the means of prevention.

Braxy.

Braxy, ur Sicknoss, is an inflammatory disease, where ravages are chiefly confined to hogs, and those in the highest condition are mest liable to be attacked. This disedme is not nearly so destructive as it was formerly, when hoge were hirsled; this has been accounted for by allesing the inexperience of hogs in selecting their food, and their tendency to feed too much on tha succulent parts of their paature. Braxy, being entirely an inflammatory affection, may be excited 4; variety of causen, auch as drinking cold water in a heated state; any great or sudden change of temperature; by hail, snow, or rain; feeding on soft rank grasses, which are apt to excite fermentation, and, by extrication of gas, distending the atomach, thus originating inflammation, and sometir a producing audden death by pressure on the diaphragen. One yery frequent cause of braxy is that kind of frosty morninga which load the pastures with hoar-frost. The hogr, from feedi: g chiefly on dry a:.d binding pastures at that season of the year (from November till March), cat the succulent spots of grass ladea with hoar-frost very greedily, and thus the temperature of tho stomach ia so suddenly lowered to iey colduess, that violent inflammation is immediately produced, and death nften ensuen in a few hours. In the list of the causes of braxy, the improper use of the dog must not be omitted. It is as clear ns a sumbeant, that nothing is more fitted to produce inflammation than once heating a aheep by inceasant use of the dog, at neasons of the year so liable to audden and great falls of temperature.
Symp'oms of Liraxy.-The animal appears uneasy, often lying down and rising up, standing with its head down and back raied, taking no food, bat often drinking water; fever then ensues, when the pulse becomes atrong and quirk, respiration laborious and rapid, the akin hot, and the wool elapped; the eyes are languid, watery, and haslf-losed; it ceases to follow tho flock, and poon dies.

Appearancea on Disection.-On opening the bedy, the arpearances vary according to the parts affected. Sometimes only the reed is affected, and all the rest of the visec:- appear perfectly healthy, and the fleen not at all affected. In other cases the effects of violent inflammation are visible through tho whole viscera, and the flesle of the woole animal is in a state of rapid putrefaction.

Trealmont of Braxy.-From the nature of the divenas it is obvious that the first and most effective remedy is prompt and copioua bleading from the jugulir veino, this being effected, the conatipation of the bowels mum be removed; the best purgutive for this purpnese is Epeon salts, two ouncea fur a does, dissolved in warm water, ind followed by thin warm gruels; these remediea would gene rally prove effectual if applied at an carly atage of the dis ense ; but in a large flock of mountain sheep the disease it frequently not observed by the ahepherd till too late fars any remcly. The best preventive of tho discase in mauntain shcep is akilful and attentive herding, by preveni.us the young sheep from fastening too much on aucculent apots and by seeing they graze regularly over every part of the pasture, and be allowed perfect repose for rumination undisturbed by the dog.

Sturly.

The proximate cause of thia formidable direase in hydatids formed in the train, or by an accumulation of water or serum in the ventriclea of the samo argan Many ingenious writers, both in France and in our omn country, have favoured the public with a few facts and much apeculation to account for the manner in which hylatidn reach the brain, and the causea of the accumur lation of water in the ventricles; but none of thew speculations are in the least decree satisfactory, and many of them can be ahown to be absiord, from the known anatomy and physiology of the brain of the aheep. Many plans have been adopted to extryct the hydatida from the brain. Hogg, the Ettrick Sheppherd was successful by the use of the wire. He keys "When I was a youth, I was engaged for many jess in herding a large parcel of lambs, whose bleating brought all the sturdiea in the neighbourhood to them and with whom I was exceedingly plagued; but as I was frequently knitting atockings, I fell upon the follow ing plan:-I caught every aturdied sheep that I could lay my hands upon, and probed them up the nostrils :o the very brain with one of my wiree, nnd I beheld wilh no small degree of pleasure, that by this simple operation I cured many sheep to different owners; hut I kept all my projects to myself; for I had no authority to try my skill on nny of them;" and he alds, "that several yenn passed before I failed in this operation in any one is. stance;"* hut nothing approaching this auccess haserer attended the operation in the hands of any of Mr. Hog's diaciples ; though, when the hydatid is situated in the ventriclea, or in the upper purtion of the brain, zome farmers and shepherda have acquired such tact in the use of the wiro as to cure considerable numbers.
But the operation performed with the trocar, and wo rious other instruments thr have been used, is liable to many inconveniences and great dangor. If the hydubid is situated in tho bane of the brain, it eannat be reached by the nostril; then there is or:at danger of rupturiog aone of the nunuerous blood-vessels of the hrin, and thus producing inflammation-a disease as fatal as to one attempted to be cured. The use of the trephane it also attend with difficulty and danger. It layy open at once an imumense vacuum in the brain to the action of the atmosphere, and its consequent irritation, and bene the risk of inflammation. When the situation of the hydatid can be necertained by the softening of a portion of the akull, to destrny the vitality of the hydatid by perforating it with the trocar or other sharp instrumenta, is perhaps the method attended with the least danger of exciting inflanmation, and hence tho most likely to se. ceed. But the extent to which the disease must have injured the brain, before tho softening of the booe to reveal the position of the hydatid, is an insuperable crith diminishing the chanecs of success in any modr of noo
duesing the modicine tha But carefully yet throw so roilable discas lupical knowl beer. orought naimala.

This disease before the ahee moles extermi cause of the d ing pasture; a tion of the how open the bowe pasture, are th be realily appl

This dis:nse bowela of a gre time becomes m founded with d particulars. D larty hogs, occa the spring, or ft to an over-rich diarthea, the me cure. But dyse dies not comm allegs thist this d atablished faets ense prevails in f ind by a peculia heat and moistu ders the disease oul elimates. In ia a proper reme purgatives alone oil, wilh 25 to 30 tives. Mr. Steve and doses of ipec affect."

Trembling, or discase caused hy in April and May - bad winter, is pomstimes leaps f but morc generall power of its legs, ond moving its lis ances, no dissectio of hlood in the beart, which is in the brain is also s of the body is as \mathbf{w} by heeding.
These appearan writer of this pape lost balance in the on the surface of to return from the 1 the blood from the and overpowers th dark renous blood by the heart being extremitica, has led a kind of palsy.

the diveren

a remedy in
ular veina, owels mux ve is Eppoon n water, and would gene e of the dis. the dinecose is 0 late for any in mountain eveni:. g the cculent spots, wery part of or rumination
le direase :umulation of same organ d in our own few facte and mer in whirh f the accomu2one of these tisfactory, and urd, from the brain of the to extract the rick Shejherid \therefore He saysor many years whose bleating hood to them, gued; but as ! pon the follow. ep that I could p the nostrils o 1 I beheld with imple operation but I kept sill wority to try my at several yemen in any one is. success has ever y of Mr. Hogg' situated in the the brain, some tact in the use pers.
e trocar, and wo ised, is liable to If the hysuatid nont he reached er of rupturing the hrain, and as fatal an the the trephane in

It lays open to the sction of tion, and hence situation of tho ing of a portion the hylatid by arp instruments, lesst danger of pat likely to sue case must have of the booe w insuperable reit iy mode of nom
dueting the operetion that can be devised. There is no modicine that can juntly be regarded an of any avail. But carefully observed and aceurately recorded facts may yet throw same light on the remoto causes of this formilable discase, under that higher anutomical and physioturical knowledge which has within these few years beer. orought to bear on the diseases of our domestic naimale.

Pining.

This disease, it is said, was unknown in thie country before the sheep-walks were thoroughly drained and the moles exterminated. If this statement is correct, the cause of the discase must obviously be too dry and binding pasture; and in yecordance with this view, constipation of the howels is always present in this disease. To open the bowels freely, and change to a more nutritivo pasture, are the obvious remedies; and when both can be realily applied, aeldom fail of complete success.

Dysentery.

This disrase hegins with violent diacharges from the bovela of a green slimy mixture, which in progress of time becomes mixed with biood. It has often been confounded with diarthcea, from which it differs in many particulars. Dinrtheea attarks young sheep, particularly hogs, occasioned by a sudden rush of grass in the spring, or from too sudden a change from a scanty to an over-rich pasture; when such are the causes of diarthoes, the mere change to a drier pasture will effect a cure. But dysentery attacks old sheep, and generally dies not commence till June or July. Many writers allegg that this disense is highly contagious, but the best atahlished faets do not sustain the allegation. The disease prevails in fouled pastures, and in seasons charactorined by a peculiar state of tho atmosphere with regard to heat and moisture, a cortain combination of which renders the disease so fatal to our army, especially in tropin all climates. In the treatment of this disease, bleeding is a proper remedy in an early stage; but if late, gentle purgatives alone must be used; Epsom salts or csstor oil, with 25 to 30 drops of laudanum, are the hest purgatives. Mr. Stevenson slso used an infusion of logwood, and doses of jpecacuanha in numerous cases, with great effert ${ }^{*}$

Trembling.

Trembling, or Louping Ill, in mountnin flocks, is a discase caused hy cold east winds, which nre prevalent in April and May, snd at whieh season this disease, ufter had winter, is often very destructive. The animal mometimes lenps from the ground and fatls down dead, but morc generslly it is seizen! with trembling, loses the powet of i's legs, and lies on its side, grinding its teeth, and moving its limbs with great violence. The appenrances, on dissection, are very uniform; great congestion of blood in the liver and lungs, and particularly the heart, which is invariably gorged with dark blool; whd the brain is also sumetimes eongested; the whale flesh of the body is as white as if the animal hal been killed by bleeding.

These appearances, and various experiments, led the writer of this paper to view tho disease as the effect of a lost balance in the circulation; the cold east wind acting an the surface of the animal when slie is just lreginning w return from the fowest point by the coming grass, drives the blood from the surface, congesta the lungs and livor, and overpowers the action of tho heart with a rush of dark venous blood. The numbness of tho limbs, caused by the heart being unable to send the circulation to tho extremitics, has led some writers to regard the discase an a kind ef palsy.

- Se Tranametions of the tighland Society.

The Treutment. Cupious bleeding in the first atoge of the attack will often restore the balance of the circulation; buf if the animal has been affected some time, it in often difficult to obtain a sufficient quantity of blood, which has been thrown from the surface upon the heart and other internal organa. In this state, the animal muat be put into a tub of bot water at 98 degrees, which will canase the blood to flow, and thus restore the action of the heart, and tend to restore the balance of the circulation. After a sufficient quantity of blocd has been drawn, doses of Epsom salts, dissolved in warm water, and followed with thins warm gruels, must be given till the bowels are freely opened. The prompt application of these remedies on the first attack of the disense, would in general be successful; bui, like many other diseases of sheep, it is not ohservci till the action of the heart has hecome too fecble for any remedies to restore the lost balance of the circolation. The same views of the nature, causea, and treatment of this destructive $\mathrm{r}^{\text {issense, are supported by nume- }}$ rous facts and experiments brought forward hy Mr. Tod, in his prize essay, publishel in the Transactione of the Highland Society of Scotland.

Foot-Rnt.

Foot-rot is a disease most prevalent in luxurianc mendows, and in all soft orassy tands saturated with moisture. The opinions entertained regarding the cause of this disease are discordunt in the extreme. Soms writers contend that it is comparatively a modern disease, and woa first mentionell hy two French physiciar a, M. Etienne and M. Liebault, who published some casea of the discose in "La Maison Rustique," in the year 1529. Lullin says that it was brought from Piedmont to Geneva, in the year 1786, und that the foot-rot did not exist among Swiss sheep beforo thst period; and in a report of the management of Flemsh sheep in 1763, published by authority, foot-rot is not once mentioned. In our own country, it is mentiened by Sir Anthony Fitzherbert in the year 1523. But whatever moy have been its history and progress in other countries, it was very prevalent in Great Britain in 1749. Ellis, who wrote in that year, says, "that it raged particularly in the counties around the metropolis. The ewes were seized with foot-rot, which was commaniented to other sound ewes and to the lambs which they suckled; and most of the meadows are so much infected with this sheep mnlady, that few of the auckling eves are ever clonr of it in a greater or less degree, and the pain and anguish therefore keep them poor in flesh, and hosen their milk; so that two or three ewes thus affected give no more milk than one full milch ewe that is in perfect health."*

It will aid the reader to follow with greater clearneas the following discussions regarding the nature and causes of foot-rot, to have first a correct view of tho healthy anatomical structuro of the foot of the sheep, at least in as far as this very formidable disease is concerned. "There are some points of importance," sayy that eminent veterinary surgron, Mr. Dick, "to be kept in view, in order to understand properly either the functions of the foot of the sheep, or the nature of the diseases to which it is liable. The foot presents a ptructure and arrangement of parts well aclar ? to the natural habits of the animal. It is divided into two digits or toes, which are shed with a hoof composed of diflerent parts, simitar in many respects to the hoof of tho horse. Each hoof is principally coraposed of the crust or wall, and the sole. The crust, extending along the outsidc of the foot round the toe, and turning inwards, is continued about half way back between each toe on the inside. The sole fills the space on the infarior aurface of tho hoof hetween these narts of the
cruat, and being continned backwards, becomen softer an it proceeds, assuming aomewhat the atructure of the subutance of the frig in the foot of a horee, and perforring at the mame time analogous functions. The whole hoof, too, is secreted from tha vascular tissue undemeath. There are, besides, two supplementary digits at the fetlock. Now, this diversity of structure la for particular purposea. The crust, like that in the foot of the horse, being harder and tougher than the sole, keops up a sharp edge on the outer margin, and is mainly intended to resist the wear and tear to which the foot of the animal is exposel." "

This structure of the toot of the sheep la extremely well adapted to Alpine ranges, which are the nutive abodea of the slsecp in their natural state. "Dwelling be preference," in the language of Mr. Wilson, "among the ateepest and must inaccessible summits of lofty mountains, among its native fastnesses, it is acen to bound from rock to rock with inconceivalle swiftness and agility." \dagger

From those facts, it is essy to perceive how our domeatic slieep sre subject to foot-rot, when confined to a limited range on soft and rich pastures, ind in wet and grassy lauds. In theso situations, the growth of the crust of the hoof excceds the wear and tear, and soon overlaps the sole, and in this situation is cither rent or broken off, when sand or dirt reach the vascular parts of the foot, and hence inflammation is produced. The animal then becomes lame, suppuration takes place, and ulcera dischsrge fatid matter; and if these ulcers go on unchecked, they throw out fungous gramintions; and if these be allowed to go on the hoof falls off. When the disease reuches to this extent, the constitutional disturbance is very great from ligh inflammatory fever, and the animal rapidly loses flesh, and, if unrelieved, dies of fever and starvation.

Such being the nature and causca of the disease, the author of this paper thinks the views of Mr. Diek rest upon a more secure and philosophical foundation than any other writer that has come under his observation. And if these views are sdmitted, the treatinent and meana of prevention are very obvious. To pare away all the detached boof, and dress the disensed part with some catistic, perhaps the muriate of antimony, has the greatest weight of authority. But as prevention is in all casea to lue preferred to cure, the shepherd should keep a vigidant eye upon the flock, and pare regulariy on lands that require it. By the simple means hern recommended, the writer has prevented the disense from injuring hi: flock of shecp for more than twelve yeara, though the lands were sulject to the disense. But if foot-rot be se virulently infections as it is affirned to be ly a whole host of writers, many of whom are men of high character and attainments, very different meana beth of prevention and treatment must he udopted. An the decision of the question whether foot-rot he infections or non-infections, is of great practical importance to every skeep-farmer, the evidence on both sidea of the question would require to he stated with perfect candeur, in order to arrive at the truth. In so far as evidence has been produced, the argument inclinea to the side of thaso who contend for the noncontagiousness of the disease. Mr. Dick vety reasonably asks, "Has any one ever attempted to produce the disease by inoculation? If it is highly infectious, eurely it will at once be produced by inoculation. But this is not auch sn easy matter an one would expect, from a disease which is supposed to infect a whole Geld, and that, too, even if it be of five hundred acrea m eztent. Goheir, a Frencl veterinarian, firat applied a piece of horn from a diecased foot, covered with the

[^55]matter, to the mole of a mound forit without enea; mecondly, he rubbed a disessed foot againat moand one, without effect; thirdly, he pared the sound fool and having applied a piece of diseased hoof, the dis ease afterwarda appeared; but in this case the foot afterwarda got well of itself, and there acems to have been a doubt in the mind of Goheir as to whether it was truly foot-rot or not. Gther Freuch veterinarians have tried similar experimenta, and particularly Vielhan of Tulle, and Fuvre of Geneva; and although I have not seen an account of their experiments, it is said they anciceded in producing the disease by inoculation Now, it will be asked, Is not this a sufficicnt prof of its Infectious nature ? I answer that it is not. It appesers to me that this is a strong proof against it. If it is produced with so much difficsity by the direct application of matter, is it not a'saurd to suppose that a few shecp with disessed feet should infect a whole field I have not seen an account of the n.snner in which the experiments of the French veterinarians have been performed; I know not what quantity of matter was employed, neither have we any account of counteres. periments, nor whether any wero tried to provo whether a similar effect would not have been produced by the application of any other morbid matter; for example, whether the matter of grease from the beels of horees, or from thrushes would not have proluced similar effects. I have little doult of such being thic case; that suppuration might be produced by inoculating with that or almost any other matter, if, in the operation, tho wound was made sufficiently deep; nor would I douht that disense would be produced if matter was spread over the foot in sufficient quantity, and npplied for a sutficient time." The samo writer centinuesman repeat, that it is sbsurd to suppose that, if applice to the hoof, it would produce the disease. The hoof is not govenced by the laws of living matter; it is totally insensible, and it has not a circulation, neither has it nerves; it sbsorbs moisture only like a picee of inert matter, and it is not neted upon as a living part. Matter from the foot of a diseased aheep miglat as well produce the discase in.a tree; nay, even more likely, because it is a living body, which the hoof is not. Why, then, are we to suppose the hoof to be acted upon by matter from diseased feet, and that, too, afler the matter has been expased to the influence of the atmosphere? But rain and sun, we must suppose, have no intluence upon it. Arsenic may be diluted with water to such an extent ss to be swaliowed with impunity, but watet sepms to increase the virulence of the matter of fontrot. It is trie that heat and moisture will reduce, aflet sufficient exposure, animal matter to a patrid mass of the same consistency and properties, but the induence of these agents is lost upon the matter of foot-rot. The plague is now known not to be so infectious as it was once thought to be, but the foot-sot will still affect the most extensive domains. The upns-tree may amihilate the existence of all ihat comes within its pertiferons shade, buit what is that * the infection of the foot-rot when a single sheep will contaminate a mountain? Nay, it will art even upon parts totally devoid of vitality; and such, too, is the eccentricity of its action, that it will allow its neighbouriag toe to resenpe, and still infet the whole ground. But I need not diseuss this point farther at present, 15 I trust I have already shown that all ideas of its infectious nature are merely chime rical.""

In mupport of these viewa, Mr. Black, farm overseep to his Graco the Duke of Buccleuch, states hat ke had thirteen score of black-fuced sheep, the gresiet part of which was affected with foot-ret, an' many of them crawling alout on their knces. He umed

- Quarterly Jouraml of Agriculure, No. 12, p. g

由es into a dri of Leicenter an wheep, except fo contery or Chevi fact, from the pr encily excape.

This frequent noyed the cultivi world from tim Jvilo* Livy, \dagger ar cally dewribed 1 meationed by ou and Germany, th does not describe Syntitoms of th les, scratching it and rublinge viel Whes the rkin numerous pustul wgether, form lat shoulders are ge health of the anit of the eruption an allowed to proceed \#lammatic.l, and 1 condition.
It is now asce is caused by min Walh, a German and interesting ace which are said to reappear agaia abe tous brood. Thess at otree, and prop poor eheep sinks ut work of M. $\mathrm{v}_{\mathrm{a}} \mathrm{lz}$ highly magnificed. gation, being of gre The treatment of the destruction of of twbacco, hellebor with success. In has heen applied wi receipt is a decoctio with a little soft so: The only caution any of these reme lrought thoroughly stin of the aflecte arari escape. And theep have lwen other rubbing plac ration. Besides the by various ether it species of aphis cal only revails in the but in.
require, g. at wateh ss they soon destro Atsh of the sheep, if strat irritation, but by ang of the prepra "thrus rechuvins) shrep. It alnoost bn wa firnly by six legs in armed with nerr disengaged from ita which infest the she prepar: ${ }^{\prime}$, 1 I.

[^56]
, farin orerseet

 states that be p^{1}, the greater rot, an many B. He urnect由em into a drier pasture, on which were seven acore of Leicester and Cheviot shecp. All of the discased theep, except four, recovered, and not one of the Lecimatere or Cheviots was infected. This is a very strong fact, from the pressure of which the centagionista cannot eneily excape.

The Scab.

This frequent and vary inischievous disense has annoyed the cultivators of sheep in ditlerent parts of the world from time immemorial. It is mentionel by Dral. Livy, and in the Georgies it is very graphically deseribed by Virgil. In our own conntry it is mentioned by our enrliest writers; and in Italy, Frnnce, and Germany, there is scarcely n writer on sheep who does not describe this prevalent and ruinous disense.
Synptoms of the Disersc.--'The sheen hecomes restless, scratching itself, tearing olf the wool with its tecth, and rubbinc viclently against any pest, stone, or gnte. When the shin is carefully examined, there are seen numerous pustules, which, having broken and ain logether, form lurge patcines of scalb. The back nud shoulders are generally first affected. The general health of the onimal sinks in proportion to the extent of the eruption and the virulence of the disense, and if allowed to proceed unchecked, it brings on genernl inllammatu, 1 , and the animal dies in a most miserable condition.
It is now ascertained that this disense in sheep is cansed by minute insucta of the class acnri. M. Walz, a German veterinanan, has given a very curious and interesting account of the operations of these acsri, which are saill to burrow in the skin of tho sheep, and rappear agnin about the y xteenth dny with n numerous brood. These young irscets commence operntions at once, and propagate in the snme manner till the poor aheep sinks unier myriads of his destroyers. The work of M. Watz contains drawings of theso insects, highly magnified. The subject deserves farther investigation, being of great importance to the sheep farmer.
The treatment of seab is thus rendered very simpiethe destruction of the insect which caused it. Infusions of wbacco, hellebore, or arsenic, have all been empldyed with sucecss. In bad cases, the mercurial ointment has heen applied with the hnppiest ellect. A very good meeipt is a decoction of tobncco nud spirit of turpentine, with a little soft soap, and sulphur vivum.
The only caution necessary to be given in the use of any of these remcdies, is to take rare that they he lirought thoroughly in contact with every part of the shin of the affected nnimnl, lest any of the burrowed sari escape. And all folds or sheds in which infected sheep have been confinod, and all gates, posts, and wher rubbing plnces, must undergo thorough purifiration. Besides the acari, sneep are linble to he nttneked by various other insects, such as the flesh-fly, and n species ol' aphis called the sheep-lousc. The maggot only revails in the meise and warm suminer montha, tut in \quad in numbers with anaazing rupidity, and require g. at whtelfuluess on the part of the shepherd, is they soon destroy a large portion of the skin and fteh of the sheep, if unchecked. The aphis nlso creates treat irritation, but both species nre easily destroyed by any of the preparations already detailed. The tiek "arus rechuins) is also a very formidable insect to Bhrep. It almost baries itsell in the skin, and atheres wo firmly by six legs, vory musenlar and powerliul, and n ormed with serrated claws, that it can scarcely be disengaged froon its hold, hut will yield, like inost insects which infest the shecp, to the application of a inerrourinl prepar... .ll.

[^57]\dagger Tit. Liv. iv., esp. 30.

It is perhape not very gencrally known that attempte are now making, under the most respectable suspices, to introduce the alpaca, or Peruvian sheep, into the number of our domestic animaks. As the sulject is of vart importance in a national as well as individual point of view, we propose olfering a few explanatory diservationa upon it.

Nature, as is well known, furnishes animula expressly suited to the climate, vegetable productions, and other ciscumstanees connected with the locality which they are destined to inhabit. The Andes, and other high momitain ranges and slopes of South America, are accordingly provided with several species of sheep ndapted, by their halits, to these lofty regions of scanty vegetntion, and which so materially difler from the sheep of this and other Europenn countries, ss to secin a perfectly distinet tribe of animals. The two most common us these South American sheep are the alama and alpaca, and they abound most extensively in Peru. The llama is somewhat taller thasn the alpace, and though in some respects a remarkable animal, its peculiarities are not such ns to render it so especially in teresting as the n!paca, for purposes of prnetical utility out of its native regions. The alpace, which it is proposed to domesticate in Britain, is nn animal combining the appearance of the common European sheep with that of the goat, and partly of the deer and camel. Like the sheep, the alpacn is lanigerous or wool-coated; in its general structure is is light, and possesses limbs adapted for springing and leaping like the goat; it resembles the deer in skin, flesh, and general appeserance; nnd though without the cinmel's deformitics, it is gifted like him with patience and docility, heing often used ns a beast of hurien by the natives of South Americn. 'The heisht of the nlpara is from three to four feet, when measured from the ground to the top of the back; the cyes nre large, black, soft, and cxpressive; the animal has no horns; the neck is long, slender, curved backwards, and finely set; the head handsome, nod the muzzle and ears lengthened; the hoef is horny. and diviled; the tnil long, and resembling what is called a switel-tail; the body has a topering towards the loins, resembling that of the greyhound; and, as regarils other points, the alpacn has partly the characters of the sheep (its incisors on the lower jaw, for example, and six molar tecth on each side,) and partly those of the camel (the most r. rkable heing a similar reservoir in the stomach for auds, suiting the creature to on arid climatc.) To common observers the alpaca might seem to be n fine tall goat, with small head snd no horns, hut of more gentle and flecey appenrance than that animal.

The wool of the alpnea forms, of course, a point of peculiar importance, taking into view the proposal for introducing the nnimal into Great Britain. 'The colonr of the wool varies considernbly. the mnjority of the wibe being of a tint intermediate between tlatk and brown, while others are of a pure white. I'he texture is admitted on all hands to ho peculiarly finc. In a memoir on this sulicet, written by Mr. W. Walton, and printed for the Nntural History Sociaty of Liverpool, the wool is thus described:-" With the polite assistance of the secretary of the Polytechnic Institution, I was ennbled to examine the anatomical structure of three samples of alpaca wool through a lens magnifying one million times. 'I he colonrs of those suljected to the power of the microscope were white, black, and gray. Whes thrown upon the disc, each filament appeared equal in thickness to a man-of-wor's topsail halyard, perfectly distinct, and the fibrous structure more evitent than in the wool of common slieep. White was the tirst emmple tried, and it produce: 1 an effect at the sume time singular and pleasing. 'ind
surfase appea ed polished and diatingnidsed by glittering brightnees, nimont, I coull way, refulgener, which is wanting in slieep's wool. The general raulta produced by afterwarile whowing the black mample were the same, excepting that the shade on the diac was more opaque, and the brilllancy of cach filament dininished, The gray exhibited a melium between the contrats, and helped to show both to advantage.
"There are instances of alpaca wool measuring thirty inches long; freouently it is seen twenty inches, and it averages from eig't to twelve. In the sample, there appeared to be no under wool-no closer and immediat covering. No shorter hair, or wool, could, in fact be perceivel; the vory reverse of what is ohaerved whe in a morsel of an elk's or camel's coat is examined. Alpaca woul is also straightr .han that of aherp, never appearing in those spiral ...ts which distinguish our piles, more purticularly when the bearer of the flecee has been smeared. The amallness of the filire, its softnens and pliability, coupled with its clasticity, equally add to its value. There is, in the mass, what is techsicully called a trucness, that is, an equal growth nad an exemption from shaggy portions, accompanied by a sounduess, by which is mesnt the general strength of the filbre-propertien certainly of the first import to the manufacturer. In consequence of this characterintic disposition, alpaca wool breaks lesa in the act of combing, is freer from shreds, apina easily, and not being so harsh or so stubborn, does not injure the machinery so much. The thread spun with it is also finer and truer. In the manufacture of fine goods, it is agreed that the pile cunnot be too soft or too silky, provided the strength of the filre is not impaired. As well as I could, I have compared the strength of a Glament of alpaca with those of other wools, sad fouml it the strongest; and an it is devoid of that irregularity of surface-the knots and joints whichs some persons liken to those of a bamboo cane-the cloth made from it must consequently be less harsh to the touch."

But the qualities of the alpaca wool for manufacturing purposes do not rest upon mere conjecture. "The merits of slpaca wool have for soune time psit attracted the notice of manufacturers and sonsequently of merchants; and through the advice of Mr. Dancon and other enterprising ir Jiviluals, the importations of it have within the last aix years considerably increased. Mr. J. J. Hegan, of Liverpool, has lween the largest importer, nad it is helieved that his bouse alone, ance 1836, has imported 25,000 bales,* sold to the consumers at from 1s. 8d, to $2 \mathrm{~s}, 6 \mathrm{~d}$. per 1 b . Other houses receive considerable quantities. One million lbs. arrived there in the course of Felruary, 1841. During his tour in Scotlam, Mr. Danson urged the expediency of introduciog the alpaca into the Highands, and pointed out the bencfits which would accme from this meaaure. In illustration of his views he exhibited samples of the wool, and apecimens of articles manafactured in Fingland from it, imitating silk, some as black as jet, although of the natural colour, and without the aid of dye. He very ably contended, that this wool would not enter into competition with that of our ordinary wheep, and, from the fineness and transpurency of the filament, was peculiarly well udapted for the fine shawl trale of Paisley and Glasgow." Fiven these trials have boen made under disadvantiges, for the alpaca wool has only reached this country in a dirty and also in a mixed state, the wool of inferior breeds forming almost atwaye a large proportion of the bales containing it.

The value of the wool being once determined, the next question is, Have we rpace and food for the aftnaca ir. Britain? On this point, after mome arguments

- Finma tive averapra from bs to 00 the
in proof of his viewa, Mr. Walton reachas the follow. ing conclusions, which appear to be essentialy cor rect:-d Wo thenefore have, and muat centinne to have, largo tracts, neither cropped with grain nor da pastured hy cattle, consisting of chsina of barren hilla running in various directions througjo the Unital Kingilon, moors, henth, moss, lands, \&c., wholly un prowluctive, the amount of which may be set down a from tweive to fourteen millions of acres. And would it not be highly expedient to stock these lands with another domestic nnimal, yielding a commodity of sueb a nature as to rewurd the farner for his care, and be sides triple in value by the bencficiul upplication of labour-an animal requiring to additional subsiatence for its support, and consequently not likely to inter fere with any catte alrealy on our farms 1 Besiden if an improved race of domestic animals could be pul even into our occupied lands, wonld it not be advisatio to do so, even at tho cost of diminishing in pas' the a isting breeds ?
Another material quention is, Could the alpaca lin in this country? "Although delicato in appearance the alpaca is, perhapis, one of the hardieat animals of the crention. His abstinence bas already heen noticed Nature has provided him with a thick sikin and swarm flecee, and as he never perspires like the ordinaty slacep, he is not so susceptible of cold. There is, there fore, bo necessity to smear his coat with tar and butter, ts the farmers aro obliged to do with ther flock in Scotland-a provess which, lesides being troublesone and expensive, injures the wool, as it is no longer fit to make into white goods, nor will it take light sod bright colours.
"' The Highland hills,' says the Ettrick Shepherh, are, for the most part, of a pyramidal form, very bigh and commonly so steep and rugged, that to the eye of the traveller they have an appearance perfectly to mendous. The sides and lanks of the glens and riro. lets are commonly covered, or mixed, with a rieh shorn grass, intermingled with numberless aronatic herty nud flowera. The extensive flats and sloping dediritins around the hottom and lower parts are coved with a coarse mossy turf, interspersed with thin mp less heather, which has stoot in the anme squalid form sinec the time that it first made its appearince on tha retreat of the universal deluge, mixed with onme of the moss-stalks salled ling and deet hair.' This is the description which so experieuced n man ss the Ettrich Shepherd gives of - that vat zange of stupenelous mountains, therl' glens, and trackless forests,' which (he sajy) 'at the first view every unprejuliced man must an knowhedge nature never inteuded for the reaing d cattle,' and where no one (adds he) 'will hesithe whether sheep or goats are the ruost feasible stock' What pen could have rketched a more faithful pictur of the Andes mountains-those ligh and secluded to gions, inaccessible to other unimuls, whers the alua lives ' n n inmate of the cloud nad storm,' gatheing subsistence from edibe plants which otherwise mand le lift to wither on the land?" We are aware of ody one doubtful circumstance ns to the aureessful domes tication of the alphea in any of the British islande, pas ticularly in the Highlauds-this is the hemidity of ou climi'f. If the alpaca onn resist danip as woll as on South-downs, we shall have nothing to fear on the swo of hardiness in other respecte:

Mr. Walton alluiles to the strong enamel on the alpaca's teeth, as fitting the oreature peculiarly 5 rocky and mountainous pasturage. In the case d snow-storms, ton, on our elevated ranges, hy wbich many of our common shecep are apt to be senothend every severe winter, the remarkable docility of the alpaca ronders him almost secure, with litls compr tive toil to the berdaman. "Peruvian sheep bave,
hect, an ut errin before their ten above him at Iosti xtively the they saw the poi was upproschin young, and fly "am, sven befot $m \mathrm{mg}$ of the wi mach, the alpac where at other Aguin-C. Anothe that he is not li to common aliee a pestilence annon Peru, where the alike, the Hama of diet incident partly from their ment, and partly and consequently reet, is fact, whic that the Peruvian conplaints ss our atronger, they aro transitions from o called pining, or siotland, which when, though the it ping: awsy to a Andea: neither sr uccidents which a ing of lambs amon much clesrer." V the alpaca is not ex conatitution seemst and destructive.
In reality, the in Great Britain siderable seale, an even improved by of Derhy, with th which have disting stepped forward lordship has now and alpacss, amoun hred on the spot, xautiful then that proof that the woo fact, established in and-twenty montha upon it six inches three years ago, he eighteen to twenty nool growa from larty shom. Speal ducing tha Poruvia addressed to Williar accompanied by a beginning of the lordahip saya that ' to prevent the propa On the contrary,' h theee grounds living
has the follow risentially corcentinue w grain nor de of harren hillh the United cc., wholly und se set down at 8. And would wse land with modity of Buch f care, and be application of mal subsiatenco likely to inter Irms? Besides ls could be put ot be advisahle y in pas the co.
the olpaca live in apprarance, diest animals of wy been noticed kin and a warm ke the ordiner There is, there 1 thr and hutter s therr flocks in sing troublesone is no longer fit lo light and bright

Strick Shepherd, 1 form, very bigh. ant to the eye of ace perfectly tro 3 glens and rivo with a rich short aromatic berbo d sloping dectim. arts are coverd d with thin ap. ame styualid fors plearance on the with some of the ir.' 'This is the in as the Etrinck stupendous mour which 'he sayp) 1 man must as. the reaning d c) 'will hesitse ost feasilile stock re faithful pictorn and secluiled ow whers the alpa storm,' gathering otherwise woud are aware of ody Buecessful doms fitish islande pas e himidity of ip as well as o , fear on the s.m
enamel on th ure peculisity for In the case od nges, ty which to be amuthers docility of the th little compr on shecep ham, in
frech an ut erring foresight of the coming danger, long befora their tender (if they happen to have one) seea above hin a threstening dlond or dreams of a drit. Insti stively they know the safeat nide of a crag, as if they anw the point of the compass from which the atorm ws approaching, and thun admonished coltect their rouns, and fly to the stell which nature provided for sam, even before the cenflict of the eloments and the ning of the winds whall have commenced. If within reach, the alpaca aska sotection at tho cottage door where at other momenti he had been welcomed." Aguin-un Another great sdvantago in the alpaca is, that he ia not liahle to the many diseasea lacidental to comonon sheep, and which lave so olten raged like s pestilence sinong the tenants of the Scotch hills. In Prru, where the circumstances are as near as possible alike, the llama and alpaea are not hurt by changes of diet incidentai to the seasons. This may arise partly from their greater alostemiousnese and diseernment, and partly from their having a wider range, and consequently more choico of food. It is, howerer, fact, which I have aacertained 1 om natives, that the Peruvion breeda are not so lif sle to bowel complaints as ours, and. thair constitution being much atronger, they are onsequently less affecied by sudden transitions from one food to enother. . "he distemper anlled pining, or daising, very usual in the west of Siotand, which occasions a thir, cess of blood, and when, though the animal cont'iues to feed greedily, if pings sway to a mere skelcon, is unknow: on the Andes: neither are tho fawns there liable to tive many accidents which atend the seediug, herding, and tolding of lambs among us. As isgards vermin, they are much clearer." With reapect to other diaeases, though the alpaca is not exempt from some of them, its hardy constitution seemsto render their Influence less extended and destructive.
In reality, the experiment of keeping the alpaea in Great Britain has alreaily been tried on a conmilerable scale, and tho wool has been found to be eren improved by the change of site. "I'ho Earl of Derby, with that patriotic spirit and splendid taste which have distinguished him through a long life, nlao sepped forward among the firat breeders, and his lordship has now at Knowsley a littlo flock of llamas und slpacas, umounting to fourteen, two of which were hred on the spot, whose wool is finer, softer, and moro sesutiful than that on the bucks of their prarents. The proof that the wool improves with our pasture is, in fact, established in this inatance. The young are eight-and-twenty monthe old, and already the first has wool upon it aix inches long. A fine inale alpaca, ohorn three years ago, has at present a coat upon it from eighteen to twenty inches long, thus proving that the wool grows from six to eight inches yearly, if regularly shom. Speaking of the practicability of irtroducing the Peruvian gheep more generally, in s letier addressed to William Danson, Esq., of Liverpool, who, accompanied by friend, visited Knoweley at the beginning of the current month, [April, 1841,] his lordehip sayg that c he certainly knows of nothing likely to prevent the propagation of the aniry al in this country. On the contrary,' he adds, 'the gentlemen will see in thee groundr living specimens that they can and will
do no, one fomale having pro.uced in each of the two last seasons, and the young are dolng well.' Ilin lordship then expresses his anxious deaire to obtaln the remainder of the apecias, more eapecially the vicuna.' Already does this nteresting animal adorn the pleaaureogrounds of the Marquis of Breadalbane, at Aberfoldy, Perthahire; J. J. Hegan, Eaq., Harrow Hall, Cheshire; Charlea Tayleure, Esq., near Liverpeol: Mr. Stophenaon of Ohan, and othera. The Duke ci Montrose han lately become a purchaser of alpacaa and Earl Fitzwilliam has also hought a Ilama at $\mathbf{f 8 0}$. Various isolated trials in other countrien have proved equally succesaful." Measra. Ducruw, Wombwell, and othet proprictors of menageries, have also kept specimens of Peruvian aheep, which have been at once wonderful for docility, and have lived healthily upon the uaval food procurable for animale in Grent Britain.

From the tone in which this notlec has been drawn up, it may be observed that ${ }^{2} 0$ atatements before ue have been convincing in our oyes, in so far, at least. as regards the propriety of making fair and full oxperiments on the subject of the elpaca. This animal, we conceive, without infringing materially on the keeping of shcep, might prove the means of eniarging the profession of the pastoral farmer, and of varying, extending and improving our manufactures. From the alpaca wool which wo do procure at present, yarn is epun, which the French import at from 6s. to 12s, per lb. In conclusion we give a few additional words from Mr. Walton. "When we consider the great improvement which we have attained in sheep's wool, there is every reason to look for a similar success in that of the alpaca; and in devising me tns to increase the productive power of the country, n; ought never to forget, that there have been periods in our history when we were dependent upon foreign supplics for tho raw material required for our woollen manufactures, and that the best way to be independent, is not to be under the necessity of luying that which it is in our own power to grow. The task of obtaining suitable breeds of the alpaca is by no meane a difficult one; and in our attempts to naturalize them, we ought to feel the more encouraged, when we refiect on the recent changes in the growth and supplica of shecp's wool, nad how soon a farming stock propagates under judicious management. It must be equally borne in mind, that in using alpaca wool we are not competing with that of our own slieen, but rather with that of the Angora goat (mohair) and silk; and the manufacture, it has been ascertained, does not cost half so much as that of the latter."
One other point calls for notice. Our present breede of sheep ure of essential importance as food to man. The flesh of the alpaca is spoken of as excellent by Acosta, Garcilasso de la Vega, end other writern on Peru. Of the various breeds of sheep on the Andes, "the alpsca (says Garcilasso de la Vega) is chiefly valued for its flesh." (ieneral O'Brien, an Jrish gentleman in the Peruvian service, speaks of the flesh an "delicious," and likely also to improve much on the animal being placed on milder pastures than those of the Peruvian mountaing. The flavour resembles thet of venison, and, from all accounts, could not fail to command as fair a price in our marketa as mutton beef, or any other kind of meat.

PIGS, GOA'TS, RABBI'TS, POULTRY, CAGE BIRDS, \&c.

Pigs.

As a source of austenance and emflument to the humber classes of society, the pig is unly aecond in importanee to the cow, and in many instancen is found to be noore available and uaeful than that animal. An an obs ject of natural history, it is placed anongst the Parhyterma/a or thick-skinned order of the Mammalia, the hog, wild boar, and probably also the peceary of South Ameriea, being varietien of the snme family. The moat remarkable characteristic of the common pig is its long roundish anout, given for the purpose of grobbing in the earth for roots and other kinds of food; the feet are cloven, and each possesses four toes; the body is thinly covered with bristles, and the female is provided with froen twelve th sixteen teata. The jaws of the pig se powerful, and the teeth with which they are furnishied ary very formidabe, particularly in the wild varieties. Siwine do not ruminate, and from this and other peculiarities, they ean feed either on vegetable or animul sulstancera, and thus form a kind of link between the herbivorous and carnivorous class of animals.

The partirular breeds of pigs most esteemed in Great Britain are the Berkshire and Chinese breeds. These are nlao the breeds best matked by distinetive features; though, by crossing, and peculiaritiea of feeding and position, varietics, differing in a alight degree from one another, have been raised up in alnost every county in England. The Berkshire breed, the parent stock of most of them, are marked by boliea of a reddish-brown tint, with black spots, large pendant ears, short lugs, and small bones. This specien of hog fattons to an enormous weight under goorl mansgement, some having been killed which amsunted to upwarda of twelve hundredweight. The Chinese breed vary in colour from white to black, and from a pielald to a sandy hue. They are neat in form, comparatively gpeaking, and yield excellent fleah. They are uanally not very large in size, but vary in this reapect, and, of course, in weight also. 'Tho gigantic white and black breed of Cheshire, the white pigh of Sufiolk arad Hampshire, and the piebild hogs of Sussex and Shropshire, ma" be mentioned as the best known among the district-brecds of Enghand. Thry are coarser, gencralty apeaking, than the Berkshire and Chinese varicties. Both of these have bern pretty extonsively intruduced into Scotland, where a lese caluable white breed uppears ω have been earlier located, if not indigenous. There is alas a suall gray pig, apparently aloriginal, which feeds in herds on the natural pasturo of the Highland billa, and
furnishen very aweet flesh. By artificial feeling, it ent he raised to a conalileralile bolk. 13ut the broed mus commonly enteemed both in Fingland and Scotland, in, mixture of the Chinese dark-coloured swine with th Berkshire, or mome of the large varieties of Beitish wwins 'flis crose posaesses many goond qualities, anid is menest liarly prolific. Either belonging or allied to the Bett whire variety, is the Humpebirs hork, a small hack pig suitalle for cottagers, for it is easily fed and fattened, 的, is therefore high!y esteumed.

Littering.- The sow is very prolifie, compared with other large-sized quadrupeds she commences breeling at almut twelve montha old, a'd generally briags forth twice a gear, her period of ge ation leing sinteen weeks The number of young varims considerably; it is frquemist Ixlow ten, and occasionally risen to twenty. The goung pis is exseedingly delicate; and the brood-sow shouldnd be allowed to furrow in winter, but in spring anilsutuman, when the weather is lens nevere and food more abundant Another peril to tho litter niwes fion the semi-canisas rous halita of the mother, which lead her to forget the dues of nature, and devour her own brood. She aught therefore to be well watched, and fed ubumatatly at fid perionds. The male, for the same reason, must be n cluded altngetber. Not unfrequently, inorrover, the young are crushod to death by the mother, in consequene of their nestling nuseen below the straw. T'o preved this risk, a small quantity only of straw, dry and dong should be placed below them. The yonng are weand when six weeks old; and after weaning, it is essenidyt necersaary to feed the young with meal and milk, α nea and water.

The brood-sow ought to have an ample abdemen, akd ought to be in grood condition when brecling, othervin little gooal can be expected of her progeny. Manypa sonn labour under the mistaken notion that sxina whilo brieding, should be kept lean; but nothing cants more erroncoua; for, after farrowing, great part of than juices which would be converted into milk, were the in good eondition, will naturally go towards nouristing to aystem. When required for the purpose of fattening, be male young pigs are cut, arid tho females spayed, wirit is an malogous process. These operations should be ie trusted to a farriet or other skilled person.

Pig-houves.-Although swine nre found to sumeed in all countries, anu their constitutions havo heen accomms dated to every climate, yet they are found to degerenk and thrive ill either in the extremes of heat or eodd. if a native atate we find them, when inhubiting countia towards either extreme, neeking situations most sumpal to their constitution. Swine, in a domesticated stale, "o quire to he kept very dry sod warm, otherwise the will never thrive. It will he noticed that in cold weather ter invariably lury themselves among the atraw and ina with which they are surplied as bedling, thus poining out their natural desire for heat. The pisgery stold therefors be in some well-sheltered apot, and, if pasing with a south or west exposure. If kept in and styes, there should he a sinall aperture at ench end them, so as to almit the free passage of air throughta for ventilation. These may be kejpt open consta during the summer months, but oniy allowid to le ga for air onte every second day in winter, and that in the in noon, while they must be enrcfully sbut up in the ent ing. Pigs will be found to grow notwithstading's negleet of all these precautions; but we know, froun perience, that they will grow much faster and will more licatthy with them.
feeding, it cu the breed mur I Scotland, is i wine with tu of British swinn 4 , and in mect al to the Berk small hlack piy and fattened, ane
compared with mencen hreeding ally brings font g xistren weekt it it is froquenth aty. The gava, drow thouldnd ning and sutumn d more alundant the semi-caniro her to farget the rood. She ougle umidontly at sad son, must be en i, moverover, tha er, in consequma aw. Ta preves w, dry and that oung are wennd ig, it is essentish and milk, α Led
nplu aldomen, wa recding, otherwia greny. Manyput otion that sxim put nothing conh great patt of thoo milk, were bet rds noursthing is sse of futtening, tux ales spayed, whind ations should be soll.
pund to succeed in avo hicen accamas ound to degeneery of heat or cold. la nhabbiting countia tioust nost alyph mesticated state, is otherwise they oll in cold weatherty he straw and lina ding, thus poining Tho piugery stall pot, and, if pasing
If kept in tual ure at each end of air thraughtia - pet open constaty allowed to be ya and that in the lar shat up in the era notwithstanding y It we kuow, fround faster and will

Lu most enset pigs are kept in a ahamefully filthy condition; their sty eill ventilated, the atraw dirty, their amall eurrbyud no hetter than a wet dunghill, and consequently the okin of the animal begrimed with meurf and all sorts of linpurites. We cannot too atrongly reprehend thita infimoun treatment of the plg, which la not naturally dity, as soine suppose, but loven to he kept dry and clean, and well warm, as any one may obecive by the delight it eridently takea in having ita hide seratched and scrubredh Let os, then, beseech all ply-keepers under whose eye this sheet may come, to prugerve the stye in the most dry and elean condition posvilble, to ebango tha straw frequently, and to curry the skin of the pig at least once a week. By doing so, without a prarticlo of udditional food, the aulmal will thrive and fatten lua a very superior degree, while the flesh will be moro pure and deliente. So true is this, that any man whon keeps his pig dirty, maybe aid to be picking his own pocket, an he will redize leen money for its carcuss than if he had taken a litlle trouble to clean it.
'To insure comfort to the pig or pige, let the atye conne of at leart two compartments-a alesping apartment Ind an open court-yard, the one apening into the other. The sleping apartment should tie well-thuilt and slated, for the aake of dryness, end the floor, formed of atrong planks, should slope nutwards to the door. The outer court should be paved in a sulstantial manner with largo Aas-tones, sloping also in a particular difection, to which the liquid refuse can flow into n gutter. It is advantageous for the erection to be near the dunghill, to which all liguid may run, and solid materials he carried without loss. heep plenty of straw loth in the pirg-liouse and its court, in order to absorb inoisture or dung, and let all be raked out regularly, and renewed. The money lost by allowing the dung to go to waste hy mere evaporation-flying of into the atmospheremo one can calculate. Tho open court of the pir-house should, if possible, lie to the wn, os the inmates are fond of hasking in hin beama. The fetding utensils placed in the court should consist of two strong eroughs, which cannot be eaxily knocked over. These dould be daily washed and scoured to keep them reet.
Fecting:-In rural situations, where extensive wonds ceish and where the grass is otherwise of no value, the freding and hreeding of piss will he found very profitaliso to the cotteger; for, where thry have n wide range, they will require litule fond save what they find for themselver in graing under the trees, and in digging for worms and frots of various kinds-for which latter task their long bid strong snouts peculiarly fit then. Artificial feeding is anly resorted to in winter. nud when the pigs are to be fattened for the market or tahle. It is more common, hawever, for the cottager to keep one or two pigs entire':y within a stye, to add to the means of sulasistence of his own family; and even when kept with this limited view, the pig is a creature of no little consequence. As Cohbett ueutely and pithily ohserves-."The sight of a fliteh or two of bacen on the rack, tends more to keep a poor man from poaching and stealing, than whole volumes of penal statutes. They are great softeners of the temper, "nd promotera of dumestic harmony."
When a young pig is to be purchased for fecoling and illing, it is advisable to louy one which will he about inteen manths ofd at Christmas, that, or some time in snuary being the preferalle' perisl of slaughtering the nimal. Unless fur delicate pork, it shund not be killed ks than a year old. During the summer, the pig may Fef on any refluse from the kitchen or garden, inituajag lurnip and potato parings, table-waste, cabbure hades, E.; but if barley-dust, or grains from a cisutilery, can bo cononitally procured, wither forman a good article of diet. tel it be kept in remembrance that the finer the feeding he finer will be the pork. The fookl should at all events a of a vegetable kind, or principally so; nothing bevond
slops from the tablo being to be tolerated in the whalie of animal food. Whatever be given, let it be offered in amall quantities and frequently, it being a matter of importance never to allow the pig to beconse violently hungry, The balfontarving nyatem of theding is poor policy, and is repaid by a lank poor carcawa searcely worth killing.
Farmets \boldsymbol{p} wssens great advantages for feeding pigu. Tho atrnw-yard of itself afforde continual support to them; and many pign rench the age of one year without having received nny food hut what thoy themelven have gathreed, yet are in gool condition. What with the sweepinge of tho larn, end the straw, turnlpw, and clover, lying about n mending, with the refuse of the kitchen, a farmer, It haa heen calculated, may suatain awine in tho proportion of one to every weven ar eight acrea of land under crop, withnut being conscious of tho consumption made by them. In few inatances are swine reared in auch numbers as to have crops specinlly laid out for them, though mome writers assert, that they would yield, in such a case, greater profits than other live-stock habitually reared in the same way.
About the month of September, the process of fattening pigs should commence, whethir they be designed for park or bacon. If for pork, the futtening need not be carried to the same extent. In either case a nourishing diet must he given, tho ouly precaution being not to cominence fecding too rapidly, otherwisa aurfoit may be produced. The liest materiala for feeding are barley and pear-meas ; and if milk, either akimmed or churnel, san be given at the same time, it will groatly facilitate the feeding, and improve the quality of the flesh. Many peranos fied their pigs on potutues, but in that case the Aleah is not an solid and goonl, and the fat is somewhat foose and flathy. Sof meat may do very well for piga when they are growing, hut it is not tho food which ahould bo given when they are fed fir killing. Those who feed pigs for their own use, generully give them a feed or two of corn daily for fourteen days before they art killed, nad give them nothing else lut churned or skimmed milk :o drink ; and for a day before killing the pig should not get any food. Where people's circumstances will not permit any of the modea of feeding for killing which we have ahove pointed out, hoiled potatoes, mixed with a handful or two of outmeal, may be resurted to as a subsititute. It is undeniable, notwithstanding what has been suid above, thant the Iriwh peasantry produce excellent pork by feeding their pigs almost cintirely on potatoes. It is not so fat as the pork proluced from peas and barley, but it is on that nccount the better snited to stomachs unaccustomed to very strong foud. When the time arrives for slaughtering, let it be done in a humane aml neat atyle by a but cher, , as to avoid nll mangling or injury to the tiesh.

Pork.-The curcass of a pig is less frequently consumed as fresh than as salted pork, and the preparation of the sulted article for home consumption or exportation forms a large and tlourishing business. Those who pursuc the occupation cut the carcass in pieces, and pack it in kits formed to hold from one to two hundred pounds, weight. A lrine is then made by dissolving salt in water, until the mixture is so thick that an egg will swim in it. This is boiled, and poured upon the pork after it has conted. Russian pork, always much esteemed, is stefped in a brine coutaining 2 lbs, of loaf sugnr, and 3 oz. of saltpetre, to 6 lhs . of salt, the whole being boiled in six gallous of water. After brine is alded to pork in kits, the end of the receptacle is fised in, und tho article is usually sufficiently cured in a fow days. Foar daya are enough for smali pork. leople who pickle pork for private use must tike care that the brine eovers the meat, othrremise it will require to ho turned daily. The same pickle may be sevcral times used, if reboiled, and slightily atrengthened anew.
Iraten.-Buars are also fattened for the purpose of procuring an article for the table called braten. Malo 84%
dirs of all ayees are pit Into liveling with this vienv, hut these eaperienced in nueh mattera prefor them of the age of two years. They are kupe meparately, in pene which will not permit of their turning round, peifeet innectivity being held to eenduce to their listening. Their fingl in beana, with water, into which a amall quantity of sulphur has been put. The collar of tha animal le the part prepared for brawn, by the procensen of pickling and drying. A large collar will weigh about thitty pounda, and is valued at about $\& 3$ in the market. The lean parts of the aninal are commonly umed for naumage-meat.
Hams ure the cured hind-lege of the plig, and are conaidered the fineut parts of the anlimal. 't'lie following are general directionn for curing them:-In the firat place, the legn require to be cut in a neat roumlenl furn, sund it in unsuit to preprare a number at a time. Being properly weepared, park them with rock-amat in a nuitullta tub or eank, being careful not to lay the dat siden of the large piecto upon each other, andilflling the intervala with hocke jowls, \&s. 'I'o every 301) llu, of meat, then take 20 lkm . of Puck-nalt, or Onondago coarse salt, 1 lb . of saltyetre, and 14 liss, of brown sugar, wf half s gallon of grod molasses, and an much water (pure apring water is the beat) as will cover the tneat; (iut the whole \ln a clean veenel; boil and secum; then mit it aside to cool, and pour it on the meat till the whole is covered nome three or four incles. Hams weighing from 12 to 15 lbm , must lis in the pickle about tive weeks; from 15 to 25 Hme., wix weeks; from 35 to 45 lbw ., weven werks. On taking then out, moak them in colld water two or diree houra, to remove the surfice sult, then wipe and dry them. It is a good plan in cutting up, to take off feet and bocks with a anw instead of an ase, an it leaves a smosth surface, and no fracturea for the lodgment of the tly. Bone make only vix pieces of a trimued liog for nalting, but it is more convenient, when intended for domestic use, to have the aide pork, on it is culled, cut insmall piecea. The grodness of hams and alauldera, and their preservation, depend greatly on their zmoking, as well as anlting. The requinites of a smoke-houne are, that it aloould be perfectly dry; not warmed by the fire that makes the smoke; so far from the fire, that any vapour thrown off in the amoke may be condensed belore reaching the neat; so close, as to exclude all ties, mice, de., and yet capable of ventilation and escape of smoke. The Weatphulian hams are the most celetrated in Europe, and are principally curcd at and exported from Hamburg. I'the amoking of these is performed in extensive chambers in the upper stories of high buildings, some of four or five stories; and the amoke is conveyed to these roons from firee in the cellar, through tulen on which the vapour is condensed and heat absorked, so that the smoke is both dry and cool when it comes in contact with the tweat. They are thus peifectly dry, und acquire a colour und flavour unknown to those smoked by the common method. Hams, after being smoked, may be kept any length of time by being packed in any dry duat, which will keep them from the air. Bran is unually employed for this purpose. When fully smoked and dricd, the meat may be hung up in a dry airy roon; and if liable to be utlacked by the bacon-fly, or other insects, draw over it a loose cotton bag, tied clowely with a string. The amall part of a ham should ulways be hung downwards in the process of amoking, or when suxpended for preservation.
Bacon is the whole side of a pig cured. 'Ithe method of preparation is an follows:-After being killed, the carcass should not he scalded to remove the bristlen, as in the cave of pork, bat singed off by being covered lightly with straw, t which fire is apptied. When the burning atraw has cleared one side, the other side may be cleared in the like manner. By thin means all the hair is to the anged clean off; but without scurching the tlesh, und then the skin is to be well seraped as a finish. 'Thus
ingeing proceen given a fine firmnew to the menn, wikin maldod hacon nover pooserexes. In Hampolines, an Mb Codtert informu us in his "Cottage Economy," the ghan of mingeing in univeraally followed ; and pig.keepress could not have a better example. The mast atepm in tha pran cemen are related an followa hy thin writer toct The in wardy are next taken out, snd if the wife be not a llat tern, here, in the mere offal, in the mere garhage, then is food, and deliente foodd too, for a large family hir a week, and hog's pudding's for the children. 'The buwher the nex llay euts the hoy up, suld then the houne in filled with tnent: mouse, arinkina, blacle-bones, thilghtopeng spare-ribu, chinees, helly-pinces, chereks, all roming into um one after the other, and the luat of the latter nod befone the end of about four or tive weekn, All the other parne taken away, the two siden that remain, and that are collind Alitches, are to be cured for bacon. 'they are first rubived with walt on their lusiden, or toenh siden, then plared one on the other, the fieshl nides uppermost, in a matting trough, which bas a gutter round ita elgen todtain away the brine; for, to have nweet and fine bueon, the ficthen must not lie enopping in brine, which gives it that ont of inver which burrel-pork and meajunk have, and himp which nothing is more viltanous, Every one knows how different is the taste of tremh dry wall from that of suit in a dinnolved stuter the one is mavoury, the othe museous. Therefore change the malt otten; nare in fut or five dayn. Av to the time repluired for making tion thitchep nuticiently milf, it dependa ou circumetancon the thick neene of the flitel, the state of the weather, the place wherein the salting is going on. It takes a longer time for n thick thun for a thin fitech; it takes longet in dry than in damp weathrer: it taken longer in a dry thas in a damp place. But for the thitches of a hog of tueve score, in weather not very dry nor very duntip, sboul is weeks may do; and an yours in to he fat, which reeven little injury from over-salting, give time enougll, for gom are to have hacon till Chrintmas conees aguin. Tha place for salting should, like a dairy, always by cool, but always udant a free circulation of air ; confined air, though cool, will taint meat nooner than the midd-day von acrume panied with a hreeze. The ditches of haron an now to the amoked, for smoking is a great deal better than meerig drying, as in the favihion in the duiry connties in the wes of Eingland. When there were plenty of furmbouen there were plenty of plares to smoke bracon in; sine farmers have lived in gentemen's houwes, and the mas part of the farm-houses have been knocked down, them places are not so plenty. However, there in scarrelyag neightwrhood without a chimney left to hang bacoo up in. 'T'wo precautions are neceenary : tirst, to hangto fiitchen where no rain conee down upon them; reawh not to let them be so neur the fire na to melh Thee precautions taken, the next is, that the namke mus pa ceed fiom urod, not turf, peat or coul. Stubble of Liten might do, but the troulle would be great. Fir ot do smoke in not fit for the purpose. I take it, that the eb sence of woorl, as fuel, in the dairy countries and in to north, hus led to the making of pork and dried bara As to the time that it repuires to nmoke a flitech, it max depend a good deal upen whether there be a constantion beneath, ond whether the fire he large or simall. A mood may do, if the fire be prety constint, nul such sa fim house fire urually is; but over-smoking, or rather toolur hanging in the air, makes the bacon rint. Gratate tion should therefore be puid to this mater. The the ought not to be dried up to the bardnenn of a board ad yet it ought to be perlectly dry. Before you hangith
 wihh l,ran, or with some fine gaw-dust other than badd deal or tir. Rub, it on the thesh, or pat it well down upu it. This keeps the smoke from getting into the the openings, and makes a sort of crust to be dried on, end in short, keops the flesh cleaner than it would oberme
tw ${ }^{\prime \prime}$ Other wr form the preced seed akillerl in th whatover ether ther quited, he mecidental to furm Ined in that cothe, and forme cerial io of great gees in houmehow coppelis of Agri tions on this auty tios t the fineent should be clopp dow fire, and kel 10 the sillen of bludidera, lurneed having all the fint fectly dried in th out, they are to ! Juys, then wawlaer may be turned bo quality, when wel for cookery, anll, by confertioners ff The inferior laril trooted an the fin when taken off, al put into briac, ins The suine nuth tice are serviceable ригроке.. No pan bines are converted cut open and wasl proselel out of the Wis substance in v whelel, and such

Gasts furn one of Manmalia. 'Ty about the nize of and in marked by bent hootis; the m: bave a long heard dom provided with of nature or tame agile, ind will bro cipices. We fined, long formed part of were telluled with present days. In valuable. Its akin puses, and the flesh carcely equal in for the milk, chiefly of that secretion bi medicinal. Wher ing a cow, a gont iog casily fed, and pueted by the cow who live in the ueit the troulle and exp be nothing, as the th toost heathy, sinc, which are un this animal un am cara or uttention, oufficient food. In rable service to ma miled as winter pre places for the maki highly palatable, lie the ament deticure la
n memp. which Inwhite, on Ma_{4} omy," the plan g-keepers could epm in the prom er :-a'The in e be not a alat garhage, them - family for:

Tho buther te house is filled m, thigh-tenes coming intaum latter not belore the other part dd that are called are first rubled then plared one at, in a satione ex todrain sway con, the fitches pives it that worn have, and thin rery one knowi alt from that of voury, the ather ten; once in fous for making tho circumatanretthe weather, the It takes a longer t takes longet is get in a dry than f a hugg of twelva danll, about is $\mathbf{t t}$, which receives e conough, for you ne9 nuain. Tho ways b. coll, but ufineed sirt, thoogh deday on acruar bacon are now 0 retter than merely minties in the wed y of furm•housen loseon in; ane w's, and the min reked dowa, them ere is scarrely any o hatg bscon up tirst, to hang the inn them; recool to melt. 'libee smake muat poo Stubble or Ltan rrat. Fit at dell ke it, that the os Lutries and inthe and dried bocos ke a flitch, it mad e be a conatuntin or sinall. A mood ru! such as a firm 5, or rather tooloy fort. Great atitlo phatter. The fikd 'ss of a boand ad re you hang it 4 h pretty thickly other than thet it well dowa ypa ing into the lim 3) be dried on, wel it nuold aberna
6." Other writern recommend plane allahtly differing from the preceding, but the Finglinh, ungueationably, are neel akilled in the mode of preparing superior lineont and ehatever other charmeterinties were dimplayed by the auther quotel, he at leant knew thoroughly all the procemen buedental to firm management in hila native land.
Iard in that part of the fat of the hag which eanily solta, and forma a noft groase. The moving of thim material is of great Importanee, for it may be put to many uee in houmehokl cconomy. Martin Doyle, In his "(By. clopedia of Agrieulture," maken the following wherva-
 dies) tha finent and whiteat (that tuken from the sidew) should be ehopped into amall plecea in a pan, over a slaw fire, and krpt conshnitly atirred, Iont it shanild atick to the aidew of the boiler; then strained nrat pua into blablera, turned inaide out, and thorouighly purifiod, hy having all the fist cut out, and heing well bown, and perfeetly dried in the opeti airs when the wind is promed aut, they are to be put into il litife salt piekle for a few days, then wanhed in lukewarm watur, after which they may be turned by means of a atick. 'Ilint of the firat quality, when well mado, in fire hetter than any walt latto for cookery, and, from the deticacy of It colour, is used by confictioners for thas flinent kinds of cake and pastry. The inferior land is oltained from the in'estines, and in trented an the fine lard in every particular. The feet, when taken offi, aro chopped is two or three placea, and pat into briue, in which they may be kept until repuired."
The anme author continues-c. Both the lonir and brintea ars merviccalion for brush-makers' and eabinet-makeras parposen. No part of the pig is uselear ; even the inters tines are converted into an inferior kisd of laril, by lwing cut open and wasked clean, and (after the water is well pressed out of them) melted in the same woy as lard; this substance in very usefill for making candles, greasing wherels, and such purjones."

goats.

Goats form one of the families of the Ruminant order of Manmalia. The common domenticated goat is usuilly dooat the size of the sheep, though less round in form, and in marked by keen cyes, long hair, and genorally bent homs; the males, called fomiliarly in Englnad billive, bava a long heard; but the females, or manies, are spldom provided with that appendage. Whether in a atate of nature or tamed, the goat ia remarkably awift and agile, and will browse featessly on the most rugged precipices. We find, from ancient writers, that goata have long formed part of the atock of mountain-herdamen, and were tended with even grenter care in former than in present daya. In many respeeta, indeed, the animal is valuable. Ita skin is convertible to several uspoful purpuses, and the flesh of the full-grown gont in good, though carcely equal in quality to that of the sheep. But it is for the milk, chiefly, that the gont is prized, the qualitien of that secretion being not only very nutritious but even medicinal. Where cettagers have not the neans of keeping a cow, a goat will be foand a very useful animal, being eaxily fed, and contented with grasses which are repeted hy the cow and the whecp. To those peasnnts who live in the teighbourhood of mountainous countries, the trauble and expense of keeping a couple of goats will be nothing, as they will tind sulficient uourishmont in the toost heathy, rough, or barren grounds. Heaths, sisc, which aro unfit for any kind of pasture, will aflird this animal an anple supply of food; and it repuires no care ar uttention, casily providing for itself proper and sufficient food. In some countries, gonts remder considerable serviee to mankind, the fiesh of the old onew being ulted as winter provision, and the milk is used in many places for the making of cheese. The flesh of the kid ia highly pulatable, being equal if not superior in davour to the monat Nelicate lamb.

In Britain, the geat prodicen ger.pially two yeung nt n timn, anmetimes three, rarely four. la warmer ellmatea It in more prolifie, nonl protueen four or five at onen though the breed in found to tegenerale, The time of geatition in five montho. The male in capable of propan guting at one year old, anil the female at aeven monthe, hit the friste of a generation so pretnature are generally weak and defeetive) their bent time lu at the age of two yrara, or eightren montha at moonent. A pont la old at six yenrw, although ita life nometimes extends to fifteen.
If goata are properly trained, they will return to their owners twice a day to be milked, and prefor mleeping under a roof whels acenatomend to it . Tho milk of the goat in aweet, and not no apt to curdle tupon the stomach an that of the cow; it is therefore preferatite for thoses whowe digeration in but weak. The peenlisrity of thim anhinnt's firml given the milk a flavour ditlerent from that of cither the cow or the sheep; for, an it gunernily feed ufail ahrubity pasture and heathy mountaina, thero in a savoury milduess in the laste, very pleasing to auch as are tiond of thit aliment. 'The quantity of tilk produced duily by a goat in from three half pints to a quart, which yidlda rich and execllent cream. If properly attendel to, a goat will yield milk for eleven montha in the yar. In several parts of Awitzerlond and the Nighlanda of Scotland, the goat in the eb f possexaion of the inhabit. antw. On those mountains where no sther trefut anjmal cond! find aubsiatence, the goat contrives to glean nufficient living, and mapplies the hardy nativer with what they eonaider a varied luxury. They lio upna reda mado of their akins, which are mofi, clean, at" sholenome: they live upon their milk, with oat-brend; they convert part of it 'ato butter, and some into cheese; nind the fles : furniahea :n, oxcellent food, if killed in the proper metw. F . and satted. They are fattened in the same manner an sheep: but taking every precaution, the heali is never
 is otherwise between the tropies. The sheet there becomen flabhy nud lean, while the flesh of the goat rather secmu to improve, and in some places is cultivated in preference to that of the sheep. The renem of hoat's milk coagulates as casily as that of cow'a, and yields a larger proportion of curl. 'I'lie cheese is of an excellent quality, and high Ravoured ; and although, to nppearanee, it looks poor, it has a very delicate reli, 1 , and stronsly resembles Parnesan cheese. Some firmers have been in the practice of adding a little goat's milk to that of cow's, which materially improves the davour. In winter, when native food beeomes scarce, the goat will feed upon turnip-peclings, jwtato-peelinge, cabbace-leusea, and other refuse of a house. In addition to the other producta yielded by the goat, its tallow, we should mention, ia also an articto of some importance. It is much purer and finer than that of shac. ealeulated to make carifa, of a very soperior quality.

Coblett advocares the seeping of a goat ly cottagere. "There is one great inconsenience belonging to geats, that in, they bark all young trees that they oome near; no that if they pet into a garden, they dentroy every thing. But thire are seldom trees on commons except such na arn tor large to he injured by goats; and I can sce no reason aguinst keeping a goat where a cow cannot be kept. Nothing is so hardy; nothing is so littls nice as to its food. Gouts will pick peelings out of the kennel and eat them. 'I'sey will eot monldy bread on hiveuit, fusty hay, and ulmost rotten straw, firze-lushen. beath thistlex; and, inded, what will they not eat, when they will make a hearty mend on paper, brown or white, printed on or not printed on, and give milk all the while! 'They will lie in any dog-hole. They do very well dogsged, or atumperd out. And then they are very healthy things into the bargain, however clowely they may be confined. When sea-voyazes are so stormy as to kill geese, ducks, fowls, and almost pigs, the goats are well
and lively; and when a dog of no kind ean keep the deek for a minute, a goat will skip about upon it as bold as brass."
In Britain, n attempts have been made, at lenst succeasfully, to introduce forcign brecda of goats, though in France this has been done to a considerable extent. The Cashmere goat, famous for its long silky hair, or wool, has been brought to the country mentioned, and there lored with the Thibet goat, a hardier species, but almost equally esteemed for ita wool. The manufactures producible from this materinl, as the Cashmere shnwla have long testified. are scarcely to be surpassed for fincness, and yield imatense prices. It is prolable that, in our wamnest districts, a crose of these forcign gonts w th. the common breed might te successfutly and advantag ?ously cffeeted.

RABBITS.

Rabbits belong to the family of Ieporinc, members of the Rndentia or Gnawing Order of nnimnts. Their form and appearance are too well known to require any general description. In a wild state, rahbits live in holes in the earth; and where the proprictor permits of theit accumulation for sport, they collect in geat numbers, undermining with their burrows whole plains or tracts of land, and forming whit are enlled vearrens. Their amazing fecundity renders the keeping of a few of them in a tame state an ohject of some consequence in cottage conomy. The rabbit brcels seven times in thr ;ear, and generally produces eight young at a time. At the age of five months, the animal begins to hreed; and, taking ant estimate perfectly within bounds, it is supposed thnt a pair of wild rebhits, which luced no oftener than seven times in a yeer, would inultiply in the course of four yoars to the amazing amount of a millon and a guarter, if the young were preserved. But many of them die, being injured liy the cold and damp, or de--oured by the male, or beel:.

Experienced ralbit-breeders conceive too frequent brewsing to be injurious; but even when proper rules are observed in this respect, three domesticated femules (does) and a buck will give a family a rabbit for dinner at least twice a work. This is a matter of eome consequence. By keeping a fow of these pretty little creatures, which widd vegetahles will almost entircly sulply with food, the poor man may derive ten tines the henefit to be gained by violating the laws, and praching on the game-presepres of his rich neighbours. A stock of rahbits is casily set a-going; they may usinally he lought under one shilling, and sometimes even at twopenee n pair. It is of impertance, in makine such a purchase, to attend to the kinds which furnish the berst food.

The short-legged stout rabbits are generally supposed in be the most healthy, and also the best brecders. The large hare-coloured varicty is much estermed by aom" peopie; lut the white, or whit, inottled with hilack or yollow, are more delicnte in ficsh. 'I'le gray, and some of the hlacks, approach nearer to the flavour of the wild rabit than any others. With respert to the colours of these nuimals, gray is considered the wornt of all colones; black is the next in gralation; fiwn, nud white, nud gray, hold the third plare in estimation ; pure white, with red cyes, is by some reckoned equal with, and hy others euperion to, these; tortnise-shell (a rich brown and white, and brown, gray, and whitc), and black and white, mank the highost; mouse-colour, thoush litt!e motced by fancie re in general, is much adurired by a fow.

The inost important part of the duty of sine rabit fancier is to erect his rablhithouse or intih on proper prineiphes. Two oljects ure priticularly neerssary to be attendel to. The house or rablitry must be kept always dry and well aired; because the rablit, in its notural state, jrefers a dry and airy habitation. Rablit, ane sometimes placed in hoxes, but whether kept in
these or in regularly erected houses, the place must b kept quite dry, as too much humidity will cause the rals bits to rot. Where considerable numbers are together fresh air is of great moment ; still they should not be exposed to draughts, which may bring on a disease called the smufllea-a dangerous and frequently fatal malady.

Persons who live in large towns will in general find considernhle difficulty in keeping rabhits, as it is seldom they have open grounds hehind their houses wherein they might construct their rabitry. In cases of this nature, rabhits might be kept on a small scsle, in wooden hutches, open in front, with spokes like a cage, and having a division to separnte tite slecping apartment from the feeding-plnce, and a small door betwixt tha one place anil the other. But it will be found, on trial that rablits do not thrive well when put in cages, or confined in this manner. The genuine rablitry nus he a small house constructed on purpose, where the animals will have liberty to feed and namse themselves These houses may be huilt ahout four feet square, and the sume in height, with a sloping roof, covered with thateh, or some other substance that will earry of the rain. This house ought to bo paved on the floor, so as to preveut the rabits from brrowing, and under. mining the walls. It should he well laid with dry stram or meadow-lay, and possess several boxes with the open side downwards, and holes for the rabhits to go in and out. It would also be as well for these holes to be provided with doors, which you could shut when necessary. To this house there ought to he attached little of, n court, also paved, and covered completely with open spokes, so as to give air nud lights, as well as to afford you an opportunity of seeing the creatures fecding.

Ot the suliject of feeding rabhits, the following extract may he ofliernd from "'the Poys' Own Book"-a pleas ing work nuldressed to the young:-
"If too much food be given at once, the animals will get diggosted with and refuse it, so that a rabhit map be nearly starved by nffording it too great a quantity of foot. Most persons feed their roblits twice, bat for our own pint we feed ours thrice a day. To a full. grown doe, without a litter, in the morning we give o little hay or dry clover, and a few such vegetahles as are in season; in the afternoon we put two bandfuls of good corn into her trough; and at night we gige ket a boiled potato or two, more vagetables, und, if her huteh be clear of what we gave her in the moruius, but by no meand othorwise, a little more hay or clover. If you give rublits more hay than they ean eat in a few hours, except it he a doe just about to litter, they will trad it under fiot, nad waste it; if you give them hut a mode. rato quantity at a time, they will eat and enjoy it. Ge nerally sfraking, rablits prefer green or moist food to corn ; but it is necessary to ntake them eat a sufficient proportion of solid food, to keep them in health; occesiomally, instead of eorn, we give our rablits a few split or whole gray peas. When a dee has a litter by het side, und also for rabhite recentl, wemued, we soak the beas a few hours previously to putting them in the trough. If a rabbit will not eate a proper quantity of corn, we mix a small quantity of squiezed tea-laras with her portion, and atint her proportionathly in grea meat. 'Pea-leaves, in smail puaditios, well squerzed, ona at all times be given, by way of a treat; hut it is highly improper to make them a daily substitute for gren meat.
"Almost all the vegctahles and roots used for the tahle may le given to rablits; mpreference to all others, we cheose celery, parsley, and the roots mod tops of carnote nod in this choice the animals themselves beartily agre Via us; lettuces, the leaves, and, what are much levtit, tinc stumps of cablages and cauliflowers, they eat wid
didity, but they hand ; turnips. p we occasionally better roats or gor an soft ment is b not wet ; in fact rashits when the have henrd of so bits on marsn-ms Dapdelions, milk long experienco, rood, except celer green moat, wa a
u It must be r twico as much when her litter br be gradually incr admit chaff, and If we can obtai feeding-time, we with water, milk, Though a ranoit or soft meat acco sabe, yet it is cr increase rather th in auch a case a grain ; and some casional table-spo dsageraus expe their stomachs.
"It woll fed, an year ; hut most f a year. sad let ti disadvantage, rath produced in a lit the case, are alm even if they be re maving some of th tarely became ren
"Diseases may gularity in fredin refuse of vegetabl jected. For the subject, there is it, fitten them, if are accasioned hy for this disorder, i food. Stucezed health, if weak, or little bread moiste rantageously give When old rabbit will in general res very difficult, and voung ones from as well as for the
"Becarefial (co hutches particularl a hand-brush, will not handle your ra much; when you by the ears, and p their backs."
When ralibits n deemed beneficial and elterwards on will graw very de the ordinary exten duetive, with comn in the country may bouse enclosed by killed annually abo tock unbruken. of yaung, he turne
Val. I. -80
place muse b? cause the rals - are together, should not be on a disease equently fatal

I general find as it is seldom auses wherein cases of this ale, in wooden a cage, and ing apartment or betwixt the cound, on trisl, ! in cagce, or rabhitry arisa se, where the use thenaselves et square, smd f, covered with I carry off the on the floor, so ig, and undetwith dry straw oxes with the rahbits to go - these holes to shut when ne he attached: red completely 1 light, as well g the creatures
llowing extract look"-a plewo
lic animals will t a ralhit may reat a quantity - twice, but for 1y. 'T'o a fullding we give a 2 vegetaliles as It two landfult hit we give let ud, if her hutch ning, but by no clover. If you in a few hours, יy will tread it in but a mode. C-njoy it. Gb moist food to ent a sulficient is heath; occo. hits a few split a litter ly her (d, we soak the If gem in the per quantity of czod tea-liares natuly in green well squareed, treat; but it is stitate for grea
mid for the table all others, we topes of certuts s lieartily apre re much betur, s, they cat wall
adity, but they must be given to them with a sparing band; turnips parsnips, and oven potatoes in a raw state, wo occasionally afford our stoek, on an emergency, when better roots or good greens are scarce. In the spring time, ne soft meat is letter for them than tares, so that they be not wet ; in fact, no green meat ought to he given to rashits when there is much moisture on its surface. We have heard of sume country persons feeding their rabbits on marsn-mallows, hat we never did so ourselves. Dadelions, milk-thistles, or sow-thistles, we know, by long expericnce, they take in preference to all other food, except celery, parsley, and carrets ; and nothing, as green meat, we are convinced, can be better for them.
" It must be remembered, that a doe will eat nearly swice as much when suckling as at other times; and when her litter begins to ent, the allowance of food must be gradually increased. In our own rabbitry, we never sdmit chaff, and grains only in a dearth of green food. If we can obtain neither greens, roots, nor grains, at feeding-time, we make it a prnctice to moisten the corn with water, milk, or, as we hefore stated, with tea-leaves. Though a raobit must be restricted from rioting in green or soft meat according to its own appetite, for its own saks, yet it is cruel to nfford it only such food as will increase rather than nppease its thirst; for this reason, in such a case as we have mentioned, we moisten the grain; and some rabbits will even do well with an occasional table-spoonful of water, beer, or milk; but it is a dsngeroas experiment to try the effect of a liquid on their stomachs.
"If well fell, and kept warm, does will breed all the year; but most fanciers are contented with five litters a year, and let them rest during the winter. It is a disadvantage, rather than otherwise, to have above six produced in a litter, ns the young rabbits, when that is the case, are almost invariably weak and puny; and even if they be reduced to a moderate quantity, by reunving some of them to unother doe, or otherwise, they rarely iccoase remarkable for their size or benuty.
"Discases mny'in a great measure be prevented by regularity in feeding, good food, and cleanliness. The refuse of vegetahles should nlways be scrupulonsly rejected. For the liver complaint, to which rubbits are subject, there is no cure; when they are nttacked by it, fatten them, if possible, for the table. 'Ihe snuflles are occasioned by damp or eold. If there be nuy eure for this disorder, it must be dryness in their hutehes and food. Ejucezed tea-lenves generally restore a doe to bealth, if weak, or otherwise alfected after kindling. [A litue bread moistened with warm milk may also be ndvantageously given to n doe nt this critical period.] When ohl rabbils are attacked by a looseness, dry food will in general restore them; hut do what you will, it is very dificult, and in most cares impossible, to save voung ones from sinking under it; dry food for them, as well as for the old ones, is the only remedy.
"Becareful (continues this nuthor) to keep your rahbitbutches particularly elean; n short hoc, or a trowel, and a hand-hrush, will be necessary for this purpose. Do not handle your mbits, particularly the young ones, too much; when you lift them, take them with one hand by the cars, and place the other under the lower part of their backs."

When rahits are to he used as food, it is commonly deemed beneficial to feed them for a short time on byy, ond alterwards on shet!ings and onts, when the flesh will grow very delicate in flaverur. As an example of the ordinary extent to which rabbits may be made prodictive, with comnon care, the case of a labouring man in the country may be inentioned, who, in a small wooden bouse enclosed by a railing, fed a bateh of rablits, and killed annually about twenty dozen, still muintaining his sock unhroken. What with the skins, flesh, and salen of young, he turned the animala to great account, yet he
scarcely expended a penny upon them, and even trouble was entirely apured to him, when he had fairly put his children in the way of management.

guinea pig.

This animal is misnamed when called a pig, being one variety of the Gnawing Animals (Rodeutia), and technically termed the cavia cobaya. It comes from South America, and is smaller than the common rabbit, with a body of variegated colours-white, black, fawn, or a mixture of all three tints, being common characteristics. Sone of them have deep red eyes, and the whole trihe are remarkable for the want of tails. They feed on grain, bread, or kitchen vegetables, showing a murked preference for parsley. They loring forth from tour to twelve young at a time, and begin to breed at the age of two months, repeating the process of parturition so often that a thonsand young might readily apring from a single pair in the year. But these litile creatures are very tender, and tnany of them perish, soon arer birth, througin natural causes and accidents. Guinea pigs are of no use, their flesh being of a very inferior quality, but they form a pretty ornmment to the court-jard. In their habits, they are extremely quick and restless, and spend much of their time in cicaning one another, having such a predilection for tidiness, that the inother will even take a pemmanent dislike to her young, if any of then chance to get dirtied. They are gentld in disposition, and seem so objectless in their habits, that Buflon compares them to living machines, calculated only to represent and perpetuate a species. It is believed they frighten away mice from n house, and are sometines kept for that purpose.

poultry.

Poultry (from poulc, French for hen) is a term applied to difterent kinds of large birds in a state of domestication, as the chicken or barn-door fowl, turkey, goose, pea-fowl, and guinea-fowl. The most numerous and important in every respect are those firsit mentioned.

Chickens.

The chicken is classed by naturalists in the tribe of the Gallinacce. forming part of the order Rasores, or Scrapinr-Birds. It is needless to describe minutely the nppenrance on the barn-door fowl. The most prominent characteristics of the cock, or male-lird, are a thin indented comb, with wattles on ench side under the beak; a tail rising in an arch, and a grent variegation of colours. 'The female, or hen, is smaller as regards body, comb, and wattes, and her tints are less vivid. The domestication of this hird secins to have taken place in the earliest times, and Persia is usually supposed to have treen the place of its origin. Many varieties of it have heen enumerated ns existing in Britain; but the differences betwixt these, in the majority of cases, seem to lio ns much in colour as in any more important featurea. The best marked kinds are the following :-The Dunghill Fowl, Gane Fowl, Dorking Fowl, Poland Fowl, Spanish Fowl, und Bantam.

The first of these varieties is a mongrel one, ariaing from crosses with all the other breeds; but it is the common and most useful variety. The best fowls of thia sort are of middle size and dark colour, and have white. clean legs; the pure white dunghill-fowls are held to be the weakeat in constitution, and to lay fewest eggs. I* has been usually agreed to call the gane fowl the proper English fowl. The body is erect and s.ender, and the colours showy, particularly those of the cock. In comparison with other breeds, the game bird is like the race horse beside that which draws the cart and plough. The flesh, moreover, is peculiarly whito and delicate in flavour, while, though small, the eggs are also of a very superior quality. There is a peculiarity of disposition however, in thia variety of the domeatic fowl, which
whils for ages the sourco of a cruel species of sport, has aways inpairod tho real utility of the creature to a very great degree. Wo alludo to the pugnucious spirit which has gained for the fowl its peculiar name. So stronglymarked is this propensity, that broods scarcely feathered are frund occasionally to have reduced thomselves to uttor blindness by reciprocal battling. Eiven when tho breed is crossed and recrossed, a tincture of the love of fighting still remains, rendering such admixtures of species the source of risk and trouble, though in other respects very advantageous. Hence, game-coeks are bred on a large scale alinost solely for the hattles of the cockpit. Whero persons prefer to have a game-cock in their po altry yard, their choice, accordiug to the lest authorities, should be direeted to birds of some one or other of the following colours:-dark-rel, dark black-bresated red, dark gray, mea:y gray, and red dun. The Dorking fowl is named from utown in Surrey, where it has long been bred in great numbers. It is a large bird, wellshaped, with a long capacious body, short legs, and five claws upon each foot instead of four. One spur characterizes other breeds of the common fowl, but the Dorking fowl has two spurs on each leg. These distinetive marks seem to be of old standing in peculiar breeds, as both Aristutle and Pliny mention tive-toed fowls. Though, from repeated crossings, the Dorking fowls are now found of all colours, white or yellowish-whito is supposed to have oeen the primitive and genuine tint. They lay large eggs, and in great plenty. The Poland (Polish or Paduan) fowl is much valued hy breeders, but is seldom found perfectly pure in Britain. The species was imported principally from Holland, and when unmixed, was uniformly of a hiack colour, with a white crest or tuft on the heads of both cock and hen. Their form is plump and deep, and the legs of the best sorts not too long. They aro called ceverlas'ing layers, from the number of eggs produced by them, aud from their disinclination to ait and hatch, which otlice is usually dono for their ergs $t y$ other hens. The Spanish fowl is of large size, and lape large eggs. It is of the Polish family, and is atmost uniformly marked by a black boly, black legs, and large red combs. In London and its vicinity, the breed is now extremely common, being valued for the size of the eggs; but it is supposed to be inferior in some respects to other breeds, though yielding good food. The bantam fowl in well known for its atnall size, and its feathered grotesque-looking timbs. It was originally a native of India, and the nankeen-coloured and black birda are the most exteemed. The bantam ahould have a meecomb, a foll tail, and a lively carriage, and should not weigh above one pound. It has been recently dis. covered that the characteristic of feathered lega is not an improvement, tho birds with clean bright limbs leing the best. The flesh of this breed of fowis is peculiarly delicute.

Besides these well-marked varieties of the conmon domentic fowl, there are a number of others brought from foreign countries, which have produced mixtures pretty familiar to breeders. The Turkish, Malay, Rumkin, Russian, and Barbaty species, may be mentioned as the principal of these. It need only be obeerved here, that all the crested mixtures or varieties of fowls, are mueh esteemed, as possessing the best qualities of the race. All or any of these breeds of domestic fowle are valuable to the cottager, even one good laying hen heing a treasure to an lumble fatnily.
Hen House.-'The artificial ansistance given by the cottager in housing the birds, is usually of the scantiest order. The upper part of the space at the door of the cottage, or the baulks (loft), is often the nightly -oost of two or three hens, and the roadside is their deily walk. Yet, with the petty scraps of food furnished in addition to their own pickings there, these bour will lay gend egga, and produce fine birde. At
farm-steadings, it is common for the hens to roos among tho beams of tho stables or cattle stecls, and in lay in holes formed by scraping navay a portion of lime on the top of the eide-walls. Very little paina might give to the humblest fanilies much better and ampler accommodation for poultry. We quote on thia aathient the directions given in a little work by Mr. Peter $\mathrm{B}_{0 \mathrm{~m}}$ well of Greenlaw :-"Always in the building of a oon tuge, and sometimes even where there was no intention of the kind when it was built, very ample accommoda. tion for poultry can be provided, rilmest without a shialling of additional expense. To this purpose a part of the space next the roof, so often unoceupind and use. less, might easily be devoted. To accomplish the ot ject, a part of it next the kitchen fire gable end ahould he partitioned off, floored, and fitted up with banlla and laying-places. This could be done either on a large or a small seale, necording to the iuclination or the menns of the projector. An opening of sufficient width should be male in the wall, at the height of the lower ceiling, through which the fowls could be con. ducted, by means of a hen-ledider, to the enclosure pres pared for them below. There must be a hatchrsy somewhere, to affiord access for the purpose of inspec. tion and cleaning. If the attics are suthicicatly high, it may be placed anywhere, lut evidently with gratesit convenience in tho passage of the house; but if they are low, the nearer it is to the space portioned off for the reception of tho fowls the better. This is a locs. tion for poultry pessersing many advantages. Hsting their bet th immediately atove the colage kitchen, thry are secured in a proper degree of drymess and wornth, which in winter, especially with the spring-hatched pullets, will tell well in the production of eggs. Per. baps this is the best hen-liouse locality for securing egge in winter which can bo surgested to the frugal and judicious. Besides, the fowla are here free from many dangers, sud sate from many encmies, to which they are exposed in a lower and nore open situation."

Another simple poultry-house of siral! size may he formed by building a shed against the srathe of the house, opposite to the part wanmed by the kitchen fire, and placing cross-bars in it for roasting, with hoxes for laying in, or quan:ities of fresh strasv. Thero should always be an opprines in allow of the cleaning out, onco a week at leax., of the poilcry-house-a process to often negleeted, but wes essential to the health of the poultry. They never will thrive long amid uncranness; and oven with the utmost care, a place wheie poultry have been long kejt becomes what the howee. wives call taintell, and there they will thrive no langer. The surface of the ground becomes saturated with their exuvie, and is therefore no louger healthy. To avoid this effect, some poilterers in the country fee quently change the sites of their poultry-houses, to ob tain fresh ground; and to guard ngainst the smie mistortune, farmers, who cannot change thei hear honses and yards, purify the houses by fumigations of blazing pitch, by washing with hot lime-water, and by strewing large quantitiea of pure sand both within and without the poultry-houscs. Wushing the floor of tha bouse every week is necessary ; for which purpose it in of advantage that it be puved rither with atones lricks, or tiles. But as these three modes are cxpen. sive, a gockl flooring, which is chraper, naty ise formedly using a composition composed of time and smithy ashas, together with the ridillugs of common kitchen askes; these having been all finely broken, must be mixed tugether with water, and put on the flonr with a masuin trowel, and nicely smoothed on the suriace. If this in put on a floor which is in a tolerably dry situation, and allowed to hard-n before being used, it will berono nearly as solid and compact as stone, and is almast u durable. Thu inside of the laying-boxea requires fre
gnent nashing mominin, which the same purpe of dry sand or fi or thick tree, n elves in; this the vermin with
The office of ahould be perfor know, ns the voi fowle, and distur distribute fool a neats, to remove a cool place, to fecundated, and the time, are an the kecper. \mathbf{V} the kecper may graina of salt in cests of laying, a new.

Feefing.-M fowls awallow cess is rendered an organ which of the cow, and macerated, and From the crop second small ca digestive juice; gizzard, or last st cular and cartila In the gizzard rated, and conve ceived into the 0 cireulation. Suc all kinds of poul duced in it to fine rough and jagg of the gizzard. lead, with twelve pointa projected a the result swas, the one or two, wer surface of the cate stumps. It turating powers o instinct of swallo

Fowls, when of secds, gruins, elible suhstances face of the grour little grass, as a be allowed to run better for their. terper. When s cial manner, the the whole, seldon Gave, mileed, gri
wha who e of relisse from th range in a field or for their natural a and scraping seen
If kept in a gother artiticinl ft corsulled as far hould be ted reg of diet; allowed drinking, and ha pleasure and roll chalk or lime shot pick up, ns that production of egg
hens to room skede, and to jortion of litne e paina might or and ampler in this auhjert Mr . Peter Bow lding of a cot. is no intention e aceommola ost withont urpose a patt upied and use. aplish the obs le end should p with boulls cither on a inclination or g of sufficient lisight of the could be con. enclosure pre. e a hatchray ose of inspec. thiciently high, ; with greatest e; but if they rtioned oft for lhis is a leca. ages. Having e kitchen, thay s and warnth, spring-hatched of eggs. Per. y for securing to the frugal here free from mies, to which en situation." I! size may he le of the house, chen fire, and ith boxes for There should cleaning out, - a process too bealth of the amil unelean. a place where hat the house. five no longer. sut urated with healthy. T_{0} c country fre -housea, to obo inst the same re theii henfumigations of water, and by tha within and he tloor of the purpose it is with stones, es are expeny be formed by smithy ashes, kitclien ashes; hust be mixed with a mason's re. If this is situation, and t will becoma id is almost us a requires foo
quent nashing with hot lime-water, to free them from mrmin, which greatly torment the sitting-hens. For the same purpose, poultry should always have a heap of dry sand or fine ashes laid under some covered place, or thick tree, near their yard, for them to duat themselves in; this being their resource for getting rid of the vermin with which they are annoyed.
The olfite of keeping and managing domestic fowle should bo performed by aome indivilual whom the hens know, as the voice and presence of a stranger scare the fowls, and disturb the operations of the hen-house. 'Fo distribute food and drink at regular hours, to visit the nests, to remove eggs as soon as laid, and carry them to ecool place, to examine hy candle-light what eggs are fecundated, and place theso under the hen, and mark the time, are among the daily duties to be performed by the keeper. When the hens lay in a secret place, the keeper may readily discover it by placing a few grains of salt in the oviduct, which hurries on the process of laying, and causea the hen to retire to the spot snew.

Feeding.-Most persone are doubtless aware that fowla swallow food without mastication. That process is rendered unneceseary by the provision of a crop, an organ which is somewhat similar to the first stomach of the cow, and in which the food from the gullet is macerated, and partly dissolved by secreted fluids. From the crop the food passes downwards into a second small cavity, where it is partly acted on ly a digestive juice; and, finally, it ia transferred to the gizard, or last stomach which is furnished with muscular and estilaginous linings of very great strength. In the gizzard the partially softened food is triturated, and converted into a thin pavte, fit to be received into the chyla-gut, snd finally absorbed into the circulation. Such is the power of the gizzard in almost all kinds of poultry, that hollow glohes of gloss are reduced in it to fine powder in a few hours. The most rough and jagged bodies do no injury to the coats of the gizzard. Spallanzani even introduced a ball of lead, with twelve strong needles so fixed in it that their points projected a fourth of an inch from the surface, and the result was, that all the needles, with the exception of one or two, were ground down in a short time to the surface of the ball, while those left wero redaced to taete stumps. It is remarkuble that, to add to the triturating prowers of the gizzard, fowls are gifted with the instinet of swallowing stones with their food.
Fowls, when left to roam at large, pick up all sorts of seeds, grains, worms, larvm of insects, or any other edible substances they can discover, either on the surface of the ground or by seraping. They also pick o litte grass, as a stomuchic. The more that hens can be allowed to run about and pick up their own food, the better for their. own health and the pockets of their beeper. When secluded, and fed altogether in an artifirial manner, their keep becomes expensive, and is, on the whole, seldom compensated by their produce. We gave, meded, great hesitation in advising any one to 1 wh who cannot unexpensively give them plenty of reinse from the table or kitehen, or permit them to range in a field or lane in quest of what seems proper for their natural appetite. 'I'lus very pleasure of ranging and scraping seems advantageous to the mimala.
If kept in a court-yard or pen, and requiring altogother arificial feeding, their notural tastes should be cotsulud as far as conveniently practicable. They should be fed regularly, and with a miscellaneous kind of diet; allowed at all times access to clean water for drinking, and lave carth, ssind or dust, to scrape at pleasure and roll themselves in. A certain quantity of chalk or lime should also he scattered about for them to pick up, ns that material is required by them in the fraluction of eggs. Speaking on thia subject, Professor

Gregory of Aberdoen, in a letter to a friend, published in a newspaper, observes-"As I suppose you keep poultry, I may tell yon that it has been ascertained that, if you mix with their food a sufficient quantity of egg-shells, or chalk, which they eat greedily, they will lay, other things being equal, iwice or thrice as many eggs as before. A well-fed fowl is disposed to lay a vast number of eggs, but ca..not do so without the materiuls for the shells, however nourishing in other respects her food may bo; inderd a fowl led on food and water free from carbonate of lime, and not finding any in the soil, or in the shape of mortar, which they often eat off the walls, woull lay no eggs at all, with the hest will in the world."

In a stato of domestication, the hard food of which fowls seem most fond are peas ant barley (outs they do not like) ; and besides a proportion of these, they may be given crumbs of bread, lumps of boiled potatoes, not too cold, or any other refuse. They ars much pleased to pick a bone; the pickings warm them, and excite their laying propensitics. If they can be supplied with caterpillars, worins, and maggots, the same end will be aerved. Any apecies of animal food, however, ahould he administered sparingly; and the staple articlea of diet must always be of a vegetable nature. When wanted for killing, the quantity of food may be increased and be more substantial; they should also be kept more within the coop. A fortnight's feeding in this way will bring a fowl of a good breed up to a plainp condition.

Laying.-The ordinary productiveness of the hen is truly astonishing, as it usually lays, in the course of a year, two hundred egga, provided it be allowed to go at liberty, is well fed, and has a plentiful supply of water. Many instances have been known of hens laying three hundred in a yeur. This is a singular provision in nature, and it would appear to have been intended peculiarly for the use of inan, as the hen usually incubates only once in a year, although she will occasionally bring out two broods. Few hena aro capable of hatching more than from tweive to fifteen eggs; so that, allowing they were all to ait twice a year, and bring out fifteen at a time, there would atill be at least one hundred and seventy spare egga for the use of man. It is therefore evident that, in situations where hens can pick up their food, they must prove very profitable; for, supposing that the egge of one fowl during the year were sold, without any of them being hatched, they would bring (if near a large city) on an average ninepence per dozen, or fourteen shillings, and the hen herself would be worth two ahillings at least. As the number of eggs which are ammually brought ont by a len bear no proportion to the number which she lays, schemes have been imagined to hatch all the eggs of a hen, and thus turn her proluce to the greatest advantage; so that, in place of twelve or fourteen chickens, upwards of two hundred may he produced.

Hens will lay eggs which havo received no impregnation, but from these, as a mutter of course, no hatching can take pluce; they are equally good, however, for eating. When the chief object is to breed chickens, a cock should beallowed to walk with ten or twelve hons; but when eggs are prineipally required, the number of hens may be from fifteen to twenty. Endeavour to procure a cock of a good biced, not gume, and let him he in his prime, which is at eighteen nonths to two years old. Cocks will last two ycars, atter which they lose their liveliness of colours, and become languid, innetive, mend nere consumers of food. It is tit, therefore, that younger cocks should then take their place in the poultry-yard. It is common to make choice of a young cock hy pitting one or tivo against each other, and selerting the most courugeous, which js alwaya she favourite of the yard.

Some remarks have becn made on the colours of the best hens of the different varietics. As to other qualities, M. Parmentier recommends that they should be chosen of a middling size, robust constitution, large heal, bright eyes, snd pendant comb. Crowere should be rejected, and those that are of quarrelsome tempera, auch bens leing rarely good hotehers or layers. Cld hens, or those uhove four or five years old, are of little use when alded to a stock; and when the comb and claws are rough, it in a sign that they have ceased to lay.
If left to themselves, hens would produce, like some wild birls, two broods in the year. Early spring, and, after a cessation, the end of summer are the two seasons at which hiry begin naturally to lay. In the depth of winter, under ordinary circumstances, hens very rarely lay eggs, though, by artificial means, they can be mado so do so. If the temperature of the place where they are kept be raised hy a stove, or otherwise, they will produce eggs. The fowls of the Irish peasantry, which are usually kept in the cabins of the owners, lay often in winter, in consequence of the warmth of their quarters; and there can be no doult that warmth afforda the most effective means of procuring new-laiu eggs in winter, though stimulating fool may nid in producing the aame reau'. The fecundity of hens varies considerably. Some lay hat once in three days, others every second day, nad others every day. In order to induce laying, each hen shoute! have its own nest, made with nof atraw, nud furnished with a piece of chalk as a decoy. The signs which indicate when n hen is about to lay are well known. She cackles frequently, walks reatless ahout, and shows a brighter redness in her comb and watiles. After the process of laying is over, ahe utters a lend and peculiar note, to which the other fowla usually respond. Shortly after the egg is laid, it should be removed, for the heat of the hen socn corrupts it. When the egges are taken away by the poultry-keeper, they should immediately be laid in a cool and dry place. If allowed to absorb damp, they soon spoil; indecd, one drop of water upon the shell quickly taints the whole egg. Various methoda have been tried to prevent the absorption of air through the shell, and preserve the freahness of the eggs. A not uncommon plan ia to keep them secluded from the air in bran, rye, or ashes, which may do very well where the eggs are to be kept in this way till caten, but ia utterly useless if quantities of them have to be sent to market. We heg to offer a plain piece of advice to cottagers on this subject, which, if properly acted upon, will give them the means of at sall times commanding the highest price for fresh cggs, although situated a hundred miles or more from the place of sale. Smiear all your eggs with a bit of fresh butcer the moment you get hold of them. Dn not load the shell with grease, but merely give a light sarnish. The butter must he good. By this simple process of amearing, which docs not taint the interior in the slightest degree, the egg is as fresh at the breakfast talle when three months old as if just newly laid, and posseases all the drlicions milkiness which the freslines egge possess. Scarcely any thing is more common than to hear complaints of the difficulty of geiting fresh eggs, and all in result of the sheer negligence of fowl-krepars. By the plan we mentivaed there need never be suct. a thing as a bad egg bearl of.

Hatching, - When egrs are to bo hatched, it is necessary to pay attention to the choice of proper ones for the purpowe. Thie company of the male hird renders the ben productive of fiecundated eggs, and, as nlriady noticed, it is only $\mathrm{eg} \rho_{\mathrm{s}}$ of this kind which are availalile for producing yerog. The eges must also be frish; from the time they are laid. they should lie aside in a cool place. It ia said to be possille to aseertain fron the appearance of the egg, whether the forthconing progeny is to the male of fensule: bit we greatly doubt the truth of the
popular notions on this aubject When egga are ref to be hrought forth by the hen, a certain number is placed under her in the nest, when ahe is in the full inclination to sit. From nine to twelve eggs are plsced, according to the extent of the breast and wings; atd the time required for hatchiug is tiventy-one days. Sumetimes a hen will desert her egge, a circumatance which may oce a sionally be traced to an uneomfortalle ondition of the skin, caused ly vermin or want of cleanliness, and this affords a strong eeason for keeping the hen-house clean, and giving the animals the meena of purifying their feathers. Occasionally, the hen is vicious, or, in shor, had sitter, and experience in pitching on the best hatching hens is the only reruedy. Sometimea a hen will break leer eggs with ber fect, and in all such casee, the broken eggs must be removed as soon at observed, otherwise the hen may ent them, and from that may be tompted to break nnd est the eound ones, sud spoil the whole batch.
It has generally been lound, that hens which are the best layen are the worst sitters. Those best adapted hnve short lege, a broad body, large wings, well furnifled with feathers, the ir nails and spurs not too long or shasp. The desire to sit is made known by a particular sort of clurking; nud a feverish state ensues, in which the natu ral heat of the hen's lody ia very much increased. The inclination, or, as physiologists term it, the atorge, soon hecomes a strong and ungovernable passion. The hen flutters aoout, hangs her wingn, bristles up her feathers, marches everywhere for eggs to sit upon; and if she finds any, whether laic by herself or others, she imme diately sets herself upon them.

With a proper provision of food at hand, warmth, quiet, and dryness, a gool hatching hen will give little trouble, and in due time the brood will come forth; one or two egge may perhaps remuin unhatched or addell, but their loss is of little consequence. As soon as the lien kears the chirp of her young, she has a tendency to walk ofl' with them, leaving the unhatched eggs to their fate; it is therefore advisable to watch the birth of the chicks, and to remove caen as soon as it lecemes dry, which may be in a few hours afterwurds. By this mean, the hen will sit to hatch the whole; yet she should not be wearied by too long sitting. If all the egts ure not hatehed at the end of twelve of fifteen heurs after the first chick makes its appearance, in ail proluability they are addled, and may be alandoned. 'The clicks must be kept in a warn place during the first day, and at night restored to the mother, who now assumes her matemai duties. The food given to the young chicks should be split grits, which they rejuire no tesching to pick up; afterwards the ordinary food of the poultry-yard, or what the mother discovers for their use, is sufficient. Sonie give the yolks of hard-hoiled eags or curd, when s nourshine diet seems advisable. The extreme solieitude of the then for ber young, or the brood which may he imposed upon her, is well known. She leads thern about in quest of food, defends them by violent geticulation and the wcapous which nature has given her, calls them around her liy a peculiar clucking cry, rad gathers them carefully under her wings to shelter them from dange, or to keep them warm at night. This maternal care in bestowed as long as the chickens require her ussistance: as soon as they can shift for themselves, the mutaal at tachment ceasee, sad all knowledge of pach other is loat The young now go to roost, and the mether aguia begia to lay. Young hens, usually called 'pullets, begm to lay the spring after they are hatched.
Artificial Hatchunc.-As beat ie all that is neecseary to incubation, eggs may the hatched artificially, withoat the iniervention of the hen. This practice was criar mon in legypt in very carly times, and has since lout adopted in many other fuarters. In Lomdon, is year or two ago, a hatehing apparstua, called the Erchituhen, was colstructed on a large scalo, and waa most succew
ful in its reaulta. enmper etments, w they were subje compartment hel the whole exhibit dages. Tho reg maintaired, as w stage of the proe greater certainty by tho hen, whic the work. A vis $r_{\text {4 }}$ account in 4ino, of tha mana c The superinten conplartuent in hal chipped the would not be chip olverved the bea the shell, and gett creatures are usi nediately remove renain a few hou removed and put end of the room. glass cover can superintendent h hera for the first nours after heing then is small bru meal; these they their instinctive de Affer the brood ha partially open) fo gradually sccusto mosed to one of the floor. Jere h ing peepy cries, p themsolves, ull heir scondition as if in the evening the twelve tegether in boxes, lined with curtain in front, to and cornfortable as ox or seven in th come forth into t with sand, and p them ail the orlvan
"I mads some in ing, and deaths, an - The eggs are market, snd, conse otherwise suitahle, One hatched, the out of lifty whieh and suitable cgga Gulures in hatching efgh, therefore, are and I should recon urangements, by those which he has by keeping a regu with the place or hatching is capahle in a year, and, mal produce camnot fall the weeks oid, as to market, and sold suppose, the Eccol pounds' werth of will bo said, atter ! the ingenious con Bucknel!, deserves. the stitentio. of the

Bre reft to

 ber is placed 11 inelination ed, sccording Sometimes a ch may occa. dition of the ess, and thin -house clesn, rifying their or, in shor, a best hatching will break her broken eggs wise the hen ated to break batch.which are the best adapted vell furnishied ong or sharp. icular sort of vich the natareased. Tha 3 storge, 8000 n. The her her feathers, ; and if she r8, she immeo
and, warmth vill give little ne forth; one ed or addyer s soon as the a sendency to leggs to their te birth of the liceomes dry, $8 y$ this means, the should not egys are not pors after the obability they hicks aust be and at night her matemas cks should be (${ }^{4}$) pick up; -vord, or what cient. Somis curd, when a me solicituda which may he la then about gasticulation er, calls them gathers them from danger, ternal csre it r assistance: the mutual at. other is loat agai:a begiaa , begin to lay
is nercssary tally, without ice was cailr la since loet Dou, in year ot - Erralubwnh most succew
ful in its resulte. An oven, consisting of eight floors or enmpartments, was employed to contain the eggs, while they were subjected to heat from steam-pipes. Each compartinen ${ }^{+}$held from two to three hundred eggs, and the whole exhibited the hatching process in all its various dages. 'The regularity with which the temperature was maintaived, as well as accommodated to each peculiar tage of the process, brought out the chick with much greater certainty than when the incubation was performed bs tho hen, which sometimes cannot bo kept steadily to the work. A visuter co the Eccalcobion gave the followf . account in "Chambers's Edinhurgh Journal," No. 4 10 , of the managensent of the chick after hatehing:The superintendent of the oven polirely exhitited n compartment in which the eggs were chipping. Sorre bad chipped the day hefore, others that day, and some would not be chipped till the morrow ; in a few cases we abserved the beak of the chiek boring its way through the shell, und getting itself emancipated. When the littlo creatures are usincred into the world, they are not imnediately removed out of the oven, but are allowed to denain a few hours till they become dry; they are then removed und put into a glass-case, on the table at the end of the room. This case is very shallow, and the glass cover can be easily pushed eside to permit the nuperintendent handling them if required. They are here for the first time fed, though not for twenty-four nours after being hatehed; the material scattered among them is small bruised grits, or particles little larger than nead; these they eagerly pick up without any teaching, their instinctive desite for food being a sufficient monitor. After the brool has been kept in the glass-case (which ia partially open) for two or three days, and been thus gradually accustomed to the atmosphere, they are removed to one of the divisions in the railed enclosure on the floor. Here hondreda are seen running about, utteriug peepy eries, picking up grits, or otherwise amusing themsolves, all being apparently in as lively and thriving \& condition as if trotting about in a harn-yard. At six ia the evening they are put to bed for the night in coops, twelve tegether in a coop; these coops are small wooden boxes, lined with flannel, and furnished with a flannel rurtain in front, to seclude and keep the inmates as warm and comfortable as if under the wing of a mothur. At six or even in the morning they are again allowed to come forth into their court-yard, which being strewed with sand, and proviled with food and water, affords them ail the salvantages of a run in an open ground.
"I mads some inquiries respecting the failures in hatching, and deaths, and received the following information: -The eggs are usually purchased from Leadenhall market, and, consoquently, not being altogether fresh, or otherwise suitable, one half of them fail in hateling. Once hatched, they are safe, for not more than one dies out of billy which are brought into existence. If good and suitable eggs could be procured in all seumins, the Gillures in hatching would be comparatively triqing. Bad eggs, therefore, are the weal point in the es?ablishment ; and I should recommend the proprictor to complete his arrangements, by adding an egg-laying department to thase which he has for hateling. This might be done ly keeping a regular poultry-yard, either in connection with the place or in the country. The apparatus for batching is capable of producing forty thousand chickens in a year, and, making allowance for failures, the actual produce cannot fall far short of half that number. When tine weeks oid, as I was informed, the chiekens are taken bomarket, and sold for a shilling each. 'J'hus, we should nuppose, the Eccoleohion turns out at least a thousand pounds' worth of chickens anuually-no bad revenur, it will be said, after payiog expenses, lut not greater than the ingenioua contriver and proprietor, Mr. William Ducknell, deserves." The writur concludes by calling the attentia. of the public to the ease with which simititr
establishments might be got up in all arge towns. The price of poultry, he arguen, might he greatly lowered in the market, and the dietary resources of the common people muterially ionproved and extended.

Capons.-The best modes of fattuling fowls for the table have been adverted to. The process of converting chickena into capons, however, ought also to be noticed here. By removing the reproductive and oviparous organa from the male and hen chickens respectively, a great change is produced on them as regards voice and habits, and they can be made remarkably fat for the table. Capons ere chiefly reared in Sussex, Fssex, and one or two other counties around London. 'They can be trained to watch chi:kens, hatch eggs, and do inany useful offices of the poultry-yard. Upon the whole, however, the apecial tenefit derived from rearing capons ioes not counterb lance the trouble which they give.

Divenses.-Chickens are liable to various discases, demanding attention from tho poultry-keejer. The pip is tho most comonon; it consista of a catarrhal thickening of the membrane of the tongue, causing a dangerous and obvious obstruction to respiration. It may be cared in most enses ly throwing the fowl on its hack, holding open tho beak, and sersping or pealing off the membrane with a needle or the nail. The part may be wetted with salt or vinegar afterwards, and a little fresh butter pushed over the thront. Dr. Beehstein recommends giving a mixture of butter, pepper, garlic, and horse-radish, as an intermal remedy. But the operation is most effective. Thirst sometimes attacks fowls like a fever, and often arises simply liom dry food, though more frequently symptomatic of indigestion, or somo internal and deep-seated derangement. Careful attention to diet is the first and great point in all such cases. If comstipation appear to be present, bread soaked in warm milk, boiled carrots or cabbages, earth-worms, chopped suct, or hot petatoes with dripping, will be found useful. A clyster of sweet oil should be tried in snvere cases. Where a tonic seems to be required, a little iron rust may be mixed with the food, and will generally relieve atrophy or loss of flesh. Where diarrhoea or scouring is olserved, iron or alum may be given in small quantities. There is nlso a species of infuerma, culled the roup, which is olien epidemical in the poultry-yard, and causes much havoc among the young birds. The eyes becomo swollen, a discharge comes from the nostrils, and the fowl gapes continually, showing much difficulty of breathing. Some olservers have ascribed this complaint to worms in the windpipe, and have recommended thoir extraction ly an operation; but warmth, cleanlinesa, and soft food, and such laxatives as sulphur, with frequert ablutions of the eyes and nostrils, are more likely perhaps, to do good, and are not attended with danger. Where general fever has been observed in fowls, the uee of a little nitre has been fount very advantageous. Saftron is another remedy very oftci smployed in relieving the symptoms of sickness in fow!.

Many of theso remarks will apply equally well to the diseases of geese nud the other species of domestic pouktry yet to be noticed, and this sulject, thacrefore, need not agnin be adverted to in detail.

Turkeys.

The turkey, like th" common chicken, has been itcluded hy maturalists i. the Gullinacrous family of hirde. and possesses the main characteristics common the ", whole. It is certainly one of the most valuable fers which havo been naturalized in this country, but is very difieult to rear. The turkey-hen lays from fifteen to twenty eggs, and then sits upow them. She will bring out two broods in a year. The eggs are of a pale yel-luwish-white colour, finely streuked and spoted with reddisl-yel'ow. They are a moot delicious tood, much more delicate in their flavour tham those of the common
nwir. In Etuglan 1 or Scotland, however, the eggs are seldom in be met $w^{i t h}$ for suic, being deemed too valuanice to he used as ford. In Ircland they arr to be got in the murkets in great shundanee, espocially m the inidland countica, where we have bought then at ninepence pet disen. In that eouniry, when the turicey-hen has laid about half a dozen eggs, they afterward take away one daily, by which meana the hens are inticeed to produce a greater number of egge than otherwise. I'his they ussist by means un stimulating food, such an hempseed and burk-wheat. There is an interval of a day hetween the laying of each egg. It is said that the first two egge which she laya are unfruitful. A turkc; -hen can seldom hatch more tian from sixteen to eighteen cgss. The time of incubation varies from iveenty-seven to twenty-eight days, at which time the yoning begin to pieres their shelly prison, and emerge frota it. When they first come forth, they are oxtremely wouk, and much asaiduous care is necesary to rear them. The tirst thing to be attended to is, to remove them to a situnion where they aro not exposed to the son'a nyys, which it first aro too powerful for then. A wooly place in the most suitable to their natural habits. Nothing is so destutetive to than as rain, from which they must be protected.

When young tarkeys aceidentally get wet, tirey should be brought into a house, carcfully dried by applying son b-sels to them. and then placed near a fire, and fed upn bicia!, which has been mixed with n small proportion of eround ["pper or ginger. It shout be made up in the form of senal' peras. If Chr fread is ton dry for this purgose, it wat le madigat with a latle sweet milk. Should the fakern. lte refore to cat it, a fers of these pellots uay be forcel ban bri, ropts, Eunli heavy
 juricus in its elfoces. "The:at henest anderfore the roost caretilly g lan we araint, who. the ber, incubate in March or early in April. Try and samily situations ore mout congenas for breding tukey, and especially elevited situatinas where large woods are contigrous. A single mate turkey is sulficient for twelve or sixtcen females, although the former number is probably the safest, to prevent ata fility in the eggs, which is frequentlv the case with those of turkeys Ejg3 should never lee intrusted wo the care of n. female until she is at least two yeare of age, and they may he kept for the purpose of incubstion till they reat their tenth year. The largest and stiongest hens should always do kept for this furpuse. 3uring the time the hen is sitting, it becomes afecessary to shace food near her; as otherwise, fron her assiduity, sice inay be starved to death, as turaty yenr seldom incre from their nest during the whole titic of incubation.

Where farmers rear turkeys in great numbers, ther do not induge the hen by allowing her to sit as soon as she has done layimy, hut keep them from her until all the other hene havo ceased to lay, as it is of consequence that they slwuld sll he hatehed about one time. Wher beas are unhappy during this interval, they may le indulged with hen's eggo. When they have all ceased to lay, each of then is provided with a best ranged close to the wall, in a barn or other convenient place, and each is supplied with from sixtec, to twenty of her own eges. The windows and doors are then closed, and on.ly "pened once in the twenty-four hours for the admissien visir, and for the purpose of ferding the hens. They are taken off their nests, fed ard replaced, and again shut up. On the twenty-sixth lay, the person who is entrusted with the management of the hirds examines all the eggs, and renoves those that are addled; feeds the hens, and doen not again diz: , thein till the poults nave emerged from their shelts. fictly diry, from the heat of : have become perubliected to coll at thi: time would certaing; as be W'Len the ywing birds are thoroughly dried, two of
the broods are joined together, and the care of them intrusted to a single hen; and those which havo been deprived of their offspring are again placed on hen'a of duck's eggs, and anbjected a second time to the tedious operation of incubation, in which case it is not unurual for them to hring out thirty egge. We cannot recommend thia practice in point of humanity ; for the poor henn, when thoy have secompliehed their second sitting, are literally reduced to skin and bone, and frequently so weak as hardly to be able to walk.

As before hinted at, great care should be taken of the young turkey-poults; besides warmth, proper food, and shade, the nearer they are to a pore: rmatir y atream the better, as they drink a groat deal, ond nothing is of
 fresh drink. They muss ine also archully protected foita
 of a thunder-storm, ahould ke immedintely taken the d house. They whould get no food for :- elel: 3 ar how ntter they leavi the egg. 'Their first font s^{\prime} :ount ba bont iviled eags finely chopped, and mixed with crumss of brail. Curd is a an an execile it food for them. When they are about a weck old, builed peas and mixed scallio:se ars given to them. If egga are contiaued, the shells should be mineed down with their food to asyut digestion, or semen very coarse sand, or mhitate j ables They should bu fed thrice a ray; and as they get whet, - mixtare of lestuce-n lik will be found bermictal, to gether with minced netis. Bruley $b \therefore$ if in mill E nother excellerit food ot this period, nari in a oats kidd in milk. In sloot, the constituib,n of young turkers requires at all ugea every hind of stimulating food When about three wioks old, their meat should convis of a mixture of mince 1 lettuce, nettles, curdled milk, hard-boiled yolks of egge, bran, and dried camomile; but when all these cannot be readily obtained, part of them inust the used. Fennel and wild endive, with a plants which aro of a tonic charaeter, may be safely given to them. Too much lettuce, however, has been found to be injurious. When poults are about a monle oid, thoy should be thmed out, along with the parent bird, into the fields or plantations, where they will find sufficient food for themeslves. Girass, worms, all kinds of insects and snails, are their favourite food, and nature dictates to them auch vegetablea as are conducive to thein general health. As their feet are at first very tender, and subject to inflammation from the prieking of nettles and thistles, they ought to i_{x} rubhed with spirits, which has the effect of hardening the akin, and fortifying them agninat these planta.

The glandulous fleshy parts and barbles of theis heads begin to deveioo when they are from six weeks to two monthe sld. This is critical period with the poults, and unusual care must be bestowed on them, ss they now become weak and often sickly. A little brine mixed with their food will be found very leneficial, or spirits much diluted with water. A paste made of feunel, pepper, hempsced, and parsley, has been fo in an excellent remedy when afflicted with an influname tion in the wattles, to which they are lioble whon gion. ing. They are vary subject to this if the weather hap pena to be broken and changeable at the time these to berclea are growing. Thesc parts awell and grow retg red, which frequently proves fatal to them. If, thers fore, such be the state if the weather et this critid period, the pasto alova tro. mmended should be girea elthough they are po; an excellent preventa comes very great, rethe axillary $4, \mathbf{w l}$

Boon after feathers, they to them, if $n .4$. in 10 a thease which is very fota great delility,t as i: hapila appcar languid and drooping
and almost tot wing feathers plumage has a dimase in two amenation, the blood. The o them out, when health and spiri
In fattening t resortel to. So okim-milk, and otherm merely c class allow them tice, from the ex can most rely, i however, be tak are allowed to r thould also be ther will genera cord. 'They sho ot-meal and ski their being killod have found, from chased for the ta crease in bulk, tho with food and fre liable to lose flesl of fond will nlso : Swedish turnips, oat-neal, will be g is pructised by so termed cramning rcumbs of breal, even cream, into which is passed o

The peacock, al birds, came origina known to the anci duced it into their n so ample in extent deed not tuworthy
One peacock is The female is extre and generally leave some neighhouring branches of a slirul reason for this is th eggs if he discover t are gathered in suff ral or artificial nest, under a common he and makes an exre These are very ten even in a chilly clin cheese or curd preps meal-worms, and ha articles of diet give fowl feets on boiled ir a dangerous neig ane. On the othe wach creatures as f grounds clear of suct is requisite to he n"timen and to m. and fresh wate" cocka were rani d a elirea, the bind is ra Yet it alwaya hears beautifil of the feat tio ege ever delights by ue memng gives n on hen's of I the tedioun not unurual mnot recom for the poor econd sitting, frequently
taken of the per food, and : 4 stream the minng io of rewed thad nceretod funs ait : ppearerom taken iniu.
 touill ho berth th crumbs ot them. When ad mixed scal. contiaued, the food in assat w.ate y ables they sat when, beracictat, to in mill $\frac{1}{}$ Th a oststaind young turkes: malating food should convist curdled milk ied camomile; tained, part of endive, with a may be salefy vever, has beea about a month with the parent e they will find forms, all kinls ood, and nature nducive to their rst very teade? cking of nettle h spirits, whirh fortifying them
barbles of their om six weeks to period with the ved on them, as

A little brine ry $b \in$ neficial, a paste made ol has been fornd h an infl sans able whan gios. ue weathet hap. e time these to and grow rity hem. If, there at this rritical should be givet ch will be found aflummation be I to hleeding in ers thein. quiced their frat ieh is very fitu emper prodoce id and drooping
and almost totally neglect their footl. Their tail and wing-fenthere assame a whitish nppearance, and their plumage has a bristled acpect. This is ocessioned by a diwase in two or three of the rump-feathers. On examanation, the tubes of theso will he found filled with blood. The only remedy for this disease ls to pluck them out, when the bird will speedily acquire its wonted health and spirits.
In fattening turkeys for the tahle, various methods are resorted to. Some feed them on barley-meal mixed with akim-milk, and confine them to a coop during thia time; others merely confine them to a house; while a third cless allow them to run quite at liberty; which latter practice, from the experience of those on whose judgment we an most rely, is by far the best method. Care should, bowever, he taken to ferd them ahundantly before they are allowed to range nhout in the morning, and a meal should al3o be prepared for them at midalay, to which hee will generally repar homewards of their own accord. They should be fed at night, before roosting, with artmeal and skimomilk; and a day or two previous to their being killed, they should get oats exelusively. We have found, from experience, that when turkeys are purchased for the table, and cooped up, they will never increase in bulk, however plentifully they may be supplied with food and fresh water, but, on the contrary, are very liabla to lose fleah. When feeding them for use, a change of find will also be found beneficial. Boiled carrota and Swedish turnips, or potatoes mixed with a little barley or oat-mesl, wiul be greedily taken by them. A cruel method is practised by some to render turkeys very fat, which is vermed cramming. This is done by forming a paste of rumbs of breal, flour, mineed suet, and sweet-milk, or even cream, into small balls about the bulk of a marble, which is passed over the throat after full ordinary meals.

T'es-Fowi.
The peacock, slso one of the Gallinaccous tribe of lirds, came originally, it is said, from India, and was well known to the sneient Greeks and Romans, who introduced it into their mythology. The great beauty of its tail, so ample in exte nt und so rich in colours, rendered it indeed not unworthy of such preterment.
One peacock is usually kept with three or four hens. The female is extremely fastidious about a spot to layoin, und generally leaves any artificial nest for tho grass of some neightouring coppice, where she lays under the branches ot a slirub, in a well-concealed situation. One reason for this is the propensity of the coek to break the egss if he discover them. When the eggs of the pea-hen ue gathered in sufficient numbers, whether from a natumal or artificial nest, it is a common practice to place them onder a common hen, which hatehes them in thirty days, aad makes an excrellent stop,uother to the young chicks. These are sery tender at first, but soon grow vigorous, even in a chilly climate. Barley-meal parte, mixed with cheese or curd prepared from milk, with alum, anta' eggs, meal-woms, and hard-hoiled egg, are among the common articles of diet given to the young. The grown-up peafowl feeda on boiled barliy or other common grains, and in a dangerous neighbot to corn or wheat fields and ge:and. On the other hand, thry are voruciously fond of woch creatures an frug ?izare!, and the .a e , and keep grounds elear of such i shares. Yn nembling-time, it is requisite whe new wandul of these towla than at other timat, and to me \because an good grain, with is intle honey, and fresh wate". i'hough the tongues and livers of peacocka were rune damong the duinties of the Roman epieures, the bird is rarely killed for the table now-adays. Yet it always bears a high price, being one of the most beautiful of the feathered race, and an ohject on which the ege ever delights to dwell, though its screaming note vy ue mesna gives a correnponding pleasure to the ear.

The Guinen-Fowl.
This stranger is found native in Africa, as its nama indicates, and it also exists in on indigenous state is South America. The Guines-fowl or Pintado is about the aize of the common hen, and the male difiers very little in appearance from the female. Three species exist in considerable numbers in Europe, namely, the crested, the mitred, and Esyptian varieties. A very beantiful sort is marked by a pure white tint of body hut the most familiar hues are dark-gray and black. The birl is less tame than other common poultry, and prefers to live in a half-wild condition in ita native regions, perehing and living on trees like undomesticoted birds. It is a spirited crenture, and will battle even with the turkey. The guinea-hens require great attention at the time of laying, making their neate by preference in corners of the woods. The commonten is usually made to rear their broorls. In the market, guinea-fowls always hear a high price, buth on account of their fleah, which it of a good quality, and because they form a very pretty variety of the poultry atock. Their food is grain, of the various kinds given to ordinaiy barn-door fowls, with whith they tesimilate closely in habits.

The Goose.

The goose differs in many respecta from the forin already noticed, teing aquatic in its habits. It is marked by a fint bill and webbed feet, eharacters also possessed by the duck and swan, which, in cunjunctica with the goose, may be held as forning a distinct family (Anatide) of the feathered aquatic trihes.

Our common tame goose is the wild species domeaticated, known to naturalists by the name of the fen or stubble-goose. Where people bave a right of common, or live in the vicinity of marshy beaths, the breeding and rearing of geese will prove very profitable, for in such situations they are kept at a tritling expense; they are very hardy, and live to a great age. If properly kept, and fed regularly, although sparingly, they will lay upiwards of a hundred eggs yearly. If these are set under large hens, each having half a dozen, with the assistance of the goose herself, they may be nearly all hatehed. For the first three or four days, they must be kept warm and dry, and fed on barley-meal or oat-meal mixed with milk, if it is casily procured; if not, let these ingredients be mixed with water. They will hegin to grow in about a week. For a week or two the goslings should not be turned ont till late in the morning, and should always be taken in early in the evening. In Irelam? the tenantry depend much on the breeding of these birds and turkeys to pay their rent; and with these who are indistrious and favourably situated for rearing geese, they even do more in many instances. In the early pari of the year they are nllowed to feed on grass, on heaths, meadows, and cominons; and as most of the peasantry have smali bits of corn land of their own, the geese are turned out on the stubble to pluck what grass is left; and they also fatten upon it, ar. 3 im prove the flavour of their flesh.

Although water be the natural element of geese, yet it is a curious fact that they feed much faster in situations remote from rivers and streams. To fatten geese it is necessary to give them a little corn daily, with the addition of aome raw Swedish turnips, carrots, mangelwurzei leaves, lucerne, tarca, cabhage leaves, and lettures. "hey should not be allowed to run at large whin a they are fattening, as they do not accutire flesh neaily so fast when allowed to toke much exercisa. Therefore, these who can only afford to bring up a goose or two, should confine them in a crib or some such pince about the beginning of July, and fecd them upon the ingredients gbove recominended, with a diaily supply of
slean water for drink. If, on the contrary, from a dozen to twenty are kept, i large pen of from fifteen to twenty feet aquie muat be made, and well covered with atraw in the bottom, nall a covered house in a corner for propection againat the aun and rain when required, because exposure to cither of these is not good. It will be obeerved that, about noon, if geese are at liberty, they will ocek some shady apot to avoid the influenee of the sun; and when confined in small places, they have not aullicient roon to fitp their wings and dry thetese a ater being wetted; nur have they room to move atiout so as to keep themaclves warm. There should ito three troughs in the pen, one for dry oate, another for vege-tablea-which ought always to be cut down-and a third for clenn water, of which they must nlways have a pleutiful smpply. It must he rememberel, that the riper the cabbages and lettuees which they are supplied with, the better. In the neighbourhood of harge towns, the riost profitable way of disposing of geese is in a dead state: as nearly the same sum ean be obtained for them as if they were nlive, and then you have the fothers, which are valunble, and may be sold to much advantage bit thenselvea when you have collected a atone weight of more.
Geese are kept in vast quantitiea in the fena of Lincolnshire, several geraons there having as many as a thousand breeders. 'They are bred firr the sake of their quilld and feathere, as well as for their carcass; it ir therefore customary to strip them partially of the eire downy feathers, and leave them to grow afresh, and biso to take quills from their wings-hoth practicea barbno ous in the extreme, however they may be attempled to be justified. Guese breed in generul, only once a year, hut If well kept, they sompetiones hatch twice in a season. The best method for promoting this is to feed them with corn, barley, malt, fresh grains, and, ns a atimbilant, they shouid get a mixture of pollard and ale. During their sitting, each bird has a space alloted to it, in rows of wicker prens placed one nove another, and the goose. herd, who has the care of them. drives the whole florli to water thrice day, and, bringing then back to their habitation, places every bird (without mosing one) in its own nest. Gate gamer is generally put to five gease. The time of inculation varies from twerity-neven to thirty daya. The goose begina to lay in March, hut the time of the month depends upon the state of the atmospliere. When goslings are first allowed to go at large with their dain, every plant of hem!ock whick grows within the extent of their range should be pulled up, as they are very apt to ent it, and it generally proves fatal to them. Nightshade is also ecgually pernicious to them, and they have heen known to be poisoned by eating sprigs of gew-tree.

Ducks.

Ducks are a kind of fowl easily kept, particularly near ponds or streams of water. In sich situations, even the pooreat faoilies may have half a dozen of them running alout without the least inconvenis'nce. In keeping them ln a domestic state, one drake is usually put to five ducks. 'I'he ducks hegin to lay in Fehruary; their time of laying leing either at night or early in the moraing. They are extremely apt to deposit their egge at monse aequestered apot, and to conceal them with leaves or ntraw. From eleren to fifteen eggs ia the number which a duck can properly cover. The time of incubation is about thisty-ono days. The place where they incubate should be as quiet and retired as possible; and if they have liberty, they will give no tromble whatever in feeding, as the duck, when ahe feels the call of hunger, covers her eggs carefully up, and sceks food for herself, cither by going to the etreams or ditches in her neighbourb d, or, if such are nut at hand, she will come to the cottage and intimute her waita by her squalling When the ycung are hatehed,
they ahould be left to the care of the duck, who will rewd them forth in dne time; and when alhe does no, preparea coop for them, which should lie placed on ahort grame if the weather is mild; and if cold or atormy, they should be kept under cover. The future strength of tha brood will depend much upon the care that in taken of them for the ifret three or four weeka after they have emerged from the ahell. Ducklings will hagin to wash themselven the first diny after they are hatehed, if they finil water at hand. Therefore, a flat dish filled with that element shouhl he always within their reach. Many persons are in the pructice of clipping the tail, and the down heneith it, in ducklings, if the weather is wet during the fint weeks of their exisience. 'This is to prevent them from Iraggling theoraselves, which has a tendeney to produce intestinal lisensos. From a fortnight to three werks is all that is neceasary to confine them to the coop.
'i he firat thing on which ducklinga are fed in a mix. ture of barley, peas or oat-meal, and water. They may ofterwarda be fed upon a mixture of buckwheat ond any of the above nomed meals. 'I'he greatent attention must he paid to keeping their bel warm and dry; and with young ducks a frequent chunge of atraw is obsolutely necessary, as their beds soon get dirty and wet.
Ducks are not such attentive guardians of their ynung an herns, and therefore it in a common practice to place duck eggs under a sitting hen, and leave her to hatch them an her own progeny. When the young ducken mo Inatehed make their nppearance, tho hen does sot appeas aware of the imposition, hut takica at onee to her dutien with all a nother's fondness. The matural desire of the ducklinge to plunge into water und swim away from the shore vexes her, but whe watches for their raturn, and does all in her power to provide the means of sulsistence. She acraper for them, which a duck would not; she sher. ters them under her dry and warm hosom nal wings, and altogether makes a better nurse than their own proper pareut.
lu ferding ducks for use, pens and oat-mesl are to bo prefirred. It is anid that barley-meal renders their tlesa soft and insipid. Braised oats should be given to them freely for aome weeks before they are killed, which renders their flesth solid and well tasted; and the name general principles recommended in the feeding of geese shonid we kept in view. It has been found that the offal of buthers' shops feeds ducks quichly, and that this dora not impair the flavour of their thesh. In very many in stances, lucks are reared in situations where there are no pouls of cleat water for them to dabline in, and the peor arimals are compelled to grub with their bills in all sorts of nauseous puidles, wlich, of conrse, makes their fleah rank and offensive. 'T'b, y should in all cases hate a pool of elean water to swim in, and are hest raand near a natural meadow, where they can search for then appropriate food.
'Those who have paid much attention to the manage ment of domestic poultry, usert that gecse and ducks should the kept apart from other fowls. 'I'he former should have their houses rariged along the banks of a piece of water with a fence, and sulficiently extensuve for walla in front, with doors for their acceas to the water, which can be closed at jleasure.

Swans.

Swana are a clasm of aquatic fowls kept for ornmmen rather then une. The flesh, even of the young, is hark, hard, and rank, while that of the old is too tough for masti cation. The eggs, also, are not preuliarly palatable; and there is littl: inducement to rear them, in short, if mes pecuniary advantage be looked to, excepting on the scon of the skin, feathers, and wown, which are articles of cons siderable value. At the sam. productive bird, fes animatu
if the rwan be no 1 nith it as regarda ornument. can be compand sizo, staw.whim
plumage, and gra ppectacle upon hardy, long-lived of the swan consi rendered succ:iten it weldom thriven, than ducks or gee awan celing so uni to bo proverhially waushavo been!

Pigeons are am appendages of a abroad to seek thei for their keerp, whi some importance t power of tlight, an in quest of the in aixy dy, it nevaer la fures of the distric impressed on its m and with a wouclorn maembered landm ?luas halit of seerki makes it difficult to best plan of inducin dip one wing, wh them in a cot near wo the place.
Many persons ke the garret nud roof which they go out a ery well, for the ar fortable. A tnore r properly-conatructed The cot should cons. s sloping roof, und c many cells as pairs y diatinct cell. Eat: from front to linck, a bale should not be o aride, so that the pis, of sight. In front or wood to rest and coo santly quarrel about and are opt to tight t separate the slipes wit on improvement to h vae large one. 'The ec elerated on a wall placed at such a heid and other vermin. the pigcon is attructe strewed on the groun being fond of picking necessary for the nes the health of the bin should therefore tuke dung prodered in the to the compost hea, deaning.
In commenring to be procured which ha up lor a time, nad w, and the kind which t Sonall horseburans are rerv nutritious tc: the with rspe, hemp, ath them, but should not anler any circumatat: "he house-lluve or inails to bered about $\mathbf{Y}_{\mathbf{0 L} .}$ I,--81
tho will teat so, prepares hort grase, it - they should of the brood aken of them ave emerged sh themselves find water at that clement y persons are lown le neath ring the firat int thein from cy to produce hree weeks is coop. fod is a mix. They may wheat and any attention must Iry ; and with I is absolutely wet. of their young acties to place , her to hatch oung ducks so o's not appeat e to her duties al desite af the away from the eir ruturn, and of suhsistence. I not; she hheband wings, and eir own proper
t-incal nre to be aders their flesh given to them 1, which tenders o sulase gencral If gecse should but the offal of that this dous very many isvhere there are he int, and the their bills in all see, makes their n all cases hare are best teured seurch for thut
to the manaze crise and duck ie furmer shoun of of a piece d asive for whilio te water, which
for omament young, is hark, touch for mastu y palatuble; and is sloort, if mate ing on the scors e srticles of cor caman be not 1 ais be compand $i z e$, anow-nhill
pamege, and graceful form, renter it a most attractive prectacle upon the hosom of a pool or loch. It in a hardy, tong-lived fowl, ant! numariaten in phira. The fool of the swan consists, uaually of reede, roots, and plants, rendered succetient by water. When fed lin a barn-yard, it soldom thriven, being more decidedly aquatic in its halite than ducks or geese. From the colour of the Eirropean owan ceing ${ }^{\text {oo }}$ uniformly white, a black swan used unce to be proverbially aproken of as in impossibility, but black wans have been found of late in Australia.

Pigeons.

Pigeons are among the most ornamental and ureful oppendages of a rural dwelling, It permitted to Aly abraad to seek th.eir foorl, little expense will he incurrid for their keep, while the value of their young will be of some importance to cottagera. Tho pigecn has a grent power of light, and witl go to a distance of mnny miles in quest of the neans of subsistence; but wherever it mas' ly, it never fails to return hone. The leading feafures of the disitict around its halitation appenr to he ienpressed on its memory, and. Aying at a great height, and with a wonderful power of vision, it sees the wellromemberd landmarks, and dircets its path homewned. Tlis hahit of serking for the phace nt which it was reared, makes it difficult to keep pigcons in any new home; the best plan of inducing them to aettle in a now abode, is to dip one wing, whieh provents their flying; and keep them in a cot uear tho ground, till they get accuatomed wo the place.
Many persons keep their pigcons in the space between the garret and rool of their dwelling-house, with holes at which they go out and in ; an!! this arrangement answers rety well, for the animal's lodging must he dry ant comfatable. A more regular plan ia to furninh them with a properly-conatructed dove-cot, nloof from any building. The cot should eonsint of a substantial woolen box, with a soping roof, and divided interiorly by partitions into an many cells as pairs are to be kept, for each pair requires a diatinct cell. Fach cell should be twelve inches deep from front to hack, and sirteen inches broad ; the entrance lame should not he opposite the centre of the cell, but at aride, so that the pigeons may build their nest a little out of sight. In front ot cach cell there shonld be a slip of wood to rest und coo upon; but as diflerent pairs incessantly quartel about the right of walking on these slips, and are apt to fight for the possession of cells, it is heat to separste the slips with upright partitions; and it would be on improvement to have two or three small cots instead of one large one. The cot, of whatever size or form, should be elerated on a wall facing the south-east, or otherwiso placed at such a height ns will be out of the reach of ents and other vermin. The cot should be pminted white, as the pigeon is attracted by that colour. Gravel shoold the slewed on the ground in front of the dove-cot, the birds being fond of pirking it; and a little straw or hay is necessary for the nests.-Cleunliness is indispensable to the health of the hirds, and a scouring out of the cot should therefore take place regularly. The quantity of dumg prodesed in the nests is very great, and its recinoval th the compost heap will amply repay the troulde of cleaning.
In commencing to keep pigcons, h pair or two shoukd be procured which have not fown, and they should be shut up tar a time, and well ted. ?heir chief food is grain, and the kind which they prefer to all others is dried tares; Sinall honebeane are anothe" "touritearticle of diet, ar " werv nutritious to them. is. , barley, oats, nud jeas, with rape, hemp, anti ; wes acels. are also prized ly them, but should not be se se ceriant articles of tood 2n ler any circumstances.
'he huusedove or common pigeon, as in woll known, Wende to bred about tho age of nime montha, and breeds $V_{01}, 1,-\infty 1$
overy month. During breeding arte, they pasocinte in paira, nud pry eourt to oach other with th..ir bills; the femnle lnyn two eggs, and the young onc, that are produced are for the most part a malo and iemale. When the egge nre laid, the female, in the spnce of fifteen dnya, not including the three days during which she in employed in laying, continues to hatch, relieved at intorvala by tho male. From three or four o'ciock in the evening, till nine the next day, the female continuen to sit ; ahe is then relieved by the male, whe turen hisplace from ten till three, while his mate is feeding asroad. In this mannor they sit alternately till the young come out. Kept with ordinary care, a pair will give to the breder nine pairs or no in a yenr, nud will continus to do this for four years. 'The lird lives tor cight years, but is useless for breding long before attuining that age. On the whole, the cottager who keeps in few paira mny havo a palatable wldition to his diet frequently during the year with very little trouble.

With regard to the hest breds of the common domestiented pigeon, it is diflicult to give may useful instructions. They linve been cultivnted to a great extent, and many distinct varietiea have been formed, hut tho differences rest shiefly in colours, and the spceina vulue of each lies in the tuste of the f:incier. 'I'he leading varieties of limey pigeons are known by the names of the English Pouter. the Dutel Cropper, the Horsemun, the Unloper. t^{2}. Drugoon, the Tumbler, tho Leghom and Spanish Rimnt, the Trumpeter, the Nun, the Fnn-tsil, and the Capuchin. The peculiarities of some of these breeds ose very odd. The tumbler, tor instance, derives its name froin a practico of tumbling in the nir while on the wing. Instend of pursuing a steady straightforward flight, it turns over, or carts somersets backward, whirling cound heels over head as expertly as a firsi-rnte rope-daneer does when be makes the back spring. The fan-tnit derives ite ume from the circunstance of tits having n remarkably broal tail, which it has the power of apreading out like the tail of a turkeycock. The prime quality of the bird cousists in its nhility to make its tail touch its head, and surround it with. a wide glory of fathers. If it cannot do this, it is valueless to the fancier, no mette 'un: excellent are its othir properties. Anusing as this whardity i_{s}, it is not ao laughablo as the qualities which $\mathrm{r}:$ ann mend the English pouter to pullice favour. This lind, which is a cross between a hors:thun and a eropper, fic aesser the remarkable property of hlowing out its breast or crop to such an oxtent that it rises to a level with its leeak, and the lird appears to look over the top of an inflated bladéc.
('arvier ligeons,-Pigenns have been put to the remirkable purpose of ne'ing as carriers for letters or other light ohjects. A partieular species, larger than commen, is traised for the purpose, and in some colntries the rearing of them forms a lucrative employment. The instinct which has rendered the carrier-pigeon so serviceable, is the strong desire manifested by all pigeons to rewirn to the place of its ordinary residence ; and mon $]$ is alopted various precautionary measures in order to mait trat. an on particular occasions more certain. A wiev wan iemali are usually kept together and treated will; and one of these, when taken elsewhere, is supposed to have the grenter inducement to come back. It is even considered hy some that the bidd shontl have left egrgs in the process of incubation, or unfledged young ones, at home, in order to make the return eertain; but prolably these are superfnous precautions. It is obvious that the carries pigron can only be put to use in contormity with sone contemplated plan, for which the proper preparations havo been male. It must ruve been taken from a place to which it is wished that it should return, and it must, at the mon nt when its gervicesare wanted, be tempurarily at the place from whieh the i.stelligence is to be conveyed It is usually taken to hat place hoodwinked, or in a

342
eovered baske. © the instinct by which it finda ita way back upon its own winge, munt of courme be "ndeprendent of all knowledge of the intermediate lisealities. When the moment for employing it han arrived, the individoal requiring ita mervice writes as amall billet upon thin paper, which ie placed lengthwiwe ander the wing, and fintened by a pin to one of the feathern, with mone precuutionin to prevent the pin froll pricking, and the paper from filling with air. On being refeaned the carrier asecods to a great height, takea one or two tarma in the air, and then "omnences its forward carecr, at the rato of forty milea in the hour, or about ithounand a day.

OULD FISH.

Thene beautiful little crentures, wheh win pela of the drawing. oom, being original!y from a watm dimate, require to be kept in spastinenits of a genial temperature. They are usunily hept in a cryatal glole which btande on a table, and the water ahouk be changed daily. The water munt not be given in a cold state, hat wllowed to atand in a warm room for an hour before leing put into tho globe: thin precaution may not be necesaary in summer. The food given may consiat of amall crume', of bread, and small fliea; the fish are foond of the hlows of the bluc-bottle filien; a little duckweed may be otlered on the nurface of the water.
Gold fish breed freely in ponds or tanks in plensure--grounds, but they require to be removed during severe weather in : 1 , cer. They thrive well in nll measous in ponda into which a little warm water is conatantly flowing. In the heantiful work of Yarrel on British Vishes, the authur upeoks on gold fish as follown :nem It is well known, thut in manufacturing districts, where there is an inadequate supply of cold water for the conelensation ot the steam-engines, recourse is had to what are called engine-dams, or pond 4 , into which the water from the steam-agine (or conciensed atcam) is thrown for the purpose of being coold. In these dains, the nverage tomperature of which is about eighty degrees, it is common to keep gold fish; and it is a notorious firt, that they multiply in these situstions much more rapidy than in ponda of lower tomperature exposed to the variations of the climate. Gold tish are by no meana uscless inhabitante of these dama; they consume the refuse grease, which would otherwise imirede the cooling of the water by accumulating on its nurface."

Cage birds.

The birda uauslly domeaticated in cages in Britain are canaries, goldfinchea, larks, thrushes, hackbirds, sind parrots. The only means be which thase or any otiwr apeetes ot birda can be resrad and preserven in a henliht condition, is to accommodate each us far as possible with the food, apace for exerciaa, and other convenjences which the animal woukd enjoy in a atate of nature. The mont difficult thing to afford is srace: shere n room or aviazy can le fitted up with all requisite accommodation -perchea to resemble trees and branches, grass, moss, and other plants, patches of gravel or shad, sechaded flaces for nests, a trough of clear water, \&c.- the hirds will thrive, breed, ond he cheerfil; but such neer nmodations can rarely he afforded; and the aviary -the inost part, is only a cage more or leas ornament: ' ted of wood and wires.

Placed in thia state of confinement, no biris could 1) : Asilly exiat unleas grest care is beatowed in furiaishing them with food and fresh water daily, kepping their halitation very clean, and plscing them in a cheerful utuation in a parlour, where they can cujoy the light. Sirds that are produced in confinement are more con-- niel than those who have known frcedom; but the aters may be reconciled to this now atate, and made to ing with their accustomed gayety. A good plan of re-
conciling a newly canght hird to the eage ta madd to he an follow: in-For two or three houra leave it in tranquih liny, and then plunge it into frewh water. Thin exhaume it: but on recovery, it arrangem its feachern, beranee hungry, and takea at once to its foom. The wetting, however, would take place only during aunshine, fo that the feathern may the apecdily dried.

The form of cage hitda ia very varioua, 1, Camariea goldfinches, and ainkins, live only on seedns 2. Quails lurks, challinches, and bullfinches, fred on hoth seeds anc insects. 3. Nightingalee, redbrewests, thrushem, and blark hirds, take herriea and insects. Brforring to these clam of hirds, llechatcin ohaerven- .os Experience "rachen ne that a mivture of crushod canary, hemp, and rapersecti in the favourite food of canaries; goldfinelies and simkin prefer poppy-aced, and aometimes a little crushed homp seed; limets and bullinachen like the rapeseed alone, if in tretter to noak it for the young chatlinches, bullinethe and others; in order to do thris, ns much rajeomed an is whated should be puit into a jar, covered with witet, and placed in a moderate heat, in winter near the fire, in summer in the sun. If this is done, its the morning, It ${ }^{1}={ }_{1}$
the birds, the soaked aecel will do for the rexi morniag. Al! of them ought to have green food besicles, sa chickweed, calbuge-leaves, lettuce, endiva, and wator-creases. Aand alould be put in the bothom of the casen, as it meeman necersary for digention.
"Amongat those of the second class, the quaila fike chrese nud the crumbs of bread; the lark bariyymed with cabhage, choplued cress, poppy-keed unxed with bread erumbs, and in winter, outs; the chaffincles, rape meed, and nometimes, in summer, a little coushod hemp sced. Too nuth hemp-seed, howe'ver, is hurtfil to birde and should only he given as a delicacy now and then, for when they eat $t(0)$ much of it thity become anthmatia, hlind, and gencrally die of consumption. Yeilowhant mers like the same fool as the larks, without the sege tables; the tits like hemp-secd, piap-secd, bacon, mest, suet, brend, walnuts, almonds, and tilherts." The same anthor proceeds to describe two tinda of pante, simply and cheap, and which may ine tur ed a univerol fod for birds.
"'los make the first prate, take a white loaf which a well haked and stalo, put it into fresh watcr, and leam it there until quite aoaked through, then squ'reze out the water sind pour lsiled muk over the loaf, adding ubout two-thirds of barley-meal with the bran well siftel oun or, what is still levtter, wheat-meal ; lut as this is dearn, it may be done without.
"For the wecond paste, grate a corrot very aiclly, (this root may be kept a whole yenr if buind in sand, then sonk a small white loaf in fresh water, press the water out, nod put it and the grated rarrot into an carthen pan, add two handfuls of barley or whent-acal, anu nad the whole well tugether with a pestle.
"I'liese partes should le made fresh ewory moning us they anon lecome sour, particularly the tivet, ned cons quently hurtful. For thia purpose I have a feedion trough, reund which there is room enough for hall of birels, It is better to have it made of carthenwat sone, or delfi ware, rather thin word, as heing man casily cleaned, and not so likely to crase the fond to be come sour.
" The lirst paste agrees so well with all my bird, whid are not more than hirty or forty, at liberty in the rom that they are always healthy, and preserve their feathen, so that they have no appearance of beibe prisoma Those which live only on seeds, or only on insects, ell this foorl with equal avidity; and chatindses, linneh goldtinches, sinkina, canaries, fauvettes, red-breasta al rpecirs of larka, quaila, yellow-hammers, buatings, the bressta, and red-starts, nay he seen cating out of the anme dialı. Nometimen, an a delicacy, they may be gime - litile hemp, poppy, and rape-seed, crumls of brad
> and ante oggo. in the thinl an "Eivery mor woth for drink ore left at like eight inches to into neveral pe rented from 1 consequrues is A ressel of the the univeral pron Quaile and lork steal of wuther
> "Some lirds them: great cu nay thing with be a cencral rul cien! for one du ages, fir they at out the hest, at morning; this n bumour."

These hirila on

 mithod of treatir length. Being o knder, and must perstare; if expo air, they pine find cage should be h wunahine. If the mouit at an impr Ouly one inale sha for breeding are ti affords them space be taken to riean to escatter a littlo shauld be proside cmall glass trough miv of one of the
or even mor

. 3 persons, of ncu cake and and the lietle crest do themselvea a canart in hig. eor paraking of any it mentioned, the for kind; besides the should be supplied such at chickweed in aummer, endive in winter. As the of fresh water may moulting season, it the water they drin by the slight infusi The breeding of modations. The t which the poir of t, At the upper part o aeste are placed, wi the centre of the c bung filled with co materials, for the bir only buiths; and al the first agg. She day; but each egg i trory ans only ; and iis. The period of the young are hatch placed at the feedit eary anitahle food 1
in anid to he It in tranquil I'hin erhauntes The nettine naline, to the

1. Canane In. 2. Quaila both necde ano hrea, and blach to these claser ce erecheone and raperneci her nud midkin crushed himpcoseced alate, it hes, bullfinches i rape-swed as a red with water, er near the fire, in the mooning, will do for the ave green fool leture, endive, at in the bothem igestion.
a, the yuaila like lark harry.ymed ueed mared with chaffinches, rape e curshed hemp is hurtful to hireds :y now and thea ecomo asthmutio, m. Yellowhanre without the rege weed. lacon, mesh terts." The same Is of pate, simph a univeral fix
hite loaf which in it wutcr, and lew in syureze out the loaf, adding ahow an well sitted out it as this is dease,
arrot very miveli, if huried in and fo water, press the ros into an certhen icat-meal, anu nut
a cwery annnimg he lirst, and cone I have a feedins nought for halif or , of carthenwith ax, ns lowing wan use the find to
all my birds, whad iberty in the row ierve their feathen of being prisoma ouly on insecther hatlinclies, linroth ter, sed-breaska ers, huntings, the eating out of the they may he gire crumle of brad
and ants egge. One of these in necenarary for the birds a the thind and fourth clase.
"Eivery morning freal water muat the given to the hirde, woth for drinking and bathing. When a great many are lef at liberty, one dish will do for them all, ahout eight inches long and two in depth and width, divided into neveral partitiona, by which meanm they are prevented from planging entirely into the water, and in consequence making the place always dirty and damp. A vesuel of the name aize and shape will do for holding the universal paste, hat then it munt have no gartitiona. Quaila and larkn reyuire wand, which does for them inteal of wator for bathing.
"Sone lirdn awallow directly whatever in thrown to them: great care must le taken to avoid giving them ony thing with pripper on it, or bad meat. 'I'his must be a moneral rule. I slull ulso reinark, that fool suificimt for one day only must be given to birds kopt in eages, for they are necustumed to ncutter it ahout, picking out the best, and lenving only the wornt for the next morning; this makes them pine, and puts them out of humeur."

Cunarien.

These birils are the chief pets of the parlour, and the mithod of trenting them requiren to be given at some length. Beang eriginally from a warm elimate, they are unaler, and must be kept in rooms of an agrecuble temperature ; if exposed to cold either in rooms or the open air, they pine and die. In dry wenther in summer, thair cage should be hong in the open air, or at lenst in the Bunshing. If the apartment is kept too loot, they will moule at an improppr season, and this must he avoided. Ouly one male should be nllowed in a cage. Females far breeding are the better for having a large cage, as it afforls them space for exercine. The grentest cape murt the taken to clenn the cage, of whitever dimensions, and to scatter a little fine aand on the bettom of it. Each should he provided with three crons-sticks ns perches, a amall glask trough for water fixed outsile at the extremiv ef one of the rickn. The water must be changed or cven more frompently.
s persons, from mintaken kindness, offer pieces of nea cake and other inappropriate food to canaries, and the little creatures lecing fond of thene things, they do themelven a great injury by enting of them. A enart in higa song will at once be rendered mute by partaing of any improper food of this sort. As already mentioned, the food must be of a simple and natural kind; besidea the seedn and other things describr!, they whould be supplied daily with a little green vegetables; muct as chickweed in spring, lettuce and radish-leavea in aummer, endive, water-cress, and slices of awect apple in winter. As they like to wash their fenthers, a cup of fresh water may be placed in the cage daily. In the monlting season, it is recommended to put a nail into the water they drink, in order to atrengthen the system by the slight infusion of iron matter.
The breeding of canaries requires additional accommodatinns. The breeder must have a large cage, into which the pair of hirds is put nbout the middle of April. At the יpper part of the cage, at one end, hoxes for the aesto are placed, with holen to go out and in by; and in the centre of the cage, near a perch, a net-work bag is hung filled with cotton, wool, moss, hair, and other soft materings, for the birds to u we for their nests. The female only builds; and about ten days after pairing, she lays the first agg. She ordinarily lays six eggs, one every day; but each egg is to be taken away as laid, leaving an ivory one only; und when done laying, replace all the ix. The period of inculstion is thirteen days. When the young are hatched, finely minced egg and bread are pheed at the feeling-trough, to enable the parents to eary anitahle food to their young.

Blactibleda.

The male binckbind in a handnome creature, live.y in imanner, and pansesaing anme sweet "wood noter wild," hich sound mont agreably from n garden or the out. sdu of a window. 'The biril require a Inrge wicker rage, which, whenever weather permith, nught to te hong in the open air. In a state of nature, the bisek bird vals berrica, seeds, innects, larvis, and worma. It loves to tun alout a graseplot in the epring mornings, and [inck up any atray wurn which in atraggling from its hole. 'I'his habit auggesta the propriety of giving it, when in continement, both vegetable and animal food. I'he univernal paste will anawer ; but if too heating, which it is liable to lie, give hits of bread, flien, cockchaffers, worms; and failing thene, chopped raw meat A rough bone from the tuble will alwo not be inappropriate. A whort experience will show upon which kinds of food the creature thrives best, and let that be adhered to. Give also plenty of pure water to drink; and once a week, when the surn shines, set a basin of water in the cage for it to bate in and clean itself. Let the eage be carefully and regularly cleaned.

Parrots.

Under this hend mny be clansed a number of beakea hirds of similar character, as parmots, parrakeets, cockatoos, and maccawa, all possersing beautiful plumage of green, yellow, or grayish tints. They are chietly from Nouth Amerien, and require the warinth of a dwellinghouse to keep them alive in this country. All possess harsh voices, and would on that account be considered n prsitive nuisance by most persons except for the oddity of their being able to repent certnin words; but this is a quality possessed by some in greater perfection than others. Ench kind of theee birds may be treated much in the same manner. They nre allowed a large cage formed of strong wires, with thick round bars to perch uphn, and a ring at top to swing from by their hooked beak. All the parts must be of tin, for they would soon pick wood to piecer. In the Zoological Gardene, they are usually seen perched on a cross-bar of tin nt the top of a stati; but chained by the leg to prevent their eacape.
The food offered to parrots, maccaws, \&ce., is chiefly bread stecped in milk, nuts, or any other simpio articlo. Care must be taken never to give them any thing with salt or jepper. On the subject of feeding them, Bechstein makes the following otservations:-"In its native country, the fruit of the palm-tree is its principal food; our fruit it also likes, but white bsead soaked in milk agrees with it hetter; hiscuit does not hurt it; but meat, awectmeats, and other niceties, are very injurions; and though at first it does not appear to be injured, it becomes unhealthy, its feathers stand up separate, it pecke nul teare them, ahove all those 0 : the first joint of the pinion, and it even makes holes ia different parts of ita borly. It drinks little-thia is perhaj 14 ectasioned by ite eating nothing dry. Many bird faficiers say that the beat food for parrots ia simply the crumbs of white bread, well baked, without aalt, soaked in water, and then slightly squeezed in the hand. But though this appears to agree with them peetty well, it is, however, certain that now and then son,ething else ought to be added. I have obacrved, indeed, that parrots which are thus fed are very thin, hnve hardly strength to bear moulting, and sometimes even do not moult at all; in that case they become asthmatic, and die of consumption. It is clear that feeding thein only on this food, which has very little if any moisture in it, is not sufficient to noursh them property, at least during the moulting scason, and while the fenthers are growing again. I never saw a parrot in better health than ono which belonged to a lady, who fed it on white bread soaked in looiled milk, having more mik than the bread would absorb, which the parrot dasink with
apparent pleanure ; there waw aloo put into the drawer of lea enge some nea biselit, or white bread sonked in boiling water ; it was almo given fru!t when inseamon. It in neceasary to loe very careful that the milk in not nour.
"flome young maceawn are fed on hempesed, which munt always he of the year before, na the new wonld he too warm and dangeroun. Yet they must not be fed on tirely on thin foun, but there munt be addrd white bread toaked in milk or water, an haw alrealy been mentioned, coine fruit and nuts, but never bitter almonds, as they will infallibly kili all young animala. In all casen the excremente of the biril will indicate the atate of its heulth, and whecher the food ought to be changed o: not.
"Although macenws rarely wait to drink, as their food is very moint, yet they nuat not be left withont water, which in generatly placed in one of the divisions of their tin drawer. It is almo a gookl thing to patice them to bathe; nothing is more favourable to their health, or letter fucilitates the painful operation of moutting, or keejes their feuthers in better order. A little attmition to these favouritem, deprived of their liberty, their natural climats, and fond, cannot be too much trouble to amiable peraons who are fond of them, and to whom theme pretty birdu become greatly uttuched."

The cockatoo in genernily eateenmed na of milder temper than the parrot. Of thim apecies, Butfon olsserven Cockatoos, which may be known liy thoir tuft, are not easily taught to speak; and thore in one species which
doew not apeak at ali; but thim in in mome meanury rom pronaited for loy the great freility with which they an tansed: in some parts of findin the" are even so fat do mestiented that they will huild thei" worm en the ronfer of the houmes stha facility of ederat' is in owing to theis intelligence, which in very suporo. th that if ether paro rotw. They listen, understund, wat obey; but it in in vuin that they make the mame ciforta to repeat what is waid to them; they merm to wish to make up forithy other expremilon of ferling and by nffictionate caremis There is a milducwn and grace in all their movemente which grently add to their beanty. In March, lizs, there were two, a imale and female, it the fair of Nt. Ceruinin, in Puris, which olseyed with great docility the oricere given tham, either to njuread out their tun, or aslate pwople nith I lsind of the head, or to teuch different oljgets nith their beak and tongio. or to reply to questions from their masion with a suark of namert, which clearly erpemed aileut gus: they also showed by repruted nigna the nume. ber of permons in the room, the hour of day, the polvure of clothes, dec, ; they kiased one another by touebing thoir beakn, and even carersed earlh whier; thin showed a winh to pmir, nod the master atfirms that they ofen do wo even in our climaten, 'Thought the cockatoos, like other parrota, une their bill in amereading and demeetham, yot they have not their heavy diangrecable ntep; on the contrary, they are very active, and hop about vern mimbly."

BEES.

1

Tres mubject of Bees, which is equnlly extensive and intereating, han for many agen attracted the attention of mankind. The Sacred Writinga, the most ancient of which we have any knowledge, whow in numerous places how strongly the fathers of the Jewish people had been impressed by the peculiarities in the natural history of the Bee; and we know that Aristotle and other philosophers of old Grecee demed the subjuct worthy of years of patient investication. Virgil, alno, and many other Roman writers, lwelt on it with enthusiasm in their writings; while, in much later times, Swannerdam and other distinguished cultivators of weience have pursued the same trask with undiminished nrdour. The mont zealous of thewe intuirers was Franeis Huber (born at Geneva 1750, dicd 1831), who, though abouring under the deprivation of sight, by the aid of ais wife formed most valuallo collection of obaerva-
|tions on the habita of leea, and to whose work we shall have oceasion to refer. Socirtipa have alwo been formed for the mole purpose of iuvestigating this portion of natural bistory. A mere sumuary of the interesting essays, therefore, which this insect, so univergally op preciated, has called forth, would occupy a very has space. On the present oceasion, an attempt can only be made to cull from the most approved sources asch details as may form a complote history of the Ber, though at the same time it must necessarily be a cos cise one, along with directions for the practicai manase inent of this most uneful animal.

Bees nee arranged by zoologiata into the fialrd d the .Ipida (from apis, a bee), in the order Ilymenopins (having four unequal membranaceous wings) of the lamet class. The Social Apidse form the prinipid division of the family, their type leing the Apis yid Iffer, the Honey-making, or, in common phrase, the Honey-Bee. It is so culled not from an nuclasive p culiarity, but because it is the species which has lon yidded to man the rieh product indirated in its nase As the observationa to follow will have referene to the Honey-Bee, it may simply be mentioned that the description of this genus involves all the main festum in the natural history of its lens important congener the Wild or IIamble Bees, the nuecial peculistite of which will be briefly adverted to in the conclasion

HONEY HEES.

Of the family of the Social Apide or Iloner-Bea two sjeceies recen to exist in Eurupe, tho one fund in the north, and the other in the sonth; but, aikim allowance for a slight deepening of tint from browa 1 red in the ringe of the lody in the case of the men southerly insect, the description of the comunan tiow
mof Britain will mpecta. A hive Horee orders of inlin which differ conulde in the community most important, and that of the morkern, neuters in respect of inered andevelo aumparal of the mial There is usually but arder prement at n tive bee, the mold fimalo of The working hone moch in longth. bhacki cloweret hairs, which ereature materfally in The keatl, which is whed to the chest by athorw, which is of a dight way to the abt into six mealy ringa, w over one another to a tenal divisiona of th appendayes of peculia in provided with a don placed two eyfrs, counsis plates, studiled with ha of flowers ; and three the very top of the h beighten tie general mo on peculiarly requirea, warde from the cups of which are two nenter front cyes, anil curving bably fulfil many of th interior of the hive. 'Th avelve articulations, an the most delicato sensiti anternte, the liee is ens in ite way; and there c by means of thewe it by fills the honry-cells, and the hive. Jleen also nt recognition of one nuot The mouth of the lued one wenderfully litted f parts are tho matedible labial frelers. 'Tho mat of the upper juw, yplit degree as to enable the (wixt them, to manipula as serviccable tools. I their ends, two in numl extremely small, and in naturalists to exist nt al vified by that name. weh an instrument are cis, a long wleniler pro cartilaginous ringe, frins base of this, on rach sit ments also fritured or f nf these are the lower ja When the feelers and ja form a sheath or deferie the proboseis a tulie; bo rolling ahout ant lapp around it. every thing to ered material is then en whence it posses intu th the mandibley of the up pare the foral for the swe Parte While perfect in
mo of Britain will apply to the other in all Important apects. A bive of honey or garilen-ivees eontains three onient of inhabitants, the external characters of which differ consideruhly, while their usen and functionn in tha community are moat markedly diatinct. The mont important, and by far the moust numerous oriler is that of the uwheren, or urorking-loes, formerly regarifel an neuters in reaphet of sex, but now more propert i . . diderel mumbeveloped fomalen. The aeconil order componel of the malen of the hive, termed the droven. There in usally but one perfert member of the third onder present at a time in a hive, and this is the qucentere the mole firmale of the community.
The working honeyliee ban a bouly about half an anch in length. lhaekish-brown in hue, and covered with djuseect hairs, which are feather-shapied, and assint the reaturo naterially in collecting the tarina of tlowers. The heutl, which is a flattened triaugle in shape, in atwhed to the chent by a thin ligament; nud the cliext aythomer, which is of a spherieal firm, is united in a similar dight way to the abdemene. The nhdomen is divided iato eix scaly rings, which shorten the body by alipping orep one another to a certain oxtent. 'These three exteraal divixions of the innect'a hooly have all of them appeadages of peculiar interest and utility. The head is providel with a daulle visual apparatus. In front ure plaed two eyce, consiating each of numerous hexagonal platea, atudilyd with hairs to ward of the dant or pollen of fowers; and threr an: "! eype are also tu be found on the sery top of tho head, intruded, douthless, hoth to beightea the general senne of wecing, which the ercuture os peculiarly requiree, and to give a definsive vision upwards fruin the cups of dowers. The antrnne, however, which are two slenler tuleex springing from betwixt the foat eyra, and curving outwardn on "ach wisle, most promobly falfil many of the purposes of vision in the dark inderior of the hive. "Theso instrumenta have each of them twelve articulations, and terminate in a knoh, gitted with the mont delicate senvitiveness. By the firxibility of the nntenas, the hee is coaliled to frel and granp any object in its way; and there can bo little doult that it is chirfly by means of these it buillas its combs, ficeds the young, fills the honcy-cells, and performs the other operations of the hive. lifeen also nse the sane instruments for the reognition of ono another.
The mouth of the lwo is a very complex structure, and one woulerfully fitted for its duties. Its most important parts are the mandilles, tho tongue, the prohocin, and labial feelres. The manilibles are merely the two sidos of the upper jaw, split vertirally, and movalie to such a degree as to cmalle the ineect to break down firnl betwixt then, to manipulate war, and use them otherwiso an servicrable tools. They are fiurnished with teeth at their ends, two in number. The tongue of the bee is extremely small, ond indeed is searecly admitted by some naturalista to exist at all, the proboscis being often sigitied by that name. Muny of the usual functions of weh an instrument ore indeed porformed by the prohoscis, a long sleniler projection compsed of alout forty cartilaginous rings, fringed with fine hairs. From the base of this, on rach side, rise the labinl feelers, instruments alvo fringed or featheret interiorly; and outsille of these are the lower jaws, similarly proviled with hairs. When the ferliers and jaws close in on the proboscis, they foen a sheath or lefence to it. Natuculisty used to term the pooboscis a tuhe; lut they now know that it acts by rolliag atout and happing up, by meank of the fringes round it. every thing to which it is updiest. 'The gathtred material is then conveyed into the gullet at its base, whence it pasess into the internal orgaus. 'Thus we tind the maudithes of the upper jaw realy to break and prepare the find for the siweyping-up uppuratus of tho lower Mra Whilh perfect in action in ans exvanded state, the
whole, moreover, can the no filded together as to form one ntrong well-protected inatrumenth.
'T'o the trunk or tharax of the bee exteriorly are ato tached the mumben of the winge and lega. The wing* counist of two pairn of unequal sizo, which are hooked to ono another, lil oriler tis act in concoril and ateady the movementa in fying. . "ue bee han three pairn of legm, of which the anterlor pirt are the shortent and the pueterior the longest. All of them are liorned upon the same principhe ax the limber of num, having articulations for the thigh, leg and frot, with anne minor jointa in the latter part. The hisul legs are marked by a apecial and beautiful pros vision. Thix in a cuplike eavity on the tithar ur fore-leg, intelded fir tho important purpone of receiving tha knemet poilen which the bee colleetw in ita wanderingso 'The legs are all thickly studided with hairs, and more prrticular the cavity mentioned, in which the materiala require th the retained securely. Another provision of the bee's limuls comminta in a pair of hooks attached to each foot, by means of which the animal suapendm itaclf froin the roof of the hive or any similar powition. Heneath or lielind the wings the spirncles or air openingw are found, which admit air for the purpose of permeating the chest, and prubably the whole body, for the oxygenation of the circulating syatem. Huler completely proved hoth that respiration is essentially necensary to bees, mad that the spiructes are the instruments by which it in effected. He found that they die in on exhaunted reeriver and hecone asphyxiated when shut up in numhers in close bottles. They perish in water only if the epitacles are under the surfice; and the use of theno apertures is then made apparent by the bubbies which encupe trom them under water. As will be shown, also, bees carefisly ventilate their hives. Therefore, though no hood has been detected in bees or other insects, these tiny spirarles are of no stight consequence in the physieal econony of the inaect, oxygen being apparently not lens necesmary to the vitality of its circulating fluidm than to thowe of warm-hlonded animulx.

Besiles these appenelagen and contenta of the chest, that region is traversed lyy the asophagus or gullet, on ity way to the digestive and other organs situated in the aldomen. These organs comisat of the honey-bag, the atomurh, the war-poricie, and the inteatines, with the venam-bug and sting, The honey-hag, nometimea called the first atonach, though digestion never takea placo there, is an enlargement of the gullet into a pea-rized bag, pointel in front, with two puaches hehind. In thin receptarle is loulged the fluid or saccharine portion of the bre's gatheringw, and by the muscularity of the coats is can he regurgitated to till the honey-cella of the hive. A short passage learls to the accond or true stomac'., whic' receives the fiod for the nourishment of the bee, and also the saccharine matter from which tho wax is secreted. The minall intestin's receive the digested food from tho stomarh, anal from them it nppears to he absorbed for the purpuses of nutrition. Wax, it was once thought, was pollen clatorated in the stomach and ojected by the moth ; but it is entirely derived, it is now known, from the honcy or saccharine matter consumed by the insect; and John llunter dincovered two small pouches in the lower part of the uhdomen, from vessela on the ata face of which it is secreted. After accumulating for a tine in these pouches, scules of it appear externally helow one or other of the four medial rings of the abdomen, und are withdawn ly the bee itself or those around it. Cluse to the stomach is found the last important organ of the alklomen, the ating. Mueh henutiful mechanism is observed on a mieroscopical examination of this weapon, so powerful in comparison to its hulk. It consista of two long darts, wilhering longitudinally, and strongly protected hy one miocipal shrath. This sheath is supposed to be first thrast out in atinging, and ita power to
pierce may be conjectured from the fact that, when viewed through a glass which magnilies a fine neetlepoint to tho breadth of a quarter of an inch, the extremity of the sheath ends ao finely as to be invisible. The sheath onee inserted, then the two atill finer darts follow, and mako a further puncture. The use of this is to receivo the poison, which is conducted to the end of tho aheath in a groove; and in order that the conjoined darts may not be withdrawn too soon for this purpose, they have each nino or ten harbs at the point to retain them. When the weupon is withelrawn, the poison is thus left with a cavity to enter, cuusing n deeper festerIng. The insect ejects the poison by means of a :nusele encircling the bag at the base of the sting, in which bag the venom is secreted. The chemical composition of th~ ; sison has not been diseovered, though it has so far t.e nature of an acid as to rolden the vegetuble blies. Altogether, Paley is fully justified in pointing to the defensive weapon of the bee as a wondrous union of mechanical and chemical perfection.

The manner in whrch the bee collects the food which forms the various secretions alluded to is worthy of note. The hairs with which its body and feet are covered, sre the main instruments used for this end. By means of the hairs on the feet, the insect usually begins its collection of the prolen in the corolla which it has entered, ond, after kneading the dust into balls, finally places it In the baskets of the hind legs. But the ercature is not content with the product of this process. Rolling its body round and round, it brushes off the pollenstill more cleanly, gathers it into two heajes with its active brushes, and loads its baskets to the brim. Even afterwards, they sometimes fly homo like dosty millers, and brush their juckets when unlonded. The pollen is undecstood to be brouglat home by the working-bees more jeenliarly as food or the young. 'The fluid secretions contained in the nectarea of flowers, and honeydew, which is a deposition of certain aphides on plants, serve ns other natural varieties of the bee's food; and the inscet also drinks large quantities of water.

I'he sensen of bees have been in part touched upon already. The means of vision beytowed on them, it was mentionel, consist of the many-lensed eyes in front, aut the supplementary organ above, luquirers have been stag. gered by the seeming contratictions connected with the vision of the bee. After collecting ite store of food, its first movement is to rise alott in the nir, and lowh for the site of its home. Having determined this in an instant, however distant the hive may be, it gues for the point with the directness of a cannon-lonll, and usually alights at its own door, though the whole country he crowded with hives. Yet it the h ve, or its doot, has been shifted wo slight extent, the insect seems confused, and cammot find ita way. The conclusion from this is, that the eyes of the bee have a lengthened focus. suiting them for the main purposes of its exirtence. But the consepuent Inability to determine accurately on short distaners has been compensated to the ercature by the antenma, which then becone a highly serviceable resource. 'Ther sense of taste in hees has leeen the suljoct of muchargumentution. Huber was of opimion that it was the mont imperfect of their senses, and they have been observed to resort to putrid marshe: for water, even when they ware not restricted in ther elivice. Xenophon found his men actionsly injured by taking honey pronlured by bees which had ted on deleterious plants. But, on the other hand, it has leen notiecd that thry reject many suhstaners, and prefer others, when a choice is allowed them; and it has bern conjectured that they go tomarshes porposely for the sut in their waters. Norrover, what rembers the houry delotertons to man, may not be hurtiul to bers. Woney, formed from a particular doner in the Joreys, was tound untit for use from its intoxtcating gualities; yet the bees throve wonderfully upon it at the same time.

Their tasto in aelecting the riehest flowers is likewnes unquentionable. No doubt the sense of smell coines into operation on these occasions, as well as the sense of task, Betwixt the influence and effects of the two, indeed, it is acarecly possible to discriminate. Even in the case of the human being, it is an established fuct that tha powera commonly ascribed to the sense of taste are to a remarkable degree dependent on the sense of amell. If the eyes bo bancaged, and tho apertures of the nose well shut up, the most experienced judge will be ata loss to detormino betwcen any two kinds of ardent rpirits, or other pungent substances. The most naliseous medi a iey alst, much os they may usually seem to offect the taste, will be found alonost insipid if the site of the aense of smell be closed up while they are swallowed. In bees, the site of the two senses seems to be almost one and the same. Many experiments of lluter seem to prove that the sense of smell lies in the mouth, and that it is very acute. Ile found that thay hate the odour of turpentine, yet on plugging up the mouth they showed no disgust when placed beside that liquia. He concealed honey at considerable distmets, and they in a very short time detected the hidden treasure. The acuteness of their scuer of smell, in truth, is sublicienty proved by their mamimble skill in tracking out, aver hifl ond dale, the most fragrant tlower-parterres and beds of mountain heath. The sense of hraring has been denied to bees by many ohservers, whide others describe the an teuna as their organs of heariug. The probalilitits are in finour of the latter position. Noise, produred ly the wings, and varied to suit particolar purposes, is netl known to le used as a means of interconmmication; and Huber, though doubtrul ahout the faculty, avest that by a particular sound, emitted firom the month apma. rently, the queen will remer the whole hive silunt and motionless in one instant. A certain sound, too, liand in the hive hefore swarming, is atwats followed by thefinite consepuences. Such facts un these go biar to estalilish the possession of hearing by bees; is sigmals by sound, made when the eyrs could not detert the movement attending their production, would otheruise be valueless. 'The antemne have been nentioncd as pos. sessed, if not of heming, at least of a lelicate senme of touch. Nuher points out a mownlight minht as the best time for olsarving the uses of the antemar in this $n 0$ spect. The becs, guating against the intusion of moths, have not light comozh to see fully, and they cir. eumambulate their door with the antonmerneteled right lefore them. 'Ibe instant a moth 1 s fict, it is ilesmod When the queen of a hive is lost, the antema famis curious monas of spreading intelligence. Jec after bee prorodes its antunas, and crossing them with those of its mext moighhour, dirseminates, in this way, the sded news over the hive. Hesides the antenna, the feda have been shown by expriment to possess a considers. ble degree of sensibility, and to serve in part as orgais of tourh.

Sueh are the amatomical and physiologiral characten isties of the common or working-tus. The dutio of this orler include alme it the whole business of the lee community, as will l_{n} shown alterwards in detail. Hes differ greatly, of course', it the number of their inmates taking theme evon ont the same season. Sime contan but a lev thousands; others from twinty to thitts, tom, and evea tifty thousam. Of thesp tha itronts compe hut a thirtioth part, or little more: all the rest, wh be eaception of the quect, are workers.

Dromes or Mares

The dromen differ consilerahly in outwarm apparate fron the workern. 'Ithey are bulkier mai thath in ods, with a romal howh, a slarber prahusem, and an antrus with an mditional artienhatona; they hase no lowe ravity on their lmad-hegs, and their abdotmen conamis on
means of secratit the productivo or called dones fro make with their is the male of th tion of the race, accomplished, he have their own young to provide the fitting time, whe, if they eve 'f pleasure, not the description g the drone.

The queen-bee or the worker. abor and tintel enec of 'wo ova demonstrate the: tent. The (rerm this is the most are those of a pa province is to lay nual multitudes munities. 'The I larvil state to mia ensuing section; served, that the eggs on the fith without intermissi tember, hying in egga a day. Sue functions of the in We propose 1 and regula operat ment of their intr habitation to the e

phoceedings o

The beresting of and a hive, howev cones, under ordin to excess in midsu shounds in eqge ine instinnt whie prompts to nets a lieves this crowded proper wother of trsolves upan depa attending that depa section; in the me queen has lea olt owner of the bees, empty h ' e.
The first olject new lolging thoron hand. The next gr of the hive, stanot foundation for the the war which the tire, bees also emi substance called ; polis farfore the is ficial parts of the resin, of an aronata city for cemerntiner tinetly that the the birch, and willow t of these trens. 'J't pecten: Re,umur to the pine, place
ers is likewine
mell connes into a sense of taste. two, indeed, is on in the case 1 fuct that the f taste are to a e of smell. If s of the nose e will be at f ardent pirits, maliseous medi. im is affect the lee site of the are swallowed B to he almost of Iluter seem the mouth, and hate the odour c mouth they at liquic. K , and they in a reasure. The 1 , is suflicicaty 14y out, over bill es and beds of mas beem denied liserihe the an. protmalilitics are porlured by the rposes, is well :ummuncatan; - ulty, wels that e nowth app. hise miluth and mund, tuo, leand is followed by these go tar lo ees; ys signals not detert the ould otherwise ewtioned as pos. Hicate seme of isht as the ingt max in this on c. intrusion of y, and they eir - streteled riats it is demend nitenna forms 1

Dee alier bee Is with those of $*$ way, the sad thas, the fecha P*N a collinders.
qical churation The dutics of bess of the the ondetail. Hives if their ingutes, Si me contan - to thiry, tima, lromes cuniphe e rist, with be
aro apparanct thatt.r in inds, :cd an antions ave milateb II II cuaturis bor
weans of secrating neither honey, wax, nor poison, while the productivo orgens are there found instead. They are called dones from the peculiarly lond noise which they make with their wings, It has been surd that the drone is the male of the hive. He lives but for the reprotuc. tion of the race, and when the ohject of his existence is accomplished, he is doomed to die. The workers, who have their own winter food nnd that of the coming young is provide, instinctively pass sentenco of death, at the fitting time, on a class that live onty to feed, and whin. if they ever stir from their linxurions nests, go out ${ }^{\prime}$'s pleasure, not toil. With the exceptions specificd, the description given of the worker-beo applies also to the drone.

Queen Bers.

The queen-bee is of larger size than either the drone or the worker. She has an elongated hody, blackish abow. and tinted with yellow inforiorly, while the pregence oi 'wo ovaries, or egg-receptacles in the abdomen, demonstrate he: sex. She las also a sting, considerably dent. The (rermans eall the queen the muther-hee: and this is the most appropriate name, since her functions are those of a parent rather thi n a potentate. Her sole province is to lay the egres, from which issue thase annual mulitudes that perpetunte the race in new communities. 'The progress of all kinds of bees, from the larva state to maturity, will fall to be described in an ensuing section; but it may i, the mean time be olserved, that the queen-bee usually commences laying eggs on the fifth day of her age, and often continues without intermission from early spring to the end of $\mathrm{S}^{(p}$ waber, hying in the warmest season about two-hundred eggs a day. Such are the general characteristies and fanctions of the mother-bee.
We propose now to givo an account of the natural and regula operations of a colony of hees, from the momeut of their introluetion to a complotely unfurnished habitation to the estalishment of a persect hive.

procedminos of bees from first oettlement in tige hive.

The breding of young bees commences in Fehruary, and a hive, how ver thinned by the previous winter, becomes, mader ondinarily favourable circum tane es, crowded to escens in midsummer. Besides the deweloped bees. it sbounds in erge and younr ones not matured. 'That ine instime which, in the rase of bers, oreasionally prompts to acts aluast ahove the power ol reaton, ielieves this crowded sitate of things. The queren-her, the proper taotiar of at least the great henly of the hive, resolves upa departure with a swarm. 'The phenomena ateding that departure will he notied under a separatisection; in the mean time let it be supposed that the queen has led off a colons, and that by the cure of the owner of the bees, the swarm is lolged in a new nud emply her
The first olject of the community is to clean out their new lolging thoroughly, if they find this not done beforehand. The next great object is to book upall the chinks of the hive, smooh its projecting parts, mad hay a stathe foudation for the future works of the interior. Besidess the war which they use so extensively in their arehitere tare, bees also emplay, particulaly at first, e remarkable uhstance called propulis, from tho (Breek words pro and phes (before the city), as in licating its use of the smperficial pats of the hive. Propedis is a rrayish-brown resin, of an aromatic olour, and better fitted by its ?enacity for cemonthes than wax. Huber first showed dise fivetly that the bees wather this from the pophar, alder, birch, and willow trees, hut more esperially from the dirst of these trees. The ingonous matmralint alluded to, su*pectury Reaumur to be wrones in reforring thos propulis to the pine, placed near his hives sone with-proplar
branches, which the bees soon discovered, and flocket te it great numbers. In the hent of the day, when the vicious matter is ductile, it is thus carried off by the insect. A smoll thready portion is detarhed, knesded with the mandilies, and then, by means of the four feet, placed in the basket of the bind legs, a smart pat or two heing given to secure it there. Another partion, similsrly kneaded to make it portable, and a little drier, is basketed in the same way, till ns much is procured as the insect can carry. Bometimes the patient creuture will spend holf a hour in the mere kneading of a portion of propolis; and eccosionally olt.er bees will come behind and rob the little lahourer of its whole load, for a suc cession of times, without eliciting the slightest symptom of impatience. When a bee renches the hive with its load, the propolis ndheres so firmly, that the insect has to present its limbs to the workers in the hive, who detach it, and immodiately use it, while yct ductile, to fill all the crevices of the hive, and smooth the projecting ports, so as to prevent hurts leing received in the :lark. Anotk.er remarkatbe use is made of the propolis. From the hoi r of their eatrance into the hive, hees are liable to the intrusion of other creatures. A fly they can soon remove, but what are they to do with a snail? They can sting it to death, to be sure, in m instant, but their puny strength is totally insullicient to remove the caresss. In this dilemma, they completely obviate the disagrecable effects of the prescence of a large putrefying body, by covering it with propolis, which hardens over the mass, and gives them a pleasant aroma in place of a fretid odour. With the propolis, moreover, they often narrow the entrance to the hive, forming a secure barrier, when they have reason to dread the intrusion of the death's. hent math, their great enemy in some countries.

In the mean time, while some workers are using the propolis for the purposes first stated, others are comorencing the preparation of the cells or combs. The propolis is cmployed to attach these to the edges of the hive, but was is the component matetial of the cells thenselves. We shall find, in noticing the after arrange. monts of the completed hive, that the working-beea are naturally divided into two great chasses; but at the ontset uf their haloours, when the cells are being constructed, they form thref sections, each of which pursues its allotted toil with admirable ords: and regularity, One sece tion produces the material for the combs, and forms is roughly into cells; the second division follows the first, examines nud aljusts the nugles, removes all the superAlous wax, and perfects the work: white the third band pasies eontirnally out and in, seeking and bringing provisions, chicfly pollen, for the recond section, which never quits the hive. The firs class flies ni., ond at intervals, it being neeessary that they should have rich saccharine food for the sseretion of the wax. As the secretion goes on best in a state of repuse, bande of the wax producers, nfier feeding fulty, suspend themselves in clusters from the roun, each lunging from the lind legs of the one above, till the wax scales are formed, and they are prepred to take up the work. This clustering oceurs on tho very entrance of a swarm into n hise, when a secosing inactivity of several hours takes place, till the production of wax is met a going. It will be seen that the second sectun, the architects-proper, have the most unremitting tsil to pertiom. They never quit it when one begun. exceptiny to turn to the little waiters of the third seetion and indiente their humger by holding out their trunk, when the caterer cither spirts out a drop or two of honey or furnishes pollen from the stores brought in.

Cells.

But if the lakour of the arehitect class be severe, thein work, when complete, is a marvel of instinetive ing 'suity. Bres always login their work, in ordinary cirermstancea at tho ceiling, suspending their structures frou it 'I'hein
sombs, or clusters of eclla, are arranged In vertical and parallel strata, with a space of about half an inch liotwixt contiguous pairs; and each comb is nearly an inch in thiekness. At the ontset, whon one wax-making lee leaver the suapended cluster alluded to, and lays the foundation of a cell, others follow in mpid anceession, not only addling their wax to that of the first, but soon commencing new combs, one on each side; and so tho work goes on, in most cases, until the whole roof is covered with foundationd Tho arehitects-proper, also, are meanwhile at their finishing work. They have, says Reaumur, to aolve this difficult geonetrical problem: "A quantity of wax being given, to form of it similar and equal cells of a determinato capacity, but of tho bargeat size in proportion to the matter employed, nud disposed in auch a manner as to occupy the least possilho apace in the hive." Wonderfal to refleet upon, this problem is solved by bees in all its conditions, in their construction of hexagonal or sir-sided cells. The square and the equilateral triangle are the only other two figurea of cells which could make them all equal and similar without interatices. But cells of these figures would have either consumed nore material or have been weaker; and they would also have consumed more space, being less allapted to the form of the bee. In short, the hexagonal form combines all the requisites of economy and capacity. Another wonderful arrangenent is seen in the construction of the bottoms of the cells. Each of these is composed of three rhombs, or phates of wax in the ahape of card-diamonds, disposed in such a mamer as to form a hollow pyranid, the apex of which forms the angles of the hases of three cells on the opposite side, giving to each of them one of the three diamond-shaped plates which is required to form their bases. Now, the tiree rhounts, composing ench cell-bottom, have the two obtuse angles cach of 110 degrees, and, consequently, each of the two acute angles of 70 degrees. Kocnig, on being desired by Reaunur to culdubate the exart angle which woull. give the greatest cconomy of wax in a eell of such rapa ity, found that the angle should he tu9 degree. 26 minutes, or 110 degices nearly. Other geometricians have arrived at similar conchusions. The problen is one or great dilificulty, yet the lece practically solves it at once, under the guidace of the Great Geonetrieinn who thade both the bee and the law on which it procecds. Attempts hase been made to ascribe tho form of the cills to the peculiar shape of the head of the bee, and the instruments which it employs; hut all such explatations -dve been found tiahle to insuperable onjections.

The cells of the twe are extromely delieate, two or tiree plates or sides leing of the consistence ouly of a ecomon leaf of paper. They are mate strong, however. by matual support and other means. Ilesides a surt of froth which the insect mixes with the wax, the cells. at firit of a dull white, seon "ppear yellow on the interiur, the clange arising from the phastering over then of a compound varnih of wax and propolis. Each cell is soldered, too, at its mouth hy a simbar compenid of a reldish colour, having in it more propolis; and thrends of the same substance are laid around the walls to hims and at teugthen them. It is now to be ohserved that all edls are not alike. They have four different usex in the econong of the live, and are construtiod variouly to sut these. One s.t of cefly is for holling the regs, or embry of worker-hees: a second for those of matesur drones; a thind for thase of young queens, hene callid royal cells; and a formoth met are for the rectping of lamey wh pollen. The tirt are generally ahout five
 anc "wotithe in damere. The cells of the youmg ender tre mand less nuas-rous, and mearare from si: to a.ven !ines in depth, ly thre ami a half in dianetor. It is worihy of note, thint in pasiong fom the comstructien a wo-ker-cells to thase of drones, in the sume coant it 1
architects do not ulter the aize at onee, but gradually thus disordering in the alightest possible dogree the dell. ente arrangement of the bases of the cells. In shifiting from larger to amaller, the same rule is olserved. i simall number ouly of roynl cells, about ten or twelve, bra constructed on ordinary occasions. They are about on inch in depth, and nearly one-third of an inch in width, with walls about an eighith of an inch in thickness. Attet the breeding season is over, the cells both of worker and male bees aro used for holding houcy. Those inade pure posely for that end are clitelly marked by a greoter divergence from a horizontal plane, that the honey may be hetter secured; nond it is curious to observe llath in a very warm season, these wise insects give the flour astill greater dip from the mouth inwards. As the store enlarges, they seal up the mouth with a ring of wax, to which they gradually add couscentric layers till the cell is filled, when they close it nltogether. Pollen is kept in cells of considerable size.

Laying of Pigs.

A very short time elapses ere a great number of celli* are constructed; for, in the height of the honey seassun, a good swarm has been known to huild fi, er thousand in a day. The quecn-mother very foon legins the task of laying eges. A thousand conjectures have been hazard. ed as to the mode in which the fecuadation of the fenale tre takes place. No observer has yet heen able to dis cover any contact with the trones in the hive. It wan nupposed ly Swammerdam that a certain aura er odote from the drones was ull that was necessary to render tha eyge of the queen productive; while M. Dehran imas gited that the eges, as in the case of frogs and fishes were ficundated by a lluid from the drone after heing l.id. M. Hattorf thought, again, that the queen was firmudated by hersedf nlone. All these opinions ll. Ils: her refiuted in a satinfictory manoter, by separations and combincments of the inserets in various ways. He at lengh came to the lelief, tounded on experiments which appear almost decisive of the question, thot the female bec never broomes fruitful in the hive, but requires to go abroed for that purpose; and it has been also thoneht frobable that the ficeundation takes place ly contact in the sir, as is known to occur in the caser of wingrd ants. The mumber of drones in a hive has been thonghat a noot ung intelligible rir umstance. Mr. Muter's views explaia the matter fully. It is essential that they shond lye numerous, that the female may have a chance of useting them alroad; and it is to be olserved that she slways guite the hive at the hone when the dromes lave it, of immediate'y afterwards. Oae interroursi is suflicimb acerding to Ifulwers experiments, to rrinder the fensle bee froductive tor at least two seasons; athl if the inter. comre takes place at the end of the year, the comsequent laviug of ceges may be deteryed to the ensming spring. Ther cold weather has a strme intluenee in this respect. M. Hubur's conclusions may the more fully uscertaned by refurene to his interestine work.
M. Hulnr diseovered that the goren logins tolay eme forty-six hours after returniug from the filide durng which ferondation takes place. For the spare of eleren montha, mider ordinary circmuntinces, a quen, at her tirst hayme, probluces the egge of worher-t ees aloue. At the ead of the space mentinacla a cenviderable laying of the exgs of drones commences and smo aftor the appers ance of these, the workers of the hive, with a strage intinut, hegin to prepare royal cells for the querenengs that are cert:in to follow. Atherether, the fruitiduree of the fromate lne is amozing, from one to two hunded "has a day heing the usmat amment of her produce. One handred the osand is said to be no very matomen nume her of yomp for lior th sive origin to in a stason. A nwarn conaisting of 2006 or 3306 in the berginiag of the jear, will throw oll in June swams ataounting a
(10.000) or 50,000 come the cast or 10,000 or 12,000 mented to the nu لdy, a first ewarm

Tran

A fertilized que

 of worker-egge, th few inches of con agg, alhe carefull turne and drops ovat shape and bli fer three days atta the ecll; and, on egg bursts, exjoo into play the nur: classes into which ers of the hive to werusworkers. Do alone make wax whoso figure way ovoidal than the o the young. As s over the larva or cessant care, adm pollen, honey, an with avidity. Lik cust its cuticle; an has become large like a ring. It no the all with wax. process of spinnin, does in thirty-six thread from the it more it is converte when all the part risible through th darker hue day by the complete im ts the deposition of through its prisou an hour makes its bees fondly caress diservers, of 110 coutrary, they seen closiug up of the shift for itselff in t is done by the chle vacated cell, and leaving at the same walls.The passaze of state is attended w the case of the eque the process occupie in all leing spent eggs being laid, is eleven months have eggs, was explainu months to be neces of opinion that the nes was such ust tion of both male, m.tared. 'This id nary course of thin facts slartinely con If a yount queen h tile within fivent:? consisted of dronces mora curious, he thene droues st th ree thg del In shifting liserved. A r twelve, are re sbout on sh in width, kness. After worker end se made pur. y a great: e horicy may rve that, in a efloor a still the store eri. Ig of wax, to till the coll is n is kept in
10.001 H or 50,000 ; in many cases the first swarm, and in some the cast or second swarm, throw off colonies of 10,000 or 12,000; and yet the original stock ia left augmented to the number of 18,000 or 20,000 . Occasionally, a tirst swarm even casts twice.

Transformation of Worker-bees.

A fertilized queen is so impatient to begin her laying of workereggs, that, in a new hive, she only waits till a few inches of comb are erected. Before depositing the ugg, she carefully examines the cell, and, if satisfied, furne and drops into it from the oviduct an egg of an ovel shape and bluish-white tint. Itere the egg remains for three days attached by a visecus tluid to tho corner of the cell; and, on the fourth, the thin outer shell of the egg bursts, exposing a small lively wortn. Now come into play the murses or nursing-bees, one of the two great clasees into which Huber snd others consider the labourers of the hive to be divided. The other class are the war-u(0)rkcrs. Buth elaborate honey, but the latter class alone make wax and form combs. Again, the nurses, whose figuro may le distinguished from its bring inore ovidal than the others, are those who alone take care of the young. As soon as the egr is hatehed, they wateh over the larva or worm with the tenderest and mont incessant care, ndministering copions supplies of mixed pellen, honey, and water, which the nuasling devours with avidity. Like cther larva, it soon grows so ns to cust it cuticle; and, five days after chipping the shell, it bas become large enough to till the cell. lying coiled up like a ring. It now ceases to eat, and the bees seal up the cell with wax. Left to itself, the larva hegins the process of spinning a cocoon round its body, which it does in thirty-six hours, the material being a tine silken thread from the mouth of the spinner. In three days nere it is converted into the state of pare or chrysalis, when all the parts of the future bee become gradually visible through the transparent covering, assuming a darker hae day by day, and progressing to the state of the complete ingoor insect. On the twentieth day from the deposition of the egg, the young bee logins to cut through ite prisou-loor with its mandibles, and in half an hour makes its escaple. Old writers say that the eller bees fondly caress and feed the new-romer; but later deservers, of no mean mithority, declare that, on the contrary, they secm to think their duty ended with the closing up of the cell, and leave the young stranger to dift for itself in the busy world. One thing, however, is doae ly the efler bues. They instantly elean ont the vacated cell, and prepure it again for eggs or honey, leaving at the same time the silk eocoon adhering to the walls.

1iggs of Drones-Royal Figgs.

The passaze of male eggs through the larva and pupa tate is atteuded with the very sume phenomena ha in the cose of the ciges of workers, with the exception that the process oceupies a little more time, twenty-four days in all being suent in the change. The cause of male eggs being laid, in orlinary circumstances, only ater eleven months have been passed in the laying of workereggs, was exphained by Ilubor. Ho conceived rleven montlis to be necessary to perlect the male rges, and was of opinion that the arangement of the arges in the ovaries was such as to permit and even compel the retention of hoth male and roynl e"ges until they were filly matured. This idea serems to tee contirned hy the ordinary course of things in the hive, but errtain anomalons facto startingly contrawe it. Huber himself found, that If younc quewn hat not the opportunity of proving fertile within twent! dar a 'i her birth, all her alter-protuct consisted of drones, and drones alone; and, what is still mere curious, hot discovered that ske began to prosluce these drones nt the time when she should have laid
Vom 1.-:
workereggs, namely, within forty-six hours after ion cundation. The gestation of eleven months seemed totally unnecessary in suel cases of retarded fecundation IIther confessed himself incapable of explaining this remarkable cireumstance. 'rloough we do not understand it, however, it only tends to make us marvel more and more at the perfection of order in the bee econemy. The queen-bee is never voluntarily guilty of that breach of the laws of her being which produces such remarkalle ulleets; and, if srtificiully confined till she is twenty days old, her violent agitation shows her sense of the deparo ture from the order of nuture into which she is forced.

I'he raising of workers sud drones from the egg to the insect state is a simple matter in comparison with the same transition in the case of queen-lues. The royal eggs, which the queen begins to lay twenty days after she has commeneed the deposition of male ones, differ in no respect from common eggs. But on the royal larva, when it breaks from its three days' confinement in the shell, the nurses bentow peculiar sttentions. They watels it incessantly, and leed it with a rich jelly, slightly acescent, and given in such quantities that the royal cell is usually wet with it. In five days the young majesty of the hive has grown, so as prepared to spin its wel, and the bees wax up the cell. The cocoon is spun in twenty-four hoors; two days and a half of inactivity follow; the larva is then transformed into a pupa, or a nymph, as the insect in this state is more often called; and, after other tour or tive days have passed, the royal insect is complete, the whole time occupied in the metamorphosis being sixteen days.

Young Queens.

We have now arrived at one of the most extraordinary points in the history of the hive. The young queen, or rather queens, do not issue from their cells when perfect, like workers and drones. They are not permitted, unless the old or regnant queen has quited the hive with a swarm, or the seat of royalty is in myy other way vacated. 'I'hey thercfore close the royal cells more firmly, leaving only a small aperture to introduce food; and, acting as if aware that they may need a queen in case of swarming, they at such times will not permit the old queen to approach the cells. Her struggles to do so are otten violent, and her dire hostility to her own sex leads her, if slie gets near the cells, to ilestroy them instantly, whethir in the state of full insect or nymph. 'The strength of this instinctive late is even such, that a young queen no sooner leaves her own cell than she feels its stirrings.

According to Huber, there can only be a single queen in a hive. 'The mere offrpring of two could scarcely coexist in the same hive; and it is wonderful to observe by how many arcessory circumstanees nature has ensured the death of one or other of any two placed in the same community. itic hirst thought of a young queen, it has been seen, is to kill ther yet undeveloped rivals. Nature has given her the chance, for, as more queeneeges than one are seldom laid daily, one is usually the oldest. If, lowever, two do quit the cell at the same instant, they mash into comiat with the most headlong fury. If a stranger enters a hive, its queen-regnant tlies to the field withont a momen's hesitation. In short, in all ordinary circumstances, two queens, lirought into contact, fighte But they misht both die in the contest, and the commanity le left without a quecu. Nature demands bat one victim, and she has arramed that but one victim shall fall. Bees are only vuluerathe in the belly; and Ituber ohserved that, whenever two royal combatuats were so lueked together that they could mutually plant their stings in the fatal part, their instinct cansed them to sepratate precipitately without harm on cither side. 'The combat only closes when one can get an advantage of positior, and k.ll its rival with satety. Again, the worker-beed might interpose to prevent these nortal combats. Un the
contrary, their instinct is to prevent the queens from partLag, and force on a fatal 1ssuce. Alluding to one hattle, Huber says that it seemed an if the bees anticipnted the combat in which these queens were about to engage, and were impatient to behold the issue of i, for they retained their prisoners only when they appeared to withdraw from each other; and if ne less restrained acemed desirous of appraching her rival, all the bees forming the clustera gave way to allow her full liberty for the attack; then if the queens testified a disposition to fly, they returned to enclose them." Another remarkable provision for ensuring the existence of but one queen in a hive, is behehl in the peculiar mole in which the roynl larve spin their cocoons. Other beea spin perfectly close cases; the queen-larve spin cocoons which envelop only the head thorax, and first ring of the abdomen, lenving a part open behinil. Huber thue explains this ininute bot inportant peculiarity :-"Of several royal nymphes in a hive, the Girst transformed atticks the rest, and stings them to death. But were these nymphs enveloped in a cemplet. cocoon, she could not accomplish it. Why? Because the sillk is of so close a texture, that the sting could not penetrate, or if it did, the harbs wonld be retained by the meskes of the coron, and the queen, mable to retract it, would become the victim of her own fury. Thus, that the geueen imight destroy her rivals, it was necessarry the last rings of the body should remnin uncovered; therefore, the royul nympha mast only form imperfect cocoons. You will ohserve that the lost rines alone should be exposel). for the ating can penetrate no other part; the head aud thoras are protected hy connected shelly plates which it cannot pierce. Hitherto, philosophers have claimed our admiration of nature in her care of preserving and multiplying the species. But from the facts I rclate, we must now admire her precautions in exposing certin intividuala to a mortal hazard." Examining further into the causes of the epen cocoon of the royal nymphe, Intar came to the conclusion that it aroee from the figure of their cella, and was designed for the purpose of expasing them to the certuinty of destruction.

loss of a Queen.

If bees, by death or artificial means, are depriven of their queen, the event bas a markel intluenee in the hive. We do not allude to the case in which a stranger kills the queen-requant; for if such a thing happens, as maturalists conceive it acarcely ever can do under natural circumstances, on secount of the wariness of the hers to prevent intrusion, the victorious stranger mounts the vacant throne, and reigns in peace. We refer, however, w the removal of a queen without the introluction of any other. In surh a came, the following results ensur, according to Huber:*-"Beca do not immediately oheserve the removal of their queen ; their labours are uninterrupted; they watch over the young, and perform sll their ordinary occupations. But in a few hours, agitation ensues; all appears a scens of tumult in the hive. A singular humming is heard; the been desert their young, and ruab over the surface of the combs with a deliriuus inpetuosity. Then they discover their queen is no longer amung them. But how do they become mensible of it? How do the bees on the surface of the comb disrover that the queen is not on the uext'comb? It is supposed that the alarming intelligence of the loss is commubisated ly the atrokes on the antemna, which bees aro unifurmly oherved to give to each other at these times. The inects then apprar to seevk for thuir loat queen, some rushing hurridly out to make the search ahiroal. At the

 a hatital consequentere, nacrily. of \|obare wonderial acule

end of five houra, the commotion greatly censen, anila instinctive recourae to the menns of supplying the vacan cy takes plaee. If they have roynl larve, they turn theis whole attention to them. If they have only the larve of working-lues, they immediately select two or three of them, pull down the neightheuring cells at the cest of tha liver of the young within them, and construct a ruyal celf nround each of the sellected harve-the consequence of which proceeding will he immedintely explained. If they hase no larve at all on the loss of their quean, atill they build several royal cella, as if oo far at least to supply the emergency. If a stranger queen be introduced in such a state of things, within twelve hours fler the loss of their own sovereign, the new-coner is treated as an in truder, atad the bees surround her so closely that she commenly dies from privation of ai , suffocation leing the resnorce of bees in such cases. If the stranger be in troluced within eighteen hours, they walso surround her, Int leave her sooner. 'To show that they pessess mar mory, it is only necessary now to re-introduce their orm quer 0 , when they will show every symptorn of reogrih tion atel joy. But their memory is shert-lived, for, if the stranger be not introduced till twenty-fuar heurs .lapsee, s!le reveives a treatment very diffirent from that experienced at mo earlier period. "I introduced," centianss the ingenious naturalist, "a fertile queen, elevera monthes old, into a glass hive. The bees were twenty-four hours deprived of their queen, and had already hegun the cono struction of twelve royal cells. Immediately en flacing this female atranger on the comb, the workers near her touched her with their antemna, aud. passing their trumbs over every part of her hody, they gnve her honey. Then these gave place to others that treated her exarily in the same manner. All vibrated their wings st mene, and ranged themselves in a circle around their sovereign Heace resulted a kind of agitation which gradually rome mumicated to the workers situated on the sane surfice of the comb, and induced them to come and reconnoite, in their turn, what was going on. 'They sonn arrive?; amb havine lroke through the circle forined by the firs, approashell the queen, touched her with the ontenne, and gave her honcy, After this litte ceremony they no tired, and, jlacing themselves behind the others, enlirged the circl-. There they vibrated their winge, and buzad without tumult or disorder, as if experiencing some tery agreeable aensation. The queen hat not yet left the place where I had put her, but in a quarter of an hour she began to move. The hees, far from opposing he, opened the circle at that part to which ahe turaed, followed her, and formed a guard around. She wis oio pressed with the neccasity of laying, and dropped bet egess. Finally, nfier an nbode of four hours, she begat to deposit male eggs in the cells she met with.
"While these events passed on the surfire of the cons where the queen stoal, ull was quiet on the other side I'here the workers were apparently ignorant of a quent arrival in the hive. They laboured with geat activity at the royal cells, as if ignorant that they ne longe stow in need of them: they watched over the royal we:m supplied them with jelly, had the like. But the quea having at length come to this side, she was received whit the same reppect that she had experienced from theis companions on the other side of the comil. Theyep compassed her, gnve her honey, and tourlied her with their antennes; and, what proved better that thry troutd her as a mother, was their inmediately destiting fem work at the royut cells: they remmeot the werme, and devoured the foral collected nownd them. Prum tha monent the grecen was revognised ly all her propte, and comatucted hers.If in this new huhthition as if it had had her native hive."

Making of a t?uern

If one gueco is not so intudnewl to suphly tion loss of anoblher, and no rogal larvee exist, one ot the now
worderfut phe been atated tha cell areund an them, if the la feeding, aro for ing that the wo us neuters, are remark:ille disc used snooke al that she flow imanediutely bui when they had buth. Huber ceeling experin containing wor kind as those of a quecn. larged by the be the werms supt were then reme worms, which, come from the e not seell avare new werms the selves; they cont them at the uau them seven days, that were to the P at the saine mon je avery reapeet. elapsed, and no q gne was a thead of were empty. TI bat died before pr presented only a conclusive thinn bees have the pow inth queens, since by eperating on elected." This preserve the com from the danger o the queen; and evolution of a qu ent on the effects gystem.

Anether m.ist mony of the hive man worker-liece, fertile egus. It this, mul also to ex found that, in a hi drones were laid. bad been said by etice at small quee by directing a car inlividual bee in them, every one ha anc.a straishtht stin Gehirach's diseeve workera lay ing ege nes purthally deve! the only known cal the fivel or jelly git tratu of thoughit, he fil worker.ses are ond whes worker. be furtlier found th cena thather of the tim trought lime 1. plue tion raynlise, wadent or ly a par
ceases, and a: ing tha vacan they turn theis ly the larver of r three of them ist of the lives at a royal cef onsequence of mined. If thay ucen, still they t to supply the cluced in such fr the loss of pated as an in. losely that she :ation heiag the stranger be in. surround her, ey possess moduce their orn ofn of revagtilived, for, if the ir hours lapse, om that experied," continucs eleven mortie enty-four hours hegun the contely on phacing orkers nent heer ing their trunks rhoney. 'Ihen rexactly in the Is at ance, and their savereizn. gradually com es sane surface and recannoite, y вonn arrived; ned by the firs', hi the antenne, remony they reathers, enlarged ngs, and buzzad acing same tery not yet left the irter of an hout 11 oprosing her, she turned, 60 .

She vils of. nid dropped bet rours, she begas with. face of the conb I the cther sile. rait of a queceni th great actisty wo longer stove be royal ne:ans Rut the quees as received mith neol from thein oml. They en cuched her mith that they tround s dewating fat the we rank and cink. Frem this I her people, and as if it law bua
to supply un , one of the onay
wonderful phenomena of the hive takes place. It has been stated that beea, on losing their queen, build a royal cell around an ordinary worker-lee larva, or several of them, if the larvo are ahundsnt. These, by peculiar feeding, are formed and developed into queens, thus proving that the worker-bees, commonly viewed at one time sa neuters, are in reality undeveloped females, This remarkahle diseovery was msde by Schirach. Having nsed snoke about a bive, he so eanoyed the queen that she flew sway, and the circumstance of the bees immediatply huilding royal cells around common larves, when they had no royal larve, revealed to him the truth. Huber proved the ssme thing by the succeeding experiment:-" I put some pieces of comb, containinar worker's eggs in the cells, of the same kind as those slready hatened, into a hive deprived of queen. The same day several cells were enlarged hy the bees, and converted into roysl cells, and the worms supplied with a thick bed of jelly. Five. were then removed from these cells, and five common worms, which, forty-cight hours before, we had seen come fron the egg, substituted for them. The liees did nat secm aware of the eliange; they watched over the new worms the same as over those chosen hy themselves; they continued enlarging the cells, and closed them st the usual time. When they had hatched on them seven days, we removed the celle to see the queens that were to he produced. 'I'wo were excluded, almost at the same moment, of the largest size, and well formed if every respect. The term of the other cells having elapsed. and no queen appearing, wo opened them. In one was a dead queen, hut still a nymph; the other two were empty. I'he worms had spun their silk cocoons, but dial hefore passing into their nymphine state, and presented only a dry skin. I can conecive nothrug more conclusive than this experiment. It demonstrates that bees have the power of converting the worms of workers intn queens, since they succeeded in procuring queens by eprrating on the worms which we ourselves had selected." 'Ihis curions provision seems intended ' preserve the communities of bees, in any emergency, from the danger of wanting that all-important meniler, the queen; and it is reasonably conjectured that the evolution of a queen from s woricer-larve is dependent on the effecta of the royal food upon the ovarian aystem.

Fertile Worker-Bees

Another monst remarkuble fact observable in the economy of the hive was discovered by M. Riem. Commoa worker-hees, that maturalist proved, som umes lay fertile egerb. It was reserved for Huber to determine this, aml also to explain the cause. He in the first place found that, in a hive deprived of its queen, the egge of drones were lai3. 'lhough he did not put faith in what had been said by some naturalists respectine the existence of small queens, he nevertheless satisfied himself, by directing a careful examination to le mate of each inlividual bee in the hive, that no queen was among than every one having the little basket on the hind leg, auc a straicht stis?. Thus convineed of the reality of Bhirach's diseovery, IIaler, having deteeted several Farkers laying eggs, examined them, and tisund the wannes partinlly developed. He now hethourht him that the only known cause of such desclopment is the use of the fiok or jelly given to the royal larva. lad into this train of thought, he aperetily dimoverod that ath the froitful workerses are born ill lives where no queen exists, and where workre larsz are transformed to guents; and he firther found that h.ey are always lorn in cells aljaatat whose of the larsabepuctis. ('ontimued investiga. tim liought him the behiot, fimally, "thut whon bes
 wedent or ly a puticutar instinct, the paiaciple of which
la unknown to me, drop som's particles of royal jelly into cells contiguous to those containing the worma des tincd for queens;" whence the expansion of the ovaries to a certain degree. That expansion ia imperfect. As in the case of retarded fecundation in qucens, the fruse ful worker-bees produce nothing but drones. In this fact, it scems to us, may possibly bo found the prineiple of the unexplained instinct in question. May the instinet which leada them to ereate queens from workerlarva, not also prompt thein so to dispense the royal food to common larva as to supply the hive with new dronea for the new queens? This end is at least gained by the mode in which the worker-bees become productive. Ovaries, in a rudimental stato, have been found by late observers in all working-bees.

Mutilations of Queens.

Before leaving the priticular sulject of queena, the remarkable effects of mutilations upon them msy be mentioned. Huber cut off one anteans from a queen, without any marked effects; but when he cut off both, the case was different. "From this inoment there was a grest alteration in her conduct. She traversed the combs with extraordinary vivacity. Scsrcely had the workers time to separate and recede before her; whe dropped her eggs without taking care to deposit them in sny cell. The hive not being very populons, part was without combs. Hither she seenied particularly earnest to repair, and long remained motionless. She appeared to svoid the bees; however, several workers followed her into this solitude, and treated her with the most evident respect. She seldom required honey from them, but, when that occurred, she directed her trunk with an uncertain kind of feeling, sometimes on the head and sometimes on the limbs of the workers, and if it did reach their mouths, it was hy chance. At other times she returned upon the combs, then quitted them to traverse the glass sides of the hive : and always dropped eggs during her various motions. Sometimes she appeared tormented wilh the desire of leaving her habitation. She rushed towards the opencug, and entered the glass tube adspted there; hut the extermal orifice being too small, after fruitless exertion, she returned Notwithstanding these symptoms of deliriun, the iees did not cease to render ber the same attention ss they ever pay to their queens, but this one received it with indifierence. All that I descilue appeared io me the consequence of amputating the antenae" Auother similarly mutilated queen was placed heside her; they had both lost their comhative ness. Finally, on lidig again left alone, the poor mutilated queen quitied the live, unheeded. and ahandoned to her fite. Thais cridence of the high vslue of the antemar was gained on the whole in a manner whien eveit a Ituher's ardour for science can scarcely excuse.

Massacre of the Drones.

Anuther of the great natural phenomena of the hive is the massacring of the drones. It was st one time asserted that the worker-hees did not use their stings against the stingless males, but merely pushed them ore to die; this idea, however, resulted from the massacre lring always committed at the hottom of the hive whithet the poor Irones retice in clusters in July and Angust, as if aware of the doom impending over them. As usual, by one of his ingenious expedients, Huher discovered the truth. Six swarms were put on glass tables, heneath which the watchers placed thenselves. "This contrive ance succeled to admiration. On the 4 th of July, we saw the warkers actartly massarre the males. in the whole six swarms, at the same tour, and with the same precuharitios. 'The glass table was cosered with bees full of animation, which tiew upon the drones as they came tron the hothon of the hive; sazed them by the antenne. the lintho, and the wings, and ather having dragged ther:
sbout, or, so to speak, after quartering them, they killed them by repested atings directed between the rings of the relly. The moment that this formidable wenpon reached them was the last of their existence; they atretched their wings and expired. At the same time, as if the workers did not consider them as dead as they appeared to us, they atill struck the sting so deep that it could hardly the withdrawn; and these been were ohliged to turn round upon themselves before the atiogs could be disengaged.

Next day, having resumed our former position, we witneseed new acenes of carnage. During three hours, the bees furiously destroyed the males. They had massacred all their own on the precerling evening, but now attacked thoso which, driven from the neighbouring hiver, had taken refinge among them. We saw them also tear some remaining nymphs from the comb; they greedily suckel all the thid from the airdomen, and then carried them away. The following days no drones remained in the bives.

These two observations seem to me decisive. It is inconteatilile that nature has charged the workers with the deatruction of the males at certain seasona of the year. But what menus does she ase to excite their fury nghinat tham? ' Tl is is a question that I cannot pretend to anEwe:. However, on observation that I have made may one day lrad to the solution of the prohlem. The malis are never destroyed in hives deprived of queens; on the marary, while a savare massacte prevails in other places, they there find an asylum. They are tolerated and fed, and many are seen cven in the middle of January. They are alsu preserved in hives, which, without a queen property so called, have some individuals of then specion the tay the eggs of males, and in those whose
.fecundate I quens, if 1 may use the expression, propagate only dones. Therefore, the massacre takes place in none but hives where the queens are completely fertile, and it never legins until the season of swarming is past."

Swarming.

We have now only nnother of the grent nutural ope rations of the hive in advart to, before coming to the consideration of the nreificial provisions which bave been discoverel and amployed by mst for augmenting the usefulness of this interfstines insect. Svarming is the operation referred to, which usially takes place, in temperate elimes, in May and June, though adhlitional swarms, and swarms from swarms, are commonly later. In notieing the procectings of a conmmunty from its first settlenifnt, it was mentioned that the old queen led off the first swarn, and did so as if under alarm at the numher of royal embryos, usually from twelve to twenty, which were in progress to maturity, and which the worker-hees would not allow her to approach. Other causes also operate, beyond doubt, in a rertain degree. The increased heat of the hive from erowding, for examiple, in all likelihood influences the movement. Bees cannot do without fecedom of reapiration and fresh air, and it has surprised many ohservers to find the air nenally pare, and lelow 80 degrefa, in a hive ortinarily tilled. The inserta, however, have been discovered to manage this by active ventitation in their osen way. A number of them are always to be seen near the inner, and sometimes the outer side of the ofiening of the hive, vilrating their winge with great rapidity, and mending the entering air hackwarils in a smart current. One band relieves another ot this task. These menas of verbtilation, however, afein to hecome comparatively imeffective when the hive erets over-crowded. The hert uften rises to ghont 100) degrees, the hees are driven to de door in elustere, while the warmth makes the "ive" visilur moist. At the sture time, the ofll quemen alam at the grow th of the royal goung scems to luve its instu-
ence. She would fain kill them, but the workerbeet loee all reapect for her, biting and benting her off with violence. The way in which they defend the royad young at swarming time ia indeed most remarkable, If, nt any other season, they bring up queens from worker. larvo, the first queen that leaves the cell is allowed to kill the rest at pleasure. But when casting colonien, the workers, as if from the sense that various swarms may be cant off, and various queene required, will net pemit the old queen to touch the young, whom natura has givers them the strange power of keeping slive, lor letter security, in their cells. Nor will they allow the first young one to whom they grant freedom to touch the reat. Hir. her illustrates this aubject beautifully. Suppose an eld queen to have left a very populous hive, as descriled with a nwarm. "Atter the departure of the colony, the remoining workers set another queen at liberty, and treat her with equal indillerence as the first. 'I'hey drive her from the royal cells; she also, perpetually harassed, bs comes agitated, departs, and carrics o new swarm olone with her. In a populous hive this scene is repeated three or four times during the spring. 'The nutaber of bees being then so much reduecd, they are no longet capable of preserving a strict watch over the royal celly several females are therefore enabled to leave theit con finement nt once; they seak ench other, fight, and the quecn at last victorions reigns peaceably over the republic.
"The longest intervils we have observed hetween the departure of each natural swarm have beell from seren to nine days. This is the time that usunlly elspes from the period of the first colony heing led out by the old queen until the next awarm is conducted by the first young queen set at liberty. The interval hetween the seeond and third is still shorter; and the lounth sometimes departs on the day after the third. In birem laft to themselves, lifteen or eighteen days are usualiy sulticient for the throwing of the four swarms, if tha wenther continues favourable, as I shall explain.
"A swarm is never seen except in a fine day, or, to spoak more correctly, at a time of the day when the sun shines and the air is calm. sometimes we have obered all the precursors of swarming-disorder andagiationbint a clond passed lefore the sun, and tranquillity was restored ; the lees thought no more of swarming. An lour afterwards. the sun having again appeared, the the mult was renewed; it rapailly uugmented, and the swarr departed.
"Bers generally seem much alarmed at the prospeetot bad weather. While runging in the ficlels, the paseing of a cloud before the sinn indoces them precipitately ${ }^{\text {is }}$ return. I am led to think that they ner disquietedty the sudden diminution of light. For if the sky is uniformly obscure, and thero is no niteration in clear. ness or in the elonds dispelling, they prorned to the fields for their ordinary collections, and the first dop of a soll rain do not make them return with much precipitation.
"] am persuaded that the necessity of a fine day fut awarmine is one renson that has induced nature to admit of hees protracting the captivity of their young queens in the royal rells. I will not deny that the sonftimes seem to use this right in an uriftrary man ner. However, the confinement of the guen is alwart longer when had weather lasts eeveral dats togetien Here the final object cannot be mistaken. If the young femules wrere at liherty to leave their cradles dumat those had days. there would be a plurality of quens in the hive, conseumently combnts; nal vietims weuld tid Bat weather misht continue so long that nll the gerens maght st once have untergone their last metanuphois, or attinimed their libety. One victorions ower the shate wonld enjoy the throme ; and the hiwe whid kath naturally produce neveral swarms, could give only ono

Thins the multip leat to the cha which it is rend dispraitione of n to escape at onc This explanutio ous ty insiat fart Our author at resulting from t fin a conclition to arty, and are th moment of suns

The capture o on some hush o slep toworda lods placed in it, with Gllow. A stron the bees without when they are sy funes happens, h person of any in case presence of plescrvation of li Thorley, is striki adrsnced:-
"One of my 9 branches of a ec hive without hel ${ }_{F}$ offered her assists the bees. Havin put a linen cloth and secure her fr fell into the hive, body upon the ele I tnok the hivo ou bees had got unde towards her lreas bling posture. Y father service, sl done, a most all? are with the deep myself the unla inminent hazard all ascistance had life would have at a:: : nents I coul eancestness in my her present postur body upon her h chin, and I began I immediately sei crowd, along with together into the tine; and ns I dic ccived that the wh orttement ; hut is gathering eloser te barting. Upon tl there must the ano returned. I direc it a short time, w gurond or the sam the crow, th esen grant nu:nher of t the perilous scene more pleasing and queen, began to li: unto it in multits d alle; and in the s and yot one singl much as one stit quility have stopi

worker-beet

 her off with nd the royal narksble. If, from worker. lis allowed to 3 colonies, the a swarme may ill not pemit min nature has dive, tor bethe the first young the rest. Hy. suppose an eld , as descriled he colony, the writy, and treat hey drive let harassed, bs $\checkmark 3$ wrim along x is repeated 'he nuinber of are no longet the royal cells cave their con. fight, sand the over the re.ed hetween the ecu from seven 1sually elappea led out be the ulucted by the oterval betwern and the foorth hirul. In biren lays are usualiy swarms, if the x plaitı. fibe day, or, to o when the sun - have uhserved - undugitationranuquillity wa swarming. An Hepered, the to. , and the swam

Ithe prospect ot lus, the passing pricipitately so fo disquited hy if the sky is ration in clear. proered to the I the lirst drop with muct pre
of a fine day for luced nature to of their young deny that they a urhitrang mano "pueen is alwite 1 daus toraplien

If the yous 3 cradles dunas ty of queene to cions would 6 It all the cumess Purtamofthois 4 aver the white \therefore which Hewh 1 give only oun

Thins the multiplication of the species would have been keft to the chance of rain or fine westher, instead of which it is rendered independent of either by the wise dispositions of nature. By allowing only a single female to escape at onee, the formation of swarms is secured. This explanation appears so simple, that it is superflusoun to ingiet farther on it."
Our author adds, that another important circumstance resulting from the captivity of queens is, that they are in a condition to fly when the bees have given them libery, and are therefore capable of protiting by the first moment of sunshine to depart at the head of a colony.

Dangers during Swarming.

The capture of the queen, when a swarm has settled on some buth or tree, is, it should be added, the first atep towards lodging a swarm in a new hive. If she be placed in it , with two or three hees, the rest will soon follow. A strong glove will enable any one to handle the bees without risk, as they are less disposed to ating when they are swarming than at other times. It someGines happens, however, that a swarm may bettle on the person of uny individual who may be near it, in which case presence of mind is absolutely necessary for the pescrvanon of life. The following unecdote, related by Thorley, is strikingly illustrative of what has now been adranced:-
"One of my swarms settled among the close twisted branches of a codling tree; and not to he get into a bive without help, my maid-scrvant being in the gurden, offered her ansistance to hold the hive while I dislodged the bees. Having never been acpuainted with bees, she put a tinen eloth over her head and shoulders to guard and secure her from their swords. A few of the bees fell inte the hive, some upon tho ground, but the main body upon the cloth which covered her upper garments. I took the hive out of her hards, when she said that the bees had got under the covering, and were crowding up, towards her breast and face, which put her in a trembling posture. When I perceived the veil was of no farther sersice, she gave me leave to remove it . This donc, 8 most alfecting apectacle was presented, filling me with the decpest distress and concern, as I thought myself the unhappy instrument of drawing her into so imminent hazard of her life. Had she chraged them, all assistance had been vain, and nothing less than her life wouth have atoned for the offince. I used all the v: wents I cond think of, begging her, with all the carnestuess in my power, to stand her gronnd, and keep her preeent posture. Tho bees had now got in a great body upon her breast, about her neek and up to her chin, and I began to search among them for their queen. I imunediately seized her, takiug her from among the crowd, along with some of the commoners, and put them together into the hive. Here I watehed her for some time; snd as I did not observe that she came out, I conceived that the whole body would quickly abandon their matlement; but instead of that, 1 soon observed them gathering closer together, without the least uigmal for deprating. Ujon this I immediately reflected that eisher there must be snother sovereign, or that the same wns returned. I direetly commenced a second search, and it a short time, with a most agrecable surprise, found a grend or the same. She atrove, by entering farther into the crow, to esenpe me; but I re-condueted her, with a great number of the populace, into the hive. And now the perilus acene began to change to one indefinitely more pleasing and agreablo. The hees, missing their queen, began to lislodge and repair to the hive, erowding untu it in multits des, and in the greatest hurry imaginalle; ant in the apace of two or thre minutes the maid had not one aingle bee about her, neither had she so much ss one sting, a small number of which would quib'y have stopped her breath."
artificial manauement of bilis.
The artificial management of bees forms, in wome measure, a brancis of the present aubject perfectly dimtinct from the considerstion of the natural operations of bees, of their various classes, of the phenomena attending their transformation, and of their social economy in general. Many able writers of recent days have given to the public their experience of the brst modes of preserving these insect commanities, and rendering them most productive. And, in the first place, the local situation of an npiary, or accumulation of beehives, has been held of especial consequence.

Site of Apiaries.

The hive must he sheltered in a particular manner from the action of high winds. A wall or hedge is not sulbicient to yield the requisite protretion; housea or lotty trees are necessary to insure it. The reason of this is, that the bees, returning homewards, require a calm air ut a considersble neight ahove their dwellings, otherwise, when they attempt to alight, they are dashed to the ground and killed, their exhausted strength dise abling them from coping with a wind of any force. A low position, enclosed with woods, suits them best. Been driuk mucla, and a fountain or brook is essential to them; drep pools or eisteris very often cause their death by drowning. Shallow troughs, filled with moss or floating wood, are reccmmended as a substituto for shallow rills. It is an error, according to the experienced bee-keeper De Gelieu, to suppose that lives should be placed full in the sun. Dees, he says, live and "rrive in shady places of moderate and uniform temperature, and hence their partiality for forests. Besides, exposure to all the extremes of the solar heat melts anil spoils the honey. At least, if exposure to the sun be beneficial at all, that exposure should last only for a comparatively short time, or from about ten o'elock till noon. Hives should not be placed on upper tloors, on account of the inercased danger from wind. At the same time, a bee-house ought to be so made as to cuuse a free passage of air, though not of strong currents, at all periods, with openings both anteriorly and posteriorly. A covered shed or verandith is porhaps the bert form of a bee-house, yiclding both a slade and shelter from the wet. Where hives are simply placed on open stands, these should be about sixteen inches from the ground, nnd each three or four feet apart. Shifting is condemned by almost all bee observers as very hurtiul to the bees.

Hives.
The important question of the size, form, and materinla of the hive, has ot conrse received much nttention. Whatever be the form of inve adopted, it is found that bees accommolate their hours to it , and fashion their combs of honcy accordingly.

Strau hirrs, or skeps, as they are called in Sentiand, of which a skitch is afforled by our frontispicec, are the hives mont commonly used in cotlage-gatdens; and heing easily and cheaply constracted, they still maintain their place, though much better habitations could be suggested. They are of a roundish form, ordinarily neasuring ahont twelve inches decp and nine incherg wide in the lower part. Made of unhroken rre-stray, or any other straw of a strong and clastic fibre and well bound, they will. if tolerably well sheltered, lase many yrurs. It is customary to place sticks across the interior, fron: an idea that such are necessary for supporting the comhs; but Mr. 'Jaylor, in his l're-K'eqper's Manual"* combats this opinion. "'lhe sticks," ohserves that in telligent writer, "are only an annoyime to the bees; and there is little feur of the combs falling, except in

[^58]very deep hivea : at any rate it may be prevented by contraeting the lower part a little. The beat way of doing thin is by working a woolen hoop inside tho hottom thand of the live, ua recominended by Dr. Bevan, who says, It should bo perforated through its whole course, and the perforations made in an oliligue direction, so distant from each other as to cause all the stitchea of tho hive to range in a uniform manner.' The hoop givea greater stability to the hive, preserves tho lower edge from decay, and affords facility in moving it. I advise a cincular pieco of wood (turned with a groove at tho edgo, to retain it in its place) to be worked into the crown, having through it an inch and a half hole. With a litte ingenuity, the leen may he fed through this open-ing-a better method than the ordinary one at the lootton of a hive. A piece of wood or till will commonly cover the hole; but at tines, and experially in winter, it may be used for the purpose of ventillation, and allowIng escape to the inpure air of the hive. In thia case, a iot of perforated tin or zinc should he placed over it, which, when stopped up by the beus, can be replace ${ }^{\prime}$ hy a claan one. An earthen pan ia a common cover to a etraw hive, and this may beslightly raised by wedgea on the four sidea, to permit a small space underneath. Of whatever material the outer covering consists, it must project so far on all sides as to protect the hive from the leart moisture. This cannot to too much guarded at, ainst; and whether of wood or atraw, all hives onght to be well painted at the beginning, and periodically aflerwards."

Wioden Hives,-These are superior to straw skeps, the square shape being better adapted for the deposit of combs than the round form. Mr. Taylor's observations may be likewise proted on this important point. "It matters not much of what wood the hoves are made, provided it is sound, thoroughly seasoned, and well put wigether. Difi.rent opinions are entertained as to the trest size of bee-looxes, but Ithink that much must depend on the number of bees they are to contain, and on the honcy locality; there must also be a reference to the proposed mode of working them; for, where no swarmIng ia permitted, a larger hive may be advantageously used. A good size is 'welve inches alquare, and nine inches deep withinside; the thickness throughout leing not less than an inelh. 'Tho top of the box ought to project on all sides nearly thronquartets of an inch, for leetter protection and appearance, and as affording convenience for lifting. On the top a two-inch holo alould be cut in the centre, for pharing a bell-glash, and for the purpose of feeding ; and another hole to receive a ventillitor may be male near the lack window, that position being better for inspection, and leas in the way of the bees, than the centre of the hive, which is, or ought to be, the seat of brepding, and shond not be disturhed. A window may loo placed at the back and front, five inches high and six or seven inches wide. The beat and neateet way of securing tho windows that I lave seen, is by a sliding shutter of zinc. Round the window there must be a projecting moulding, mitred at the corners. On one side the piece of musting is movable, and to the back of this is screwed a plate of sheet zinc. This passes intor a rabbet to reccive it, cut, on the romaining three aides, at the back of the lower edige of the moulding. To prevent any wet from lorging at the bottom moulding, an opening or two may casily be cut through, on the under sille, to allow its escape. Fo; the sake of unifurnity of appearance, blank windows inay he made opposite to the real ones. Hiven of this kind reguire to be phaced unler some cover or shed, as a protection from wet and a hot sun."
To these explamations it rhouli be adiled that the hive of either form must he placed on a clean worden floor or bard: and if there be several hives together, eacn should have its uwn separate door. Do not cement
the hives to the buaril, that lemery a duly which the been will themelven perform; all that may be given tha slicht luting of cluy, or any casily removable material The entrance to the hive requires to be small, a lition larger than a shilling, but rather wider than deep, and ought to be at the lower edge of the hive, on the side which is exposed. Numberless lave been the plans in vented to enlarge hivea as they may be required, both to permit of the greater uccumulation of honcy, and io render swarming unnecossary. Capea or hoods ape the simplest of these inventions. In order to use eapet, hives must have a atoppered hole at the top. A small nditional hive ot light strueture is phaced over this at the proper time, the stopper being removed. This nerves as a second magazine for honcy. Storyed hives are merely hives made originally with one or two storys, for the same end. Wildman's hive, the Grecian hive, and Lombard's hive, are apecimena of hives nude on this prineiple. Collateral hives, aguin, auch as Nutt's, effect the same ends by being placed slde by ride, and giving increased accommodation, when necessary, cither for swarms or stores. But of all such hives, our readen will probally prefer to know the one used liy Huber Wo quote an account of it given in the Na'eralisi's Library. Huber'a leaf-hive, as he called it, "consista of cight frames, each 18 inches high [a height of 14 inches in preferahle] and 10 inches wide inside, having the uprights and top crosa piecea one and a hutf inch brond, and one thick, so that the eight frames, when placed close together, conatitute a hive 18 inches high, 12 inches between end and end, and : 0 incher between lack and front, all inside meastice. The framps are held topether by a flat sliding-bar on each side, secured by wedgers and pins. To the tirat ard eighth of these frames is attached n frame with glass, snd coverd with a shatter. The body of the hive is protected by a sloping roof, and the entrance is made through the thickness of the floor board. We dislike the sliding. bars, with their pins antit wedgea, which are so far inconvenient, that in drawing them out, all the frames se lialle to open, and the observer is exposed to mome hazard of annoyance, from the been issuing out at every joint; and we bave substituted for them hinges on one side, and a hook-and-eye on each frame on the other; we can thas open any particular leaf withont meddling with the rest. In taking honey from this hive, the bee master has the whole interior completely under his ege and at his disposnl, and can choors what coubs best suit his purpose, both as to quantity sud quality ; taling care, however, to do so only at auch periouls as will lrave the lees time to replenish the vacancy before the tet mination of the honcy senson. It is also well adapted for artificial swas sing. By separating the hives ine halves, the hoocy, brood-combs, and bees, will, generally speaking, be equally divided; and by supplying a ach half with four empty frames, we shall have two hirrs, one hulf empty, equal in number of bees, of brood, snd evea of stores. One of the new hives will possess the quee?; and if the operation han been performed at s!e propet time-that is to say, a week or ten days before the penod of ratural swiveming-the probability is, there will te royal broad coming forward in the other; st all events, there will be plenty of eggs and larys of the proper age for forming an artificial queen."

Ise of ('apes.-It will be olserved from these quots tations, that experienced apiarians, who work on a large sale, now employ, for the most part, hives so connived as to remedy all the inconveaiences resulting fom thin straggling of swarms and the old custom of killing by brimstone. As the use of single atraw hives, howeref, formed upon the simplest plan, still prevails among thow who have but one or two hives in all, the cape may be reg.roded as the casiest meuns of uffording eulargod so commodation in such cases, and the mode of taind
aray the nu neeoneary to shaulkerehi few lapmaill to the hive, a alily removed. seneon. De from one of 1 two pounds o eaper ns thay

It te strangl awarms should thousanil bees cording to mic nearly four pool culonics, each proper to unit atrong populati rably more pros must be feque keep bees on a dietates tho jur Giflieu thus ile tivo amall awar sparately, and bush on which t spread a table-el anal suilden mo of tho hives, and gently over the cloth, and they wings, and join are quiet in the tenove this newl to oceupy. This success, and in 11 breonasa a power Jeriwd. Two f same manner, alt sone lays later constructed come the first one ente as the bees will have already bego and ne بt diy the ardour with the is and which will in rrase of the lab after this union, morning in the sam has already passe the cirrumstance the paute of a col fruoval of one of the cordial juncti swarning may be and lodging them coub renoved wit the expulsion.
The feeling of ant point to the be
wives, and of cour Mlves, and of conur frial is then essen highly cultivatord il an thosi !" which Itevail; or where muskard, and coln Useckeppers, howey

The work we her rabshed frore the Fis lath, and pulthsleri
h the bees given is a e materinh nall, a litilo deep, and on the vito se plans in red, hoth th ley, and to ond are the use capta, p. A small over this at 'This serves 1 hives are 0 storys, for in hive, and ande on thin Nutt's, effed c , and giving y, either for , our readers ed 1,y lluber Na'eralis's it, "consista height of 14 inside, having 1 a hatf ineh frames, when 3 inclies high, iches between he framer we a side, secured ighth of these 1 covered with protected by a c through the ke the aliding re so far inconthe frames are posed to some lig out at every hinges on one on the other; hout meldling s hive, the bee under his ese hat coubs bed quality ; taking Als an will leave before the tet - well alapted the hives trio , will, generally lying t ach hall two hives, one frood, and eren isess the quee: at "le profer efore the peniod s, there sill the r; at all evente, f the propet age
om these quots work on a large ves so contrived ulting from the mof killing by lives, huweree, tils nmong the lie caple matho Fing ealarged to move of taking
away the anoney from it la very plain and ensy. It is only neceanary to reinove the cape, invert it, and cover it with a hamberchief, leaving a little opening on one side. A few fapas will cause tho been to quit the cape and return to the hive, after which the honey can oi course be reavily removed. This may be done frequestly in the same sensen. De Gelieu mentions that in one scason he drew from one of his straw hives that did not awarm seventyiwo pennds of fine boney-comb, by merely emptying the eaper an they wero filled.

Union of Swarms.
It it atrongly recommended by experienced men, that owarms shauld be raore often united than thang are. Fivo thousand bees are estimased to weigh a $:$ atid ; and, necording to mont hec-keepers, a swarm ounht o weigh nearly faur pounds. An a hivo often casts ohi'succersive colouics, each far below thi weight, it then hecomes proper to unite two or more of them; seeing that one urong population supports itself better, and is incompnrubly more profitable, than scveral fecble colonies, which must be f equently in want of assistance. Tho those who keep bees on a mmall and cheap seale, conventenco also diutates the junction of swarms in such cases. De Gelien thus describes his mole of practice:*-"When two small swarms come ofl the same day, I gather them separately, and leave them nt the foot of the tree or buah on which they have alighted. Towards evening I sjread a talle-cloth on the ground, on which, hy a smart and sudden movement, I sl, ofll the bees out of ono of the hives, and imun iutely take the other and place it gantly over the her" lout aro henjed together on the cloth, and they instan'sy arcenti iuto it, flapping their wings, and jou those which, not having been disturbed, are quiet in their n"w abode. Eorly next moming I renove this newly united hive to the place it is destined to occupy. Tlis double pepulation works with double success, stul in the most pertect harmony; and generally becones a powerful colony, from which a great profit is derived. 'Two fechle swarms may he united after the sme manner, although one of them may have come off mone lays later than the other, and the first may have constructell combs; tiking eare, however, not to make the first one enter the second, hit the second the first, as tho bees will ascend more rearlily to join those that have already brgun to make honey and to hateh brood; and nert diy they will proceed together with inerensed adoutr with the work which the tirst had uilready hegun, sid which will now advance more rapidly from the inerease of the labourers. It is to le understood that, afier this union, the hive should be placed early next morning in the same place where the oldest of the swarms has atready passed some days." On many occanions, the circumstance of two quecens passing out at once is the caus of a colmy going off in two halves, and tho renozal of one of the yueens is necessary, to facilitate the cordial junction int, one commutaig, Artificial swarning may bu elfected by expelling a looty of bees, and lolging them in a new hive with a quantity of canb removed with them. Tobaeco sinoko is used for the expulsion.

Summer Management of Bees.

The feeling of bees at different scasons is an important point to the bee-keeper. In summer they feed themwhes, and of course a good supply of the reauisite material is then essential to their well-doing. The most lighly cultivatod districts are not so favouralile to bees ss thoss in which wild heaths, commons, and woods revail; or where white clover, saint-foin, buck-wheat, mostard, and cole-seed, are produced in abondance. Beckeepers, however, may to something to further the

supply of al nmer food. Mr. Payne recommends the planting of quintition of the common kinds of crocas, single blue hepaticas, black hellebore, and nome othes early flowering plants. Varions kinds of thyme and migh . vette may be grown to purpose, and the heea are especia" y fo. it of the malvin nemorosa nud the nowberry plant , w on the natural produets of the country, generally speaking, bees must rely for sunmer tood, if the wenther bo such as to permil of their gathering it Should n succession of coarse bad weather occur, however, at the begimuing of summer, and particularly sfter a swam lias entered a new hive, most apiarians think it essentially uecessary to pivo honey, or byrup of sugar and ivater, to the newly \therefore, icd stock. If no proper brook or fount be at hand, water should alwaya form a part of the aummer provision. The hees lsing at full work in this wenson, the door of the hive should be opened to its whole extent, and not clased, ns is more or less requivite at other times. In the hives formed upon improved plana, ventilators constituto a part of the apparatus, and thermometers are introduced to regulate their use. Though theac are valuable aljuneta certainly, they are \mathbf{r}^{n+} indiancisable; seeing that the bees, as already mentioned, ednl'ive to ventilate to some extent for thonselves. Where artificial ventilation con be effected, it is recominentled that tho temperature should be maintained at frol: 65 to s0 degrees of Fshrenheit. It is recomnens', on evenings when the moths are numerous, to place a smill grating before the hive; and it will also be advisable t destroy uny wasps, spiders, earwigs, of Niser insecta sel tad near the hives.

Autumnat Managernent.

The sutumnal feriod has long been the most calamitous for hees, not through the injuries of enemies or weather, but from the improper management of bee krepers. After the carcasses of the drones, strewn in multitutes before the hive, have indicated that, with the lieginning of August, has rome the close of the riea honey reason, the bee-keeper deems it time to take from the hive ti.e raward of his care and attention. The use of storied hives or extra boxes, renders it easy to take nwny a pertion of boncy enily in the scason, and this is enlled argin honey. Even with a common straw-hive, it has been fund possible to take nway the honey, and retain the lees in the hive. Wildman, the famoun experimente-a bees, recommended that the hive should te taken int , .. ark romm, and there struck repeatedly till the bees ase forced to nacend into an curpty hive. The combs are in a cut out with a thin knife, and the bees finally inturned to the old hive. But this plan is seldom pursued, being af once dangerous and destructive to the brood combs.

It is generally reckoned advantageous to change the pasturage for a veeck or two before taking the honeyharvest. Ahout mid-autumn, the ortinary food of bees begins to faii and their stock of honcy to decrease daily. By a removal of three weeks to a healthy district, a hivo not only loses nothing, but frequently gains as much aa ten or twelve ic inds of honcy in ordinarily favourable circumstances. So well is this known by bec-kcepers near Edinhurgh, that one shepherd on the healthy Pentland hills reccives in charge several scores of hives annually, for the hecth-fceding.

Hones-itarvest.

After the natumnal acression of honey has been obtained, nad the bees have heen brought home again, the question comes to te, in what 1 . :uner the harvest should be reaped. By parminlly depriving each of a portion of comb, nod lenving so:ae for food? By suffocating onehalf the communitics, taking their entire honcy, and len*ir r. Sher hives with their honey untouched, to serv © In! Of tima!ly, by rethoving the beea frome
one-half the nives to the other half, forming united atoek, and acquiring all the honey of the evacumted ones? Thees three plana are known by the suveral namea of prrial drypivation (commonly and mont rasily pructimed with inproved hives, an ulrealy deserilect), sufflyation, and union of stacks. "The practice of partinl deprivation," suys the Nituralizt's Rilirnyy," "has never yet become grneral, hecause it in liathe to frequent fuilure, even in fuproved buven, and herause the fill benefit is sor derival from it at the very " mennmement of the sis .em. 'The liakility to failure tis ef the oljecetims stated, in owinus, in mont inetmeres, not to the momer. but to the perwid of the quatimo. Aecorting to the too cominon practice of dowe who are friendly to dravivation, a portion of honey is alstracted from the hives about the beginuing or mildite of Soptember; and the owner compliments himself on his maleration, in buing contron with a part instend of the whole, und on his lumanity in saving the lives of his imbustrinus favourites; while in nine instaces out of ten ho timats, on the arrival of Mareh, that his moderation and homanity have tren altogether unavailing, and that he has waved them from a violent death by suffocation, only to expose them to the more tardy but not less erucl death by starvation. Wherras, if deprivation take place soon nter the swarming senson, ne alrealy recommended, and is managed with discretion, the issue will he very ditferent, and ultimately more profitable to the owner, than the almost univervally pracbised morle by sulfiration, which is too well known to need description. The latter system may gield a greater return in propertion to the bives operatal nem; but in the former. there is a much greater numbine of tives available. For crample, suppose two apiarics, earh containing tivo stock-lives at the end of July, exclusive of as many swarros recently thrown. 'The owner of the one, practising the depriving system, takes from earlh of bis stocks 10 pommis of homey, makime an numunt of 50 pounds as his honey-harvest. The ovser of the wher, and abettor of sufferation, proceeds in Epptember to amoke his tise old hives, and receives from each 25 pounds of lumey, makine whount of 12.5 poumals as his honey-larvest-betw, quantity of the other. I A the following ypars the depriver hav hix five ofl 1, , hives, and the tive swarms now become stock 4 : , fon the whole ten he now hakea a humized pousta on mony, while at the sume time his apiary is angmentily the midition of ten new owarms, moking twenty for the following year; white his rival powereses anly his former number af five, yielling 12.5 poums. In the next year, that is, two years from the vonmenement of the comparative triat, the depriver haw twenty stork hives, yiflling 200 prounds, and *) on by a geonctrical ratio; white the other remains at his original 125 pounds. This calculation is unde on the supposition that each owner takes but one swarm from each stock, an I without making any aliowame for losses and filures, which will atfert the produre of both in honey and bees, but to waich both are liabla."

The writer of this comprehinsive treatise procecds to point out the alvantages of the humane principhe of spring the lives of these useful insects. "It is pitiante to reflect, that the small degree of additional trouble required in miting them, shouk prove so edectual an of stacle to this conservative pratice. Yet the operation with each hive so trrated, need not occupy more than Gffeen or twinty iminutes. In the evening, when all are quiet, turn up the hive which is to be operated upon, fixing it in a chair from which the stublid hottom las: been removed; place an empty hive nbove it, wrap n cloth round the print of junction, to prevent the lues
-... Nataralistix literary," combucted by Ne Wiltiman Jurdine.
 o: 'rese pu'do.
from conning out and alnaoying the operator; then, with A short atick or stone in acach hand, beat rounl the Nowe but aenily, for firar of loowning the combs, In five min utes, the panic-atruck inserts will hantily mount into the empty hive, with a loud humaning noise, exprempive of trephiation. 'I'se hives are then separatel-that cone taining the bees is placed on its usual prolental, and the other containing the honey is curried ofl: The union : next to be eflicted. Furn up the atork-hive whleh is to rereive tho maldition to its pupalation; with a hunch of feathers, el a monall waterimepan, such as is us? for watoring flower-bede, drenels hem with a andution of
 Do, the name to the exp, llal tes; and then, placing these last over the stork, mouth to mauh, in matt rap on the top of the hive will drive them down among the bues and combs of the und rmose hive. Place this has on ite pedestal, and the operntion is completed. Tho atrong llavour of the solntion will prevert them from dis tinguishing between lifend and strmerer; und their fint movement, after recovering from their panise, wili be to lick the liguid from one mother's hodies. This mome of oprerating is applicahlo to all kimls of hives." Winh regard to the two queens one would mentrediy kill the other in a very shost time; lut the beat way in in remote one of them before union.

One argument employed by nd.oxates of the plan of sumbeation by introblucing the fumes of brimatone on other noxious cfllusia, is, that ly the mion of stocis you have an immense mamber of montlis to fecd of which the killing plan relieves yon. Only inexperietieed Werekerpers, loweser, could ase this rasoning. De lielien having tiseovered the remarkable fict, that the incerase of numbers in the winter hives is lar from promutirg proportionate increase of comsumption. F'rom fiffence twenty pounds of honey, st rom thren to four pots, ase repnisite for the winter maintemaner of a single hive of ordinnry strength, with which the plan of mion has not been practised. Do. Geline placed surh a hive, with surls a store, heside one into which there full comaunio ties had theen intronlaced, nod he fommd, on weighing the hater in the spring, that its inhobitimes hand warcely used one pound of haney more than thane of the singloytodid bive. The experimenter won went fisther. Toatime alrealy amply stocked, he addeil the sworms of fout othor lives, atul found on weighing it in the fring ihat "the tetal diminution of houry did not excepd the pominds more than took place in ordinery single huses" H:al they mot heen thus united, he says, bach of the stow ws woud have cost him muth more money than they were worth, and, indecd, the most of them "would to certainty lave perished." 'The cabse of his strange fat by which nature serms to petint to the phan of autumad unions at 1 ha lera possible for both hees and beconepers is yet maknown.
'Ihe boulsa by whatever proces procurel, showid te drpriven of the homey at once, whike n mathral wath remains in them. Virious kimss of dramers havelan used for weparatiag the honey, and kerping it as merb as posible forn the external air. "Iha honey what runs of mataraly withont hrabilue down the combsat passes throu;h muslin. is hald to be the finest. A sromed kind is cured by culting the condis in pinces. and leame the loney pass thromeh a drainer, umber + ypowe to gentle heat. A third quality is procemal hy sulsispuntis puting the combes in a versel pluced on a tire; the no daed, strained through convos, is used in fording bis The erparated wax of the combas is introblued inor woollen long, firmly tied at the month, and pint intobxib. ing water. 'The pure wax oozes through, and is firm med off the surface, where it floats. It is then to allowad to cool slowly. T'lie lanst honey is supposid to le that formol fromi beath. 'The fame leces of it I mettus were nourished by that plant.

Honny is used amployed In me formed the basio the common jpra wuddiag, came til amo mead was liguors, but is still some as a drink, ordinary kinds seepers, to whom weinpt the mam offer the followit preparution, from twelve gillons of aix eggn, mixing adding twinty po hour; and when mace, and rosema ful of yeast to it , sit work: whet and when fine, 10

Wint

In winter and w th great care. deen entirely depri is of course indispe of any experienco dian that of leavin produce, Satne br house in winter ; 1 lees must then 1 Though the toor rowed or shut up every beo that issu sken of every fill frediug is necessary duwn for tho manis and early spring. weather is fime ant] the hive from being never be given at o bol, that they will relinquish their tre ough to be given ti portion of two pout rery cold, a lews qui frd in the spring, it the beea have retur moat disastrous con Ieries comnitted by fod in the morning, cutrance instantly st ao the bees leave tl of day-light, a later all those who had lic being secured.
Rolative to tho as hediag of bees, mat followine may be co as well as cconomic of good ale put ond until the augur is t_{i} when it is coid, ot honcy, and it mo manner:-If the liee ock of the some dium and from three to for is set, and the hees mised, and the eek filled a soup-plate w ond put down the drowned in tho liqt atraws nver the pla

; then, with

 mil the nulen In five min ount into the "presemive of i-that con. ant:1, sul the The tuina is ive whirh is will a bunch as is usid for a molition of a little warm then, placins , a smart rap vo among the Place thin last pleted. Tha hem trom dis. and their ting ther, wili be to 4. Thim somple hives." Wilh ureilly kill the ay is to remoreof the pland f brimstone on nion of stocks thes to feed of y inexprrienced nimg, De Cetiro tat the inctease on produing From fifiecente to tome phts, are a sincle bise of a of zuilon has whe a hive, with e full communio for wershing the nol acarecty ued 10 single-xtowhd her. 'Io a tive swarms of four the epring that of exceed thine "y single hires." Fi, racho of tince money ullan they FIn "would tha this strange fot lan of autumad and hecerocpers
curcel, whould te nuturas wathith aiturat hovelea poine it as morb Cu honey what In the combs and finest. A wrond firce's. and letana trexpoxue to by sultseryment?

is tire: the yo

 in liedim bers "IItroblered into nd patintobil ch, and is skmp It is then tole I y is suppood 6 fins lexcs ofHonny in used as condiment at the table, and is also mployed In medicine. In anciont times in Hritain, it lormed the basis of a beverage called Mead, and from the common practice of drinking it for a month after a nedding, came the expremsion honeymioas. In course of amo mesd was muperseded by heer, wine, and other inuors, hut ia still allowed by writern on diet to loo whelewome a drink, and certainly less pernicious than the ordimary kinds of intoxieating lluidh. As aome hee. beepers, to whom our pagen ure addressed, may wish to anempt the mannfueture of mead for domertic use, we offer the following as one of the best methoila for its preparation, from the Eneyclopedia Britannic'a:一Inti) frelve gallons of water put the albumen [or white] of aix egg, mixing thene well together, and to the mixture adding twenty poonds of honey. Leet the liquor bril an hour; and when Imiled, add cinnamon, ginger, cloves, mace, and rosemury. As boon as it is cold, put a spoonfull of yrast to it, and larrel it, keeping the veanel fillet wit works ; when it has done working, stop it up elose; and when fine, bottle it off for use."

Winter and Spring Mnnagement.

In witer and early spring, bees require to hee ended whagreat eare. In the ease of those hives which have ben entirely deprived of their honcy; systematic feeding is of course indispensablo in winter; but few bee-keppers of any experienco ever willingly follow any other plan dan that of Jeaving to bees a wister supply of their own produce. Sone bes-keepers remove their hives into the house ia winter; but this is an unwise practice, as the hea must then he kept continually in confinement. Though the door of the live should be carefully marrowed of shut up in very cold weather, at which time exery bee that issues perishes, yet advantage ahonlal be 'aken of every the day to let them ubroad. Where freding is necessary, the following mules have been hitid duwn for the management of common hives in winter and early spring. Bees must be fed only when the weathct is fine and warm, to provent the temperature of the hive from being injured; ond a large quantity should never be given at once, for tho bees are so greedy of bol, that they will rather fill the broad cells with it than eelinquish their treasure. The qumatity of fool which sugh to be given to a hive may be calculated in the propartion of two pounds a month; lut if the weather bo rery cold, a less quantity will suffice. When a hive is fed ia the spring, it should always be after aunset, when the bees have returned from the fields; otherwise the moat disastrous consaquences may ensuc, from the rolbrics committed ly the bees of other lives. If they are Fed in the morning, it must be before eunrise, and the entrance instantly stopled to keep out depredators ; for, as the bees leave tha hive on the very firnt appearanee of day-light, a later period would prevent the return of all those who had left the hive previous to the entrance being secured.
Rolative to the substanees which are proper for the heding of bees, many different opinions exist ; but the Gollowine may be considered among the most beneficial as well as economical artirles of diet:-I'o two quarts of good ale put one pound of moist sugar; hoil them until the sugar is wholly dissolved, caretully skimming "; when it is cold, it will be found of the consistency If honey, and it may be given to bees in the following mannet:-lf the liees are in the plain cottage hive, an oek of the same diameter as the hive must lon provided, and from three to four hands in height. When the sun is set, and the hees have retired, Iet the hive be gently nised, and the cek placed on the stoal; then, having billed a soup-plate with the food, place it on the eek, and put down the hive. To prevent the been being drowned in the liquid, it is necessary to place some Whaws over the plate, and over the straws a piece of Vol. l.-W. 3
paper, eithep tlickly perfornted or eut into nicka; theme nicks, however, must not run parallel with the strawe, but either across or diagonally; the entranee muet thea If elosed, and the plate removed on the fullowing morning, and the whole of the liquid will be transferred into the combe.

Disenses and Enmmics of Dees.

Been, according to the conclusiona of De Gelien, aftes sixty-four years' experlence, have " no real diseare; they are H/ways in good health as long as they are at liberty, and when they are warm enough, and have plenty of food." In early apring, however, they are found liable to an affection called llysentery, whief is known by the marks on the lavarl of durk-coloured evacuationa, by the offensive smell, and by the frequent deatha. 'I'his disease certainly fcsulta, in most cases, from long confinement in a Ilamp and impure nir. By lifting the hive to expel the vitiated air, seraping, washing, and drying the board, and removi the tead bodies, the complaint, says $\mathbf{M r}$, 'Tny lor,
cases.
been reeom-
rian m."
more

One ponats
in 1 remedied even in the most exireme red with honey and water, has ${ }^{1}$ cure; but the experienced apiamenea all dietetie remedios to do sun is held mad, \mathbf{A} little chloride of lime, he heneficiatly in washing the boerd. akiced here, that exposure to the This caution injurious to the hives in winter. anspect dampucas maty, ns beekerpers, when they score.

A few of De Gelien's hints respecting the chief foea of the hee-tribe may he uscful to bee-kecpers. After observing that the possessors of beeg, often from an ignorant exeess of care, are among their grentest enemics, he says-" Ants are their least dangerous encmien; trua, the bees sannot sting them to death, beconse they are small and well defended with armour, lint they seize hold of thom with their teeth, and carry them to a distance. Ilad they not this means of getting rid of them, their colonies could not exist in the vast forests full of nut's nests, ond where they thrive so well, in spite of the horrible massucres that anmally take place.
" Moths are little known, and never injurious, in the high valleys, nor on the mountains; but they attack and dentroy a vast number of lives in the plains or in the vincyards, where they are a great scourge. As soon as a moth has penctrated a weak aive, it establishes itself in a comb, envelopes itself in a silken weh, multipliea rapidly, consuming the wax, nnd spreading its destructive galleries from side to side, until, arriving at a certain point, the evil has scareely a remedy,
"'The only means of saving the colony is to imitate the surgeon, who rits off a diseased limb to save the other -every bit of infected comb must be cut out, leaving only those ocenpied by the bees. And the bees muit then be liberally fed, hy giving them every evening as much honey as will maintain them until the fields shall yield them a sutlicient quantity. Thus I have preserved hives whose circumstances seemed to be desperate.
"Spiders annoy the bees much. The bees get entangled in their weh, and are not able to extricate themselves. Hero chanliness is the best protection; therefore care should be taken to sweep the webs away from the hiva and its avenues as fast as they appear.
" Birds eat a prodigious quantity of bees, especially in spring, when the trees are in blossom; and the ponitry, also, that roam about or near the water where the bee go to quench their thirst, gobble up a great many.
"Miec, especialy the red monse, or sorex araneus, some times penctrate a live in the winter time, either from the entrance being left too wide, or by gnawing a hole for themselves in the straw. They eat the honey, and even the bees, when clustered together on the side of the hive,

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation
in which position they are unable to defend themelver, and scarcely aven see the enemy.
"Wasps are also reckoned among the numerous enemies of beea. I have, however, seldom seen a hive destroyed by wasps; although they are larger, stronger, and armed with a formidable sting, and an impenetrable cuirasa, they seldom dare onter a well-stocked hive. Once attacked, they soon fall beneath the united efforts of these brave citizens, who sacrifice themaselves to dcfond the place of thcir nativity. Wasps only appear in great numbers when the fruit is ripening, and then they range unceasingly round the hives, and enter the weak ones, or those of which the too apacious lodging bears no propertion to the number of its inhabitants. There aro three ways of providing against the attacks of wasps. 'Tho first is, to unite weak hives by doubling or tripling the population, thereby enabling them to defend themvelves. The second is, to contract the entrances as soon as the sworming timo is over, after the massacre of the droncs ; and the third is, to destroy their nests.
"The bees arc continually fighting between themselves, and robbing each other: avarice, not necessity, leads thein to do so, it being almost always the strongest and beat provisioned hives that pillage the weak ones. When once a beo has been able to introduce itself into a hive, and carry away a load of honey without being arrested, it will return a hundsed times the aame day; and, making it known to its companions, they will then come in hordes, nor cease their pillage till there is nothing left to take. In one day the whole of the honey will be carricd off, and with a determination which one can scarcely have an idea of without eceing it . This kind of pilluge is most frequent in the spring and autumn, and it is easier t prevent than to stop it; and, for this purpose, the entrance of the hives nught to to straitened in proportion to the population."

wild Eecs.

Besides the garden or hive-bees, as already mentioned, there are various other species of bees, which have ncver been domesticated by man, though many of them construct hives and produce honey. Of such of these wandercrs of the wilds as are indigenous to Britnin, it may be interesting, more especially to the young, to learn some bricf particulars. The most common specics of the wild or humble bee (bombus) is an insect at least double the size of the hive-bee, with a black heal and body, having yellow rings crossing the latter anteriorily and superiorily, and white and black ringa alternating at the posterior extremities.

Both on account of their peculiar habits and selected places of residence, this and another wild species called the moss bee, are unfitted for domestication. Few of them survive the rigoure of winter, but one, a female, that doen escape, manages, for a season, the resuscitation of the breed. Abroad, it flics in early, and, alone and unaided, sets laboriously to work in constructing its nest, piercing the earth or moss, as its instinct may be, and excavating a small chamber whercin to lay ita eggs. It does not make wax and cella for the young. These come to maturity in the cocoons which they apin for themselves in the larva state; and when they emerge, these cocoons form stores for food. The solitary bee feeds alone in its earliest progeny, but these soon multiply around it, enlerge the cella, gather honey, and feed the increasing young. The wants of the young go on increasing for a great part of the aummer, and the quantity of honey they consuine is very large: towards the middle or latter part of Beptember, however, the enercies of the bees begin to wax fainter, and little further progress is made in adding to the colony, or in collecting noney. Cold nad showery days begin, even by this ume, to thin the number of the insect population, who wo now seen crecping alowly, with dump and heavy
wings, upon the stalks and petals of flowers, where they wers formerly seen ectively buzzing ahont in search of honsy. The atores of the honey-cups have not outlasted the wants of the young unfledgen becs, of which they were the proper food; and if the nests be examined now, these cupa are found quite empty. The bees which survive the accidents of rain, cold, and frost (for they aro now frequently overtaken by frosty nights in their languid journey homeward), by degrees forsaks the nest and its furniture, leaving the latter a prey to mice, bectles, or other enimals. To shelter themselves for the winter, they seek ont some dry bank (not preferring on exposed to the sun), where they penctrate to the depet of eighteen inches or two feet into the carth, pushing of tho earth behind them, and leaving no visible track by whith they have descended. In these situationa they in often found by labourers and others in digging the earth; and such people are often greatly puzzled to imaging how the insect can have reached such a depth. Perion who have attended to the habits of wild bees can ofen fix on the spots where they take rcfuge, digging for and finding them with the greateat certainty.

The experiment of domesticating the different kiode of wild hees has been tried; and it was found, that by removing their nest cnutionsly in an evening, and piacing it in a quict situation, in a garden or other place when they could be observed, they went on with their wook without apparent alarm or interruption. Dlaring the whole suminer, they continued to prosecute their occups tions with tho sams industry as other bees; but aboul September, as we havo mentioned, the hive began to turn languid, and the numbers which appeared going and coming about the entrance became daily snalle: It was imagined they had taken refuge within the bive $;$ but when this was opened, after all seemed to han ceased their lalours, every thing was found empty and descrted; there was neither bees nor honey; the stronge and younger insects, no doubt, having gone to make buro rows for themselves in the carth, and the ofder omm having gradually fallen victims to the accidents of ip proaching winter.

Our wild bees, therefore, appear to passess theis bid lives but for self-enjoyment, or rather to form one of tad order of beings ereated by tho great Author of all asil for the purpose of laving no corner of the univinu without its utinost allotment of sentient and enjopiag things. And surely, in copse and forest, by dale and mead, on river-bank and mountain-side, there is enougt and to spare of the food which it seeks for the humb bec. Though oitr British wild bees may not be consent ahle to inan's uses, however, thero are wild bees whid are not so situated. In Cashmere, there are several kind of bees, which have the halits requisite for domesios tion; and that country, with the north of Irdia, eppers to he the native soil of these genern of hnney-becs. Th inhabitants hnve a way of domesticating them rid might be imitnted with auccess in this country, if building dwelling-housca, they leave certain caritima the wall, with a very amall aperture to the outside, tha the entrance to a hive, but quite open inwards; thisir ner part is covered afterwards with a frame, hasing 1 door which opens at pleasure; into theac cavities, whidd are much auperior, in the cosential respecta of wima and security, to our bec-hives, the insects are admithd: and here they carry on their labours during the summe The prople of the house, by opeting the interior dol can sie them at work whenever they fianse, and can wo move a honey-comb at ony tinie without distresing thy hive; the ondy precantion neeessary being to blonim the back part as much smoke as will make the benty out at the front entrance. English travellers bare way the operation performed, and the bees quietly ntim This jlan of lolging bees might be followed here togut advantage, if not in dwelling-houses, at least in the difis
woot firms, wi
more secuto, an draw now use againtt human wrmin.
In the warm pecies of wild wraliot Reaum manner by borir putrescent uprig vines; but somc doors, and wind in usually cylind Her atrong maxi boring it; begin points her cours in a direction pa tunnel of from seven or eight lis sha enters or firs of the pipe. As employment, sho bhowing it upo amall heap of sa a long cylinder in the weather and poees. But how materialscan she ings of her apart this suppliea her part of her mansi of the cylinder, al store of pollen, m trimeat of the lit height of soven os cell, athe next con: together, and slao becalled an anus u sulficiently hard port for a second veding is gradual till there remains this is aleo filled u particles of the eav pearance of as ma made joininge, an inown-plecs; it se the floor of the up pleted, she procced Gnistiee in the sam rided her whole tu ally about twelve. come forth, each ir ualy contrived tur

Bee-Hu
In moma countri domenticated atate, trees or other suit throwing off swar the weatem parts o joying thia wild fr rellers; and the anke of their atore ba class of person On tha subject o apasks as follows, Par Weat:"-
${ }^{4}$ The beautiful abounded in bec-tre truans of which w ltis surprising in v overspread tho Far af years, The Inc
owers, where they tbout in eearch of have not outlasted en, of which they ests be examined - The beea which ad frost (for they sty nights in thein es forsake the now r a prey to mice, themselvea for the (not preferring one letrate to the depth c esrth, pushing up no visible track by ; situstions they n 2 digging the earth; puzaled to imagina a a depth. Peroons wild bees can often ge, digging for and nty. the different kindr was found, that by. evening, snd piacing other place when on with their monh ption. Dluring iby ssecute their oceupjer bees; but about the hive began $t 0$ jich appeared going ecame daily suallin. age within the bire: all seemed to ham as found empty and - honey ; the atrongn ig gone to make bur and the older one the accidents of op
to possess their thind er to form one of t Author of all ail roer of the unirem entient and enjoring 1 forest, by dale and side, there is enough seeks for the humblh s may not he conrer are wild bees whit here are several tind puisite for domestio rth of Irdia, appera of honey-bees. Tw ticating them nide this country. in e certain caribia a e to the outside, 喑 en inwards; this in 1 a frame, hasing these cavities, whid 1 respects of mimh insects are sdmither s during the sumbe ng the intelior dota y base, and and thout distresing y leing to blow in ill make the ben h travellera hare mat bees quietly ntan followed here lophat , at least in the chre
wout firms, where a bee-hive would be at once cheaper more eccurv, and more ornamental, than the masees of wraw now used; which, besides affording no security against human plunderers, are the haunts of all sorts of vmin.
In the warm regions of tha south of Europe, a black apecies of wild bee is found, which, according to the natwalist Reaumur, conatructs its nest in a remarkable manner by boring into timber. "She usually selects the nutrescent uprights of arbours, espaliers, or the props of rines; but sometimes she will attack garden seats, thick doors, and window-shutters ; the piece that she chooses is usually cylindrical, and perpendicular to the horizon. Her atrong maxilla are the fnstruments she employs in boring it; beginning on one side for a little way, she points her course obliquely downwards, and then forwards in a direction parallel with its sides, till she has bored a tuanel of from twelve to fifteen inches in length, and aerea or eight lines in dismeter. A passsge ia lett where the enters or first begins to bore, and another at the end of the pipe. As the industrious animal proceeds in her employment, she clears awny the wood that she detarhes, drowing it upon the ground, where it appears like a mall heap of sawdust. 'I hus, we see, she has prepsred slong cylinder in the middle of the wood, sheltered from the weather and external injuries, and fit for her purposes. But how is she to divide it into celts? What materiat?can she employ for making the floors and ceilings of her apartments? The sawdust is at hand, and this supplies her with elt that she wants to make this part of her mansion complete. Beginning at the bottom of the cylinder, ahe deposits an egg, and then laya in a atore of polten, mixed with honey, sufficient for the nutriment of the little animal it ia to produce. At the height of seven or eigist tines, which is the depth of each cell, ahe next constructs, of particles of the sawdust glued wereher, and also to the sidea of the tunnel, what may be called an snnular atage or scaflolding. When this usufficiently hardened, its anterior edge afforda a support for a second ring of the same materials, and thus the veiling is gradually formed of these concentric circles, till there remains only a small orifice in its centre; and this is also filled up with a circular mass of agglutinated particles of tho sawdust. This partition exhibits the appearance of as many concentric circles as the aninial has made joinings, and is about the thickness of a French inwn-plece; it serves for the ceiling of the lower, and the foor of the upper apartment. One cell heing completed, she procceds to another, which she furnishes and Guishes in the same manner; und so on till she has divided her whole tunnel into apartments, which are usuully about twelve." At the proper season the young come farth, each in its turn, from these long and ingeniwaly coutrived tunnels.

Bee-Hunss in the Wilds of America.

in some countries the honey-bee still roams in an undomesticated state, taking up its abode in the hollows of trees or other suitable places of sheiter, and annually throwing off swarms which seek new habitations. In the western parts of North America, colonies of bees enjoyiug this wild freedorn are frequently observed by travellers; and the diacovery of their rude hives, for tho mke of their store of honcy, forms a kind of profession ti class of persons known hy the name of bee-hunters. On the eubject of these sports, Washiagton Irving apraks as followe, in his "Tour in the Pruiries of the Yar Weat:"-
"The beautiful forests in which we were encamped abounded in bec-trees; that is to say, trees in the decayed tuanks of which wild bees had established their hives. It is surprising in what countless swarms the bees have orerspread the Far West within but a moderate number of years. The Indians consider them the harbinger of
the white man, as the buffalo is of the red man; and say, that in proportion as the bee advances, the Indian and the buffulo retire. We are always accustomed to associate the hum of tha bee-hive with the farm-house and the flower-garden, and to consider those industrious little snimals ss connected with the busy haunts of men; and I sm told that the wild bee is seldom to be met with at any great diatance from tha frontier. They have been the hersids of civilization, steadfastly preceding it, as it advanced from the Atlantic borders; and some of the ancient gettlers of the W est pretend to give the very year when the honey-bee firat crossed the Miasissippi. The Indians, with surprise, found tha mouldering treem of their forests suddenly teeming with ambrosial sweats; and nothing, I am told, can exceed the greedy rolish with which they banquet, for the first time, upon this unbought luxury of the wilderness. At present tha honey-bee swarms, in myriads, in the noble groves and forests that skirt and intersect the prairies, and extend along the alluvial bottoms of the rivers. It seems to me as if thewo beautiful regions answer literally to the description of the land of promise-(a land flowing with milk and honey;' for the rich pasturage of the prairies is calculated to sustain herds of cattle as countless as the sands upon the sea-shore, while the flowers with which they are ensmelled render them a very paradise for the nectarsecking bee.
" We had not been long in the camp, when a party set out in quest of a bee-tree, and being curious to witnees the sport, I gladly accepted an invitation to accompany them. The party was headed by a veteran bee-hunter, a tall lank fellow, in homespun garb that hung loosely about his limbs, and a straw hat, sliaped not unlike a beehive; a comrade, equally uncouth i_{1} garb, and without a hat, straddled along at his heels, with a long rifle on his shoulder. To these succeeded half a dozen otherg, some with axes, and some with rifles; for no one stirs from the camp without fire-arms, so that he may be ready either for wild deer or wild Indian. After proceeding some distance, we came to an open glads on the skirts of the forest. Here our leader halted, and then advanced quietly to a low bush, on the top of which I perceived a piece of honey-conib. This, I found, was the bsit or lure for the wild bees. Several were humming about it, and diving into its cells. When they had laiden themselves with honey, they would rise up in the air, and dart off in one straight lino, almost with the velocity of a bullet. The hunters watched attentively the course they took, and then set off in the same direction, stumbling along over twisted roots and fallen trees, with their oyes turned up to the aky. In this way they traced the honey-lsden bees to their hive, in the hollow trunk of a blasted oak, where, after buzzing about for a moment, they entered a hole about sixty feet from the ground Two of the bee-hunters now plied their axes vigorously at the foot of the tree, to level it with the ground. The mere spectstors and amateurs, in the mean time, drew off to a csutious distance, to be out of the way of the falling of the trec and the vengeance of its inmates. The jarring blows of the axe seemed to have no effist in alarming or agitating thia most industrious community. They continued to ply at their usual occupations-some arriving full-freighted into port, othera sallying forth on new expelitions, like so many merchantmen in a moneymaking metropolis, fittle suspicious of impending bankruptcy and downfall: even a loud crack, which announced the disrupture of the trunk, fuited to divert their attention from the intense pursuit of gain : at length down came the tree with a tremendous crash, bursting open from end to end, and displaying all the hosrded treasures of the commonwealth. One of the hunters immediately ran up with a wisp of lighted hsy, as a defence against the bees. The latter, however, inade no sttack, and sought no revenge: they secined stupified by the t tae
trophe, end, unauspicious of its cause, remained crawling and buzzing about the ruins, without offering us any moleatation. Every one of the party now fell to, with spoon and hinting-knife, to acoop ont the flakes of honeycomb with which the hollow trunk was stored. Some of them wre of old date, and a deep brown colour; othors were beautifully white, and the honey in their cells was almost limpid. Such of the combsas were entire were placed in camp-kettles, to be convoyed to the encampment; those whleh had been ahivered in the full were devoured apon the spot. Every atark bee-hunter was to be seen with a rich morsel in his hand, dripping about his fingers, and disappearing as rapidly as a cream tart before the holiday appetite of a schoolboy. Nor was it the beehunters alone that profited by the downfall of this industrious community. Aa if the bees would carry through the similitude of their habits with those of laborious and gainful man, I beheld numbers from rival hivea, arriving on eager wing, to enrich themselves with the ruins of their neighbours. These buaied themselvea as angerly and chearily as so many wreckers on on Indiamen that has been driven on shore-plunging into the cella of the broken honcycombs, banqueting greedily on the apoil, end then winging their way full-freighted to their homes, As to the poor proprictors of the ruin, they seemed to have no heart to do any thing, not even to taste the nectar that flowed around them, but crawled backwarda and forwarda, in vacant desolation, as I have seen a poor fellow, with his hands in his pockets, whistling vacantly and despondingly about the ruins of his house that had been burned. It is diffieult to describe tho bewilderment and confusion of the bees of the bankrupt hive, who had been absent at the time of the catastrophe, and who arrived, from time to time, with full cargoes from abrosd. At first they wheeled about in tho air, in the place where the fallen tree had once reared its head, astoniahed at finding all a vacuum. At length, a if comprehending their disaster, they settled down in clustera on a dry branch of a neighbouring tree, from whence they seemed to contemplate the proatrate ruin, and to buzz forth dolofill lamentstions over the downfall of their republic. It was a scens on which the 'melancholy Jacquee' might have moralized by the hour."

In various parts of A frica, hunting for the nests of wild bees is similarly pursued by the natives of that extansive continent. In Alexander'a "Expedition into the Interior of Africa," we find the following notice of a hunt of this kind:-"One of the Hottentots observed a number of bees ontering a hole in the ground, which had formerly belonged to some animal of the weasel kind. Aa he made signs for us to come to him, we turned that way, fearing he had met with some accident; and when the people began to unearth the bees, I did not expect that we should escape without being severely stung. But they knew so well how to manage an affair of this kind, that they robbed the poor insects with the greatest ease and asfety. Before they commenced digging, a fire was made near the hole, and constantly aupplied with damp fuel to produce a clod of emoke. In this the workmen were completely enveloped; so that the bees returning Tram the fielde were prevented from approaching, and
those which flew out of the nest were anven by it to diatance. Yet the rest of our party, to avoid their remut ment, found it prudent either to ride off, or stand aloo in the smoke. A bout three pounds of honey were obleined which, excepting a small share which I reserved till teatime, they instantly devoured in the comb; and some of the Hottentots professed to be equally fond of the harma The honey appeared unasually liquid, and nearly ast thin as water, yet it seemed as sweet, and of as delicate taste, as the beat honey of England. Whilat I was ea gaged in the chase one day on foot with a Namaqua in tendant, he picked up a small stono, looked at it tameanty, then over the plsin, and threw it down again. I akied what it was; he said there was the mark of a bee on it; toking it up, I alao saw on it a small pointed urgep of mu [properly excrement], which had fallen from a bee in it flight. The Namaqua noticed the direction the point of the drop indicated, and walking on he picked up anothen atone, also with a drop of wax on it, and so on at considerable intervals, till, getting behind a crag, be looked up, and bees were seen flying across the aky, and in and out of a cleft in the face of the rock. Here, of coume, was the honey he was in pursuit of. A dry buah is ${ }^{5}$. lected, fire ja made, the cliff is ascended, und the neat in robled in the smoke."

Park, in his 'Travela, mentions, that the Affican wild, beea nre often a formidable enemy to the caravans of the travellers croaaing tha desert. The following incident, aa he relates, took place near Doofroo:-~" We had mo sooner unloaded the asses, than some of the people, being in search of honey, unfortunately diaturbed a large swand of hees. They came out in immense numbers, and it tacked men and beasts at tho same time. Luckily mood of the aseea were loose, and galloped up the valley; bor the horsea and people were very much stung, and obliged to scamper off in all directions ; in fact, for half an boon; the bees seemed completely to have put an end toow journey. In the evening, when they became less troobt somo, and wo could venture to collect our cattle, we fonx many of them much stung and swelled about the hed Three assea were missing; one died in the evening, em one next morning. Our guide lost hia horse, and may of the people were much atung about the hande and fice:

Honey-beea exist in great numbers in Australia. I the account of an expedition in that country by Mijx Mitchell, that gentleman observes-a We were now ind land flowing with milk \cdots honey ;' for the natives, nith their new tomahawks sed it in abundance from the hollow branchea of $t^{t} \quad$; and it neemed that, in the season, they could finc is almost everywhere. 'To sud inoxpert clowns, as they probably thought ne, the hoog and the bces were inaccessible, and indeed invisible, aw when the natives cut it out and brought it to us in lide shects of bark, thus displaying a degree of ingenuity wo skil! in aupplying their wants, which we, with all ore sciel.ce, couid not hope to attain. They would catchom of the bees, and attach to it, with some rosin or gum in light down of the awan or owl: thua loden, the be would make for the branch of eome lofty tree, and sow tray its home of aweets to its keen-eyed pursuan, wher bee-chase presented indoed a laughable moenc."

Tas dog is a lined by the Cre man. Through peset the huma nute of society, tindly defender powerful and es mals to his purp man would not minion over the earth, or been a creatures formed According to of the Canida (species), in the the same faunily these so nearly tion, and certain ties are inclined The resemblance ity in others, bet is. however, not larity of doga to of species is cons is a striking diff opposite breeds. is smooth in the begd, in another t sense of amell, a power; and ec or our flocke ; anoth ious wild bensts ; vermin from the e and lives while w for game in our f into the deepest w besidea many othe character. The the varieties woul ent species of anin breed together, an wes. This eircun sta to infer that a cies; the physiold ent apecies can pro ber cuncluded, ft
re arven by it to 1 to avoid theit remulh off, or stand elmo in toney were obteined, I I reacrved till tes. comb; and some of ty fond of the harue d, and nearly as him ond of an delicate Whilat I war ea, with a Namaque ut looked at it earnently, wn again. I amid mark of a bee en it; 1 pointed uircp of mas len from a bee in io lirection the point of he picked up another it, and so on at comer ind a crag, be looked a the aky, and in und k. Here, of coome f. A dry bush is to aded, and the past in
hat the Afican wild o the caravane of the e following' iacident ofroo :-" We had no ae of the people, being aturbed a large wemm nse numbers, and th time. Luckily mad ed up the valley; but ach stung, and obiged fact, for half an boun, ve put an end to our ey became less troolio set our cattle, wo fond welled about the had od in the evening, ad this horse, and mary at the handa and frea' bers in Australis. h hat country by Mija -"We were now finn \therefore for the native, nid in abundance fromin it seemed that, in in verywhere. 'To nod thought us, the beng 1 indeed invisible, an ought it to ua in inath egree of ingeavity bich wc, with allor They would catham ome rosin or gum, is thua ladea, the lat he lofly tree, and solow -eyed pursuen, wima able scene."

THE DOG-FIELD SPORTS.

Tas dog is an animal which seema to have been deslined by the Creator to be the friend and assistant of man. Throughout the dangers and difficulties which peset the human being, particularly in an inartificial rate of society, the dog has ever proved himself the kiadly defender of his life end property, as well as a powefful and easential auxiliary in aubduing other animala to his purpose. Without the asaistance of the dog, man would not even yet have obtained a beneficial dominien over the various races of wild animala of the earth, or been able to watch with sufficient care those ereaturea formed for his food.
Accerding to naturalists, the dog belongs to the family of the Canidla (from canis, Latin for dog, hence, canine species), in the order Carnivora, class Mammalia. In the same fanily are united the wolf, fox, and jackal, and these se neerly approach the dog in physical construction, ad certain habits and qualities, that some authoribiee are iaclined to consider them of the aame apecics. The resemblance in some reapecta, and great diasimilarity in others, between dogs, wolves, foxes, and jackals, is, however, not mone remarkable than the generol aimilaxity of dogs to each other, as far as an apparent unity of species is concerned; while, at the anme time, there is a stiking differenco of form and character between opposite breeds. One dog is large, another amall; one is amooth in the skin, another rough; one has a long head, in another the head is short; one has an exquisite sense of smell, another has comparatively little of that power; and so on. We have an animal which watches our flocks; another which tracks and hunts down noxicass wild beasts; another which destroys and digs out reminfrom the earth; another which guards our housea and lives while we are asleep; another which seeks out for game in our field-sports; another which will plunge into the deepest waters, and aave us from heing drowned; beides many other varieties, all lczs or more distinct in chasacter. The difference is so very remarkable, that the rarieties would be entitled to be classed as of different sperise of animals, unless for the fact that they all breed together, and perpetuate mixed or mongrel varieies. This circumstance led Buffon and other naturalsta to iafer that all dogs whatsoever are bit of one species; the physiological theory being, that no two different apceies can produce fertile descendants. Buffon furber cuacluded, from a course of observations, that all
are apring from one common root, the shepherd's dog; and that climate, food, and peculiar training, have been the causer of the departure from the primeval atock. The line of argument adopted in support of this tneory is, that in the animal, as in the vegetable kingdom (eea article Fruit-Garden), improved or very remarkable varieties can be produced by selecting kinda, and breeding from them alone; as, for example, taking the two largeat dogs of a breed, and breeding from them; then taking the twe largest which this pair produces, and breeding from them alao; and ao on, till a large variety of dogs is ultimately formed. And further, that if each generation be trained in a particular way, the variety will come to posseas properties agreeable to the kind of cultivation bestowed upon it. Such, there is reason to believe, is the true explanation of the extraordinary differcnces of size and character in the canine apecies We muat view these dissimilarities aa a reault of a course of treatment from the earliest period of civilization till modern times. The ancient Egyptiana, and after them the Greeks, are recorded to have paid considerable attention to the training of dogs, and, as is well known, this formed a favourite study in connection with the fieldsporta of later ages. Doubts may very naturally be entertained respecting the power of transmitting acquired qualities from one generation to another, of any apecics of animals; but investigations into the subject afferd some remarkable proofs of what can be accomplished by meana of careful training or teaching.

effects of trainina.

In the latter part of the last century, one Biseet, a native of Perth, by trade a shoemaker, having applied himself with great perseverance to the teaching of animals, aucceeded in making a set of cata play in harmony on the dulcimer, uniting their voices to the tones of tho instrument; and this aingular orcheatra was exhihited, to the perfect satisfaction of the public, for a auccession of nights, in the Haymarket theatre. He it was whe trained that "learned pig," of which our fathers used to speak so highly, the animal having been exhibited in every part of the empire. At a aoinewhat earlier period, a Saxon peasant boy trained a dog to the pronunciation of words. The boy had observed in the dog'a voice an indistinct resemblance to certain sounde of the human voice, and was thus prompted to endeavour to teach him to speak. The animal was three years old at the beginning of his instructions-a circumatance which must have been unfavourable to the object; yet, hy dint of great labour and perse verance, in three years the boy had taught it to articulate thirty words. It used to astonish its viaiters by calling for tea, coffee, chocolate, de.; but it is proper to remark, that it required the words to be pronounced by its master beforehand, and it never ap peared to beconno quite reconciled to the exhibitione which it was forced to make. The learried Leibnitz reported on this wonderful aninal to the French Academy attesting that he had acen tho dog and heard it speak; so that there does not appear the slightest ground for doubting the fact, such as it was. All douht on the question of possibility may, indeed, be considered as set at rest thy the recent exhibition of the educated dogs in London-animals which could play at dominues and chess, and even indicate when their adversaries mado false moves. These creatures were visited and played with by thousands, and we never have heard that a deception of any kind as to the reality of their aequired powers was detected.

Laying aside such extraordinary ixamples an theae, the ordinary training conferred on horess, dogs, and other domeaticated animala seems to be sufficient to pestablish the general fact of animal educability. We nave no more forcible illustrations of the principle than in the usee which are now made of certain of the canine tribe in rural sporta. The pointer, setter, apringing apaniel, and all that class of dogs, are underatood to be descended from one-atock, the Spanish spaniel, with a alight crossing from the fox-hound, for the aske of increasing the apeed. The original animal may be conaidered as a record of the original powers, to which overy thing else must be regarded as an addition made oy human training. Now, the original animal is only gifted by nature with a fine scent for game, and a diaposition to inake a momentary pauso on seeing it, for the purpose of apringing upon it.* Man has converted this nelination to a temporary pause into a habit of making a full stop, and the animal, instead of gratifying its destructive tendency by flying upon the game, has been trained to be contented with witneasing a vicarious exeoution by the gun of his master.
It is a mistakn to auppose that only the apaniel tribe *s capable of merving sportamen in the capacity of pointors and setters. There are other classes of doga which perseverance would enable, to a certain extent, to act in the same way. Gervaee Markham, who wrote on aports in the sixteenth century, speaks of having seen dogs of the bastard tumbler kind adapted to act as setters, though not so well as those of the apaniel kind. Mr. Blaine is of opinion that this power can be cultivated in most doga. \dagger It has even been elicited in another and velv Jitterent class of animala-the hog. Some yeara ago, Mr. Toomer, gamekeeper to Sir Henry Mildmay, bethought him of teaciing a pig to act as a pointer, having been struck by the scenting powers of the animal in its search for palatable roots under ground. He began by allowing a young female pig to accompany his pointera, in their breaking lessona, to the fiold. Within a fortnight, to his own aurprise, ahe was able to hunt and point partridges and rabbits. There being an abundance of creatures near the keeper's lodge, her education advanced rapidly by frequent exercise and in a few weeks ghe was able to retrieve game as well aa the best pointer. Slut, ss this extrsordinary animal was called, was considered to have a more acute scent than any pointer in the charge of the keeper; and it was a kennel of the highest character. They hunted her prineipally on moors and heaths; and it often happened, that when left behind, she would come of her own accord and join the pointers. "She has often atood a jack anipe when all the pointers had passed it: she would hack the doga when they pointed, but the dogs refused to back her until spoke to-'\&pomer's doga being all trained to make - general halt when the word was given, whether any dog pointed or not, eo that she has been frequently stand'ng in the midat of a field of pointers. In consequence of the dogs being not much inclined to hunt when ahe was with them (for they dropped their sterns, and showed cymptoms of jealouay), she did not very often accornpany thein, except for the novelty. Her pace was mostly a trot; she was seldom known to gallop, except when called to go out shooting: she would then come home of the forest at full atretch, and be as much elnted as a dog at being ahown the gun. She slways expreasell great ploasure when game, either dead or living, was placed before her. She has frequently atood a single partridge at forty yarda' diatance, her nose in a direet line to the bird; after atanding some considerable time, whe would drop like a setter, still keeping her nose in an exact line, and would continue in that position until the

[^59]game moved; if it took wing, she n nuld come up te the place, and draw alowly after it; and when the lind dropped, she would stand it as hefore."*

These faets, together with what common observation presents to us in domesticuted parrota, blackbirda, roveng magpies, monkeya, \&c., place the educability of enimas, upon a basia, in our opinion, not to be shaken. But the most wonderful thing, and the most convincing patt of the proof, remaina, in the fact of the transinission of on quired qualities by animals to progeny. The hadi which education has conferred upon the pointer appoet in his puppy, who may be seen earneatly atanding a asvallows and pigeona in a farm-yard, before he has ure once seen such a thing done by his seniora, of received be lenst inatruction. Here only the olject is amiss; the aet itself is perfect. As may be readily supponed, the puppy of a race of English pointers can be trained to the whole buainess of the field in one-tenth of the time which the moat experienced breaker would require to eflect any improvement upon the simple inatinct of th p uruse in an original Spanish apaniel. On the satject of the hereditary tranamission of acquired qualities by uni. mals, we have some curious information from tha vene rable naturalist, Mr. T. A. Knight.
In a eommunication to the Royal Society, in 1807, vi Kuight eited several instances of domesticated animal inheritivg the aequired hubits of their parents. "la sll animala," he says, "thia is observable ; but in the cog if exists to a wonderfill extent; and the oflspring appean to inherit not only the passions and propensitice, bol even the resentments, of the funily from which it springs I ascertained that a terrier, whose parents had been in the habit of fighting with polecats, will instantly shon every mark of anger when he first perceivea the sent of that animal, though the animat itself be wholly cons cealed from his sight. A young apaniel brought up with the terriers ahowed no marka of emotion st the scent of the polecat, but it puraued a woodeoek, the first timeil aaw one, with clamour and exultation : and a joing pointer, which I am certain had never seen a partridgen atond trembling with anxiety, ita eyes fixed and it mugeles rigid, when conducted into the midst of a arey of those birds. Yet each of these dogs are mere mis: etiea of the aame specica, and to that species none of these habita are given by noture. The peculiaitiee d character can therefore be traced to no other source has the aequired habita of the parents, which are inhemv by the offispring, and becone what I call instinctive hro ditary propensities."
It appears from another communication maoe of h Knight to the same socicty, in 1837, that he had itn been purauing inveatigationa on this sulject for nealt sixty years. He procreds in that communicaion is give a general account of his inveatigationa:-"At the period," he saya, "at which my experimenta commemed well-bred and well-taught springing spaniela were sbuxd ant, and I readily obtained possession of as many s! wanted. I had, at first, no other object then that of oh taining dogs of great excellence; but within a very bots time, some facts came under my obaervation which wo strongly arrested my attention. In seyeral instencer young and wholly inexperienced dogs appeared on nearly as expert in finding woodcocks as their exper enced parenta. The woods in which I was accustiond to ahoot did not contain pheasauts, nor much game d any other kind, and I therefore resolved never to stoxd st any thing except woolcocks, conceiving that by w doing the hereditary propensities above inentioned woelt lecome more obvious nod decided in the young and as taught animals; and I had the satisfaction, in more bu one instance, to see aome of these find as many mod cocka, and give tongue as correctly, as the oest of m older dogs.

- Woodoo trown, to se mater, and I m did the ocks to sue troublenome them. I the ard took only co my astonis confined then -w their paren this, 1 suspes the unfrozen could not dis this been the and as I coul young doga dimila to the "'lhe subj the offipring yeara old or instinctive he these than in enced parent well foundel, ties might be given; and th io strongly an ocks, mighit pensity to hur soasidy doubt propensitica been known, not been acqu
"I possesse rent, apparent taught to do a of which the panicl; the I my possession parcht. In o and a servan woodeock, I servant broug ervant for it it acted as if revvant had my servant w with me in a it had to run ment at differ and uniforml roming to ine real other in of this animal, traodinary po vated intolilec
To conclue A gentleman quitements, ol been produced BL. Bernard's 8cotland, whe cular tokens o whan the grot hhowed the m and so great cumalatices, th ha most cury croes his path nis course with tevival of the upecialty as to us, we cannot
nould como up ic the and when the birs
common obwervation ts, blackbirds, ravens ducability of animah be ahaken. But the at couvincing part of to transiniasion of oc rogeny. The habi n the pointer appeat earneatly atanding it d, before he has etef eniors, or received the object is amiss; the readily aupposed, bhe ire cen be trained to ine-tenth of the time cer would require to simple inatinct of the
l. On the sulject of sired qualities by anination from the rene

Society, in 1807, It domesticated animal eir parents. "In all ble ; but in the dog in the ollspring appean and propensitics, boy from which it sprivg parents had been in s , will inatantly bhem t perceives the sceal itself be wholly coll aniel brought up wib notion at the scent of cock, the first time it tation: and a young ever seen a partridge eyes fixed und it a the midst of a coret dogs are mere nim: that species none of The peculiarities of no other sourec than , which are inhenid I call instindirc tro
fication mace op M 37, that he liad the his aulject for nealy at communicasion u stigations :-4 At ibn eriments commenem spaniels were abund ion of as many as! bject than that of of ut within a very stote servation which ref in seyersl inslances dogs sppeared ref ocks as their expor. ch I was accustome , nor nuch game ol blved never to shad nuceiving thas by a ove mentioned ract a the young sid 0 . faction, in more tha find as many wook y, as the Dest of ay
*Woodcocka are driven in froaty weather, as is well mown, to seek their food in springe and rills of unfrozen water, and I found that my old dogs knew about as well 1 did the degree of frost which would driva the woodwoks to auch places; and this knowledgo proved very troublesome to me, for I could not sufficiently restrain them. I therefore left the old experienced dogs at home, and took only tho wholly inex perienced young dogs; but, to my astoniahment, aome of theae, in several instences, conined themselvea as closely to tho unfrozen grounds an their parents would have done. When I firet observed this, I suspected that woodcocks might havo been upon the unfrozen ground during the preceding night; but I could not discover (as I think I should havo done had this been the case) any traces of their having been there; and as I could not do so, I was led to concludo that tho young dogs. wern guided by feelinga and propensitiea similar to those of their parents.
"'l'he subjects of my observation in these cases were all the offispring of well-instructed parents, of five or six years old or inore; and I thought it not improbalile that instinctive hereditary propensities might be stronger in these than in the offspring of very young and inexperienced parents. Experienco proved this opinion to be well founded, and led me to believe that theso propensities might be made to cease to exist, and others to bo given; and that the same breed of dogs which displnyed en strongly an hereditary disposition to hunt after woodcocks, might be mado ultiniately to display a similar propeasity to hunt after trufles; and it may, I think, be reasoaably doubted whether any dog, having the halits and propensities of the springing spaniel, would ever have been known, if the art of shooting birds on the wing had not been acquired.
"I possessed one young spaniel, of which the male parent, apparently a well-bred springing spaniel, had been taught to do a great number of extraordinary tricks, and of which the female parent was a well-bred springing spaniel; the puppy had been taught, hefore it came into my possession, a part of the accomplishments of its male parcent. In one instance I had walked out with iny gun and a servant, without any dog; and having seen a woodeock, I sent for tho dog abovo montioned, which tho servant hrought to me. A month afterwards, I sent my servant for it again, under similar circumstances, when it acted as if it had inferred that the track by which tho servant had come from me would lead it to me. It left my servant within twenty yards of my house, and was with me in a very few minutes, though the distanco which it had to run exceeded a milo. I repeated this experiment at different times, and after considerable intervals, and uniformly with the same results, tho dog nlways eoming to me without the servant. I could mention several other instances, nearly as singular, of the sagacity of this animal, which I inngined to have derived its extraordinary powers in some degree from the highly cultivated intellect of its male parent."
To concluda these preliminary observations on dogs. A gentleman of our acquaintance, and of scientific acquirements, ohtained some years ngo a pup which had been produced in London by a female of the celebrated 8. Bernard's breed. The young animal was brought to 8 cotland, where it was never observed to give any particular tokens of a power of tracking footsteps until winter, when the ground became covered with snow. It then showed the most active inclination to follow fontsteps; and so great was its power of doing so under these circuustances, that when ita mester had crossed a field in ha most curvilinear why, nad caused other permons to cross his path in all directions, it nevertheless followed nis course with the grentest precision. Here was a perfect revival of the hahit of its Alpine fathers, with a degrec of specialty as to external conditions, at which, it secins to us, we cannot sufficiently wonder

We thua see that not only doea what metaphysiciara call the law of habit exercise a sway in tho intellecte of animals, but that modification which takes place in human communitica, and passes under the comprehensiva name of civilization, also affects the lower tribos of crestion. A race of mimals, like a race of men, is civiliza. blo; and we cannot doubt that the aame aoftening influences which have produced the advanced nations of Europe, have operated upon the animals existing in the same countries, and made them very different from what they were in enrly times. It cannot escape remark, that tho whole principle of eivilization acquires strength from having ita bnsis thus widened. Wo hecome the more confident in the improvability of our own species, when we find that even the lower animala are capable of being improved, through a succession of generations, by the constant presence of a meliorating agency.

general character of dogs

The dog has six incisory or cutting teeth in both jaws; beyond which there are, on each side, both nbove and below, a eanino tooth; and still farther into the mouth are six cheek-teeth, or molnrs, in ench side of the upper jow. The three first are sharp and cutting, which Cuvier calls false molars. Tho next tooth on each sido is a carnivorous tooth, furnished with two cutting lobes, beyond which the other two teeth on euch side are flat. There cre seven cheek-teeth, on both sides, in the under jaw ; four of these are false molara, a carnivorons tooth, with the posterior part flat, and belind it two tuberculous teeth. The muzale is elongated, subject to great varictr of length in different verieties. The tongue is smooth and soft; the ears erect in the wild varieties, and in some of the tamo ones, but, in the latter kinds, for the most part pendulous. The fore-feet are provided with five toes, and the hind-feet with four toes, furnished with rother longish nails, obtuse at their points, and not rotractile. 'I'he females are provided with hoth inguinal and ventral tenta. The pupils of the cyes are circular.

The female gocs with young sixty-three days, and generally produces from three to five at a birth, nod sometimes even twelve, which are at first blind, in which state they continue for from nine days to a fortnight. About tho end of two months, their faculties begin to develop themselves. 'Ihey shed their first tecth at the end of six months, which are replaced by others that do not exfolinte. At twenty months, or two years, doge arrive at their full vigour.

The miles continue to propagate for nearly their whole lives, while the female discontinues having young ones at ahout the ege of cight or nino yenrs.

The average age to which dogs live is about fourteen years; they frequently, however, live to sixteen, and even havo been known to attnin the age of twenty years. In their Intter days, dogs frequently suffer greatly from decay, and various diseases. They are extremely aubject to rheumatism, from their liability to exposure to rain, and damp beds.

Until doga have nttained seven or eight years, their teeth are white, smooth, and acutcly pointed; but after this ago they become yellow spotted, and their points assume an uneven and jogged appearance. At this time, also, the hair of the muzzle nnd around the eyes assumen a boary appearanco, and becomes whiter as they increase in years.

The dog is naturally carnivorous, but when domesticated, he docs not refuse farinaccous food. He usea grass as a vomit; and driaks ly lapping with his long flexible tongue. Ho does not sensibly perspire hy the skin; the superfuous moisture of the body escapes at the nouth hy panting, when hentud, and ly the extraordinary dimetic babits of the animal. 'The sense of smell is ditherent in different varieties, but in all is suff. ciently strong and refined to enable the dis to seek our
and folle whin mnater eve. a mong a crowd. Hia mense r hearing is also quick. Ho expreases angur by growigor barking, hut nleo harka when joyful; anil showa odight hy the wagging of hin tall. He aleepa very lightly, so as to he awakened by the allghteat noise; snd during his slumbers he la apt to dream, as is indicated by stanting, whining, apd ehort harks.

The moat remarkable feature in the chnrneter of the dog is hia attschment to man. In wild iunperplect countriem, doga are known to live in hordes, nal scek their proy like other untamed animals; but brought into connection with haman society, the dog leaves hia own apeciea without regret, and is only happy when belonging to a master to whom he can be faitliful ns a friend, servant, or companion. In this condition of domestication his ampition scems to be the desire to please; he is ween to come crouching ulong, to lay his force, his conrage, and all his useful talents, at the feet of his mater: he waits his orders, to which be pnys implicit ohedience: he consults his looks, and a single glance is auflicient to put him in motion: ho is more faithful than even the most boasted among men: he is constant in his affections, friendly without interest, and grateful for tho slightent favoura: much more mindful of henefits received than injuries offered, he is not driven off by unkindness: he atill continues humble, sulmissive, and imploring; his only hope to be serviceable, his only terror to displease: me licks the hand that has juat been raised to atrike him, and at last diaurma resentment by auhmissive perseverance.
More docilo than man, as Buffion observes, more obedient than any other animal, he is not only instructed in a short time, but he also conforms to the dispositions and manners of those who commund him. He takes his tone from the house he inhabits; like the rest of the domestica, he is disdainful among the great, and churliah among clowns. He knows a beggar by his clothes, by his voice, α hia gestures, and forbids his approach. When, ut night, the protection of the house is committed to his care, he seems proud of the charge; he continues a watchful sentinel; he goes his rounde, scents strangers at a distance, and gives them a warning of his being upon duty. If they attempt to break in upon hisaderiwries, he becomes more fierce, flies at them, threatens, Gights, and either conquers alone, or alarms those who have most interest in coning to his assistunce; lowever, when he has conquered, he quietly reposea upon his spoil, and abstnins from abusing-thus giving at once a lesson of courage, temperance, and fidelity.

Classification of varieties.

Cuvier, the eminent French naturulist, formed a classification of dogs, founded on the shape of the head, and tength of the jaws and inuzzle. These ho has separated into three great groups, as follows:-
I. Matins.-These have a head more or less elongated; the parietal bones insensibly approaching each other, and the condyles of the lower jaw placed irt a horizontal line with the upper cheek-teeth.
II. Spaxixis.-The head moderately elongated; the parietal hones do not approach each other ahove the temples, hut diverge and swell out, so as to enlarge the forehead and cavity of the brain. In this group are included all the varieties of dogs which are of the greatest utility to man, and ulso the most intelligent.
III. Diguss,-The mazzle more or less ahortened; the skull high; the frontal sinuses considerable; the condyle of the lower jaw extenuing alove the line of the upper check-teeth. The crunium is smaller in this group than in the two previous, owing to the formation of the head.

Following this arrangement, the three groups have, for convenience, been divided intw distinct sections, as follown -

Division I.-Hiaad Emnguied.

Section 1 Wild and halfreclaimed dogs, which ant In pack.
Sertion 2. Domentirated dogs, which hunt in packe singly, principally bv the eye, although wometimes by the acent.

Srcion 3. Domesticated dogs, which hunt eingly, and always by the eye.

Division It.-Hesd leas Elongaled than former Divinon

Scrtion 4. Paatoral dogs, or such ae are emplojed in domestic purposes.
Sertion 5. Water-doga, which delight in awimming, having their feet in genernl semi-welbed.
Section 6. Fowlera, or doga whoso natural inclinetion is to chaso and point birid, and hunt singly by the scent
Sertion 7. Hounds, which hunt in packa, by the scent
Section 8. Mongrol hounds, which hunt singly, either by the scent or eye.

Division III.-Ilead much Shortened.

Section 9. Watch-dogs, which have no propensity lor hunting.

We shall now preaent a ahort notice of the different vurieties of breeds in cach of the soveral diviaions and acctiona.

Division I. - Dogs with Lengiliened Hesds.
Sketion 1. Half-reclaimed doga, which hunt in packs, The Diago, or Australian Dog.-The head of this don is not unlike that of a wolf, on which account Bewidk cally it the New South Wales wolf. The muzzle islong and pointel, with ahort erect eara. Ho is two fect gir inches in length, and about two feet in height. His fur is composed of a mixture of silky and woolly hairg and is of a deep yellowish-hrown colour; and his tail is long and bushy, resembling that of a fox. This dog is of a ferocious disposition. Pemnant mentions one which was brought to this country, and that leaped on the bark of an ass, and had nearly destroyed it before a rescue could tako place.
The Dhole is tho native wild-dog of India, and bean a strong resemblance to the dingo, but without the bashy tsil of that apecies; he is of a uniform bright-red colour. Differently from other dogs which hunt in packs, accord. ing to tho account given by Captain Williamsan, thit species always hunts mute, and only utters a soft abier pering onund when in high chase, and near his pres. The dhole is excredingly swift of foot, and soon ores. takes most animala which are the objects of his pursuit It is aaid they are exceedingly fond of the flesh of the tiger, and that, in consequence, this animnl is prevented from propagating to that extent which would soon over. run and lay waste all the countries which it inhbbits This predilection is confirmed by Biahop Heber, who statea, upon the authority of the peasnnts of Khage, which borders the frontiers of China, that a tiger is stife killed and torn to pieces by the wild doge, which give tongue like foxhounds or harriers. It is in the anfrequented wilda of the western frontiers of India thet the dhole takes up his abode, lurking amongst the extensira jungles which cover mighty tracts of that territory.
The Pariah is the common village dog of India. He has a smnil sharp head, with shott pricked curs, a slendet body, and particularly drawn up alout the alvoloninad region; his chest is deep, his limbs light, and his eolout is of a reddish-brown. The notive Indians ose these in hunting the tiger and wild boar. They are very fiera and follow their game with much avility.
The Ekia is the nutive dog of Africa, and in all lite lihood sprung from tho aame atock as the dhole. They are sail to be of various colours, as black, brown, white and yellowish. They are eaten by the negroes. Tha African wild dogs, like those of India, hunt in packa

The , ioution hobout the as ons, like mos long and brist back, willa 日月 In geleral aat much asaller There is an of which ther is very amall, almost all ot curved, and t Spaniaids fou discovery of A in Ainerica m mason to sul original types been greally of those intro
The Norr/h account of th dingo in ita pr is remarkable expert in tho may be traiua Bectien 2. or singly, princ the ecent.
The Irish G canine race ; hi conformation a strong resem much taller, nn suing the more early tines was boare, which a hair is short an fawn or pale o wome of this br were brown al The ordiuary three feet, altho feet. Goldsmith they were abou year old.

The Allania a fullosized ma and of a silky te tail is long and foundland dog; his legs ate stro bunting the wil in ancient time and in protectin
The French above; his catit warls the tips; with darker, obl ing the whole o and his length active, and ver: ness in hunting he is frequently is a descendant
The Scuttish either hunt in great size and s of foot. In siz His head is lot somewhat pend and very penet cisped hairs wl ta remarkable fo dually towsrds VoL. 1. -84 nometimea by the
hunt singly, and
former Division are emplayed in
ht in swimming, atural inclination ingly by the scent acks, by the scent unt singly, either
tened.
no propensity for
e of the different eral divisions and

led Heads.

ich hunt in packn e liead of this doo account Bewick The muzzle is leng In ia two feet sil height. Hia fur woolly hairs, and ad his tail is long This dog is of ns one which wee al on the back of are a rescue could

India, and bean without the bushy bright-red colour. in pseks, accord. Williamson, this Atters a soft whis d near his prey. , and soon oree. ts of his pursuith the flesh of the imal is prevented would soan over lieh it inhabits hop Heher, who annts of Khays, at a tiger is often $\log s$, which give is in the unfere of India that the gst the extensive t territory. og of Indis. He d ears, a slender t the sholeminul t, and his coloul isns use these in are very ficrea
, and in all lite e dhole. They k, brown, white negroes. Ih unt in packa

The iouth American Dog is not unlike the dingo, and h sbout the size of the springer, w th short and pricked arr, like most other wild doges. The hair on his tail is long and bristly; he is of a hrownish-gray colour on the back, with ssndy-coloured spots on the lega and flanka. in geveral aspect, he greatly resembles the wolf, but is much sualler in nize.
There is another South American dog called the Alco, of which thero nte tivo varietica. The heal of the Alco is very amall, and the enre pendulous, thus differing from Imost all other wild dngs. The back is somewhat curved, and the tail rather short. It is said that the Spaniards found this dog' amoug the natives on the first discovery of America. Herrern says, that Columbus found in Anerica many dogs which did not bark. But there is reaton to suppose that whatever may have been the original types of the Nouth American dogs, they have been greatly altered by intermixturo with descendants of those introduced at the conqueat by tho Spaniards.
The North American Dog,-We have no very distinct sccount of this variety, but it is said to resomble the dingo in ita pricked ears and general conformation. It in remarkable for the neuteness of its scent, and very expert in tho detection of its prey, or animala which it may be trained to pursue.
Esction 2. Domesticated doge, which hunt in packs of singly, principally by the cye, although sometimes by the seent.
The Irish Greyhound ranks among the noblest of the canine race; his mien is striking, full of dignity, and his conformation beautiful. In his genoral shape he lenra astrong resemblance to the cammon greyhound, but is much taller, and more robust. He is not fitted for pursuing the more specily animals of the chase. His use in early times was to free the country of wolves and wild boare, which abounded in England and Jreland. The bair is ehort and smooth, and the colour of these dogs is fawn or pale cinnamon. Tho Marquis of Sligo had come of this breed, which were of various colours; somo were brown and white, and others black and white. The ordinary height of the Irish greyhound is ahont thrce feet, ntthough they havo been known to reach four fet. Goldsmith, who had seen severnl of this breed, says they were sbout tour feet high, and aa tall as a calf of a yesr old.
The Alhanian Dog.-This variety is about the size of sfull-sized mastiff. His huir is very fine and close set, and of a silky texture, variously clouded with brown; his tail is long and bushy, nad carried like that of a Newfouadland dog; his muzzle is pointed, and rather long; his legs are strong and muscular, which fit him well for hunting the wild boar, in which sport he wns much used in ancient times; he was nlso used in bunting wolves, and in protecting sheep-folds from thieves.
The French Matin has an elongated head, and flat above; lis ears are erect, and slightly pendulous towards the tips; the hair of a yellowish fawn-colour, with darker, oblique, and prrallel indistinet rays traversing the wholo of his fur. His height is about two feet, and his length three feet. He is strong, muscular, and active, and very courngcous. He evinece great cagerness in hunting the wild boar and wolf, in which sport he is frequently employed. Pennant thinks this variety is a descendant of the Irish greyhound.
The Srotish Highland Greyhound. - This dog will either hunt in packs or singly. He is an animal of great size and strength, and nt the same time very swift of foot. In size, he nearly equals the Irish greyhound. His head is long, and the nose sharp; his ears short, womewhat pendulous at the tips; his eyes are brilliant and very penetrating, and half concealed by the long crisped hairs which cover his face and whole body. IIe is remarksble for the depth of his chest, and tapers gradually towsuds tho loins, which are of great atrength,
VoL, 1.-84
and very muscular; his back is alighty arched; his hind quartors are powerfully formed, and hls limben atrony and atraight. The possession of thene combined qualio ties particularly fit him for long endurance in the chase. His usual colour in a reddish sand-colour, mixed with white ; his tsil is long and shaggy, which he carriea bigh like the staghound, although not quite so ereet. Is is thin noble dag which was used hy the Scottish Highland chieftains in thelr great hunting parties, snd is supposed to have deacended in regular auccession from the doge of Osaian.

The Rusian Greyhound is nearly as large as the Irish greythound, resembling his in shape as nearly as poesible, but covered with long bushy hair, his general colour is a dark reddish-brown. He is sometimes hunted in small pseks, and as frequently single, in which case he not unfrequently will kill a wolf, deer, or wild boar, without any aid whatever. When usod in coursing, he is taken to the field in alips, in the same maoner as is practised with greyhounds.

Sgction 3. Domeaticated dogs, which hunt singly, and always by the eye.
The Gazehound.-'Ihis is a dog, the breed of which is now lost. It was hunted in the same manner as the greyhound, nnd took foxes and hares by running them down. It is aaid by Bewick that it was employed in stag-hunting, which we think is rather doubtful, as, ab though the stag is an animal of great speed, yet the contest between it and a log possessing the swiftness of a greyhound would be but very unequal. No representation of this dog has been preserved, which is much to be regretted, as wo are but imperfectly ucquainted with it appearance.

The Greyhound is the flectest of all dogs, which is in consequence of his peculiar conformation. His head is long, tapered, and shaped like that of a snake; his neck long and slender; his ears somewhat erect and pricked, slightly pendulous at their tips; the tail ought to be very tine, pointed, and the hair on it very short; the chest should be wide and deep; the belly drawn up, with strong loins, and with large and prominent hip-musclea. Thia dog is by no means no intelligent as many other varieties, and he is, in consequence, much less susceptiblo of education. He has, however, very fine feelings, and seeks to the much alive to caresses, which excite him to such a degree as to produce a quick pulsation of the heart This may be felt benting agninst his side with mnch vigour. He is one of the most elegantly formed of all the canine species.

The Scotch Greyhound.-This dog is formed exactly like the common greyhound, and di. \cdots : $\%$ om it merely by being of a darger size, and in the han being longer and hairy. Its general colour is reddish-urown, or of a sand colour.

The Italian Greyhound.-This dog is merely a minia ture of the common greyloound, being only about half the size of that dog. It has a very fine skin of a silky texture, and is so tender as to be easily injured by cold or wet. It is used only as a pet, being quite valueles in all other respects.

The Turkish Greyhoumd is still smaller than the Italien greyhound, being little more than half its bulk, and is entirely tivested of hair, except on the tail, where it is few und scattered. Its usual' colour is blackish lead colour. It abounds in 'l'urkish towns, where it forms a dreadful nuisance to travellers.

Division 11.-Hesd tess etongated than former divianor.
Section 4. Pastoral dogs, or such as are empli ved its domestic purposes.

The Sheplerd's Dag.-This dog is covered with long, flowing, somewhat woolly, hair ; his muzzle is long nud pointed, and his ears ereet, and slightly bent downwarda at tho tips; his tail is long and bushy, and the asual

3 к 2
colour of hin f wo black and white, or varied with hilack and gray t the larke of hifs fore-legs have also leng hairs. The pecullar and highly unefisl qualities of thin dog acem to be rather intaitive than nequired; indeed, nothing ean hardly exceed tho quicknena with which he ean be taught any leanon t and certainly no other dog has the anme pstient perneverance and courageous fidelity, and at the same time poaspased of the greatest diacrimination. The labour of a shepheri, with the aseistance of this faithful and intelligent animal, in comparatively an easy task : and it is harilly possible to fancy a more arduous employment thnn it would be, if diveated of the servicen of the dog : for without him, how could he colleet extensive flocks seaterred over high and widely-spread mountain ranges 1 The shepherd'a dog is possessed of great sngacity, gratitude, and nolfdenial, a ia well known from in-- numeralice anedotes.

The Cur or Watrh Dog differa from the ahepherd'a dog in being nearly amooth; ho la stronger in his make, and has half-pricked cara, and his tail is rather ahort, and alightly feathered bencath. He is a trusty and uneful anrvant to the farmer nud grazier, and in chicfly employed In driving eattle; and heing larger and atronger than the shepherd's dog, from which he is aprung, he is better qualified for the grazier and farmer. He bitea with great kecnoene, sad always makea lis attack at the heela. His aagacity is very great, and he soon knowa his mastiris helds, and watchea with great asaiduity tho cattle which are in them.
The German Dog is a amall-sized animal, with buahy turned-up tuil, bushy neck, amall muzzle, and ia gencrally of a cream colour, but also nometimes black. His manner ia brivk, and his character that of great fidelity. He ia seen nll over central Gerinany, where ho appears to be employed chicfly as a mery companion to man, and also for watching. A few are beginning to be seen in England.
Bection 5. Water-dogs, which delight in awimming, having their feet in general semi-webbed.
The Pomerimian or Wolf Dog has the hair on the head short, as is also that on the feet and cara; but it is long and silky on the boly and tail, which last is curled up in a spiral form. His colour is white, black, gray, or sometimes yellowish; his head is long, and his muzzle pointed ; his cars are ahort and pricked. He ia possessed of intelligence nearly equal to that of the ehepherd's dog.
The Sibcrian D or has much the appearance of the Pomeranian dog, and is very nearly allied to him, except that he is covered with long hair even on the head and paws. In their native country, four of these doga are attached hy pairs to a sledge, and in front of them is placed a leader, on the proper training of which much of the useful services of the others depend. These aledges are just large enough to contuin one person, who directs them with his voice, and in which he is partisilly aseisted by a atick. The reina amo fastened to the dogs' necke by a collar. These dogm, thus yoked, have been known to drag a sledge from seventy to eighty miles in a day; and so powerful ia their scent, that they contrive to kesp or the beaten track by that meana alone, e en allthough it be hid by showers of snow.
The Grecnland Dog in of a large size, strong in the bone, and its fur conaists of long, thick-set, woolly-lize hair; his muzzle is sharp, and his eara short and pricked; hia tail is thick, very bushy, and spirally twisted.
The Iceland Dog is shorter in the hair than the above variety; his ears are pricked, hut slightly bent downwards on the tips. His general colour is white, with putches of black differently disposed.
The Eaquimaur Dos.-This highly useful varicty is dewribed by M. Lesmarest an having the head shapeed like thet of the wolf dog, the tail is spreading and curved, and the ears erect. The hair is thinly scattered, and consiats of two sorta, the one silky, the other thick and
fine, and nomewhat curien, and so detachod thom the other that it may be pulled off in flakes from the eningem

The Hare-lndian Dog haa n narrow, elongnted, and pointed muzzle; hin eare are brond at the hase, and pointed towards the tipa, and perfiectly ereet; hin legi are long and sleniler, and hia tail thick, huahy, ond curved slightly upwaris, but by no meana no ciecidelis curved as that of tho Esqquinaux dog. Hia hody la co vered with long straight haira, the gromul colour of which in white, marked with large irregulur patches of grayibho hilack, interiningled with various khules of brown. ling Richardmon saya it laas neither cournge nos attengig for pulling down any of the larger 'minimala,
Tho Nurfoundlared Dog.-This benutiful and intelio gent dog is remarkable for the nymmetry of hin form and the acuteness of his understanding. He measurea from the tip of the nose to the point of the tail, ois fret and a half, the length of the tuil itself being two fret; from the one fure foot to tho other, over the sloutdicra, five feet eight inches; the girth behind the shool. ders, three feet four inches; the length of his head in fourteen inches. Ho has webled feet, in consequenee of which he is a dexterous awimmer. Hie hair is longz, flowing, and alightly curled, and his tail very bushy, particularly in the lower side, and he carrica it in a vers graceful manner. The docility of the Newfeundind dog ia very great; there are innumerable most striking anecdotea of his ragacity and lenevolence of Ilisposition, particularly with reference to his salving persons from drowning. During the gale on 'Thurslay, June II, 1829, a veasel was driven on the bearh at Lydd; no boata could get off to the assissance of the crew, who were, however, all saved aud hrought nshore threuph tion activity of a fine Newfounilland dog. The surf wa rolling furioualy, and eight poor fellowa were crying for aid, which the apectators could not afford them, whea one mand directed the attention of his dog to the veseleh, end the intelligent animal at onco swam towarila it, and the crew joyfully made fast a rope to a piece of woal, which the dog seized and awam with to his mater on shore ; a line of communication was thus formed, and the cight mariners rescucd from a watery grave.

The Rusaian Dog is somewhat larger and atronger than the Newfoundland dog; he is a cross hetween thal varicty and tho Siberian dog, and has now beceme a dis tinct race. Hia head is large, with his cars pendulou and rather full-sized; his tail is curlod over his back; bis hair is very long and shaggy, consisting of black and white patches.

The Greit Rough Water-Dog is wot :...ot, max with great ease, ond dives witn truch dextenty; bir hair ia long and curly, and he is of various colours, hislea and feet are aluo thickly covered with thick and lust::
The Large Water-Spaniel is about the size of the Enge lish setter, but of a stronger make. His facc is smooth as alse the front of his lega, while the rest of ais body i covered with small crisp curla, usually of a dark live. brown colour. This dog is very valuable in the gpor of shooting wild fowl.

The Small Water-Snaniel, or Poodle.-This is a bred between the large water-log and the springer: be in thickly covered with fine hair, all of which is in dititinct rinall curls, more like an effort of art than of natara It is one of the most active of dogs. Ita general colour is white, and anmetimes it has various black pathes it diven with much dexterity, and will lrap from a rey great height into the water; we have seen one leap ora Tyne Bridge at Newenstle, a height of nearly fifty feet
The Shock Dog is the samallest of the wateralog rais ties, and is probably bred between the smaller Spanite or King Charlesis dog and the poodle. Its hair is el tremely long und flowing, so much so that ite cars and eyes are nearly concealed from view by it. It is bad ai a lopdog.
sicerm The 8 , Engllish ${ }^{2}$ portion to dogit the md pent He ia unatu colour or and at oth
Tho Co like it in a for raisng are loth y
The Ki^{2} and distin Itu hair is dize, han is of late it little crear of London
The Co nee, chiefl coons betwe The M nearly tho Tho Al ceels olher Its uatual hy ir feet in Two of the the Greut S rerkand, to warch of lo cloak fasten tied round 1 and hread. julgment, a of their 1 mi use in mect dangersua the weather who has sun blast, they they restore nearly quape the aufferer. fallen into s to ascond, essistance, ularm to the where the \mathbf{u}
The Old wae produce Spanish poin present bree feld, hut not
The Eng water-spanic bas attained iag dog. H ctivo of dog
The Spa Englixh poi mariach of thrugh he is proved modo axtinct in \mathbf{G}
The Eng Spanish poin rapidity of and symune ho bas heen
'er. He is
letachod from tha Is from the animme iw, elongated, and at the hase, and tly erect ! hie legn thick, buahy, and reans so decidevis

His hody in rond colour of whirh pateliea of gruyioho es of brown. ll. ge nor strength for
nutiful and intelli. try of his form and

He measurea nt of the tail, sit il itarlf being two er, over the shoul behind the ahoul. igth of his head in set, in eonsequence

IIIs hair la lonz s tail very bushy, carrists it in a ver the Newfoundlind rable most atriking lence of disposition ving persons from 'hurelny, June II reach at lydd; mo e of the crew, wh : ashore threugh the og. The aurf шш ows were crying in afford them, whe is dog to the vesel vam towarda it, and to a piece of wool th to his master on thus formed, snd the genve. larger and strongen a cross between ths n now becomea dia his cars peadulou l over his back; tis isting of black and
woh :. . od, swh , uch dexterity ; bid ous colours; bislep hick and bush.: the size of the Eng His face is smooth e rest of ais body lly of n dark liven luable in the epor
le.-This is a breed he springer: he in which is in diatind art than of natua
Its general colow se hack patches if I leap from a 1 rity spen one leap area of nearly fifty fech the watereler rans the smaller Spanial le. Its hair is es so that its cars and by it. It is nad

Berinv 6. Fowlera, or doge whome inelination la to chaes and point birds, and hunt singly by the acent. The Springer.-Thin variety in shaped much like the Englith metter, but shorter in the body and lega in proportion to his size, holng about two-finhs less than that dog; the hair is long and shaggy, and the ears very long and pendulous, and covered with long waved hairs. Ilo in aninally of a white colour, with patches of livercolour or chentnut. He In, however, sometimea black, and at other times entirely of a liver-coloured brown.
The Corker is about a third less than the apringer, and fike it in all respecte. It is used as well as that varlety for rainnat woodeocke and snipes, in which oxorciac they are both very expert.
The King Charles's Dog is still less than the coeker, and distinguished hy the very groat length of his cars. Its hair is silky, and this, with its gentleness and anall size, has rendered it a favourite pet of ladies of fashlon. Of late it has been fashlonable for ladien to carry theas little creatures in their arms while walking in the streets of London. They are aold at a high price.
Tho Comforter is another diminutive variety of this nec, chiefly used an a lopdog. It is supposed to be a croas between tho Maltese and King Charles's dog.
The Maltcae and Lion Doga aro descendants from aearly the name stoek.
The Alpine Spanicl, or Great St. Bernard Dog, exceeda other varictios of the spariel for alze and beanty. Its usual height is two feet at the shoulders, and he is ir feet in length from the nose to the tip of the tail. Two of these doga are sent out frem the monastery of the Great St. Bernard, situated among the Alps of Switeerkan, to seour the mountains during anow-storms, in earch of lost or waaried travellers- the one with a warm cloak fastened to his hack, and the other with a basket tied round his neek, containing a bottle with some cordial, and bread. In this employment they manifest great fudgment, and neem to understand perfectly tha import of their mission. They are frequently of the greatest use in meeting the travollers whe in those storiny and dangerous regions often fall victions to the inclemency of the weather. It is asid that if they meet with a traveller who has sunk under the fatiguo and inclemeney of the blant, they will lie elose to him, until by their warmth they restore heat and energy to the animation which is nearly suspended, and thus frequently will save the life of the sufferer. Should they discover a travellet to have fallea into some deep pit or fissuro, whence he is unable to ascend, and if they are unable to render him any assiatadee, they will return to the convent and give tho slarm to the monks, and then conduct then to the place where the unfortunate traveller is immured.
The Old English Setter.-It is supposed that this breed was produced between the large water-spaniel and the Spanish pointer; they wore much more curled this: the present breed of setters, and were very steady in the field, hut not so rapid in their movements.
The Engligh Setter ia a mixed breed between the water-spaniel, Spanish pointer, and the springer, which bas attained a very high degree of perfection as a sportligg dog. He is one of the most beautiful, lively, and active of dogs.
The Sprish Pointer is the stock from whieh the Englinh pointer has sprung. He is one of the most stanneh of all dogs used in the sports of the field, slthrugh he is eansidered too heavy for the present inpreved mode of sporting, and has now nearly become axtinct in Great Britain.
The Enslish Pointer was oltainad by a cross of the Epanish pointer and fox-hound, and is unrivalled for the rapidity of his movenuents in the tield, and the beauty and symmetry of his form. Since his first production, ho has been improved by being re-crossed with tho harer. He is subfect to considerable variety in point of size.

The Small Ponterm-Thla is a diminutive hreed, being only alrout two feet frum the point of the nowe to the tip of the tail, and mearcely a foot in height, and is a comp plete and teautiful miniature of the large pointer. They have proved themmelves excellent aportling dogs, but their minll size rendern them unft for use in rough land.
The Rusaian Pointer ia much like the Spanish pointer in shape, but his hair is long and hairy
The Dalmatian in a handaome animal, beautifully spotted black on a vellte akin. In his native country he ie employed an a pointer, but Imported into England he han there lont all qualities for aporting, and ia kept merely as an attendant on carriages. While mont other doge attach themselves to man, thil one scems to care for nothing but horses. He Ifes by ehaico in the stabla, and is happlest when running at the heels of the horsen; oven his own apecies he absadons in following out his prevailing taste. He barka little, and Is docile.
Sgotion 7. Hounda which hunt in packa by the acent. The English Terrier.-Thia basutlful dog Ja too well known to require any description. He in possessed of great courage, and is famous for killing all kinda of vermin , and is a useful attendant upon a pack of fox-hound, for getting into tho earth when the fox has taken hile hole, and driving him out. Ilia hair is amooth, His general colour is black, with tanned cheeks, and the insida of hia lega are of tha mame colour. They are now to to met with of a brown, and even white colour, thut these have unquestionably an admixture of woma other bread in them.

The Scotch Terrier.-Thin breed has short wiry hair, vory rough, and is much ahorter in the lega than the English terrier. His usual colour is anndy, but ha is to bo found black, and slso gray. He hites with great keenness and ia a bold and determined dog. Ho will attack doga of any size; and when he fixes on an animal, he maintains hia hold with great pertinacity. Ho is much used as an attendant upon packs of fox-hounda, and forms an oxcellent killer of vermin.
The Tatbor is one of the primitive breeds of British dogs, and is the same which was used by the ancient Britons in the chase of the deer and other wild animals, It is now, wo believe, extinet, or at least not in common use.

Dloodhound.-This is a powerful and sagacious animal, generally of a dark colour, with brown markings, and is endowad with a keen seent. On being led upon the footateps of any animal or man, he will follow them up with unerring precision. This has led to the breed being employed for tracking eriminals, or the unhappy victims of oppression. By the Spaniards a breed was taken to Cuba to track the natives, and thia race of animala still exists in that island. A correspondent in a nawepaper thus speaks of them:-
"At a period not very remote, the unfortunate negroes in the Spanish settloments were frequently torn to pieces by the Cuba bloodhounds. In fact, under the title of Chasseurs, the Spaniards maintained regular regiments of these dogs and their attendants. In pursuing or hunting the runaway negroes, the chasseur is generally accompanied by two dogs, and armed with a mutean de chasse, or straight sword; and we are informed that these bloodhounds, when well and properly trained, on coming up with the alject of pursuit, will not kill him unless resistance is offered, but lurk at nnd terrify him tull ho stops, when they crouch near him, and, by barking, give their keepers notice, who appratch aceordingly, and seenre their prisoner.
"Dallas, in his necount of the Maroon War in Jamaiea mentions an importation of these Cuba bloodliounds, in order to assist the regular troops in reducing the refrace tory Maroons. It may scem strange that dogs were ealled to the assistance of well-disciplined soldiers. hut, in order to clucidate tho subject, it roust be obwerved,
that thi armed Mal ana, under the condect of varioua ounning leadern, prarticularly of Cudjoe, 8mith, and Johneon, aware of their own inferiority in point of that emganization which conatituton the atrength and ceseence of a regular army, cautiounly avoided meeting their opponentin on the plain; on the contrary, they retired to the impenetraile fantneases of the wookls and mountains, and by means of amhuscales, contrived so to haraso the troope, that the governor of Jamaica ultimately procured - company of thene doga and their attendanta from Cuba, which arrived at Jumaica under the command of Don Manuel de Sejan; and a tolerable idea of these dogn may be formed from a roview which took place immenliatoly aftor their arrival. General Walpolo, who condueced the war againnt the Maroons, being anxious to reviow thene chasmeurs, left head-quarters the morning after they landed, accompanied by Col. Skinner, and arrived in a post-chaime at Seven Rivern. Notice of the general'a approach having been given, the chasacurs were taken to a diatance from the house, in order to advance when he arrived. The Spaniarila were drawn up in a line at the ond of a gentle decivity, and consisted of upwards of frrty men, with their doga in front unmuzzed, and held by cotton ropea, as it was intended to arcertain what effect would be produced on the daga if actually engaged under - Aire of the Maroonn. The Spaniards, upon the word heing given, fired their funees, when the doge preswed forward with almont ungovornable fury, amidst the shouts of their keepers, whom they dragged along with irreaintible inpletuonity. Some of these ferocious animals, maddened by the shout of attack, and held in check by the ropea, ectually seized upon the gun-stocky in the hasnde of the chasseura, and toro pieces out of them. Tho unfortunate Maroons, who had succesenfully opponed all the efferts of regular troops, were panicatruck on the arrival of the bloodhounds, and aurrendered withont onee daring to come in contact with animala which at best could oppose but a feeble revistance to firearma,"

The Stoghound in the largest of all the Britiah doga of the chase; he lian a noble and dignified aspect, and possemen great angacity and endurauce in the chase ; this dog is also aupposed to be a direct descendant of one of our original Bitish dogs.

The Foxhound has a much larger muzzle than the staghound, and his head is small in proportion to the size of his body; his eara are very long and pendulous, although less so than those of the staghound and bloulhound. Though a determined enemy of the fox, this active hound in hy no meana destitute of warm affectiona. A foxhound bitch, belonging to the Kivington Hunt, near Boiten, on the 8th November, 1792, during the chase, pupped four whelpa, which she carefully covered in a rush ainle, and immediately afterwards joined the pack. In a short time after, sho pupped another, which she carried in hor mouth during the remsinder of a hard chase of many milen, to the great astonishment of a number of spectators, afer which she returned to the place where she had dropped the four.
The Ilarricr.-Thin dog is used in hare-hunting, and was originally obtained by a douhle-crows between the omall beagle and southern hound. He is very eager in the purauit of the hare. There are few instances of any of the deer trile heing hunted with success by dogs of so amall a description as harriern.
Tho Deagle is the smallest of the dogs of the chase. He ia possessed of a very acute sense of ameling, and puraues the hare with unweuried steadinens; and what ne wants in speed and strength he makes up by his pereeverance.
The Olter-Hound is a cross between the large nouthern hound and the large rough terrier. He ham a large head, with pendulous eara, and his whole fur is of a \therefore. C lesture, and rather long; his colour is oithor sandy
or black. Otter-hunting wan a favourite aphat in andens times, but in now nearly out in this country.

The Bull. Terrier in a croos between the bulthog and the torrier, an itu name implies, and has now assuined the character of a distinet broed. It is much used by the gentiemen of the funcy an a Aghting dog.
Averian 8. Mongrel hounda, which hunt mangly either by the acent or cye.
The Lurcher is a croms between the greyhound ana harrier, and recerosed with the terrier, Ilia linkbena atrong; his head lems aharp than that of a greyhound his eare are short, erect, and half-pricked; nod hiw hain coaree and wiry. He in much ueed by poarhers, and in fumoue fur killing ralbits, au he hae a fine scent, ond ruma his game without giving tongue.

The Leymimer and the Tumbler are imperfectly known dogs, which are now nearly if not entirely extinct. They lunted both by the seent and eye.

The Turnepit is a manall dog with a loug body und whort crooked limbu, and wan much used in turning the spit before the Invention of jacku. Breeds hetween thin now useleas variety of doge and mongrei terricta and hounda, appear to form thio nondescript and ugly racea of animale which haunt the streete of our large towng but whose numbera are now diminiahing ly tho proper interference of the police.

Dlvision III-With Short IIends.

Skction 9. Watch-dogs, which have no propensity for hunting.

The Mastiff han a largo flat head, and a alort and blunted muzzile; his lipa are full, and hanging consillo. rably over the lower jaw; his eara, although ralter amail, aro pendulous. He has asullen and grave appect, and is excellent an a watch-log; hin voise is loud wid deep-toned. Ho is a dog of largo sizo, and is suppheed to have been produced between the Iriah greyhound and builh dog. Like the dog next mentioned, he is ferocious in diaposition, and of little practical use.

The Bull-Dog.-This dog is romarkable for the depth of his chest end the strength of the whole musclea of his body. His head is large, flattened ahove, ond his muzzle much blunted, with the under jaw projecting considerahly beyond the upper one; his eyes arn set far apart, and project considerably from his head; bin power of smelling is less acute than any other of the canine race, ou which account he is a dangerous dog, for he has frequently been known to lay hold of his master without discriminating the dillerence between him and a stranger. He is the loldeat and most obstinate of all dogn and haa leen known to hold his adversary so detemiire cdly that his legs have been cut off without making him deajst.

Muny instances have been recorded of the invincible courage of the English bull-log, but we scarcely recol lect one in which so much unconquerable spinit and tenacity of life havo ever been displayed, as on the following occasion :-A short time since, a large dog of this ajecies, from some cause that was not observed auddenly flew at a fine cart-horse that was standing at the end of the Salthouse Dock, Liverpool, sad fixing his lacerating teeth in his shoulder, defied every effort to get him off. At first he was beaten with cart-whips and aticks, with auch fury an acemed to breuk his boacs; bui this being unavailing, a carpenter with an adzc ia his hand came up and heat him with the blunt iron head of the instrument, till it was thought be had pounded bim to a jelly; but the dog never moved a tooth. A man then took out a large pointed clasp-knife, will whict be atabled him repeatedly in the back, loins, and ribs, but with no better success. At length one of the spectatom who appested to have more strength of sinew and ant than the reat, squeezed the ferocious teast en tighty ubout the throat, that at leugth he turned up the wbilo
of has eg
of to a the arowa, the under? kept with and throw boweves, r a aupponed spite, whic anee more, ner. And At length of asumed by hic aman tion, got hir English cou for the horri Bince thr ferocious vi is number.
The Pug crom with former wo m an miniatu with general commend hi

os

As formerl ducation, ar upon them b peculiar vari It in importan an for exampl to refrain fro the family, an bit that is pu properly in th trught when quiren to on genteness. do as he is bi but that if he very tractable know the met act according to teach don another, we s consequences

The beat dc two yesrs old, reserved. Du be locked up, cine. All wh their doge, sho instance let th aigned, not mi of character b ties. Breed a nimala, Mor
Breeders of tention to thes the "Uskleigh pointers is, "t riginal Spanir equently that other blood m greyhound is tioual fleetness then, should ti sofir as the a inherit one q
vo no propenity and a aliort and hanging cousile although rather and grave aspect, reice is loud and and is nuppesed to cyhound and bullle is ferocious in
able for the depth whole musclen of dd above, and bin or jaw projecting in eyes are set fur his head; bin any other of the lungerous dog, for old of his master etween hina and stinate of all doge sary oo determis hout making bim

of the invincible

 we seuredy recot neruble spinit ond layed, as on the ce, a large dog of pas not observed, was standing a rpool, and fixing ed every effort to th cart-whipa and k his bonce ; but sn adze in bis lunt iron head of ad pounded him a tooth. A man ic, with whict be ine, sud ribs, but of the apcetator, finew and arm least mo tighly ed up the whituaf hia eyun and rela ved hia jaws. The man threw him off to is ilintance, but the dog iminciliately went round the erown, got hehind the horme, and ngain aeized him hy the under part of the thigh. Ae no terme could now he kopt with thin untameable brute, he was egain loomened and thrown lato the dock to drown. He inutantly, howeves, rowe to the surfiee, when a mailor utruck him s supponed deadly blow on the head with a handspike, which again sent hin to the boltom. He arome onee more, and was again aent down in the aame manner. And thia procens wan reprated five of mix timen. At length ons of the bymandeis, who either pomensed of asounced mome right or preperty in the dog, overcame by hie amwzing tenacity of life, and weary of permention, got hiin out, and walked off with thin proligy of English courage, to all appenrance very little the worae for the horrible puniabsment he had undergone.
Since the very proper diause of bull-buiting, this ferocious variety of the dog has fortunatoly diminimed in number.

The Pug Dog is descended from the bull-lug, by a crom with the amall Danioh dog, and rememblea the former so much in appearance that ho may be conadered a a miniature of that variety. He is a useless dog, and with generally bad tomper, has no good quality to recommend him.

ORNERAL MARAGEMRNT OF DOGS.

As formerly mentloned, doge are very ausceptible of ducation, and will fall into nuch habits an are improseded apon them by a course of training. Whatever be the peculiar variety of dog kept in or about a dwelling-heuse, it in important that he be at least taught good manners; a for example, to be silent and lie down when bidden, to refrain from leaping on the kneen of persons visiting the family, and not to ait ataring at meala, watching every bit that in put In the mouth. To make dag behave properly in these and other points, he muat be carefully taught when young, and for this purpose his master requires to employ a judicious mixture of aeverity and gentenese. Ho must be mada fully aware that he must do an he is bid; that if he do not he will be puniahed, bul that if he obey he will be rewarded. An all doga are very tractsble in such matters, they will soon learn to know the meaning of a look, a sign, or a word, and will act accordingly. As very fow persons take the trouble to teach domestic dogs either one line of conduct or mother, we see on all occasions instances of the natural consequences of neglect.

Breeding.

The best dogs are produced from parents not less than two years old, to which period a valusble bitch should be reserved. During her heate hefore this time she ehould be locked up, and be treated with a little cooling medicine. All who are interested in preserving the breed of their doga, should on no account sulfer a cross. In every instance let the male and female be of the true breed deoigned, not mixad or deteriorated. If a alight alteration of character be desirable, breed from the nearest varisties. Breed always from the healthieat and leat shaped animals. Mongrel breeds aro good for nothing.

Breeders of aperting dogs require to pay marked attention to these principles. According to the author of the "Oakteigh Shooting Guide," the theory respecting pointers is, "that the further any dog ia removed from the ariginal Spanish pointer the worse the dog is; and ceneequently that all attempta to cross the pointer with any other blood must necessarily deteriorate the b ped. The greyhound ia acldom or never crossed to give him additional ficetness, nor the hound to improve hia nose; why, then, ahould the pointer be crossed with doge wisich, in $s 0$ fir as the aports of the field are concerned, scarcely taberit one quality in common with him ${ }^{7}$ Attempta,
however, are conatantly male to iniprove the pointer by a eroen with the blood-hound, fos-hound, Newfoundlend dog, or mantiff, monnetimes with a view of Improving hle appearance, and bringing him to aome fanclerl atandard of perfection, but in reality inducing a ilefornity. The bent pointer in the offrpring of a pointer bitch by a pointes flogi wurh a one in nearly broken by nature. The Spanish (or true) pointer seldon requires the whip; the hound fointer han never enough of it." 'The aume writet continuen- Doge ahould be comathntly shot over during the neamon by a succewaful shot, and exerelwed during tha whooting receas by some jernon who underatanda well the management of them, otherwive they will fall off in value-the half-bred ones will become unmanageables and even the thorough-bred ones will aequire disorderiy habita."
It appearn that fomalo doge, before or during a atate of hest, are liable to receive mental impreaniona of the ape pearance of inale dogs with which they have been in company, and themo remembrancea will affect their progrny even for yearn afterwurda. We beg to refor to "Blaine's Encyclopmedia of Rural Sporta," p. 412, for aome interesting information on this aubject.

Whelpa, at a month old, are deprived of their dew clawn ; and if the tail to too long, a amall piece may bo pinched off. The carn of some doga are also pared about this period. It is not customary to cut mnlo dogs, excef ${ }^{\text {t }}$ thom which are intended for pets; the operation rendere the animal a much more docile and agrecable companiono There is a prejudice of very old atanding, that doga have a worm benentli their tongue, and that the removal of this, culled uorming, doprives the animal of the power of biting, ahould it lecoine rabid. No warm exiats; and it is doubtful if the process is of any use. That which ia called a worm is merely a minute ligamont or fbrone cord in the bridle beneath the tongue; and when the bridle is cut, the ligament may be drawn forward and meparated at both extremities; the contraction of the ligament, on extraction, resembles the movement of a worm, and hence tho origin of the term.

Feeding.

Some of the most troublesome traita in the dog'a behaviour arise from miamanagement in feed'jng. If a dog be half-hungered, he cannot be hamed for watchire the brenkfiast or dinner table. We advise all who indulg themselved with keeping dogs, not to leave their feeding to the clannce serapa of either the kitchen or the parlour, Give the dog his own regular meals, and with food aulteble to his wants or the duty he has to perform. The foorl should be chiefly fleah of sone kind, boiled and cold; if given raw, it has a tendency to fostes ferocity of disposition, and will cause the animal to be offensive in smell. No pet-dog, especially, should ever be allowed to eat raw meat. Any common piecea of flesh or tripe will answer for dog's meat. Some persona give liver, which is decidedly bad ; it relaxes the bowels, and in otherwies objectionable. Besidea the piece of boilen meat considered necessary, give dogs a fow bonea from the dinnar tnble; they are fond of theae, and they are useful in clesning and preserving their teeth, and keeping their bowels in order. If the doge will take it, they shouk also be given a little farinuceous foorl, as moracla of bread or a little oatineal porridge with milk.

The nature of the dog leada him to feed well when food is offered to his appetite, and to feed seldom. Once a day, therefore, is in ordinary circumstances sufficiently frequent for his meals. Present him with his allowance in the morning or forenoon, sad give him no more till next day. He, however, requires to drink frequently; and it is a leading rule in keeping a dog, to have at all times a pan of clean cold water ready for his use. Change the water daily, or oftener.

For the fceding of bounds, Daniel recommende that
seoh-meat thould be alternated with a diet of oatmeal porridge, made with broth in whlch meat has been boiled. Ureena boiled in their meat is also pruper. "A horse killed and given to the hounds whist warm, after a very hard day, is an excellent mesl ; but they should not hunt till the third day afer it. The bones briken are good for pror hounde, as there ia great proof in them. Sheep trottere are very sweet frod; and bullock's paunchee may also be of service, in a scarcity of horse-fiesh. Hounds should be sharp-set before hunting ; they run the better fur it." The same excellent authority continues to oberve that hounda should be fed once when returued from the fatigucs of the chase, and again sometime afterwards. "It is the best plan to ficed twice the hounds that have been out. Some hounds will feed better the second time than the first ; besides, turniug them out from the lodginghouse refreshea them; they stretch their linnbs, and the litter being shaken up, and the kennel cleaned out, they me:tle themselves better on the benchea afterwarda. At all times, after being fed, the hounda should be turned into the grass court to empty themselves; it will not a little contribute to the cleanlinese of the kennel."

Lodging—Kennel Treament.

Doga requira to be lodged in adry aituation, at a moderate temperature. The practiee of keeping dogs out all nisht during frosty weather, or of putting them into cold coach-houses, is most inhumane and disgraceful. Doga kept for watching the outside of premises ehould be provided with n comfrstable dog-house of wood, hedded with clean otraw, and sheltered from cutting winds. A dog kept in a dwelling-house should have an appointed place, as in a lobby, fur sleeping; its birth should consist of a basket, open box, or small honse, according to the taste of the animal. A spaniel will not go into a dog-house ; a terrier prefers it. In any case the berth should be laid with a piece of carpet or blanket, which must be freq nently washed and dried.
Damp is reriously injurious to dogs. It produces rheumatisms, which show themselves by lamenesa in the choulders, and other disorders detrimental to their usefulness. It is therefore of grest importance to build keniels in airy situations, and to keep them dry and airy. The best kennela are paved with tiles or stone, but on the floors there are ruised benches, littered with strsw in winter, on which the dogs repose. The straw should be daily changed, rothing being of so much consequence as cleanlinees, bott. for the sake of general health, and preserving the povers of scent of the animals. For this latter purpose, s me kcepers of packs of hounds have a change of rot Δ, one being used while the othere are hecoming swer. fter cleaning. On this suhject Daniel olwerves: "' 1 " - excellent sense of amelling, so peculiar to the hound, ; what our sport entirely depends on ; care, therefore, mus' of taken to premerve i, and the utmost cleanliness is thv surest method: to keep the kennel eweet cannot be too much recommended, and in on no account to be neglected. The exactnese of tiou master in this particular will ensure that of the feeder.
"Hounds that come home lame should not be taken out the next hunting day, since they may appear sound without being so. At the beginning of a season the eyes of hounds are frequently injured; euch hounds should not be hunted; and if their eyes continue weak, should lose a lifile blood. Such as have sore feet should have them weil washed out with brine or pot-liqunr. Hounds unable to work ahould be permitted to run about the house; It will the of great use to them; and such as are ill or lame ought to be turned into a kennel by themselves; here it will be mare eagy to give that attention both to their melicine and food which is requiaite."
Hounds which are properly disciplined are obedient in a very extraordinary degree to the orilers of the liuntsman. "To see," aays the writer of the article Hunting,
in the Encycloperdia Britannica, "sixty couples of hounda animals all hungry an tigers, standing aloof in their yend, and without even hearing, much less feoling, the whip, not daring to move until the order is given to them. And what is the order given? Why, at the worde 'come over, bitches,' or 'come over, doge,' every hound of eash individual sex comes forward, as the sex it helongs to may be called for, leaving those of the other sex in their placem Then the act of drawing them to the feeding trougha in an exceedingly interesting sight-often, with the doow wide open, having nothing to do but to call each hound by its neme, which of course he answers readily to. The expression of countenaice, too, at thia time is well worthy of notice; and that of earnest solicitation, of eutruyty we might almost say of importunity, cannat be moro forcihly displayed than in the face of a hungry hound awaiting hie tum to draw. He appeare absolutely to watch the lips of the hunteman, anticipating his own name."

Healh-Diseaso.

All doge whateoever, but those designed for field apora in particular, require to be kept in what is called "condition," that is, neither too fat nor too lean, but the body in that hardy and active atate that will enable the animal to perfurm its duties. If loaded with fleeh or fat it will not possess wind, or a due power of quick breathing, for any length of time in the chase. Colonel Conk ubserves, on what constitutes a proper condition-" The riba should be visible and the flank moderately hollow, but the loin must be well filled up in a dog in perfect condition When dogs exhibit general fullness and too much flesh, commence by physic and a regular course of exercise, which should be mild at first, but increased until it in severe. Avoid too great a privation of food, otherwise the cunditioning procesa will be retarded."

To keep a dog in a state of good health, he must not only be regularly fed and admitted freely to water, but the allowed plenty of exercise daily in the open air, and kept in a cleanly condition. If hia bowels appear relaxed, he is not in sound healch; and as a proventative of this, let his food, as already said, he subetential, and consia partly of bones; let him also have access to grass; every proper kennel hna a grass-yard to which the dogs can or sort. In the pan of water used by house-dogs, put a piece of brimstone; it slightly affecte tho water by lyivg in it, and helpa to kecp the animals cool.
All dogs. are liable to the troubled with fleas, which they get from the ground; the skin also contracts dirt, and from that or other causes becomes offensive in emell The remedy is clcanliness. Every lap nr housedog ahould be washed at leaet once a week with noap and water. Some doga have a great dislike to washing, but it must nevertheless be performed. After wahing thoroughly, rub the animal dry with a hard cloth, and comb and brush it. If there be ficas, a small-toothed comb will remove them, and they should be killed as they appear. Wash and dry delicate dogs before the fire.

On the subject of physicking aa a preventative of dir easo, or when there are symptoms of diecased skin, a lif tle sulphur and antimony is recommended,. mixed with the meat, or done upana bolus or pill, and in this latuen form puahed over the throat. "Once a week or fortnight" says Daniel, "during the hunting sesson, haunds should have one pound of sulphur given them in their mett; and when the season is over, half a pound of antinooy ahould be added to the aulphar, ond well tmixel with the meat. This cools, and is doubtless of aervice to them."

Mange.-'This in a cutaneous disease in dogs, verg closely resembling itch in the human quecies, bot mon inveterate, and la hereditary as well as contagious, Mis, Blaine, in his "Encyclopedia of Rural Sports," thu speaks of this nauscous complaint:-n Of all the cuum which beget mange, and they are not fow, tho arid

Mlariam when it? sanfned monfineme mom cort risions ; contract ir deck. Fo ble in qua traty, food poor in qu bano auth eaployed; ouncea; m uslf an ou turpentine, ounces; t boluses. I mend no o to a regular Distempe common an and cubjec apidemical, of romnval. -pports," the young dog: appetite ; d length with tremities, ea sudden ema in the hinde the animal; bawels, a lit nose often, clarge. In sy mptoons w ings, the nor afiected ; gid nouth, and cipient madn gererate." daily mild do aleno, lapped or five days, refficient to c the fever has ever, alivays ecovery nou neverity const
Madness. the most fatal which, as far Blaine consid neossly in do the effect of mad. But a taneously in why it may n the exclusive Rabies is little mon chiefly in pilly in aumm by a feverish
The leuding discomfort and gnaw end cat soul, or any otl animal anaps a th This is, b bus no wish t the influence ol only at what pacosoes, the
ouples of hoonda oof in their yund, feoling, the whip, on to them. And the words 'com ry hound of each it helongs to may vex in their placen ceding troughs in n , with the doot , call each hound readily to. The me ia wall worthy tipn, of entreaty cannot be more a hungry hound ears absolutely to ceipating his own
ned for field spors at is called " conlean, but the body enable the animal flesh or fat it will uick 'reathing, for nel Cook observes, - The ribs should llow, but the loin perfect condition ind too much fleeh, course of exercise, creased until it in ' food, otherwise the

realth, he mant not

 reely to water, but the open air, and vels appear relaxed, reventative of this, antial, and consis ess to grass: every ch the dogs can rt house-dogs, put a tho water by lyis pol.with fleas, which - contracts dirt, and offensive in amell lap or house-dog eek with aoap and ke to washing, but

After washing hard cloth, and as, a omall-toothed ald be killed as they before the fire. oreventative of dir diseased skin, a lib ended.. mixed with , and in this latte week or fortnighth son, hounds should m in their ment; pound of antimany cell twixed with the f service to them" ase in doge, very apecies, but mon a contagious. Yh ural Bports," then - Of'sill the caum not few, the wall
suturiam trom their own secretions is the mot common; when it is generated by numbers, particularly when it is sonfued within a limited space, it ia sure to appear. Close monfinement of any dog will commonly produce it, and mom certainly ao if it be at the same time fed on salt prorisions; thus thore are few dogs on ship-board that do not contract ir except such as are allowed full liborty oi the deck. Food too nutritive in quality, and too considerable in quantity, ia productive of mange; and, on the contrary, food in a great measure withheld, or being very poor in quality, is equally a parent of the disease." The sane authority gives several receipts of medicine to be employed; tha leading are-powdered anlphun four ounces; muriaty of ammonia (sal-ammonisc) powdered, half an ounce; aloes powdered, one drachm; Venice turpentine, half an ounce; lard or other fatty mateer, six ounces; the whole to he mixcs and administered in boluses. In all bad cases, however, we should recommend no one to sttempt doctoring his dog, but to apply to s regular practitioner.
Distemper-The disesse called the Diatemper is most common among dogs which are much kept in the house and cubjected td artificial treatment The disorder ia epidemical, affocts the conatitution, and is very difficult of removal. W. H. Scott, in his work on "British Field thports," thua describes the aymptoms of distemper in a young dog :- Sudden loas of usual apirit, activity, and appetite; drowsiness, dullness of the eyes, and lying at length with the nose to the ground ; coldness of the extremitiea, ears and lega, and heat of the head and body; sudden emaciation, and excessive weakness, particularly in the hinder quarters, which begin to sink snd drag after the animal; an apparent tendency to evacuste from th. buwels, a littlo at a time; sometimes vomiting; eyes and aose often, but not always, affected with a catarrhal discharge. In an sdvanced stage of the distemper, such armptoms will occur as spasmodic and convulsi\%e twitchugs, the nervous and muscular systems being materially offected; giddiness and turning round, foaming at the mouth, and fits. The disecse is then often taken for incipient unadness, into which it might not improbably degererate." The same authority adds-riI have found daily mild doses of from two to three grains of calomel alono, lapped by the animal in milk, continued for tour or fivs daya, with inteamisaions when necessary, fully naficient to carry it safely through the disease, even when tho fever has been very high. James's powder. has, however, elivays proved the must certain remody." To aid ecovery nourishing diet should be given. In cases of reverity consult the veterinary surgeon.
Madness.-Canine madness, rabies, or hydrophobia, is the most fatal malady to which doga are aubject, and for which, ss far as we have heard, there is no certain cure. Blaine considors that rabies is never produced spontaneously in doge or any other animals, but is invariably the effect of inoculation by a bite from a dog already mad. But as the discase must have commenced spontaneoualy in somo dog at first, we do not understand why it msy not do so egain; in ahort, the doctrine, in the exclusive form in which it is put, seems untenable. Rabies is little known in hot or cold countrics; it is common chiefly in tomperate regions, but dhows itself principilly in aummer, when it may be nupposed to be excited by a fererish condition of body.
The leading symptom of tho rabid state is an apparent discomfort and uasettledness of purpose, with a desire to gnuw and eat any thing within reach, as straw, wood, coal, or any nther rubbish; as the disease advances, the animal enaps oud bites at everybody, or nny animal near th. This is, however, 110 effect of bad temper; the dog has no wish to go out of his way to hite; he is under the influence of a derangement which makes him catch only at what ia near. Like the unnatural appetite lie pewosees, the sunpping propensity may ulso partly arise
from the irritated ntate of the stomach and intestinem, both of which are greatly inflamed. The throat is likewise livid, and by a conatriction of parts, soon proventa the animal from swallowing. That the rabid dog has a terror of water (hence the origin of the name hydro phobia), is now beginning to be doubted; and at all events it is not an invariable symptom, for mad doga have been known to lap water the day before their death. In the later stages of the disease paralysis onsuea, and from the fourth to the seventh day the dog expiren. It is humanity to ahoot the animal before this final catas trophe.

With respect to the production of rabios in the human species, there have latterly been some very grave doubt An idea has been started, and supported with considerable plausibility of argument by certain medical practitionera, that hydrophobia in the human being is meroly a nervous affection, vory much if not almost altugether arising from the influence of the imagination; the person bit fancies he is going mad, and mad ho becomes. It is very desirsble that the medical world should investigate and urrivo at some, determinate conclusion respecting this remarksble doctrine; meanwbile, till the matter is settled one way or other, we must speak of rabies in the human subject as a real disease, against which every reasonable precaution should be adopted. On being bit, it is always aafe to wash the wound immediately, and have the parts burnt with a hot iron, or cut out. In every case let a akilled aurgeon be immediately consulted-one who will not heaitate to act with promptitude and decision.

Many cures have been mentioned for the bite of a mad ding. We shall notice a few. The following, according to Blaine, is the famous Herefordshira cure, commonly called Webb's drink:-" Trake the fresh leaves of the tree box, two ounces; of the fresh leaves of rue, two ounces. of sage, half an ounce; chop these fincly, and aftes boiling them in a pint of water to half a pint, strain and prese out the liquor; beat them in a mortar, or other wise bruise them thoroughly, and boil them again in a pint of now milk, until the quantity decreases to half a. pint, which press out as before. After this, mix both the boiled liquors, which will make three doses for a humen subject. Double this quantity will form three doses for a horse or eow; two-thirds of it is sufficient for a large dog, calf, sheep, or hog; half the quantity is required for a middle-sized dog; and one-third for a smaller onc. These thrce doses are said to be sufficient; and one of them is directed to be givon every morning fasting." Blaine has not much confidence in this remedy, but allows it is worth trying.

Mr. Murray, known aa a lecturer on chemistry, mentions, in a letter to a newspaper, the following remedy: -u Iet a mixture of two parts of nitric and one part of inuriatic acid, both by measure (cvolving chlorine in a concentrated form), be applied to the wound as soon as possible, and more than once." He adds, that he has found this a preventive.
M. Buisson, a Parisinn phyaician, declares that madness from the bite of a rabid dog may be thoroughly cured by fumigating the patient in a hot vapour bath, and afterwards keeping up the copious perspiracion in bed; this he recommenda to be done for several auo ceasive nights.*

FIELD SPORTS.

Conducted on principles of moderation, humanity, and fair play, tho sports of the ficld may be said to be thooe exhilirating and healthful pursuits by which "le tribee of
*See nn accomnt of Ruisson's proceedings in "Chamuers's Ednburgh Journal," No. 057.
will animala are made subservient to man's use, or removed froin a sphere in which they qre inconvenient and ansuitable. In taking amusenent from auch sports, it is the glory of the true English gentleman to avoid every proceeding which can give unnecessary pain to the anjmala over which he claims dominion, and to discountenance by every means in his power such odious abuses of aport as baiting, werrying at the stake, or any other method of protracting the death of the creaturcs who have the misfortune to be objects of the chase.
Our space will pernit us only to notice the leading field sports of Britnin is past and present times.

falconry.-deer hunting.

Falcenry was the favourite fiehl sport of the midulo ages, as shooting with the gun is thu predominant one of the present day. It appears, in this country, to have declined and gone out of use in the seventeenth century, in consequence of the gus having then become, by the addition of the lock and fliut, a nuch more ready menns of bringing down gane than the use of hawka had ever been. Falconry, whilo it existed, was the peculiar sport of kings, und princes, and nobles, many of whotn were painted in life with their hawks sented on their wrist, and were sculptured on their tombs after death with the mane creature placed at their feet, thua marking the apecial regard in which they held the animal which was the means of giving them so much minusement.

The sport, we need scarcely remark, was founded on tte natural instinet of the rapacious order of tho feathered creation, as the chase may be said to be founded on the instinct of the dog to pursuc the hare, fox, and other animals. The rapacious order of birds, of which the eagle, falcon, and owl, are the three principal types, ure formed in such a way as evidently fits them for pursuing, seizing, and destroyiug the smaller birds; a part in creation which at first sight appears to involve much cruetty, but which has been elearly shown to te intended to save rather than to produce pain, and to be indispensable to a nyatem of things in which one lezeing feature is, that there shall always be ns many living creatures as can possibly be supported. The falcon family were alone employed for purposes of sport, as alone possessing the required docility, and of this family two or three species were more frequently used than any other. Of those possesaing long wings, the falcon proper and the gerfalcon; and of the sloort-winged, the goshawk and spar-row-hawk, seem to have been the favourite kinds. Species called the hobby, the kestral, the taerlin, and buzzard, were the next in request. The female, which is in all the varieties of this tribe considerably larger than the male, was alone employed in sport, and the common names of all the aprecics upply to that sex, the male having usually mome distinctive appellation : thus the malo of tho gerfalcon was called the jerkin, of the falcon proper the sierce gentle, of the goshawk the tiercel, and of the spar-row-hawk the musket.

These birds naturally choose retired hahitations. The falcon, in particular, builda her nests amongat cliffy in wild and unpeopled regiona. In order to fit birds for the aport of falconry, it was necessary to take them frum the nest at a very early stage of their existence (then technically called eyasses), or to ensnare them in their more mature age, and then train them for the purpose. A falcon in its natural state was said to be a haggard; hence, apparently, the term by which wo still expresa a wild or sgitated aspect. The first step in training the falcon was to man it, or accustom it to the presence of human beinge Feeding was the grand source of the power which its keeper acquired over it. When it did as reanired, it was fed, and thus taught to know that it had done right-and not otherwise. If extremely refractory, n stream of cold water was directed at its heal, as an almontion that nothing was to be gained by such con-
dnct. From the very first, the animnl was nccoutmad with certain paraphernalia, the names of which at leam must be funiliar to most realers. First, its head wan covered by a leathern hood fitting clese all around, so a to shut up ita eyes, and calculated, by a slit behind, wo be rendily slipped on and off. Ou the top of tha hoal there was a tuft of feathera, which usuatly has a grace ful effeet in the old picturcs representing ladiss or gnade men travelling with their hawks upon their wrist. Leen thern straps, enlled jesses, a few inches in length, were fitted to the legs of the bird by a button slipping through a slit or loop. Close beside the end attuched to each ein was a small spherical bell, like that of a child's rante, and composed of silver for clearness of sound, tha sne being in some nice instances made a semitone higher than the othor. The other end of the jesses were fur nished each with a ring, which could he reodily fitted upon the awivel desigued to connect thein both with the leath a lorig slender strap, sometimes prolonged by a creang or common cord, and designed as a tether by which io restrain the animal, at the same time that it shonld be allowed considerablo rooun for free motion. Two great objects in training were to teach the bird to tly at its proper game, and to hahituate it to come back to the hand of its master, after on any occasion having been let free in pursuit of its prey. For the lirst of these ends, in the case of long-winged birds, an implenent temed the lure was used. It consisted either of a stick or of a cord, on the end of which were fixed pieces of flesh, with a bunch of the feuthers of the prey which it was design.d that the bird should fly at, or perhsps an actual resemblance of the prey in its entire form. The falcon being set loose by one man, another stood at a ditance waiving the lure around his head, thus tempting tha animal to advance and strike at it. 'A whistle waa the implement used to reclaim or bring back the hark Whon in hawk was to be kept on the hand, strong gloves were worn for protection from its talons. It may here be remarked, that the training of falcons was allogether a most laborious business, and that trained birds wen accordingly to be only purchasel at n high price. At the boginuing of the seventeenth eentury, a traiued gohnarit anil tiercel brought one hundred marke, and it wss cansidered a favour tu part with them. The extreme labour attendiug the training of the aimals must have been suthirient in early times to confline the sport to persons of birth and fortune, if there were no other cause; and it must also have conduced to the rapid decline and er. tinction of the sport, after a ready means of killing wildfowl by the gun became attainable.
'Ihe sport, after being long given up, was revied in England a few years ago by Colonel Thornton, the Daka of St. Albans, and a few other gentlemen, chietly through the influence of a taste for whatever is etegant and io mantic in the usages of our forefathers. It is sadid to te a gallant and goodly sight, when a train of we'l-manned English ladies and gentlemen rides forth in a clar surr shiny day, to pursue this sport, attended by their falcones, each with his hawk on his wrist. In the present day, 4 of yore, various kinds of feathered game ure flowa at Heron-hawking is, we believe, in greatest esterm. The heron, as must be genernlly known, is a large bird in appearance, with a long neck, long lega, and a long sharp bill, being deaigned to haunt marshes ond pools, und heed upen whatever fish it can find therein. It is, howcres a light unsubstantial bird, with nothing to protect if from enemices but its aharp bill. Herona are gregarious, and the lonely placen where they live are called heronim These explinnations will introduce the following account of heron-hawking, from Blaine's " Encyclopadia of Ruas Sports:"-
"The daily visitations of the heron to ita feedingplowew are watched by the falconerr, who station thenselven in the deoward or down wind of the heronry, so thal the
peror: on his \mathbf{r} pree s great an is dikcovered on who, oatching s heron, instinetiv for the fray by kghten the weig uscend the airy stmoapheric resi tirclings, it has effect of present directions; wher Ine steadily diree mith the heron, giged in avoilin orenuously ende bowever, by the med in getting ently makes its heron if he cas dons, either by s falcon on his ah This danger is, foel assured that nast fails, stoops i this slso is freque then still rising intereating in the less agitated tha length another sto mada by one hnw and all three quic dangcroua rapidity action of their win maunted horsemer ascistance of their directed to secure bak may not take Pheasants are ettent, en account tec aylvan ground fartridge-hawking aport To quote practice is commor cunatry, where the cas beat in line, ar being well mounted reteive the quarry. assary, or both.
Whe partidge b stanishing rapidity neither horses, dogs, on the contrary, the nlvance, who, apprd walk quietly round mith bic arm exten the hav't, he shoul the mama time plac put on the hood, anc the quarry, and if a ber be fed immediate "A somewhat diff practised in the latte to is very bare, and mill, and lie indiff cuace it is recommen bire at fify or sixty gallop across the plu coner being in the es bite the pace hy the Severght informs us ag hus afforded him alen the face of the VoL. L. -85

vas nccoutrad

 rhich at leam its head was around, so at alit behind, to p of the hood y has a graceadies or gendeir wrist. Let n length, wero ipping through hed to each cer 1 child's rante, sound, the one emitone higher esses were fur adily fitted upoo (with the leash ed by a creance er by which to at it should be on. 'I'so great ind to ty at its me back to the having been let st of these ends, iplement termed f a stick or of a pieces of tlesh, cy which it wn cerhsps an actual rin. The falcon ood at a distance us tempting the . whistle was the lack the hark and, strong gloven ns. It mny here is was altogethe rained birde wet igh price. At the e trained gosbark and it was coal re extreme labour must have beed sport to persoan other cause; and dd decline and ev. is of killing wildp , was revived in hornton, the Date n, chiefly throagh elegant and to-

It is said to to I of we'l-monted th in a clear surr by their falconers, he present day, u me are flown at est estecm. The s a large bird in , and a long aharp nd pooks, and feed It is, howereh to protect it from e gregarious, and called heronne following accooas clopxalia of Ruad
oita feeding-plaw ion themsives ${ }^{6}$ ronry, 10 thall that
heron on his return must fly against the breeze, which gres a great advantage to its enemy. As soon as ond is discovered on the return, a cast of falcons is let loose, ho, catching sight of the quarry, rise in pursuit. The beron, instinctively aware that its life is at stake, prepares for tue fray by disgorging the contents of its stomach to ughten the weight of the body. Tha coursing falcons uscend the airy vault in spiral gyratin. by which the ntmospheric resistance to their figit. i aned. These eirclings, it has been ohserved, have fr: : ily the curious cffect of presenting the three birds ry ay:ng in different directions; whereas the real intentions of the two hnwks are steadily directed to one point, which is that of contact with the heron, whose entire efforts are as steadily engaged in avoiding it. 'To effect this, the affrighted heron otrenuously endeavours to rise above the hawks, who, however, by the superior power of wing, commonly sucwed in getting the upjer station, from which one preently makes its stoop; and happy it is for the poor heron if he earl evade the blow, which he occesionally does, either by shifting bis station, or by receiving the falcon on his sharp bill, which instantly transfixes it. This danger is, however, denied on authority, but we feel assured that it does occur. The second hawk, if the tirst fails, stoops in his turn; but the meditated blow of this algo is frequently evaded like the former. The trio then still rising higher and higher, the siglat becomes interesting in the extreme, and the spectators are scarcely less sgitated than the feathered warriors above. At length another stoop takes place, and the fatal scizure is made by ono hawk, while the other binda to his fellow, and all three quickly descend together, but not with a daggerous rapidity, as their powers of inflation and the action of their wings break the fall. It is now that the mounted horsemen make the bost of their way to the ussistance of their falcons, and their first efforts must be direted to secure the head of the heron, that the sharp brak may not take effect on one or both of thein."
Pheasants are objects of this sport, but not to a great extent, on acconnt of the inconvenience presented by tie sylvan ground in which the sport must le practised. lartidge-hawking is found to be a more convenient aport. To quote the same authority-." The scene of practice is commonly on large fields or open tracts of wuntry, where the horsemen and company generally can beat in line, and tho attendant falconer or master, being well mounted, can ride forward and be ready to reetive the quarry. Either pointers or apaniels are neassary, or both.
"IThe partridge being flushed, the hawk will stoop with ostonishing rapidity, and scize on it; at which time neither horses, dogs, nor company, should press forward; on the contrary, they should permit the falconer only to alvance, who, approaching the bawk with caution, must walk quietly round her, when, gently kneeling down with bis arm extended, as though in the act of feeding the hav't, he should lay hold of the partridge, and at the same time place the hawk on his fist. This done, put on the hood, and reward the hawk with the head of the quarry, and if sho be not intended to fly again, let her be fed immediately.
"A somewhat different method of partridge-hawking is practised in the latter part of the sesson, when the counif is very bare, and when the partridges are often very wild, and lie indifferently even to the dog. In such cuan it is recommended that tho company 'draw up in line at fifty or sixty yands' distanco from each other, and gallop across the plain with a hawk upon wing,' the falcoser heing in the centre of the line, that he may regulate the pace by the situation of the huwk. Sir John Sebught informs us that this inethol of partridge-hawkag has sffurded him more sport then any other, and that ahen tho face of the country was so bure, and the birds
Vol. I. -85
so wild ne to mske it impossible to approach them in the ueual way.
"Brook-hawking, as it is often termed, was much in vogue formerly. The practice was not, howevar, confined to brooks, but extended to rivers, sea-shores, moors, and ponds. It engaged, uccording to Blome, 'the jero falcon, the haggard fulcon, the jerkin, and the taseel gentle.' Waterfowl of every deseription were made prey of; but some partlcular oljects, according with the training of the falcons, wero particularly sought for. Dogs were employed to rouse the fowl, heing led on by men who traversed the water's edge; whilo horsemen with the hawks on their fiats, were at hand to cast off one or more, according to the nature of the game. A heron or unallard would require two, while a widgeon or teal would probably enguge only one."

Drer-hunting was another principal amusement of past times, but has now been abandoned in the form in which it used to be conducted. The species of animals chiefly hunted in England was the fallow-deer, a beantiful creature with stately horns or antlers, and of great speed in running. Fallow-deer are now closed up in parks, at least in Britain. The stag, red deer, or hart, whose female is called tho hind, differs in size and in horns from the fallow-deer. He is much larger, and his horns are round, whereas in the fallow speciea they are broad and palmated. Red deer are now, we believe, tho only oljects of field sport in this country, and principally in the Highlands of Scotland, where they still exiot in considerable numbers. No hounds, however, as in the chase in former ages, are employed, the hunter depending on his gun and his skill in approaching the animal noiselessly. This, which is called deer-stalking, is a sport requiring a vast deal of tact, knowledge of the animal's habits, and patience, as whole days are ocessionally taken up in stealthily watching an opportunity for a shot. Such is the power of sight, scent, and hearing, that to approach unperceived on a plain is imposaibe. They must be approached down the wind, and from behind thickets or hillocks. A telescope is required in these difficult manœuvres. When it is impracticable to reach them in this artful manner, attendants drive them into gorges among tho mountains, and the sportman singles out an ohject for his gun as it passes his concealed station. A lively work on deer-stalking has lately been written by Mr. Scrope, to which we beg to refer those who are interested in the subject.

FOX-RUNTING.

The variety of fox most common in Britain is called the cur for, which is of a brown colour, with generally some white on the breast and belly, and a light tip to the long bushy tail. Foxes go to clicket in winter, and cube are produced in the latter end of March; they breed but once a year, and have from three to six young ones at a time. In his nature the fox is playful, but rapacious in his appetite, and his predominating characteristic is great craftiness. He usually fixes his abode on the border of a wond, at no great distance from a farm-house or village; he listens to the crowing of the cocks and the cries of tho poultry; he scents them, and chonses the time of his attack with judgment; he conceals his road as well as his design; he slips forward with caution, sometimes even trailing his body, and seldon makes a fruitless expedition. He plans similar encroachments on the nests of birds, rabbit warrens, \&cc.; and, in a word, is sn destruce tive to live-stock that it is absolutely necessary to tak and kill him.

Fox-hunting on a proper scale requires to be conducted with tho class of active horses termed hunters, a pack of fox-hounds to scent and run down the prey, and terriers to turn the enimal from his hole, should he take to casth. A pack of hounds varies from twenty to thirty 3 L.
couples; but besjdes these, some hounde are alwsya left undpafted into the field. The cost of a good pack is reckoned at from $£ 1000$ to $£ 1200$, and the mnnual exyenve of its keup and management as much. The Suntsman, ss the grand leader of the chase, is a functionary of no amall importance; he is assisted by two swhippera-in, who bring up and take charge of the hounds.
Tho fox being an early riaer, and his scent lying best on the damp grass, he is hunted in early morning $;$ and the first businesa on taking the field is to ride to and draw cover-that is, bring out the fox from his retreat. At the first aight, the view halloo is given by the huntsman, and all follow the sweoping track of the hounds. It is a rule in hunting never to get before the doga, or to throw them out any way by a false aignal; on the contrary, the great art is to keep them to the scent, nad to aid their search. The run is considered the exhilarating part of the sport, and consists of a rapid chase through a broken or rough country, with the hounds in full ery. Then is the ardour of the chase shown; and It continuee till the fox, by some elever manceuvre-such as tracking up a brook-throws the hounds off the scent, and the party is brought to eheck. The scent and track of the animal being again found, off all go once more in pursuit, hut with generally frequent doubts of the perult. "Seo," says Beckford, in his enthusiastic style, "where the hounds bend towarde yonder furze brake; I wish he may have atopped there. Mind that old hound; how he dashes over the furze ! I think he winds him! Hsrk! they halloo! Ay, there he goes! It is nearly over with hin! Had the hounda caught view ho must have died! He will hardly reach the cover. See how they gain upon him at every stroke! It ia an admirable race; yet the cover anves him. Now be quiet, and he cannot escape us ; we have the wind of tho hounds, and cannot be better placed. How ohort he runs! He is now in the atrongest part of the cover! What a crash! Every hound is in, and every hound is running for him! That was quick turn! Again, snother! Ho's put t) his last ahifts! Now mischief is at his heols, anyl death is not far off! Ha! they stop sll at once; all silent, snd yet no earth is open. Liaten! Now they are at him again! Did you hear that hound catch him?-they overran the scent, and the fox had Inid down behind him. Now reynard, look to yourself! How quick they all give their tongues! The terriers, - too, are now yelping st him. How close Vengeunce pursies !-how terribly sho presses !-it is just up with hin! What a crash they make; the whole wood rowounds! That turn was very short!-There !-now !ay, now they have him! Who-hoop!" The chase is over: Reynard is no more; and his brush or tail being cut off as a trophy by the huntsman, his unfortunate carcass in thrown to the hounds, snd in a few moments dentroyed, leaving acarcely a wreck behind.

hare-hunting-courying.

Hares are hunted in much the sane manner as foxes, the chief difference being that harriers are employed inatead of hounds; both hunt by the scent. Of this loranch of field sports, the writer of the excellent article on Hunting, in the "Encyclopedia Britannica," makes the following mention :-
"Hare nunting claims precedence of fox-hunting in the aprting chronology of Great Britain, and we believe of oll other countries, insamish as a hare has alwaya been estoemed excellent eating, and a fox the rankest of carrion. We gather from Xenophon that it was practised before his day, and he wrote fully three centuries before the Cloristian era, both hounds and nela being then nsed in the pursuit. Neither can we marvel at hare-hunting being the favourite diveraion in all nationa given to Furting, where tha use of the horse in the field had not
become common. But we will go a point farthm that this, and assert, that how inferior noevar may be the estimation in which hunting the hare is held in compa. rison with hunting the fox, no enimal of tho chase as fords so much true hunting as she doem, which was the opinion of the renowned Mr. Beckford
"The difficulty of finding a hare by the eye in well known. It is an art greatly facilitated by experience, although not one permon in ten who attempts it succeels, But here we recognise the hand that furnished her with ouch means for her security ; as, from the delicscy of her flesh, ahe is the prey of every carnivoroua animal, and her means of defence are confined only to flight ind going to her form, she consulte the weather, especially the wind, lying always, when whe can, with her head io face it. Aftor harvest, harea are found in all situationa; in atubble fields, hedge-rows, wooda and brakea; but when the leaves fall, they prefer lying upon open ground, and particularly on a stale fsllow, that is, ane which has been some tine ploughed; so likewise after frost, and towsrds tho apring of the year. In furze of gorse, they lie so close as to allow themselvea nearly to he trodden upon, rather than quit their form. The down or upland-breed hare shows hest sport ; that bred in a wet marshy district the worst, although the scent from the latter may be the atrongest. If a hare, when not viewed away, runa slowly at first, it is generslly a aign that she ia an old one, and likely to afford sport; bat hares never run so well as when they do not know where they are. Thus trapped hares turned out before heunds, almoat invariably run atraight on end, and generally till they can run no longer; and they generally go stright in a fog. The chase of the hare has been altered, and rendered less difficult in some degree, by the improve ment of tho hound used in it.
"The difference in the terms uged in hare-hunting and fox-hunting is comprised in a few words:-Hs ricrs are cast off in the morning; fox-hounds throw of The hare is found by the quest or trail; the fox by the drag. The hare is on her form or seat; the fox in bis kennel. The young hare is a leveret; a fox s yearold ia a cub. The view hollo of the hare is 'Gone away;' of a fox 'Tallyho.' The hare doubles in chass; the fox hends back, or is heuded. The hamier is at fault; the fox-hound at check. The hare is pricked by the foot; the fox is balled or padded. The hare squak; the fox lies down, stops, or hangs in cover; the 'who hoop' signifies the death of each."

Hares are hanted with packs of generally twenty couplea of harriers; but whatever number is emplored, it is the eatablished rule never to rum in upon the hara as soon as discovered in their forms, but to allow them 1 little space before the dogs are set on. The hares, als, must not be pressed upon in the chase by the canpan, neither are the dogs, on losing scent, to be called on the right path; for thia leads them to depend on the sigh of the huntsman instead of their own nose. Leare tho harriers pretty much to themselves.

Coursing is the chasing and taking of the hare ty means of greyhounds, which hunt by the sight only Among fox-hunters it in considered an inferior kind of aport, but many country gentlemen find in it en exhils rating recreation, and it is patronised by numrow coursing clubs. "There is," says Blaine, "even uplilanthropic character ahout coursing nimost unknemn in other huntings. It may be eaid to offiep a kind of refuag for the sporting destitute, for it holds out innocent rene ation to those whose means or whose prudence will nat allow them to riak either their neck after a fox or their wealth sfter a racer. Here the octogenarian, at ona labouring under his incycased years and his decrand energies, may solace himself with an epitome of former huntings ; and farther, that the joya of this chave an within the reach of avery atate or stage of lise,"

The gre for compe wall traine minadly pi llis eyo el to onable delicate in ment; thei when take leash with they are n acea snd at ficient for t pois's in th rient and n following, e Hizsheth's
"The F hounds, wat togetber jut sinl to follo start the ha or footmen netly behin
wA hare
A greyhoun
"The ha before ho p dogs that the
"The har tha doge wer mover would lasing her. "The dog currse, if the
"A cote is fellow, and g
"A cote er jerkins for the only wre
"If there w hounds, but il then he inat cave as many hare won. A lent to two to
"If ncithen cover woll. and turned he wus enteemed
" If all the
hare won; if ndjudged dead fermed his par turn more tha, "If a dog divers cotes, a the other dog, gave no turn,
"If by accid course was vo make repuratio and last turn, them, he that
" He that ce aved her fro clesnsed their have the hare
"Those tha
ueir decision h
sноот
The lending ing of crousr.

int farthen that

 var muy be the a held in compa. of the chase if , which was thethe eye in well by experience, mpts it eucreeds unnialied her with he delicacy of ber rous aninal, and ly to flight In eather, eapecially with her head to 1 in all situations; and brakes; but ping upon apen allow, that is, nne ; as likewise after year. In farze or emselves nearly to their form. The aport ; that bred uugh the scentriom a hare, whea nou is generally a ajgn afford aport; bat do not know where out before liounds, 1, and generally till enerally go stright a been altered, and e, by the improre
ed in hare-honting few words:-Huc x-hounda throw of rail ; the fox by the seat; the fox in bis ct; a fox a year do re is ‘ Gone anary; doubles in chase: The hamier in a hare is pricked by The hare squat; cover; the 'rbo
f generally twent umber is emploged a in upon the hase but to allew them I The hares, elow, se by the company, , to be called on tbe lepend on the sigh n nose. Leare the

ing of the bare | |
| :---: | by the sight ont an inferior kind of find in it on exhiln nised by numewon blaine, " even a pli almost unknamnto fter a kind of refing out innocent mero e prudence will not after a fox or bere togenarian, at ona 3 and his decreand a epitone of formet 8 of this chue tiv age of "ise."

The greyhound, whose form so eminently adapts him for competing with the hare in a race, requires to be wall trained in the art of turning suddenly, and determinodly pursuing his game on a new line of pursuit. His eye ahould be cu ar and quick, and his wind good, to enable him to loold out to the last. Greyhounds are delicate in their nature, and require very oweful treatment; their lodging muat be dry and comh rtable, and when tazen 0 it in a cold marning they must be held in leash with jackets on, ready to let alip. In any case, they are not uncoupled or let go till the haro has been geen and atarted. A aingle pair of doga is generally sufficient for the sport; and betting often onaues as to the min's in tha course. There are numerous rules of anrient and modern date on the subject of coursing. The following, establiahed by the Duke of Norfolk in Qucen Hizaleth's reign, are yet held applicable :-
"The Feuterer, or person whe lets loose the greyhounds, was to receive those that were matched to run together into his leash, as aoon as he came into the field, and to follow next to the hare finder, or him that was to sart the hure, until be came to the form, and no horae or footmen were to ge before or on either side, but directly behind for the apace of ahout forty yards.
"A hare was not to be coursed with more than a brace of greyhounds.
"The hare finder wa to give the hare three 'sohos' before he put her from her form, to give notice to the logs that they may attend her starting.
"The hare was to have twelve score yards law before the doge were loosed, unless the small distance from the wiver would not admit it without danger of immediately l, wing her.
"The dog that gave the firat turn, and during the course, if there was neither cote, slip, nor wrench, won.
"A cote is when the greyhound goes endways by hia fellow, and gives the hare a turn.
"A cote served for two turna, and two trippings or jerkins for a cote; if the hare did not turn quite about, she only wrenched, and two wrenches atand for a turn.
"If there were no cotes given between a brace of greyhounde, lut that one of them served the other at turning, then he inat gave the hare moat turns won; and if one zave as many turns as the other, then he that bore the hare won. A 'go-by;' or bearing the hare, was equivalent to two turns.
" If neither dog turns the hare, he that led last to the meer wons. If one dog turned the hare, served hinself Ind turned her again, it was as nuch as a cote, for a cote Wus osteemed two turns.
"If all the course were equal, the dog that bore the hare won; if the hare was not borne. the cause was adjudged dead. If a dog fell in the course and yet performed his part, he might challenge the advantage of a tum more than he gave.
"If a dog turned the hare, served himself, and gave divere cotes, and yet in the ond stood atill in the field, the other dog, if he ran home to the cover, although he gave no turn, was adjudged the winner.
" If by accident a dog was rode over in his course, the course was veid, and he that did the mischief was to meke repuration for the damage. If a dog gave the first and lant furn, and there was no other advantage between thom, he that gave the odd turn won.
"He that came in first at the death, took up the hare, taved her from being torn, cherished the dogs, ald clensed their mouths frem the wool, was adjudged to have the hare for his trouble.
"Those that were judges of the course wore to give uncir decision hefore they departed out of the field."

SHOOTINO-GROURI-PARTRIDOES, \&C.
The leading sports with dog and gun are the shonting of grouse. partridges, and pheasants, which difior in
some respects from each other. The first thing to be attended to in either case is having a good fewling-pioce or gun ; and the second is to know how to use and clean it. Next, the sporteman must be provided with a doe tralned to point the kind of game for which ho is takent to the field; to take a dog accuatomed to pnint partridges on a grouse-shooting excursion would be improper. The gunpowder employed should be kept very dry in a metal flask, and of proper strength and purity. Patent shot ia now sommonly used; it is of eight soria, each numbered, and risea from 83 pellets to $\mathbf{6 2 0}$ pellets in the ounce. The more tender the birds, the amaller may bp the pelleta or drepe. For grouse, ahooters begin with No. 7, or 480 to the ounce; ducks require shot No. 4, 08 105 to the eunce.

The following hints to a beginner in shooting are by Hawker and others:-"In raising the gun, let him remember that the moment it is brought up to the centre of the object, the trigger should le pulled, as the first aight ia always unqueationably the beat. I'hen send him out to practice at a card with powder, till he has got ateady, and afterwards load his gun occasionally with shot, but never let the time of your making this addition be known to him; and the idea of it being perhnps impossible to atrike his object will remeve all anxiety, and he will soon become perfectly collected.
"'The intermediate lesson of a few shota at small binde may he givens but this plan througheut must be adopted at game, and continued, in the first inatance, till the pupil has quite divested himself of all tremor at the springing of a covey, and observed in the last, till moet of his charges of shot have proved fatal to the birde If he begins with both eyes open, he will save himself the trouble of learning to shoot so afterwards. An aim thus, from the right ahoulder, comes to the same point as one taken with the left eye shut, and it ia the most ready method of ahooting quick. Be careful to remind him (as a beginner) to keep bis gun moving, as followa :-before an object, crossing; full high for a bird rising up or flying away, very low; and hetween the eara of hares and rabbits running atraight away. All this, of courge, in proportion to the distance; and if we consider the velocity with which a bird flies, we ahall rarely err by firing, when at forty yarda, at least five or six inches before it. Till the pupil is au fait in all this, he will find great assistance from the sight, which he should have precisely on the intended point, when he fires. He will thus, by degrees, attain the art of killing his game in good style, which is to tix his eyes on tho object, and fire the moment he has brought up the gun. He may then ultimately acquire the knack of killing ansp shots, and hring down a November bird the moment it tops the stubble, or a rabbit popping into a furzebrake, with more cortainty than he once used to ahoot a young grouse in Auguat or a partridge in September.
"Many begin with very quick ahooting, and kill admirahly well, but aro often apt net to let their birds fly before they put up their gun, and therefore dreadfully mangle them, and, I have olready observed, are not such every-day ahota as those who attain their rapid execution on a slow and geod principle.
"If a rival shooter (some stranger) races to get before you, push him hard for a long time, alwaya letting him have rather the advantage, and then give him the double without his sceing you. Having done this, go quietly round (supposing you have been beating up wind); and on reaching the place where you began, work closely and stearlily the whele of the ground or covert that you have hoth been racing over, and you will be auro to kill more game than he will, who is beating and shooting in haste, through fear of your getting up to him, and (if the wind should rise) driving the diapersed and consequently closest lying birds, to your beat as fast as he finde them.
u Beware of the muzzle of the gun being kept hangIng downwards ; when so carried, the shot is apt to force ite way from the powdor, eajecially in clean barrels. If it happens that a space of sixteen or eighteen inches -is thus obtained, and the gun fired with its point below the horizon, it is ten to one bat the barrel bursts. There are other perilous consequencea besides those that generally accompany the disruption of a barrel, for tho men, horsea, and dugs are in perpetual danger of being shot when a gun ia carricd in the before-mentioned pendant mannor.
"When a gun begine to exhibit aymptoma of having done its work, the sooner a man discards it the better. An injured barrel or enfeobled lock may prove fatal to the owi.er or his associatea. Accidents oceur every day, and very Inmentable consequences proceed, from a culpable noglect in retaining arase which should be declared unserviceahle and diaused."

Grouse Shooting.-This favourite field aport, us is well known, commences annually on the 12 th of August, when thousands of persons aljourn to remote parts of the country to follow it, with all ita toils and privations. Among the varicties of the game are numbered the cock of the wood or capercailze; the black cock, black game, or black grouse; the red grouse or monr-fowl; and the white grouse or ptarmigan. The moor-fowl are tho most coinmon, at least on the northern moors and hilla. The birds being hatched in April, if the summer is dry, they will he pretty atrong on tho wing in August. The best weather for shooting is that which is dry and warm; wet makes thens lie still on the ground. No one need attempt grouse shooting who is of delicate health, or not well trained by previous feeding or exercise. 'Ihe labour of walking over heather is most toilsome, and tho danger of colds from rain or wet feet consideruble. The dress ought to be very strong, without any regard to fincuess; stout shoes or quarter boots are intispensable.

The times of day beat suited for gronse shooting are the morning snd evening, when the hirda are in quest of food; but few are able to rench their haunts till eight o'clock, when the sport commences. "To find the linds," вays the suthor of "Will Sporta of the West," "when, satisfied with food, they leave the moor to bask in some favourite haunt, requires both patience and experience, and here the mountain-bred sportsman proves his auperierity over the less practised shooter. I'he packs then lie closely, and occupy a sinall surface on momes sunny brow or sheltered hollow. The best nesed doga will pass within a few yards and not acknowledge them: and patient hunting, with every advantage of the wind, must be employed to enable the aportaman to find grouse at this dull hour. But if close and judicious hunting be necessary, the places to be beaten are comparatively few, and the sportman's eye readily detects the spot where the pack is sure to be discovered. He leaves the open foeding grounds for heathery knowes and sheltered valleys; and while the uninitiated wearics his dogs in vain over the hill-sids, where the birds, hours beforo, might have been expected, the older sportsman profits by his experience, and acldon faila in discovering the dell or tillock where, in fancied aecurity, the indolent pack is reposing."

Our most practical authority on thim exeiting topic is me "(Caklieigh Shooting Guide:"*-" Grouse shooters should separate and range singly; they should have no anisy attendants. In wet weather ono dog is aufficient; ve advise rest from eleven till two. The flight of grouse in generally about half a mile. Their favourite haunts, when undisturbed, are thuse patshes of ground where the young heather is moat luxuriant. They avoid rocks,

[^60]and bare places where the heather hes been recenth bumt ; at any rate, they sre not to be approached in such places. It in in young hoather that groune mod froquently feed. They are seldom found in the very long thick heather that clothes some part of the hillo, until driven thero for shelter by shooters or others. if is carly in the morning and towards evening that groume are to be found In young heather. During the middh of the day the shooter should range the sunay side of the hill, and avoid plains.
"No apecies of shooting requires the aid of good dogn more thnn grouse shooting, and in no aport doens much annoyance result from the use of bad ones. Thn best dog, perhaps, for the moors, is a well-bred pointer, not more than five yeara old, which has been well tutored-young in years, but a veteran in experience. The setter is occasionally used with auccess, but we pros. fer tho pointer. The latter has unquestionably the advantage when the moors are dry, as it not unfrequently happens that they are in Augnst. If a setter cannot find water wherein to wet hia feet overy half hour, he will not be able to undergo much fatigue. Some sportsmen will hunt a couple of mute spaniels for grouse shooting in preference to any other team of dogs. Of course, when this methol is pursued, the birds ara never pointed, and tho shooter must ever be on the look-oun for the game is generally sprung very near the gun."

Partrilge Shooting.-Of partridges there are two kinds, the red and gray, the latter being that which in cemmon in thia country; the plumage is of a brown and ash colour, elegantly mixed with black; the tail in short, and the figure more plump than handsome. Purtridges pair nbout the thirl week of February, and sometimes. after being paired, if the weather be severe, they all gather togrether and form a covey, and are then said to prek. They begin to lay in six wecks after pair. ing. The female lays her egge on the ground, scraping together a few bents and decayed leaves into any small hollow. The young birds hegin to appear about the fird ten daya in June, and the enrlieat will take tha wing towards the latter end of that month. In dry seasons they are most numerous. So many are the enemies of the partridue, that it is helicved never more than half of those produced come to perfection. The affection of both parents for their young is very remarknble; they lead them out in quest of food, shelter them with theis wings, and resort to many tricks to lcad supposed enen mies a way from their brooda.

Partridge shooting commences, by law, on the lat of September, when the birds aro strong. In the course of this month, the short fights of the coveys, in tolerally well-pressrved grounds, afford abundance of aport. in more open districts of country, where there is a wide range, partrilge shooting requires moro akill, and a ateady pointer or setter. In shooting cither at a tlight of groow or covey of partridges, sclect a bird on the outside, and fire at it alone; it in only over-hnaty or ill-taught sportmen who let fly indiscriminately at the centre of a groop of birds.

Pheasant Shooting.--Pheasanta are a apecies of bith allied to domestic fowls, and partake of some of their habita; no birts of the game kind possess anch elegnat plumage, and few are so large. They breed on the ground, and like partridges are fond of neatling in clover, but their chief resort is shrubberies or secluded epots in plantations. The pheasunt and its hood if undisturbed, remuin in the stuhbles and helgerows sont time after corn harvest; if molested they acel the wodis and only issue thence to feed in the stublies at morning and evening. Beailes corn, the birda will live on will berries, or any seeds they can pirk up. As the cold weather conces on, they login to fly up at sunet int treen, where they roost during the night.
"For ahooting pheasants, it often lie :omes necenar

40 atart v tio during powible.to \mathbf{W} trees. W go for phe provious watch the coantry, a whale con ranaing to to ahoot in be remenal birds from hedgerows here also a their place are approa but if they
"There this ia by f or any oth covert; an dred acres party with hear of an? except son companiont and particu of a rabble, perlapa flyi

> It is ned

Axelino mesne of a r sind is atta the apparati Either for p fish in this e as wa may prophet Isai thes that cul iat grouse moed ind in the very art of the hills, or othern It ning that groume ring the middh e. euniny aide of
sid of good doge 0 sport cioen 0 bad ones. Thm ell-bred pointer, has been well n in experience, cess, but we prestionably the ed. not unfrequently a setter cannot ery half hour, he P. Some sports. nicls for grouse am of dogg. or e birds are never on the look-out car the gun." there are two gh that which is 0 is of a brown olack ; the tail is then handsome. of February, and eather be severe, cy, and are then weeks after pair. ground, scraping es into any small cor about the firs If take the wing
In dry seasont re the enemies of more than half of The affection of remarknble ; ther them with theif ad aupposed ene
w, on the lat of In the course of preys, in tolerably nce of sport. in e there is a widef skill, and a stedry a tlight of grover a the outside, snd - ill-taught sporth centre of a groop
a apecies of birds of some of their sesis such elegat ey breed on the d of nestling in cries or secludd and its hrood if 1 hedgerowz sume y seef the wood ubbles at morrint will live on will up. As the coll up at zaneet into
:omer necewar
cont very early in the morning, as they are spt to fie during the day in high covert, where it is almeat linpousible to shoot them till the leaf has fallen from the need. We can never be at a loss in knowing whore to go for pheasants, aa wa havo only to send some one the provious evening, for the last hour before sunset, to watch the different barley or oat stubblus of a woodland country, and on theas will be regularly displayed the whole contents of tho noighbouring coverts. It then ropaina to be chosen which woods are the best calculated to hoot in; and whon we begin beating them, it must be remembered to draw the apringa, ao as to intercept the birds from the old wood. If the coverts are wet, tho hedgerows will be an excellent beginning, provided we bere also attend well to getting between tho birds and their places of security. If pheasants, when fecding, are approached by a man, they gencrally run into covert; but if they see a doy, they are apt to fly up.
"There are very fow old eportamen but are aware that this is by far the most sure method of killing pheasants, or any other game, when they are tolerably plentiful in covert; and although, to explore end beat several hundred acres of coppice, it lhecomes necessary to have a party with spaniels, yet on such expeditions we rarely bear of any one getting much game to his own share, oxeept some sly old fellow, who has shirked from his companions to the end of the wood, where the pheasants, and particularly the cock birds, on hearing the approach of a rabble, are all running like a retreating army, and perlaps flying in his face faster than he can load and fire." It is necessary, in pheasant-shooting, to use a short
double-barrelled gun of wide bore, and large shot. Firs at not a greater distance than thirty yards, and only whem the bird has risen clear of the bushee: alm is to be taken at the head; but if the pheasant is crossing your path, fire a little before the head, the rapid fight of the anlmal bringing it in contact with the ahot. Towards Novem ber, this field aport may be united with woodcock ahooting

came.

According to law, wild animala are no one'a property but of these animals only certain kinda may be killea without a license. Those protected from indiscriminate slaughter aro called game, and are deer of evory specios, foxes, hares, partridges, grouse, pheasants, woodcocks, snipes, \&c. The wild animals not reckened game are rabbitk, rats, mice, crows, rooks, pigcons, aparrowa, all kinds of sea-birds, \&c.; any one may kill and appropriate these, provided it be in a highway, the sea-shore, or any other public ground. Game cannot be legally taken or killed in any form without a license procured from the compotent officer of the crown, and a permission from the proprietor of the ground on which the game happens to he. To shoot or hunt without a license ia called poaching : to shoot or hunt with a license, but without a permission, renders the person liable to an action for trespass. These game laws are relica of ancient laws instituted by the Anglo-Saxon and Norman sovereigns for protection of the royal foresta; and though some of these provisions are useful, they are, generatly speaking, a disgrace to the statute book, and ought to be simplified and amonded.

ANGLING.

Anolino is the art of alluring and capturing fish by means of a rod and line, to which a hooked hait of some uind is attached-an angle, as it were, being formed by the apparatus as held over the surface of the water. Either for profit or numsement, the practice of taking fish in this exeugably crafty mamer is of great antiquity, at we may learn from the mention made of it by the prophet Isaish: "The fishers also shatl mourn, and all they that cast angle in the brooks" (chap. xix., ver. 8).

As well as fishing with nets, the practice has continued through all ages to the present time, ond in almort all countrics. In the British islonuls, it has long formed a favourite pastime omong every class of society, lay and clerical, nad to nll presents many features of attraction. "It is," to use the words of Mr. Blaine, "far from dangereus or expensive, but on the contrary is proluctive of interest and amusoment without any extraordinary accrificc. Its apparent simplicity lures many into the practicc ; and as a trifling success elates the tyro and leads him on by its fascinntions, so he pursues it, although he soon discovera that extreme nicely and precision, great patience, caution, and perseverance, aro essential requisites to the attainment of proficiency in the art. Neve-theless, he etill centinucs tho pursuit ; difficulty efter difficulty is overcone; cach succeeding year adds interest to the practice, which he continucs with undiminished ardour to the latest period of his life. It is asserted, and we helieve with truth, that there is not one umong the field sports that takes so permanent a hold on the passions as this. It is no less remarkable for the varicty it offers, for it presents itself under many forms, some of which are suited to the taste of every age, of every rank, and every varicty of character and habiit. The sedentary, the thoughtful, and the advanced in life, may watch the flost as it slowly moves with the stream, without disturbance to the truin of thought, or without any fatiguing excrcise to their person. The activo and volatile may throw afar the leaded bait for the pike, or may engage in the gracefill evolutions of the fly-rod. Its seductions therefore, prove universal, und it owns votaries of every
age and station." As the aport is pursued on the banks if rivers or lakea, in the midat of purely natural scenery, and in weather which invites to ont-of-door recreation, all conspires to render it in a pecoliar manner delightfut and healthful, when indulged in with judicieus moderation.

No kind of amusement has been the ohject of auch frequent deacription as angling. Hundreth of trentises have been written descriptive of the sport in ail its departments, and with reference to all varietics of firh and the waters to which they resort. The firat writer of cote on tho aubject, and who has been acknowledged he great father of the angle, was leaac Walton (born in Btafford, 1593, died 1683), who in the yoar 1653 gave to the world his "Complete Angler," a work afterwarde enriched with additiona by his frienil Charles Cotton, and which till this day is eateemed not more for the correctnees of its details than the singuiarly happy humour of its apologues, poetical pieces, and disquisitions. Acconding to old Isnae, all recreatione eink into insignificance in comparison with angling, which in almost every page he lauds for its moral qualitice, and the happiness it is calculated to yield. "Will you hear," says he on one necaalion, "the wish of an angler, and the commendation © his happy life, which he eings in verse:-
'Lel me live harmiesaly, nul nesr the briak Ot 'Irent or Avon have a dwelling-place,
Where I may see my quill or cork down sink
Wilt eager bite of perch, or bleak, or daco;
And on the world and my Crestor think,
Whilst some men strive ill-gotten goods to embrsce
And others spond their lime in hase excess
Of wine-or worse, in war and wanlonncsa
'Let them lhat list these pastimes still puraus, And on such pleasing fancies feell their fill, SoI the fields nud inesdews green msy view, And daily ly tiresh rivers whik al will, Ammeng the drisies und the violets blue. Red hyseinth anil yellow dafodil.
Purple nisceissus. lime the moruing rayn,
Pale gander-grass, and azare culver-keje.
-I count it higier plensure in behold
The statel'; conpass of the lotiy aky,
And in the midst thercoo, like burnumg gold The flating clintiot of the world's great eys; The wntery clouds thes in the nir up-rolld. With aundry kinds of painted colours liy; And fair Aurora, liftug up her head,
Gill blushang, rise from old 'Tithonus' bed
-Twe hille and monnains raised from the plaina, The plains extended level with the ground; The grounds divided into aundry veina.
The veins enclosed with rivers running round; These rivers, making way through nature's chains, With headlong course into :he sea profound; The raging sek. benrnth the palleys low
Where lakes, and ritls, and rivulet do dow
'The tofty woods, the foresta wide and long, Adorn'd with leaves and liranchea fresili and green in whose cool howers the biris, with many a song, Do welcume with their cho.r the siluminer's gueen; The ineadows inir, where Floras gits among The silver scaled fisli, that soflysy swim Within the swrat brook's erysisl watery alream:

Atll these, and innny mare of his erestion Thnt made the henvenn, the sugler of dath see; Taking therein no lithe delectatont. To lisik how sirauge, how wonderful they be, Framing thereof an inward contemplation
To set his heart from nother fancies free;
Ant whilst he look s on these with joy fol eye,
His mint is rapt ahove the starry sky.!
Bo much for the poetry of angling; we shall now epeak of the practice of the art, beginning with a few observawons on the

GENERAL CHARACTER OF PIBE.
The fiah which nre the object of attention to the angler are all confined to freah water, and are chicfly found in fivera or small brosks; some ure found in lakes and
ponds. Ali, except eels, have a pretty uniform charater though differing in appearance and size. Thuir form in cuitablo, in a romarkabic way, to give celerity and entu of motion-a mall head aweiling into a thick boly, and tapering off towarde the tail. Thowe denigned for slower motion are more thick and lumpy in figuro. The power of moving quickly, and of buoying themselven in the wa ter, la very nicely provided for by their opecific gravity which is nearly the onme as the water in which they move; in other words, they are about the ame heavinesa as tho water which they displace, and consequently they are almont deatitute of any feeling of weight. On this accuunt they are not in the slightent degree encumbered in their movements, and diffeult to tire in their exertions

Tho tail is tho grand futrument of motion; it is a thin delicate membrane, whose amallest bending to and fro impels the body forward in any required course. The fine are principally required for balancing and regulating the movements of the fish; if any be cut off, the animal loses the power of keeping itself with the back fuirly upwards; should it be drprived of the tail, the ability of moving forward is goue, and it lies a hulk at the merey of its enemies. Not tho lenat remarkable peculiarity in the economy of the fish is the exiatence of an air-bludder, by the dilatation or contraction of which it possesses the power of rixing or slinking in the wster, according as it feels inclined. It may be olserved that fish, while in water, are constently moving the gills, which is analogous to the art of breathing. The water eucked in by the mouth, and vented by the gills, contributes a minute pertion of air, hut enough to keep up the circulation of the blood and suatain life; if we were to tie up the gilla, the fish wouk he immedintely sulfocated. The blood of fish is cold, being only about two degrece warmer than the water in which they live.

The senses of fish have engnged much attention from naturalists. 'I'heir quiekest wense is that of sight; but they are deatitute of the power of contracting the inis of the eye, ao as to aecommodate theinselves to ilifferent degrecs of light. In ordinary circumstances this is of no consequence, as the wnter diminishes the intensity of light, and the animal has the means of retiring to the trotom, or into holes, to eschpe the glare of the mid-day sull. It has been doubted if fish have any orguns of hoaring ; but it is certain they do possers them, and hear to u limited extent. They are affected by any loul noise, though this may be partly ascribable to feeling the vibratione of the waler. The taste of fish ia allowed to be very blunt, if it exist at all; und so, likewise, is their amell. Whatever myy be their deficiencies in these reapects, they are provided with ant appetite of houndleas voracity.
"Every aquatic animul that has life," ohserves Daniel, "falls a vietion to the indiacriminato voracity of one or other of the fishea. Insects, worms, or the spawn of other tenants of the waters, sustain the smiller tribes; whieh in their turn are pursued by millions larger and more rapacious. A few feed upon mud, aquatic plants, or grains of corn; but the far grenter numbera aubsiat upon animal food alone; and of this they are so ravenous as not to apare those of their own kind. That there are vegetubles in both fresh and salt waters admits of no doubt, and these may furuish food to particular fishes; but those sorts are few, perhaps no one kiml can be pointed out that subsists entirely upon them; and atthough most fishes eat flies and terrestrial worms when they come in their wny, yet in the inneusurahle wate of waters surrounding this plohe, the swarms of fishes are so iminense that the subsistence to he derived from the above sources appears to be altogelier disproporlioned to their wints, and those of a amaller aize secm to con stitute the principnl food of nearly ull the fishea known to us. Charr kept in a pond, if scantily supplied, froyuently devour their own young; vther fish, that are
uTir, 8^{0} what mort howe with overy thin fierce opp throat coin
"The v kinde of their num cly is nod cea, or ing continually oxcites the its excess, cenuled to pursue tho from the v pursues th of Newfou cachalot dr of the nort ras. Her the greate wery quart piccure of " in the different k long since not nature cape, their extent and cessingly e sioned by t are not only pecies, hut food and pr lowness of them. The of hunger, t the injuries opawn of th the surface
"In wha and rapidil inquiries of ascertain. effected cith dissolving ter), after \mathbf{v} of these cau geative fore overturn th it on those mach yet maceralion is often see original for appeara to 1 tomach." voracious, tita, and wi most terres
Fishes al duced hy eg and female male a milt The process parts in the obscurity. the higher deposit is 1 to the IIou

Iniform charever a. Thisir formi celerity and ame thick body, und aigned for slower ure. The power nelves in the wa epecific gravity r in which they c same heaviness onsequently they welght. On thia gree encumbered in their exertions. motion; it is bending to and required courte. loalancing and if any be cat off, g itself with the ived of the tail, and it lies a hulk least remarkabla the existence of truction of which ng in the water, be olserved that joving the gills, ing. The water the gills, contrjh to keep up the if we were to tie intely suffocated. bout two degrees ve. h attention from 1at of sight; but acting the inis of elves to different ances this is ol a the intensity of of retiring to the e of the midday o any orguns of s them, and hear y any loud noise, b feeling the yiis allowed to be ikewise, is their encies in these fite of boundless
observes Daniel, racity of one or the spawn of smaller :ribea; lions larger and , aqualic plants, numbers subsiat are so ravenous That there are admits of no artieular fithes; be kind can be them; and alal werms wholl -asurahle warto varms of fishes ve derived from disproportioned e seem to con fishes known y aupplied, frofish, that art
enger, yo in quant of more bulky prey, it matters not of What nort, whether of their own or of another apecies. If we turn our attention, in this argument, to mea-fish, thowe with the it capacious mouthe purauc almont avery thing th... sts, and often meet each other in ferce opportion, vhen the fish which has the widest throal comee off with victory, and devours hla antagonist.
"The voracious fishee differ widely from the predatory kinde of terrestrial animuls; they are ncither limited in their number nor solitary in their hahits. Their rapaeity ia not confined to a few apecies, one region of the nea, or individunl elforts. Almost the whole order ia continually irritated by the cravings of an appetite which exciten them to encounter every danger, and whieh, by ita excess, often destroys that existence which it was intended to prolong. Innumerable shouls of one species pursue those of snother through vast tracts of the ocesn, from the vicinity of the pole to the equator. The cod pursues the whiting, which flies before it from the banks of Newfoundland to the southern coasta of Spain. The eachalot drives whole arinies of lierrings from the regions of the north, devouring at every iustant thousands in the maar. Hence tho life of every fish, from the amallest to the greatest, is but a continued scene of rapine; and every quarter of the immense deep presenta one uniform picure of hostility, violence, and invasion.
uIn these conficts, occasioned by the voracity of the different kinds of fishes, the smaller classes must have long since fallen victims to the avidity of the larger, had not nature skilfully proportioned the means of their escape, their numbers, and their productive powers, to the extent and variety of the dangers to which they are uncessingly exposed. To supply the constant waste oceasioned by their destruction in the unequal combat, they are not only more numerous and prolific than the larger species, but, hy a happy instinct, are directed to seek for food snd protection near the shore, where, from the shallowness of the water, their foes are unable to pursue them. These, however, yielding to the strong impulse of hunger, become plunderers in their turn, and revenge the injuries committed on their kind by destroying the spawn of the greater fishes, which they find flosting upon the eurface of the water.
"In what manner digeation, to auch an amazing extent and rapidity, is carried on in tho stomach of fishes, the inquiries of naturalists have at present been unahle to ascertain. It so far exceeds every thing that can be effected either by trituration, the operation of heat, or of a dissolving fluid, that a celebrated physician (Dr. Hunter), after various experiments, was of epinion that nene of these causes were equal to the effect, and that the digestive force in the cold nuw of fishes is so great as to overturn the systems that have attempted to account for it on those principles; that by some power in the stomach yet unknown, which from all kinds of artificial maceration acts differently, the meat taken into the maw is often seen, although nearly digested, still to retnin its original form; and whilat ready for a total dissolution, uppears to the eye as yet untouched by the force of the tomach." It may be added, that althnugh generally voracious, fish have a remarkably accommodating appetita, and will endure hunger a much longer jeriod than most terrestrial animals.
Fiahes are for the greater part oviparoua, that is, produced ly eggs or spawn, in the deposition of which a male and female fish are concerned. It is usual to call the male a mill or miller, and the female a roc or rowancr. The process of spawning, which takes place in secluded parts in the beds of rivers, is involved in considerable ohscurity. The salmon, of which most is known, seeks the higher parts of rivers for spawuing, sind there the deposit is made. Mr. Halliday, in his communications to the llouse of Commona on this subject, describes the
process as follown l-rac When they proceed to the shallow watern, whieh la generally in the morning, or at twilight in the evening, they play round the ground; two of them together. When they begin to make the furrow, they work up the gravel rather against the otieam, as a maluon cannot work with his head down the stream, for the water entering his gills in this manner would drown him. When they have made a furrow, they go to a little diatance, the one to one side and the other to the other side of the furrow, and throw themseiven on their sides when they come together, and rubbing ogainat each other, they shed their apaivn both into the furrow at once. They do not lay it all at once; on the contrary, it requires from about eight to twelve days for them to lay their stock of spawn, which being deposited, the bed is made and covered as they go along, both assiating in the operation."

Immediately after epawning, all fish are thin and poor, and not worth the trouble of catching. In about twenty days, if the circumatances be favourable, the egge are hatched, and emit tho young fry of tish. The number of young is in some cases enormous. Carp, perch, or roach, produce from 30,000 to 200,000 young ; a herring from 20,000 to 36,000 ; a mackerel 400,000 to $\mathbf{6 0 0 , 0 0 0 ; ~}$ and a cod between three and four milliona. Of the young of any fish, however, comparatively few reach maturity, the greater proportion being devoured by enemies ahortly after hatching. As if for the sake of mutual protection, most fish of a kind, as may be observed in the case of minnows and pars, associate together and swins in flocks.
That fishes are liable to discasee arising from variations of temperature and other causes, there ia no reason to doubt; but few are ever seen dead in the water, there being too many scavengera of the deep to allow of this waste of food. In general the weak fall a prey to the strong before the period of natural death. It ia understood that fishes possess a blunted nervous energy, which renders them almost insensible to any ordinary infliction; and so mean are their reflective facultiea, that after escaping from a hook which has lacerated their palate, they will in the next minute catch at a similar bait, and be hooked a second time and drawn from the water. A number of years ngo, two young gentlemen, while fishing in a lake in Dumfriesshire, having expended their atock of worms, had recourse to the expedient of pieking out the cyes of the dead perch they had taken, and attaching them to their hooks-a bait which this fish is known to take os readily as any other; one of the perch caught in this manner struggled so much when taken out of the water, that the hook had no aooner been loosened from its mnuth than it camein contact with one of ita eyes, and actually tore it out. In the struggle, the fish slipped through the holder'a fingera, and again escaped to its native clement. The disappointed fisher still retaining the eye of the aquatic fugitive, adjusted it on the hook, and again committed his line to the waters. After a short interval, on pulling up the line he was astonished to find the identical perch that eluded his grasp a few ininutes before, and which literally perished in swallowing its own eye.

Fishes are exposed not only to external foes, which it requires all their dexterity to elude, but to the torment of parasitical marauders in their own person. Besidee crentures which make a lodgment in the intestines, various parasites fix themselves bencath the scales, in tho mouth, and upon the gills. Salmon, perch, trout, and other fresh-water fish, are preyed upon in this manner by different species of lice; and as some of these parasitea cannot live in salt water, it has been supposed that one of the reasons for the sulmon migrating to tho sen is to relieve itself from the lice (lernea salmonea) whach have adhered to its gills. The trout lonse, or lermes trutta, is not unkisown to trout fishers.

INFORMATION FOR THE PEOPLE.

TIARING TACRLE.

The Rot.

Thin in the chief implement of the angler. It ought to be atrong, but perfectly olastic, and lend, on being waved, through ite upper half, hut particularly at the amall tapering point. The wool moat suitable in hickory or ash, with yoiv for the upper part, to which a point of whalebone la uttached. The size nrul streugth must ilepend on the nature of the duty to which the rod in put. One for trout, perch, dec., ought to be from twelve to fiftoen feet in length, and a salinon one from sixteen to twenty feet, beniden heing conniderably stronger. Whataver be the longth, it munt be quite atraight, and on all occasions bend back to its original straightuess. If thore the a single knot in the timber reject it, for it will certuinly snap at the first severe pull or jerk. It shuuld be varninhed, to protect it from the action of the water. I'he rod in not all of one piece. For the make of convenience, it is divided into four, or perhaps six pieces in the length. Theme piecea are nsually joined b, means of acrows and verules; but if this he the plan of the roll offered to your choice, take care to seo that thene inetal junctions do not impair the bending properties of the instrument, or render it too hravy. Rouls of a plain kind mado in the country are apliced with waxed thrends, and these are generally more serviccable than the fine looking rols manufuctured in citicn. Listen to what John Young, of Bh. Boawells, (a village on the Twerd) saya on this suljoct :-"'To those who reside near the water, I would recommend a rod all of glued aul tied joints as best in point of real use, and not so liable to break in the moment of action. Or, indeed, even for travelling. I would pirefer tied joints, as whorever a person has time to stop to finh, though only for a day or two, he has at least five minutes to spare for tying his rod in a sufficient manner. Roda are often breaking at brass joints, and those who use them, inatead of bringing in a back-load of fish, are conatsntly arriving homa from the water, telling you, - I've broke my rod!' Such sickeniug news may generally be pravented by tied joints."

At the bottom of the rod where it is granped by the hand, a brass reel or pirn is attached, and on this the line is wound. It shonld be simple in its mechanism, so as to allow of expoditious winding or unwinding. The line is conducted from the reel to the upper termination through matl wirs loops, in Scotland called mylies, which are fixed to the rod; these must the in an even line when the pieces of the rod ara joined together, and be about a foot asunder. In fashion bble rods, the mylies are small ringa beld by wires to the rod, and they conveniently fall flat when the rod is not in use. Good serviceable rods sequire no such elegance of design. The angler who is akilled in his art cares nothing for fincry of apparatua, and will pull out dozens of fish in a day with an instrument which many would think not worth the carrying.

Lines.

These should le long, amooth, light, and flexible, and of a material which will not be casily injured by wet. These qualities are found in lines inate of horse hair and gut, which we recommend in preference tonny other. Tho part of the line which is wound on the reel, ant goce along the rod, is called the recl live : and leing designed to he let out only on occasions when a fish darts off with a hook in its mouth, it need not he so thin and light as the bulk of the portion termed the rasting line. Tha roel hne, which may be about thirty yards in length for orlinary trout fishing, is formed by spinning together horse hairs, so as to mske a tince even cord. As it is troublenome to make, it should be purchased from a re-

[^61]appectable dealor in finhing tacklo. It shouid in fiom twelve to fifteen hairs in thlcknem, the huirs beug white, freat, and well eleaned. The line for malinon nhould coostain froin eighteen to twonty-four hairs, and extend to least mixty yardn in longth.
The casting line, which in united hy a loop to the mo line, may be alwo of horac hair, but of a minaller texture, and lighter in welght. It ohould be five length of hain in oxtent, the uppermont length being eight hairs in tacch. nem, and gradually diminishing the number to three of four in the lowert length. To the lower enil of thin cast ing line in added the gut line, which in the part that os tually falls upon the water, and therefore requiten te to very fine. It consints of a nerien of netrong gut, and toit is attached the ahort lengthe or cante of gut on which are the hooks. In moine instances, the casting ling in altogether made of gut, on which usually more dependences can be placell than on hair line*s; if of gut, three threade are sutficient for the thickness.

On the article gut, Mr. Stoddart has the following observations 1-" Thia article, originolly imported from the cast, nnd now brought in conviderable quantitiea frum Bpain and Italy, is, as far as we have hean able to leam, fabriested from the male ailk-worm in a stata of tecomposition. The operation is principally oonducted by children, and consists in rocaoving the external slough of the worin with the fingers, elongnting at the aume time the glucy substanee which composes its cutruils. To do this properly requires aome cara and attention. Should tha worm he kept too long, a hard crust hirum itwelf over it, in destroying which tho nupplication of the nail in necors. sary ; heuce the gut hecomes flattened, and losen much of its value. The sinews of herons and other birds mee alao manufactured in Spain into a qort of gut, and aro much used, allhough unwittingly, by sur salinon fiahera, Worn-gut varies in length from nearly two feet and downwards. We have secn, however, an article very closely resembling it from the Archipelago, which messurea nt least a yard and a half. This is not to be confounded with sea-wied, although a vegetahle fibre, and drawn out of a plant. It is much stronger and beter suited for angling. The inhabitants of the Greek istanda use it for catching mullet, nud will often toss a fish anne pounds' weight over their heads by a thread or two. We ourselves have found it excellent for the larger sorts if tackle. Animal gut is, however, more generally used, and better adopted for trouting. It ought to be malli, rounil, and transparent, without any fiaw or roughness When worn or disorderel, the application of a piece of Indian rulioer will at once renovnte it. In joining threan together for the purpose of making casts, the single koot properly drawn is quite sulficient. One should avoid clip. ping the useless extremitivs too closely in thia operation as in that caso the knot is sonewhut liable to give m_{s}. Gut, to kecp well, should be moistened with fine oid, and storell in oiled paper."*
To these recommendations we may ard, that line of all kinds should bo kept iry. On returning from 1 fishing excursion, draw out the line, and let it be the roughly dried by waving in the air before lxeing noves up or laid aside. When to be again used, look it oree giving it a gentlo tug here ond there to try its strengh, and repair damaged parts. On coming to the water ride, and just leforo throwing, nllow the casting line to be wetted in the water, and thia will at once give it smoothness and clanticity.

Honks.

These are small instruments made of tempered steth and of whatever size, they repluire to possess the qualitia of lightness and great strength. They have been alwaz!

* The Art of Anglitig as praclised in Scolland." by Thomm Tort Stodtart. Firg, nuthor oi we "Death Wake," and othas puenis. Edinburgh: W. and R. Claunhers. $1 s 35$.

Pincipoll moreland of a amal almon. makern a on inch a inch, with mak: Tre n on, the las to 14, the by lettern chasing h tho bend the thumb in the sha thould ker be ready o they are a

The lan implement poor hatide inillar sma reoorting found to be the roda an manll lag 1 pole four of think a land tyros in the dy-fisting, opace to ate ary sometti but this sho ufter the fia carry away touching th played the f bring him carefully co foreparts of bausted, wil rigour, it wi than the net angler to ha pletely apen the net, or off with mos cident it is rod in an up yet so dispo When the h within tho n body, and th his safety; can make w received tail waters, fron plunges."*
The gaff ployed in car small. It ia of a peculiar tho salunon f ho is expecte treaking his the pills, the The drag. © hooks, wi cating into

It should in from se huira belug white, malinon should cap irs, and extend toat
by a loop to the ree of a amaller texture, five lengths of hairs ; eight huirs In tack. number to three of wer end of this cant. in the part that ies fore requirea ic bo atrong gut, and to it of gut on which are cauting line in alton ly more dependence of gut, three threado
the following ob y imported from the able quantities from e been able to leam, in a atate of decompaily oonducted by c external alough of at the sains time the entraila. 'T'o do thas ention. Should the forms itself over ith of' the nail in neesred, and losen much and other birde are sort of gut, and are y our salmon fighera vearly two feet and ever, an article very ipelage, which meshis is not to be canvegetable fibre, and stronger and betler of the Grenk islanda ften toss a fish eame thread or two. We the larger sorts if pore gencrally used ought to be amoll, fliaw or roughness, cation of a piece of In joining threads rasts, the single knot se alould aveid elip. ly in this operation liable to give way. ed with fins oil, and
ony add, that lines 1 returning from 1 and let it be thu efore being moum used, look it ovet to try its strenglh, ig to the wster side, casting line to be orece give it smoothe
of tempered stielh possess the qualition y have been alway 3. $t=35$.
pincipall manufactured at two places-Kendal, in Weatmoreland, and Limerick, In Ireland. The Kendal circutar bende, am they are ealind, are reekoned the bent hooks o! E amall air, while the limarick hook ja preferable for cumon. Many of the fiah-hook of ordinnry Engliah makers ste worthlesa. Hook range in size from about anjuch and a half in length down to a quarter of an inch, with a proportional diminution of thicknese. Some arak: re numbier them from No. 10, the umalleat, to No. in, the largest, while othern number from 1, the Inrgest, to 14 , the amallest. The Limerick hooks are denoted by letters, comenencing with A, and mo on. In purchasing hooks, try their power of resistance by foreing the bend with the fingera, and urging the point againat the thumbnail. Hooks for fly-fishing should be thinner in the ahank than those leaigned for tait. An angler shonld keep a amali stock of hooks of various sorta, to be ready on all emergencien; with the tackle to which they are attached, they require to bo kept very dry.

L, anding Nat-Gaff-Drag-llook.

The landing net ia considered in England a neccesary implement for an angler, but in our opinion they muat be poor hands at fishiug who cannot drag a trout or any sinilar amall fiah from the water after hooking it without resorting to auch a cumbrous apparatua. Perhaps it is found to be essential, in eonsequence of the feebleness of the rods and tackle usually employed. It consists of a anall bag net stretched on a hoop at the extrenity of a pole four or five feet in length. Mr. Blaine aceina to think a lunding net of first importance; and for the use of tyros in the art he gives the following directions:-" In dy.finhing, when the line is long, and there ia not much apace to atep backward, or the reel clogged, it is necessary rometimes to lay hold of the line with one hand; but this should be done with great eaution, and then only afler the fish is well nigh apent, or one struggle may carty away line, hook, ond fish. In all other cuses avoid touching the line if pessible; but having oufficiently played the fish, whether taken by bottom or by fly-fishing, bring him within reaeh of the landing net, and then carefully conduct or alide the net olliquely undes the foreparts of his body, which, if the fish be completely exhausted, will fall into it; but if he has still sulficient vigour, it will be prudent rather to slide him over the net than the net under him. It must have occurred to every angler to have supposed a trout or saimon to be completely spent, who, the moinent he has been touched by the net, or has even caught sight of the fisher, has sprung off with inost annoying violence. Against such an accident it is prudent to be ever prepared by keeping the rod in an upright position, acting on a tightened line, but jet so disposed that it can run at liberty if required. When the head and shouldera of the fish are once fairly within the net, a slight turn of it will take in the whole hody, and the net being then kept horizontally, will insure bis safety; fur with the head downwards, ne effurts he can make will disengege him from the net; but if he be received tail foremost, as is sometines done in deep waters, from overhanging banks, \&c., beware of his planges."•
The gaff is another aid to landing fish, and is cmployed in cases in which tho landing net would be too small. It is used chiefly for landing salmon, and consists of a peculiarly-shuped hook at the end of a staff. When the salmon flounders alout and inconnodes the fisher, he is expected to secure the animal, and prevent it from braking his line and rod by hooking it with the gaff at the gille, the titil, or any part he can conveniently reach.
The drag-hok is an implement with threc bent prongs, or hooks, with a long cord line attached. It is used for cating into rivers to clear away any object at the bottom

Vol. I.--86
upon which the hook is cvight. We pity the angioe who attempta fishing in weedy pudlies requiring such ciearar of bindrances,

Anglar'a Pockst-book, \&e.

The angler's equipment in completed by the adalition of a basket for holding his fish, which is slung on the back by a whoulder-beit; alno pocket-book for holding hooks and other trifles; and a round flit tin box for his fly-cants. Many carry their supply of fly-casta wound round their hat, and nome keep them within the leaven of their pocket-book. This pocket-book, which is the atorehouse of ali kinda of odda nnd ends-we have meen a good one made out of an oid pocket almanac-ahould have two or threa pockets for holding an asaortment of hooks, silk thread, stuff for making fliea, gut, wax, small cord, fly-nippers, scissors, \&cc.-all to be used in case of breakuge of tackle or rod, or any other accident.

In fishing for porch, gudgeona, bream, dec., a emall fioat is often nsed. Floats are made of cork, quill, and other materiala ; and a choice, according to circumatances, can be added to the contents of the pocket-book.

Dress,-All finery is worse than useless. Fish are easily scared with the appearance of any light or ahowy object on tha banke. Jet the angler, therefure, drese himself in a plain dull-coioured vuit, with a hat equally sober in ita aspeet, and let him uso only atrong shoes of boots, which will not be injured by water.

Baits.

A bait ia any nubstanco put upon a hook to act as lure to the fiah; and when used, the baited hook in dropped into and allowed to aink in the water, inatead of being kept near or upon the aurface, as in tha case of lishing with fly. The materials, living and dead, used for bait are very numerous; but the leading kinda are worms, maggots, ininnows, insects, and salmon roe. The hook employed in either cane is tied by the ahank to the gut with waxed silk, and the preparation is therefore not nt all difficult. When dressed to the gut, it is called bait or worm-tackle.

Worms used for bait ara of various sorts; but that which is most commonly empleyed is the lob or garden worm, a long reddish-coloured reptile found in aluundance in many gardens, grass-plots, and in any rich old soil. They may be dug up with a apade, or caught crawling from their holes at twilight, and particularly atter heavy ahowers. "Ho who sceks them," asa Dimiel, "must move cautiously without noise, or they will quickly retreat into the enth; draw them gently out of their holes without nipping; these that sever in taking must be thrown oway, as they will soon become putrid, and infect the others; when as many are collected as are wanted, having plenty of good moss freed from dirt, dip it into clean water, and wring it nearly diy ; put it into an earthen pot proportioned to the quantity of worma, laying it regular, and forcing it down with the hands; strew the worms on the surface, after dipping them in clear cold water to rid them of the snil that may adhere to them; wuch as are not injured will soon bury themselves in the moss, and those that do not must the next morning be picked off as useless; they must be inspected every three or four days, the dead ones romoved and have fresh moss, or that wherein they have been kept well washed nad picked, and the water squeezed out at least once a week; they must be so placed summer and winter as to be safe from the extremity of the weather at both seasons. In a week's tiose they will be fit for use; and upen the angler coming home from fishing, be will return from his worm-bag into the pot those which he has not used. By observing the abovo eare fully, they may be kept a month in summer, particularly by now and then giving them, drop by drop upon tha noss, a small quantity of new milk and the yolk of an egg well beaten tugether, and warmed so as to thicken

INFORMATION FOR THE PEOPLE.

Mi but when a atock of lab worms ia moant to be retained Sor a conolderable length of tima, a large veceol muat be alliod half or throe-quarters fuli of good mould, in the middle of which in to he placed some mose or old coarme Unen elotha, hopmenck, or raga wettod $;$ in hot, dry weather, cloas water muat be aprinkled upon the earth with a watoring-pot, so an to keep them moiat but not wet ; they may thus be proserved an long as in requinites and a week before angling, what are wanted may be drawn from the store, and put into inosas to wour themeeivese" Another worm, which la found in dunghilla, called the bravdling, from ita atriped appearance, forma a good buit, but it in neidom used.
Maggots.-'Theme Inrve of innecta, an is weil known, are found on fy-llown meat or any putrid animal abh stancen; very fine onea are procured from game in a high condition. Daniel calls thase creatures gentlec, and deecribes them as of great virtue in certain kinds of fishing : - "Gentlen," he observen, "may be procured almost at any time at the tallow-chandlers, and ahould be kept in oalmeni and bran, as bran by iteelf is too dry. Thone who live in or near London may buy them in proper condition for the day on which they wish to uec them: but for the nccommodation of thome who reaide in the country, remote from auch convenience, the beat modes of breeding them will be here mentloned, in order to prevent disappointments. Coarse finh, such au chub and roach, may be laid in an earthen pot in the shade, and will coon be fly-blown; when the gentles are of the proper nize (but not before), put mome oatimeal and lran to them, and in two dayn they will he well acoured and fit to fish with; in about four more they becone hard, anmume a pale red colour, and soon after change to fies; the red ones should not be thrown away, as frequently roach and dace take there with a white one, in preferonce to all other buita. Sone have recommended a pioce of liver suspended by a stick over a barrel of clay, into which the gentles fall and cleanse themselves; but clay will not ecour them, and, beeides, they fall from the liver hefore they have attained their full aize. The be-fore-mentioned is a less dinguating plan; for a short time ater oatmeal and bran are put to the gentles, the fish in which they are bred will be found perfect akeletona, and may be thrown away; however, if they are to be bred from liver,' it should be acarifled deeply in many partx, and then hung up and nearly covered over, as in that way the fliea will blow it better than when wholly exposed; in two or three days the gentles will be seen alive; the liver is then to be put into an earthen pan, and there remain until the first brood are of full growth; a sufficient quantity of fine sand and bran, (letting the liver remain) is then to be put into the pan, and in a few days they will come from the fleah, and acour themselves in it : the liver should then be hung across the pan, and the latter brood will soon drop out and be fit for une; and by thus breeding them in October, and seeping them a little warmer than those bred in the cummer, until they arrive at their full growth, and afterwarde putting them in the aame pan into a dampish rault, they may be preserved for winter fishing. Thone beed in summer, but for the bran and sand, would roon aink into a dormant state; the skins take on a blackiahred, full of white matter, and shortly after become flies; thowe produced in antumn, from whatever subatance, wnt continua in this atate \& ${ }^{\prime} l$ the winter, provided they can shelter thet: -lvea under the surface of the earth in fonde, gardens, a, and in the warm weather of the anauing apring the ', arine mito fies, thus preserving thar kiad from yor , vear. friztlea are ac universal and m alluring a be it, , st the argler ahould never be auprovided witt. theis. Trw:il have bee.. tiden with them in clear rater, wher they have refuat ail kind of worms and artifirinal flics."
Caddis, or cuchbart, is another kind of /arve, iphabit-

Ing pleces of atrow, of adhering to bles of otich or mad at the aiden of rivera. Daniel has moma intoreating of morvations on this species of belt:-at The several kimit of cadews in their nympha or maggot atate, thus hoves themselves : one sort in atraw, thence called stram worma; othera In two or more paraliel aticke, creeping al the bottom of brooks; a third in a amall bundle of plecel of ruahes, duck-weed, \&c., glucit together, therawith they flont on the surfice, and can row themmelres about the water with the holp of their foet; both thewe are called end-ball. If is a curioua faculty that theme ereatures poscens of pathering much bodien as are fitteat for thety purpose, and then so glueing them together, soine to to heavier than water, that the animal may retiain at bot tom where ita food is, and othera to be mo buogant an to float, and there collect iter mutenance; these housen are contse, and ahow no outward art, but are within well tunnelled, and have a tough hard paate, into which the hinder part of the maggot is no fixed that ita cell can be drawn after it without danger of leaving it hehind, and it can also thruat out its body to reach the needfil aupplies, or withdraw into its covering Sor protection and safety.
"These insecta inhabit pita, ponde, low minning alvera or ditches, in casea of different forma, and componed of various mnteriala; some of them enclosed \ln a very reugh ohell, found among weeda in atanding waters, are genee rally tinged green ; othere are blgger than a gentle, and of a yellowish hue, with a black head; they are cnes. ceilent bait, and are found In mont plenty in gravely and atony rivulets, and by the aldes of streama, in largo rivers among atones.
"To collect them, turn up the stones, and the heal will adhere to them; when the quantity wanted if cbtained put them into a linen bag for five or six days, dip them, together with the bag, into water once a day, and bang them up; they will then turn yellow, beeame tough, and fitter for angling than when hrat got from the brook If meant to be kept long, they must be put into a thick woollen bag, with aome of the moiat gravel or and fom tho same rivulet whence they are taken; they must bo wetted twice a day, but oftener in very hot weather; when you carry them abroad, fill the bog with water, and hoiding the mouth of it close, let the water run from them ; in this way they may be kept three weeks. Ar other way of preserving them is by placing them lo an earthen pot full of river water, with some of the gravel they were bred in at the bottom; but the preceding method is preferahle. Some use bait pans of differal sizes for insects, the tops punched full of holes, not wo large to admit of their escaping when placed in the river, which not only keeps them cool, but supplien them with aliment in the fresh water; some keep them in mose in a woollen bag on a damp floor, taking care that the bag retains a proper moisture. Another mode of preserving caddis, and also grasshoppers, caterpillam, oak-worma, or natural aies, is to take the green wity bark from a bough six or weven inches round, and aboul a foot in length; turn boti. $\quad 1.1 n^{1} 0$ the dorm of a haop and fasten them with a lare e now
"read; stop pe the bottom with cork, 2
full of boles with a red-hot wire ; tie it in the grase every night. In this manner caddia my be preserved until they turn to flies. When grassiop pera are to be preserved in the case, some grass math put into it.
"In angling with caddis, the line, when all out, sbould he as long as the rod, for three lengthe next the hath, of single hairs, with the amallest float, and the iead weight of lead that the swifneas of the stream will allow to aink; and that may be aided by avoiding the viokay of the current, and angling in the returns of a atram, a in the eddies between two; which are alm tha mat likely placen whercin to kill fish, either at the lop a
mant T noch Joined hy, to cover wocther muy to the angled nell, with th hoding bait!
Nienow, ba n two incheos to capturod dmply by a Angliurs genc them. The their Gurmati of hook dres wries of pair wor then give inastruments, to Kenilal ho
"The novat is a common the back of th the gill, ill we thin it of cilk there bitet: 1 over mama, as foil to gorge. danding poola tha hook (a lo deceon! ral idl fah are someti all minnow tac ind most agree of constructing preferalise to a No. II, fastene onet, No. 7, tie dreasing, so на the tackle to zoter the lower it out near th bookn on the es be alightly cur tackle is comp and is angled mood. 'Two these contrivan fect or so ahov ueel, hut many attard belind 12 or 33 , drese trout miss the ing, by the inid ruperfluity, and than good, ala Tackle for trol constructed on only thr: inveka intuead of gut. kind of angling beat trolling-lin
Invects.-Th ericket, day-fli and ranous ot creaturen that and therefore c ha banks of $r i$ buit for trout or Sulimm Roe. molem unsiove meass of captu from a salmon tis best for the

ANOLINA.

of otick of mase

 - intereaing of to neveral himin tate, thue hoom - called utram lekn, creeping a bundle of pleceen r, therewith the velves about the theme are called theme creature - fittent for theis ether, nonse to be sy remain at bot e so buoynul m e : thene houmea , but are within paste, into which d that its cell can aving it behind, reach the needful for protection andow running river, and composed of d in a very rough watere, are genehan a gentle, and t they are cics. lenty in gravelly 'ntreamn, in large

1, and the heat will anted is obtained ix days, dip them, a day, and hang v , hecome tough, ot from the brock. o put into othich ravel or sand from en; they must bo very hot weather; bag with waster, ho water run from hree werks. Anlacing them in an nome of the gravel but the preceding t puns of differeat 11 of holes, not $=$ hen placed in the but supplien thens mo keep them in r, taking care thu Another mode of ppera, caterpillarh o the green withy s round, and aboul the . orm ol a hoogh
"ทread; stop op
foll of holea ewort leaf, and lay nsuner caddia may When grasshop rome grass most be

When all out, should has next the hath, loat, and the leat o atream will allo oiding the violeno urne of a stream, x sere ulan the mull ther at the top a
numen The callite may be of times, with very rood rixch, joltued to a worns, sul cometimes to an artibelal hy, to cover the point of a nook, and aleo two or three wother may be put in upon the hook; but it is always to to angled with at the bottom, enpecially when by fuell, with the fineat tackle, and it all meacon ta a moat holling bait for trout and grayling."

Minnow bui'-Minnows are amall Ash, from an ineh n iwo inches in length ; they swin in flocks, and may fo captured by a hoop-uet on the ensl of a staff, or more dmply by a crooked pin baited with a small worm. Anglers generally hire a boy to eutch a quantity of them. The tackles used for minnow bait are various in their formation; some are single hooks ; others a pair of hook dressed back to back; and a third kind are a neries of pairm, one above another. We eannot do betwer than give Mr. Stoddart's deacription of these deadly indrumenta, and the inode of balting them. He alludea 10 Kendal hooka :-
"The moat aimple, and in some places the mont deadly, to common single hilt hook. This 've insert through the hack of th1 the gill, it, : 1 , he l. irb to protrude from the mouth; we thiti. H_{j} b.... ai, lioag the gut, either with a piece of alk three il, or more expeditiously with the gut iteelf, bitcher over the part. Thia in angled with in the mame manar as the worin, allowing plenty of time for the fish to gorge. A theklo sinilar to it may to uaed in danding poola ur lochs. Here, howover, the shank of tho hook (a long one) in loaded, and the hait allowed to deceend rajilly towards the bottom. Large cautious bish are solnetimes taken by this method of angling. Of ali minnow tuckles, that with wivela ia the commonest and mont agreeable to employ. 'Thore aro many ways of conatructing it. Trwo of theac we shall mention as preferable to all othern. One is simply a largo hook, No. 11, fastened to good round gut with two smaller ones, No. 7, tied back to back alove, and looped in tho dessing, so as to alide olong, and ahorten or lengthen the tacklo to the dimensions of the bait. In using it, enter the lowermost hook through the mouth, and bring it out near the tail of the minnow; insert one of the hook on tho slider through ite lips, noticing that the fish be alightly eurved so en to upin properly. Tho other lackle in composed of six hooks, No. 7, drenued in paira, and is angled with only when the trout are in a taking mood. I'wo or more swivelin are required for both of these contrivances-the lowermont fartened shout two feet or so above tho bait. Leaden pellete may also be usel, but many think them unnecossury. Soma anglers attarh belind the whole appuratus an extra hook, No. 12 or 13, dressed upon a liog's bristle, which, should tho tront miss tho minnow, is apt to catch him, when retiring, by the iniddlo or other part of the body. This is a superfuity, and, liko many superfluities, does more harm than good, alarming the fish withont securing them. Tackle for trolling with par or morall trout ought to bo constructed on the same principles as the minnow tackle; only the hooks should be larger and dressed upon gimp intead of gut. Snap-hooks, also, aro in use for this kind of angling. Sinall silk cord oiled will bo found the best trolling-line."

Insectr.-The insects used for baita are grasshoppers, erictetn, day-flies, spring-flies, May-flies, humble bees, and vanous others. Thie ephemerex, or those fragile erentures that live but for a day or even a few hours, and therefore called day-flies, sro found sporting by tho II a banks of rivers in warm weather, and form a taking bait for trout and anmo other fist

Sulinm Roe.-The efficient use of this as a bait is a modem disiovery, and has added largely to the angler's means of capturing the tishy tribes. The roe is takon from a salmon a fortnight before spawning, at which time tis beat for she purpose. Somo prepare it for use by
wilting A a litte, and drying it to sate in whioh will keep ; othere currs if with augar Instead of alth Bluine recommends the following an a method by whleh It may be kept good for two years in a cool situation:"A pound of upawn in Immersed In water as hot os the hands can bear it, and la then picked from membranous filins, dec. It ia now to be rinsed with cold water, and hung up to drala for twenty-four houra, after which put to it two ounces of rock or bay salt, and a quarter of ah ounce of allpetre, and again hang it up for iwenty-four honr more. Now pread it on n dish, and gently dry it before the fire or in the sull, and when it becomea etiff pot it down. Wo mhould, however, recommend that the potting be nut lif one masa, but, like the ahrimp pate sold at the tiah-mauce shopis, that it be diviled into masall pota, pouring over each some melted nuet, by which meo thod a pot cas be oponed when wanted, litisead of dib turbing the general store. It forms an aduitional afeurity to eover each over with a moistened skin or bladder. Trout roe la also aaid to make a good balt, but we have no personal experience of its oflhacy in fact, wo newor trieil it; but it has been so strongly recommended, that It would be but fair to give eredence to ite value until numerous triala have proclained it as totally inert
" 'ro bait with salmon roe, firet put on the howk (which should be mized according to the fints inteniled to bo tried for) mans which shall fill up the hollow of the bend and hide the ateel. On the point put two or more firm Inrge grains of it, both to conceat the snare and tempt the fish. In this way it is sald to be principally a winter ald a mpring bait, but wo know no reusoti why it may not be advantageouly used at other times, for opuown of some kind is almont always to be found."

Pastea made of shrimpa, of checae, of bread erambe mixed with honey, and of other materials, are also employed, according to the fancy of the mingler, and the nature of waters and aport he intends to pursue; our limited apace, howover, obliges us to refer thowe who aro curious in the mubject of baits to the Encycloparim of Blaine, where there la vast body of highly intereating matter on angling. Those who are disinclined to preparo roe and pactea, or have not the nieans of doing no, may be supplied by the prineipal dealors in fishing-tackle.

Artificial Fhea.

Honks drensed up so as to bear something like a res. nemblance to actual live flies, are by far the most important luren omployed by the angler. The principal materials employed in dressing are light portions of coek's hacklo or other feathers, to form winge, the fur of a hare's ear or some other suhstance to make the body and waxed silk thread by which the whole is tied in an artful manner on the shank of the hook. A whole sheet might easily be filled with descriptions of artificial fliea wuitable to difforent fish, waters, and seasous; but the bulk of what has been written by Walton, Daniel, and many others, is now conaidered supertluous, experienced fiahers having arrived at the conclusion that fishes ia general are such enger and heedless fools as to be satiofied with a very limited choice of deceptions. The nuthor of the article Augling, in the "Encyclopædia Britunnica," has some clever remarks on this branch of the art:-
"As simulation," says he, "consista in tho adoption or affectation of what is not, while dissimulation consists in the careful concealment of what really is-the one being a pusitive, the other a negative act-so the great object of the fly-fisher is to dissimulate in auch a monner as to prevent his expected prey from detecting tho artilicial nature of hia lure, without troubling himself by vain effort to simulate ot assune with his fly the appearance of any individual or specific form of insect life.

[^62]There if, ir: truth, fittle or no connection between the art of angling and the science of entomology ; and therefore the success of the angler, in by fnr the greater proportion of casea, does not depend on the reaemblance which aubsists between his artificial fly and the natural insect. This atatement is no doult greatly at variance with the expreased principles of all who have deemed firhing worthy of censideration, from the days of Isaiah and Theocritus, to those of Carrol and Bainbridge. But we are not tho less decidedly of opinion, that in nine inatances out of ten a fish acizes upon an artificial fly as upon an insect or moving creature sui generis, and not on account of its exaet and successful resemblance to any accuatomed and familiar object.
"If it is not so, let us request to be informed upon what principle of imitative art the different varieties of aalmonfly can be supposed to bear the most distant recomblance to any species of dragon-fly, to imitate which we are frequently told they are intended? Certainly no perceptible similarity in form or aspect exists hetween them, all the apecies of dragon-fly, with the exception of one or two of the sub-genus Calepterix, being characterized by clear lace-like pellucid wings, entirely unadorned by those fantastic gaudy colours, horrowed from the peacoek and other 'birds of gayest plume,' which are made to distinguish the supposed resemblance. Besidea, the finest salmon-fishing is frequently in mild weather luring the cooler scasons of the year, in autumn and carly spring, severa! montlis either before or after any dragon-fly has become visible on the fare of the waters, as it is a summer insect, and rarely mokes its apprarance in the perfect state until the month of June. If they bear no resemblance to each other in form or colour, how much more unlike must they seem when, instead of being swept like lightning down the current, as a real one would he, the artificial fly is seen crossing and recrossing every stream and torrent with the agility of an otter and the strength of an alligator! Or darting with regular jerks, and often many inches under water, up smooth continuous flows, where all the dragon-flies on earth, with St. George to boot, could not maintain their place a aingle second! Now, as it is demonstrable that the artificial fly generally used for salmon bears no resemblance except in size to any living one-that the only tribe which, from their respective dimensions, it may be supposed to represent foes not exist in the winged state during the period when the imitation is most generally and most successfully practised-and if they did, that their habita and notural powers totally disenable them from being at any time seen under such circuinstances as would give a colour to the aupposition of the one being ever mistaken for the other-may we not fairly conclude that, in this instance at least, the fish proceed upon other grounds, and are deceived by an apprarance of life and motion, rather than by a specific resemblance to any thing which they had previously been in the habit of capturing? What natural insect do the large flies, at which sea-trout rise so readily, rescmble? These, ns well as gilse ond salmon, frequently take the lure far within the bounds of the saltwater market; and yet naturalista know that no such thing as a salt-water fly exists, or at least has ever heen discovered by their researches. Indeed, no true insect inhabits the aca. What species ore imitated by the palmer, or by three-fourths of the dressed flies in common use? An artificial tly con, at the best, be considered only as the representative of a natural one which has been drowned, as it is impossible to imitate the dancing or hovering tlight of the real insect over the surface of the stream; and even with that restricted idea of its resembliance to nature, the likeness must be scarcely perceptible, owing to the difference of motion and the great variety of directions in which the angler drags hia flies, according to the nature and zpecial localities of the cur*ath, wad the prevailing direction of the wind.
"We are therefore of opinion that all or a great prow portion of what has been an ofte , and aometimen mo well ald about the great variety of flies necessary to an nngler-about the necessity of changing his tackle an cording to each partleular month throughout the deason -about one fly being adapted aolely to the morning mother to noonday, and a third to the evening-and about every river having ita own particular fies, \&c.. jn, if not altogether erroneous, at least greatly axaggerated nnd misconeeived. That determinote relations exist bed tween flies of a certain colour and particulnr conditions of a river, is, we doubt not, true : but these are rather connected with angling as an artificial science, and haro but little to do with nny analogeus relations in nature. The great object, by whatever means to be accomplished, is to render the fly deceptive; and this, from the very nature of things, ia continually effected by fishing with tlies which differ in colour and appearonce from those which prevail upon the wnter; beeause, in truth, as wo shall afterwards have occosion to ahow, none else can be purchased or procured. Even admitting for a moment the theory of representation, when a particular fy prevails upon a river, an arificial one in imitation of it will never resemblo it so closely as to nppear tha same to those below (that is, the fish); on the centrary, a certaia degree of resemblance, without any thing like an cract similitude, will only render the finny tribe the more can. tious throngh suspicion, while a different shape and colour, by exciting no minute or invidious companisom, inight probably be swallowed without examination. lop deed, it seems sufficiently plain that where means of comparison are allowed, and where exnct initation is th the same time impossible, it ia much better to have so course to a general idea than to an awkword and bung. ling individunl representation."

Mr. Stoddard, one of our most experienced anglent, entertaina a aimilar opinion :-"' The colours of wret and sky," he observes, "are the only indicaters wlich can lead us to select the most killing houk, and cven these are often deceptive. We have fished in one stram where dark, and, in the next, where red flies took tie lead. There is no trusting to the fancy in certain places On 'Tweed, we have seen it veer about, like the wind, in one moment, without a note of preparation. Most nviras however, are more steady; and when the water is of 1 moderate size, may be relied on with at mest two sort of flies all the year round. For ourselves, our maximua in every Scottish stream is reduced to only four descrip tions of artificial flies, with one or other of which me engage to catch trout over all the kingdom. Kaowlebe and practice have convinced ua of the needlessness !! storing up endless and perplexing varietics, which some do, to look knowing and acientific."

The following, according to these and other truse worthy authorities, form a very aerviceable set of luad for fly-fiaking;-First, there ia a fly which has ben called the projessor, after Professor Wilson of Elinbung Tho wings are formed of a mottled brown feather, thate from the m:ilard or wild drake, the body being comprosed of yellow flos. siik, rather long, and wound about close to the head with - fino red or black

The Professor. hackle. This simu-
lated fly has a tight clever napect, and ia a powerful bilian Second, a tly which differs from the above only by being a little whorter, more thick, and with a body madeol pale green instead of yellow
 silk. Green worated may be used.

Thlid. a r powerful ha with wings of und black me ieather, a bris tody of dark-g wnund about gray or mo hackle, to whi given a poi tail.
Fourth, a woodcock, eni ear, darker or Fif: c, a fly havin.g a body Suxth, a pla commonly eal
Seventh, a and a body fo hackle.
To these the fancy aug of fisling. 1 more large a
of larger prop cimen is given variegated tur nixed with thread of gold ner fishing. Gua," for furt all cases requit
From dealer nay be obtaine tefinl; persons masters of the on tradesmen 1 for themselves. lirections on f
"Our mate low:-Hooks, pers for twistin a pair of fine thrad of all jurce of goft 1 draks: teal, ane squirrel, and w rail, and atarl When from the mus; these sho Plovers' herls, aume, yet, we eppt for large t Connmencin uut the intend aitk, and apply

ANGLING.

all or a great pro 1 sonnetimes so well necessary to an ging his tackle a oughout the deason y to the morrinig the evening - and ticular flies, \&c.. j greatly exaggerated relations exist he articular conditiona it these are pathe l science, and hame elations in nature. to be accomplished, this, from the ver ed by fishing aith zaronce from those ise, in truth, as w \boldsymbol{w}, none else cen be ting for a moment particular fly pre imitation of it wil ppear tha same th centrary, a certait dhing like an cract tribe the more cav. ifferent shape and idieas compansons lexamination. lor It where means of xact imitation is at h better to have re wkward and bung
xperienced anglem, c colours of wrter y indicatorn which ng hook, and ceen ished in one strean red flies took tho zy in certain places It, like the wind, in ration. Most puecs n the water is of 1 at most two soly !lves, our maximus o ouly four descrip other of which we gdom. Knowlelae he needlessness aicties, which sene
e and other trus icenble set of lure ly which has bea ilson ef Edinburgh rown feather, taine

Proiessor

Third, a rough powerful hackle; with wluga of white and black marked leather, a bristling body of dark-green wnund about with gray or mottled hackle, to which is given a pointed
 tail.
Fourth, a fly of a sombre cast, the wings formed of woodcock, snipe, or lark feather, and the body of hare's ear, darker or lighter, according to fancy.

Fif: i, a fly with wings of the starling or fieldfare, and haviog a body made of mouse or water-rat fur.
Suxth, a plain hackle, black or red, without winga, and commonly called palmer.
Seventh, a red hackle, with wings of the atarling, and a body formed of light-red mohair, ond a red cock'я hackle.
To these moy be added any other variety of fly that the fancy suggests as being suitable to the time or place of fishing. Flies for salmon-fishing must be of a much more large and powerful kind, as representing insects

Salmon Fly.

of larger proportions. In the adjeining figure, a specimen is given of a powerful spring lare, with wings of varingated turkey feather, a body of orange camlet, mixed with mohair, and a brown cock's hackle. A thread of gold may be wound round the body for summer fishing. We refer to the work, the "Rod and the Gun,' fer further information on salmon-tlies, which in all rases require to be dressed on double gut.
From dealers in fishing-tackle all sorts of artificial flies may be obtained at a reasonable advance upon the raw material; persens, however, who intend to make themselves masters of the art of angling, should not be dependent on tradesmen for their supplies, but learn to dress hooks for themselves. Mr. Stoddart offers the following explicit directions on fly-dressing :-
"Our materials for the making up of flies are as fol-low:-Hooks, and small round gut; a pnir of brass nippors for twisting hackles; a point for dividing the wings; a pair of fine scissors; orange, yellow, and green silk thrad of all sizes; good cobblers' wax enclosed in a juce of soft leather; a hare'a ear; some brown wilddrak: teal, and pheasant feathers; the fur of a mouse, squirrel, and water-rnt; a few wings of lark, suipe, landlail, and starling; and lastly, red and black hackles, then from the neek and hend of an old cock at Christmus; these should be futly formed and free from softness. Plovers' herls, and those of the peacock, are used by cumo, yet, wo deem them superfluous, as also tinsel, except for large flies.
Commencing your operations, the first atep is to lay uut the intended wings and body before y su; wax your sith, and applying one end of it to the gut and hook
together, wrap them both round four or five timos, com mencing a little below the end of the shank, and prow ceeding downwards; you then fasten, by drawing the disengaged end of the thread through under the last turn of the wrapping. Work the silk upwards to where you commenced, then take your wings, which are atill unseparated, and lay them along your hook, so that their extremity or tips shall reach its curve; twirl the thread twice round the upper part, which lies along the shank top; then, taking it under, press firm, and clip off the unnecessary portion of the fenther; divide with your point or penknife, ao as to form the two wings; take up the silk betwixt them, and wrapping agair around at the head, bring it back crosswise; then lift your hackle, and lay the root of it down along your heok; whip the thread over, as far as your first fastening; seize the top of the hackle with your nippere, and whirl it round in the same manner; fnsten and lengthen the body to your liking with fresh floss silk; fasten once more, and your fly is made. This last fastening ought, in our opinion, to he the same as that used in arming bait-hooks, for which we quote Hawkin's directions :- Whell you are in nbeut four turns of the bend of the hook, take the shank between the fore-finger and thumb of the left hand, and place the silk close by it, holding them both tight, and leaving the end to hang down; then draw the other part of the silk into a large loop, and with your right hand turning backwards, continue the whipping for four turns, and draw the end of the silk (which haa all this while hang down under the root of your left thumb) close, and twitch it off.' Whon t.ee body of your fly it required to be of hare's ear or mouse skin, pull out a small quantity of the fur, and lay it along the silk, after the wings are formed; twist tegether, and then wrap as if the thread were bare, nud fasten as above. In making flies, keep all tight, guard against heavy wings and much dubling; the fibres of your hackle ought to be ahort and lie near the head of the fly; they are intended to reaemble lega, which in tho real insect are always so placed. Such ia our method of fly-dressing, cominendable both for its simplicity and expedition. It differs, we find, somewhat from that generally practised, being in a manner self-taught, and not encumbered with any unneccessary display."
Having now described the varions parts of the angler: apparatus, and the lures which he generally employs, we proceed to show how he is to practise his craft when fully equipped for the purpose

practice of angling.

There are two distinet kinds of angling-bait-fishing and fly-fishing, and these are variously practised accerding to the depth or nature of the water, or the fish Nat are to be caught.

Bail-Fishung.

This kind of angling is practised to great extent in the Thames, the Iea, and other decp aud somewhat dull rivers of England. The fish usually senght for in these wuters are gudgeon, dace, roach, bream, chub, barbel, tench, earp, perch, and pike; all are sometimes taken by fly, but a bait of worms, gentles, ron, or some other material, is commonly empleyed. The angler, in these rivers, usually stands on the shore while fishing, but in some instances he fishes from a punt, or small flat-lote tomed boat, in which his chief occupation is to sit watehing his float, and pulling in his line when a fish appeare to be hooked. Among the applaratus of this order of deep-wnter fishers, a plummet and line is carried, in order to sound the depth of the river, which having ascertained, the augler puts his float upon the line, at that point which will allow the bait te trail on the bottom, while the float swims on the surface.

The first thing the bait-fisher las to learn is the art
a suding his hooks. Taking the hook in his right hand and the bait between his fingers in the lef, let him enter hie hook at the head of the worm, and carry it through she animal to near tho tail, covering the entire hook and us tying. The worm should be broken or mangled as little an possible; and the more life-like it appears, the grater the probability of its proving an effectual lure. There must not, however, bo too much apare worm left dangling from tho hook, otherwise the fish will keep nibhiling it sway without biting at the bait bodily, and taking it into its mouth, the thing which the angler desires.

In throwing the line with bait, take care not to splash the water, but let the bait full gently on the surface, and sink slowly in the water, to the required depth. After sinking, the rod and line should be very slowly moved in a direction against tho stream, or in some ether way to give motion to the bait, which the fish pereciving to glide through the water will hasten to seize upon.

Occasionnlly the angler will feel a nilble, but he must not be in a hurry to a'rike, that is, to draw tho fish from the water. Perhaps it is no more than a nibble, and it is well to allow the fish time to get the hook in his mouth. If drawn too quirkly, you may actunlly pull away the hook afer it is hulf gulped. Experience and dexterity are required in this ticklish part of the craft. As a general rule, do not strike till the line hus been distinctly tugged; then strike hy a slow side motion at first, then a more quick jerk, so as to cause the hook to eatch in the jaws of the animal. Supposing the fieh to be hooked, do not draw it violently out of the water an if in a transport of delight, but wind up part of your loose line if necessary, and holding up your rod, retire gradually backward, by which the fish may be landed on the shore. A good fisher does not lay onide hia rod to take a fish from the hook, unless it be of grent size, requiring two hands; if small, hold the rod in the right hand while you catch the fish with the left; unhook it carefully, place it in the bnsket, put on a new hait, and once more proceed to your sport.

The gudgean, a fine large fish of the trout shape, affords a favourite amusement to anglers in the Len, a river near London, and also in the Thames, Blnine thus speaks of this branch of angling:-" Fisling for gudgeons in the Thames is usually practised by means of a punt, which is fixed across the stream part of the river just above a tolerahly sharp scower, ruming over a finc gravelly botom, free from weeds, at depths varying from five to eight or ten feet. As the eddy is greater generslly, and the wnter deeper in these scowers than in those of the Lea, so the tackle used is commonly somewhat stronger, and a fine gut line is more frequently net with there than one of single hair. Fine tackle, nowever, in a good hand, is to the always preferred ; and we have seen many hundred dozens of gudgeons taken in the sharpest currents of this river also with a single hair only for the two bottom links. Punt fishing for gudgeon in the Thames is a delightful amusement, particularly to the luxurious angler who is not inclined to take much trouble. The scenery, the quietule nud safoty from interruption, the cleanliness of the practice, where the bait is put on the hook by the attendant fisherman, and where even the prize it gains is removed by the same hand, all tend to make it epicurean in the extreme. But the thorough-bred fisher is soon tired with it after this method, for the very reason that there is actually too much luxury in it to constitute true aporting, which must of necessity present some lubour to keep up the attention, and some difficulty to enhance the valuo of the pres. In the Thames, so many an fint dozen of guigeons bare been taken in a day; but in the Lea \sim Nom half that number are caught. Yet the Lea angIf hay the beat scove for his sport, for he car commence
it in March, whereaa in all that part of the 'Thamen within the liberties of the city of London, it must not be attempted until the beginning of June, at which time the gudgeons have apawned, and continue for some time afterwards inferior in point of their gastronomic worth Gudgeon fishing seems to have varied little from the an cient practice, and the angler who has aught of the an tiquarian about him, will be amused probably at the close parallel between the present method and the gudgeonfishing of early timea, as it is descrited by John Davens or John Dennys, Esq., for it is a disputed point to which of these worthies the 'Secrets of Angling' in which it is contained, owes its birth. Walton ascrites it to D_{3}. vers, nnd gives the name at fuil length in the finh edir tion of 'The Complete Angler:' -
"Loe, in a ditle boal where oae doth stand. That to a wittow hough the white is tied,
nd with a pole doth stir, and raise the sand And then real with gencerier sizeame doth soffly slide; and huent with slender lite and rod in hand, The eager bite not long he doth alitle. A good big cork oo bear the stream with all,
"itis bait the least red worme that may be found And ni the boltome it doth niwayes lip; Wherral the greedy gnigion bites so sound. That honke nat atl he swalloweth by and by, As if new store, the place didestif supply; Ant wher the bi doth die. or bad doth prove, Then to mother place lie doth remove."

The roarh is n thick fish Ueep from the back to the belly; it inhabits the bottom of deep rivers or lakes, and is usually reckoned so incnutions and silly as to he celled the watir sheep: nevertheless, it is not taken withont some degree of skill. It is angled for ly means of hait sunk to within a few inches of the hottom. The fith may be attractel by throwing in some crumbs of tread It is eaught in the Thames some time after the end of August. The buits used nre gentes, rell paste, and hoiled malt or wheat ; one grain of the Intter is sufficient Grent attention is required to strike quick when the beit is taken. Dace and tench are angled for much in the same manner. Carp is angled for in stagnaut waters from Felruary to September, and the laits are worms, larve, grain, and pastes. The perch also inhahits dull waters, and is a short unslunpely fish, soft in the flesh, and seldom worth cooking. It is so enger to bite itas little skill is required in pulling out a whole fry; the baits employed for it are worms, insects, and minnows

Pike-Fishing.

The pike is a vorncious fish, and may very approprntely be termed the fresh-wnter shark; it dues not confine itself to feed on worms, insects. fish, and frogg, but will devour water-rata nad young ducks, null atiack muck larger numals. All small fish are terrified at the ap proach of this marauder. which, if permitted, voull socn flear a pond of all its finny triles. "l'ike," says Daniel, "love a still, sharly, and unfrequented wnter, with s sandy, clayey, or chalky botton (arriving at s largen size in pools than rivers); and fom May to the begirning of Octoler, they usually place themselvea among or near flags, bulrushes, and water-docks, and partictlarly under the ranumculus aquaticus when in flower, and which flonts on the surface; they will sometimes be found in the termination of sharp curvents ; from March to the end of May they resort to back waters that lare direct communication with the mnin stream; as wither appronches they retire into the deeps, under clay-lates, bushes impending over the water, stumps and roots of treea, piles of bridges, and flood-gates. They spavn in March or April, according to the coldness or warnth of the weather, quitting the rivers for the creeks end dithet communicating with them, and there dropping their ons in the grase arid reeds; in wonds they choose the weell
apon the hhallown Fild fuwl eagerly d traceported to other pike in ponda whe icomed as extraordi however, easily act principles of the ge dovoured their ova, feeding in one of th they may be produc way as the seeds o nuted.
"Pike are in seass fish are to be pre angler good sport, o but the best months ary, before the weo are rotted; the latte attened hy their fe the lowness of the v covered."
The same author ing for pike:-" Fo or fourteen feet lon with a ring at the e be fitted to a fly or riog upon each joint than a greater num struight, that it may after the hait is thke the line sinould he reecivo the armed wi long, wound upon a of the rod. Hooks olher sorts for trolli needles, are to be be tackle is soll. In th tos large, nor their shanks, nur the poin usually sold on wiro wire about an inch f wall wasel, fasten wirk, with a noose enough to admit th upon the line. The middling size; put and out at the mildd hook after it, fixing of the fish tie the kecp it in a proper catching agninst we baited, the hook is gently in the water n water, or where it is coustant motion, sor toon, and gradually make more than tu pike be there, he wil to do so. When t preat to see, it will e drawn tight, and by what line he choos has reached his harb fasa five to ten min ap the line gently \mathbf{u} permit though he t scriss his mouth. g lowed, manage him however, from roota fustea the line upo ha is sufficiently tir but by no meana, ho ω lift him out with ment ho guits the
upon the shallows for depostting it; ducks and other wild fowl eagerly devour the apawn, and by them it is taceported to other waters. The appearance of the piks in ponds where none were ever put, has been deemed as extrsordinary as its asserted longevity; it is, bowever, easily accounted fur upon the well-known principles of the generation of fishes. If a heron has dovoured their ova, and afterwards ejected them while feeding in one of theae ponds, it is highly probable that they may be produced from this original, in the same way as the seeds of plants are known to be disseminated.
" Pike are in season from May to February (the female fish are to be preferred), are bold biters, afford the angler good sport, and may be fished for all the year; but the best montha (eapecially for trolling) are February, before the weods shoot, and October when they are rotted; the latter is to be preferred, as the pike are autiened hy their feed during the euminer; and from the lowness of the waters, their harbours are easily discovered."
Ths same author thus describes the method of trolling for pake:-"For trolling, the rod should be twelve or fourteen foet long; but a strong iop for this fishing, with a ring at the end for the line to run through, may be fitted to a fly or general rod; there should be one riag upon each joint to eonduct the line, which is better than a greater nomber (and these rings must be set on straight, that it may run freely, so that no sudden check after the bait is taken prevent the pike from gorging it) : the line sisould be of silk, with a awivel at the end to receive the armed wire or gimp, and at least thirty yards loag, wound upon a winch or reel fixed to the butt end of the rod. Heoks for trolling, called dead gorges, and other sorts for trolling, snap, and trimmer, and fishingneedles, are to he bought at every shop where fishingtackle is soll. In the choice of the first let them not be tos large, nor their temper injured by the lead on the shanks, nor the points stand too prout ; and although asually sold on wire, it is recommended to cut off the wire about an inch from the lead, and with double ailk well waxed, fasten about a foot of good gimp to the wire, with a noose at the other end of the gimp large enough to admit the bait to pasa through, to hang it upon the line. The best baits ore gadigeens or dace of a miduling size; put the baiting needle in at the month, and out at the middle of the tail, drawing the gimp and hook after it, fixing the point of the hook near the eye of the fish tie the tail to the gimp, which will not only keep it in a proper position, but prevent the tail from catching against weeds and roots in the water; thus baited, the hook is to the fastened to the line, and dropt gently in the water near the sides of the river, across the water, or where it is tikely pike resort; keep the bait in constant motion, sometimes letting It sink near the bottoa, and gradually raising it. The angler need not make more than two or three trials in a place, for if a pike be there, he will within that time bite if he means to do so. When the hait is taken, if at a depth too great to see, it will easily be ascertained ly the line being drawn tight, and by some resistance; let the pike have what line he chooses, it will be soon known when he has reached his harbour by his not drawing more; allow foon five to ten minutes for his gorging the bait; wind up the line gently until the pike is seen (which he will permit though he haa not gorged); shonld the hait be across lis month. give more time; but if he has swalluwed, manage him with a gentle hand, keeping him, havever, from roots and stumps, which he will try to fasten the line upon; in clear water veer out line u.atil be is sufficiently tired, and a landing-net can be used; but by no meana, however appareutly exhausted, attempt w lift him out with the rod and line only f for the momeat he quits the water he will open his mouth, and
from his own weight, tear the hook from hla somach and the fiah will be loat to the angle:, although it must inevitably perish. In trolling, the bait ahould never be thrown too far; in emall rivere the opposite bank may be fished with ease; and the violence of its fall upon the water, in extensire throws, soon spails the bait, by rubbing off its scales, and alarms the pike instead of enticing him. Pike are to be allurod by a large bait, but a smsll one is more certain to take them; never suffer weeds to hang upon the hook or bait when recest into the water, and which cennot touch the surface too aoflly. Always prefer a rough wind, and when the stream is clear, for trolling; pike never hite in white water after rain, \&ce. If a pike goes slowly up the stream after taking the bait, it is said to be a signal of a good flah."

Mr. Stoddart's methods of angling for pike here doserve notice :-" In rod angling for pike, we adopt three methods, employing the gorge tackle, the swivel tackle, and the fly. Our gorge-hook is double brazed, and armed upon brass wire. A par or small trout inverted is the usual bait. We ineert the wire of our tacklo through the fiah, bringing the upper end of it out at the tail, und allowing the two harbs of the hook to protrude from its mouth. In angling, we both throw and drop the bait, as the nature of the water demends, moving is slowly towards the surface. When a pike seizes it, there is at first no perceptible tug; one feels as if he heard the shutting of a pair of jaws on the bait ; and if you can manage to see your fish, you will observe him holding your trout by the middle, as if erushing the life out of it. Keep a tight line, but do not pull or atrike. Too much resistance places your intended victim on his guard ; a little, however, sharpens his appetite. After a few seconds, the pike will hegin to move towards his den, still grasping your bait between his teeth, and intending to holt it immediately. Let out line with your hand from the reel; and now he is fixed, and darts off like a tiger, shaking his chain, and with open mouth tossing himself out of the water at thirty yards' distance-ibe worst is over, and he turns revengefully towarde the ahore; wind up-ha! he is out again, und again he makes for the ahallows; but the monster is exhausted and moves heavily; lead him with caution to the edge, lay down your rod, and lift him upon the bank. In order to disengage your hook from the entraila of this formidable fish, the gills should be forced open, and a knife introduced for the purpose, taking care previously to thrust it through the spine-bono of your victim, and so prevent the possibility of your catching a Tartar. Unfasten your hook from the wire before drawing the latter through the mouth of the pike, as otherwise it is again apt to eatch among the teeth, from which it may he somewhat ditlicult to extricate it, without incurring a few scratches.
"Should a fish, afler having hitten, abandon your gorge-hook, try him with a running bait "non swivels and let this be a fresh tront of a smaller size than your other, and fixed upon n gimp tackle with the tail downwards, as in minnow fishing. See that it spine judiciously; and when the pike rises, let him turn with the bait before you strike. River pike, it may be remarked, seldom play so well as those in lochs. They push generally below the banks, instead of striking across, and look out for old stumps upon which to entangle ana brenk your line. One ought, thereforo to make quick aport with sueh rascals-running them down upon level banks in a twinkling, and before they are able to get under weigh.
"The third method of angling for pike is with a fly -a kind of fishing not much ir use, but still on eonve waters very dendly. The pike-fly should be largn and gandy, fabricated of divers fenthers and tinsels to resemble the king-fiaher or a luge dragon-lly. Use it in a
strong warm wind, upon water from aix to lwo feet
deep, and near weeds. You will kill with it fish of deep, and near weeds. You will kill with it fish of various sizes, from ten inchea in length and upwards: very heavy ones, however, refuse to take it, on account, probably, of the exertion necessiry in order to come to the aurfoce. We have always neticed that the biggest pike are caught during close sultry weather with a ground bait, and at those times when trout refuse foed altogether. Also at night, with set lines, in the summer months, when they leave the weeds and bulrushes in quest of food.
"Although the pike is often nice and auspicious in places where tront abound, still, when provoked, he becomea bold and unwary, treating your presence as no constraint upon his tomper and appetites. He will follow tho bait to yeur very fect, and should it eacape him, will retire a yard or two, waiting eagerly for its reappearance. When angry he erects his fins in a remarkable mnnner, as the lion doth his mane or the percupine his quills; moreover, the pike appears careless of pain, if, indeed, fislies in general feel it to any great degree. We have actually landed one of these fish, cooped him alive in our ereel, and when by some negligence of oura, he mudo his escope into the water, have succecded a second time in securing him. On another occasion, we remenber having a part of our tackle, consisting of a large double gorge-hook, dressed upon brass wire, carried of by a pike; and yet, upon renewing it, the aggressor returned to the charge and was taken. The former hook we discovered gorged by him in such a man ner as must, we thought, not only have suffocated any other animal, but done so by the medium of the most exquisite internal agony.
"Grent injury has of late years been done by the transference of the pike to many of our best trouting lochs, where a single individual has been known to consume nearly its own weight of fish daily. This was the care on Loch Turit, near Creiff, where the trout, formerly abundant, are now greatly reduced by the hostile and merciless depredationa of their natural enemy. The pike at table is reckoned by some a coarse dry fish, and mo in general they are; yet to our knowledge, in cert in lochs, for instance that of the Lowes, in Selkirkshire, they almost rival the turbot, and should be cooked somewhot in a similar manner. They are none the worse for being kept a few daya, especially if of any size. A good eating pike ought to weigh at least from five to twelve pounds-the amallar ones being without exception bad."

Trout-Fishing

The trout is of different apecies and varieties, as the common trout, the gillaroo or gizzard trout of Ireland, the bull-trout, and the salmon-trout. The shape is handsome; the flesh firin and sweet, and coloured pink or white, according to species and feeding-ground; and the weight varies from half a pound to four or five pounds. In one or uther of ita varieties, the trout is a universally-knuwn fish in temperate climates; its favourite haunts are clear ranning rivera; and there, both in England aod Scotland, it affords a faveurite olject of sport to the skilful angler. Sometimes bait is employed. hut the fly is more common. In some cases the bait and fly must be tricd alteruntely in one day, as the fish is eapricions, and requires to be tempted in all kinds of ways. The season most favourable for trout-fishing is spring ard carly summer.

Trout-fishing with bat.-" Trout," eays Blaine, " legin to take a tait on or near the grcund carly in the year, and lefore March will readily take most bottom bate all day lons in favourable weather; but as the summer advancea, it ia only very early or very late in the day that they will take a hait near the ground, they being at tho intermediate tours more disposed to rime
to the surface for winged insects. In March and Apa use the worm in the forenoon, and a fly or minnow, ac cording to the stnte of tho water, the rest of the day in the swiflest and sharpest currents, provided the day be warm and bright, and in the deeps early and late but if the water be discoleured or very thick, try the gravelly shallowa near the sidea and tails of streams, with a worm only, to run on the hettom with one large shot a feot at least from it. When there is a small fresh, or the water is clearing off, and is of a dark brownish colour, first uee the worm, which should be a well-scoured brandling, cast in as a fly at the head of the stream, and move it gently towards you, still letting it go down with the current so as to keep it a littlo under water; the line should be rather short, with tho lead upon it, and the hook fine; then try the minnow, and as the water cleara, the artificial flies should be trich In fishing for trout with the worm, use running-tackle, and employ a atrong line, but let its atrength consigt in the excellence of its material rather than its bull, to which end the hook should be small, the gut fine, the shotting fine also, and let the whippings be well concealed, for in bright water trout are singularly wary and suspicious. In some few instances a float is indispensable, and when auch is the case, let that likewise be as light and fine as the water will allow."

A short line and quick atriking are recommended hy Mr. Stoddart, who says the line "eught always to be kept at its full stretch, and moved in a half circle with the angler. It requires some degree of perception to know the exact instant when the fish first scizes yeur bait; it does so with such softness, and with no likeness of a tug, as one is apt to imagine; nay, it merely closes its jaws upon the hook, as a gaping oyster would do upon one's finger, then is your opportunity for strik. ing; if you neglect it, you nllow the trout its more lep. surely process of nibbling, and its chances of escape. In striking with the short line, do it sharply, and never against the eurrent, but rather with it, in a diagenal direction, and not too high. The reason of this advice is obvious, for all fish feed with their heads painting up the stream-kindly giving you the choice of pulling tha hook into or out of their mouthe; the latter of which purposes you accomplish, to a dead certainty, by striking against the current. This whip-juck manner of hait fishing is very deadly with an experieneed hand. The long-line anglers make nothing of their method comparatively : and yet, among clear waters, and where fish are few, or bite shyly, patience and a long line will carry the day. Renarkably fine gut ought to be used by all ground anglers, whatever be the practice. Trout are a suspicious, distrustful set, and three in gencral slink off for one that nibliles, terrified, no doubt, by those singular accompanimeuts of your worm, a line and hook.
"To all bnit-fishers Scetland affords excellent sport; her rivers run so strongly, and are maintained by so many sources in the shape of mountain burns. These romantic streamlets abound in trout; every stone shelters its inhahitant, and the mennest pool is peopled with numbers. Burn fish, however, are gencrally of a small size; they sellom exceed a pound in weight, except in the spawning season, when larger ones aseend from broader streams, or lochs at a distance. Still, the taking of them is a pleasant pastime, especinlly when the bite eagerly nt your worm, as they do during rain and in discoloured water. At such times, you have only to drop your bait without art. and the fish will manage its own ruin. Worms are taken घreedily at night and early in the norning; also, when the sun is very poweffila of mid-day. Akin to this sort of angling is roc-fishing concerning which we remark, that in nutumn it is the most fatal method of eapturing trout, and is growins much into practice in the south of Scotland."

The same enthusiastic brother of the angle next pro
made to treat of far the pleasant angling with the Neanant aport, p arabll drag-net or rize, and which but ara heat perfe or par ia no bad Our only reason minnow is, that rational form it t sume, it is well knt will repeat ita atta whilo it refuses to in rapid streama, during a smart cur your fly, throwing able; bring it tow low the surfice, sp wivels. When a strike; let him tu sharply, and he is y too soon, and miss "Traut seize a hoad, and you gene In rivers where nun angle with the very and use a proport arsters love delicate their feeding. Art doyed by anglers, waters and lochs. tation--there is a vi "Trolling with "is a glorious pasti circled with mounta incantation wrought, gether. It needs in heart to know its lux ond idle spirit, a ro your airy shallop ns chant a bullad of piranksome elf and k and to yourself, chee almining your scienc you are playing, twe xteady hand, your ho woman's when she 1
"Tackle for trolli simp. Bait as you rod, heavy lead, and upon an easy reel. brecze, and troll near. of the loch. Plant iswed gently at the r out from twenty to th your bait. Trout fr cause the beat sport u leape or makes any v sullanly, and at ease, wvareign contempt. turn him if you can oever alack your line you. Land as soon : the ahore. Your com ". So much for the tived in Scotland. mupular baits used by leeches, water-rats, trout will devour. I taken with any thin, nallow money, rings, thelas they scem to h Vol. I.-87

ANGLING.

mas to tront of minnow fishing, which he aaya ia by bait of the unskilful angler, and refuse to die under hin far the pleasantest mode of capturing trout, next to hands."
engling with the fly:-"If you wish to engage in this pleasant sport, provide your minnows by means of a quall drag-net or hook. Select those of a moderate size, and which shine whitest. They may be sulted, but are hest perfectly fresh. Tho tail of a small trout or par is no bsd substitute, if minnows cannot he hall. Our only reason for proferring the fresh to the salted mbinow is, that by its silvery appearance and more ntional form it better attracts the fish; at the wame ume, it is well known that a trout loves a salt bait, and will repeat its attaek upon a minnow of that deseription, while it refuses to do so upon one newly taken. Fish in rapid streams, also in deep discoloured pools, and during a smart curl. Manage the minnow as you would your fy, throwing it down snd across as far as you are able; bring it towards you about six inches or inore below the surface, spinning rapidly by the aid of several swivels. When a lish rises, give him time before you strike; let him turn and gorge the bait, then strike sharply, and he is yours ; all fly-fishers are apt to strike tho soont, and miss the fish.
"Trout seize a minnow by the middle, or near the tead, and you generally hook them on tha upper hooks. In rivers whero numbers of minnows are found, you must angle with the very smallest, not above an inch in length, and use a proportionate tackle. The trout in such waters love delicate tid-bits, and are absurdly nice in their feeding. Artificial minuows are somotimes empluged by anglers, but generally fail, except in muddy waters and lochs. Mother-of-pearl makes the best imi-tation-there is a virtue in it which few fish can resist."
"Trolling with par for large trout," he continues, "is a glorious pastime, esporially on a Highland loch circled with mountain scenery-the craft of nature by incantation wrought, when the morning atare sang together. It needs intelleet to enjoy it well, and a poet's beart to know its luxury. Take with you soma choice and idle spirit, a rower he must be, that can manage your airy shallop ns the winds do a weathercock-can chant a ballad of yore, of ladye and chieftain, and pranksome elf and kelpic wild-can speak to the echoes and to yourself, clecering you with wit mend wisdom, and adnining your science and skill; and the gorgeous fish you are playing, twenty fathom off, with a strong and steady hand, your heart 'high fluttering the while, like wonan's when she loves.'
"Tackla for trolling sloould be dressed upon tried gimp. Bait as you do with a mimow: use a strong iod, heavy lead, and a long line of oiled cord wound upon an easy recl. Choose a sunny day, with a stiffish hreeze, and troll neak but not among the weediest parts of the loch. Plant yourself at the boat stern, and get rowed gently at the rate of three milea an hour, letting out froin twenty to thirty yards of line between you and your bait. 'Trout from six to nine pounds' weight case the best sport when loonked; a largor one seldom leape or makes any violent exertion to escape ; he swims sullenly, aud at ease, regarding the angler with a sort of wvereign contenpt. You must row after him, and tutn him if you cen before he gets among weeds; gever slack your line for an instant, and look well about yoa. Land as soon as you are able, and play him from the shrre. Your companion will assist you at the death.
"So much for the different kinds of bait-fishing practived in Scotland. We esteem it folly to talk of the leas popular baits used by the virtuosi-of froge, grubs, and leches, water-rats, and mice-nll of which animals trout will devour. It might be aaked, may fish not be taken with any thing? They have been known to nwellow money, rings, and many other marvels; neverHeless they scem to have no pleasure in snapping at tho Voc. 1.-87

Trout fly-fishang.
This, after all, is the true angling, all other efforts at tnking fish being eithor somewhat ch.ldish or murden ous. A long flexible rod, fine lines, nad appropriato flics are the necessary equipment; and the best time for making the attempt is on a dark lowering day, at any rate not in hright sunshine. If the moon has ahono brighty the previous night, it will have prevented the trouts from feeding freely, and they will necordingly bito more readily when tempted with the artificial fly. Great skill and nicety are required in throwing the fly line. Mr. Stodlart gives the following directions how to procced:-
"Your rod and tackle being ready, the wind in your favour down the river, draw out with your lef hand a few yards of line from your reel, dip the top of your rod in the water, and with a rapid jork you will lengthen as you wish that part yon intend for throwing. A thirteen foot wand will cast from six to seven finthoms of line. With a large double-handed rod you may mnage a much grenter length. Always, if you cam, sugle from a distance. Trout see you when you least imngine, and skulk off without your notice. Noise they care little about ; you may talk and stamp like a madinan without frightening them, but give them a glimpse of your person, and they won't stay to take another. Some icthyologists attribute to them an scute sense of hearing; this we are disposed to question ; for how happens it that the most obstreperous rnttling of stones, when wading, eanses no alarm, although conveyed to them through tho medium of water, a good conductor of aounds? We remember angling one still night by St. Mary's Loch, when our movements were hoard diatinctly by some shepherds from the distance of a mile, and yet the fish rose engerly at our very feet, following our fly to the shallowest parts of the margin-a fact which, if it doea not prove the ubtusity of hearing, at any rate renders it a matter of little consequence to the angler.
" It requires some art to throw a long line. The beginner should commence with a short one, and without fies, lengthening it gradually as he improves. The beat method of cesting is to bring the rod slowly over the riglat or left shonldor, and with a turn of the wrist make the line circle behind you, then, after a pause, fetcls it forward again in the same manner, and your hica will descend sofly upon the water. Afl jerks are apt to whip off your hooks or "rack your gut. A fly-fisher mny use two, three, or four flies on his casts, according to plessure. When angling with small hooks, we adopt the medium number. Large ones ought to be fishod with in pairs, and well sepsrated. In throwing the cast, the lowermost or trail-fly should be made to alight foremost ; its fall ought to be alinost impereptible ; it should come down on the water like a gossamer, fol'owed by the droppers. The monent a fly touches the surface, it is ten times more apt to raise a fish than during the set of drawing it aloug. At no time are we stanch ndvocatea for the system of leading our hooke either against or across a strean ; our method is rather to shase them over it for a moment and then repeat the throw. A trout will discover your fly at the distance of several yards, if feeding, and will lart at it like lightning. Always, if you can, fish with the wind, and do not concern yourself, as some do, from what quarter it comes. In spring, no doubt, a south-west brecze is preferable to all others; yet we have seen even easterly wiads not the worst on many waters, papecinlly during summer months, when the natural fly is apt to hecome over plenty.
"'Trout will sometimes take in the most unlikely westhers, so that the angler should yot dosgrir at any timn

Hunger causes them to feed at least once in the twentyfour hours, and generally much oftener. If the wind blows down the river, conmence at the pool head, nnd fish every inch of good water; you mny phes over tho vory rough and very shallow parts, also those which are ehsolutely dend calin, and clear, unless you sec finh rising in them, when, should your tackie be light, there is no harm in taking a throw or two. Dead water, however, when rippled or diacoloured, may he angled in with great succesa. When you raine a good tront, striko slowly, or hardly at all; only continue the motion of your hand without slacking it; the fish, if large, will hook itself. soisll trout and par may be whipped in with rapidity : it is folly to play or use ceremony with such trifles. Should the fish miss your fly altogether, give lim another chance, and a third if that will not do; a tuuch of your barb, however, will sharpen his wits, so as to prevent him from again rising. He prefers flies without stings. Whien you hook a trout, if you enn, turn his head with the atroain, nnd tske him rapidly down. Ihus you will exhaust him in the shortest time, wherens, by hauling against the current, you allow him to swim freely in his natural direction, and alsc exert three times moro strength upon your tackle than ia really needful. A good-aized fish, handled in this foolish manner, can never be taken; it is impossible to tire him out, and the strongeat line will give way to his resistance. When your victim is exbausted, draw him gently ashore upon the nearest channel or most level part of the margin. He will come in sideways, and generally lic inctionless for a few scconds. during which time you will he nhble to run forward and arize him. Beware of catching hold of your line until ho is properly banked. Many a fumous trout have we deen lost by this inndvertence on the part of anglers, who think so to save time and labrour. One should remember how the spring of the roll is thus removed, and how there remnins no proper curb to the strength of the fish. which easily breaka a single gut, or tears itself from a abarp look, and wishes the astonished angler better aport farther on."

The practice of double-rod fly-fishing for trout or for salmon is n murderous kind of sport, and should he prohibited hy law. A line stretched between two roda, and hang with flies, is taken down the stream by two indiviluals on its opposito sides, so that every part of tho water is gone over, nad every feeding trout rnised. By thia plan large numbers are caught, but many also are wounded, and escape to pine sway for months at the bottom, unable either to feed or spuwn.

Sulmon-Fishing.

This may be described as a gigantic trout-fishing, the principle of alluring and eapturing being the sume, but all the tackle requiring to be stronger, and a greuter degree of physical power heing necessarily anlled iuto operation. The salinon has a peculiar habit very likely to upset the calculations of beginnern; it consists of the ugly practice of running off at a violent speed ss soon us he feels hunself hooked, darting up the stream, throwing himself reveral times out of the water, and generally in the end hatening into some sheltered haunt where he expects to bo sofe. Great tuct is necessary on these occasions, first to give line, and then to keep him from burying hinself in some unayproncliable nook.

With respect to the minutise of the art, looth in throwing and striking, the recommendations of Mr. Younger oi St. Boswells are well worthy of attention:- "I recammend a beginner," says he, "to pructise throwing the ine on a broud smooth pool, whero he can see that it is delivered out priperly, and falls lightly, without splashing. lis surh a case tho practitioner will perccive something which he cannot easily acconnt for: and that is, that witer he has even attained a great degree of perfecluas in the art, be will not be able to distinguish how it
happena that in one throw his long line will procend diroct out, his fly alighting first on tha water: in another throw the mlddle of his line will fnll first, while the farther part, still olediont to the general impulse, will proccoes out the full length, the fly falling the last on the surface This last throw ls not so good as the former, for thes renson, that the main current having csught the middle of his line first, carrien it too quickly down, leaving the fly lagging, to form an awkward curve, na, before it comes over shove the fish, the fly should lie on the water, so as to have the appearance of flying at an angle against tha current. And the angler should so manage his iod that, while he lets his line float round at its full length, yet w cause hin fly to come as slowly an passible over the min apot. In this case the salinon will sometimes rise at once, rather before you expect htm, but more gencrully will follow the fly to the eddy, or edge of the decp, where, if on exsminution he feel disposed to scize the hook, he has it before you perceive a head, lin, or tail alove the surfuce. Indeed, before yon perccive the web of hia toil he gencrally has tho hook in his jaw a foot lelow water, as in descending he goes, like other divers, head foro: most."

Having managed to place the fly over the di sired spot, our anthority continues--" He will make no percepuible motion to kee; his fly on the surface (except ou a siuggish pool), but let it xink a little, depending on feeling rather than on sight; nud though npparently keeping no pull on his line, yet all the while nble to detect the touch of n minnow. On a boil, or rather appearance of a fish, he pulls up lis line, not twitchingly hut actively, stepa a yard or two buck, rests a minute to let the fish resume h, lair and attention, and perhajs feels inclined to alter hiv fly, before he snnoy and disgust or nlarm his fish, to a shade tarker or a size smaller, when he will moat probably come up, and seize it in earnest. Should he not rise again, or rise nnd pass it thrice, leave him quietly slone for the present, and return to try him some tima afterwards. On taking tho fly, the fish menns to retum with it to his precise select spot of lair, on rock, stone, or gravel, at the hottom; and the fine angler, holding him gently, often, in tho first instance, allows him to do so, hut soon, too surely feeling lis awkward predicament, he bolts off ' indigunnt of the guile.' 'Then is the time whet the fisher is attentive; with the butt end of his rod resting on his thigh or groin, he keeps the top nearly erech never allowing it to fall below the proper angle of fortyfive drgrees, an rolative to the situation of the fish, as in this position the elasticity of the rod never allows the lire to slacken in the lenst degree for a single instant, hum. ever the fish may shake, flounce, jerk, or plange. With two or three fingers and the thumbls of his loft hand the angler holds his rod while the wheel-line runs out, regolated by the first or first and second fingers, relieved a assisted, as occasion may nuggent, by the right hand when it cun be spnred from its necrssary occupation of rolling up the whecl-line, as the fish settues a litte of returns inwards. In this nanner the fish is allowedto run right out, up, down, or neross, as he may choose Bot if in an outright dash of thirty or fitty yarda alant ending in nn outward loound fling above water, the inesperienerd angler should foel flustered, which he is refy likely to do, and by some involuntary twitels of the nien ning line let the top of his rod be pulled down to a leed with his own hrad, then the tug of the last plange will assuredly hrenk his hook or home, or tear the hook from the mouth of the fish. Or, what is ns bad, a sudden jels or turn of the tish will give the line a momentary slachening, when the hook's hold, already so strained as to have widened its incision, will fall out, and your fish is gone for ever."

Now is the critical moment for the salmon-fisher, who must keep up his rod and give line. "The fish will then," continues John, "allow himself to lie led at easa
w the angler's a ditar, when, on fi make another ds the middle curre atill continued p the challow, whe alarmed into a n ing his outwardand again, and ne vent of forming swimming aro me moving him by d he must, like all fall panting on hi rod length, which without slnckenin fore finger and root of the tail (seizure), lifts or ra gravel and grass, the back of the ne

- After going t pounder (snd the forty-fnur), the wri that from the mom laid on the grass, h of more or less pul of run, regularity arJ final success. loid on the dry gra lip of his mouth wi ateel of the hookmanagement in the a master angler so fish to land excites the : hatter should be ral ease of mind wh tions of loss and ge often tends to stir This perlect case is cellence and ultionat
Leistering is the kind of sport purst Armed with leisters, a set of fishers pro altract the fish by Water by meinbers disrovered, ono seloc rapid hlaw transfix es the fish cunnot be into the water, hut several men may be stream while shouts spectators on the ban of Guy Mannering, h srecies of sport, whi snd its trihutarics, bu ders who are regardle fish during "close tir shut-from about the

The par is a small dance in almost all free communication course, according to i length than yis inche maguitude. It is sil peculisr blueish bars more nicely-forked ta Epots along the sides i it distinguishing tho mist resimbles.
0 the actual Ot the actual char

procmas

 annther a farther procem for this e middlo wing the it comes tar, 80 an gainat thin tiol that, th, yet to the main es rise st generully ep, where, a hnok, ha shove the of his tail low water, head foro-a sired spot, perceptible on a sioge on feeling keeping no the touch e of a fish, ely, stepat 1 resume his to alter his, is fish, to a ill nust pro. oould he not him quielly some tima ans to retum pek, stone, of holding him mo to do so_{H} dicament, he ne time whel his rol texto nearly crech rgle of forty. he fish, as in lows the lire instant, hore minge. Nith fiff hand the ns out, regre \rightarrow, reliesed or right hanh pecupation of is a little ot is allowed to may choose yards aslant ter, the iner oh he is very th of the ruse wn to a level t plange will he hook from a suduen jek wntary slacktrained as to 1 your fish is
n-fisher, who Thue fish will ie led as exso
\checkmark the anglor's side of the river, like a bndegronm to the alter, when, on finding the water shallowing, he will again make another desperate effort, probably a new dash into the middle current; but too much exhausted to reaist the still continued pull upon him, he will aoon again fall into the shallow, where, on a aight of hia enemy, he is again slarmed into a new effort, and again exhnusted by turning his outtvard-bound head down with the water, egain and again, and ngain, an if the partica were in the amusement of forming circles, until his own last efforta to keep swimming are made subservient to the eatious angler in moving him by degrees into the shallow, where, half dry, he must, like all the strong, at last yield to hia fate, and fall panting on his side, while the line rolled up to within rod length, which is to be held with ita top lindwards, without alackening, and the fisher seizing him with the fore finger ant thumb of his right hand across by the root of the tail (which is by far the surest method of acizure), lifts or rather slides him out head foremost over gravel and grass, and in mercy fella him with a blow on tho back of the neck.
"After going through this process with a twenty-two pounder (and tho process would be the same with a forty-ffur), the writer can nver, that he does not conceive that from he moment be has hooked such until he was laid on the grass, he ever for an instant had three ounces of more or leas pull on the fish; for in all circumstances of run, regularity of pull is the sure test of true skill at 3 final success. Indeed, I hnve seen many a fine fish lail on the dry gravel when the hold of the hook in the lip of his mouth was so slight as to be smaller than the gleel of the hook-80 much for equal pull and cautious management in the run. And, in short, a man is never a master angler so long as a desire to have his hooked fist to land excites in his feelings the least agitation, as tha :satter should be managed with that cool philosophical ease of mind which is alike above the paltry calculations of loss and gsin and the common ridicule, which often tends to stir up a degreo of childish fretfulness. This perfect ease is rubolutely necessury to first-rate excollence and ultimate success."
Leistering is the name usually given to a murderous kind of sport pursued by sslinon fishers in Scotland. Armed with leisters, or speara with three-barbed prongs, set of fishers proceed to the river's bank, and there stract the fish by the glare of torches held over the water by meinbers of the party. When a salmon is discovered, one selects it as his prey, and by a cool hut rapid hlow transfixea it with his spear. In many cases, the fish cannot be secured or landed without plunging into the water, lut this usually forms no obstacle, and several men may be seen floundering in the depths of the stream while shouts nad confusion prevail aunong the sipectators on the banks. Sir Walter Scott, in his novel of Guy Mannering, has presented a vivid picture of this specics of sport, which is atill pursued on the Tweed and its tributaries, but mostly by parties of rude marauders who are regardless of law, and kill vast numbers of fish during " close time," or when the rivers are legally slut-from about the middle of October till February.

the Par.

The par is a small fiah, which is found in grest abundance in almost all rivers which are clear, and have a free communication with the sea. It varies in size, of course, according to its age, but seldom reachea a greater length than siz inches, and is usually found below that magnitude. It is silvery in appeurance, und marked by pectiliar blueish bars or marks along the body; while a more nicely-furked tail, and one regular row of scarlet spots along the sides in place of two or three, nid further in distinguishing the par from the trout, tho fish which it
put resumbles.
Of the actual eharacter of the par, whether it is an
independent speciec, or the fry of aalmon, there has been a long-continued controversy. Many naturalints were Inclined to hold it as a kind of mule, or creature hetwixt the trout and aalmon breeds. 'Tha diapute, however, may be alaid to have been terminated recently by $\mathbf{M r}$. Shaw of Drumbanrig, whose lengthened and ably conducted experiments eatablish the par to be the natural produce or fry of the salmon. In a memoir communicated to the Royal Society of Ediuburgh, Mr. Shaw mentiona that his first experimont on the gubject consiated in the removal of a number of para from their native stream to a pond, when he fuond that all of them assumed the perfect appearance of salnon fry or smolts, at the end of perioda of time proportioned to their bulk when placed in the pond. He also aatisfied himself that the change from the state of par to that of amolt, which is marked by the appearance of a covering of ailvery acales over the blue bars, nlways takes place at the age of two ycars; and that then, for the first time, the metamorphosed fry take their departure for the sea.
But it was objected to these experiments, that Mr. Shaw might have mistaken young salmon for pars in the first instance, во rendering his conclusions of no weight. To settle all disputes, he began bis experiments with the ova or cges of the salmon, first constructing ponda for their reception. These ponds, three in number, he protected by falls, pipes, and gratings, in such a manner as to seclude them in a perfect manner from all interference on the part of any other fishes whatsoever. Having provided a proper net, Mr. Shaw was auccessful in capturing a pair of adult sulmon, male and temale, while engaged in depositing their spawn. By expressing a portion of the ova from the female, and of the milt from her companion, he had it in his power to transfer fertilized ova to his ponds on the $2^{\prime \prime}$ th of January, 1837. "On the 2 tst of March, filty-four days afterwards, the embryo fish were visible to the naked eye. On the 7th of May: they had lurst the envelop, and were to be found among the shingle of the stream. It is this brood which I have now had an opportunity of watching continuously for a leugth of time."

Mr. Shaw's deaciptious of the brood, read to the Royal Society, and accompanied with specimens, will beat show the genernl scope of the results. At the uge of forty days after the exclusion from the egg, the symmetry of the young fish's form was but imperfectly developed. " After the lapse of two months (7th July) the shape was found to be materially improved, and to exhibit in miniature much of the form and proportions of a mature fish. At the age of four months (7th September) the characteristic marks of the par were clearly developed. Two months later (six montha old, 7 th November) an accession both of size and strength was apparent, and on comparing the pond specimens with the par of the river, no marked difference was perceptihle. The average length at thia time was three inches.
" During the winter months, the general temperature of the rivers is so low, and the consequent deficiency of insect food so great, that the whole of the Scottish anlmonidx which inhalit the fresh waters during that season are well known to lose rather than gain in point of condition. The pame rule holds in regard to the young salmon in the experimental ponds, although not to tho same degree, they having maintained comparatively a auperior condition throughout the winter to those found in the river of a corresponding age and size. The temperature of the ponds, nveraging about 40 degrees during the winter, not ouly keeps the young fishea which occupy them in a more nctive condition, but the insecta themselves are also more abroad, and thus afford a convenient supply of food not to be obtained by those at that time in the river, the average temperature of which, in ordinary winters, barely execeds 34 degrees. I shall now refer more specially to the specinems before the Soc:cty
n. Number six is a apecimen from pond number ons, of the age of nine montha, takon in the middle of February, 1838. It exhibits little or no particular arcession of wize or condition to that of number five, but may merve to ahow the general appearance of the several broods of the young walmon in my possession at the age of nine noonthe.
" Number saven is a apecimen twelvo montha old, takon from pond number one, on the 10 th May, 1838. It ls much Improved In condition, as well as in extornal apmearance, in comparison to that taken in February, and has exchanged ite duaky autumnal and winter coating for that which may be called its summer dress. It moasures about three and three quarter inches in length, and is denominated, along with those of a corresponding age and size in the river, the May Par. Immediately after the migratio: of the two-year-old par (which the latter ntways effect about the beginning of May, under the name of salmon-fry), there is no other par, besldes such as havo been recently hatched, to be found in the river, ase those which correspond with this specimen. which is the Pink of the river Hodder, alluded to by Mr. Yarrell. As the aunmer advances, thay increase in size, and are actually the little fish which afford the angler in salmon rivers so much light amusement with the rod, during the months of August, September, and October. They remain over the second winter in the river, during which period the males ahed their milt, and are found continuing their kind along with the female adult salmon, although still bearing all the external markings of the par, as I shall afterwards more particularly mention. Number eight is a specimen eighteen months old, taken from fond number one, on the 14th November, 1838. It measures six inches in length, and has now attnined that tage when all the external characteristic markings of the par are etrikingly developed, and, in point of health and condition, cannot be exceeded by any taken from the river. All the males, at the age of eighteen months, of the several broods in my possession, last autumn (1838) attained a most important corroborative stage, namely, that of showing a breeding state, by having matured the 'milt, which could be made to tow freely from their bodiea by the alightest pressure of the hand. The fomales of the asme broods, however, although in equal health and condition, did not exhibit a corresponding appearance in regard to the maturing of roe. The male and fimale pars in the river, of a similar age, are tound reerectively in precisely a corresponding atate, which may surely be admitted as most important evidence in support of the fact that all these individuals are, in truth, specifically the same.
u Number nine is a specimen two years old, taken from pond namber one, on the 20th May, 1839, after having astumed the migratory dress. The commencement of the change, which was perfected by the whole of the brooda about the same time, was first observable about the middle of the previous April, by the caudal, pectoral, and dorsal firs assuming a dusky margin, while, at the same time, the whole of the fish exhibited symptoms of a silvery exterior, as well as an increased elegance of form. The epecimen in question, so recently par, exhibits a very perfect example of the salmon fry or smolt."*

These experiments, conducted in an unexceptionable way, were confirmed by other observations. Being sucindied that the par never migrated to the sea until the ago of two yeara had been attained, and the change from jur to amolt had taken place, Mr. Shaw watched to dislover the descending ahoals. He was successful on three actasions. "The first of these was in the firat week of May, 1831 . I was able deliberately to inopect them as the meveral shoale arrived behind the aluices of a salmon

- 1)rec or two of each of tha ithree broots assuraed the migrsberv or smoll drem at the eft: oi iweive moaths.
cruive; and while they yat remained in the water, and were awlmming In a particular direction, Indiatinct (rana verse lateral bara might still be meen; but as they changed their position, those became as it were lost in the ailvery luatre. I also examined many of them in the hand, and could there elas, by holding them at a certain angle in relation to the eye, produce the barred appearance; but when the fish were held with their broad aide directly oppomed to view, the charactor alluded to cunld not be seen. Its actual existence, however, could be easily proved hy removing the deciduous allvery seales, when tho barred markings became apparent, and, of course, continued so to whatever light exposed. The thit op. portunity to which I shall here refer occurred in May, 1836, at which time, as I have stated, I compared a few, of the deacending smolts with those which (having been two years in my posseasion as par) had, in the confine. ment of the pond, assumed tho corresponding silvery aspect of the salmon fry. Tho river during this month being remarkably low, I was thus enabled to ascertain more accurately the time cluring which they continued to migrate, which I found to be nearly throughout the whole of the month, but nore expecially in the course of the second week, in which the shoals were both larger and more frequent in their successive arrivals. Their external aspect was the same as that of the foniner shoaln, and the averuge length, as usual, from six to seven inches."

To conclude this subjoct, it may be added that pars are never found where salmon do not exist; and that large pars are alwaya found to disappear when molts disappear; being, indeed, as Mr. Shaw shows, the samp animals slightly ehanged. Other points in the hatory of the par are fully elucidated by Mr. Shaw, whore memoir the disciple of W alton would do well to consult.

Pars are caught by the rod and fly, or with wormbait, in the same manner as trouta; and fishing for them forms a common and amusing spe rt to the juvenile anglers in our Scotish rivers.

Ftsh PoNDs

Artificial ponds for the rearing of fish and aupplyiug them when wanted for the table, were common in ancient times. The luxurious Romans possessed such preserves, and we learn that one belonging to Lucullua sold after his decease for upwards of $£ 24,000$. Com. paratively little has been done in modern times in the way of establisning artificial ponds, and those which erist are chiefly to be found in noblemen's preserves. lie artificial fish ponds may, with little or no trouble, le made to yicld a large and regular supply of fish, and mas be conatructed at a most insignificant expense in any piece of low-lying wasto ground intersected by a rivulet of pure water.
The fish most suitable for ponds are trout, carp, tench, perch, and minnows. Eels also thrive in ponds, and, what has frequently been a matter of surprise, these animals sometimes find their way to ponds oit their own aco corl, without actual transfer. It is extremely probable that the spawn or young of eels and other fish is gotbled up and vented by hirds in appropriate localitics; there is at least no other rational means of accounting for the spontaneous stocking of remote fish ponds and lakes

The size of a pond may be from one to twenty actes; but a pioce of water of from two to three acres is const dered the most convenitent dimensions. Of whatevet size, the pond must net be oventocked, and it must not be left too long unfished. Fish ponds, to be on the mod effective scale, should be in a series of twa or three, the water running from the one to the other. This will allow meuns for periodical cleaning, if required, and for having a choice of fish. Bome remarks of Daniel may here be introduced:-"In porids so situated as to have communication with each other, never put into the uppet of them either a pike, a bream, or a roach; the spany
will gat througn lower ponda will pike will deatroy two latter will con rubaiaterce of bot and roach should, into the first or h continuea-"Som to have three pond (which is mestly should continue d A second fir the fry, iato which the or sarly in A pul f ny day for their r their being destroy new habitation. years, and becoine third or main pone so grown as to mes ing their heads an
"The proportion ent ponds are-for male, and six or ei seven years old, in full eyes and a wound,' are to be ously clenned of al animale, as 'perch, and aleo the frogs; and apen exposure terfawl kept from or twelve hundrad for an acre; and for of fitteen feet is th penda greatly on tha
Our friend Mr. S but mainly in refere be of the hardier either case, the tran made with little di hoop-net, place then to their new habit: may be carried in w niage best in winter during the day.
"Ponda intended be made large; the wards the middle, f five or six feet. W encouraged. A seri ent elevations, is pre this fish. These ba and food-gate, so th another for the mutt paiting. Also, the u those below, and no for a nursery end br perch in a warm sj tained readily in Sc off and paved with ycars; many nllow months, an:l others s. ceit latorionsly enco writere of bygone day
will get trouga c.ee gratingw, and by that means all the fower ponds will unexpectedly swarm with them. The phe will deatroy the fry of the carp and tench, and the iwo latter will consume all the food which should be the mbuniterceo of both parents and progeny. Pike, bream, and roach should, therefore, on no account be ever put into the first or highest of a auccession of ponds." Ifo continues-usome have recommended, in raising enrp, in have three ponda. One whercin the fish are to apawn (which in mostly from May to July), and In which they should continue during the summer and ensuing winter. A second for the convenience of nursing up the young fry, into which they should the put at the end of Mareh, or eurly in Apul following, choosing a calno lut not sunny day for their removal, and being eareful to prevent their heing destroyed when roming to the sides of their new habitation. In this pond they may remain two years, and becone fuur, five, or six inches long. Tho third or main pond is for the reception of those that aro so grown as to measure a foot or more in length, including their henda and tails.
"The proportions advised for the stocking these different ponds are-for the first sort, per acre, 'three or four male, and six or cight femalo carps, those of five, six, or seven years old, in good health, with full acule, and fine full eyes and a long body, without any hemish or wound,' are to be preferred. The pond must be previously clenned of all sorts of voracious fishes and other animals, os 'perch, pike, cela, and trout; the water beetle, and also the froga; the newts or lizards;' have a warm and open exposure with soft water, nad all kinds of whterfowl kept from it. For the nursing pond a thousund or twelve hundred carp may be not moro than sufficient for on acre; and for the main pond one to every square of fifteen feet is the allowed space, as their growth depends greatly on the room and quantity of food."
Our friend Mr. Stoddart likewise treats of fish ponds, but mainly in reference to Scotland, where the fish must be of the hardier kinds-perch, pike, and trout. In either case, the transfer of the fish to the ponds may be made with little dilliculty. Oa leing cuught with a hoop-net, place them in large jars of water, nad cart them to their new habitation; if this be inconvenient, they may be carricd in wet moss or strav. All fish bear carriage best in winter, and better during the night than during the dny.
"Ponds intended solely for perch do not requiro to be made large; they should slope gradually down towards the middle, from a depth of six inches to one of five or six fect. Water weeds ought not to be grently encouraged. A serios or chnin of amnll bosina, at different elevations, is preferable to a single large reservoir for this fish. These basina should be connected by a sluice and flood-gate, so that one may be readily empticd into another for the mutual convenience of cleaning and repaiing. Also, the uppermost ought to be shallower thnn those below, and more exposel to the sun, so as to serve for a nursery and breeding-pond. Bream live well with perch in a warm situation; they are not, however, obtained readily in Scotinnd. Perch ponda should be let off and paved with channel stones every four or five years; many nllow them to remain fallow for some months, nn:l others sow them with grass and oats, a conceit latorionsly encouraged by vhimsy and theoretical writers of bygone days."

The following engraving reprements a poir of perch pondu; a is the upper or breeding pond; b, the lower

pond; r, a covered wluice with movablo gratings; d, the sluice with outlet; and c, the small feeder.
"'The pikc-pond," proceeds our authority, "if for brecting and fattening to sonse extent, ought to be lurge, covering from eight to twenty acres; its mean depth six or seven feet. One end, however, should be much shallower, and sown with bulrushen or other water-plants. Previous to stocking it with this fish, a sub-stock of perch or trout should by all means be introluced; otherwise, without a grest supply of auch sustenance, pike will not only hecome thin and ill-tasted, but quarrel and devour each other. 'To facilitate a stenily supply of perch, small tanks should he constructed alongside of the leading preserve, with conneeting sluices and flood-gates, so as to expelt when necessary, n shoal of live food."

Our author next treats of trout ponds:-" Choose from six to tiventy acres, lesa or more, of an oval shape, lut indented with small bays. Cast a long trench through the middle, from head to foot, noticing that ynn ean rendily divert nlong it the stream just mentioned, which stream is intended a a spawning place, sceing that trout never shed their roe in deall water. Let this trench decpen gradually as the ground descends; so that at the intended foot of the pond it ahould sink nearly three yards, while the upper part thereof is kept shallow. Dig from either side of your trencl, kecping its slope and level until within four fathoms of the intended margin of the fish pond. When this is done, turn your attention to what is called tho dam-head, at the outlet or lowest part of the pond. From it continue your trench for : short distance in the form of a paved sluice. Build stones, grass-sols, and clay, along the bank on cach side, if needful, and drive in a few pilcs to strengthen it. Then set a flool-gnte at the out-let, and another to aerve as a check in case of accident, threc yards farther down, where your paved sluico terminates. A few eart-loads of conrse channel, not from the sca, ought to be emptied over the enrthy parts of your pond, which otherwise are apt to get covered with weeds, or else to encourage cels, the marked enemies of trout in all stages. After this ia done, let loose your stream and form your preserve, introducing trout of ahout six inches in length, eight or ten to every acre. Raise also at the head a small nor sery of minnows, connecting it by distinct sluices bula with the pend and its feeder. These are favourite funcu of trout, and fatten them at a quick rate."

To these remarks it may be added that little care need be taken to fetch apparently fino breeda of any speciew of fish from a grent distance, as what seem poor fish at the period of transfer will greatly improve by good pond fecding, and the easy unharassed life which they enjug.

GYMNASIIC EXERCISES-OUT-OF-DOOR RECREATIONS.

Cricket.
A nesine for indulging in active sports and exercises has evidently been given to youth for the admirable purpose of promoting hodily health nad strength, at a period of life, when mental occupation or sedentary employment would not only have heen unfiting, but positively injurious. Instead, therefore, of rniling at the boistrous pastime of boyhood, ridiculoua as they may sometimes sppear, we ought to view them, so long as kept within the bounds of moderation, an consistent with a great providential design in ereation, and worthy of our warmest approval and encouragement. Impressed with these considerations of the value of youthful recreations, particularly those carried on in the open air, we should by all means afford reasonable scope for all the usual and harmless sports in which young persons are plrased to indulge; we mheuld say to purents, let the boy have his narilles, ball, nine-pins, and hat; and the girl her doll, skippingrope, and hoop, besides ony other toys which would call their reapective faculties into harmonious exercise. But an indulgence in physienl recreations and general amusementa is not to terrimate with the period of youth. In edvanced and middle life, it is of the greatest importance to heelth to relieve the tanked brain, to soothe and conspensate the drudgery of our current lahoura, and to bring into exercise those parts of our muscular frame and intellect which professional duty has left unoccupied. To young men, especially, whose frame requires regular and bracing exercise, those out-of-door recreations which atlond a certain degree of amusement are indispensmble; and to thein the contents of the present sheet are more particutarly submitted. Our olject will be to point out what eports may with propriety be indulged in, suitalile to the different seasons of the year, and huw they may be pursued with advantage to health and other circumstances.

GYMNASTIC EXERCISES.

Gymnastics are those exereseses of the bolly and limhs which tead to invigorate and develop their powers." In an erlinary course of living, withont due regned to rules for promoting bolily strength, the frume becomes relaxed, the muscles are solit, the circulation of the blood languid, the tones and joints delilitated, and the stomach weakened and dainty. T'o avert as far as possible these im-

[^63]perfection, gymnanticy ought to form a part of ellucativn in youth, when the joints and musclea are flexible, and time in permitted for the various kinds of exercimes.

Precrantion.-It han not been unusual of late yearn bo conduct the gyminastice of echoola on an improper secule, by imprelling young persons of compuratively feeble framice, to undertake feats and exercinen which have heen at variance with the bodily orgmization, or at least higlly dan. geroun and of no practical value. A caution in neces. sary on this nubject. "The lest guide wa ran huve," observen Dr. Andrew Combe, in a work on phymiolagy, "is to fullow the footatepu of nature, whether it is in barmony with the monle of netion aswignoll ty the C'rea. tor to the parts which are to perform it. If it he so, we may procerd with perfect comfidenee that it will not only improvr the health, hut add to the freedom, elegance, pree. cision, nud streugth of our movements; whercas, if it he oppresed to the obvious intention of the Creator, we may rent assured that no good can acerue from it. If, fon example, we examino the various nttitudes and motiona of the looly which oecur in feneing, lancing, swimming, shuttecoek phaying, and some of the hetter class of gyine nastic exercises, wo find that they are not less gracefid and leneficial to the young who ergare in then, than plonsing to thone by whem thry nre wiosonsed-junt be. cause they are in perfect barmony with, nature, or, in other words, wild the atructure and raxde of action of tha joints, liguments, and museles by which they are expectele But it is tiar otherwise with some of the amomalous exescises which were at one time so farlionalile, and which are not yet extinct ju schools and gymunsin, nud which seem to have for their chief olject the conversion of future men and women into foresters, tiremer, or savagea, rather thun into beings who are to continue io have the use of stairs, ladde rs, earriages, stemm-loats, nud the obler convenieners of civilized lite. It is no doult a gaod hing for ut boy to he able welimbl up a perpendicular pole or a slippery rope, when no other means present themselvis of nttuining an important clyect at its upler end; and itia an equally goxd thing for "y young hady to be alle to aus tain her own weight hanging by one or both hands, when there is no possibility of ressing her fieet on terra firmal and where boys nod girds are stroug enough to tuke ples. sure in such amusements, there is no great reason to hinder then, provided they are impelled to them, nut by emulation or any secomilary motive which may lead io over-exertion, lint by the pure lowe of the exerrise itetif. In all ordinary circtumatunces, those only who are vigor ously constituted will ntermpt them, and, if left to them. selvers, will be sure to desist lefore uny harm can be done. But the ease is entiolly altered when such extraordinary evolutiona are not only encouraged but taught to all indiseriminately, whether they are strong or wrak, reedulue or timid. We have ouly to reflect for a moment on the structure of the shonder joint, and on the aphere of aco tion of the museles surrounding j, to perereive at enfe that the position of the one and the strain upon the other canset hy the exercises alluded to, are so foreced and unnaturul as to exclude the possilisity of the Creator having intemled cither to be practised, except upon ecrasions of urgent neressity, and to discover how pregosteraus it is therefore to muke them a subjeet of general instruction Nay, the very violence of the eftiont cepuirell to sumain the body when hanging by the hauds, is fur leyond that malerate exertion which ndds to hutrition and to strength, and in delicate subjects it may even induce relaxatior: und stretehing of the ligaments and blood-wessels, and thus, as in the cose, of the young men at C'a nbridge, lay the foundation for future and latal disease. Tha sane
memerks apply to didu down an inc Iy which unnatur way up the nes averely tried. I 4 mequiras only tu wheh they proxlu trat to the ease a titudea, to perreei nature, and that 1 from them. In th then, we shoull n mounting diffirult risk of imblucing nu wostrengthen the call tho nocial nud at the sames time, evolutions only as nalural action of 1 ing to attain this o avaid great fatigue duation of the ex oulta of increased ber that the point nained, is not the be diseovered ouly tion."
With the precuu the following gymu

Tho exerciser ar piece of ground, fir injura the feet or pe The littinge are a e pulos, \&e. The ir sansy-fiting trousers, The belt shuuld pu bight. The perforn at liust hefore any

The hody must throwing out the li oon ahould be erect. face looking straig wre to be square, wi so as slightity to ct closed; the heels \mathbf{j} mes turried out ; th down ; the elbown hands open to the wuching the legs; farefinger. When sanding in this pos lention, as shown in to be taught to mare of a soldier on drill, thrown out, and bo pasition, at the order
The pupil next and ex'end the arm of this kind is to c frant, the fingere li points; now raise th logether, till they are in fig. 2.
The second moti the arms out in from wexhing, and return fig. I: this ja to to third in to extend the mise them over the the tingera pointing
monerks apply to a common practice of making the pupila dide down an inelined plane, resting on the hands alone, Iy which unnatural effort the ahouldera are pusined half way up the neck, and tho wriats, arma, and chent wevely tried. But in tisene and other almilar evolutions, It requiren only to look it the dragging abl distortion which they prosluee, and whish form such a painful collrant to the ense and graco of all natural motiens and atthedes, to perceive that they are out of the order of nature, and that neither health nor elegance can reanlt from thein. In the selection of exercises for the young, then, we should not be mislead by a vain teaire of surmounting difficultiem alnd performing fents at the serious riak of inulucing uneurisin ot rupture, but rather endeavour to atrengthen the looly by active amusements, which shatl call the social mul moral feelings and intellect into play at the same time, and by the practice of such gymmastio evolutions only as tend to inprove and give tone to the natural action of the moving powers. Amin in endenvonring to attain this ohiect, wo should lou ulways carrful to avoid great fatigu, and to modify the kind, degree, and duration of the exercise, so an to produce the desired resula of increased nutrition and strengeth; and to remember that the puint of which these results are to he obtained, is not the sane in any two individuals, und can be diacovered only by oxperienco and careful observation."
With the precaution suggested by theae observations, the following gymnustic exercises m.ty be pursued:-

General Directions.

The exercises aro hest performed in an open court or piece of ground, firin below, but without any stones to iajure the feet or person; a grass plot is tho inost suituble. The fittings are a climhing stand, vaulting bar, leuping polea, \&c. The dress of the gymnant is to consist ot enay-fitting trousers, and encircled with a belt or girth. The belt shoulil pass round the loins, and not be too tight. The performances should bo in the forcnoon, or at luast before any heavy meal.

Positions and Motions.

The body must be drilled in the art of standing and threwing out the limhs. In standing properly, the person should be erect, tho head held up, nod the face looking struight forsward; the shoulders are to be spuare, with the chest fully eyprord, so as slightly to curve the back; thic legs Aoned; the heels io a line, and closed; the thes turned out; the urins honging straight dowa; the clbows held in to tha lualy; the hands open to the front; the little tinger wuching the legs; and the thumb flat to the foretinger. When perfected in the art of alading in this position, which is called atuntion, as shown in fig, 1 , the next thing is to be taught to march or walk, as in the case of a soldier on drill, the feet being alternately thrown out, nad both brouglit together into position, at the order to halt.
The pupil next learns to bend the body and ex'end the arms. The firnt exercise of this kind is to carry the hands to the froat, the fingers lightly touching at the points; now raise the urms, the hands still together, till they are held ovor the head, as in fig. 2.

The second motion is to learn to hold the arms out in front, the tips of tho fingers buching, and returning to the position of fig. 1: this is to be done repeatedly. The Uhird is to extend tho hunds separately, and nise them over the respective shoulders, the fingers pointing upwarda. 'The tourth
motion ia to keep the arma an I lege atrangat, an j to low the body forward, with the neenl don und the lipa of the fingers towarde the ground. '1'him what dificu] motion is repreacnted in fig. 3.

A fifle arotion is to reume the
 pasition of attention, allowing the orma to full freely to their place, hat atill without bending the legn. Thene motiona ara trying to the pupil, and ahould be done gradually; the grent object is to exercise the inuscles bit by bit, and perfection is not desirable at first. 'I'hen follow other motions, as throwing the arms out in opposite directions, awinging the arma, Sc. In these, it is of importnnce to excreise the left hand and arin fully more than the right, in order to make them as active and strong.

Iodinu Club Exercisea

'I'he pupil having advanced in simple personal exercines, in supposed to be momewhat strengthened; and to fiarther the operation, he proceede to the Indian club axercises. 'I'he main olject is to expand the chest, and increuse the power of the aring. For this end, some sedene tary persons regularly exercise themselves with dumbhells; that is, heavy piecen of metal, one being held in each hant. 'the club exercise is an improvement on that of the dumb-bells. The cjub bears a resemblance to the hat for cricket, and varies in weight from two to twelve pounds. One is used in ench hand. The following, according to 'Iorrens, are the regulation-exercisen now adopted in the army :-
" The recruit being placed in the position of attention, with a club in each hand pointing downwards, se in fig. 4, must be exorcised as follows :-
"First Part-1. At the word one, the club in the right hand is slowly carried round the head, until the bund arrivea in a perpendicular line above the shoulder, with the large end of the club pointing in a diagonal direction to the rear; 2. T'he club in the left hand is ruised in a similat manner, nud carried over that in the right hand till it reaches a corresponding positon ; 3. The hands aro carried slowly to the right and left, until they become in a true horizontal line with the shoulders, the large ends of the clubs still remaining to the rear; 4. The hnuds are brought slowly to the first purition. Cure must be taken that the recruit does not stand with a hollow back during this and the succeeding practice.
"Scrond I'url-1. Raise both hands to the front, approaching then close together, in horizontal line with the shonlders, the elubs being held perpendicular, with the large enda upwards; 2. With the body well poised forward, separate the hands, and carry them to the right and left line with the shoulders, the large ends of the clubs remaining upwards; 3. With the head well kept up, let the clubs turn over till they point in a diagonal direction to the rear, the hunds still romaining out in a line with the shoulders; 4. With the arms extended, drop them slowly to the first position.
"Third Purl-1. The club in the right hand is circled ronnd upon the right of the body for a lew revolutions of tha circle, or until the word halt is given; 2. The one in the left hand is used in the same manner on the left of the tody, until the word halt is given, wnen the iscruit will
remaln perfecily atealy in the first powition: 3. With the bodv rather leaning forward, circele both clalm at the anme time, on the right and left of the body, until ordered es halt."

t,eaping.-Voulturg.

The simplent kind of leaping is that of jumplige on sevel ground from one point to another, with or without a run. 'I'he run accuinulate power in the permon, or momentum, and onublen pernon to leap consideraldy farther than without such an aid. "In all kinda of leapIng," obwerven Walker, in his "Manly Eixercinen," "it la of great importanee to draw in and retain the breath it the moment of the greatest efliort, an it gives the chent nore molidity to aujuort the reat of the members, impels the blood into the muncular parta, and incrasen their etsongth. 'I'he hasing, also, should the shot, and the arma pendant. 'l'be extent of the leap in height, or horizontally, in proportioned to the power employed and the practice acpuired. An it in performed with facility only in proportion to the atrength eserted, and the elquticity nud suppleness of the articulations and muscles of the lower extremitien, much exercise is ureceasury to attain thint degrew of perfection which leswenn all obstaclea, and supplion the meana of clearing them without danger. Jightnens and firmness are tho qualities neecnary for leaping; every thing should the done to sequire these two qualifieations, for without them leaping ia neither gruceful not safe." Pupila logein by leaping short distuneen and no great licight, and na they become expert. the fent la increamed. To regulate the exprcime, a leapIng atand is euployed ; it conainta of two inovable poats, about six feet high, haviug, ahove righteen inches from the ground, holen bored through them, at the dintance of an inch from each other: a rope stretched across from pina,
 and held tight by sandbaga, is the lar to be lenped over.

In leaping without in run, liold the legs and feet clomed, bend the knees well up, hold forward the head, and throw out the hands, as in fig. 6. Skill in throwing forward the body with a jerk, thua donbled up, is only aequired ty experience. Latt great caro he taken to descend with an inclination forwari, and to fall on the fore part of tho foet, so an to touch the ground lightily, and by the apring of the feet and limhes, to deaden the sluck.

In leaping with a run, the run preceding the leap should never exceed ten paces; the rime into the air to take place at n dintance from the cord equal to half the loeght of the churd from the ground. Skill should be attained in leaping from cither foot, or from the spring of both tret. It is eonsidered a good loap when five feet are cleared; a first-rate one is five and a hatf; and an Hxtraordinary one six feet; few, however, ever reach more than four fiet.

What is gained in bright is lost in distance. To nako - loug leap, therefore, it is not necesmary to go high. The measurement of long leaps is by marks on level and toft ground, and he who rleary the greatest number of boarks is the most proficient. As in high leaping, the toody munt the inclised forward, and the spring mado troin the balla to the toes. I'o clear twalve feet without urun is considered a good leap. With a run of ten to theren paces, incressed in velocity as the runner apfromenes the npringing point, a leap may be pelformed ol fourtern or tiftern feet. In this running leap, it is beat to epring from the fool in which there is most pro-
aciency, and to rine th a modarate helglit I an the groand too low a apring defenta the deaired end.

Leaping from a high to a luw situation is another uen ful exereise. To nequire proficiency in it , begin with sie derate heighta, and learn to fall motily on the balls of tie toea, or fore-part of the fret. If the fall be upon the hecle, the whole hody may be jarred, and the legn stove. Keep the loody compact fin the dencent. with the hande well forward, wo that, when alighting, the puraon witl apring lightly up froin a crooked posture.

Faulting in that khad of leaping in which the body is helped forwarl by a momentary leaning on ans olject by the hasuds. 'The art of vandiug may prove useful lin many circumatancea in life, ms, for instanee, in getting quickly
 over a paling, fence, or gate to elude das. ger. Exerchaca aro performed with vaulto liug bara, of which an illustration in given in $1 \mathrm{~g} . \mathrm{F}$ 7; they are of various heights, and nome are shape! like a hore with a maddle.
Vaulting in performed with or without a run. The spring, as usual in from the toes; and renting the landg on the har, tho legs nre raimed, and by a jerk pitched oves to the other nide. The pupit is to learn to vault in this manner, rither towarda tho loft or right. When perfect in the exercise, he lemens to vanlt straight forwarl over the har, lestween his hands, in which feat very great skill is me cewsary in doubling up the haly during the apring. The methods of vaulting on and oflhorse-hlocks are immmerulle,

Leaping with a pole is a combination of nimple leaping and vaulting, and is also a now uncful und an elegant accomplithe. ment. 'I'he pole should be smooth, light, and from seven to ten fect long. IIrld in the hands, as in preselited in fig. 8 , the left hand brelow and the riglit alove, the pole: in planted with itw lower point on the ground, and by a spiring from the lidt foot, the looly is inperlerd through the air to th desired distance.

In purforming this escrcine, the pupil munt lenrn not to lean ton much on the pole, and not to keep too close to it. 'I'he knatek of poldeleaping is, like all other kinds, dependent oll the spring of the fect, and the presence of inind in throwing the bedy for ward lightly and gracefully. The beet plan is to begin with short leaps merose ditches, nod to incrase the dim tance afterwaris. When the method of apringing from a fixed situation ia acquired, proceed to advanced pracetice by moking a run, a quick plant of the pete. and s spring to a considerable distance, as across a brook of twrlve or fifteen feet in width.

The noxt atep is to learn to vault over ia ligh obyet by means of the pole. 'I'wo posts and a cross cord, a in fig. 9 , are usually emplosed in this exarcise. The leap is taken hy a run, and "upon this run," wherven Wilker, " principally depend the facility and sucress of the leaj. As the spring can take Blace only with one foot, and as this must arrive correctly ut the springing place, it is necessary that the oriler of the steps should bo arranged so as to effect this object. The fixing of the pole in the ground and the spring must take place at the same instant,

neevile by that me aperce together: " performed with the estefully obverve th plant of the pole, ar ron ${ }^{18}$

A regular courwe nting and carryiug mideen mut be com shen the borly lian
In lifting a weigl ling tive boily, as if at the ring of the weily body gradually ntrati lia what is in the in of the body in "xeret
Loada of any kill the back and mhoul rangement of knaps this plan, the weight not hanging too low hoalder, the shorter the point of resiatan
A man excreises estadvantage by ju this case he throw, and he acte both by lesat advantaycous load up a ladder; fo well as the load v

The art of walk forma a necessary Pew persons walk w distortion from lahou rally contrihuting to awkwardness to all
To walk graceful otiff, and the head eyes are directed fo walkern is to look and some persons ahoe-ties. The cye, neither ahould tho e back, making what the contrary, the wh not afraid to look th all means bo allow overy thing like atru avoided. An easy, desiralle. In walki that the locomotion legg. Awkward ${ }^{\prime \prime}$ forward each lers att This is not ouly unt alone advance, bear the fect, lat the ou ground, and the so weight of the lrody. be determined by it long steps, out of pr always ungraceful. to toe, the length thirty inches, which of ordinary steps in moderate pate, of a usually twenty-four venient length to se
The motion of 1 the movements of t and is advantageou

Vol. I.-88
aother u-m n whith in pallis of the upon the lege ntove the hande mimon will
the body is " elject by ul in many ng quickly ling, fence, eludo dars. prificen uro with vaull. of which an 1 in given ; they are ts heights, are shaperd rse with
run. 'Plo the hand itched ovep ault in this a's perfect aril over the skill in no. ring. 'Tha numerable ple leaping I oo a moot acromplisio be mooth, to ten feet onds, as tee loft hand alowe, the its lover nod by a ot, the borly c air to th
xcrcine, the e pole, and wolvoleaping ring of the e buly fir. is to begin ase the dis uging fron ured prico frilo, and a brook ol
watine by that mesma the upper and lower member opervo together: no power in loat, and the awing in perforged with the greatent facility. That leaper munt earfefully observe that the apring of the fieot, and the plant of the pole, are in the direction of the preparatory Fon."

Carrylng Welghas.

A regular course of gyinnamion embraces the art of raing and carrying welghts; but lesemen in thene exarcian muat be comlucted with much cantion, and only when the body ban been otherwise well diweiplined.
In lifing a weight, power in lnent exercined by douho Fing tie hoily, an if about to wit down; the handin then unasp the ring of the wright placed befiween the feet, anil the body gradually ntraightening, the arma rise with it und fift what is in the hamin. By this meane the whole force α the boly in exierted, nuti no part more than noother.
Loada of any kinl aro mont advantageously borne on the back and mhouhlern, with tho hoily erect. 'The arnangement of knapmuck on the backe of moliliers in on this plan, the weight depending from eoch shoukler, and not hanging too low. Ithe more chose the lonel is to the shoulder, the mhorter in the lover, and the lem the pull on the point of rexpatance.
A man excreiners hin power of draught with the greatest alvantage by prulling a rope over his mhoulder, for in this case ho throws forward the weight of his permon, and he acte both by unuecular energy and weight. The least oivantageous exercime of him power in to carry a load up a ladder; for lie has to carry up his own weight well as the lom whict is on his shoulders.

tumilag-Walking.

The art of walking with ense, firmness, and grace, forms a necensary part of gymmatic or drill exercises. Few persous walk well nuturally ; the construint of dress, distortion from labour, or bad habits of nome kind gencrally contributing to give a slounge to tho figure, nul an awkwariness to all the motions.
To walk gracefully, the tooly munt be crect, but not afff, and the head hold up in such a posturo that the eyce are directed forward. 'The tendency of untanght walkere is to look towards the ground near the feet; and some persons apluenr always as if ndmiring their ahoe-ties. The eyes should not thes be cant downsard, neither shonk the chest bend forward to throw out the back, making what are termed "round shoulders:" on the contrary, the whole persen must hold itsolf up, as if aot aftaid to look the world in the face, nod the chest by all ineans le allowed to expand. At the samo time, overy thing like atrutting or pomposity must be carefully avoided. An easy, firm, und erect posture, are alone desitable. In walking, it is necessary to hear in mind that the locomotion in to lo performed entirely hy the legs. Awkwaril persons rock from side to side, helping forward each ley alternately ly advancing tho haunches. This is not only ungraceful but fatiguing. Lat the legs alone advance, bearing up the body. In setting down the feet, let the outer edige of the beel first touch the ground, and the sole of the foot bear nond project the waight of the body. The length of step is of course to be determinet by the length of limb. Eliorts nt taking long steps, out of proportion to the power of motion, are alwayo ungravefin. Reckoning from heel to heel, or toe to we, the longth of a military step at drill march in thirty inches, whin'h in considerably more than the length of ordinary steps in walking. Tho tength of step at a moderate pace, of a man five feet nine inches high, is usually twenty-four inches; and this will be found a convenient length to acquire the habit of usiag.
The motion of the arms to ond fro, in cadonce with the movements of the logs, greatly belps the locomotion, and is advantagcou. in excreising tho muacles of the Vol. 1.- 88
ahouldera and expanding the chent. The motione of the mom, however, should be on a molerate acale, the hantula uet nwlughing through a grenter mpace than eight or nine inchea fefore and behind the leg. The practice of working forward the shouklera and swinging the arme at a great rate is most oxlious. It may lee added, that tha art of comporting the handa, keeping then down, or from middling with the pronon, in one very neccmanry in prolite behaviour, and mhonid lo acquired by all young persong, before bad hahita ate confirmed.

Running in a supid leaplug kind of wask, the leap being from each foot alternately, and then motion being promoted by throwiug firwart the wight of the person. 'The following are Watker's ilefintione of running, which we illustrate by fig. $10:=1$ l'he upler purt of the boily in alightly inclined forward,

Fig. 10. the hemi alightly thrown backward, to counteract the gravity forwand; the breant In freely projected; the sheulderm aro steady, to give a fixed point to the auxiliary muscles of renpirntion; the upper prarta ot the arma ore kept near tho wides; the olbows are bent, and each forme an arute angle; tho hands are shut, with the naila turned inwards; and the whole arms move but alightly, in order that the muscles of respiration on the choat mey be as littlo an posaible diaturbed, and follow only tho impuine communicated by other parts. There exists, In fact, during the whole time of ronaing, a atrong and permanent contraction of the muscles of the ahoulder and arm, which, though very violent, is leas servicealile to the extended movements than to keep the cheat finmovable, toward which the arms aro brought clowe, the flexors and adifuctors of which ore capecially contracted.
"At every step tho knecs are stretched out, the legs kept as straight na possible, the feet almont graze the ground, the tread is meither with the mere balls of the toes nor with the whole aole of the foot, and the spring is made rapidly from one foot to the other, so that they pass each other with griat velocity.
"Speed, and still moro duration in running, are in proportion to the development of the lungs, and consequently the volume of oxygen and blood which they cun combine in their parenchyma at each renpiratory movement. Thus, of two men, one having the uldominal members ileveloped, nnil the other possessing good lunga, the former will run with the greatest speed for a short distance; but if the distnnce be considerable, he will soon be gained upon by the latter. A runner, aftor performing a certnin spaco, is seized with a difficulty of breathing, long letore she repetition of the contractiona has produced fatizuo in the aldominal nemhers. To excel, therefore, it running, requires, like wniking and dancing, a peculiar exercise. As the muscular contractions depend, for tho principle of excitement, on the respiration, the chest should be firmly fixed, so os both to facilitate this and to serve as a point of support for the efforts of the lower members. 'I'lie beat runners aro those who have the best widel, and keep the breast dilated for the longest time.
"During the whole time of running, long inspiretions and slow expirations are of the greatest importance: anca young persons cannot be too early accustomed to them To facilitate respiratio:s towards the end of the race, ine upper part of the body may be lcant a little forwarib Running should cease as soon as the breath becumen very short, and a strong perspiration tokes pluce."

Exercises in ruming should commence with very moderate diatances, and for short perioda of tine; and moderate distances, and for sliz
great or fatiguing feats are only to be attempted after the body and lungs are strengthened by training.

training.

The method of training in modern times for pedestrian feats and other laborious undertakings, does not differ materinlly from that pursued by the ancient Grecks. The great olject is to inerease the muscular strength, and to iuprove the free action of the lungs or wind of the person sulyjected to the process. The means ndopted to accomplish the end in view is evncuation, to clennse the stomsch and intestines; sweating, to take of the superfuous fint and humours; chaily excreise, to strengthen the muscles and system generally; and a peculiar regimen to invigorate the hody. And to this we add the use of the tepill hath, to remove impurities and promote a healthy action to the skin. We present the following graphic aceount of the process of training, from "Walker's Manly Exercises:"-
"The most elfectual process for training appenrs to be that pructised by Captain Barelay, which has not only been sanctioned by professional mon, but has met with the unqualified :pprobation of amateurs. We are here, therefore, almost entirely indebted to it for details. According to this methol, the pedestrian, who may he supposed in toleralle condition, enters upon his training with a regular course of physic, which consiste of three doses. Glauber's salts sre generally preferred; and from one ounce and n half to two ounces are taken each time, with an interval of tour days hutween each dose, After having gone through the coursie of physic, ho commences bis regular exereise, which is gradually increased as he proceeds in the training.
"When the otject in view is the accomplishment of a pelestrian mateh, his regular exercise may be from twenty to twenty-four miles a day. He nust rise at five in the morning, run half a mile at the top of his apeed up hill, and then walk six miles at a moderate pace, coming in about seven to hreakfast, which should consist of heef-steaks or mutton-chops under-done, with stale bread nail old beer. After breakfast, he must again walk six miles at a moderate pree, snd at twelve lie down in bed, without his clothes, for half an hour. On getting up, he must walk four miles, and return by four to dimner, which should also be beff-steaks or mutton chops, with bread and heer, as at hreakfast. Imm.ediately after dinner, he must resume his exercise, by running half a mile at the top of his speed, and walking aix miles at a moderate pace. He takes no more exercise for that day, but retires to bed about eight; and next morning he proceeds in the same manner.
"Animal diet, it will be observed, is, according to this system, alone prescribed, and beef and mutton are preferred. All fat and greasy substances are prohibited, as they induce bile, and consequently injure the stomuch. The leau of meat contains more nourishment than the fat ; and in every case the most substantial food is preferable to any other kind. Fresh meat is the most wholesome and nourisling. Nalt, spiceries, and all kinds of aessonings, with the exception of vinegar, aro prohibited. Tho lean, then, of fat heef cooked in straks, with very little salt, is the best; and it should be rather under-done than otherwise. Mutton, heing reckoned eary of digestion, may be occasionally given, to vary the diet and gratify the taste. The legs of fowls are also esteemed.
"It is preferable to have the man broiled, as much of its nutritive ipuality is lost by roasting or hoiling. It ought to be dressed so as to remuin tender and juicy; for it is by these means that it will be easily digested, and ufford unost nourishonent. Biscuit and atnle bread are the only preparations of vegetable matter which are permitted to be given; and every thing inducing fintulency must be carefully avoided. In general, the quan-
tity of aliment is not limited ny the trainer, but ief on tirely to the discretion of the pedestrian, whose appetto should regulato him in this respect.
"With reapeet to liquors, they must be always tuken cold; and home-brewed beer, old but not botted, is tha best. A little red wine, however, mav bo given th those who are not fond of mult liquor ; but never morn than half a pint after dinner. It is nn estallisheil mula to nooid liquids as much as possible; and no nore liqutrat of any kind is allowed to be taken than is requisile th quench the thirst.
"After having gone on in this regular course for thre or four weeks, the pedestrian must take a four milo sweat, which is produced by ruming tour miles in flannet at the top of his specd. Immediately on returning, a bot liquor is prescrited, in order to pronote the perspiration; and of this he must drink one Eughish pint It is termed the sweating liquor, and is conpused of one ounce of carraway seed, half an ounce of coriander seed, one ounce of root-liquorice, and half an ounce of sugarcandy, mixed with two bottes of ciler, und boiled down to onc-lunf. H_{c} is then put to bed in his flamuels, and being eovered with six or eight pair of blankets and a teather-bed, must remain in this state from twenty-fivo to thirty minutes, when he is taken out, and rubbed pere fectly dry. Being then well wrapt in his greatcoat he walks out gently for two niles, and returns to hreakfast. which, on such occasions, should consist of a rosited fowl. He afterwards proceeds with his usual exercise.
"These sweats are contimed weekly till within of fre days of the performance of the matell; or, in other words he must undergo three or four of these operations, If the stomich of the pedestrian be foul, an conetic or two must he given about a week before the conclusion of the training: He is now supposed to be in the highot coudition.
" Besides his usual or regular exercise, a person under training ought to employ himself in the intervals in every kind of exertion which tends to activity, such as golf, cricket, bowls, throwing quoits, \&c., so that, daring the whole day, both body and mind may he constantly oc. cupied. Althongh the chicf parts of the system depend upon sweating. excreise, nad leeding, yet the olject to be attained by the pedestrian would he defrated, if these were not adjusted each to the other, nud to his constitution. The trainer, before he proceeds to apply his theary, should make himself acquainted with the constitution and habits of his patient, that he may be able to judgo how fur he can with safety carry on the different parts of the process. The nature of the patient's disposition should also be known, that every cause of irritution may be avoided; for, as it requires great paticnce and perse verunce to undergo training, every expedient to soothe and cucourage the mind should be adopted.
"The skifful trniner will, moreover, conssantly study the progress of his art, by observing the effect of its processes, separntely and in combination. If a man retain his health and spirits during the process, improve in wind and increase in strength, it is certain that the olject simed at will be obtained; but if otherwise, it is to be apprehended that somo defect exists, through the unskifutness or mismanagement of the trainer, which ought instantly to be romediod by such alterations as the cin cumstances of the cose may demand. It is evident, therefore, that in many instances the trainer must be guided by his judgment, and that no fixcil rules of manngement can, with absohute certainty, be depended upon for producing an invariable and determinte result. In general, however, it may he calculated that the known rules are nderguate to the purpmes, if the pedestrian strietly adhere to them, and the traincr bestow a moderate degree of attention to his atate and condition durizy the progress of training.
" It is impossible to tix any precise period for the comr
petetion of the train prenane condition threo menths, in m If he is in tolerable possessed of sulficie mit cheerfully to th no mast unavoidal which it may be kr dition-or, what is oroperly trained-i smonth, elastic, and fesh is also firm, a light and full of spin his condition may a axcats, which ceas manaer in which h apecd. It is as difft apeed as to wulk a h this short distance condition is perfect rantages which car process."

Prepared by trair cutions as to food surprising feats of P completely out-travi tinurusly from thint at the end of his jou preparatory traming be connoitted in atte offer some precaution

Advices io Yo
Young men who baps sedentary, emp of a few days in the errors as mar their of all the benefit the result of an exempti and relaxed frames, theaselves to watk ciuld be convenien to such t.asks. Act day at farthest, thr gtrength is complet tem is in a fever of of enormous volunt morning, perhaps, ss their small stock of and a vigorous rese day's travel, which in a worse state th ever, to wait for a 1 and prolatily comp drageing fashion, gl cajoying it, so that asain specelity ac ho
This is the unavo mant of reflection. suurce of pleasure it considerably to the y nim disgustell with only procerded upo that the booty. aficer *duntary profession shate fit for undert: after bring a consi unlertake a bour n short walks each da day's walk lengthe to the serfous tast march. It is a pr
prineiples, and worthy of being followed by every individual in like circumstonces. In the walks of the first two or three days, young pedestrians should not aet themselves to any certain number of miles, but only walk as far as they feel their strength will agreeably carry them. Thus they will grndually acquire power, instead of losing it, and in the long run become good walkers, enjoying the country, moreover, ns they go along, and leaving off with an increased lo… of nature, and a dispo sition to have another such walk at tho first opportunity.

Young travellers, and old ones too, often make a great mistako with regard to eating. They suppose that, having much fatigue to undergo, they ought to eat a great deal; and the excitement of novelty, and the tempting and unusual food presented at inns, conble them to carry out this idea into practice. In a few dhys, however, they find themselves unaccountably unwell. This is the consequence of simple over-cating, for in trnvelling there is no need for mare food than usual. Food is also taken at wrong times, and of wrong kinds. It is not uncommon for young padestrians to walk ten or twelve milea before breakfast, not so much for any economy of time or meney, sa under the impression that they will have a eapital appetite at the end of their walk. As they go along, they delight themselves with reflections as to how they will astonish the waiters, how fresh relays of eggs will be called for, and rolls vanish like morning dreams Alas! when they have walked their dozen miles, their frames are in a state the most unsuited for the receipt of a full meal; and if they are alle to eat largely, it will be the worse for them after. The whole aim here is the very reverse of what it ought to be. A very full meal should never be taken on a pedestrian excursion, and that simply for the reason that there is no time to digest a very full meal. A breakfast or dinner during a walking excursion, when only a little time can be allowed for rest afterwards, should be light. Whether light or heavy, the longer the rest afterwards the better-that is, of course, within a rensonable limit. Certainly the rest should not be less than three quarters of an hour; and if a beavy meal have been taken, half an hour longer will be required at the very least.
Many young travellers have the prudence to fare slightly during their day's walk, but, on getting to their inn in the evening, they make all up, as they think, by taking a great composite meal-dinner, ten, and supper, rolled into one. If, as often happens, this be taken pretty late, the ton keeps them awake half the night, by virtue of its exciting power. But it may act injuriously in another way. When much of it is taken in proportion to the solids, it prevents digestion. The gastrio juice, it must be understood, requires that what is submitted to it should possess a certain solidity. It is for this reason that nature has so arranged, in the case of surking infants, that the milk curdles immediately aftel bring taken, the gastrie juice being thereby enabled to catch hold of it. When a young man, after exhausing his energies by a long walk, fills his stomach with a great llashy meal, be commits one of the greatest of inprudences. The gastric juice gets mixed and confoundel with the mass, and severral hours will elapse lefore any progress whatever be made in digestion. Many is the slepuless night endured on this accoumt on summer excursions. It is obvionsly necessary that, it ten is to be taken at all at a late hour, it should be weak, and in quantity strictly propertioned to the solids taken at the same time. Weak coffe, however, ought always to bo preterred to tea, if to be tuken near bedtime, as its ex citing power is inuch less.

The rules here laid down are all of them grourded on natural principles, which will he found more particularly explained in physiological works-Those, for instance, of Dr. Comle, which are ly far the mcst intelligibly written, at tho same time thai they are even more philo
sophical than most others. By attending to such rules, - rural excursion may he made very delightful, and may bave the hest effeets on both body and mind, while neglect of them as certainly must entail pain and disappointment.

Caprain Barclay's Feats of Walking.

Captain R. Barclay Allardice, of Ury, an enthusiaatic cultivator of mauly sports, is well known aa having aome years ago performed various remarkable feats of pedestrianism, and his mode of walking is well worthy of notice. Pierce Egan thus writes of hia performances:"His atyle of walking is to hend forward the bedy and throw its weight on the kures. His step is short, and hia feet are raised only a few inchea from the ground. Any person trying this plan will find hia pace quiekened, and he will walk with more ease to himself, and be better able to endure the fatigue of a long journey, than ly walking perfectly erect, which throws too much of the weight of the body on the ankle-joints. He always uses thick-soled shoes and lambs'-wool stockiugs, which preerve the feet from injury."

We have not apace to conelude an account of the various extraordinary fests performed by this able pedestrian, and shall only notice his famous match with Mr. Webster, in October, 1808. "The captain engaged himself to go on foot a thousand miles in a thousand nuccessive hours, it the rate of a mile in each and every hour, for a bet of one thousand guineas, to he performed at Newinarket heath, and to start on the following first of June. In the intermediate time, the captain was in training by Mr. Smith, of Owston, in Yorkahire. He atarted on his match at twelve o'elock at night on 'Thureday, the lat of June, in good health and high apirita His dreas, from the commencement, varied with the weather. Sometines he wore a flannel jacket, sometimes a loose gray coat, with strong shoef, and two pair of coarse stockings, the outer pair hoot-stockings, without feet, to keep his legs dry. He walked in a sort of lounging gait, without any apparent extraordinary exertion, scarcely raising his feet two inches above the ground. During a great part of the time the weather was very rainy, but he felt no inconvenience from it ; indeed, wet weather was favourable to his exertions; as, during dry weather, he found it necessary to have a water-cart to go over the ground to keep it coul, and prevent it becoming too hard. Towards the conelusion of the performance, it was said, the captain suffered much from spasmodic affietion of his lega, so that he could not walk a mile in less than twenty minutes; he, however ate and drank well, and bets were two to one and tive to two on his completing his journey within the time preseriled. Ahout eight days before he finished, the sinews of his right leg becama much better, and he continued to pursue his task in high spirits, and consequently bets were ten to one in his favour in London, at 'Tattersall's, and other aporting circles.
"On Weduesilay, July the 12th, Captain Barclay completed his arifoous undictaking. He had till four p. m. to finiah his task, hut he performed the last mile by a quarter of an hour after three in perfeet ease and great apint, anidst an immense crowd of spectators. The infux of company had so much inereased on Sumday, that It was recommended that the ground should be roped in. To this, however, Captain Barelay objected, saying, that he did not like such parade. The crowd, however, becane so great on Monday, and he had experiented so mueh interruption, that he was prevailed upon tul allow this precaution to le taken. For the last two days he appoured in higher spirits, and performed his last mile with apparently more ease, and in a shorter time, than he had done for some days past.
"With the change of weather he had thrown off his loose greatcoat. whirli he wore during the rainy period, and walled in a thanal jacket. Ho aleo fut on ahoea
thicker than any which ho had uaed in the previous pat of his performance. When asked how he meant ta lutaffer he had finished his feat, he eaid he should that night take a good aound alcep, but that he must have himell awaked twice or thrice in the night to avoid the danget of a too sudden transition from almost constant +xertion to a atate of long repose. Ono hundred guineas to one, and, indeed, any odds whatever, wers offered on Wednet. day morning; but so strong was the confidence in his auccess, that no beta could bo obtained. The multitule who resorted to tho sceno of action, in the cousse of thin coneluding daya, was unprecedented. Not a bed could be proeured on Tuesday night at Newmurket, Cant bridge, Bury, or any of tho towns or villages in the vis nity, and every horse and vehicle was engaged. Among the nohility and gentry who wituessed the couclusion of this extroordinary performanee, were the Dukes of Ar gyle and St. Altann; Earis Grosvenor, Bestorough, and Jersey ; Lorda Folcy and Somerville; Sir Joln Lade, Sir F. Standish, \&e., \&e. The nggregate of the bets is supposed to have amounted to $£ 100,000$. Upon the whole, Captain Barclay must le viewed as a most extrab ordinary man, and shows the extent of vigour that the human frame derivcs from exercise."
out-of-door recreations.

swimming.

The art of swimining is so exceedingly is ful, and only as a bracing aummer exercise, but as a means of preserving life when aceidentally plunged into the water, that it should be acquired by every young person. It may tre performed either in the sea or in rivers; lan the sea is preferable, as analt water is of greater sperifie gra. vity than fresh, and has the greater power of buoping up the body. Whether in freah or salt water, howeeter, the body is lighter, bulk for bulk, than the mass of liquid displaced, and consequently will flomt if a small sid be given by the impulsion of the hands. It is also impurtant to olserve, that the more the body is immersed in the water, the more easily is it sustained. 'Thus, if only the face is left above the surface, the buoyaney will be much greater than if the whole head or the head and handswere exposed. When peraons unskilleal in swimming are plunged into the water, as, for instance, hy the upeetting of a boat, they ought, for the ruasons now mentioned, not to atruggle, splutter, and hold the hands up, but to main tranquil, with as little alove water as possible; draw in the breath ao as to fill the lunge, and sustain themselves by a paddling motion with the nands.

Practucal Directions for Swimming.

The best season for bathing in the sea or rivers in aumuer and autumn, and the time of day most prefer. able is the morning before breakfnst; the next best tine is leforo dinner. Iminediately after dimer, or when the stomach is full, is injurious. A person, also, shoud never buthe twice in one day, or continue in the water more than twenty minutes at one time. To avoid tha dunger of propelling the blood to the luad, by stepying auddenly into cold water, alsway wet the head firsh Bathing is best performed whes entirely naked; lut? this be unsuitalle, short Irawers may be used.

Young persons or others unskilled in swimuning should not on any account go beyond the depth of breast-high till they are able to buoy themselven up freely. They can commence their lessonu in awimuning by throwing themselves forward, and trying what will be the eflect of a throwing out of hands and fiet, kecping ouly the head above the surface. Some persona tie corks or bladiden
athuyt their neek or dangerving, A prefi meive the aid of a help to buoy up the his sssistance grad however, any young elf.
Tha learner havi Jraw his head back. praject his breast, ho rected. Fear must ci putting down the which is a very con forwsid, and strike this is firit to bring dose, and the thu striko out with the lowed. The handy lag, but make a awe out as possible. N a rapid movement; be bent and the har little obstaclo nes posi The hands being bro be atruck out in the
The hands furnist The other half aro belind with a jerk t against the water. water is indicated in

K will be seen that feet. To advance sncy, the lands and descending while the while the legs are de
Besides regulatin the swiminer must is to be inhated whe of the hands, and w ruffle of the water. moment most advar expended at the some persons, in le breasing, or rising h of their arms; thia graceful tut fatiguin vances smoothly th nise, sud it in moder
There are various of these is swimmi presented in fig. 12. Uia case the heat more iminersed that odinary swimming, consiquently less lat is requited to buoy the baly. Tho me mployed is to lie hands on the thigh front swimming. I gress is made; and arms.
Another meana 0 foto fligat on the bn uld that nigh have himell id the dangel stant uxertiun uineas to one, 1 on Wedaes. fidence in hir lie multitule course of tho t a bed could narket, Cso es in the vici yed. Among conclusion of Dukes of Ar Lorough, and Jolin Lave, of the bets is

Upon the a most extra gour that the
anut their neck or breast, but this we discommend as dangeruus. A preferable plan of learning to swim is to meeive the aid of a person akilled in the art, who will help to buoy up the learner with hia hand, and withdraw his assistance gradually. In ordinary circumstances, however, any young person may acquire the art himmif.
The learner having thrown himself forward, he muat Jraw his head back, elevate his chin clear of the surface, project his breast, hollow his back, and be firm and celpected. Fear must be entirely thrown aside. Inateud oif putting down the hands, as if to grope for something, which is a very common error, throw the hands boldly forward, and strike out with them. The plan of deing this is first to bring the hands together, with the fingers dose, and the thumbs closed to the forefingera; then strike out with the palina undermost and slightly hollowed. The hands must not touch the surface in atriklag, but make a sweep level with the breass, and as far out as possible. Next, they are to be drawn back with a rapid movement; in this retraction, the elbows are to be bent and the hands drooping downwards, so that as litte obstacle as possible may be presented to the water. The hands being brought together as before, they are to be struck out in the same manner; and so on.
The hands furnish only half the means of advancing. The other half are the legs, which must be sent out belind with a jerk to their full extent, the soles pushing against the water. 'The position of the swinmer in the water is indicated in the adjoining cut, fig. 11, in which

Fig. 11.
N will be seen that the body slopes from the neck to the feet. To advance properly, and secure regular buoyancy, the hands and feet must act alternately, the arms descending white the legs are rising, and the urms rising while the legs are deseending.
Besides regulating the action of the handa and fect, the swimmer mist regulate his breathing. The breath is to be inhaled when the body is rising by the descent of the hands, and when the mouth is clearly above the ruffe of the water. This fills the chest with air at the moment most advantugeous to do so. The breath is to e expended at the next impulse forward by the legs. some persons, in learning to swinn, acquire the halit of hreazting, er rising high out of the water at every stroke of their suns; this mode of awimming is not only ungraceful but fatiguing; a good and tasteful awimmer advances amonthly through the water, with a moderate nise, sind at a moderate and steady rate of speed.
There are various fanciful modes of awimming; one of these is swimming with the back downwards, as repremented in fig. 12. In Uis cose the head is more immersed than in ordinsry swimning, and consequently less labour is required to bnoy up the body. The method
 enployed is to lie gently back in the water, with the hands on the thighs, and to strlke out the legs ns in front swiuming. By swimming on the back little progrexis is made; and it is chiefly uscful as a rellef to the arms.
Another means of relieving the futigue of awimming to that on the back with a very guntle motion of the
legs, in the position. represented in fig. 13 . The arme are extended, the chin and mouth elevated higher than the forehead; and the water is to be agitated as

Fig. 13. little as possible, so as not to enter the mouth.

Swimming with one arm is sometimes useful. To perform this fat, the head should be held more backward than usual ; the swimmer hold himm. If more erect; the legs and arm must be exercised pretty quickly; and with force the hand should he struck out against the body, anil so brought down before, the arm extended its full length for every streke. The swimmer must, however, be very careful to keep his breast inflated, as thia mode of swimming requires more than ordinsry dexterity. Should the swimmer draw in his breast imprudently, when his arms are raised, he would immediately sink to the hottom.

Diving is the art of descending rapidly in the water, and requires to be done with address. The best method consists in drawing in the breath, placing the two hands together as a cut-water in front, and then to plunge head foremost, causing the forehead to receive the force of the full. In tsking the wster, the eyes, for safety, should be shut; but they may be opened when beneath the surface, when the body assume', the swinming attitude. Swimming below the water is so excecdingly casy that it requires no directions.

Mr. Frost, in his small work on "Seientific Swimming," presents the following practical rules for sportive swimming:-"To spin with ease, the person should be somewhat buoyant ; the breast must be well inflated, and the attitude may be that of sitting with the feet croswed. It is effected by embracing the water with each hand, alternately, on the same side. In order to turn to the right, the water must be embraced with each hand, alternately, on the right side; and to turn to the left, on the left side. This action causes s circular or spinning movement, which increases in velocity as it is continued. Of all the playful ways of swimming he ever knew, the author considers this to be the most curious. He has seen boya sportively rolling along the stream, and conceived it very much to resemble the juvenila amusement, on a summer day, of rolling down a declivity. The stream is the most favourable situation for rolling, as it very much assists the turn. To achieve this, the person must lay himself straight acress the current; be must inflate his breast, and hold his head very backward; his legs may either lie tegether or be crossed; he must exercise his hands in the same manner as in spinning. By this alternate action of the hands, with the assistance of the stream, some persons will rell along in a pleasing and extraordinary manner." He then mentions quadruped owimming; but neither the posture nor action is agreeable.

In some cases cramp takes place in the -ater, and the avimmer requires to be prepared for its sttacks. The following dircctions by Walker, seted upon with due self-possesision, comprise all that need be aaid on this subject :-
"As to cramp, those chiefly are linble to it who plungo into the water when they are heated, who remain in it till they are benumbed with cold, or who exhanst themselves with violant excrcise. Persons subject to this aflection must be careful with regard to the selection ot the place where they bathe, if they are not sufficiently skilful in swimming to vaiy their nttitudes, and dispense instantly with the use of the limh attacked by cramp. Evers when this does occur, the skilful swinmer knows how te reach the shoro by the aid of the limbs which are iunaf fected, while the uninatrucued one is liable to be trowned.
"If attacked in this way in the leg, the swimmer must atrike out the limb with all his atrengen, thruating the
3×2
heel downward and drawing the toes upward, notwithatanding the momentary pain it may occasion ; or ho may immediately turn flat on his back, and jerk out the affected limb in the air, tuking care not to elevate it so hish na greatly to disturb the balance of the body. If this does not succeed, he must paddle aahore with hia hands, or keep himself nflout by their aid, until assistwnee reach him. Should he even be unable to flont on his back, he must put himself in the upright position, and keep his head ahove the surface by merely striking the water downward with his hands at the hipa, without any assistance from the legs."
skating,
This is a highly exhilarating and healthful out-of-door partime in winter, when rivers and ponda are frozen, and offer a elear surface of ice. The art of skating consists in poising the bedy on a sharp ridge of iron beneath the sole of the foot, and advancing on the ice in that position, one foot relieving another. Aa a very slender base will support any mass of matter kept in motion, skating is by no means a difficult art, and requires only courage, quickness of cye, and delicacy of taste, to render the purformences clegant.

A skate is a well-known apparatus of wood and iron, with straps and huckles to attach it to tho foot. The skate for each foot must be alike. The iron should not be decper than three quarters of an inch, and anooth or fatt along its under edge; only boya' skntes should be grooved, to take better hold of the ice. The iron should be a quarter of an inch thick. Tho edges should be smooth, free from rust, and sharply ground.

Practicat Directions for Skating.

We bey to offer the following directions to the young skater, chiefly from the work of Mr. Walker:-
"Either very rough or very smooth ice should be avoided. The person who for the first time attempts to skate must not trust to a stick. He may make a friend's hand his support, if he require one; but that should be snon relinquished in order to balance himself. He will probably acramble about for a half an hour or so, till he beging to find out where the edge of his akate is. The beginner must he fearless, but not violent, nor even in a hurry. He should not let lis feet get far apait. and keep his heels still nearer together. He must keep the ankle of the foot on the ice quite firm; not attempting to gain the edse of the skate by bending it, because the right mode of Letting to either edge ia by the inclination of the whole body in the direction required; and this inclination ahould be made fearlessly and decisively.
"The leg which is on the ice should be kept perfectly straight; for though the knee must be somewhat bent at the time of striking, it must be straightened as quickly as possible, without any jerk. The leg which is of the ice should also be kept straight, though not stiff, having an easy but slight play, the toe pointing downwards, and the heel within from six to twelve inches of the other.
"The learner must not look down at the ice, nor at his feet to see how they perform. He may at first incline his hody a little forward, for safety, hut hold his head up, and see where he goes; his person erect, and his fice rather elevated than otherwise.
"When once off, he must briug both feet up together, and strike again, as scom as he finds limself steady enough, rarely allowing buth feet to be on the ire together. The position of the arms should be ensy and varied, one being always more raised than the other; this elevation being alternate, and the change correaponding with that of his legs; that is, the right arm beirg rased as the risht leg ia put down, and vice versa, wo that the arm and leg of the aame side may not be rancd together.
"The face redst be always turned in the direction of
the line intended to be described. Hence in hackwand skating, the head will be inclined much ovir the ehuui der; in forvard skating, but slightly. All sudden and violent action must be avnided. Stopping may be caused by slightly lending the knces, drawing the feet together, inelining the body forvard, and pressing on the heels. It may also be caused by turning short to the right or left, the foot on the side to which we turr, being rather more advanced, and aupporting part of tho weight
" The first attempt of the beginner is to wnlk, and thit waik alortly becnmea a aliding gait, done entirely on the inaide edge of the skate.
"The first impulse ia to be gained by pressing the in side elge of one skate againat the ice, and ndvancing with the opposito foot. To effect this, the heginner must bring hia feet nearly together, turn the left somewhat out, place the right a litule in advance, and at right angles with it, lean forward with the right shoulder, and at the aame time move the right foot onwards, and prem sharply, or atrike the ice with the inside edge of the left skate-care being taken inatantly to throw the weight on the right foot. While thus in motion, the skeles must bring up the lef foot nearly to a level with the other, and may for the present procced a short wsy on both feet.
"He must next place the left foot in adrance in it turn, bring the left shoulder forward, inclining to that side, strike from the inaide edge of the right okate, and proceed as trefore.
"Finally, this motion has only to be repented on each foot alternately, gradually keeping the foot from wrich he struck longer off the ice, till he has gained sufficint command of himself to keep it off altogether, and is able to atrike directly from one to the otlay, without at any time having them both on the ice together. This must be practised till he has gained some degrec of firm ness and power, and n command of his balance."
Thus accomplisheel in the rudiments of the art, the skater may proceed to learn the forwerrd voll, which is the tirst step towards tigure akating. "The impulse is gained in the same manner as for the ordinary run; but to get on the outside edge of the right foot, the inoment that foot is in motion, the skater must advance the lef shoulder, throw the right arm back, look over the right shoulder, and incline the whole person boldty and io cisively on that side, keeping the left fout suspirnded bo hind. Aa he proceeds, he muat lwing the left foot past the inside of the right with a slight jerk, which produres an opposing balance of the body; the right foot must quickly prese, first on the ontsile of the heel, then on the inside, or its toe; the left foot muat be placed down in front liefore it is removed more than about eight or ten inches from the other foot; and by striking outside to the left, giving at the same moment a strong pubh with the inside of the right toe, the skater passes from right to left, inclining to the left side in the same mannea as ho did to the right. He then continues to change from left to right, and from right to left, in the same manner. At first he should not remain long upon one leg, nor scruple occasionally to put the other dovn to asist; and throughout he must keep himself erect, leanin a mad on the heel."
Having nttained this proficiency, there will be litte difficulty in descrihing any figure, formed ly a conlinhtion of circles or semicircles. The figure 8 is a favornie nomong clever skaters, and also the figure 3 , both foruard and reversed.
Skating on ice of doubtful strength is accompanied with great danger, as in an instant the rikater may fiad himself aunk to the neek in water, and be drowned iefon assistunce can be rendered. Much of this danger my he obviated hy wearing a safety-enpe, which is a lonse cape inflated with air, the invention of a ramber of tha Edinburgh skating elub. We recommend every dimer
to ase by all mean his amuscment on

Curling is a gan the southeris and wiater game, playe and ponds are froze door amusements. than for skating, it the whole water in of bearing up any
The game is p! cach individual beit of about nine inch under side, and, on the stone. Each I to sweep the ice, in the stones; and h trampeta, or crampe his aim. A large 1 on forty yards in le salled a rink, bein made at each end to ach person hurling the opposite end of the game, the ofjeet gicatest number of from end to end alt! harl these stones wi is exceedingly diffic nise of the frost. the stonc. Sometines fled by buginners, si taken a bias to one the best players ha nund the tec, one disperse the whole it it also happens that, of the mark; but if the hogg score, the curnted. A more - boaspiel.

Such is a meag? which, ull over the the keen frosty day persons in exciting parish, count; ngain retsal mirlhful rivalr nrither fivers nor Buasement of curlin beeutiful amall lake eastern base of Art Recue is exlibited de the lake are frozen. which may be scen wery shade of soc dergymen, private and urtisanc-all n:
to nee hy all means a cape of this kind while pursuing his amusement on the ice.

curling.

Curling is a gane of great antiquity and popularity in he aouthern and western parts of Scotland. It is a winter game, played on the ire; and where the rivers and ponds are frozen, usuully superscies all other out-ofloor amusements. As the ice requires to be much thicker Han for skating, it is usual to form ponds so shallow that the whole water in them becomea a frozen mass eapable of bearing up any weight.
The game in played by a party forming rival sides, mach individual being possessed of a circular hard stone, of about nine inches in diamoter, flat and smonth on the under side, and, on the upper, having a handle fixed to the stone. Each player is likewise armed with a broom to sweep the ice, in order to accelerate the progress of the stones; and his feet are ordinarily furnished with trampets, or cranpets, which help to stendy him in taking his aim. A large long open space of ice, of from thirty to forty yards in length, and eight or nine fect across, zalled a rink, being cleared, and a mark or tre being made at each end to play to, the contest takes place by rach person hurliny or cansing his stone to slide towards the opposite end of the rink. A certain number being the game, the object of each side is, which will have the gratest nomber of stones nearest the tee; and all play from end to end altornately, till this is ascertaincd. To harl these stones with precision, in this species of sport, is exceedinely diffientt; much depending on the keenniss of the frost. the tone of the iece, and the truth of the stone. Sometimes the loest and oldest players are baffid by heginners, simply by their curling-stones having then a bias to one sille or another ; und frequently, after the best players have plated their stones in a eluster round the the, one rapid shot from an antagonist will disperse the whole in all directions round. Oecasionally it also happens that, in hurling, the stones come far short of the mark; but if they do not get beyond a line, called the hogg score, they are dragged aside, and are not cuunted. A more than usually extensive matel is called - bonspicl.

Wuch is a meagre outline of the game of curling, which, all over the west and south of Scotland during the keen frosty days of winter. engages all classes of persons in exciting spott. Parish contends againgt parish, county against founty, elob against elob, in unistraal mirthlial rivalry. At Fdinburgh, where there are neither rivers nor pouds, the inhabitants resort for the amasment of curling, us well as skating, to the atjacent herutiful small lake at Duddingstone, lying at the southestern hase of Arthur Seat. Here a most nnimated scote is exhibitod during the period that the waters of the lake ore frozen. Numbers of riaks are cleared, at which may be seen playing tegether persona in almost every ahnde of society-professors of the university, remgmen, private gentlemen, merehants, tradesmen, and urtisan*-all mectin: on a common level, and cu-
gaged in the samo spirit-atirring pursuit; for in curling there is no aristocracy of fceling, and so, for the time, a universal aturnalia prevails. 'Tho gamo of curling is eulogized by more than ono Scettish poet, particularly by Grahame who thus commences a description of the sport:-
"Now rival parishes and ririevedoms keep
On upland tochs, the long-expected iryst,
'To play their yearly honspiet. Aget men,
White tove of coniu-st lights their henmless eyes,
Nuw-inerres their urms, and makes them young onee more.n
In Mr. M.Diarmid's "Sketchea of Nature," we find the foltowing spirited occount of this delightful winter game:-
"The time is not distant when the game of curling was little known out of Scotland, or even within it. benorth the Forth. But the tasto for this manly sport has increased greatly of late years; and in various parts of England, as well as Americs, the broom and the chamnel-stone are put in requisition with the same regularity that winter comes round.
"In the whole range of rural sports, I know nothing more exhilarating than a spicl on the ice, where the plnyers are numerous and well-mntched- the stakea a dimer of beef and greens-and the forfeit the honous of rival parishes. All around is blank and dreary-the snow-flake freezes as fast as it fulls-the sun seems level with the horizon's verge-the hills make the apectator cold to look at them-and every thing, in one word, conspires to complete the picture of a winter's day. But the courage of men bent on the favourite amusement of eurling, is not easily damped liy the inclemency of the elements; on the contrary, their spirits seem to mount as the thermometer falls, and nothing pleases them more than a feeding storm, and, along with that, the prospect of a long lease at 'their roaring play,' Arrived at the scene of action, all is bustle and animation, till the stones have been distributed, assorted, claimed-rinka measured, tramps fistened, tees fixed, and the order of battle completely arranged; and as these preliminaries are speedily settled, to it the parties set with all the anxiety of those who contend for a much higher prize. Lots, perhaps, are cast for the first shot, and the greateas novice invited to deliver the first stone; and should his arm lack the proper pith, that instant a dozen brooms are raised to help the laggard uver the lioggosrorc. A second, a third, a fourth, succecds, and so on, till the line stretches a tolerable lougth; and each man is warned by his respective frienu to plant, if possible, an excellent guard-dislodge t a stone and cover that-open up one port ond close anotirn-play soft or strong, outside or inside, as the orcasion may require-and steer as closely by the signal broom as the muriner, when warned by similar devices, threads his watery way through sandbanks and shallows.
"As the animnting sport deepens, it is amusing to contrast the bustle that obtains in one little spot with the stillness that brools over the external world; while the hills above are silent and dark, the shining lake below in instinct with life, and resounds with sounds of mirth and glee. which, borne along on the clastic nir, invade the solemn loneliness that reigns around, till echo itsolf takes up the tale, and repents in broken fragments the curler's vocahulary. At length, na the more veternn players advanee to decide by their skill the fate of the side, the interest lecomes intense, and gives rise io so many calculations of what is to be done and what avoided, such bustling to and fro, as must appear a perfect mystery to the uninitiuted. The last wary shot hooms athwart the ice as if impelled ly maric, and while every port, io an unlooker, seems closed, finds its wny under the guidance of a powerful arm and steady eye, througt passagen rivalling the intica:y of the walla of 'Prov. I'hen fol
low the shout of victory and the murmur of defeat, till the contest le renewed under the mingled emotions of h.ope and foar-the vanquished trusting that the tablea will be turned, and the conquerors confilent that they will remain the aame. Bpeedily the eager players are uarshalled, and the brooms put in req"isition as before; agsin the stonce boom away and uway, meandering here, meeting there, and whirling from the colliaion like the urchin's top at school ; again shot succeeda shot, and game follows gaine, until the conclusion of the bonspicl, or the approach of evening proclaims that it is time the sport should surcease, and the comlsatants wend their way to the nearest clarhun, to enjoy their favourite fenst of beef and greens. And now the scene changes entirely, though as the savoury viands load the board, all toel the effects of the keen mountain air, and mnke so good a use of their time while the opportunity serven, that the business of eating becomes nearly as noisy as the business of play; rounda of corn-beef, flagona of hoine-brewed, disappear with a rapidity that is truly estonishing, and of which no adequate conception can be formed by persons whose appetitea were never whetted ny a day on the ice."

Laws and Regulations for Carling.

In the year 1838 was instituted the Grand Calcdonian Cerling-Club, for the purpose of uniting all curlers into a "Erotherhood of the rink," and of regulating the game by general laws, which it was hoped would be adopted by all local curling associstions. Froin the Annual published by the club, we extract the following an the rules of the game:-
"1. The length of the rink ahall be forty-two yarda: any deviation occasioned by peculiar circumstances to be by mutun! egreement of partica. When a game is thegun, the rink is not to bo lengthened nor ahortencd. untess by eonsent of the majority of playere.
(It is advisable that rinks have double tees at each end, the one at leant two yards behind the other, the whole tour to be as noarty as possible in the same line. The stones are to be delivared from the outer tee, and played townrda the inner; this tavea the ice from heing injured around the tee played up oo.)
"g. The rink ahall be changed in all easee when. from the apringing of water, the majority of players cannot make up. Noither the winning nor losing party have right to object. asall contents muat be decitled on the fair and equitable principle of ecience, hol of strength.
"3. The number of shots in a game, if not otherwise mutually fixed upon, shall be iwenty-one.
[A game more frequen!ly consists of thirteen shots, or even of seven, than of any others. when an hour or two's practice only is intended; but this is a matter of privnte arrangement.
In a bonepiel or match, whent a conaiderable numher of playern appears on ench side, the aggregnte numher of ahots gained in a fixed time is not only as equitahte a method, lum affords amueement to all the rink to the concluaion, and ouglit to lee universally adopted.]
to be one-sixth part of the length of the riak from the tee. Every stone to be considered a hog which does not clas: a square placed upoll the acore.
"5. Every rink to be composed of four players a side, ench with two atones, unless otherwiae mutually agreed upon. In no case thall the amme individual or party play two stones in ancean and every player shall deliver both his stones aliofparty play one. after which the winning narty of the last end or game of that after whith the winning party of the last end or game of hat
day's play st all do so. No sione to be counted which doen not die within seven feet from the tee, unless it be previously otherwiso mulunlly agreed upon. In casea where each paryy has a tono equally near the tee, neither to be counted, nuld the winsing party of the previous end is again lo fill tha ice. Neasureming party o tuke provious the centre of the tad to that part of tho ments to be inken from the
: 7. Each plaver to place his feet in much a manier as that, in delivering his stone, he elall bring it over the tee. A player ereppling aside to take a brittle (or wick). or other shot, shall forfolt his stone for that end. A player, ofter delivering his last stoas, shall not remain fonger than to see his next opponemt fit score and the previous player of hie own party; and shall on score and the previous piayer of hio own party; and shaf on Who playa.
"8. If any player shall improperly npeak fo or Interrupt another whille in the act of dellvering hin stone, one ahol thall be added in tho score of tho parly so interrupted.
"9. The rotation of play adopted at the beginuing muat be obcarred through the whole game.
"10. All curling stones ahall be of a circular whape. No stone mand be ebanged throughout the game, unlese it happen to ba
broken, and then the largeat fragment to count, withon: an necessity of playing with it more. If a sione rolls and atop Shoults side or lop, it thall nol be counted. hat put on the toe must keop hold of it , otherwise he will not he entitled to replay the shot.
"11. If a player plays out of turn, the stone to platat may be take shall progress, and relunsed to the ployer. If the mia opposito party shall bave tha option to add one to theirt, th and the game proceed in ita original rotation, or to deciare tio enil mull and void
"12. In double-soled stones, the side commenced with ahat vot. under forfeit of the match, be changell during the progrets of the game.
(Douthle-koled stonea are those in whien the handle can bat shifted frotn one side to another ; one side being slightly em enve for keen ice. and the other convex for dull ice.]
"13. The swreping depnrinent to be under the excloslve con trol of the skipner. No sweeping to he allowed by any party till the atone hus passed the hog's' acore, except when apow falling or drifling. in which case it shali be allmisshlele now then from tee to tee. The player's prity may swerp when the eq has passed the further hogu' score, hia adveran ries' when it passed the lec. Sweeping to be nlways to one side. Ireviou to each direction baing given, eilher party are entitied to aweep the rink clenn.
"14. P'arties, before beginaing to play, to take different aiden of the rink, which they aro to keep throughout the gome and ne player, on mily pretence. to croas or go upon the midde of the rink. The skippers sione to atanil nthout thatee. Their reopective partice, aecording to thetr rotation of play, ahall take their position down to the hogs' score.
"t5. If in sweeping, or otherwise, a running stona be marred by any of the purly to wheh it belongs, it elanll he put of tha per of the party ally other meais, the player alialt take his alot agningred bit a atone at rest be accidentally displayed at any part of the en before the case provided for in rule 13 comes into operation, il ahnill be put us neatly ao nossible in its former position.
"16. Every playe, to come provided with a liesom, to be ready to play when hi turn comes, and not to take more then reasonible time to throw his stodes. Should he neceldental'y play a wrous stone, any of the players may stop it while ra ning ; but if not sopped till it is agnin at reat, it ohall be fo placed by the one which he ought to liave played.
"17. No mernsuring of ehote allowable previeus to the termina. tion of the ent. Disputal shote to be determined by the ekipn pers; or. if they dieagree, by some neurni person musually choren hy them. whose decieion shall be finn!.
"18. Slioult any played stone be displacen before the lass atom is thrown nud at rest. by any of the party who are lying the shot. they shall forfeit the end; if by any of the losing perity who have the stone yet to play, they shall to nrevented from playing that stone, and have one point deducted from theis ocore. The murnher of shots to be marked by the wimners io be decided by the majority of the playere, the offender nother ing a vote.
-10. The skippere shall have the exclusue regulation and rection of the game. nnd may play in what part of it they please: but having chosen their place nt the beginning. they please: bint having chosen oreir place No The berinning, bey must retann it lill the end of the game. The players mey gira heir ailvier, hat chnme comely pon any prefrx to ndaress hema play ome pernol about pay Lach sxipper, when his wn play eomes shall name om Implicill tho limection firen him
${ }_{6}, 20$.
20. not provided for by the words and spirit of the ralue now eate bliphed, it miyy be referred to the three dearest members of the
 deciaion slatl be finding on ail concerned till the ainual gene ral menting of the representative oommittee, to whom eitber party may appeal the case."

CRICKET.

This is perhsps the beat of all ont-ofdoor sports for youth. It iequires quickness of mind snd eye, greal agility of limib, and, properly conduced, is lighly exhila. rating and amusing. The game is played on an opes well-ahsven green, which is level and free from stones or shrubs; it should also le dry, and of sufficient dimensions to allow of a good blow to the ball and runa square field of three or four scres is a good size. The apparatua required in the grme consists of balla, bata and wickets. The dress of the players ahould be ligh and easy-a white woollen jacket, cap, linen trousem and shoes provided in the soles with points to prevent slipping in running; in Lasndon there are shoes main purposely for cricketing.

Cricket is played in two distinct forms; one is called Single Wicket, and the other Double Wicket. We shall first glvis an outhne of Single Wicket.

Single Wicker -This game ts played by a nu nuer u
remons, bat Thres otraigh ere vack in *ampa are la so placed tha hit by the bal the distance wieket is a ma In a straight ground called pupping-creas bowler; his d wicket, which from the anta is to stand wi st the popping bell, ar to pre He must also to send it to charge of tho are termed $f i$ appointed plac tion: one is off hit, a third Their duties a uitised by the If the ball wickel, snd th bowler. If th thas the batter waching it w crease, touchin strikes the wic feat successful towards the ga moch a greut dit onl this count ason. These Should the retires, and thi Anished by the by any of the inning may lik ball into the ai antagonista hefo enough to be th
Double Wich cricket, is like tine, there bein two battera, bu above, with this opposite end, ex ia of the same is properly eleve game is determi inaings by each number of runa
Such is an ov there are many paits of Englan II has been con of dispule, the IB Cricket Club," - lrading part in on the laws of

Laws :

${ }^{1}$ I. When ther bounds shall the pl the off and leg alu "2. The ball mi Daran; which ru thy etump or crea ahis person, or trease, as al dou -

Vou. 1, -89
conit, withow: an ne rolls und sto lut put of the leo livery, the playd? - enitiled to replay

8 so pintei may syer. If the min again at reat, the one to their meors n , or to declarg the
meneed with thall during the progrete
the handle ean be bring slightily con dull ice.
the exclasiva conlowed by any pariy eept whell snow in admissibla to smeep veep when the tone raries' when it hat one side. Previoun
re entitled to aweap
take different aides wut the game; and upan the middle of ut the tae. Their reor play, sinil late
fone he marted slanll be put of the aced where the akjp irect. If marred by shot agnin. Shoulo any part of the end aes into oparation, if mer position a besom, to be ready taka trore than midt he aceldeatal'y y stop it while m (rest, it shall be re played.
:vious to the termina - pumbed by the ek:p |ral person mutually inal.
d) betore the last stons y who are lying th y of the losing part i) be prevented fron deducted from thei d by the winners the offender nother

veregalation and

 phat part of it thes the beginning, they lle pluyers tray give rector ; nor are the o the person about omes. shall name onmination of which f tha rules now enia arest mombers of tho th the diapuling no raterence, and whose It till the atilual gene ittee, to whom eitue
t-of-doner sports for nd and eye, greal ed, is lighly exbils. played on an open frce from stenes dd of sufficient dithe ball snd tuna good size. The sists of balla, bata rs should be light cap, linen trousers, points to prevent re are shoes mada
brms; one us called Wicket. We shall ed by s nu niver d
namon, bat generally five are on each party or side. Throw attaight zods or atumps, twenty-seven inches high, we nack in a row in the ground; on the top of the tamps ate laid two picces of wood called the bnil, and op placed that they will readily fall off if th, stumps he bit by the ball. This apparatus la called tha vicket. At the distance of four fect four lnches in front of the wicket is a mark on the ground, called the popping-crease. lo a straight line with the wicket is a mark on the ground called the bowling-crease, which is parallel to tho pupping-creasc.
An individual taken from one party is appointed bowler; his duty is to bowl his ball towards the opposite wicket, which he does by a short run. An individual from the antagonist party is appointed batter; his luty is to stand with his bat placed with its tip on the ground at the popping-crease, and to oppose the progress of the bell, ot to prevent it from knocking down his wicket. He must also codcavour to strike the ball smartly, so as to send it to a distance on the field. The fichl is in charge of the party to which the bowler belongs; these neo termed filld-men or field-kecpers, and each has on appointed place from which he takes a peculiar designaHon: one is named the leg-hit, or long atop, another the off hit, a third the long ficld on, a fourth the long ficld off. Their duties are to catch the ball when eithe: struck or unised by tho batter.
If tho ball be missed by the batter, he remaina at his wicket, and the ball is returned by the long stop to the mowler. If the ball be struck, and to such a distance that the batter thinks he could run to the bowling-crease, buching it with his bat, and return to his poppingcresse, louching it also before the ball ia returned and strikes the wicket, he does so, and if he perform this feat auccessfully, it is called one run, and counts one bomads the game. Sometimes he etrikes the ball to mech a great distance that he can run to and fro twice, nil this counts two; if three times, it counts three; and s) ou. These are termed rians or notches.

Should the bowler knock down the wicket, the batter petires, and this finishes his inning. His inning is also Snished by the wicket being knocked down with a ball by any of the ficld-kecpers, if he be off his ground. The inning may likewise be finished if the batter strikes the ball ituto the air, and it be caught by any of the batter's antagonists beforc it reaches the ground, and retained long enough to be thrown up again.
Double Wicket, which is considered the true game of crickel, is like two games of single wicket playing at one time, there bcing two wiekcts from whieh to bowl; also two hatters, but only one ball. This game is played as sbove, with this difference, that the batter runs only to the opposite end, exchanging places r ith the other batter, who is of the same party. The number of persons engaged a properly eleven on each side. As in single wicket, the gamo is determined by the number of runs made in two inoinga by each player; the party gaining the greater aumber of runa beirig the victor.
Such ia an outline of the two kinds of tho game; but there are many minute differences in playing in different parts of England, which it would be tedious to describe. Whas beea conceded by general consent to follow, in case flispule, the laws and regulations of the "Mary-le-bone Cricket Club," an association in London which has taken a hading part in this truly English sport. The following ant the laws of the club:-

Laws amd Regulations of Singlo Wicket.

'1. When there shall be fewer than five players on a side, bounda shall he placed, at twenty-two yarda cach, in a line from hin of sud lef simmp.
4. The hnill must the hit before the lounds to entitle the striker tos run; which run cannot he obtained uniess he tolleh the howlyt alump or cresse in a line with it with hia bat or some part ohin perton, or go beyond them; returning to the poppisgwhase, son, at doublo wieket, according to the twenty-necond

"3. When the atriker shall blt the ball, one of his feet mutat be on the ground, and behind the popping-crease, otherwise the umpire shall eall 'to hit.
"14. When there shull be lena than five players on a alce neither byes nor overthrows shall the allowed for shall the striker lie eaught out behind wieket, nor stumped out.
" 6 . The fieldsmיn nuat return the ball, so thit it shall crosa the play letween tho wicket and the bowling stump, or between tho howling stimpand the bounds. The striker tuay run till the ball ba no returned.
"O. After the striker has made one run, han muat touch tha bowillig stump ond turn, before the ball shull croas the play, to entitle him to nuother.
"7. This striker shail bin antitled to three runs for lost ball, and the enme number for hall stopped with hat, with referance to the twenty-ninth and thirty-fourth law of double wieket
"8. When there shall be more than lour players on a sidg
there shull be no bounds. All hita, byes, and ove throws, will then be ellowed.
" 9 . The howler is subjeot to the same laws an at double wicket.
"10. Not more than one minute thall be allowed betweom each ball.
"Lawn and regulations of Double Wieket.
"1. The ball must not weigh leas than fivo ounces and a half, nor more than five ounces and three quarters. If musi not measure leas than nine inehes, nor more then nine mehes und one-eigluh in eircumference. At the hegining of tuch tininge, eithar paris may call for n new ball. (Bat lin matehes the same ball must go through the game.)
"2. The fint mast not exeeed four inches and one quarter in the widest part ; it must not be more than thiry-eight inehea in length.
"i. The shmmps, three to each wicket, muat he twenty-seven inches out of the ground, the beils eight in length; the stumpa of sufficient thicknces to prevent the ball irom passing through.
"4. The loowling-erease must be in a line with the siumps, i:c foet eight inches in length; the stumpa in the centre, with p \&c turn erease at each end towards the howler, at right angles.
"6. 'The popping-erease must be four feas tour inehes srom the wieket, aut paraliel to it; unlimitted in length, but uot shorter than the bowliag-crease.
"8. The wiekets must be pitched opposite to each other hy the umpires, at a distunce of twenty-iwo yards.
"7. It shail not be lawful for euther party daring a mateh, without the consent of the other. to niter the ground by rolling, watering, tovering, mowing, or leesting. This rule is not mesnt to prevent the striker irom beating tha ground with his bat near to the spor where he stands during the innings, nor to prevent the howler from filling op holes with saw-dust, Ace., whan the ground shall be wet.
" B . Atter rein, the wiekets may be chnnged, with the conseat of both parties
"9. The bowler shall deliver the ball with ono foot behind the bowling-erense, and shall howl four balla theiore ha er ange wiekets, which ha shall be permitted to do ones only in the saine innings
"10. The bell must be bowled. If it be thrown or jerked, or if the hand ba above the shoulder in the delivery, the umpire must call - no ball.' (This is not reekoned as one of the iour balls.)
"II. The bowler may require the etriker at the wieket from whicht he is lowling to atand on that side of it which he mey direet.
"12. If the bowler toss the ball over the striker's head, or bowl it so wide that it shall be out of distanee to be played nt the umpire (even though he attempt to hit) shall edjudge one run to the parties recelving the innings, either with or withous an appaal from them, which slanll be put down to the ecore of wide bnils, and sueh ball shall not be reckoned as any of the four balls. When the umpire shall have called 'Wide ball'one run only shall be reckoned, and the ball shall he considered dead. "13. If the bowler shall deliver a 'no ball, the striker may flay nt it, and be allowed as many rana na he can get ; and be shall nat be put out exeept by ruming out. In the tevent of no run beag obstained by any other meana, then oas run shall bo scored.
14. In the event of a changa of bowling, no mora than twe balls shall be allowed tor the aake of pructice.
"I5. If the bowier thowl one ball, he aliall be obhged to bowt four.
". The striker is out if either of the balla le bowled off, or if a stump be bowled out of the ground.
"17. Or it the ball, from a atroke of the bat or hand below the wrist, be held before it touch the ground, although is be hugged to the liody of ite eatcher.
"18. Or if in str.king, or at nny other time wbile the ball in in play, hoth his fett be over the popping-crense, and his wicket put down, except has but be grounded withn it.

- 10. Or it in striking at the hall he hit down his wieket
" 20 . Or if; under pretence of ruming or otherwiae, either of the strikers previcht in ball from being eaught, the striker of the ball is out.

21. Or if the ball he struck, and he wilfolly striku it again. or Or if in rimning, the wicket be atruck down by a tirow hand or aonte part of his werson hil in hand) betore his bat (in crense. Hut if tha baits be off, a stump muat bo struet out of the ground.
" 23.3 . Or if any part of the otriker's dreas kncok down the wicket when strihing.
"24. Or if the striker touch or take up the ba' while 4 play unless at the request of the opposite party.
"25. Or if with any part of his person he stop the ball. which in the opinion of the tumpire at the brwier's wicket sinnil have wen delivered in a straight line h the striker's wickat, and would liave hit it.
"26. If the players have crossed each other, he that ram for the wirket whied is put down is out.
"27. A hall beiag caught, no run shall be reckoned.
"纤. If a 'lost ball" be called, the striker shall be allowed alx mins; but if more than six shall have been run before "lost ball' shall have been called, then the striker shall bave all Which shall have been rus.
"49 After the hall shall have been lodged and tefintively entleal in the wieket-kerpar's or howler's hand, it slall be consdered dead. It, when the bowler is about to deliver the buith, the striker at hia wheket shall go outside his popping-crease before anch actual delivery, the said howler min' put him out.
${ }^{3}$ 30. If the striker be hurt, he may retire frosa his wieket, and return to it at aby time during that maings.
"ist. If a striker bu lurt, some other puerson may stand ont for miln, but not go in.
"\$2. No substitute In die fiedd ahall be allowed to howl, kerp wieltet, atand at point, cover thu point, or stop behind, in any canc.
"(33). If any fieldsmanstop the ball with his hat, the hall ainall Lo considered dead, and the oplosite party shall add five rulls to their seore. If any be run, they shall have five in all.
"ift The ball having been hif, the striker may gatard his wicket with his bat, or wilt any part of hia body, except his nami; but the twanty-fourth law. Ly whieh he is forbidden to toueh or take up the ball, may yot he disoheyed.
${ }^{43} 35$. The wicket-keeper shall noe take the ball for the purpose of atumping, until it has passed the wicket. Ile shall stand at a ressonable distance hehind die wieket, auil shall not nove t.ll the l,sll be out of the lowler's hand; he shall not liy any noiso inconanode tha striker: and if any part of his permon he over or before the wieket, although the ball hit it, the striker shall not bo oul.
"33. The umpires shall not siand more than six vards from the wicket; they nre sole judges of fair and unfair play; and all dasputes thall be determined by then, wach at his own wicket: butin ease of a catch which the unpire at the wicket howled from caunot see sufficiently to decide upon, he may spply to the other umpire, whose opinion shall lue roncluaive.
"j7. The umpires in all matelien slall pitch fair wirketa, and the parties shall toss up for the choicu of lmings.
"ds. They sliall altow two minates for the siriker to come in. and fiftern minutea hetween rach ingings. When the umpire ebell call 'play;' the party refuaing to play ahall lose the mateh. "'s. They are not to order a striker-out, unleas appenled to by the alversaries.
"40. llut if one of the bowler's feut be not entirely behind the bowling-erease, within the return-erease, when he shall deliver the ball, the umpire at his wieket, unasked, munt call 'no bmil.'.
"41. If, In runniag, either of the atrikers shall fail to ground his bat (in liend) or some part of his person over the moppingcrease, the umpire for every auch failure shall dednct two rims from the number inteaded 10 have been run: lecause sueh sariker not having ran home in the first instance, cannot lave saried in the second from the proper goal.
"4. No unipire shall be allowed to bet.
"43. No ungire in to be changed luring e match, unlene with the consent of both partica. except in case of a violation of the forty-second law ; then either party may disniss the trans-
greasor.
"44. Aner the delisery of four balls. the umpire shall call 'over,' but not unil the bal/ ahall be lodged and definitively getled in the wicket-keeper's or bowler's hand; the ball alall then be considered deail Nevertheless, ir an idea be entertaincd thas eother of the strikers is out a gneation muat be put proviously Ω_{1} but not efter, the delivery of the next ball.
${ }^{0} 1$. 45 . The umpire must take especial care to call' ' mo bell' imstantly upon delivery; 'wide ball' as eoon an over it shall paen the striker."

Names of parties indieated by the figures-* Strikera; 1 Powler; 2, Wickee-Leeper; 3, Long Sop; 4. Shon Slip; 3, 1 ong Sljp 6, Point; 7, Cover; 8, Middle Wieket; 9 . Cong 1.eld. of aide: 10, Jong Field, on alde; 11. Leg; O. Umpires; \rightarrow scorres. This is the usial placing of the field-men. but Bhwlers make such alteration as they deem hest to oppose Whatrers.

The preceding diugram represents the field durine a cricket match, with the proper prosition of the partice playing, also the technical names of these partiee.

BowLs.

Gamen with bowls are of great antiquity, and have existed in many different forma. That which has ultio mately become the proper English gamo of bowling in performed with halla of fine hard ivood on a smoold shoven lawn called a bowling-green. 'There are two parties, and each individual possesses a bowl. One of each party plnya nlternately. 'I'he ohject ia to del:ver the ball from the band along the aurface of the green, and in such a manner as to place it close by an appointed mark. 'The party which firat gains the specified number of points, by leing nearest tho goal, it victor. The goal or object played to is a amall ball called the jack. It is not fixed upon any purticular spot, but is bowled by ain of the party to a cettain distanco.

A howling-green requires to be romarkably lovel, and kepl closely shaved by tho scythe. The length of spece played in, called sometimes rink, may be about thity yarda. The balls are not altogether spherical; they are apheroids, or fluttish on two opposito sides. They as usually made of lignum vila, and are sonntimes hand somely mountel with silver platea on tho sides, learing the natines or arma of tho owners. Tho size varien from about four to six inches in diameter.

A knowledge of the value of forces, which can bo gained only by experience, is necessary in bowling; bul a not less important requisite is a knowledge of the at of giving a biaa to the bowl. A person akilled in this art will, by a peculiar pressure of the fingers in delives ing his ball, cause it to roll in a kind of semicircle, 80 as 10 go with a sweep round the ciustera of balls in frons of the jack, and ceme to its place of rest close by the jack or goal.
The game is heallhful and exhilarating, and, played in moderation, seems well adupted for the recreation of sedentary perious. In many towns in England and Scolland there are beautiful bowling-greens, the properly of the cilizens at large, or maintained by private cluba In Glasgow thero aro several bowling clubs, and tha for lowing are a fow of the regulations laid down for the game by a most respectable association in that city, nums ly, tho "Welleroft Bowling Club:"-

Regulations for Bowla.

"The game to connial of nine points, unless atherwise agreed; and the throwing of the jack and playing first to be decided by lot. " If the jack ia thrown into the ditch on any occasion antet the firnt throw, the opposite party have the privilege of throw. ing it anew, and not miterwarda moved if three fect clear of the disch in front of the plapers. Thia rule not to apply to the side diteh. from whieht the jack musi be aufficiently disteat to allow both fore and back he ad play.
"All players, whe : throwing their howl, to have ona foot va the afternoent white sall marked on the cloth; tha poaition of the cloth not to be chanted during an end; and if ty aceideat removed from its si, ustion, to be placed aamerat as poswbie to removed from
"A bowl touching the jack at any time during its course on the green, is what is called a uucher, and counta the sames the green, is what is celled a lunche
and other jowl, hough in the diteh.
"If other bowl, though in the diteh. diteh, the place where either reata may he marked, the jath ditch, the place where either reats may he, marked, the jatt
placed at the edge of the dith, and both replaced when the placed at the edge end in played out.
"If the juck is burned, or displaced otheraise than by the effect of the play, the opposite party to have the option of playing ont the erd, or beginning it anew.

- When a m.wl is burnct, if brlonging to the party guilty, it ia to he put off the zroen, if helerging to the opposite party, a be replaced as near its original position es passitle by the party to whom it belongs. It the jack id burned by a nor player, the end to lie played over azain.
"If a bowl is acciesntally meared by ma opponent. it ohall bo in the option of the party playing to let it rest, or play it otel again: if it is inerred wilhingly ap an opponent. it mny be placed nnywhero, at the plenaire st tire pleyer. If a bors if marred in either case by the player's party, the opponents n have the aame privilege.
"If a bowl (without touching the jack) rebounda from the ditch, it shall bo put off the green ; and if it lis d:suried enthet
mes or bowle, th
epponeat: part Aller an end antil the sime mbasuring till th "Na player to doing so lones th

The game land, though tern golf bein Dutch kolf, a Scotch word and Pastimes where are mnn the aswistance ancient among the name of gu goff is mach of the Romans nulfed with fer same materiale the latin name it derived the club or oat wit It semene to b of golf was int fairty prosutned and archory, w the reign of ou King Charler of goling, and, eagaged in it or fim of the reb down his cluh, road House. 'I uiso delighted is
Golf is playe covered with wh is convidered the surface on which The grounds on a term nearly c open downs of fair specimen of and thero we Links, a comeno are inregular in of showing skill greater force boi ball in one direc Golf is eutitle i played almos ducted leisurely ousness. A stra belter than wall faccination of a appropriately be green of a mile balle, instead of holes in the grou
Golfa are for straight, is gener made of ash or : in united, by con tha striking part is loaded with upper extremity cloth. In regu Each has his set ten, which is car and from this s elected. Some other tumes it tone or bush, an
the field during on of the partion se partice.
quity, sand haw which hes ultio ne of bowling in al on a smoold There are two bowl. One of t in to celiver the of the green, and by on appointed specified number victor. The goal I the jack. It ia is bowled by oin
akkahly level, and c length of apeca y be about thirty herical ; they te siles. They an sornetimes hand the sides, learing c aize vuries from
:8, which can be in bowling ; but wledge of the at on skilled in thin fiogers in delive 1 of aemicircle, so of balls in from rest cloae by the
atiog, and, played the recreation of in England and eens, the property I by private club clubs, and the for laid down for the in that city, numb

A otherwise ngreed; ral to be deeided by
any occasion aftet privilege of throw. ree feet ceat ot the
to apply to he side to apply to the side
aty distant to allog
to heva ons fool sad oth; the position a ; and if Ly acecidedt ne
during its courte on countia the semes a
jack. is run inlo the e. marked, the jact replaced when the
erxise then by the e the option of play.
the party guily, it e opposite perty, as possible by the burned by a nor
opponent. it shall be rest. nt play ilotel pronent. it may ba layer. If a bowlia y, the oppouenia x
rebounds from the hisc disturied eutber
mes or bowis, thay thall be , oplaced an nosr at puatille by the epponenia party
epponier an end is played, nelihor jack nor bowls to be touehed anil the same in counted and ail parties antiafied, And no meanning ill the end le played.
"No playor to ohange his bowla during the gams ; the pariy solag so lones the geme."

GOLF.

The game of golf is believed to be peculiar to Scotland, though moat likely derived from Germany; the term golf being from the Cierman word kolbe, or the Dutch kolf, a club. The popular pronunciation of the Scotch word is goff, or gou'f. Strutt, in his "Sports and Pastimes of the People of England," ohserven $t^{\text {. }}$ wthere sre inany games played with the ball, that require the assistance of a club or bat, and probably the most andicnt among them in the pastime now distinguished by the name of goff. In the northern part of the kingdem goff is much practiscd. It answers to a ruatic paatime of the Romuna, whicl thoy played with a ball of leather tutfed with fea'hers, and the goff-uall is composed of the amme materials to this day. In the reign of Edward III., the Iatin name combura was spplied to thin pastime, and it derived the denomination, no doubt, from the croeked club or out with which it was played."
It semus to be quita uncertain at what period the game of golf was intruluced into Scotland; but it may be fisily jresumed that thin amusement, se well as foothnll and atchery, were practised to a considerable extent in the reign of our King James the First.
King Charlea I. was much attached to the amusement of golling, and, on his visit to Scotland in 1641, was engaged in it on Leith Links when intimation was given bim of the rebellion in Irelnnd; whereupon he threw down his club, and returned in great agitat on to Holyroad House. The Duke of York, afterwarde James II., diso delighted in the game.
Golf is played upon a large piece of open ground, covared with short herbage, but not necessarily level. It is considered that akill is leat sho zn by playing over a urface on which there are certain irregularities or hazards. The grounds on which the game is played are called links, a term nearly equivalent to downs in England. The open downs of Blackheath, near Greenwich, seem a fair specimen of the kind of ground auitable for the sport, and there we believe it is now played. Bruntsfield Links, a common near Edinburgh, slope nomewhat, and are irregular in torm, hut they afford a fine opportunity of showing skill in playing "up and dnwn the green," a greater force boiug required in atrokes in impelling the ball in one direction than in another.

Gulf is entitled to be called a "reapectnble" game. It in played almost exclusively by gentlemen, ond is conducted leisurely and without any appearance of boiaterousncss. A stranger would call it a apintless sport, little better than walking. It possesses, however, the usual fascination of a game of akill and chance, and might appropriately be compared to billiards-the table being a green of a mile in length, the billiard rode clubs, the balls, instead of ivory, hard stuffed leather, and the pureer boles in the ground.
Golfs are formed of wood. The handle, which is araight, is generally about four and a half feet long, and made of ash or hickory. To the lower part of this stnlk is anited, by compact tying, a flatitish curved enl, which is the striking part; it is faced with horn, and to give force is loaded with lond. To give a bold to the hands, the upper extremity of the stalk is wrspped with a rind of doth. In regular prsctice, players use several golfs. Each has his set of three, four, tive, or even as many as ten. which is carried by an attondant boy called a cadie; and from this set the golf appropriate for the stroke is mected. Sometimes the ball liea fairly on the grass, at oher tumes it may have got into a hollow, or behind a tone or burh, and an instrument beat adapted for sending
it forward, or lifting it from its hazard or awkward situation, is in requisition. One of the golfs is technically culled the apoon, from ita use in lifting the ball from hof lowe; another is celled the iron; and so on.

The ball in ambll, being not more than an inch and a half in dinmeter; it is made of leather, utuffed almost as hard an a stone with feathers; the outaide la emooth, and painted white. At Edinburgh and St. Andrews, the making of golfs and halln is a regular profession.

There are generally two players, one matched egainat the other. Each has his own hall. The game consiate in driving the hall into certain holes made in the ground, which he who achieves in the feweat strokes obtaina the victory. When four persons play, two of them are sometimes partners, and have but one boll, which they strike alternntely. The holes are aituated at the different enda and uiles of the green, at irregular distunces, and their number is optlonnl. The usual number in five. A player must never touch his ball, unless in very particu lar circumatnnces, or when he takes it out of one of the holes. When commencing from a loole, the hull inay be cogged up on the point of a dot of mud or turf, to allow of a commanding stroke; and this is colled teeing the ball; but on all other orcasions the ball must be atruck or impelled by the golf fiom the place in which it happena to lic. Much deponds on the firat blow, and it
 should be given with great firmness of person snd a good aim. Properly performed, the first atroke will mend the ball two hundred yarde while at other times a blow in an awkward situation will advnnce it only a few feet. When the balls at length get near a hole, great skill is shown in putting or giving those delicate strokes which will not make the ball go beyond the hole, but if possible into it. A knowledge of the value of forces, the nature of the green, the influence of wind or weather, \&ce, is important in this nnd ull other parts of the game, and is only to be gained by long experience.

At Edinburgh, Leith, Musselburgh, St. Andrews, Porth, and perhaps some other towns, there are associations or clubs of golfers, whose proceedinge are governed by certain laws and regulations. The oldeat in Edinburgh are the "Edinburgh Burgess" and "Bruntafield Linka" Golfing Societics. The Bruntsficld Linke Suciety was inatituted in 1761, and is limited to forty members, the uniform of which is declared" to be a red jacket with green velvet collar and hadge, bearing the arme of the society; namely, vert two golf clubs in saltior, with heads in chief proper, between four golf-balla argent: motto in an escroli below the shield, Inde Sulus (Thence Health; The affairs of the Saciety are managed by a captain treasurer, secretary, and six councillors, elected annually A gold medal, played for annually on the last Baturday of March, is retained by the winner for one year. A silver medal, played for annually on the last Saturday of September, is retained by the winner as his property. The following are the regulations preacribed by the eociety for playing the game:-

[^64]-4. All loose sififti, stonen, fith, nuisanee. or ather movahle impedimenia, may be removed, if within one oluh lengit of the oal1; and in pulting. all movabla ohatructionn may be remsved within four cluh lenglis of the hole-the distance to be menaured with the eluh which the parly Is to pluy with. In the avep' of a bail gotisg into a hole, or any other haznrd, the party that be allowed to take is ont, and standing immediately behind thes lunzard, drop it over his shoulder, atad play it, loning a alroke.
"5. No hole is galned unleas the ball be haled (exeept by eonent of partieak, and a party loaing his halt lowe the hole.
"6. In ease of douly as to the liall belonging to pilike- party. meither ball ahall lis lited unlesa by conkent of partiea, and the Dail iartheas irom tha hole mum be played tirst.
"7. If a ball be alpuck or haved by any one nol of the pariy, It aliell the hrought beck and played from whare if was mo struck or moved, the party previoualy dropping it ovee hia shoulder.
"H. In a match of more thitn two players, if a hatl be alruek iwiee or oftoner. anceeasively by one player, thatenide of the match losen the hole.
"O. If a parry play the aivernary's balt, the adversary gaina the bole.
. tu, If a pariy permonally, or by hia cadie, ntop or touch any ball of the mateh, the adversary gaint the hole.
"'11. If a ball gliek fast into the grouncl, is may ha loosened.
":2. In playing for prizes, no compelition to be allowed unleas the parties be dreased in the unifirin of the nociely.
${ }^{4}$ i3, tn punting, the ball, if practicable, shnll le played direcily ar the hole, bin' if the adveranry's ball oppoae lle player, it stiall be lawfut to play upon it."

Enthusiantic and long-experienced cultivatore of golf at Edinburgh have been known to perform some remarkable featn in their favourite sport." "Beta of n novel nature, which eet the ordinary routine of the game entirely aside, are occasionnlly undertnken ly the more athletic. An amusing and difficult fent, sametimes attempted from Brantsfield links, is that of driving the bull to the top of Arthur's Sent [a hill 800 feet high.] In thia fatiguing undertaking, being a species of stecplechase over hedgea and ditthes, the parties are usually followed by bottle-holders and other attiadants, denoting the exceasive exertion required. In 1798, liets were taken in the Burgess Golfing Society that no two members could be found capable of driving a ball over the apire of St. Giles's ateeplo. The late Mr. Scenles of Leith, and the present Mr. Smellie, printer, were selected to perform thin formidable undertaking. They were allowed to use six balls each. The balla passed considerably higher than the weathercock. and were found nearly opposite the Advocate'a Close. TTe bet was deciled early in the morning, in case of accident, the parties taking their station at the south-east corner of the Parliament Bquare. The feat is described as one of easy performance. The reguired elevation wat obtained by a barrel-etava nuitably fixed; and the height of the stecple, which is one hundred and sixty-one feet, together with the distance from the base of the church, were found to be much less than a good stroke of the club."*

- HINTT-HURJING.

Shinty in Scotland, Hockey in England, and Hurling in Ireland, appear to be very much the same out-of-door aport. We ehall describe shinty:-Two parties armed with aticks or clubs crooked at the lower extremity, and generally termed gouffs (golifs), throw down a little ball of wood, called a shinly, midway between two pointa, and the struggle is, which party will drive the ball to their "hail," as it is called, or the point allotted an their cionl. It may be guessed hy thnee who have never seen it, that there in amart amashing work at this game of ahinty-most appropriately named so, seeing that the whins of the players are exposed to tieklish cracks from the clubs of their opponents when a lock takes place, and a dozen boys, perhaps, are atruggling to get the ball out from among each other'a feet. Hard though the hall be, and smart the atroken given, the netivity and quick eyes of the players usually prevent any great injury from being received at ahinty. By far the most serioua mischief tom:nonly resulting from it consist in the damage which

- Biographical aketehen of "Kay'a Portraita."
it bringa upon the neighonuring hawthorn hedgea, whilat are mally cut to pieceas in order to provile clubs for the aport. The werat of it is that young hawthorn slipa with the root eut for the atriking part, make hy fart the best elula, and acrorlingly the evil dane is radicalty ruinous to the unfortunate hedgerows.

Hurling in alluded to an followa by Mr. and Mra. Hall, in their work on Ireland:-" "The great game in Kerry, and indeed throughout the Bouth, is the guine of 'Hus ley'-a game rather rare, although not unknown, in England. It is a fine manly exercise, with enough of danger to produce excitenent, and la, indeed, par erirb lence, the game of the peasnatry of Ireland. Ta be an expert hurler, a man muat possesa a thletic powers of no ordinary character: he must have a quick eye, a ready hand, and n atrong arm; he must be a good runner, a akilful wreatler, and withal patient as well as remoluta In some reapects, it resenhles ericket; but the rules and the form of the bats are altogether difficent; the bat of the cricketer being straight, and that of the hurle crooked.
"The forma of the game are these:-The playen, sometimes to the number of fifty or sixty, being chosen for each sile, they are arranged (usually barefoot) in two oplowing panke, with their hurleys crossed, to awail the tossing up of the ball, the wickets or goals being previously fixed at the extremities of the hurling-greem which, from the nature of the play, is required to be level extensive f'ain. Then there are two picked men chosen to keep tho goal on each aide, over whom tha opposing party placea equally tried men as a counten poiso; the dity of these geal-kerpers being to arrest th ball in case of its near approach to that atation, and m turn :t back towarda that of the opposite party, while those placed over them exert all their energies to drivo it through the wicket. All preliminaries being adjuated the lenders take their places in the centre. A person is chosen to throw up the ball, which is done as atraight as posaible, when the whole party, withdrawing their hus leys, stand with thom elevated, to receive and atrike it in ita deacent; now comea the crash of mimic war-han leye rattle against hurley--the bail is struck and re atruck, often for acveral minutes, without advancing much nearer to eithey goal; and when some one in lucky enough to get a slear 'puck' at it, it ia sent flying over the field. It is nuw followed by tho entire pary at their ctmont speed; the men grapple, wrestle, snd tom each other with maazing ngility, neither victor nor vas quished waiting to take lireath, but following the courne of the rolling and flying prizo; the best runners watch each other, and ikesp almnat ahoulder to shoulier through the play, and the beat wrestlers keep as close on them an possible, to arrest or inpede their progresa, The ball must not be taken from the ground by the hinnd; and the tyct and skill shown in taking it on the point of the hurley, and running with it half the length of the field, and, when too elosely pressed, striking it tewards the goal, is a matter of astoniahment to those who are but slightly acquainted with the play. At the goal in the chief brunt of the battle. The goal-keepers receive the prize, and are opposed by those set over thein; the alrug. gle is tremendous-every power of strength and skill is exerted; whils the parties from opposite sides of the field run at fuil speed to support their men engaged in the conflict; then the tossing and atraining are at their height, the men often lying in dozens side by side on the grass, while the ball is returned by some atrong amm agnin, flying above their heads, towards the other goal Thua, for hours, has the contention been carried on, and frequently the darkness of night arresta the game with out giving victory to either aide. It is often attended with dangeroua and sometimea with fatal results.
"Matches are made sometimes between differel. .. landa or pariahes, sometimes by barony against aroox
 anck mon' alf a century the Phanix Par the mea of lein deutenant and ot by all the nohit egal court, and ad and ita vicin long tine with v ra favour of tha ning with the ba ng it through th riage, and by th the leinster goo the goul. This Healy, and he hit don. Between were several goo mon, betwoen th castern parts of by the then nota men who led the

The aport of adinst the wall, it with the hand progrees of tine ain gamea. On the atriking of which it falla wi ugain atruck in this action fer a gume. In Engla of thin kind five fro fingers and for ages been call quaint produetio the education ant ball. He remar to use, although them, are runni ing, and playing malle and such ports."
Rackels is the oriking the ball macket, which ia of frame and et broad wall, aven earhen ground, the hand. T'wo the ball alternatel that his adveraar the adversary is darting to the al mdeavoura to at tom rolling on the ball, either Ic or has his hand hich he would Neither fives nor that they formere ol courts laid and nuwhere ar ysude of the Qu many of the inm cies of amuseme)
Tennis ia a ga a racket, hut inat is atruck over

3 hedgea, whlat to elubh for the hawthern alipa nake hy fur the ne in radically - and Mra, Hall, game in Kerry, gane of Hur unknown, in with enough of adeed, par erict and. To be an ic powere of no ck eye, a ready good runner, a vell an resolute, ut the rules and rent; the bat of of the burles
-The playern y, being chosen lly harefoot) in rossed, to swait or gosls being o hurling-green, equired to be a wo picked men over whom tha as a counter ng to arreat thon station, and re ito party, while nergies to drive being adjusted, e. A person is 18 an atraight as wing their hur. and strike it in imic war-hur struck and to aout advancing a some one is it is sent flying entire parly at vrestle, and toos victor nor vapwing the coure runners watch houlder through lose on them as ress. The ball the hand; and the point of the gth of the field, it towarda the so who are but the goal is the pers receive the hein; the strug. gith and skill is it sides of the nen engaged in ing are at their e by side on tha me atrong arm the other goal carried on, and the game witboften attended 1 results. a differelo... is against arong
players stand. The game, which was once fambionalia we believe, ka now scarcely ever practised.

taap-Ball.

I'hia game, which in traceable an far back an the com mencement of the fourteenth century, in played chlefly by boya. A wooden olject, called a trap, revembling a shoo in shape, with a apring alip or tongue fantened in it by a joint, is laid on the ground. The ball in laill on one end of the apring; the other end in struck with a bat, and the ball riming is to bo martly ntruck. "It ha unual," saya Strutt, "in the prenent gane of trap-ball, when properly played, to place two boundarien at a given dintance from the trap, hetween whieh it is necemary for the bnil to pess when it in atruck by the batsman, for if it falle withoutsido of cither, he given up his bat and is out ; he is alno out if he ntilken the ball into the air und it is caught by one of his adveraaries before it grounds; and aguin, if the lall, when returned by the opposing party, rouches the trap, or resta within one bat's length of it; on the contrary, if none of these thinge happen, every atroke tella for one towards the striker's gaine." In nome country parta of England trap-ball in a favourite aport of the rustic population.

Foot-balf.

Foot-ball is an old Englinh sport, now littlo known in some parts of tho country, but keenly played in otbers It ia played by means of a distended ox-bladder, tightly covered with dressed leather, anc rewed up in a atrong and secure way, mo as to retain its full elanticity. This ball is thrown aloft in the air between two partien of playera, equidistant from each other; on one nide and the other there is a fixed point or line, called, as in the preo ceding caso, the hail or hailing spot. The objeet, then, of each party is, hy vigoroun kicka to propel the ball to the hailling place behind their advernarien, on the attainment of which ohject the gane is won. This game is less hazardous than ahiaty, and exercises fully both the strength and speed of the players. It is amazing how dexterous cven very young hoys become by continual practice at foot-ball; and akill in the application of a slight degree of force availe much more at this aport than greater strength unakilfully directed. The young men of the Scotish Border yet practiae this game amuually in various places; and few sights can be more exhilarating than to hehold a strong bolly of them so employed, when the fleet foot of the sheplierd vies for conquest with the vigour of the ploughmen, and health and enjoyment bearo unequivocally froin every countenance.

quors.

Contests in throwing or pitching heavy pieces of metal were practised by the ancient Greeks at their great periodical assemblages for athletic exercises. The pieco of metal thrown was called the dincua, from its round form. The main object in these conteats wes the cultivation of atrength of arm, and victory was gained more from the ability of throwing heavy weights to a diatance than from akill in attainiug a particular mark.

From these ancient practices, firat puraued by the Greeks and then by tho Romana, the game of quoits, or coits, appears to have been derived. 'The quoit is a circular plate of iron perforated in the middle, or, more properly, a fluttiah iron ring, concave on one side and convex on the other, the concave or hollow side being undermost in throwing; and a noteh being in the edge for the finger to preas upon in delivering the thrnw. Quoits are of diflerent sizes, to suit the different tastes and powera of players. "To play thia game," aays Strutt, "an iron pin. called a nob, is driven into the ground within a few inchea of the top; and at the dimtance of eighteen, twenty, or more yards (for the diatance , is optional), a second pin of imn is also made fast in a

ninilar manner two or more perwona, as four, six, eight, or more, at pleasure-wbo, divided into two equal partien, are to contend for the vietory-atand at one of the iron marka and throw an equal number of quoita at the other [the quait being delivered from the hand by an upward and forward pitch with a ateady aim at the pin, near which It should sisis with its sharp edge In the turf; the nearent of them to the hol, are reckoned towarda the game. But the determination is diwerimimately maies for inatance, if a quoit belonglng to A liea mearent to the hob, and a quoit belonging to B the mecond, A can claim hut one towards the game, though all his
other quolta lie nearer to the mank than all the othem quaita of B_{i} because one quoit of 11 being the wecond nearcut to the hob, cufs our, as it is cailed, all behind it. If no mech qualt had interfered, then A would havi reekoned all his aa one each. Having cuat all thein quosit, the candidatea walk to the epposite end and deo cermine the atate of the play; then, taking their fland there, throw their quoitn back agnin, and continuse to do wo alternately as long an the gaine remaina undecided." The dress in quoiting alould be leose and eany, with no reatraint from bracen.
In aome of the rural districts of Eupland horweshoes used to the employed an quaits; and in mome parte of Scotland the quoita consiast of round fat atoteres, games with which are ealled the "penay-stanes."

IN-DOOR AMUSEMENTS.

Clifss.

Ir has been juatly obmerved, that ameng all the in-lloor amusementa invented by man for the employment of the Whle or the relief of the atudious, chome stands pre-eminent. It in the most refined and ingenious of all games, and ponsenses a charm which has randered it a favourite of the greateat characters, whether kinga, warriors, or philoaopliera. Aa an amusement, it promemaen an advantage as great as it in aisgular: being highly interesting in itaelf, and played with leisure, it requires no inducement of gain, and in consequence is rarely played for money. The glory of conquest fallowed to forin e sufficient attraction.
Chess is of unknown origin and antipuity. Sorne writera have aseribed ita invention to the Greeka, some to the Hindoos, othera to the Clinese, and a fourth clasa to the Persisna. There can be little doubt that it originated in the east, and at a very remote period of history ; and it la certain that it has been known in Hindostan and adjacent regions for at leaat two theunand years. From the Perxians it was introduced by the Arabiana Into Spain ; thence it feund its way to France; null was made knewn in England during the reign of William the Conquerer.
The name of the game, and also the names of the piecea with which it is played, have undergone many mutations in travelling from country to conntry; nevertheless, in the present terms which we employ, the semblance of the original eastern appellations may he seen. In Hinilostan it possesses the Sanserit name of Chaturonga, which imports the four members of an armyslephants, horsea, chariots, and foot-molliem; the game being a acene of mimic warfare, in which theme elementh renpectively aet a peculiar part. The Persiann eorrupted the Sanserit werd into chatrang, which the Arabians softoned into shatranj; from that appellation it passed into searchi, echers, and fitally chess. By the Frencll it in called echecs, and a chean hoard they term echiquicr.
According to the modern European arrungement, the Wea of elephanta, horses, chariots, and foot-soddiers bas tmen abandaned, and there have been substituterl a king. queet, biahops, knights, castles or rouks, and pawns, forming six distinct elassen of pieces. The term bishop in only English, being a substitution for eleghant. The knights represent the horse-soldiers. The term roak is from the castern word rokh, n hero, and represents an armed chariot or fortification. Whe Earglish give tho piece
the form of a cantle. The pawns are the foot-soldien, the name being from peon, an attendunt.

The chens piecea made in India or Chlnn for alata to wealthy Eurapeans are sometimes made of aolid ivory, five or six inches high, and are excaedingly beautiful, no degree of latoour being apared in the carving. The king and queen ate meated on clephanta, under a canopy tho bishops are camely, with archern an their ridera; tha kuighte are on horsebaek; the castles are clephanta, wilh castes on their backa filled with warriors ; and the pawna are soldiers, one a asrgenth, another a drumner, another a fifer, and the reat ordinary fighting men.
In England the pieces are usually mude of bone a boxwool, with more or less taste, and from a low tor high price. The following is a representation of thein common form.

Pawn.
Rook. Knight. Dishop. Queen. King
Chess Men and Board.
There are two nets of piecea, of diffierent colours; one is usually white, and another red. A set consists of in. teen pieces, so that the entire number with whirh the game is played ia thirty two pieces. A net includes ons king, one queen, two hishopa, two knights, two rookn of castles, and eiglt pawna. T'wo parties play, each having a set of a ditterent colour.
'The gume is played on a aquare hoand, divided into sixtr. tour ayluarea, checkered black and white, as represented in the following figure. The numbers which are hes slown on the squares do not exist on the chess-board; we have only marked them thus in orler to illustrate the sulojoined explanations of the metlood of playing the gume.
In beginning to play the game, the first thing is to eet the bourd. This is done by placing it before you, with a white square in the right hand corner. As the playen sit opposite each other at a table on which the board in placell, each has a white stuare on his right.
Next, place the men in their appointed places, Let us soppose it is the white set of men. On the whive corner ayuare marked 64 place a rook or castle, and on the black corner, 57 , place the other rook; on the black

aquare, 63, place 68, place the othe place a bialop, an ather bishop; on end on the white completer the first sand mupported o weend row, mark filled entirely with front guard to the The red or dark the same order-a 7, a billop on 3 ant It is a rule of the α frat on a мquare on a white square. The piecen and pi king and queen tak biahop, king's kuiz king'y pawn, \&c.
When properly anoccupied in the - apace on which place.

It is a leading I pleces lun its own some ean mave or very different from a draught leord.
A pauen moves 0 line forward, and to fint noved, hewev dither one square o the equare over wh pawn; so that if h leaping over it , he n adverse pawn has himedf on the at move backwards ; the board, upon t atyled going to quee the piecea lost in thosen must be pla has urrived. If n power of taking di from that of all ot in which they mov go forward as befo uned the most vall
A knight moves upon overv third a
all the othm If the second all behind it would have cant all theit cend and de. If their Mland timise to do no undeeided." susy, with no
d horseuhore
ome parte of atolvet, gamen beautifui, no f. The kirg canopy $;$ the riders; then phantes, with re ; sunl the a drummer, g men. le of bone of a a law to ition of their chess-board; illustrste the playing the the playen the board is stle, sud on on the blact

equare, 63, place a knight, and on the white equare, 68, place the other knight; on the white mquare, 62, place a biahop, and on the black muare, 59 , place the other bishep; on the black mquare 61, place the king, and on the white aquare 60, place the queen. Thin completen the first row, in which the king and queen atand supported on each sijle by their officers. I'he second row, marked $49,50,51,62,553,54,55,56$, is filled entirely with the eight jawns, which thus form a front guard to the picees behind.
The red or dark aet of piecee are phaced in precisely the same order-n esatle on 1 and 8 , a knight on 2 and 7, a bishop on 3 und 0 , the queen on 4 , and tha king on 5 . It is a rule of the game that the queen must he placed * first on a mquare of her own colour-the white queen an a white aquare, and the dark queen on a dark aquare. The pieces and pawns on the side and front of each king and queen take their names from them; as kiog's bishap, king's kuight; queen's biahop, queen's kniglst; king's pawn, \&cc.
When properly placed, four rows of aquares are left unoccupied in the middle of the hoard, and these form a space on which tho carly evolutions of tho mon tako place.

The Moves.

It in a lesding peculiarity of cheon that each class of pieces has ith own peculiar value and aty le of moving; some ean move one way and bome anwother, a system very dificrent from that of the orlinary movementa on s draught loard.
A paun moves only one atprare at a time, in a straight liae forward, and takes the enemy diagenally. On heing firat inoved, however, a pawn has the power of adrancing either one square or two, as the player thinks fit, unless the squars over which be leaps is commsnded by a hostile pawn; so that if he were to reat on that aquare inatead of leaping nver it, he might be captured. In such a case, tho adperse pawn has the option of taking him, and placing himself on the square leaped over. A pawn cannot move backwarda; but on getting to the further side of the board, upon the firat line of the enemy, which ia styled going to queen, ha may be changed for any ono of the pieces lest in the course of the game, and the piece thosen must he placed on the square at which the pawn has arrived. If not exchanged, he remaina idlo. The power of taking diagonally, possessed by a pawn, differs from that of all other pieres, who take in the direction in which they move: after every capture he continues to go forward as before. The king's bishop's pawn is reekuned the most valuable.
A knight moves obliquely, either backward or forward, upou everv third square, including the aquare on which
he atood ; from black to white, or white to black, oven the heads of the men, which no other piece in parnitted to do. For example, a knigh' may leap from 36 to 10 , $21,26,30,42,46,61$, or 63, puasing over pirces in the intermediate mputarea. This property of leaping render the knight particularly thefil at the begioning of a game, as he can be hrought into the enemy's ranks, and retire, notwithatanding any blockade; and should he check a king, without being himself liahle to be taken, the king thitat remove, and cannot efterwarda cantle.
'I'he bishop moves only diagonally over any number of squarea an fir an they are open, forward or backward, but alway on the colour he in firat placed on. He can take at any diatanee when the road in open. For ex. ample, the binhop may move from 29 to 2, 8, 56, or 57 . 'The king's biahop in usually considered the better one, as he can cheek tha king on thim original mquare, which the queen's binhop canuot.

The rook moves hackward, forward, or aldewise, and an far as the sifuaren are open. He in viewed as not very uneful at the beglinning of game, but is particularly wo towarde the conclusion, by pomensing the power of givins cherkmate with the king alone, which neither the binhop nor knight ean do.
The quecn in the best piece on the beard. She unites the powers of tha hishop and rook, and her moves aro therefore unlimited, provided the mquarea are open in her line of motion. As an example, she may he moved from 37 to $1,5,16,23,40,58,61,64$, or any other number in the direction of theme, so that the aquares are not blocked up. The preservation of the queen is alwaya a matter of groat importance in the game.

The king moves only one equare at a time, but in any direction, either forward or backwarl, aideway or diagonally. But once in a game, he can move two kquares to the right or left, which in termed caatling. He can take any of the enemy's men in nny square adjoining to him, provided he does not place himenelf in check. I'hla cherk is a peculiarity in his condition. Ho has the pri vilege of never heing taken; hut this can searcely to comaidered a herefit, since it only means that he must not move into or continue in a situntion of danger. To be in surh a situation, and liable to be coptured if he were an ordinary piece, is called being in cherk. On the avoilance of this perilous aituation the whole game do pends; for the instant the king is cherkmated, without the means of moving into a place of afrety, the game is at an end. The adversary has the vietory."

To the foregoing account of the moves nod powers of the respective pieces, may be added the following explanation of terms:-

Casiling.-This, as ahove hinted at, ia allowed once in the eourse of a game: it consists in moving the king to the aecond square to the right or left of that where he originally stood, and placing the castle or rook on the square over which he lesped. Castling is a meane adopted to secure the king from sttack; but it is not altowalile-1. When the king or the rook with which you would rastle has alrwally been moved; 2. When the king is in cherk; 3. When the king would require to pass over a square in which he would be checked; and 4. Wben the king has a niece between himself and the rook.

Cherk.-When the king is in a situation that, were ho an infcrior piece, he would be tsken, notice is given by the adversary, by saying the word "cherk," and the player

[^65]muat adopt some meang of removing him from this position.

Double check is when the king is in check by two pieces at once. He may emancipato hiusself from aingle or double check-1. By capturing the piece which ia attacking him, either by himself or one of his partyand this is only available in double check, if one of the pieces does not guard the other; 2. By interposing a piece between him and the attacking piece; and 3. By removing to another square, of which no hustile piece has the commanil.

Checkmate is when no means of escape or conqueat is avallable; tho kiug is then said to be checkmated, and the game terminates. One king cannot give check to another, as it would place him in a aimilar siluation. The term checkmate is saisl to be a corruption of the eastern words cheth-mat (the king is dead).

Sintc-mate (from stall, a place of fixture) ia applicd to the condition of the king when he is compelled to remain in his place, by being surrounded in such a manner by his own or his edversary's pieces that he could not move without going into check, and has at the eame time no means of moving other pieces. The game is then conuidered druwn, that $i s$, not won by cither party.

Laws of Chess.

The game commencea by the two partics determining oy lot, or conceseion, which shall have the firat move. After this, the moves are taken alternately, one piece at time. The principle of odvance is to push forward the men gradually against those of the enemy, each party calculating beforehand what will be the etfect of any parlicular move. The following aro old establibhed awa in refetence to playing :-

1. If you touch your man you mast play it, except $1 t$ would vrpose your king to check, ill which case you een only move oxpose your king tacheck, in
2. As long us your retana a hold of your man you are at liberty to plaee him where you think proper, thmagh you may hove to pluee him whet dnwn on a square.
him get fown on a square. your band from a man. he must remain whre he is.
3. If you tnuchone of your alversary's men. he may insist on ynur tuk ug it. If you ean, and when you ennnot. then you must 5. If you make a alse move, by accident or ohlhervise, your adversary can ohlage you to inove the king : hut if he plays adversury cun ohke you to move the king: hut it he plays
without havng nonsed the fatse move, 1 canmot he recalleil. 6. If your matyersary challenge you with a cheek. white in 6. It your ndyprsary chalpnge you with a check. White in
reality the k ing is not meleck, nd you move your king or nany ether man in consequence, you muy retract it if you discover the ertor betore he has made his next move.
by dong so. yot woulle expose your own king is king, when, by dong sor you wonle expose your own king to chesk
4. If your adversary give check, but without giving the usunl warn:ng of "check." you are not obliged to notice it till he does; hut if he dispover that he should hnve done so on hia next thowr. nime then warn you, each must retract
5. Afler your kiug or rook has maved. you enninot eastle.
6. In rach fresil game the players have the first move alterantely; but if a player give the ndvanage oi a piece, hati is, agrees to start with one piecer less than his amtagonist, he who gives the udvantage has the first nove.

Hoyle's Rutes for Chesa.*

1. Move your puwns before your piecea, und afterwaris bring ont the pioces in support them: theretore the king's, queen's, and bishep's pawns should be the first played, in order to oper the game well.
2. Wo not therclure play out nay of your pieces early in the
game, becaise vour thereliy lake nioves. in case your adyerang game, becaise you the reliy loke movers in ease your adversary can, ly playng a payn, make them retire, and he nloo opern his gane at lhe satme the ; especially avoid playing your queen nul, tat your sume is tolerably well opened
3. A vold giving baptexs chichs, and aever qive may umpss to ga-n some ulvantage, becanses yom may loss the move, it the advereary ean euth r whe or ilve your piece away.
4. Never crowid your game by having too muny piecers toge ther, ko n\& 10 pres witt your mell advane, ing or retreating, us ceasion nay requrn
5. If yonr game should be erowd ol enddavour to free it hy exchniges of peces or pinwis. und campre your king as roon has monvement; atterwards bring out your pieces, and ntack the adversary where wenkers
6. When the advernary plays out has pieces before his pawion,

- Hoyle is a very ohd nuthor, and his works on elpers and
oher games nre well known thry are now sund in tl forme. sther games nre well known: thy are now sund in tll forme
attack them as eoon an you can with your pawas, by whien you nay crowd his game, and make him loes movea,
foree; and if he attactr yours, and you cenaot retaliatfictent exehanges; ard should he retirs when you prosent a piester exphnngo, he may lose a move. It may also be sometimed ozpedient to uet in this manner, in case of other attack.

8. Jlay your meil in guard of one another, so hat
thken, the enemy may alsolie captured, by that which any be thken, the enimy may alsolie caplured, by that which guardod
yonrs, and emleavour to hava as minny gunrds to your peat yonrs, and endeavour to hava as many gunrds to your pleee at your naverbary advances othera upon; und, if poesible, let thein
be of leas value than those he assailx with. well support your piece, nee if by olincking one of hat that it better, or as grod. you may not thereby aave yours
9. Nevir Attuek but when well preptared, for thereby jou open your ndversary's game, and prepare him to pour ion sirong attack upon you, as soon as your weaker one is ove fo. Never play thl you liave examined whetier you nre fres till you have considered what harm he would be able to do yon by his uexi moves, in ennsegaence of yours.
10. When your uttuck is in a prosprous way, never bo di verted from it ly tuking any piece, or other sceniing advantago your ulversary may purposely throw in your wuy, with the your atversary may purjosely throw in your wuy, with the
intent that. Ly your taking the bait, he might gain a move which would innke your tirsign iniscarry
11. When, in pursuing a wall-laid nttack, yop find it neces sury to torce jour aulversary's defence, with ring !oss of some pieces, if, upon counting as many moves fi, ward as you can you find a prospect of success, suterifice a piece or two to gain your emil : tliese bold nitemipts make the finest gamea.
12. Never let your queen sunad so before tie king as thel check your king if she were not there; for you cand hardlt cherk your king she were not hares; for you conld hardly plece ; as, for example place the white king on 61 , the queen ens 5 , the black king on 4, and the rook on 16 ; which last, if moved tol3, nust be takenhy the white queen. whoin return would be taken by the black king, beeanse the white queen could not otherwiso be moved withont putting the king on eheck to the black rook.
13. I.e't not your adverkary's knight fork your bing and queen, or king and rook. or queen and rook. or your two rooks, 81 the same time; for in the two first caser, tho king being forced to go out ot check. the queen or the rook must he last; and in the two last. a rook must be lost, at lest, for a worse piece. Place the white queen on 5 , the rook on 7 , and a black knight on 37 . The latter piece, if mevell to 22 . will tork borl the queen and rook, and consequenlly one of them must be lost for the knight
14. 'Jake eare that no guarded pitw of your adversary's fork two of your pieees; knighte and rooks are partieularly liable io this moile of attack; also guard against either a check by discovery or a stole-mate.
15. When the kinfer have castled on differcut silfes of the boafd, attrek with the pown you have on that side where the adverrary has castled, advaneing the pieces, expecially the queen umil rooks, to eupport them; and if the alversary's king
have hree pawns on a line in front, he ahould not stir them till have three
forced to it.
16. Fimfenvour to have a move in umbusende; that is, place the queen, bishop, or rook. behind a pawn or n picce in sueh a mancer as that, upon playing that pawn or piece, ynu discovet a elicek upon your alversary's king. and consequrmly may hlack king on 6 , white hishon out 41 und pawn ons the moving the pawn to 26 , a check by the white bishop is d.eso movilg the pawn to 26 a
verim apon the black king.
17. Never guard an inferior piece or pawn with a better, if yom ean do it wish a pawn, heenuse that better piece may in sum ean do it with a pawn, because be, as it were. ont of play.
18. A puwn pushed on and well sipported often costs the adversary a piecu ; but one aeparate from the oller ts is aeldom of nay value. And whenever yoll have gained a pawn of obler advanage, and are not in innger of losing the move theretsy, muke as frequent exchanges as you can.
19. If ench player have three pawis ipon the boned, and no piree. and you have m pawn on one side of the hoard. and the other two on the other side. and your adversary's turee are opposite to your wo, march with your king to take his pawns; and if he move to support thatm. go on to queen with your single pawn; and if he attempt to hinder it, inke his pawns, gad puah Gours to quren: that is, to move upawn into the adverary't back row. in order to make a queen.
2l. At the latier end of the game each party having enif three or four pawns on tifferrnt sides of the bonral, the kinge are to endenvour to grin the move in oriler to win the gante: for exmuple, the white king jhereil on 53, mud the black kigg
 38. and in
advancing.
advancing.
22 W゙hnn the ndversary has no more than his king and o pawn on the loard. and you a king only, you can never lase pawn on the loard. ant you a kng onty, you can lever has
that game if you liring and keep your king opposite to your ad that gatme if you liring and keep your king opposite to your ado
versury's, when he is immenlintely either betore or on one side
 then. ha a slale mate or drawn game
2b. Never enver a check with a piece that a pawn puated upon, it miny takre for fear of only grettug that pawn for it: pat a hlack rook on 7. and n pewn on 40 ; the white king on 63, and a kupht on 61 : the white $h_{\text {ang }}$ being on a check to the monk, if the check he eorered by moving the white knight ta 56 , the hack nawn could :ten lie moved in 49 , and tako the knight.
20. Io not crowl 'rour adversnry's king with your pieces, om you inidvertenty give n ande-inate, which is a drawn gima.
21. Do not be too mueh afraid of losing a root for an infond
pace; thaugh a rook yotil seldom comes in he game; und ll is g ay that a superior drives away with a poning ferent. Whough rually sood pisyera equally gron p.eycre, Grat, matas the mave or the eqver in a fair way ol'w 9f. Ifever your game play, you lave cither pay, youre, not it all: to mont have variuty ena - es. Do not he mueh rect lias are net disad rect lita are three togi: our 35 , and 37) ; but iou of the heln of otler with the help ond probably atecigth, ani probably wil
ury, two pawus, wid ury, two better than one ther in a line (us so wher me situstion
22. When a piece ia dive it up, and enden plae it up, and endea suing a piece, you sithe neads in his desiruct the same time, uni by piece, if you cun get tu piece, if you con get the queen; besides, you p quetien; than a piece; whe cormed, if has who playe who defende. that geth; ide of bim who atlack: 3il. Do not him at exc will take atvantige of own; not an immediat pou exchnuse your ind pou exchage your ind buve played It piece, u exd do not lase the mov and do not lase the mov
32 . Every now und it gour nenanres aceorith 30. At the latter cud ot are of the hourd, the ki king be idlle; it is by 1 3. At the gitecti,
23. his not always necesa: your adversary's kung ; your adversarg' a king;
gantiot he itriven awny. 35. When there is ap cape, do not lurry: see where, and taku: the pied 30. It is not always with your king, for very protection in lim. Pla tack pawn from the at

Recommerdations

 1. Whether you play your pieres anto play he not. and your miversury macked al a great disai had better forego an nil person can ever play wln order to bring ont s In order to britif out 3 (4 an
frat, and suphort them s Grat, and support thems
will nut be crow led, an will nut be crow ded, an
pley and rassant canth otl ang your end; and eithet aut wo ns not to he drivel 2. When you have Is W'il have done well if
wstle, then consiler th game, and not only res atack where you rypen By this it is possible yr cilversary'я gane, in wl Now, panse ngani. thit ool let your itupethusity
luneture terpecinlly if y luneture (espercinlly if yo
maly your ment ant put stack, sill keeping then ase to each olhore. For ness, au almose suro vie bands, and it tutal overth 3. At the last period of are slronke日t. best comm
nind how your ailversn nind how your ailversnr hese things together; at proeced withont hesitatic
prevenl him. Ismelk nc are gone ; if not, they ure prevent your adversar domen, de
VOL. $_{1},-90$
peco; thaugh a ronk is bettar than any other excep the q eeen pat it seldom eomes anto play, so as to operuie, until the end of he game; nnd it ls generally better to have a worse piece in Nay than a superior out.
Nay. When you have moved a picce which your adversary drira away with a pawn, that it a bnd move, your enemy ginigg goulle advantage. At this nice game no tnove can be indfierent. 'Though the first move may noi be much between equally grod p.ayers, yet the loss of one or two more, nfter the folt, mak? the game nlmosi irretrievable; but if you can re-
ever the move or the antick (lor they both go together), you arola a fuir way of winning.
47. Ifever yourguane be sueh that you hnve scarce any thing to play, you bave eilher brought out your piece wrong, or, what pwose, nut at all: for of you have brought them ont right, you mast have variuty enough.

- 23. Do not be much niraid of donbling a pawn: two in a direet line uru net disud vantugeons when sur rounded by three or fur cthers; tiree together ure sirong (us three white pawns on 0,35 , and 37) ; but iour fas 44 in addntion) that make n syunre, with the help of other pieces, well inanaged forin an invincible nrength, and probntbly may produce you a queen: on the conunary, two pnwas, will un interval between (as on 35 and 37) are no heller than one: and it you should have three over ench aher in a line (as 26,34 , and 42), your game cannot be in s worse gituntion.

29. When a picce is so attacked that it ls difficult to anve it, dive it up, and endenvour to annoy your enemy in another plsce; for it often happens, that whilet your adversary is pursuing a piece, you either get a pawn or two, or such a situation anends in his destruetion.
30. Supposing your queen and nnother piece are nttueked at the ame lime. unl by removing your queen you must lose the piece, if you can tet two pieces in exchnnge for her, rather do that than retire, for the tifference is more than the worth of a quect; besides, you preserve your situation, which is olten better than n pieee; when the attack and detence are thoroughly bormed, if he who plays tirst the obliged to retire by the person whodefends, that genterally ends in the loss of the game onthe eide of him who atineks.
31. Do not hin at exclinnges without rehson; a good player will take advantage of it to sposi your situution and miend his own; but when you are strongest, especially by a picce, and have not nn immediute check-mate in view, then every time you exchange your ndvantage mereases. Aguin, when you have played a piece, und your adversary opposes one to you, exchange direelly, for he wante to remove jous: prevent him, and do not lose the move.
32. Every now ond then examine your gnme, and then tuke pour nensiutes necorthingy.
33. At the Intler end oi the game, especinlly when both queens ere off the hoard, the kings ure capital pieces; do not let your king be idle; $t 1$ is by his means generally you must get the mivesend the victory.
34. As the queth, rooks, and bishops, opsate at a distance. h is not ulways necessary in your nutack to have them near gour advernary's king; they do better at a diztanee, ay they gannol he driven uwny.
35. When there is a piece you can take, and that cannot escape, do not hurry' ; see where you can make a good move clsewhere, and take the piene at lessure.
36. It is not always right to lake your adversnry's pawn with your king, for very often it happens to he a safeghard and protection 10 hm . Pince n binck rook on 5 , with I pawil on 5. and the white king on 53, und he will be shelterrd by the wack pawn from hie nliack ol the rook.

Recommendations ne to some of the forezoing Rules.
t. Whether yon play the open or cose game, bring ont alt pour pieses ato play beture you bengin the stack; for if yon do not. end your advertary should, you will nlways attnek or be ettacked nt a yreat disatvontuge? this is so essentinl, that you bad better torcgo min nifvanage than deviate from it; und no person ean ever play weil who does not etrictly practise this. personean ever play weil who does not sirictiy practise tais. frat, and anpport thin with vour pieces, by which your game will not be crowded, and all your pieces will he st liberty to plas and assist cath other, nud so co-opernte tosvards obtininplos your end; and pither to your nitack or defence, bring them ing your end; nik epther to yonr natack or defence, bring them cult so ns nol to he drisen bnck again.
2. When jou haye hrought out ull your pieces, which you Whave tone well if you have your ehoiee on which side to eante, then constiter thoronghly your own and ndversary's game, nad not only resolve where to ensile, but likewise to anack where yon njpeur strongest and your enemy wenkest. By this it is possible yon will he able to brenk throngh your aurersary's gane, in which some pieces musi be exchunged. Now, pante ngan. nual survey hoth games natentively, nud do sot let your impetusity hurry y on on too far; at this criticul janctare (espereindy it you still find your notversary very strong) rally your me'li, mud puithem in good order for a second or thad sitack, brill keejung them close nthl commected, so ns to be of ase to each other. For want of this anethod, and n ditle cool aets, sit almost sire victory is often suatehed out of a player's bands, atd in totul overthrow ensues.
3. At the lust period of the game, ohserve where yo ir pawns are atongest, best commeted, nud nenrest to queen: tikewise and how your adversury's pnwas are diaposed, and zompars hese things together; und if you can get to queen before him, proeed without hesitation; if not, hurry on with your king to prevent him. I spenk now na supposing sil the higher piecea ore gone; if not, they nre to uttand your pawns, and likewise to prevent your ndversary from going to queen -See Hoyle, denes, ofe
Vah. I. -90

To these rules and recommendations we add the for lowing advice:-Conduct your game with coolness, take time to consider the chances for and aguinst in meving and do not give up the contest till all hepe is gone of retrieval. An anecdote has been teld of two gentlemen playing at chess, one of whom found his game se liopeless that he declared himself beat; when an onlooker of more skill said he would undertake to win the game for him by three moves, without the possibility of being counteracted. The offer was accepted, and the game at once retrieved and won. As this is a particularly instructive incident, we shall state the positions of the pieces on the bosrd in reference to the numbers of the squares on the disgram.
The black reok was at 9 , the blnck knight at 18 , the black bishop at 20 , the black king at 22 , the black rook at 40 , black pawne at $25,26,30,35$, and 36 , and the black queen at 42. The white king was at 7 , the white reoks at 61 and 63 ; the white knight at 47 , and a white pawn at 38. The white has the move. The white knight at 47 gives cheek at 32 ; the black rook at 40 takes it. The white roek at 63 gives check at 23 ; the black king takes it. The white rook at 6 i gives checkmate at 21. 'Ihus, the white, by a few dexterous moves, completely paralyzes the sdversary, and wins the game.

By writing an account of meves, it is possible for adr versaries to carry on gumes at chess though at a great distsnce from each other. Thus, chess clubs in London sre knewn to carry on matches with clubs in Edinburgh or Paris, or even with a club in India. Gamea of thia kind semetimes last for ycars

The Morals of Chess, by Dr. Franklin.

The game of chess is net merely an idle amusement; several very valuable qualities of the mind, useful in the course of human life, are to be acquired or strengthened by it, se as to become habits, ready on all occasions; for life is a kind of chess, in which we have often points to gain, and competitors or adversarics to contend with, and in which there is a vast variety of goed ind ill events that are, in some degree, the effects of prudence or the wsnt of it .

By plsying at chess, then, we may learn,

1. Foresight, which loeks a little into futurity, and considers the consequences that may attend an action: for it is continusilly eccurring to the player, "If I mow this piece, what will be the advantage or disadvantage of my new situation, what use can my adversary make of it to annoy me? What ether moves ean I make to support it, and to defend myself from his attacks?"
2. Circumspection, which surveys the whole cheasboard, or scene of action; the relation of the several pieces, nnd their situations; the dangers they are respectively and repeatedly exposed to ; the seversl possibilitics of their aiding each other; the probalilitica that the adversary may mske this or that move, and attack this or the other peece; and what different means can be used to avoid his stroke, or turn its consequences sgainst lim.
3. Caution, not to make our moves too hastily. Thi habit is best acpuired by observing strictly the lsws of the game, such as, "If you teuch a piece, you must meve it somewhere ; if you set it down, you must let it stand." And it is thcrefore best that these roles should be ohserved, as the gsme thereby becomes more the image of humsn life, and particularly of wur ; in which, if you have incautiously put yourself into a bad and dangerous position, yeu cannot obtain your enemy's loave to withdraw your treeps and plsce them mere securely, but you must abide all the consequences of your rashness.

And, lastly, we learn by chess the habit of not oenng disconraged by present bad appearances in the state of owr affuirs, the habit of hoping for a farourable chansa
and that of ferseverng in the search of resources. The game is so full of events, there is such a variety of turna in It, the fortune of it is no liable to sudden vicissitudea, and one so frequently, after long contemplation, discovers the means of extricating one's self from a aupposed insurmountablo difficulty, that we are efloouraged to continue tho contest to the last, in hopea of victory from our own skill, or at least of giving a stale-mate, by the negligence of our adversary; and whoever considers, what in chess he often sees instances of, that success is apt to produco presumption and ita consequent inattention, by which more is afterwards lost than was gnined by the preceding advantage, while misfortunes produco more care and attention, by which the loss may be recovered, will learn not to be too much discouraged by any present success of his adversary, nor to despair of Anal good fortune upon every little check he receives in the pursuit of iL

That we may, therefore, be induced more frequently to choose this beneficial amusement in preferenco to others which are not attended with the same advantages, every circumstance which may increase the pleasure of it should be regarded; and every action or word that is unfair, disrespectful, or that in any wny mny give uneasiness, should be avoided, as contrary to the irnmediate intention of all parties, which is to pass the time agreeably.

Therefore, 1. If it is agreed to play according to tho strict ruies, then thoso rules are to be exactly observed by both parties, and should not be insisted on for one aide while deviated from by the other; for this is not cquitable.
2. If it is agreed not to observe the rules exactly, but one farty demands indengences, he should then be as willing to allow then to the other.
3. No false move should ever be mado to extricate yourself out of a difficulty or to gain an advantage ; for there can be no pleasure in playing with a person once detected in such unfair practices.
4. If your sdversary is long in playing, you onght nut to hurry him, or expiess any uncaminess at his delay. You should not aing, nor whistle, nor look at your watch, nur take up a book to mad, nor make a tapping with your feet on the floor or with your fingers upon the table, nor do any thing that may distract his attention ; for all there things displease, and they do not thow your skill in playing, but your craftiness or your mdeness.
5. You ought not to endeavour to amuse and deceive your adversary, by pretending to have made bad moves, and saying that you have now lost the game, in order to make him secure and careless, and inattentive to your schemes; for this is fraud and deceit, not skill in the game.
6. You must not, when you have gained a victory, use any triumphing or insulting expression, nor show $t 00$ much of the pleasure you feel; but endeavour to console your adversary, and make him less dissatisfied with himself, by every kind and civil expression that may be used with truth, such as, "You understand the game better than I, but you wore a little inattentive;" or, "You had the best of the game, hut something happened to divert your thoughts, and that turned it in my favonr."
7. If you are a apectator while othera play, observe the most perfect silence; for if you give adviee you offend both parties-him against whom you gave it, because it may cause the loss of his game; him in whose favour you gave it, because, though it he good, and he follows it, he loses the pleasure he might have had if you hall permitted hin to think until that had occurred to himself. Even after a movo or moves, you muat not, by replacing the pieces, whow how they might have been
placed better; for that displeases, and may occamon die putes or doubts about their true situation. All talkhing to the players lessena or diverts their attention, and u therefors unpleasing. Nor should you give the leas hint to either party by any kind of noise or motion; if you de, you are unworthy to be a spectator. Should you have a mind to exercise or show your judgment, do it in playing your own game, when you have an oppon tunity, not in criticising, or meddling with, or counselling the play of others.

Lastly, if the game is not to be played rigorously ao cording to the rules as afore-mentioned, then moderta your desire for victory over your adversary, and ba pleased with one over yourself. Snoteh not eagerly at every advantago onered by his unskilfulness or inaten tion; but point out to himpkindly, that by such a mose he places or lesvea a piece exposed and unsupported; that by another he will put his king in a dangeroun situation, \&cc. By this generous civility (so opposite to the unfairness before forbidden) you may, indeed, bap pen to lose the game to your opponent, but you will win what is better, his esteem, his respect, and his affico tion, together with the silent approbation and good-will of impartinl spectators.
When a vanquished player is guilty of an untruth to cover his disgrace, as "I havo not played so long-bis method of opening the game confused mo-the men were of unusual size," \&ce., all such apologics (to call them no worse) nfust lower him in a wise person's eses, both as a man and aa a chess-player; and who will nat suspect that he who endeavours to shelter himself under such untruths in trifling matters, is no very sturdy maralist in affiars of greater consequeuce, where hia fama and honour are at stake? A man of proper pride would scorn to account for being heaten by one of these escuses, even were it true; because they all at the moment have tho appearance of being untrue.

draughts.

Draughta is a game with a checkered board and men, of much less antiquity than chess, and is perhaps to be conaidered a degencrate descendant of that noble spont In France it is called les dames, from having been a ia vourite game with the ladies ; and in Scotland, this sig. nification is preserved in the term dam-brod, the name universally applied by the common people to the draught board.

Draughts is played on a chess-loard, or a board check. ered precisely in the same manner, with thirty-tao white and thirty-two black squares. The toard, howo ever, is placed before the players differently; in chem there must be a white square in the righ-hand corner, but in draughts the right-hand corner must he blsch (that is, supposing you to play on the white squares).
The game is played by two persons, whe sit opposice to each other. Each party has a set of twelve men, the colour of the two being different for the sake of distinotion. The men are generally round and flat pieces of wood; one set white, and another black : those of the neatest kind are turned out of boxwood and chony.

The men may be placed either on the white or block equares, but the whole must be put on one colour onls It is customary in England to place all upon tho white, and to have, as above, a black aquaro on tha right. In Scotland the black are played upon, when there is.conse quently a white aquare to the right. We go upon the supposition that the play is upon the whito squares, and have numbered them in the annexed figure accordingly.

The movements in draughts are very simple : \& man can move only one square at a time, and diagonally, never straight forwurd or sideways. If an enemy's man atand in the way, no move can take place, unless diere be a vacant aquare beyond, into which the piese can be
mand In thia cas temoved from the : The grand obje poard of the enem they cannot move gains the victory. dep diagonally at (wo sutagonists cor them incautiously priacipal art of the
When the men by ta'inus, or foun of the trard, they of movement : hy the opposito side, th is done by placin crowned, the man diagonally, and one power of moving wards, renders it o and if two or three game beeones mor determined. Tho drught board, nu and placed as it a

Immediately after blocking up one or the aid on which moves. F'or instanc alversary's piece at and 26 -and suppo with a crowned man 12 and 19 , exchange monly equivalent to bng you havo pieces oa 26 , and your ai mattered in the dire cessively pushing be pain a fornidablo ex
In beginning to first move; and the r each part! takes tho 11 a player touch a player onit to take *o, his adversary ca take the mas or ins The practice is at have taken yours.
We present the fo suae in which whit
ccasion dis All talking tion, and us 'e the leant motion ; if jr. Should idgment, do e an eppor counselling
gorously aso 13 moderato ry, and bo t cagerly at or instteruch a mose nsupported 1 dangeroua opposita to indecd, haput yeu will nd his affee. nd geod-will
n untruth to 10 long-his --the men gies (to call erson's cjes, who will nit imself undi? y sturdy mon ere his fame - pride would of these ex. the moment
rd and menh perhaps to bo noble sporis y been a fa md, this sig. d, the name the drsught
beard checko h thirty-tao board, how y; in ches Land corner, List he black te squares), sit opposite ve men, the ef distino at pieces of hose of the chony.
bite or blark colour only I the white, 3 right. Is re is conse ro upon the quares, and cordingly. le: s man diagonally, lemy's man untesw there fiese can be
mud In thle case the man leaped over is taken; he is romoved from the board.
The grand object of the game, then, is to clear the ocard of the enemy's men, or to hem them in so that they cannot move; and which ever party does so first guins the victory. As no piece can move more than one tep disgonally at a time, there can be no taking till the two antagonists come to close quarters; and the pushing them incautiously into each other's neighbourhood is the principal art of the gaine.
When the men on either side have cleared their way by ta'ius, or found an open path to the opposite side of the brard, thay become inveated with a new power of movement: by reaching the first row of squares on the opposite side, the piece is entitled to be crourned, which is done by placing a man on the top of it. Thus crowned, the man may move backwards, but always diagonally, and one square at a time, ss before. This power of moving and taking either forwards or backwards, renders it of consequenca to get men crowned; and if two or three on each side gain this honour, the game becomes more interesting, and riay specdily be determined. The following is representation of a draught board, numbered for the sake of illustration, and placed aa it ahould be in playing.

Draught-Board.
Immediately after crowning, great art is shown in blocking up one or more of your adversary's men, by the sid on which to accomplish a series of decisive moves. For instance, supposing you have detained your alversary's piece at 4, while he has others situated on 25 and 26-and supposing you have pieces on 12 nnd 19, with a crowned man at 14 , you may, by giving him your 12 and 19 , exchange two pieces for threc, which is commonly equivalent to winning the game. Again, supposing you have pieces on $13,22,30$, and a crowned one vo 26, and your adversary a picce on 5 , with others Rattered in the direction of $16,8,7$, you may, by successively pushing before him your pieces on 13 and 22, gin a formidable exchange.
In beginning to play, mueh depends on having the first move; and the rule is, that in playing several games each part! tnkes the first move alternately.
If s player touch ono of his men he must play it. If a player omit to take a man when it is in bis power to do so, his adversary enn huff, or blou, him; that is, either take the man or insist upon his own man being taken. The practice is at once to lift the man which ought to nave taken yours.
We prewent the following as an exampls of playing a same in which white loses. The letters N C F, T, at
the head of the columns, sig ify Number, Colour, Fron; To:-

N	c	F	T	N	C	F	T
1	B	11	15	28	W	30	25
$\stackrel{2}{3}$	W	${ }_{15}^{22}$	18	$\stackrel{29}{30}$	$\underset{\sim}{B}$	${ }^{29}$	22
4	${ }_{\text {W }}^{\mathbf{W}}$	15 25	18	30	W	${ }_{11}^{26}$	17
5	B	8	11	32	W	20	10
6	W	29	25	33	B	15	18
7	B	4	8	34	W	24	12
8	w	$2{ }^{2}$	22	35	H	18	27
9	H	12	16	36	W	31	24
10	W	24	20	37	$\stackrel{3}{3}$	14	18
11	${ }^{1}$	10	15	38	W	16	11
12	W	27	24	39	${ }^{3}$	7	18
13	${ }^{1}$	16	19	40	W	20	11
14	W	23	18	41	${ }^{\text {B }}$	18	${ }^{2}$
15	H	15	19	42	W	11	8
16	W	24	15	43	${ }^{\text {B }}$	23	27
17	$\stackrel{8}{\mathbf{B}}$	0	14	44	W	8	4
18	W	18	9	45	$\stackrel{B}{1}$	27	31
10	${ }_{\text {W }}$	11	25	46	W	4	8
20	W	32	27	47	$\stackrel{\mathbf{B}}{ }$	31	27
21	${ }^{\mathbf{B}}$	5	14	48	W	24	20
22	W	47	23	49	$\stackrel{\text { B }}{ }$	27	23
23	${ }^{\mathbf{B}}$	6	10	50	W	8	11
24	W	16	12	51	H	23	18
25	$\stackrel{B}{8}$	8	11	52	W	11	8
26	V	28	24	53	H	19	15
27	H	25	29	\&c.	W		

It is not considered fair for any bystander to advice what motions should be taken, or for a player to wait longer than five minutes between each move. The draught playur, therefore, must on all occasions act with much more p 'omptitude and decision than in the case of chess. In short, droughts is a very ticklish game. A single falss step may lead to irretrievable ruin; and it is only after long experience in figuring in the mind what would be the result of particular movements that profe ciency is attained.

BACKGAMMON.

Backgammon is the modern name of a game of considerable antiquity in England, where it was formerly known by the appellation of "the tables." The worda buck-rammen have been ascribed to the Welsh tongue, in which they nre said to signify little-batlle; but Strutt, with greater plausibility, traces the term to the Saxon "buc and gamen, that is, hack-game; so denominated because the performance consists in the two players bringing their men back from their antagonist's tablen into their own; or, lecause the pieces are sometimes taken up, and obliged to go back; that is, re-enter at the table they came from." Whatever be the ctymology of the term, the game has been long established in the country; and, as a firesida amusement of a decorous and exciting nature, is a favourite annong clergymen, squires, tarmers, and retired professional persons.

Backgammon is played with an apparatus consisting of a board or tables, men or pieces, dice, and dice-boxes. The introduction of dice into the game, and their constant use in determining moves, makes backgammon essentially a game of chance, and thercfore brings two players of unequal talents nearer a level han other diversions in which skill is the sole or predominant elcment.

The backgammon board consists of two parts or tables, generally united by n hinge in the middle, by which they can be shut up as a box. Each table possesses twelve points, six at ench end. These points are toloured white and black alternately; but this variation of colour has no refercuce to the game, nud is only done to make the points more easily commted.

The game is played by two parties, and with 30 pieces or men: each party has 15 men, one set of 15 being black and the other white. In beginning the game, the
men are placed on certain points on the tables, as shown in the subjoined figure.

B
The Backgammon Table.
The game is played with two dice and two dice-boxes. The dice are common to both; but each party uses his own dice-box, and the throwa are alternate.

Each die is a perfect cube, marked on its sides wih dots from 1 to 6. The 1 is called ace, the two deure, the three tre or trois, the four suatre, the five cinyue, and the dx size. At every throw the two dice are employed; consequently a person may throw from two up to twelve; that is, two ares up to two sizes.

If a player throw boublets, or both dice of one numberr, double the number of dota is reckoned; thus, by a throw of two aces, the player does neic count two, but four.

These numbers thrown or accidentally turned up by the dice, bear a reference to the points on the tables. In order to understand this connection between the diee and the men, the learner must observe how the men wit placed on the points, and the rules by which their shiting from one to another is governed.
The tables are here spread out ani i. two partnezs were seated and nbou: to begin to play. The party owning the white men is seated at W, and the party owning the black men at B. We shall call one party White and another Black. White counta round from the ace point of Black, and Black counts round from the ace point of White. These ace points are respectively seen to have two men upon them in opposite corners of the same table.

The grand object of the game is for each party to get all his men played round into the tahle containing the aces, removing the from point to point agreeable to the throws of the dice.

In throwing, the number upon each die turned up may be reckoned by itself, or collectively, with the number on the other die. Thus, if quatre be thrown by one die nnd size ty the other, a man can be advanced four points and another six points, or one man can he ndvanced ten pointa, always providing that a point is open to suit this movement to it. No point can be moved to, If covered by two men belonging to the adversary. If covered by only oue man, which is called a hot, then that man ean be hit, and be romoved from the point, nud fiaced on the bar hetween the tnbles, his place being takein iy the man who has won it.

The removal of a man to the hars throws a player considerably hehind in the game, because the man must romain out of the play till the dice turn up a number corresponding to one open point on the advergary's tahle. Being fortunate enough to get an open point by this
means, the man mist be antered and wrought ound from thence, an in the case of others in the set to which he belongs. The frequent occurrence of thia hitting of a blot givee an adversary a great advantage, and allows him to win the gainmon.
'There are two kinds of victory, winning the hit and winning the gammon. The party who has played all his men round inte his own table, and by fortunate throws of the dice has borne or played the men off the pointe first, wins the hit.

Tho gammon may be explained as follows:-.. When you have got all your men round to your own tahlen covering every point, and your adversary has a man out, then you are enabled to bear or lift your men away. If you can bear all away, so as to clear your table before the adversary gets his man placed by a throw on your tabla, you win the gammon. If the adversary has been able to bear one before you have borne all your men, it reduecs the victory to a hit.

Two hits are reckoned equal to one gammon in play. ing matches. To win two games out of three is called winning tho rub, as at whist.

Hoyle's Directions for Bearing Men.

If a player has taken up two of the adversary's men, and happens to have two, three, or more points made in his own tables, he should spread his men, that he cither may take a new point in his tables, or be ready to his the man which the adversary may happen to enter. If he finds, upon the adversary's entering, that the game is upon a par, or that the advnntage is on his own side, ha should take the adiversary's man up whenever he can, it being 25 to II that he is not hit: except when he is playing for a single hit only ; then, if playing the throw otherwise gives him a better chance for it, he ought to de it.

It being 5 to 1 agninst his being thit with double dua he should never be deterred from taking up any ons man of the adversary's.

If he has taken up one of the adversaly's men, and should happen to bave five points in his own tables, and forced to leave a blot out of his tables, he should endes. vour to leave it upon doubleta preferable to any other ehance, hecause in that case the odda are 35 to thatho is not hit; whereas it is only I7 to 1 but he is hit upon any other chance.

When the adversary is very forward, a player should never move a man from his own quatre, trios, or deuce points, thinking to bear that man from the point where he put it, as nothing but high doublets cnn give him any chance for the hit. Instend of pluying an nce or a deuce from any of those points, he should play them from his own size or highest points ; so that throwing two fives or two fours, his size and cinq`e points being cased, would be a considorable advantage to him; wheress had they been loaded, he must have been obliged to play otherwise.

It is the interest of the adversary to take up the playef as soon as h. iters. The blot should be lett upon the adversary's lowest point ; that is to sny, upon his deuce point rather than upon his trois point ; or upon his trois point rather than upon his quatre point; or upon his quatre peint prefernhle to his cinque point, for a reason before mentioned; all the men the adversary plays upon his trois or his deuce points are dremed lost, being greatly ont of play; so that those men not having it in their power to make his cinque polist, and his game being croxded is one plece nnd open in another, the adverary unst be greatly annoyed by the player.

If the player has two of the advernary's men in his 1ables, he has a better chance for a hit than if he has mote, provided his game is forwarder than that of his antagonist ; for if he had three or more of the advan
arry's men ln hie te to be hit.

When a player it dould have two In men gbroall, althoug in putting his men 'eave a man upon t will prevent his ad greatest advanta, 0, bave a chsnc- of al be may chance to h a throv, that he hat he should never wa gainst his hitting it,

This sport may b Dowla, golf, and som impelled from the vented in France or but as it is mentione old in this country present day, it is pus principally by the h In France, it is muc where its character baving been made t lations. It is unfor for no game is to be is dynamics, or certa operation ; the hits ing aome of the fine

- Biliarda is played and bails. The tab mon use being from four and a half so dimensione, it requir It is ardinarily mad together, so as to brought to a dead covered with fine gr to three inches high, is furnished with six neers, and one on eac these pockets or pur to allow the balls to The balls are of diameter. Two are white is distinguishe players; he who own who owns the spotte belongs to neither, bl
The rods or bills u end ütterent lengths nary kind of rod is c with one end thick a der. The other kine dub-like extremity, Amost all players en them.
In playing, the lef most on the table. 'I close to the forefing test far the cue. Th shout six inehes from in he right hand, t l being struck with the fre but firm manner, the forefinger and thi forward so ss to hit and with that exact perform the desired f of the cue is generall

The table is laid 0

BILLIARDS.

an's mert in hie tables, he would stand a worse chanco t be hit.

- Whon a player is running to save the gammon, if he dould have two men upon his ace point, and several men sbroad, although he should lose one point or two in putting his men into his tsbles, it ls his interest to 'eave a man upon the adversary's ace point, because it will prevent his adversary from bearing his men to the grealost sdvanta; \cdot, and at tho same time the player will bave a chanc. of the adversary's making a blot, which be msy chance to hit. However, if a player finda, upon a throw, that he has a probability of eaving his gammon, be should never wait for a blot, as the odds are grestly manst hishittirg it, but should embrace that opportunity.

billiards.

This sport may be said to combine the principles of Dowis, golf, and some other games in which objecta are impelled from the hand. Whether the gamo was inreated in France or England is not clearly ascertained; bet as it is mentioned by Shakspeare, it is at least ss dd in this country as the sixteenth century. In the present dsy, it is pursued in every civilized country, but principally by the higher or leisurely classes of society. In France, it is much more common than in England, where its character has euffered materially by the game haviag been made the subject of large gambling speculations. It is unfortunate that such should be the case, for no game is to be considered so purely scientific: it is dynamics, or certain laws of motioli, put into practical operstion; the hits are concussinns of the buils exhibitung some of the finest examples of divergent forces.
.Biliarda is played with a table, certain kinds of rods, and bails. The table varies in eize, that in most common uso being from eight to twelve feet long, and from fcur snd a half so six feet in width. Whatever be its dimensions, it requires to be perfectly level and smooth. It is crdinarily made of small pieces of wood joined together, so as to avoid warping, and these being brought to a dead level by planing, the surface is covered with fine green cloth. All round is a ledge two to thres inches high, and stuffed as a cushion. The table is furnished with six pocket3, one at each of the four corners, and ono on each side at the middle. The mouths of these pockets or purses are level with the surface, so as to sllow the balla to glide easily into them.
The balls are of ivory, about an inch and a half in diameter. Two are white, and one is red. One of the white is distinguished by a spot. There are usually two players ; he who owns the plain ball is called Plain, and he who owns the spotted buil is termed Spot. The red ball belongs to neither, but is aimed at by both.
The rods or bills ueed by the players are of two linds, end ditterent lengthe to suit different players. The ordinary kind of rod is called a rue. It is long and smooth, wilh ons end thick and heavy, and the other more slenSer. The other kind of rod is termed a mace; it has a dub-like extremity, and is much less frequently used. Aumost all players employ cues of the length which suits them.
In playing, the left hand is rested with the palm undermost on the tahle. The palm is hollowed, and the thumb close to the forefinger is raised up to form a bridge or rest for the cue. The hand is to be at the distance of shout six inches from the ball. The cue is lightly held in he right land, the thick end uppermost, the blow being struck with the small extremity. Thus held, $\mathrm{inic}_{\text {a }}$ free but firm manner, and resting on the chanuel between the forefinger and thumb, the cue is given a sharp run forward so es to hit the ball in the required direction, and with thst exact degree of force which will make it perform the desired feat. To prevent slipping, the point of the cue is generslly shalken.

The lable is laid out as follows for play :-At the dis-

Innce of about a foot from one end, in the centre of the table, is a small dot or mark in the cloth, on which the red ball ia plsced. At a similar distance from the othex, which we ahsll call the upper end of the table, a line is made aczoss by a chalker string; and in the middle of this line there is a mark on which the white ball of dlayer is to be strack from.
The leading principle in the sport is for a player to impel his white ball against the red ball, and drive them into a pocket or pockets; or to perform a still greater feat of striking the red ball, the adversary's ball, and his own ball, into pockets. It must be understood that nothing is gained by a player striking his own ball direct into a pocket; anybody could do that, and there would be no science in it. The merit consists in impelling balls against f ch other, at ouch an exact angle that one or both may be pocketed; and the ukill displayed in this in often very surprising.

In setting out in a geme. the first sttoko or lead is determined by lot. This is caited stringing for the lead. Each player hits his ball from the atring or line, and he whe cuuses it to rebound from the bottom cushion and come back nearest to the upper cushion, has the lead and the choice of the balls.

The first playar begins by striking his ball from tho string against the red ball, as slready mentioned; ard if he pockets the balls, he scores a certain number and begins again. So long as he pockets, the adversary does not got a stroke. If the player miss, the advereory takem his turn. Both now play alternstely, hitting tho ball where they chance to lie; but when one pockets, he starts afresh by striking from the string.

A person in attendance scorea or keeps reckoning of the play. He does this by means of two indices moving round a figured circle, and when one is gained he turna the index accordingly. Technically, he is told to scose one for Plain or one for Spot.

Hitherto we hava spoken of billiards as one game, but it is necessary to explain that at least twelve different games may be played. Wa shall notice the two following as those in common use.

Winning and Loaing Game.

This is played by two persens, and twenty-one pointe are the game. The following are Hoyle's regulations for playing it:-

1. The game commences, as usial, with atringing for the lead as well as the cloice of halls. The ball in alringing to be piaced within the cirele, and the siriker musis atend withir the eornere of the table. The bell which rebounda from the bottom cushion and comes nearest to the eashion within the banlk, lakes the lead, alld has the choiee of balls.
2. If the adveraary to the firsl person who has strung for the lead should eause his bull to loueh the ollier, he losea the lead thereby,
3. When a player holds the ball in stringing or leading, his
lead is oreitited.
4. If n lall is followed by either mace or eus beyond the
middle hole, it is no lend; the advergary, of eque beyond the middle hole, it is no lend; the adversary, of course, tnay forea him to renew his lead.
5. Atter every losing hazard, the bell ia to be replaced withia the nails or spots, and withn the ring.
6. The place for the red ball se on the lowest of the two apots
at jhe botom oi the talle.
7. The red ball being heled or foreed over the table, is placed inmediately on the lowest of the two spols; the present player is. besides, compelled to see it thas seplaeed, else ho cuthot seore ally points while it is off the spot; the stroke, of course. is foul.
8. When the player misses his adversary's i, $: 1$, he toses one ; but should he at the same lime poeket his owin ball, he then loses three herides the lend.
9. The edversary's hall, and the red bull also, being struck by a player.
10. When the atriker, after making a hazed or earnmbola,
ecidentally forces his owu or either of the olher balis necidentally forces his own or either of the other balis oves the table, he loses all the advaniages he has gained besides the lead.
11. When a ball is accidentally forced over the rable, the
striker loses the fead. striker loses the fead.
t2. To strike your adversary's ball and the red ons too, you seore two; this is ealled a carom or earambole.
ta To hole the adversary's or the whita balt, you tcore twa Tu liote the red ball you seore three.
12. When the ariker bolee bie own ball off his adversary's
wa scores two pointa ; but if he holen his bull of the red, he seoren three. But if he holes both the red and his adveraary's balls, he ceores five. If the playef holes the red and his awn bell, he acores six.

16. If the etriker hole hiv own and hin antagonist' ball, ho

 meope four.16. When the striker playe at the white lyall, and whould hole the red after that, and his own ball besites, he acores five-two for holing the white und three for the red.
1\%. When the striker playing on the red ball firnt, whould pocket his own as well as his adveraary's ball, he scorea five points: three for holing off the red, and iwo for hoting his own. 18. If the player holes hie adversary's ball, hir owi. nnd the red. ho acores seven pointif; nainely, two for hoting dfithe white, two ior the udversary'a holing, and three for holing the red bull. 19. Should the striker hole fis own ball off the red, and hole the red and his adveranry's too at the snme atrake, he scores eight points thus: threv for holing himself off the red, three for the red itself, and two for liolins his alvepiary.
** All the nbove games, commeneing with the thirteenth, are scored withous the caramboles ; the following are thome in which we oarumholes occur :-
17. Whun a earambole is male, and the adverany's ball is poeketed, four ara aeored; namely, two fon the earambols, and two tor the white.
Yl. If the striker pockete the red ball after making a caramsole, he acores five; two for the earamhole, and thrate for the red. 42. If the striker should hole both his adversary's and the ed ball, after having caramboled, he scofes seven; two for ibe carainhole, two for the white, anil three for the red ball.
18. When a csrambole is mude by atriking the white bnll first, and the striker's ball should be holed by the same atroke, four points are gained.
19. When the striker make a carambole by atriking the red ball firat, pia should hole his owil ball at the same time, lie guins five poinis; three for the rod looing hacard, and two for tue carambole.
20. If in playing at the white ball firat you should make a earambole, sind hole yout own and agversary's hall st the same une, you seora six poinis; namely, two for each white hacurd, and two for the enrambole.
21. The striker wins seven points whan he carambles off the red ball, and holes his own ant his adversary's ball; namely, wo for the earotr, two for the white, and threa for the red hazard.
22. When the player esrambolea by playing first at the white, and should atso hole his own nitu the red, he scores seven mints: numely, two for the carom. two for the white loaing hazard. and three for the rad winoing hazard.
2⿺. When the player earamboles by hitting the red ball first. and a!so holes his own and the red, he scores eight; namely, two for the earom, three for the red winning liazard, and three or the red losing hazard.
23. Slioulil a payer carambole on the white ball firat, and then ole his own bsill and his opponent's, and the red ball besides, he then scores nine; lhus, two for the carom, two for each white. and three for the red hazard.
24. If a carambole is done by striking the red ball firat, and at the saine: stroke the player holes his own ball, the red bnll, nat his adversiry's too, he gaina ten pointa, upon the principle of the preceding rula.
25. W'irn your adveranry's bull is off the table, and the other two balls nre upan the hime or insite of the stringing nails at the leading end of the table, it is naincd being withill tho banks. The plnyer, therefore, striking from the ring, rant make his ball rebound from the opposite cushion, to as to hit one of the balls within the loaulk; if he misses, he loses a point.
26. Now nad then it ocears that after the red ball has laeen oreed over tie table or holed, one oi the white balls has so taken up the plaee of the red bnll, that it ennnot be replaced in is proper situatios: without touching it. In sueh, the marker holds the red ball in him hand, while the player strikes at his opponent's tiall.
27. And direetly after the stroke, replaces it on the proper spot. 34. When the strike plays a wrong loall. it is reekoned a foul troke.
28. When the player is about to atrike at or play with the wrong bril. none in the room ean with propriety discover it to him, his purtner exeepted, if they are piaying a double mateh. 30. When the player, ufter making a enrom or a hazard, should, pither with his hand, eue, or maee, move either of the balls remaining on the tabla, the stroke in fonl.
29. If the striker should play with the wrong hall, and thia erroneous play shoud not be dineovered by his opponent, the morker is obliged to scors, and he is a wir ter of all the points he has gained hy the stroke.
30. Nont can move or touch a ball without permisaion of the edversary.
31. Sometimes a ball happens to le chrnged in the course of the gamer, and it eannot be aseertained by which player; in that ease, the batls must be need as they then are, and the gane so played out.
41t. It is n foul atroke when the striker, in the act of playing, eheuld hnppen to touch his hall twiee.
dI. Nometimes the plaver necidentally touchen or moves his ball, without intending tostrike. In that ease he loses no point, but hin hall may be replaced as lt originally stood.
32. When a mriker's adversary of speetator impedes the player's stroko by aecident or design. he has a right to renew 4)
es Should n ping, r. In the act of etriking. hit hif bull, and chase hia cue $\%$ his inace to go over it or pait it, he forfeits a porse
33. No strikar can pley upon a running batli such sirote tous.
34. An accidental etroke is to be eonaidered geod If attended with the proper effeot, tbough, by miming the cue, te., it in fox intended as euch.
35. Should a striker, in attempting to play, not hit his ball a
all, it is no stroke, and he is to try again.
36. Should the striker or his adverasiy, In the net of playiat move hy accident of denign the opponent'a white or red ball rom the place it occupied on the table, the atroke is foul.
37. When the striker'a ball and either of the other ballyan so closu us to toueh each other, and in striking at the former either of the Intter in moved from its place, the stroke is fout ${ }^{5}$
38. Whoover nopa a running ball in any way loses the leat f the oppoaent does not like the situation of the ball he hes of, play at next time.
39. It may hnppen that a nirikep, after havin't made a carambole or a hazard. interrupta, by accident, the course of his ow ball; in this ease he scores nothing, as the stroke in foul.
5I. Shonld a player impedo the conrse of his own ball, affe having minde a mass, and it is ruming towards the hole, and ia so thought also by the mapker, he loses three po.nts.
40. Te stop, retain, of impede the R.avepary in the actof atrit. ing. is teemed foul.
41. Should a player in any cay lnterrupt, atop, of driva hie adveranry's ball out of jita course when running towarde a packet, he forfeits three noints.
42. Even blowing ujoil a bull whilat running makea a atroh foul; and ahonla tho atriker's ball be making ita way towaria a hole, and he blow upon it, he loses two points by such act.
43. If 0 maec or cue is thrown upon the tobte during satroto it in baulking the triker, and the strolse is eonsidered toul. 5n. No play is deemed correct when both feet nre of ground.
44. If the table is atruck when a ball is running, the stroke ia deemed foul.
45. A player leaving a gume unfiniahed loses that game pock. some anbles ore so meven that they give way towsid the pockets. In ease a ball should go to the brilk of a hole, and tells for nothing; and the ball must be geain placid on tha hrint before the adversnry strikes ngnin; and should it fall uto the hole again the moment the striker las playid his inall, so 81 to frostrate the intented success of his stroke, the striker's and his oplonent's balle must he placed as they were originally, a.d the strokes piayed over ngain.
46. When n player's maee or cue should tonch hoth balls in the act of striking, the stroke is foul; and if noticed by his op ponent, nothing is gained on the pointa made by the stroke; and the opponcit may, if he pleases, prit the balls also.
47. Those whe agree to play with the cue must do so dating the whole of the match; but if no conditions of this sort have been made, tha piayer may ehange ns he plensea. No playef ean, without permiseion of the noversary, break his agreement 63. If a foul stroke is mada, the adversary mny either part hes balls and piny from the ring, or, if the balls should be favous ably placed tor himself. permit the siriker to seore the poins had gained, which the marker is bound to do in all cascat where the bails are not broken.
48. All ngreemente are specially binding. For instance, thom who agree to play, with the eue point and point, enmot use the butt withont pernuseion; but hey inny use the long cue: end the eame wif. thoae who agree io play with the butt oaly. 64. A etriker wina, and the marker ia obliged to secere sii the points he gains, by unfa'r strokes, if the adversary neglects deteet them.
49. He who offerf to part the bnlln, and the adversary agree ing to the arme, the offerer loses the lead by anch propasal. 66. None (unless they belong to n four match) linve a right w comment on a airoke. whether fnir or foul, unti? asked: and is the nbove case, none but the player and hin pritnce can askit 67. When disputes arise between the plnyers, the markeralons decides, and thura is no appeal from his deeifion. But, it mby case, he is to eollect the sense of the disinterested part of the company; narnely, those who have no bets on the stroke; and their deeision is to be final.

Tho White Game,

Two players are engaged an above, and the striking 4 altemse. The genersl rinciple is, that you win if $y \infty$ pocket the red ball or your adversary's ball, but invarit bly lose if by any means you hole your own bsll. The number of points in the game is twelve. The following are Hoylo's regulations :-
I. In heginning, string for the lead, and the ehosee of balla yon please.
2. When n person strings for the lead, he must stand withis the limite of the eorner of the toble, and also must not place ba ball heyond the stringing nails or apots
3. If after the first neraon has strung for the lead, ' id hisad versary who follows him should make his ball toucl the other he loses the lead.
4. Should the player hole hia own ball either in a ingng we lending, he losem the land.
6. Should the lenter follow his ball with either on eor eve past the midille hole. it in nolead; and if his adverat siooseh
he may make hum lead agan.
4. The etriker whe
ant wathin the limi Niace his ball beyou farsary $(0 n!\zeta)$ is bou theratriker wins all \rightarrow When a hasarit the leader is obliged the end of the table hatard was lost in ei option to lesd from 8. It the siriker mis ud if, by the said misang the ball, und 0. It the atriker lo the ishle, or on a eus 10. If the striker uble, or on a eastio table, or oa a enshion 12. No one has II from his nilversary. 13. If the strikef, b dent ; and lia adver buek in the place wh 14. If the strikur to and his siversary s came on the table agn came on the tabletgn
$i 5$. When the strik bis ulversary ahonht on the table ugain. th Lo hath the lead; bec the way, or near the and it ahond be stopp ba losup nte point. al li: If twe siriker, in buching the ball. mak loses one point ; und Is. If the striker in wuch his ball, at ia no mroke.
19. If, when the liall aredent ahould make Weless a siruke. Hioug 22. If hee slriker w
versary's bull go se naund still, and atter nothing: nud the binil stood. for his ndversmir N. B.- lhere is no urps, as sume imegin ole, and if, ill playn loses three points.
22. It a bail should bole, and it should tal bas delverell his ball chatice for his stroke. ry's batls must he pla pospible thereto, and tl 2: The strk is oh erpecially it he misse may, if he ehooses, on 2l. It the slriker pla hat they lench nt the and if it is discecveriol srise thereon. he hasa interested eompany th fali, to te a foul strukte holed) eilletr to play' a doed entrert op phity at foal siruke, then the mase by the said stroke 25. No person has a be stroke is fair or fou 26 If by a foul stiok hall, te, ne the lentre.
27. t foul strelit or forces s own or bo he loses two points. is deemed as a tor phat 29 If the striker the permission of his a of. If the striker play If his adversary requir 31. If the bafl should san it is not know 32. If the garty with forces the balls he phay foull siseke.
int If the striker play fores I' ball he playe ponn's and if he minsae
loses one per nlas ath ninced with peint: atu the lead if he plea
4. The striker whe plays a the lead must atand with both his mel within the limits of the corner of the lable and must not Nace his bull be joud the atringing naile or spo. nd his adpreary (only)
air, else verariker wins ull tha points he made by that stic.

- When a ha, mril has been lost in either of the corner holes, the leader is obliged (if lis adversary requires it) to lean from die end or the table wher ho hard was hos; bat if the hatard was toast from cither end of the tiblo he pleases.
option to lealliker misses his adversary's ball, lie loeses one point; . Wh by waid stroke, his hall shoull go into a hole, over and if, by the sale or on a cusbion, he loges thrce points innmely, one for he table, or ball, und two for holing it, tec., and lie loses the lead. misbing the striker holes his adversary's ball, or forces it over 0. If the striker hoses his adverary

10. If the striker holes his own ball, or forcea It over the able, or on a custion, lie loacs two points.
table, or the striker holes hoth balli, or forces them cever the li. or an a chshion. he loses two points.
11. No ont has it right to :ake up hie ball without permission rota his alversary.
12. If the striker, by neeident, should touch or move his own shl, ant intendiug to innke a stroke, it is deemed as ant becidant ; and lis adversary, if ha requires it. may put the bait back in the place where it stood.
13. If the strikur lorees his ailvcigary's ball over the tabla, and his suversary should ehanee to siop is, so as to make it ame on the table again, ithe striker ne vertheless wills two points. 15. When the striker forees his own ball over the inbie, and is adversary shouli elinnce to sinp it, so an to make it come the table again. the olviker ioses nothing by the stroke, and ha heth the lend; becanse hia adversary ought not to atand in he 'way, or year the table
If If the sirikur misses the ball, and iorces it ovar tha table, and it ahould be stopperd by his adversary, as before mentioned, hosep me noint. Hull las the lead if he ehooses.
1\%. If nusiriker. in playing from a cushion or otherwise, by ouching the ball, mukes his muee or cue go over or past it, lie loses one point; and if his atversary requires it, he may put the bail back. und may make him pass the ball.
14. It the striker in nttempting to make a stroke, doth not buch his balt, it it wo stroke ; and le mast try again to make a
ruse.
15. If, when the batls are nonr cach other, and the striker by arcident ahosk make has tiall sueh tho other ball, it is nevertheless a struke. though not n 'emuled as such.
16. If the striker who phas his sproke shonid make his adreraary's ball go so near the trink of a hole as to be judged in tand stih, und uterwards shand fail mo it, the striker wing mbirs: and the tail inust !ee pat on tlite same brink where it and for lis adversary to play from the next stroke.
N. B.-liwre is no occasion for ehallenging the ball if it t pt, as some imagine
2t, If the striker's lonll shond stand on the brink or edge of a hole, anil if, it playing it off, ha should make the ball go in, he lose three points.
ay. If a bail should stnud on the brinir or on the edge of n bole. and it shonlt tiall into the hole before or when the striker has delivered lis ball from his mace or ene, so ns to have no disuce for his stroke. in thit ense the striker and hide adversa ry's balls must he ploced in the same position, or as near as possible theteto, and the striker inust play ngain.
2h 'The sirikur is ohliged to pass his adversnry's bnll, more especially it he tuisses the ball on purpose ; and his adversary asy, if he ehnoses, ohlige him to place the ball where it stood, mul play until he inas pasaed.
2l. If the striker plays both halls from his mnee or ene, so that they tonch ut the snme time, it is leemed a fonl etroke: add if it is discevered by his ulversmry, and a dispute should sriad thertan, he lias an umboutted right to nppeal to the tisinterested eomphny then prosent: nnil if determined hy the majurity of the disinterested compning, and the marker, if needfol te be a fonl struke, then it is at his alversary's option (if not hoed ether to play ut the ball or take the lemp. 13 int if, by the sioul suruke, then the striker may reekou all the points he seal stroke, then the striker may reekon all the points he 25 . No persan has a right to diacover to the player whether the stroke is fiair or foul, until it is asked.
26 If by a foal stuoke the striker bhould hole hia advereary'e lall, ie ${ }^{\prime}+\infty$ the lemi
or fortes sowis or both alliker holes how or both bne, hr loses twa poillts.

If the strik"r plays on a ball when it is running or moving this deemed as a loul stroke
29 If the striker jlays with both feet off the ground, without the permission of his siversary, it is llenmed in foul siroke.
3. If the striker piays with a wrong hall he loses the lead, If his adversury requires is
31, If the halt should be changed in a hazard or on a game, sad it is net known by whieh party, the havard must be played out ly eaeh party with their different balls. nad then ehanged
34 . If the strikor plays with his ndversary's hadh, and holes or 3. If the strik'r plays with his adversary's hall. and holes or forces the balls lue phajed ut over the table, \&e., it is deemed a foul strake
W. If the striker plays with his adversary's liall, and holes or foress t^{1} h full he played with over the talile, \&c., he loses two poin's and if ha miszed the hall. three points.

If the striker nlayo with his Rilversary's ball, and misees
te loses nne point: and if his adversnry discovers ath played with the wrong ball, he may part the balls, and atu the leat if he pleases.
35. In all the before-mentioned cases of the striker's playint with the wrong ball (if discovered), his atversary mast play with the ball the striker played at throughout the bazadd, of part the balls until take the lead
30. Whoever stops a bsil when running with hand, stick, of otherwise, lonat the lead, if his adversary doee not like the bal he has 40 play at the purt strolse.
37. Whouver retains his adversary's atiek when playing, it le deetned toul
33. If the striker stops or puts hie own ball out of its coures whes rumbing towards either of the holes, and if adjudged by the marker and the disinterested company then jresent to be goling intu a pocket, if ha missed the ball hu loses one point, and fgoing into a hole by the same stroke, three pointe.
30. If the slaker slops or puts ligs adversary's ball out of the conrse when running towards or into n hole, or puls bis adver asry's ball into a hole, it is decmed a foul stroka.
N. B.-If the f.tversary doth the same as in the foregolng ules, he is sulijeeted to the sutne penalties as tha striker
40. Ile whon slukas alie tabla when the ball is ranning makea in foul stroke.
41. Ife who throws his stick upon the inble, so as apparently o be of any detrintent to his adversary, makes it a foul atroke d.2. He who blows on the hall when rumug puakes it foul And if his own ball was ranaing towards or near tha hole, be 43 livo points.
43. He who leaves the gama betore it is finiahed, and wlll noe play it oul, loses the ranie.
44. Any person may elange his mace or eus in playing, unless olline wise previously agreed on.
40. When two persons are at play, and no particular torm of agreement huve been made, neither party has a right to ob jert to cither maee or cue being played with in the said game
40. When the parties agrea to play maco against che. the mace plnyer hath no right to use a ene, nor has the ene player any right to use a mace during tho game or match, without permission from his alversnry
47. Whan a person sigrees to play with the ene, he must play avery ball within his reach with tha point thercof; and if be agrees to play with the butt of the cue, he has no right to play with the point thereof, withont permission from his advergary
48. When the parties agrea to play point and point of the eue, neither of them has a right to use a buth during the geme or muteh, without pernisgion, \&e., but they hava a rignt wo p. 47 with the point of a long cue over a mace, \&c,
49. When the parties agree to plas all point whit the same cut, they have no right to use nuy other turing tha game of matel.
60. Whoever proposes to part the balls, and his adverangy agrees to it. the proposer thereof loses the luad.
5l. Two missings th not make a hazard, unless it ia prenously agreed on to the eontrary
5\%. In all enses the betters ure to abide by the players on the determination of the hazard, or on the game; and the bettere have a right to demand their money when their game is over, to prevent disputes.
53. Fivery person ought to be very attentiva, ard listen for the troke, beiore he opens the done of a billiard-room.
64. The striker has a right to command his adversary not io stand fincine him, nor near him, 60 as to annoy or molest bins in the stroke.
65. Jineh party is to attend to his own game, and not to sst if his adversary's bull be close?-if he touches his lnll ?-if ha can go rombl the bal! ? - nor nny question of the like tendency; mor is any one to be set right, if going to play with the wrong ball. 50. Whan and each |" has n right to consuli with anil direct his partner in any respecting the game, sce, and the party whe mokes isu insere lefore the harard is made, is oue, and it is his primer's turn to play but if ater the two misciuge have been made by the pariy hiendversary shontd hole a ball, so as to heen mine mate nate het party who did not moke the two misaings is to play, as he cannot be supposed to be out who has not made o play,
a stroke.

BAGATELLLE.

The large and inconvenient size of billiard-tatiey hat led to the introduction of bagatelle-tables-bagateilie being the French word for any thing trifling. A bagatellotable is usually about five feet long and eighteen inches broait; it is lined with eloth, and a game is performed on it with balls and a cue or mnee. The balls are small ivory spheres, and the sport very much consists in striking one or more into holes at one end of the board. Te perform this and other feata, some skill and experience are required, and the sport is far from unamusing in a checrful parlour circle. Of late years, bsgatelle-tablea have become very common in the houses of the middle classes of socicty; they possess the recommendation of 3eing purchaseable at a small expense.

GAMFS WITII CARDS

Plaving cards are amall oblong picees of pastehoarth on which divers figures aro impresoed in two prinitoal
colours, red and hlack. Fifty-two cards form a pack, or complete met ior playing any gaine. The pack cr.asiuts of liour suits or kinds of cards, thirteen in each, diatinguiehable by thelr respective marks. The suits are Searts, diamonds, cluhs, and spadis. Hearts and diamonda ara red; cluba and spades are black. The thirteen in ench suit cousist of ten carde, distinguishable by apots, from ouo to ten; and three carda, orilnarily esiled court cards, from treing impressed with certain figures having a semblance of court costume-ona of those in the king, another the quren, and a third the knave, or jack.

Of the origin of play ing-cards, and the signifention of their respective markings, there has been no smail controv ray annong antiquaries. The general opinion has be n that cards were inventel alout the yoar 1392, for the purpose of amusing -" wlen VI. of France, at the time he was afllicted with a mental depression or derangement. But it has he.n aacertained that, in 1387, John I., king of Castile, assued an edict forbidding the plasiteg of cards in his dominions; and from this, ss well ss from some of the wames given to the cards, it is extramely probable that playing-cards were known in Europe as early as about the middle of the fourtenth century. At first, the outliaes of the figures on the carde were made by stamps, and afterwards filled up by the laand; but roon after the Invention of engraving on blocks, the devices wero produced by wood, and sufficiently finished, so that the impressions did not require any assistance from the pencil.
The names-mearts, dianonds, apades, and clubswhich the English give to the cards, appear to be in a $g^{\text {grat measure s corruption of the original Spanish and }}$ French appellations, of a misapplication of terms to the original symbols. We find the following account given of the design and names of the cards in the work of an anonymous writer:-
"The inventor proposed, by the figures of the four suits, or colours, as the French call them, to represent the four states or classea of men in the kinguom.
"By the Casars (hearts) are meant the gens de chour, choir men, or ecclediastics; and therefore the Spaniards, who certainly received the use of cards from the French, tave ropis, or chalices, instead of hearts.
"The nobility or prime military part of the tingdom are represented by the ends or poinis of lances or pikes, and our ignorance of the mesning or resemblance of the figure induced us to call them apades. The Spaniards have expurdes (swords) in lieu of pikes, which is of aimilar import.
"By diamonds are designed the order of citizens, merchants, and tradesmen, carreux (square atone :iles or the like). The Spaniards have a cain, dineros, which anawers to it; and the Dutch call the French word carretur, atiences, stones and diamonds, from the form.
"Treste, the trefeil leaf, or clover grass (corruptly called elubs), alludes to the husbandmen and prasaints. How this suit came to be celled clubs, is not explained, anlesa, borrowing the game from the Spaniards, who have bossos (staves or clubs) instead of the trefoil, we gave the Spanish signification to the French figure.
" The history of the four kings, which the French in drollery sometimea call the cards, is David, Alexander, Casar, and Charles (which nsmes were then, and still are on the French cards). These respectoble names reprewent the four celebrated monarchics of the Jews, Greeke, Romana, und Franks, under Charlemagne.

* By the queens are intended Argine, Eather, Julith, and Pallus (names retaincd in the French cards), typical of birth, piety, fortitude, and wisdom, the qualificationu residing in cach person. Argine is an anagram for regina (queen by deacent).
"By the knaves were designed the servanta to knights (for knave originally meant only servant; and in sn old translation of the Bible, St. Paul is called the knave of

Christ); but French pages and valeta, new indiserimb nately used by varlous orders of persona, were formerly only allowed to persona of quality; esquires (escuiers), shishd or armaoar bearers.
"Others fancy that the knighte 'hemselves weie do signed by those cards, becauso Ifowier and Lahire, two naines on the French cards, were fimous knigbte at the time cards were supposed to he invented."
With the entire pack of finy-two cards, or with enry a portion of it, there have heen innumeralle games, and there are ao stil; to notice the whole of these, however would occupy too much of our spuce, and we propose to confine our explanationa to what ure considered reapoch able and harmlessly amusing games.

whist.

All ganes at cards, in Jur opinion, are insignificant th comparison with whist, which is believed to take its רamm from an old exclamation to kerp silenee; it muth s: least, ba conducted noiselessly, and with extretoe sttention. Tho whole atructure of the gume is ingenioun and a result of just calculation. Ita rules have all been carefully studien, and there scems to be a sufficient reason why each has been instituted. The game is a happy blending of skill and clanes ; skill leing the most important clement, and chance only accessary, in order to impart a due relish or piquancy to the sport, and del rive highly-skilled players of being always certain of the victory.

Whist is played by four persons, two forming a party or side. The four sit at a square tahle, onc on each sidea partnere heing opposito to each other. The talle shou'd be covered with cloth, to permit an casy liftiog of the cards. Beforo commencing the game, a pack of cards in laid on the table, the faces undermost. The parties then cut for partners; that is, they leavo it to chance to deten mine who shall be partners. This is done by each pes son lifting or cutting a portion of the cards from the hcap or pack, and the two who have the highest eadi play together.
The value of the cads is as follows:-As already stated, there are four suits, cach suit conssting of thir teen carils, ten being common, and three being court carls. The card in each suit which has but ene mark is called the are; and this ace is the highest in valus in all cases except in clutting for partaces, when it is the lowest. 'The next highest is the king, the next the queen, the next the knave ; then the ten, nine, cight, and so on down to the two, or deuce, which is the lowest in playing whist, one suite is of higher value than sny of the other three ; but which suit shall 1 1ossess this temporary distinction depends on chance in dealing out the cards; the last card dealt out is turned up, and the euib to which it belongs is called trumps; " trumps, then, is the suite of the highest value. In the course of a game, the trump suit may of course vary at every deal.

The rulting of the pack, as above mentioned, deter mines who are to be partners, and st the same time determines who is to dcal. The rule is, that he who had the lowest card in cutting is the dealer. This perton sheffles the cards; that is, mixes them in any wsy bo thinks proper, ulways keeping the backs towards him Having done this, his adversary is cutited to sluffo the carda also; indred, each person has a right to shufle them, but this is seldom done. Being duly shuffed, the pack is laid on the table (always back uppermos)) before the youngrat hand, or the person sitting to the right hand of the dealer; and he cuts it, by lifting of 4 portion and laying it down. The dealer now puts the lower portion on the top of the portion laid off; and is prepared for dealing.
-The term rrump is belicved to be a corruphon of triumpa measing the triamphsus card.

Doaling must man the pack inf no right, ant dix megins rith the hand, then tho p ond then himme laet card which th ?. This las suit a be trum alwaya one trun uapposed to hen nowwledge of on tha talle explosed poure of a card io strictly provide

If a eard is turne new derd if they been the cause of t option.
If a curd is face unless it luappens to this the dury of c thiteen enruls. if dives not find it ont ent have their right on who payyed w en revoke, provid al the rayers slin Phe dealer slouldi The deater shomit at his hru to play; as aide, no onte lins at hul may ack what a hre dealer enmo
righ have dine hone of the playe thry are denliss ons mould happets 10 Ini dealing. no new denal dealing. 110
cruse of 11.
if ony person deal if any person deal downwardo, he loses

The cards hein which he must ser nists or his partuct ranged like a fan in see sll his eards at of order stul conve land, sll of a suit soted, the game co on the left of the d *on on his left fello duwa last.
The principle o soit the first card followed by cach pr a card of that suit suit. Should he d of the suil which committed a revoke, three tricks. It is
oe very rigorous in
The four cards la
The trick is won highest value wins lays down a deuce quales, the third a of spades, this last But should one of band, amel hays dow th be trumps, that e Palue the cards laid a truinp card, thougi trump canls be lai bighest trump ctarl huphes, raril.
VUL. 1.-.91

\checkmark undiserimb

 ormerly onty ers), shioldvea were do l.ahire, tw nights at the or with only c games, and ese, howavey we proposeto lered respech o a sufficient he game is a kill locing the the sport and vays certain of
rming a party ic on cach aide, le tablo ahou'd y lifting of the pack of cardain The partics then dunce to deter to ly each pen cards from the b higheat cards psisting of thir we being court ; but one mark hest in valus in when it is the next the queen, ight, and so on he lowest. In se than any of sess this tempolealing out the b, and the saito rumps, thea, is purse of a game, ry deal. entioned, deter same timede at he whe had
This person a any way be s towards him ad to shuffle the right to shufle bly shuffled, the ck uppermos) sitting to tho by lifting off a r now puts the laid olf, and in

Dealing must be neatly performed; the dealer holdma the pack in his left hand, lif a off the top cards with bo right, and distributes them, ase to each, all round. Ite hequs vith the person on his left, who is called the elifer hasd, then the person opposite, then the youngest hanul, and then himself' Ite thus goes thirteen rounds, the wat card which he holds in his hand fulling to his own an ? 'I'his last caral he surns up, and it determines the auit a be trumpre. The dealer, therefore, has at leant alwaya one tramp in his hand, but this mivantage is supposed to be neutrilized by the adversaries having a knowledge of one of his cards. The trump card lies on the talle exposed till the first irick is [played. Any expoours of a card in dealing, by real or pretended aceitent, anatrictly proviled against. 'The following are IIoylo's

Rules for dealing.

If a card is hurned up in dealing, the ndverse parly mny enll Hew deul if they think propor ; but if either of luella hat been the cause of turning up sueh curd, then the dealer hus the opios.
If card is faced in the deal, there mast ba fresh deal, ualess it lompens in le the last card.
It in the duty of cvery person who plays in at that he has thitleen cariss. If any one happurus to have of y twelve, nud dies not find it nut :ill severn' riaks are playec and that the
 on who played wilh the twelve caris is to 10 punishedt for uch revoke:, provided he has made nuy. But it wy of the: rist at the phajers should huppen to have foure on eurds, in that se the dent is lasi.
The denter should leavo bis trump er. A upon the table till it a his tarn to phay; and after he ha mixed it with his oller asde, to me lins a right to dema.d what enril was mirned up. but may ack what suit is trumps: in consequanere me this law. the dealer enmot mane a wrons eard, which othernise he nish have ll, me
Wone of the players may take $\mathrm{mb}_{\text {o }}$ or look at the cards while weyare leutine cint; whent tis is the enser. the dealer. if hes soold happell in misdenl. has a right to deat ngain, miless it orses fram his purmur's fant: and if a card is turned up in tealing. no nuw deal can be called, untess the pariner was the enuse of it.
If any perfon denis, nud, insteded of turning up the tromp. he prashe trump enril upon the rest of his cardn, with tho face pisthe rimp enris his deal.

Playing the Game.

The cards heing all dealt, each takes up his hand, which he must scrupulously prevent any of hia nntagonists or his partuer from secing. Tho cards should be ranged like a fan in the left hand, so that its holder can se all his cards at a glance. It is advisable, for the sake of otder and convenience, to arrange the cards in the land, all of a suito together. Each having his curds sorted, the game commenees lyy the elder hand, or person an the left of the dealer, laying down a card. The peran on his left fellows, and so on to the dealer, who lays down lash
The principle of playing is as follows:- Whatever noit the first card is of, that suit must, if possible, be Whowed hy each party round; but if one party has not a card of that suit, he can lay down one of niny other muit. Should he do so, and alterwards lay down á card of the suit which he appeured to be defifient of, les !as committerl a revokic, and a penalty is exncted in loss of three tricks. It is necessary, for tho suke of fair play, to be very rigorous in punishing a revoke.
The four cards laid down in a round is called a trick. The trick is won in various ways. The card of the highest value wins. For example, if the first player lays down a deuce of spadea, the second a three of spades, the third a four of spades, and the fourlh a five of spales, this last person wins; his party gains a trick. But should one of the players not hove a spade in his band, sut lays down a deuce of the suit which happens the trumps, that eard wins. No matter how high in value the cards laid down are, the trick is always won by a tranp card, though it were only a deuce. If severnl trump cards be laid down, or all be trumps, then the biahest tramp cartl wins. The ace of trumps is the buylies? mard.
Vul. 1.-. 91

When the trick is played, it is lifted by the peraon who wina, aul placed beside him in a heap on the table, hack uppermost; and he continucs to take up all other tricks tis party wins. Thus, one on ench side collects and reek ons the tricks.

Whoever wins the trick becomes elder hand, nad plays first in next round; and so on each wimner plays first till all the cards are played out.

A pack produces thirteen tricks, but none is counted till after six. For iustance, if one party witan four tricks, they alo not count; and the other party which has nine trieks counts liree. Should one party gain all the tricks, it counts severn.
'The nee, king, queen, and knnve of trumps, are called honmoss. These have a peeuliar value in reckoning towards the game. Should each person hold one hononr, honours do not count: but should two partners hold three honours leetween them, they score two points; when they hold four, they acore four ints.

The game consists of ten points, and these may be gained ly tricks and by honours. Should a party make six tricks and hold four honours, it has won the game at one deal. It will therefore be perceived that honours, the possension of which is a matter of mere chance, exert "powerful influence in gaining the victory over an ulversary.

Only at one time in the game do honours not count ; Ihis is when the purty in at nine; the odd point to make uf to ten being ouly gained by tricks. When a party is at eight, and the first trick has been played, one of that party, who holds two honours, may ask hia partner it he has one honour; nud if he says he has, the three honours are at one. shown, which concludes the game. Thore are rules for calling honours, which ve subjoin.

In the course of playing the gane, no one must drop the slightest hint how he wishes his partuer to play, or make any wher observation calculated to mislead or direct. Neither may any one, before his partnes has played, inform him that he has or has not won the trick; even the atlempt to take up a trick, though won, betore the last partuer has played, is deemed very improper.

All prarties must play hy their own perceptions of what woald be most judirious. There is only one exception to the rule of keepiug silence, which is in the case of a revoke. If a person happens not to follow suit, or tramp a suit, the partner is at liherty to inquire of him whether he is sure he has none of that suit in his hand. This indalgence must have arisen from the severe penalties unnexed to revoking, which afferts the partners equally, and is now universally ndmitted.

The great knack in playing whist is to remember what is ont, and hence, ly the play of bath partner and adversnies, to have a shrewd guess of what ench holds in his humb. A primury rule is to follow n partuer's lend, as it is presumed that no one, in playing first, is without a good reasom for tabling a particular suit.

The term fincssing mignifies the attempt to gnin ad vantare; thus, if yous have the best and third best card of the suit led, you put on the third best, and run the risk of your ndversary's boving the sccond best; if he has not, which is two to one against him, you are then ecrain of gainime a trick.

A lave cord is a card of no value, and consequently the most jiroper to thron away; it would be folly to lay a good card down, when it must clearly be taken by a better card already tabled.

A sfyufure is a sucerssion of cards in the sa, se suit as ace, king, queen, knave.

Tenar is vossersiug the first and third hest cards, and being lust player; you consequently conquer the adversary when thit suit is played.

Sroring is the melbod of reckoning the points in 2 game. The rickuming is made by four countrers or piecea of money; und the way in which these pieree are dis
puent, shows the meore. The following is the ordinary meothod of acoring :-
$\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 6 & 0 & 7 & 8 & 0 \\ 0 & 00 & 000 & 00010 & 00 & 000 & 0 & 0 & 00 \\ 0 & 0 & 0 & 0\end{array}$

Rulen for Playing.

If a perann playn out of his proper turn. or ahown named, it - lin the option of either of his advepansien to enld that eard; dat her chases him to hay it down at nny time in timt denil, prorvided it does not make hem revnke; or eilher of he miverna ries mny require of the permen who ought to hove led, the sui dee sand adverenty may choose.
If a perann nuppasen lie han won the rick. and lends nanin sefore his partner hina played, the stiverasiry may oblige his partiner to wint if he ean.
If " person lenila, mill his pariner plays before his turn, tho adversnity'p phriner may in the name.
If the ace or any other enril of a asit in led, and the lant player should happell to pilny out of his turn, whether han jemtger has nay of the sait loit or not. hee ta neither entitmed to trump it nor to win the trick, provided you do not minke limi revoke.
If u revoke happena to be mmife, the nivermirics may adl there to their seore, ar inke three trink from the ravoking paris, or tuke downs three from thair acors ; and if un, not withmanding the penulty, they must remain at nine: the revoke tak's place of any other seore of the game
If nay proson revoken, nad dincovers it hefore the cards are turned, the udverasy mny call the highest or lowent of the ouht led, or call the caril then pinyed, at any time when it doe: ot enuse a revoke
No sevoke rnu be elaimed till the trick in turned and quitted, or the party who revoked, or hia partoar, has played aysin
If a revoke in clamed by any pereon. the niturese pafiy are ant to mix their carda, upon fariefture of the revohe.
No person ean claim a revoke atier the enrds are cut for a sew deal.
If any peraon calle exeept it the point of eight, the alvermrien may call a new deal, if they think propicr.
Aller the trampenrbin tirned up, no person inumt remiad hie partmer to call. on penalty of losing one point.
No honours in the preceding deal ern he ant up afier the tramp card : turned up, unless they were before chamed.
If any puraon calls st eight, and hik purfiner answers, nel the adverse party have both thrown down their earda, and it uppears that the purtien calling have not the honours, hie ailversaries are eutithol, if they pleuse, to compel the pliny to go on. or to have n new deal
If any pernon answers without having an honours. the adverary may conault and atand the deal or not.

1. ney person colla nt eight, iffer he has plnyed, it is in the oplum of the miverme party to enil n new deal.
If hay pernon meparaten a cart from the rest. the adverse pury may enil it. provided he namen it, and proven the kepmpuyon: lint if he realk a wrong enrol, he or his on cmes are linhle or nnee to have the highest or loweat card entled in any auit od during that teal.
If muly perann, supposing the game Innt, thrown hir earda upon We table with their facen upwarik. he may not tinke them up gmin, nnd the adverse party may enll nny of the carde when ary in tik proper, provided they do not mike the porty revoke. ay shen his mare of winning every triek in hin lande. he if show hia carifa. hut he is then linhle to have them criltect. and ane han nup enrt more thin the reat, it in in the option of the adverary to have n new denl.
meh person. in playing, ought to lay hin earillefore him: nod any of the adveranripes mix their eards with his, him promer nay demand rnch permon to lay his enrel before him, but not to aquite who played any particulnr card.

lfinth in liearnere.

1. I, ead from your strong winit or that with which yon rould make the most iricknt, and br eantinus how you change knits. 2. Cend hrough and honour when yon haven goow hnyd-that an cruse your nivernnry on the inft to lay down n good honour.
2. Lend through he strong suit of the leithand atverniry
. anto the werk of him whe in on the right ; but not in trumps, 4 Leul a rump it you bur
3. hetail a rump, it you hnve four or five, or n strong hand ; ant not if wernk
4. Apanfuces are eligible lende. and hegin with the highest. 6. Follow your parther'm lemil. lut not your ndvernars'a.

- Di, not end froin nee guefn of at whave

8. Do not lend nn nee un

Do not leal a thirteenth enid unless trumpsare ont.
in. Do not trump a thistecthth enrd untexs younre last player, whin herad
11. The therd to play nowaye io put or hin leat card.
12. When you are in doubi. win the triek.
3. Wher yoa lend amnil irumpa. lug'n with the highest.
14. Do not trump out whell your pariner is likely to trump n 15.

Shaving only a few smnll trumps mnke them when you enn. 1f. Mak your tricks enrly. nenl he enutions liow yonf finesse. 17 Never neglect to make the odd trink when in your rowers.
18. Never iorce your nelversary with your besi curd, unless mo hinve the nexi hert.
then tinen nily ane enrit of nny suit and trat twe or tere amall trumpa, lend the augle cord.
20. Alwn) a endeavoar to keep a commanding eard to boment onir ntrong auit.
21. When your parther lende, endenvour to keep the som natid in his humd
2.2. Alway aktep the esrd you turned up as long an you eos cmently can
23. If your anngonisis are elgh, and you have no homont, play buir lieat irump.
 clusion of ench denl: und do not apeak or nttempt to cenvorm
unleas between the deule.
A rubther, or rub, generally conajuly of threa games The parties who have two out of the three win the rub If the same purty gain the first and the wecend gome, that concluder the rub, without phaying the third.

A rubler almo conuinta of live perintu. If a purty wing the gume before the udveraary lias acored five, he is said to have won a doublp, or two points. I'wo gamee woaia thin mantwer cemit four pointa, and consergucutly concludea tho rulbure, for which one point ia also reckomed. When an alverwary has acored five or more at tho termination of a gane, you have won only n single, which ceunts bul na one point.

Whint is sometimes playeu hy three persons, the fourth place being termed dumby. 'I'fin cardu for dumby areers posed on tho table nad played by one who undertakes is act as dunhy's partuer throughout. 'This method of playing very minch destroys the interent of the game, and in never resorted to lint in cases of necensity, when fou permobs cannot be laad.

cribbage.

I'his gnme is playnd with the whole pack of card, and hy two, three, or four persons, as the case may be. When there are three, they play ns individuals; when four, wo play an partners, as in the case of whist. The value of tho eards in cribbnge is the aame as in whist, but then are no trumps, excepting the knave of the suit turnedup There are diflerent modes of playing accorting to the number of cards dealt; the number is generally five of six. The game consists of aixty-one points, and to keep score or reckoning, an apparatus culled a criblage-bard is employed. This hoard posmerses holes fur the sconing of each party, nud the scoring is elliceted ly means of pegs. The party who is able to bring his peg into the last hole first wias the game.

The following is an explanntion of terms generally used in the gatne:-

Crib, the carda laid out by each party; and whateva points are made by them, the dealer scores.

Pairs are two similar cards, as two aees or twe kiaga They reckon for two points, whether in hand or playing f'airn royal are three similar cards, and reckon for sir pointa, whether in band or playing.

Double pairs royal are four mimilar cards, and recken for twelvo points, whether in hund or playing. The poinle gained by pairs, pairs roynl, und double pairs roya, in playiag, are thas effected: your adversary having plnyed a seven, and you noother, constitutes a pair, and entitles you to score two pointu; your unlagonist theo playing a third weven, makea a pair roynl, alad he mark six; und your playing a fourth ia a double pair royal, and entitlen you to twelve points.

Fificens,-Every fifteen reckens for two points, whether in hand or playing. In hand, they are formed either by two cards, such as a tive and any tenth card, a six and, nine, a seven and an eight ; or by three curds, as a tha, a fivo, and an eight, \&e. And in playing thus, if such cards nre played as make togother filieen, the two points are to be scored towards the game.

Sequences are three or four, or moro suecessive cards and reckon for an equal mumber of points, either in hand or playing. In playing a sequence, it is at no conse quence which card is thrown down first, as thes: ynut niversary playing an ace, you a five, he a three, you 1 two, then ho a four, he counts five for the sequence.

Flush ia when the cards are all of one suil, and reckoma
for s many $p \mathrm{pc}$ eard turned u hand.

The golaga can be played are; but if the
The turn-up ea

1. In dinaling, pleates, but not versary in th
be please*
2. Il the deale ribary mhy aco provide
anla.
3. When any
than the pucper
discovers it may
deal. if the dealer
4. If thu dealer
5. the hiticerary
fras) dell, if lo
draw the extrit es
jiserve nis anto
they are tuken
gone. and call a
a. If either par redeals antil the is entited to acoor B. If any playe parly has a righ w. fo
patue.
${ }^{7}$. If either phr the alversury inn 8. If either par Bine bethind the 9. Wither party diat Fach player porach play ae piace ticm on
band of crib, he

Preper cribba give a descriptio After the deal whist, they nre i for each individ on the beard. of the five cards draler. Is doin as the carda wh invariably preju mulversary. Thi of the pack, and eard, whatever band or crib. cores two point
After laying 0 eldest hand play to pair, or to fin the first, will m anether card, try on alternately til thirty-one, or th
When the pa produce a card det that numbe who thercupon to make thirly-t acore one for the often opportuniti as remain after having, during manner as here frost, then the de crib aa followa, vibly can be var cand:-
For every fif
of a sort, two $\boldsymbol{\mu}$
inding enid to bringen our to keep the som p an long as you eon you have no hotier end the neope at eor ratlempt to convith
uts of three games three win the rub the vecond gano ng the third.
es. If a party wima ored five, he is sand 'I'wo games wo in merjue itly concludes - reckoncil. When at the termination le, which counts but

3 personn, the fourth du for dumby arees. who undertaken to

This method of ent of the game, and recessity, when fout
le pack of cards, and case may be. Wheo als; when four, wo hist. The value of in whist, but them f the suit tumedup are accorling to the is generally dive of points, and to keep led n fribthage-board woles for the scaning lieted by means of ag his peg into the
of terms generalif
arty ; and whateve scores.
acen or two king in hand of playing , and reckon for sid
r cards, and pection or playing. The d dathle puire royah r adversary having astitutes a pair, and ur antagenist theo roynl, and he marks ,uble pair royal, and
two points, whether re formed citherby ith card, a six andi ree carls, as a twa wing thus, if kuch cell, the two points
e sucerssive cards ints, either in hand it is of no conseirst, as thase: your , he a three, you a the sequence
he suil, and reckoon
for many poist an cards, for a fluah in the crib, the card turned up munt be of the aame auit as those in bund.

The ga is gained by the player when no other number cas be played under thirty-one, in which case hos take one; but if the number makes thirty-one, he taken two. The turn-up eard accounts in with both hand and crib.

Regulationa for Pluying.

If he
t. In douling, the deafer may diagover his own earde, if he pleaces. but not those of hin miversary, If ne then, that ndperary is estitell to mark two pointa, and call a fresit deat, if he pleanes
2 to the denler gives lis adversary tom many curth, the advetary may sente two poima. and alwi slemand anmither deat, provided he desees the cror previous to hia laking up his provide
3. When any player in olbatryed to have in bie linnt more than the poiner manitre of earis, in that entw the permon who diegers it may maik iour pointa to his gaine, and cull a new deal, f loe thulity propers.
f if the dealer gives himnelf mots rarts litan he is entiled

 draw the exiracurde from the dealer's hanala. If the non-dealer
 wey are tuken off the table, he may acore four points to his rame, and call a new deal.
${ }_{5}$ 5. If etther party medilie with the carda from the the they ardealt antil lhey are cul for the turn-up card, his adveranty is entiled in arore two pointa.
fis It sny player acores more than he is entitled to, the otiser party has a right nol onty lo pul him hack aia many poinix an F. re so 日cored, but also to *eore the anme number to his own palle.
${ }_{7}{ }_{7}$. If either party touches reven his own pegs unnecesentily, the adversary may acore two pointa to hia gatione.
8. If either party inke out his fron peg, he must place the aune behind tha other.
a. fither party ncoring a leas namber of points than are his due. incura no penaliy.
to. Bach player has a right to pnek hia own eards ; and whonlt he place them on the paek and nuit seding for them, whether bad or crik, he nust mot mark lor them afterwarels.

five card cmbbage.

Proper cribhnge is played wilh five enrds, and we shall give a description of it in reference to two persons.

After the dealer has been determined by cutting, as in whist, they are dealt one alternately, to the extent of five for cach individual. The elder hand takes three points on the board. Each player then proceeds to lay ont two of the five cards for the crih, which alwnys belong to the dealer. In doing this, nlways recollect whose erib it in, us the carda which may advantage your own are almost invariably prejudicinl to your gnme when given to your alversary. This done, the non-dealer cuts the remainder of the pack, and the dealer turns up the uppermost. This eard, whatever it may be, is reckoned by each party in hand or crib. When it happens to be a knave, the dealer cores two points to his game.
After laying out and cutting as above mentioned, the eldeat hand plays any card, which the other endeavoars to pair, or to find one, the points of which, reekoned with the first, will make fifteen; then the non-dealer plays another card, trying to make a pair, or pair royal, and so on alternately till the points of the cards played make thirty-one, or the nearest possible number under tiat.

When the party whose turn it may be to play eannot produce a card that will make thirty one, or come in under that number, he then says, "go," to his antagonist, who thereupon is to play any eard lie has that will come in to make thirty-one, if he can, and take two points, or to score ane for the end hole; nnd besides, the last player has offer opportunities to tuke pnirs or sequences. Such cards as remain after this are not to be played; but ench party haring, during the play, acored his points gained, in the manner an hercafter directed, proceeds, the non-dealer first, then the dealer, to count and take for his hand and crib as followa, reekoning the cards every way they posvibly can be varied, and always including tho turned-up cand:-

For every fifteen, two points; for every pair, or two of a eort, two points ; for every pair royal, or three of a
sort, six points ; for every doulde pair royal, ar four of a sort, twelve pointa ; for every mepuence of any wort, an cording to the number; for every flumh, aceording to the number; for every knave or nudily of the ame nuit an was turned up, one point; but when turned up it is not to lie reckoned agsin, nor in any thing to be taken for it when played.

Three cardn of the same nuit in hand entitle the hollet to reckun that nomber, aud five for the crib when the turned-up card happena to he of the annie muit.

It is alwsya highly necessary, in laying out carda for the crit, that every player ahould consider not only his own hand, but also whom the crib belongs to, and what is the state of the gaine ; beeause what might be proper in one aituation would be extremely imprudunt in another.

If you ahould happen to ponsess a pair royal, be aure to lay out the other two cards for either your own or your adversary'n crib, except you hold two fives with the pair roynj; in that case, it would be extremely injudicioun to lay them out for your ndversary'a crib, unlesa the carda you retain iusure your gane, or your adversary heing 80 near home that the crib becomes of no importance.

It is generally right to flunh your cards in hand whenever you can, as it may assiat your own crib or baulk your opponent's.

Findeavour alwnys to retain a sequence in your hand, and particularly if it is a fluah.

Alwaye luy out cloes cards, wuch an a three and four, a five and six, for your own crib, unless it breaks your hand.

As there is one card more to count in the crib at five eard criblango than there is in hand, lee sure to pay great attention to the crib, as the probability of reckoning more points for the crib than hand is five to four.

For your own erib, alwaye lay out two carda of the same auit, in preference to two of different suits, as this will give you the chance of a flush in the crib.

Never lay out cards of the same suit for your aáveraary's crib.

Endeavour nlwsys to bnulk your opponent's crih. The best cards for this purpose are n king and an ace, a six, a seven, an eight, a nine, ur a ten; or a queen with on ace, a six, a seven, an eight, or a nine; or any cards not likely to form a sequence.

A king is genepally estecmed the greater baulk; as, from its being the highest card in tho pack, no higher one can come in to form a sequence.

Never lay out a knave for your adversary's erib, whon you can possibly nyoid it, as it is only three to one but the card turned up is of the aame auit, by which he will obtain a point.

Even though you ahould hold a pair royal, never lay out for your adversary's crib a two and three, a five and aix, a seven and eight, or a five and any tenth card. Whenever you hold such cards observe the state of your game, and particufarly if it is nearly ended, whether your adversary ia nearly out, or within a modorate show, and it is your deal. When this is the ease yon muat retain such carda as will, in playing, prevent your adversary from making pairs or sequences, \&c., and enable you to win the end-hole, which will often prevent your opponent from winning the game.

three and four hand cribbage

Three and four hand cribbnge differs only from two hand in as far as the partics only put out ose card each to the crib; and when thirty-one, or as nearly as can be, have heen made, then the next eldest hand leads, and the playerg go on again, in rotation, with any remaining carda, till all are plnyed out, before they proceed to ahow their hands and crib.

In three-hand cribbage, a triangular board is used, with three lines of holes to allow of each scoring him own game.

stx cand crinBage.

Bix antil cribbage bearn an grent a reamblance to five eard, that any one phaying the one well mant play the other equally mo. It consintu of pairm, filluena, eequencea, flumhen, sec, and the pointa are reckoned and marked preciwely in the name manner; all the carda munt be played outif that is, when either party has made the end hole, the remaining carde in hatid must be played, scoring for the pairs or fifeens they may form. When lant player, you whould endeavour to retaln clowe carila in homi, they may enable you to acyuire fonr pointa in playing.
The dealer in nuppoaed to have nome trifling advantage.
The dealer in entitled to expere twenty-five polinta by his hand, erib, and next hand. Thus, at hif mecond deal, if hin peg is in the twenty-fift hole of the board, he has hia complement of pointa; the same at hat third deal, if he is within eleven points of the gatie.
If the non-denler by his first hamel attain the eleventh hole in the board, he will have the bent of the game; for he is entitled to expert that hes shall meke him second deal with his front peg in the thirly-aisth hole, and by which he will probably win the gnme by his hand, crib, atial next hand.
If you aro dealer, and your adveranry han atove his enmplement of pointa, you munt play your game accordinsly. Thun, if you have good carila, try to make as many pointa as poasille by pairina, fifteens, \&e. On the contrary, if your carla are iodifferent, you must play ofr, ω prevent your adversary from oltaining puints.

ALL-TOURA.

Thin is a game at carila played by two, three, or four persons, with a complete pack of cards. If four, there are two partien, two in ench. We shall nuppome only two individuala are playing :-

Afler the carla have been dealt ly three at a time, nix to earh, the iraler turns up the next card as the trump. If your adversary he not natisfied with his hand, he nays, "I beg." In this ease, if you do not wish to run the risk of changing the trump, you may, "I give you one," and you allow him to acore one twwarda hia game. If vour own hand be had, you then denl out three mers carda to ench, and turn up anothe trump, which supermedes the former. The adversary may propose to take the chance of dealing three mere cards to each, but this can be refused by the denter, withont nuy forfeituro.
Tho cards are then played, the alder hand leading, and the party taking up the tricks which he wins. You must either follow auit or trump, if you enn.
Ten points make the game, and they are proluced by hirh, which is the highest trump dealt; lure, or the lowent trump deatt ; juck, or knave of trumps; and game, the number of pipa on the counting cariln. The counting oarda are as followa:-ace, four; king, thres; queen, two, knave, one; and the ten, which reckons ten. This counting applies to all suits. If the jack be in your hand, secure it as quiekly as possible; as, for inatance, do not lone an opportunity of trumping with it; for if it fall into the edversary's hand, he reckona it to his game.
Should the card turned up be a knave, the dealer acores one point to his game. Knave of trumpw is hand does not reckon, unless you make a trick with it ; for if your adveraary takea it with the ace, king, or queen, be trores it.

spiculiation.

Thia is a round game at cards, the term round mean$\mathrm{ing}_{\text {t }}$ that it can be played by a large party round a table. l'he number most auitable ia from seven to thirteen.
The princigle of the game is thix: A pool is formed by the dealas putting two counters, and cvery other
player putting one counter, into a dish or treanury in the midalle of the cuble ; mult thin ntore in paid to the person who holda the highent trmmp. Thun it in the objeet of every peraon to get the highent trump, and the effert io do mo jo the aperulation, from which tho gaise derives in name.
After being duly mhufled and cut, and the dealet do termined, he deals three carila to earh permm, one at, time, Theae carila muat be placed before each petwon, and no one is allowed to look at them until afer the trump is turned. Having fluidtied tho deal, the nets garil determinen the trump; this card may be mold either before or afler being ween. When thia npeculation is concluded, by anne perwon purchusing it whih poustem, or the dealer retaining t, if he thinka proper, the elived hand turna hia uppermont caril, and if tlus le a supprive trustrp to the one turnest, he miny alne apeculate. Pash player dies the mame, till all the carda have been ox. pomed, when the pool is given to the poosemor of the highest trump.

Loo.

Loo is a game played ly five or six propie; and a pool is made by the devaler putting in five counters. He thea deala flive carila to each perwon, and turna up a trump. Whatever suit the trump, may be, then knuve of clake, callel pam, forma the chief. 'Those who are dinnatisfied with their hauds can throw up their earilx, and demand firath ones from the pack.
When the nee of trumpen is played. it is unual to sy, "Pam, he civil;" the holder of pain is then expected is let the ace pass.

When any person bolin a flush of trumpa with pam, this indivilual enn sweep the pool belore playing. Then there is a new deal.
The next hest hand to the nbove is trumpen noly, ond this nurerpm the pool, if there be not a pan tlunsli; ard there in also a new deal.
I'loe next bewt hamd in that of a flush of cher auits which sweeps the pool; nul there is alsos a 12 w dral.

When nny of these fluahes occur, each jerson, es. repting those who hald inferior fiushes or palu, is laud, and has to pay five eounters into the pool.
When none of these flushes occur, and those who winh have clanged their cards, the game goes on ss 4 whise, the highest curd taking the trick.
Whon oll the carils are played out, they will make but five tricks; and all the counters in the jool are divided hetween the hulders of these tricks, every othery person being looed, and olliged to pay five counters to the pool for next deal.

dancing.

Dancing, as one of the most healthful and elegant is. door annusements, cannot be too highly recomunendel Among a rude or dissolute people it may degenerate into something worthy of condemmation; but all the blessings of Providence are similarly lisble to abuse, and it woild be most unjust to condemin a cherfiul domestic amuse ment, merely because it has at tilues been degraded into immoral purposes. By all physieinns, dancing, whea pursued in moderation, is recommended as highly cons. ducive to health; and it ingy be truly mail, that, allied with musir, nothing in more calculated to purge the nind of melaneholy, and put the whole temper into gaod bue mour.

Dasaing is the poetry of inotion. It must the performed with case and grace, noul nlways with a perfirt regard for propricty of movement. As an art, it in taught by professed musters; and one of the leading rulea given to the learner ia to raise and lower hingeld gracefully on the clatic part of his feet, that is, the toes never to leap or come down on the whole sole or heeds alao to kecp exact time to the music. Nancing is thert
nea almple and ham more op lesum mat every thing thould not be he duwn easily by t1 Daneing takea wries of movem wime mure compl the oul-eutallishlie

This clame of word comerr (ngui tanding in a ruw prieral prineiple down tho mildille other movements, original places. down twire, thus whe at the top. wish to dance an the top, begina, n party han the of dince or tune the lddy. In general min up for mare we changed, nud A country dan tralve or fourtice wih n greater nu alays le on the their fines to the to determine on thould respretivel
The piincipal il

1. Handa treoss peralenuns by the the sane time, tal and all goa half. and hark agnin.
2. Hanls four brming a circlo; 3. Right and 1 night hand to her tien her left han places; her partn both return to the 4. Set and chun handa of the lady I shart time witho ladiea pnss to the pass al their back retum to their pla
3. Pouselto.-TI rexpectively join h oher.
4. Doen the mid hand anil return, conmenced.
5. C'asting off Iadien, and the gen turning to their gla There are Engli but wa know of n tunes. All vary If however, as alrend first or top couple sucerssion to the b sufficient number other couple comn party. The follow fine of the more cuderstoed that w dees in auccession it with cuunters proper, the elidem thit lie a superion apeculate. Fach la have been els - possemor of the
cople; and a pool minters. Ha theo urns up a trump a knove of cluhs ho are diswatisfied irde, and demand
it in umual to may, then expwected to
trumps with pam, re playing, Then
trumps onty, an! a pain tlush; ard
sh of cther suits l(4) an In wh deal each perwon, es. ta or pais, ial loord, ool.
rr_{1} and those who amo goes on sa a
hey will maka bot - jusol are divided very other person unters to the pool
tal and elegant inaly recommended. a s legenerate into it wll the blessing nuse, and it would domestic amuse en degraded into s, dancing, when dd an highly con. 4, that, allied with murge the mind of or into good bur

It must le perys with s perfet As an art, it is ce of the leating nd lower himseld , that is, the twes ble sole or lieelo Purcing is there
tee a dmple nnd elegant gliding on the toen, theae bendine more or lem to accoinmodete the atepm, and to prewent every thing like harwhneas of motion. 'I'he booly moold not be held stimly, and the handa ought to hang down eanily by the sides.
Daneing takes the form of eveveral diatinet kindm or werle of movementu, some quick and some ulow, and wome mare complex than othern. The mowt popular of the oldeatabliwhed daneen are termed

Country bunces.

This clams of daneen taken ita wane from the Frunch ward comere (againut), from lofing daneed ly two partien anding in a row opponite or againut ench other. 'I he peneal principle in for each eouple in nuscenmion to go down the middle of the rowe nod up nguin, with some ether movementa, till all have doneed down nad into their ariginal places, It is a mule for the top couple to dance down twice, thum leaving the collple that waw the mecond to be at the top. This fininises the dance, If the party with to dance another dnnce, the aerond couple, now at the top, begins, and so on. 'Ihua, ench couple in the party han the upportunity of choowing any particular dance or tune they may wish. 'The choice is left to the lady. In general, n party in a country dance do not remain up for more than two dancen, when the partiere are rhanged, and new dawee lugin.
A country dance ehould not consint of more than twelve or fourteen couplea, an it is fatiguing to dance with a greater number. In standing up, the lady should dways be on the gentleman's right hand, if they turn ther faces to the top of the room. 'I'his is a simple rule to determine on which side the ladies and gentemen bould renpectively take their places.
The principal figarea in country danees are,

1. Hands arross: that in, the top lady takes the sceond genteman hy the right hond, and the top gentloman, at the sanse time, takes the second lady by the right hand, and all go a halfecirclo round; then all change hands and hack again.
2. Hawds four round; the two top couples join handa, borming a circle: danco half round and back again.
3. Right and I.eff.-In thim the top lady gives her nght hand to her partner, changing places with him: dien her left hand to the person lelow her, changing places; her partuer jerforms a similar novement, and both return to their places.
4. Set and change sides,-The lady takea hold of both hands of the lnily below her, nud aets, that is, dances for short time without changing her situation; then both ladies pass to the gentlemen's side, while the gentlemen pass at their backs to the ladiea' side; ull again set, and return to their places.
5. Pousette--I'his signifies that the two top couples rexpectively join hands, each couple daneing round tho other,
6. Down the middle.-The top couple go down hand in hand and return, atopping one couple lower than they conamenced.
7. Costing off is the lady going down behind the ladies, and the gentlemon behind the gentlemen, and returning to their places.
There are Englimh, Irish, and Scotch country dances; hut we know of no distinction among them except the tunes, All vary lena or more in their figures. In ench, however, as already observed, the plan is followed of the first or top couple dancing with each following couple in succession to the bottom of the room; and as soon as a sufficient number of couples are disengaged at top, another couple commences, and so on through the whole party. The following is on outline of the figures in a fow of the more popular country dances. It will be caderstond that we always refor to what cach couple does in succession :-

Voulez voun dancer, Mademoiselle,-Bet and chnnge miden, down the midille, up again, nind pousette.

Juhn of Parino-Right and len, down the middle, up again, and pounette.

Captain fileming-Hands acroas, down the middle, up agnin, and handa four round.

The Honey-moon,-1landa three round on the ladirs' aide, then on the genttemen's side, down the middle, up again, poumette, right and lef.

The Triumph-Down the middle and up ngain; then the lady down with the next gentleman; het partner follow: the two gentlemen now lead the lady up butween them, taking hold of her hands by one hand, and joining their other hands over her head: pronette.
l'etronella.-Firat couple move to the right into the middle, and eet; to the right again, and net at the ade; to the right again and eet in the middle; to the right again to places; down the middlo, up again, and prouselte.

Caper Fey.-'I'op couple go down backs and up again; down the middle and up again; set, and turn corners, and reel on the aidea.
'The legary.-IIandn three round on the ladiea' sille; then on the gentlemen's aid' $;$ down the middle and up agnill; wet in the middle, ar.il turn with both hands.

Sir Roger de c'overley or the Haymakers.- Top lady and the bottom gentleman advance to the centre of the dance, turn with both hands, and back to ti. ir places; the first gerilemnn and botton lady do the name; the top Indy and botom gentleman again ..vance, tur with the right hand, and back to places; then the t gentlemar. Id botom lady do the same; top lady nti.h bettom genteman advance and turn with left hand add back to places; the top gentleman and thettom lady do the same. Tho fop fady and hotton 2 i'eman ide vance, the gentleman hows and the lady cutsies; tho top gensleman and bottom lady do the ame. The lnp lady and bottom gentleman advance, and pars back th back; top gentleman and bottom lady do the sanis. The top cougle turn, the lady to tho right and the gentleman to the left; all the ladien following the lady, and all the gentemen following the gentleman to the bottom of the roon, where they meet their partnera and lead up the centre of the room. The top couple then half pousette with each couple, till they reach the bottons of the dance.

Scotch Reels.

These ner rapid and rather fatiguing, but not ungraceful dances. They are danced by three, four, tive, or six persons; but four is best and most common. The foursoms reel is dane ! very much according to fancy; the two couples commern by placing themselves opposite each other, or in it ine, with the two ladies in the midille, back to lonek. In whiehever way the danco begins, the plan is for each person to perform the figure of eight by winding round the others, and setting to partuers alternately. The music, of course, guides the time for the s-tting and the moving.

Highlanders dance reels with great ugility, and are fond of introlucing the steps ordinarily called the Highland flime, which is of the eharacter of dancing on each foot alterntely, and flinging the other in front and be hind the leg which is dancing.

Quadrilles.

These are modern dances of French origin, comparatively tranquil in character, and very auitable for small domestic partien. They are daneed by four conples or eight persons, a couj to standing on cach side, of a square. The lady is always on the gentleman'a right.

There are many sets of quadrilles, the figures in cacn
3×2
varying fiom the othera; but in by far the greater number of instancea one set is adhered to, which is tarmed Payne's first set. This set, of which wo present an outline, consists of four tigures, and a finale. The couplea at top and bottom first perform a figure; then it ia performed by the others; and so on.

La Pontulon.-First right and left, set and turn partnera; ladies chain, which is perfomed by the two Iadies giving their right handa to each other, and changing places; then their left handa so the gentlemen, and turn round; and the same back again to places. Now, promenade (each couple holding hands crossed) to the opposite side; the η half right and left back to places.

L'Ete.-The first lady and opposite gentlemar advance and retire, dance to the right, then to the left, rosa over, lady and gentleman changing places. Danc; to the right and left, :ross again to their own pleran and turn their partnera. The second lady and first gentleman do the same.

La Poule,--The first lady and opposite gentleman cross over, giving thair right hands; back again, giving their left and then right to their partners, and set, formniag a line; promenade to opposite places. The twe who begin advance and retire; advance a aecond time; the lady curtsies and the gentleman bows, and return. The two couples advince and retire; half right and left to their origital places.

La Trenise-Ladies chain; set and turn partners; firat couplo advance and retire; advunco again; the
gentleman returna, leaving the lady on the left of the opposite gentleman; the two ladies pass or cross to the opposite side, changing to opposite corners, during which the gentleman passea between them, and sets. The ladies cross over again, and pasa to opposita corners, while the gentleman returna to his place, and sels, The first couple set and turn. During these perform. ancea, the gentleman at the bottom of the danca stand still. Tha movement being finished, a similar figure in performed by himself and partner.

La Fïule.-All eight dance or chasse ecross, chank. ing places with their purtuers, and set at the corners; back aguin to places, ond set. After this, L'Ete is danced, concluding with chasse across.

This finale is danced in another way. All eight pro. menade round the rooin to their own places. The frost and second couple advance and retire; advance again, the gentlamen taking the ouposite ladies, or exchanging partners. Ladies chain; advance and retire; advange agnin, rechiming partners, and promenade. This in calted the gullopade finale.

The preceding embraces nearly all dances usually per. formed in private parties and balls of an ordinary kind. In the highes class of assembliea, vnrious foreign danees are introduced, such as waltzes, mazeurkas, pas sculs, minuets, and gallopades; but of these it is unnecessary to otfer any description, as they require careful traiuing under a master.

FOREIGN COSTUMES.

Amone the many aubjcen of just and natural curioaity in the history of mankind, there is none more listinctive und characteristic of a people than the peculisr costume in which they are attired. The various urticles of clothing have, from the earliest ages, formed the principal manufacturea of every country-skill and industry in which, carried to a certain extent, mark, beyond almost any other circumstance, the advance of a prople ia arts and civiiization. The savage wrups himself in the skins of the animala upon whose fiesh he feeds; and even the most inhospitable regions furnish not only their natives with such rude clothing, but alen supply the most civilized world; for example, the Danes obtain from Greenland seal-skins and fur, the eiderdown for the couch of the luxurious noble, and whalebone to complete the wardrobe of the court beauty. The processes by which plain subatances shorn from an animal or gathered from a plant are converted into magnificent rowes of the inost brilliant tints, involve sone of the most strikirg points in the bistory of buman invention. But the entire subject of sontume is replete with interest, from the rude skin-coverings of the natives of the icy north and south, to the exquisite fineness and beauty of the fabrics of the cust, and the elegance and cconomy of those of the west. Ingenuity is not, however, exciusively the work of civilization; for we find the wild Indiats of both the Americas, the South-Sea islanders, the wegroes ard IVotentots of Africa, and the peor savigea of the Puar Regions, ull ecquainted with the art of plaiting wookl, grass, or seaweed; and some of then proturing, merely by hand, texturea which we, assisted by all the uid of machinery, cun acarcely rival.

The earliest clothing was coate of skins, from which
the transition was to woollen ttssues, Inens, cotton, and ailk, in the varions forms which laney suggested. Lituen was made at o very early period in Pigypt, us we see from the cloth wroppers of mummies, which are all linen; and early in the present century, there were found at Sakkara two Egyptian tunics, in the form of a shirt, and supposed to be the "linen ephod" of sicriptuse." The Eigyptians also knew the ort of colouring and preparing leattier, of which, as well as papyrus, they made sandala, and subsequently sho's. It is uncertain whether cotton was known to the Egyptians; but the cotton plantis found wild both in the old and new warld. Herodotus neentions it as indigenuus in India; and cotton cloth has been found in ancient Peruvian tombs. The country of the Hindoos lias nlways heen distinguished in the art of weaving; and thence, throngh the medium of Egyth ancicut Rome is stuted to have been supplied with fire India cottons; whilst the hennty and durability of the Indian colourn were an celebrated among the Greeks and Homans ns among ourselves. Silk also was manafe. turid in India in very early times. In fabricating articles for ormamenting the ferson, the Bigyptians profesed great skill: their gold mines were worked under the carts Pharmatis; beads and other ornaments of glass are foud on many munmies; whilst, at a very carly date, the rich gunes of the cast were conveyal thither, for whit Egypt gave in return its mannliactures of fine linem, in robes, sud its carpits. Such were the principal urtida of costume in earliest use; and athough few, they denve convenience and evin costliness and magnificence in drea to have characterized civilization in its remotest agea.

[^66]The form of moders Europ has been ndor oxternal effect. are light, flowi are stiff and for which are alike
Northern Na land, we find and inctement \mathfrak{r} : deer, or of th: clath. 'Ihe rally wear a g cap, with eight vered with strip eloth, the cap i ing only to the ears; and they any thing ro necks oxcept black huir. 'I or thort ceat i: sheep-skin, wit inwards, next and over this garment of skins, with a Their pantalo woollen, taperi ings, but strav around the foo lined with cyp sarall bug hans worn round t peculiar fancy their skin or containing thei their sides, an they prize higt
The clothin being equally s being, that ha caps, and jacke land have alse wear about the aament abovo worked velvet. execution, are jeweller in E: the work of t portion of Ice linen, stiffene height, and st fasiened to the pletely hides 1 head-driss, the shaped worke termins ten, el

Ruses t. - Tl ranks is now burghera, me. costurse of A. or square his reaching to tt gash, in which hatchet; a w instead of sto the rind of the worn mote thi of these shoes
Sone of th
strikingly pict
on the left of the paser or cross to the rners, during which n, and sets. The o opposita corners a place, and set ring these perform. of the dance stand , a similar figure
aasse across, chang set at the corners. his, L'Ete is danced,
ay. All eight pro places. The fint ite ; advance again dies, or exchanging od retire; adianc menade. This is
dances usually per f an ordinary bind -ious foreign dancea zzourkas, pas sedls, se it is unnecessary dire carcful training

Imens, cottun, and suggested. Linea Pigypt, us we se whici ure all linen; cre were found at form of a shist, and © Scripture." The rriog and preparing they made sandals, ain whether cotton the cotton plant is world. Herodotui nd cotlon cloth has

The country of dished in the art of medium of Egyph, supplied with fine d durability of the ng the Greeks ant also was maufac ln falricating artiByptians profesed ked under the ear! so of clas are found ry early dute, the I thither, for whit 's of line linem, is we principal articos gh firw, they denge ugnificelice in dra ; remotest agces.

EUNOPHAN COSTUMES.

The form of dress throughout the civilized nationa of modert Europe is generally for from picturesque, and has been adopted more for personal convenicuce than asternal effect. While in eastern countries the garments ue light, flowing, and graceful, in those of the west they are atiff and formal, and generally composed of materinla which are alike substuntial and durable.
Northein Na!ions,-Commeneing our survey at Lapland, we find that the wandering tribes of that remote adinclement region use a dress either of the skins of reindeer, or of theitk woollen cloth. The men generally wear a gray conical cap, with eight senms coreted with strips of brown cloth, the cap itself reachiag only to the tips of the esrs; and they rarely have any thing round their necks except their long black hair. 'I'heir tunic or chort ceat is mostly of sheep-skin, with the wool thwards, next the skin, and over this is a similar garment of woollen or skins, with a stilf collar. Their pantaloons are of

The Laplander. woollen, tapering to their half-boots; they wear no stockings, but straw and rushes are stuffed into the shoe around the foot and ankle; and their gloves are of skin, lined with cypress-grass. They have no pockets, but a noall bug hangs about loreast-high, and a leathern belt is worn round the waist. The Lapland women have a peculiar fancy for gandy coloura, with which they work their skin or cloth caps, and gowns; they nave a girdle containing their needles, scissors, and thread, hanging at their sides, and they wear small brass trinkets, which they prize liighly.
The elothing of the Inelanders is not very dissimilar, being equally substantial und homely; the chief ditference being, that hats of a pecultar form are used instead of caps, and jackets instead of pelisses. The ladies of Iceland have also some grady trappiarsi. Many of them wear ubout the waist a silver massive girdle, with an ornament abovo it, fastened in front on a belt of richlyworked velvet. These silver ormaments, in design and execution, are pqual to any thing of the kind which a jeweller in Enjlund could fabricate, although they are the work of the peasantry. But the most distinctive portion of Icelandic dress is a kind of turban of white linen, stiffened with pins to ubout twenty inches in height, and sometimes terminated with a tassel, and fasiened to the head by a dark silk kerehief, which completely hides the hair. Sometimes, instead of the above head-dress, the women wear a closely-fitting belmetshaped worked cloth-crap, with a anow-whito muslin termina sen, curved over in front.
Ruse a.- Throughuat Russia the dress of the higher ranks is now formed on the European model; but the burghers, me "hants, and peasants, wear the national rosture of Asiatic character. This consists of a conical or square higheerowned hat or cap, a long coarse coat reaching to the calves of the legs, and girdles, with a sash, in which the wearer carries his purse, und often his hatchet; a woollen eloth is wrapped round the legs itusted of stockings, nad the boots or shoes are made of tha rind of the young linden, plaited; each pair is rarely worn moe than live or six days, so that many millions of these shoes are nnnunilly consumed.

Some of the costumers of the Russinn $]$ nasnotry are strikingly picturesque 'The holiday Iressea of the femulea
ara very gay, the principal garment teing a loose jarnel of sky-blue silk, the sleeves lined with spotted fur, "nil hanging luose from the ahouldera. Among the Tartar population, the women wear embroidered velvet jacken over ahowy pettiroots, and the little national tippet of red or yellow si"in, lined with fur; gaudy colours are in great request, and even the poorest persons have their kirtles showily trimmed. The men, too, wear coarse eloth more frequently than skins. Towards Tula, however, the women wear the most dashing costume; a fistfronted head-dress of gold or silver embroidery; the legs aro awathed in folds of white worsted, and the feet are lodged in sanuals; and the principal rohe in a white eastern tunic, girdles round the wsist, but floating loose beluw, and left open at the hosom, to display the top of a short petticont trimmed with red; so that, "in gay tiara and flaunting robe, the maidens of Riazan atrut about with all the dignity of tragic queens."*

The costume of the Dossack is gay. At home the Don Cossack wears a blue jucket lined with silk and edged with gold-lace, silk vest and girdle, ample whito trousers, and a large cup of black wool, with a red bag floating behind. The women wear open silk tunics, white trousers, and yellow hoots. The soldiers dress in a short Polish jacke', wide dark-blue trousers, and a huge sheep-skin cop.

The dress of Sucdes, Noruegians, and Lanes, is now similar to the coatume of central Europe, but generally wober in tone and precise in fashion. As everywhere else, the costume of the humbler class of women is much gayer than that of the men. This is very observable at Stockholm, where a varicty is displayed very diflerem from the general monotony of northern attire. The boatwomen wear huge muslin caps, a bright scarlet boddice, a striped apron of blue, black, or red, over a grayish petticoat, thick stockings of flaming red, ond" the largest and most marvellous shoes in the world," with birehwood soles several inches thick, heavily shod with iron, and a round lamp in the middle. But the Sunday full dress of the women is still more gaudy. A long kerchicf is rolled round the hair like a turhan, but with a loose end, and the long white robe, of thick cloth edged with red, thrown open at the girdle, and the lower corners pinned at the leg behind the petticoat, also of bright colours andi ample dimensions-all give the wenrer an Asiatic appearance among the blue skirts and homely linsey-woolsey of the general population. The holiday costume of the mountuin maids of Norway is also pretty. They wear short loose acarlet or green cloth spensers, emhroidered at the edges, and trimmed with shining buttons, and hanging over a coarse dark petticoat: the poorest women, however, w.ar a shapeless gown or sack of bue woollen, strapped tight up to the armi-pits.

Germany,-Alvnncing southwards to Germany and the Netherlands, the costume of the people is generally found to be modernized and reluced to that condition in which it is found in London and Paris. It is principally smong certain classes of the fishing population, and the peasantry, that any striking peculiarity of costume exists.

In the mountrinous territories of Austria, as in styria, the national dress is, however, very picturesque. The women wear f ll short petticoats, with colonred boddices, tightly laced, and snow-white sleeves reaching to the clhows, and straw hats lined with green silk, and ornamented with flowers and feathers. The men usually weur a green hat, with a curious cockade of feathers, mixed with the hair of the chamois nad the deer, and secured in the centre with gold tinsel, around which wave long red fenthers: "green jackets, black chamoia leather sunall-clothes, edged with green loather, striped stockings, and shoes tied with green ribbon, and a broad
veathern belt en broidered with green silk, complete the costume of a ge ruine mountaineer of Styila." Among the peasantry of Carniola, too, may be seen aome interesting primitive attire; as a short coarse linen tunic (which slso serves as a shirt), confined by an untanned skin girdle, ond sandals of the same rude materinl, and very wide amall-cluthes reaching orly to the knee, but neither atockings nor hat.
In Bolictnia, the general poverty of the peasants is epparent in their dress, which is rarely little better than tatters. The market at Prague. however, presents some picturesque costume; as the women wearing meatly trimined jiekets, ornamented boldices, and gayly-coloured petticonts and stockings, and head-dresses of kerclicicfs fastened with large pins. The men warar very full smallclothes, ornamented jackets and vests, and broad-hrimmed, low-crowned hats. The Moravian peasants of both sexes wear sheep-skin mantles in winter, but their summer dresses are of woollen and cotton of the gayest colours, the stockings and boddices being red, and the mantles blue or green: and the men wear a very short tunic, belted, tight pantaloons, and sandaled boots nearly to the kneea, with a broad flapping hat, sometimes omamented with bunches of gay ribbons. The materials of clething are abondant in these countries; linen, including cambric, lawn, and tape, being the staple; and the woollen and cotton manufactures are very flourishing. The limens of Silesia, too, are the best in the word.

Prussizt has litule to distinguish it in the records of costumes from the other countries of Germany. From its capital, the fashionable embroidery known as Jerlisaork, dates from the commencencent of the present century; but this is mostly employed as ornamental furniture. It may here be mentioned, that in needle-work Germany stands first, then Russia, England, France, America, \&c., the three first namen on the list being by far the largest consumers; and in Genmany, many ladies of rank nild to their jin-money by executing needlework for the warehouses.

Bavaria presents very beautiful and thateful costumes, In the streets of Munich, on holidays, n washerwoman may be reen wearing a silver tiara, al blue satin brocade boddice, and a skirt and apren of worked muslin; ant a waiting-muid will display a silver head-dress, and a gown, the whole of which, above the ceinture, is entirely of ailver and gold; and these brilliant ornaments form the distinctive national costume of the pretty women of Munich. In the environd of the city, the men wear round blue jackets, tight black breeches, and white stock. mgs; red waistcoats, with silver sugar-loaf buttons, outside which are worn braces gayly emhroidered, or made of painted velvet: the leathern belts are also embroidered; and in the large round hats ore worn artificial flowers. I'he wemen no longer wenr the short perticoats of the mountaineer; and, instead of the broad-brinmed hat, is worn a cap of gold tinsel, projecting in fantastic forms, or a silver head-drese, forming a tiara in front ; the loddice is of blue, red, or gold lirocade, the skirt of smartcaloured cotton, and the apron of ffowered muslin. Elsewhere in Bavaria, as in tha monntainous districts, the peasants wear broad-brimoned hats, and conts of sylvan green. But the national costume must lie souglat in the provinces, where the Savons wear " the stilf oldthashioned costumes which one atill sees among the nost primitive mhabitants of Germany. The wonnen, like their Hungaima neighbours, wear loug boots and thick woollen petticuats, their dress much resembling that which the 'broom-girls' have made faniliar to our streets-a libll sloth petticont, stomacher buttoned or laced in front, and a closcly-fitting cap; the unmarried girls wearing a long braid of flasen hair down the lark, with a small-crowned tut broad-brimmed straw hat." \dagger 'Ithe men wear pic-

[^67]turesque cocked hatc, long antique conts, breeches, and large buekles in their shees. Elsewhere, as in Lusalia the women, who rank ameng the handsomest in the ein pire, set off their hlond hair and rosy complexions with black velvet caps, and wear blue aprons flowerd with white, red stockings, with green cluaks, and a hundred folded petticont terminating at the knee. Near Leipsic, the male peusants wear large looae bretihes and tight jackets; and the women ore distinguished by luas pinted caps terminated with a tassel. The chief peculinity in the costume of the peasantry in Darmstudt and oljoining districts on the Upper Rhine, is the wearing of cocked or lroad-brimmed hats, which give even the youngest men an air of antiquity.

Sinnll eloth caps ore almost universally worn by the men throughout the towns of Germany ; they are made of cloth, with Jow crowns, with small projections oler the eyea, and have now become the common traveling cap in Europe.

In Halland and Flanders there is now little to remark in the costume. The fashion of wearing voluminous garments is abandoned, and the ordinary attire is univer. aul. We stil find, however, the fish-women of Scheve ling wearing large skuttle-shaped bunncts, and the women of the middle classes its Brussels covering their heads with hack silk scarfs-a relic of Spanish manners Throughout Holland and Belgiom, the traveller rately meets man, woman, or child in rags; neither aro any seen harefooted. The shoes universally worn by chifdren of the lower ranks are wooden satots; these, formed out of a single piece of wood, and pointed like a cance, are procurable at the easy charge of sixpene' per pair. At the great annual fairs held in Holland, a few remarkable contumes make their apjearance, from remote corners of the count:y. The most gay of these is the head-dress of the girls of North Friesland, whicil consists of a glittering phite of gold, hent and shaped to the head, and is of great value; they are also all decorated with fancifnl gold enr-ringe, twisted like a ram's hem. and pointing outwards from the frice.

In sumiserlamt nud the Tyont, the population is generally dressed in plain nppurel ; lut in certain quarters, and particularly on holidays, a pieturesyueness of costume is far from uncommon among females. In the cantun of Berne, the ch-furelioned and peculiar costume of women is tasteful. fiowll the neck, and falling down on the breast, is wom a collar of black velvet, omas mented with gold heads, and which is held in its jlace by stcel or silver chains passing beneath the arms, The head-diess consists of projecting pieces of Bark lace. In the cantons of Vnud and Friburg, the large chip bonnets of the women are a striking feature in the dress.

In the cantons of Thargovia and Argovia, the male costume is very singular, the breedses locing in the Turkish style, very large, and tied in just below the knee; the waistcoat is red, and remarkiblly long, as is also the large flapped coat. At Appenzel, the modern invention of braces is not yot adopted; the dress is a scanty jacket and short breerhes, with a preposterous interval Lictween the twe garmenta. The cauton of Grissons is said to derive its name from the gray colour of the men's dresses; but at present their conts and pantaloons are almost universally bluc.

In the Fiyrol, national costume appears to he more closely alhered to than in any other country of Europe except spain, and perhaps limugary. The peasantry strangely wear stockings withoot feet to them, tight hlack brecehes, and leathern girdles with knives stuck in them; the hat tapers to the erown, whenee lang on one side silk bands and tassels, generally green, and the blne smock-frock is tastefully worked, and worn no oniy by the peasalitry, but by gentlemen. The men, too, wear flowers in their breasts, as well as in the

Wi der part of t white or red w weighing six or booped, from of coats. The you hats, petticouts with frills nt th noristed stockin enermous folds hick as the wai women are, the wear. The var the fairs, where all the Tyrolea (ebserves Inglis red worsted cap and girdled pea peasant of the n vale, with their ran, with their and the peasan nstional costum
Hungary.-A tumes still in us dueir arigin to Ronan province of Hungarian co wilhout a collar, in its natural sta mented with cor and the cape ln To the Hungaria bed, and all; for all times. His shirt, and somet jacket, long buot

ramidied hat, b bair. The turn around his neek an phathe blue neatly folded wh the men in tigh and broad hats o almost every vil its peculiar cost dice, and white females, all of of the head. I bona embroider the sides, and oubroidered wit In the minin! aheep-skin coats clasp, and ornau

Vot I.— $\mathbf{9 2}$
ts, breechea, and re, as in Lusalia omest in the e in :omplexions with ns flowered with , and a hundrect Near Leipsic, eccheg and tight d by luna minted ief peculiarity in $d t$ and odjoining ring of cocked ar ne youngest men
ally worn by the ; they are made projections aler mmon travelling

- little to remark ring voluminous attire is univer. men of Scheve nnets, and the s covering their panish manners traveller rarely neither oro sny y wom by chil. satots; these, d pointed like a rge of sixpene. Id in Holland, plearance, from ost gay of these "riesland, which It and shaped to Iso all decorated a ram's hom
oulation is gene ertain quarters, Whencss of cosles. In the can. liar costume of id falling down k velvet, omald in its place rath the arms, pieves of black burg, the large r feature in the
rovia, the male ig in the Turk. : the knee; the is also the large I invention of n scanty jachet terval listween rons is said to men's dresses; us are almost
s to he more itry of Furope I'he prasantry them, tight knives stuck enee laung on y green, siod and worn not The meb, ell as in tha

Wi der part of their hats. Th: aged wome. wear huge white or red worsted caps, oi sugar-lonf shape, and weighing six or seven pounds, and their dresses appear booped, from ofted consiating of no fewer than ten petticoata. The young peasant women have round beaver hats, petticoats of rainhow hues, lace aprons, boddices with frills at the elbowa, and figured bluo and scarlet norsted stockings, which are sometimes worn in such enornons folds and plaits as to render the ankle as thick as the waist of a Parisian lady. The younger the women are, the fewer the number of petticoats they wear. The varicties of eostumo are best witnessel at the fairs, where may be aeen the peasantry of almost all the Tyrolean valleys: "the ten-jetticonted women (observes Inglis), with their great tapering white and red worsted caps: the black-breeched, white-stockinged, sad girdled peasantry of the inn; and the bare-kneed peasant of the mountains; the men of Botzen, and its vale, with their broad-brimmed hata; the women of Meran, with their green cloth hats turned up at one side; and the peasant of the Italian Tyrol, with his less national costume and darker countenance."
Hungary.-Among the peasan'ry of Hungary the cose fumes still in use are remarkably picturesque, and trace their origin to that period when tho country was a Roman province. One of the most charucteristic articles of Hungarian costume is the bundi, or hairy cloak, made without a collar, and of sheep skins, with the long wool in its natural state, the leathern or skin side being ornameated with cords and flowers worked in coloured silks, and the cape leing a black Transylvanian lamb-skin. To the Hungarian shepherd the bunda is his house, his bed, and all; for he wears it alike in all seasons und at all times. His under-dress is loose linen drawers, short shirt, and sometimes a gayly embroidered waistcoat or jacket, long boots or sandals, and a $v_{u} . y$ broad-brinmed

Ifuagarians.
varnished hat, below which hangs two wide plaits of bair. The turned-up brim serves for a drinking cup, and around his neek hangs a bag to hold provisions.
T' |easunts are mostly gayly dressed-the women in bught blue petticoats deeply edged with red, and neatly folded white handkerchiefs on their hearls; and the neen in tight blue pantaloons, embroidered jackets, and broud hats ornamented with artificial fowers. But dnost crery village in the mountainous countries has is peculiar costune; a white skirt, red and blue hoddiec, and white worsted boots, ure common among tho females, all of whom wear a little white cap at the buck of the head. The men usually wear white cloth pantahons embroidered with black, short woollen boots slit at the eides, and a dark short cloak or cont with sleeves. subroidered with red or light-green lace
In the mining countries, the women wear their short aheep-okin coats fastened in front with a silver chain and clasp, and ormanented with large ailver filigree huttons, $\mathbf{V}_{\text {oc }}$ I. -92
and hiach-heeled red, yellow, or black boots, reaching te the knees. The drese of the nen is similarly ornamented with silver, and in "the good old times" the heels of their boots were shod with silver. The peasantry of these districts wear thick white pantaloons sandaied at the ankles, and a short-sleeved eloak lined with fur, and braided and fastened with a silver hand; and the hat is wider than any part of the wenrer's body.*

France must be viewed as the great fountain of European costume both in past and present times. However backward in many points, the French people, along with their ncighboura, the Italians, naturally jossess those qualitica which lead to advancement in the fine arts, and the improvement of modes of dressing suitable to a civi lized condition. England, the great competitor of France, as will be noticed at length in a succceuing shect, has done little to alter or improve costume. In all ages its fashions have been mostly imitations of those first adopted in Italy or Paris. Huts, coats, nether garments, pantaloons, gloves, buckles, periwigs, atays, bonnets, \&c., in all their varying shapes, are of French origin; nnd advanced as England is in refinement, till this hour it draws its fashions periodically from those current in the circles around the French court.

In speaking of French costume, it is always necessary to remember that the term applies only to the costume prevalent in Paris, and among the higher and middle classes in the country. Of that costume, the specie's of which other modern costumes are but the varieties, it is muncceasary here to speak, as it will be noticed in the articte Bnitisn Costumes. What we have to remark upon on the present occasion, are the costumes of a peculiar nature atill lingering in the French provinces.

The most striking provincial costume in France is the head-dreas of the women in Normandy. It is usually a kind of eap made of atarched muslin, from half a yard to a yard in height, ornamented with long lace lappets called cio quilles; the hair is braided in front, and gathered up in a masa behind. These caps have a very pretty effect, and are called cuuchoises, marmo'ics, and picrrots, according to their height and form. The rest of the dress consists of a red, blue, or black corset, large wooden shoes, black stockings, and full scarlet woollen petticoat, and apron of different hues; pockets are worn outside ; and occasionally the colour of the costumo ia atill further diversified by a checkered baudkerchicf and white apron. Even on Sundays or fenst-days, bomets are seldom to be seen! : but round the neck are susfended large silver or gilt oruaments, usually crosses of hearts, whilst long gold car-ring drop from either sido of their head, and their shoes trequently glitter with chormous paste buckles. In Lower Nommindy the dress is nearly the same, with tha exception of the cap, which is low and flat in the crown. In the former costame, the lover of antiquarian research will eusily trace a resemblance to the attire of the women of England in the fifteenth and sixteenth centuries. In the adjoining province of Picardy, the head-dressea are equally antiquo. In Brittany, an old-fashioned style of

* Pager's " Hungary and Transs trania," vol. 2., p. 3*o.
dress prevxils to a large extent ; the hair of the peasant girla is fine and abundant, and ia disposed of at fairs for large sums, to dealera who attend for the purpose.

In eome parts of France, as in the neighbeurhood of Lyons, the peasant women wear a flat, round black hat of cloth or velvet, and not unliks that worn in some parts of Switzerland; and a commen article of inule dress throughout the country is a blouse of blue stuff, like a wagener'a frock, buekled at the waist, and cmbroidered in white at the wrists and collar.

The female costume in Ja Vendee is thus noticed by Mr. Trollope:-" The women were dressed in shert gowns of striped woollen stuff of various coloura, chicfly red, yellow, and blue, with very high waists and tight sleeves. The gown ceases seme inches above the ankle, and permits the exhilition of a pair of white ormamented Jinen stockings, knitted by the fair wearer's own hands, from flaven yarn of her own spinning. A brightcoloured cotton handkerehief, manufactured at the neighbouring town of Chollet, in the department of Maine-et-Loire, is sprend over her shoulders, and its ends sectured in front within the boaon of her gown, in surli fashion as to leave no portion of the neck or bosom uthcoverel. Ti.e sabot is, in this part of the country, an article of the peasant's costume, on which very great care is bestoxed. They re small and slight, eut very low in the front, so as to show a great part of the foot, and ahapel with as much care as a fashionable Londen artist could employ on the form of a pair of hoots. They are, moreover, slways painted black, in order the better to set off the white stocking. A good deal if lace is otten displayed about their caps; and the ' barhes' of the coiffure, as they are termed, which are long strips of coton, linen, or sometines muslin, about six iuches broad, falling on each side of the face, upon the sheulders, are frequently trimmed all round with it. The girls rarely hide their hair entirely here as they do in Brittany. It is fir the most part beautifully black, and a specimen of it is gencrally seen in a broad land on each side of the forehrad. This costume is very generally completed by a shert black woollerz eleak, made to krep open in front, and show the neat strijed cotton apron beneath it."
Italy.-Throughout the Italian peninsula there is a remarkable varicty of costume pertaining to different districts an! professiens. The garments, however, are more picturespue than elcanly; and rags and nakedness are everywhere eonspicuous, more particularly in the Neapolitnn territory. The: dress of the bandits who frequent the Apemnines eensists of little more than a patched overall, eloak, and slouched hat; hut the costume of their chief is a pisee of atudied coxcombery: upon the glossy curled hair is placed a cloth cap with a gold tassel hanging to tho shoulders; around the throat is twisted a gaudy silk handkerehief, and the mustschios are carefuily trimmed; the jacket is shoit, of cloth, or even velvet, and decorated with aeveral rows of gitt filigree butions; the breeches are tightly fitted and curiously braided; and in a broad particoloured sash are plared two silver-hilted pistole, and a shenthed knife mounted in ivory, elaborately carved; whilst a sarull earbine of handsoms workmanship :s slung neress the s!oulder, and sometimes the legs are sandaled with ribbuns; and a highecrowned beaver hat, richly plumed, is wern over the eluth cap. The he:ad-dress of the femate possantry is very striking. Sometimes, upon a long ta seled cap, is placed a little straw hat decked with red riblons, of the straw hat is worn with a very breat brino. (1) Tuscathy the women wear black beaver hats with high erowusanistiff black feathers, with streaming rilhons on holidays. But inore rharact- istic is the squaretopped minslin heal-Iress, like a university cap, with the embroidered drapery falling lehind gracefully to the wailk

Rome offira a great varicily of costume-in the dat shepp-skin dresses, Alaggy goat-skin aprons, and riblonnd lats of the carters, and the pretty square white musint head-dress and searlet bodilire, laced with hue ribbong, of the peasant girl. But a more fimshed sperimen of Roman teilete includes a petticoat of delicate blue silk with a brilliant scarlet boddice laced before and behind over a pure whito chemisette, sleeves of silver tigsue fast. ened with pink riblons, aid a shawl of embroidered muslit. thrown over the shoulders: the black hair brailed and hung in loaps, with a silver lookkin and filigree flower, and over all a square of white muslin, trimned with fine lace. The clerical habits contribute to the re ricty ; you see the Pranciscan friar in his brown or ghy gariuent, with a cord girdle and sandaled feet; the Dominicans in white garments, with black cowls and girdes; the Carmelies entirely in white, even to their shoes and hats; the Jesuits all in bluck, with shovel hats; and other fraternitiss in black dresses and red crosses, videt reles and trisngular hate, mad red girdles and buttons on back garments; besides, the priests in Wack, the bishop in violet, and the cardinals entirely in fiery red, and the penitents enveloped in sackeloth, with only two lolos for the eyes.

In Tuscany and Sardinia, the poerest females are rich in emameats of pearl, coral, and geld ; and the women aut girls sit at their doors making "Leghorn honnets." In Florence, the ligher elasses dress in the latest Fiench fashion, except during the carnival, when the usual ab surd mud varied stene is exhibited, as in most other Italian cities. Part of the true costume of a Florenting hourgeoise is, however, a large broad-brinumed blach hat of beaver or straw. Leghom, how cere, presents greater variety than the Tuscan capiul: here "mauy wear the oricutal dress; priests, menks, and soldiers ahound; wise tachios, whiskers, nud beards are seen in every variety pretty female faces peen from bereath the bewitrbing mezanro (shawl); the sunbernt tar mingles in the crond; and the chained culprit, attired cither in a rustyed hown or a yellow halit, sweeps the strects, followd by his nutsket-bearing guard."* 'Throughout Tuscaly, however, in eostume we find ne trace of the truly chaid taste of its Etruscon mastets.

At Naples, the most "open sir" city in Euope, the poor are scantily dressed, but with picturespue efferl but children are sometimes seen in the streets with only a cearse shirt on, or even naked. The lazzarobi have goudy holiday dresses, hut some of them way be seen lying in the sunshisie with merely white drawers, not reaching to the knee, such as are alko worn by the :ishermen. The restless Neapolitan crowd, with ith grotesque popular exhibitions (including the natuonal Pularia), its greups of preacling, dancing, aud ston. teliag, and its artisans at work in the open street, with the market-people from the environs in picturespus dresses-make up a secne of less intecest for its catumes thaia for its other national characteristics. In tha island of Procilla, howc ver, withia a few miles of Niptes the females to this day wear the Guerk costume, which, in that sequestered nook, has descented from their ar cestors.

Spain.-Nothing strikes the traveller in Spain mote forcibly than the charater and diversity of costune amons the peeple. Every province and class has in preculiaridies, and so widely different from each ober that they almest uppar to be inlahitazats of two opme site hemispheres. It has been well observel, that "there exists as mueh difference hetween an inhabiant of Atr Nalusia and one of Castiot and Cutukenia, as hetwera an Englishmur. and a Ru: mian;" and in ne reppect is thin more evidrat than in dress.

Notwithstunding the general diversity of costume in

[^68]the provincea Addalusian, a

Spanish popular elamo of Jress to 'ag
Beneath the or laub-skin j dollara: in the decorated with in various colo bundana or sha gings are richl crowned or ov trimming, with
The general of a petticoat onvering the a worn except black ; it is of d.e apal so as thei bonuet n wome ladies m The lan is ca carriago to the Spanish wom without her ah ing and small
But tho var Catulan wear buy pantaloek and a long sac a black velve breeches, a g staut nail-sho woollen cap, h nontero cap; with a wide br of costune, is from an ultruM homet.
The commo that of Spain.
Grecre.-TTh of Turkish ul the classical 0 attire of the p garment, with it is heavy w Ket; it is as ser Greek as tine it is a puenfert poor classes ot a servant will fiae clothes. in a rich role with gold lace aubowsed with
ume-in the daik prons, and ribboned pure white muatit with hlue ribbona shed sperimen of f delicato blue sill before and behine of silver tissue fast. w] of embroidered e black hair brailes oodkin and filigree te muslin, trimmed ontrihute to the va his brown or gray led fiet ; the Domi cowls nud girdles; I to their shoes and shovel hats; and d red crosses, viole alles and futtons on I Wack, the bistors a firey red, and the ith only two holos
est fomales are rich d; and the women Leghorn honness." in tho latces Fienich when the usnal ab , as in moct other ime of a Floresting brimmed black bat er, prosents grester re "many wear the ldiers abound; tuas n in every variety ath the hewitchin, ingles in the crand; her in a rusty-rd streets, followd by -onghout Tuscany, of the truty clas
city in Europe, the pieturesque effect he streets with onl The lazzaroni hare them tany be seen white drawers, not also worn by th an crond, with its uding the nations lineing, and story c open street, wha pins in picturesigu interest for its en racteristics. In th frow miles of Nipla ck eostume, which ded from their an

Her in S_{j} min morer versity of costurie - anl class has ith t from wach ohee, itatats of two apph served, that " there at inhalitiant of Atr Inia, as betwornan II) no respect is thin
reity of costume in
of the lichuresye
the provincea of Spain, of which the Catalonian, the Aadalusian, and the Galician, are tho most romantic and effective, yet the cloak is, ster all, the most national feature; it is generally worn everywhere, and universally in Custile; and to tho Spaniard, it seems his only garment for holiday and every day, for rain and sunshine, for swinter and summer; the very ehildran wear it; and ace often encumbered with it at play; and so attached were the Spaniards in past ages to the cloak, that a minister of Charles III. was sacrificed to the

Spanish Peasantry. popular clamnur for attempting to eut down this articie of drese to egral dimensions.
Bensat! the eloak is generally worn, in winter, a sheep or laub-skin jacket, varying in price from four to forty dinlars: in the summer this is replaced by a body-jacket, decornted with rows of small buttons or coins, and braided in various colours; round the wnist is worn an immense bundana or shawl in the eastern finshion; the leather leggings are riebly embroidered, und the lat is eithor highcrowned or oval, decorated with black velvet buttons, or trinming, with points.
The general female costume of Spain consists chiefle of a petticont and a large mantilla or shawl, or a vei! covering the upper part of the persou; but this is rarely worn except at mass. The colour of the mantilla is black; it is of hace or silk, or both, and it is thrown over d.! yeal so as to diaphay a large and costly comb. Neithei bonnet nor ribhons are generally wern, alihough some ladies may be seen dressed in the French mode. The lan is carried ly all females, from the lady io her carriage to the servant walking in the street; indeed, "a Spanish woman would be as hikely to go out of doors without her shoes as without her fan." 'The neat stocking and sinall shoe are also much studied.
Bat the varieties of costume are almost endless: the Catalan weara a velvet jacket with silver buttons and loug pantalociss; the Valencian loose breeches of linen, and a long sack unlike the full cionk; and the Castilian a blsck velvet eap, a black sheep-skin jacket, light breceles, a girdle, embroidered leather leggings, and stout mail-shod shoes. In the north is worn the red woollen cap, hanging down the back; in Lee Mancha the montero cap; and in the south the low-crowned hat, with a wide brim turned up. Among the eccentripities of costume, is the dressing of the hangman in green, from an ultra-Catholic aversion to the sacred colour of 3 homet.
The common modo of dress in Portugal is similar to that of Spain.
Greere--The dress of the modern Greeks is a mixture of Turkish and Frank costume, with little to mark the classical origin of the people. The ehici article w. ettire of the poorer Greeks is a capote, or large woollew garment, with a hood, shagey with short threads of yarn; it is heavy when dry, but nearly insupportable when wet; it is as serviceablo tor home and bed to the wandering Gireck as the bunia is to the Hungrarian shepherd, and it is a peafert defruee against cold and dew. All bot the poor elusses of Grecks, however, dress stowily; and even a servant will expend every farthing of his wazes in fine chothes. Thus, a playsician's jumissary may be seen in a rich rolw of searlet, his vest of blue velvet trimmed with gold lace, and in his silk girdle a brace of pistols anboised with silvar; turban, short petticonts, and trou-
sers of purest whito. and gaiters or "leggings" of scarlet velvet, embroiderel with guld; altogether, a costume that might suit a prince. Tho genernl dresm consists of a short embroidered jacket, without collar, and with slecves open from the ellow; an embroidered vest, a cotton shirt, a tunic of several folds, seeured by a sash or shawl about tho waist, and renching to the knee; loose breeches or trousers, short socks, and slippers between sandals and shoes. In one corner of the sash, tho common people carry their
 money, whieh the rich put into purses, and carry, with their handkerehiefs, watehes, and snuff-boxes, in their bosoms. The head-dress is various: as the turban, a la Turque; the fur-cap, like a muff; the fez or tasseled cloth cap worn on one side; the plain eaps of the peasantry ; and skull-caps of velvet or gold, embroidered or tasseled. The young Greeks are the handsomest race in Europe; their long hair falls over their shoulders from under the eap; their embrodered jackets, vests, and buskina, their arms mounted with silver, and even jewels, and their white kilts, compose, on the whole, one of the moat graceful and becoming costumes in the world.

The eostume of the Greek female more elosely resembles that of the Turks. She wears loose trousers of fine calico, embroidered with flowers, a closely-fitting vest, a jeweled zone about the waist, and a long-sleeved gown flowing off loosely behind, or a veil eovering the hody; and sometimes a rich pelisse trimmed with fur. Jewellery is worn to exeess ; and bracelets of gems, or strings of gold eoins round tho arm and neck, aerort the forchead, and in the hair, which the younger girls let fall down their backs and over theit brows and cheeks. little caps, similar to those of the men, are also worn by the females, studded with coins, but worn on one side of the crown, the girls wearing in them flowers, and the matrons heticn-nlumes or jewels. The young women otten lye their liair auburn, and the oll ladies red, with which colour the nails are also tinged. The femalea walk abroad in a robe of red or blue eloth and an ample muslin veil.

Tiurky.-Although helonging to Europe, the Turk are properly an Asiatic people, and their garments, where their true national costume is preserved, are according to an eastern or Asiatic model. The outward 'Turkish garment is a long and loose robe; undernenth is a side ves: bound with a sash; loose drawers, and a wide-sleeved shirt without wrist-bands. Slippers are worn abroad, but are left at the door on entering a house. This, with a turban, is the us•al dress, thongh many clas"' : have a dillivent one, and an ollice is oltell denoted by a peculiar dres.s.

The turban was long the most eharacteristic feature of eastern dress: it was a cup surroubded by many folds of cloth or muslin, its form and ormaments not only distinguishing the rich from the poor, but distinguishing the various prolessions. The variaties of form were considerahe, a barber of Constantinople having been known to armage the drapery of a turban in sixty-six different

Sehions. The yatagan or sabre le invariably worn by tise Turbe.

The dress of the 'Turkisin females has a goneral reamblance to that oi the men, though a atiff cap is worn inatead of a turban. When alroad, the women are closely veiled, but they unpin a cerner uf the muslin to enalie them to eas aweatmeats and stroise the long chibouk or T'urkish pipe; their white muslin turluna, too, are aprigged with goll, and decorated wit', red flowers; the hair is worn long, nnd plaited with embrotlered gauze, knobs of gold, and sparales with diamonds and other gems.

A crowd in Constantinople was formerly a picturesquo group; there was tho graceful Effendi Turk with anowwhite turban, jetty beard, sparkling and full eyex, long flowing cuftan, seirlet tr , isers, yellow bontw, rich Cashmere shawl round the waist, in which shome the gilded dagger; next way the gay hut cunning-I king Greek, with short chin, black turlian, enormous bit short trouecra, bare Icgs, and black shoes; then the grave Armenien, with his calpuc of hack felt balloon-like upon his head, his long Turkish rolic, silver ink-liom, in his girdle, and his feet in the crimson slipper or boot; next was the Jew, wits his blue turban und slippers: and with these were seen the high tuper culpae of the Turtar, the melon-shaped heal-puce of the Nizam Djedin!, the Eroy filt conical cap of the imaum and dervish, and occasimaily the ungracetul hat of the Frank, with the hesuttonell and mean looking costune of Europe.* I Lustesty, the eostume of T'uakey has hom greatly infringed woul by the introdiction of the Frakish dress.

AリV?に vastunes.

Although the tra. is from Rurogie to Asix may be

 tume, but in:perfectly aderid. 1 an comer of tiurope,
 tight short dithos we ser fong flatiber sobes wrapped Woocly roum the ioniy; the hat is diszlaced by a light tu: man, and sandits are worn instead of shoes. The oricutal costume is smpic, and, among the rich, of costly materials. Intia and Chinn furnish abindance of sitke and dyea, and the: maslins of the former country are narivalled, as are alwo the Asiaic wonls, and the urt of interweaving golii ind silver with these tiorics; whilat the jewols and precouss stones of thuir conntry enathle the Asiatics to eclipso wher nations in splendour of personal orzuments ; whilst all over the east the beard ia allowed to frow so as almost to be considered a feature of costume.

Po notice the thousand varicties of fanciful castune preailisg in this vast continent, is altogether leyond our limi's, and all we cun do is togive a glance at thoze nore strictiy national.

Arab:-The general lress of this intercsting people iu of a simple form:. Their ordinary attire is a piece of linen over the shoulder, another round the middle, and s girdle, with a knife; sandais, sometimes of wool, nierely tovering the poles of the feet. Upin the coast, the whole dress consisis of a napkin round the loins, and a kerchief fringet with silk on the nead, the rest of the body being quite naked. Some wear orly drawers and a shirt. This, however, is only the dress of the poorest classes; that of the rich resembles the Turkish costume, being loove and flowing. At Muskat, tho inhalsitanty wear a carpet skull-eap and a white cobbroidered wiban, a long white garment reurhing to the ankles, ? eloth girdle, and sandals of hide, with straps; and an Arai muyt be [wor inded if he has not a salire hung over lis shoulder, and a lagger by liis side. The Musknt aldiers are distinguished ly a cirethor shield of rhinoceroe hide, a foot and a hatli in dian - daggei, and n pike from seven
long thin sword, feet in length.

- Frankland's Travel: to and Irom Conslanizople.

A captain of the Arab navy weara a blue check turoan, fordered and fringed with red; a dark-green upper gan ment, with wide slashed sleeves, falla just helow the knees, and beneath it is a wrapper of pink silk, the sleeves slashed with ycllow satin, and secured about the waist with a girdle of eloth on silver, over which is worn a swerd-nelt and omnmented dagger. From hiflf way below the knee the legs are bare; the feet are sandaled, the straps lieing fancifully ornamented; and the toc-nails, ns well as those of the fingers, afe stained reddish-yellow, Such is the costume of an Arah gentleman of the preesent day, and it has probably varied but little from the earliest times. Another picturesque dross is a large white turban, full white breeche-n, n tiocds lutioned straight upen the chest to the threa', girded aburer the loing, har, ing half-way to the knee, and !oyma un on oac side the feet being sandaled. 'Tlie Aru:' pomen of the same place (Muskat) bleroud the greater prett of then face sith dominees or hooded elows; thei white lepg-skotr
 "hey stain their eyolids da.k, and their cheeks ated hants yellow ; or they varar a loose inuze role over pantalette fitine close at the ankle3, which are ornamentov, ss among 'rwish females of old, with silver bangles; the fect atc cased in gay stocking and slippers, or they are bare, with rimes on the toes; the short-sleeved it itser or jacket is tantrfilly bef angled and timacled.*
A merchant of Jidal or Yesten wears a caftan on gown of silk, and a rod seaf, nud aromit the roast at'sho nere shawl, in which :a fiacl a long cus mituger; and sometimes the lower fart of the face is hutlide up ia woollen shawl. The rich alas wew slippers. The poo fits from the pilgrimage enable the peopie of Mecen ot dress very gaily; and from the Persian Gulf they obtain the finest prearls in the sorld.

But the most chararteristic portion of the Arab \ll tune is the hend-dress, which is profusely ornamented, but has neither comfort, convenieuce, nor any aulaptation to climate. A man of fishion will wear no fewer than fifteen caps piled one above another, the top one lieing embroidered with gold, and with a sentence of the Koran worked into it; around the whole is folded a muslin firshan, with loose gok and silver-fringed ends. In the south, the turban is formed of a bordered square of silk, with a piece of Iadin muslin coiled round it. The green turhan, when worn by the head of an ancient tribe, denotes the highest dignity that can exist in Arabia. The poor wear enly two caps; atd the Bedouins, or wander ing tribes, wear no caps, but only a hool in their cloaks, which are draped so as to keep off the colk and rain, The Arab sailors nt Mocha and other ports of the Red Sea wiar dark-flowieg robes, and pale blue and red turhaus of picturesque torno. At Muskat, none exeyt those of royal lineage may wear the turban above a prescribed height.

J'ersians--The Persions are nllowed to have one surpassed in pomp and show the other oriental nations; and this mannifieence was nowhere more displayed than in the splendour of their attire and personal ornar. nith But this distinction now applies rather to the costhiness of the mnterials of dress than to its colours; for howevet gayly the Persiams may have dressed formerly, their present choice is ronfined to dark tints, as brown, olive, green, and blue.

The Persian dress has theen considered effeminate, and not unreasonably so. 'Th isn wes: very while tousers, and a shirt extencing trat, thips, over the trousers; a tught-slecved vest def.. and over all, a long re: tight as far as the hip hut flowing like: "in is of flowered m
to the midille of the keg, ius to the ankles, fittins ben huttoned at the side
The sash around the wais sh chintz, the cominon shaw

- Dr. Rascb. ... ur's Voy ge raund the Worid.
of the enuntry, or a lang and one yard without which, and wlff fully dressed ; an ded. Great care is a thick woullen sock with cloth; the slip fron leed an inch boots are likewise oll and leave at the wearer ontera a roon macred character of black oneepskin cap height, which was with a shawl. 'Th pliance with which foreigners, who hav their cocked hata an slention to the hair dhaven except a sm Whind the cars; the und to spread about dye it a rich glossy a fortnight), and the

Altogether, the $\mathbf{P e}$ will pay a liberal pri manufactures to tho chintzes and broudelo for the outer garment uste in colour varie wull be in favour, nex are invariably high changed as ofton as the British trade with hare powerful compet
Circussians.-In C rank and birth lead tlans, the varieties an

Circassan Lady.
though somewhat u tightly compressing tt ung an uncemply pro walking. Her beant ing shaded from the shne, her havds by Withem grdle, fas'. llit costume is tis . .ed snd , bise silk, wi't oilver shaped chasps; and lonse Turkish trouse delicste feet, which, mamented pattens o doors. The maiden voman wears a veil a

FOREIGN COSTUMES.

of the country, or a Cashinere shawl. It is eight yarda lang and one yard broad, and in it is stuck a dagger, without which, and a sabre, no Persian considers himwilf fully dreased ; and these weapons are profusely jeweled. Grest care is taken of the feet and legs: in winter, a thick woollen soek is worn, and the legs are bandayed with cloth; the alipper turns up at the toe, and has an iron lieel an inch and a half in height. Higla-heeled hoots are likewise worn; and it is customary to take off and leave at the door the slippers or boots before the pearer enters a room, this being done on account of the eaced character of the carpet. The head-dress is a black sheepskin: cap, from a foot to a foot and a half in height, which was formerly encircled, turban fashion, with a shawl. Tley keep their head covered, a compliance with which etiquette has been troublesome to foreigners, who have thus been compelled to dine in their cocked hats and feathers. The Persians pay great atention to the hair and beard; the head is completely shaven except a small tuft on the crown, and two locks lohind tho cars; the beard is allowed to grow very large, nd to spread about the cars and temples; the prido is to dyc it a rich glossy black (which must bo repeated once a fortnight), and then to adorn it with jowels.
Altogether, the Persians are fend of fine clothes, and will pay a liberal price for them. They prefer English manafactures to those of ony other nation. Euglish chintzes and broadeloths are much in demand; the latter for the outer gnrinents of most respectable persons. The taste in colour varies much; one year blue and brown wull be in favour, next yea: red and grey. The chintzes are invariably high coloured; but the patterns must be changed as otten as in the Manchester market. Hence the British trade with Persia is considerable, although we bave powerful competitors in the Russians and Anericans.
Circassians.-In Circassia, where the distinctions of rank and burth lead the people to associate in septs or clans, the varictics and gradations of costume, as might be expected, are cloaely observed. The warlike spirit of the men likewise eneourages this taste; their indulgence in dress never degenerates here, as in some other countries, into Inxurious effeminacy, but fosters their chivalrous bearing and personsl gallantry. The exquisite beauty of tha women, and, above all, the active part which they take in the business of life, also ensure this attention to castume.

A Ciresssian beauty, whose fine form and delicata compiexion havo almost exhausted eastern panegyric, is tall and well, though slightly shaped, and carries herself very erect, thatuh somewhat ungracefully, from the practice of tighty compressing the loins from infancy, and thus givury an unseemly protrusion to the body and stilliness in walking. Her benuty is tenderty watehed, her face ieing shaded from the sun, her feet protectril by a wooden sioce, her handa by $v^{\prime \prime}$ wrs. and her wat: by a broad lothern gordle, tastur ai sa eariv age with clasps. Hhr costune is -aymat or skoll-cap of acarlet cloth, h. sed sud , it is with broad silver lac., a boddice of the silk, wit ${ }^{1}$, aiver studs; a girdle with silver shellslaped chasps; and bencath a petticoat ot striped silk, lowe Turkish trousers, from which peep her white and delitate feet, which, in-doors, are left uncovered, but mamented pattens or morocio alippers are worn out of dours. The maiden if not veiled, whereas the married wiman twears a veil and a piece of calico muflad to the
nose. The hair is worn in braided tressea , ver the shoulders. Newing, embroidery, and atraw plaiting, are the occupations of all females above the rank of alaves

The male dress of the Circasbian is the well-knows Caucasian costume; the shcep-skin honnet and collarless frock, with loose hanging sleever, fitted closely to the body, fastened by loops in front. The trousers are wide above, and gnthered tightly over the knee and calt, and covered to the middle of the leg with gayly-gartered galoches; the shocs are remarkably nent, of red morocco trimmed with silver, or of black leather or ox-hide, but they are without aoles. On enel breast is a row of ten cartridges; a ritlo is slong over the shoulders, a pistol in the belt behind, a broad dagger in front, and a sabre at the side. The costume is uniform in its most trifling details and adjustment, so as to give a group of men the appearance of one family, except the calpac or bonnet, which is of lamb, sheep, or goat-skin, crisp and curly, long and shaggy, thick and bushy: the cloth of the dress is coarse, and of gray, straw, or brown colour. The winter garmenta are si.cep-skin doublets, worn with the wool inwards under the tunic; a hood of otout frieze covering tho ealpae and shoulders; and a large cloak of thick brown felt.*

The costume of the mounted wurrior is very picturesque ; as a brown surtout silver-laced, sometimes open at the breast, and displaying a gleaming shirt of mail; black pantaloons, puce Ieggins, red shocs, sabre, bow, and quiver; and a white turban, with a red cap and long purple tassel. These coats of mail were doubtless introduced by the Egyptian Mnmelukes, and we shall hereafter find them worn in the interior of Africa.

Turturs.-The wandering tribes of northern and middle Asia, cousisting of Tartars, have little to boast of in the way of costly costume. The common dress is a erton robe and drawers, sometimes trummed with wool, and red is the favourite colour. Garments of skina are also worn; and a young T'artar has been known to have the fresh hide of a horse thrown over his naked body, and cut, fitted, and stitched into a dress in an hour or two, which only wanted to be tamed by continual wearing. The Calnucks have scarcely any clothing but a strip of cloth about the waist. The Mongols wear sheepskin dresses, with the wool inwards, and the better classes fura. But the dress is nearly aa various as the feople. In the northern countries furs are much worn

The warlike 'Toorkmans of the deserts between Balk and the Aral are a handsome race; they wear the $\mathrm{ti}_{\mathrm{f}} \mathrm{fa} k_{4}$ a square or conical black sheep-skin cup, which is far more becoming than a turhan. They aro very fond of bright-coloured clothes, and choose the lightest red, green and ycllow, for their flowing pelisses. The headdress of the ladies would grace an English ball-room; it consiuts of a lofty white turban, over which is thrown a red or white scarf that falls down to the waist; but they never veil. Ornaments are sometimes attached to the hair, which haugs in tresses. The other part of their costume consists of a long gown reaching to the ankle, and liding both it and the waist, which are standard pounts of beauty in our country.

Sileria and Kamtschatka furnish rich and soft furs, which, however, are only worn by the higher clssses, or exported for the wealthy of other countries. The most valuable fur is that of the weasel, called the sable; and next, the black fox. The dress of the poor Burettas, in Siberia, consists of a pelisso of dressed goat or sheep. skin, with the hair or wool worn inside or out-side, accordia, to the season. It is mostly trimmed with comin in firr, and painted with black and red stripes about the neck and shoulders. The hair is worn in a long plats lonnging down the back from beneath a peaked shaggy goat-skin cap. \dagger

[^69]Indian. - The vast coun.ry of Hindostan prresents innumerable circumstances favourable to the charucteristica of coatume; in ita antiguity an the seat of criental pomp, in the richncsa of its producta, greater than those of any other country, ancient or molern, and in the varicty of races and castes which distinguish ita social tetate. These thmervations apply only to the nativea of Hindostan, for no "Christian of European descent, however remete, ever wears a native dress. Rich Indo-Britith in' es, on the other hand, attire themselvea in the latest we: newest fuhhions of London und Paris, greatly to their disalvanut:uge, , inince the Hindostanee coatunie is so much more thecoming to the dark countenance and pliant figures of eastern beauties;" - those of an inferior class carc less about fashion, proviled the style be European, so that it is not uncommon to see a drumner's wife in blue aatin, piuk crupe, blonde lace, or silve Mlama dreseses, and other second-land European finery.
The gencrul costume of the Hindoos is as follows:-The men have two fashiona of dress, one very ancient, the other partly adopted from the Molanmethins. Tae ancient dress is in three picces of cotton cloth, 0.10 bound round the waist and falling to the knee, anotlar wrapped round the body, and the third round the hen. The other attire is cotton drawera, a long robe tied with a scarf, and a turban ; this is the regular drens of tha Hindoos; but the poorer classea have often ouly a piec, of eloth wrapped around the loins. The head is usually shaved, except a lock behind, and small mustachios are worn. The dress of the females is very cl-gant; the close part in a hall: sleeved jacket, the remainder is a large pisec of silk or cotton wra;ped rouial the midille, falling gracefully helow the ankle of ono leg, while it gracersilly divplays a part of the oth r. The upper end crosses the breast, and is hlirown forward rgain over the head or stoulder. The materiats are generally cotton, bit in some of tho higher regions, the colder cliinate renders general the wearing of woollen cloth and
Hindosinuee Worann. even of furs. The clothes of the difitient classes dififer muninly in degrees of finencss, the rank of the wearer Leng indicated by a profusion of jewels, emlroidery, and gilding.
The extrene ugliness of the dress alopted by the most refined nutions of Europe, is nowhere more apparent than in Briish India, where it is contrasted with the fowing garments of the natives. 'The round sailor's jachet and tight trowsers, brought by the early factors fronn their ships, are worn to t is day in India; and the men are cloticed from head to foot in white cotton, in which the coxcomb can only distinguish himself thy the quantity of the starch. The officers of the Indian army, when ou duty, wen r jarkets of thin scarle tirt hue Cashmere, China crape, or China silk; andy young civilians sometimes appear in full dress swallow-taited coats of China crupe.
In India, dress is rarcly varied; and .ecordingly few thinzs surprise the natives moro than the changes in European fashions. The dresses of the ladies, therefore, are plain, if not dowdy, in comparison with the gorgeous Nhow of the Asiatic groups; and in warn weather bonnets are dispensed with, and the hair is worn in the phaineat manner. There is not an great a variety of oriental costuncs at Culcutta as niight he expected;

[^70]some of the Armeninas appear in their national drem; few Hindoo and Mohummedhn gentlenen are elnd in very picturoequie attire; and a Chinese physician may be veng in an old tuuntlo-down chariot. Somo of the native shoos are very haudsome, hut can only be worn by for reign resildents as alippera; the points are pruked and tirned up, and tho ahoo itaelf of cloth or velveh sififened with emhroidery. Most of tho shocauk era of Cascutu are Chinces, who five in ono wilde strect, and aro alwast well drensed in the rich silk upper costume of thicir counnty
Benares is celebrated for its rich diphliys of costume A native notho weare a velvet turlan, bo rieisly enibool. dered as to reseculthe a cluster of precious atonns; tha Cous nuad troweras are of crimson and gold hrocade, a Cashmere anawl is wound round the waist, a second shawl is thrown over the shoulder, and the thelt of hin sci :iatar, and the studa of his robe sparkle with diumonda The costly gold and silver tisstues of Benares are woth as gala-dresses ly all the weallthy clusses of 1 lindostan as rotes or turbnas; silver and gold lace are very cheap here ; and the triukets of Benaren, as chains, ureckarem, car-rings, and bangles, are st once elegant and massive ${ }_{\text {; }}$ pearls aro much worn by the natives, and stringg of tie size of pigroons' eggs are frequently diaplayed roind tha necka of rich men; and diamonds are worn in similher prolusion. The dress of the nautch, or singing and dancing girls, is very picturesqua; it consists of kay silk trousers embroidered withs silver; rich anklets strtuly with small hells; the tocs covered with rings, and a sil: ver chain across tho foot; over the trousers is worn a petticont of rich stuff, wery full, and decply trimmed and friugell with gold or siiver ; the vest is almost lided nt by an immense veil of rich tissuc, which crossis: tho bosonad several times, and hangs, in broal end, nt the front and ai the lock. Tho hands, arms, and neck, are cotered with jewels, and in the hair are worn silver riblows wil bodking. The cars are fringed with riugn, sod through the nese is worn a large gold wire ring, from which barg a pearl and two other precious gems.
Bombay, in its mixed population, presents several varietics of costume, as that of the wealthy Parese, sho vn in the annexed cut, with collarless white muslin frock over scarlet silk trousers, long sharp toct slippers, and high purplo or chocolate-colowed cap, figured with white flowers. A Parsee lady wears a tight satin spenser with shor slecess, embroidered and fringed with gold bella, and a satin mantle thrown round tho boly and over the head, like tho Spanish mantills ; large pearla are worn in the cars, and
 emeralis in rings on the toes.
'The costume of the native islanders of Ceylun is strm tive. The Cingalese women of rank wear, over rolourd silks or satinn, a white muslin robe embtroidered with flowers and spangled with gold. The cliemise has had rutlles und trimming; and in the hair are worn gold add tortoises-shell combs, and pins set with gems. The wran of the middle class wear muslin waitcrents and jactes the womern abort slifits and petticonts of printed cotton The poorer claseen wear mingly a thick folld of cona muslin wrapped round their hodies. The poor Canhan mountuincera go almost naked, but the higher ciaseast arrayed in superth tises and cmbroidered mustins and equare rap or round turian es" "re the head. The Mib bars wear gold currings a: set with large gems ; but the... -int in circuanierm "ly the wonch * Huch innalier. They wear a
moind the waish, hat drown over the ald leave tho arms haro turned up lowind an
Tha manuiucture maternala for clothii diamonds in the wo Ceylon, too, furnishe ly the Ilindoos. \mathbf{C} derere worked into musin" is made ric deewhers ; and the Soropuadel are unr the Fiuropean mark is nannufactured in tisuee. The wooll hase been alrealy m
China.-'The mos extraordinary people men upon their " clrin that "it is wonderfu fatures." Here thi and they are more ec in the south of Asia.
The extromes of h dimate of China int led to a marked disw winter dress of the lh pairipally in the en waven bantboo, of co gilt ball at its point, w buse-hair fringe. TI nud a hroud lirim, tur relvet or fiur ; at the t whence falls just over The changing of thes importance as to lie n small akull-cap is com

Chinese Tradeaman
or fur. 'I'he loose itre where they are fastene button, by its shapes weaser. In summer t| ter a pair of tight addit tilk or cotton stockings rloth, satin, or velvet. certain rank. (On st spleadidly embroidered crimson, with various e the higher classes are

[^71]mund the waist, hanging below the knee, and gracefutly thrown over tho slooulder, ao as to cover the body and leave the arms bare; nnd tha hair is merely combed and turned up behind and lefore.
The manabiactures of India furnish the moat costly matenals for elothing, and hor mines yiold the finest hamonda in the world, and othar gems in abundance. Ceylon, too, furnishea pearls and chank-shellis, much worn by tha Himboos. Cotton, the native material of India, ia there worked into the most elegant forms: in Dacta muslin* is made richer, aofter, and more durable than elnewhere ; and the enlicoes, \dagger ginghams, and chintzors of Soronandel are unrivatled, though almost exeluded from the Furopean narket by cheapnnd cose initations. Nilk is manufactured in talfetas, brocacles, and embroidered tissues. The woollen fithrirs of the northern provincea have been already mentioned.

Chint.-'The most familiar ropresentationa of these extraordinary people and their quaint eostumes, are to be seen upon their " etrimn ;" and Viscount Jocelynt remarks, that "it is wonderful how correct they are in the main fralares." Here they are khown to be well chothed; and they are more completely so than the other nations is the south of Asia.
The extreme of heat and cold which eharacterize the dimate of China nt opponite seasons of the year, have led to a marked distinction hetween the summer and winter dress of the better classes. But the difference is principally in the cap, which in summer is of tinallymoven hamboo, of conienl shape, with a blue, white, of gill ball at its [oint, whence falls, all around, silk or red horse-hair tringe. The winter cap is circular-erowned, and a hroad brim, turned up all round, and raced with elvet or fur; at the top of tise crown is likewise a ball, whence falls just over the dome a bunch of crimson silk. The chauging of these caps with the season is of such iaporaner as to be notified in an official grizette. A mall akull-cap is commonty worn within doors in cold weather. Tho summer garment is a long bose gewn of light silk, gauze, or linen; in full dress, worn with n silken girdle, to which are fantened the fan-case, to-bacco-pouch, bag for flint nad steel, und sometimes a sheathed knife and chopsticks. In winter a large sleeved apenser is worn to the hijes, over n dress of silk or erape, which reaches to the ankles. I'his sprnser is of fur, sitk, or lonoadeloth, lined with skins; and the neek, which ia bare in summer, is in winter covered with a collar of silk ar fur. The boose dresses fold over to the right breast, where they are fastened by hatons and loops; and the button, by its shopers and nizes, denotes the rank of the wearer. In summer the brecehes aro loose; und in winter s pair of tight halditional leggings nre worn. Woven silk ar cotton stockings are worn ; and in winter boots of thoth, satin, or velvet, with white soles, by persons of cortain rank. On siate oceasions the under dress is splenditly embroidered in silk and gold, and the cat are crimson, with various coloured balls. The fur dresses of the higher chasses are exm: ive, and descend from fist

[^72]it ix manitas a Clina.
to eon. Little linen in worn, siad the bodjg grment, sometimes of light silk, is very rarely chaured.

Nevertheless, the costumes of all rat.ks and oritem about the imperial palaec are ohserved at Pekin with as much preeision as in any court of Europe. Fushion, too, hus its volaries; a Chineso fop lecing dressed in costly erapes and silks, boots or shoes of black satin of Nunkin, embroidered kuee-caps, cap of exyuisite cut, and lrutton of neatest pattern, an Englinh gohl watch, a tooth-pick nttached to a string of pearla, and a neented Nankin fan; and such a personage is athented by servanta in silk drennes.

I he head of the men is shaven, except at the top whence the tail hangs atier the 'Iartar custom; they have little henrd; hut the shaving of the head employe n great number of bathers; in mourning, however, the hair is allowed to grow.
'Ihe dress of the women is modest, and of exquisito silks nub embroidery, of bright and permanent gloss nut colour. Pink and green are favourite colours, but they are never worn by men. The ordinary dress is a largesleeved robe over n longer garment, under whieh are loose trousers fastened at the ankto, and embroidered shoo, proverhinlly small, nhout four inches in length and two in brearlh. the tieet being arbarounly compressed from infancy. Unmarried women wear the hair in long flowing tresses down the back; after marringe it is twisted up towards tho back of the head, and omamented with bodkine, flowers, and jewels; and at a certain age, a silk wrapper is worn round the head. Females of nli rgeadaub their faces with red an.

Chinese Women. white paint. They pass most of their time a home in music, drasing, or embroidery; and the handson," "ra: shawls taken to England are entirely the work of wouth,

The general materiat of the diesses of the peas sitrg is nankeen, dved of various colours, black nud blue being the most common. The men wear loose trousers tied round the waint, underneath a smock-frock. They protect the liead from the aun by a very broad umbrellinshoped hat of bamboo slipa, which in winter is exchanged for a felt eap; and in rainy weather they have a flax or reed eloak, from which the water runs od trom a penthouse." Shoes are rarely worn by the peasants, but some protect the feet with sandals of straw. The women wear on the forehead a velvet peak, adorned with a bead, and the hair combed back, and kept together by a loop of lenther, and ivory and tortoise-shell bodkins. The girla wenr their hair in long plaits, hut after T , ite it in twisted into a hard knoh at the crown, and allinucuted with artificial flowers; and even the poor peasant girla pique themselves on their small feet, which they deek with embroidery, whilst the rest of their dress is poor and mean; even the poorest market-women of Canton, though clad in rags, protrude their little bandaged feot into notice.
'Ihe uniform of the Chinese solifiers is loose trouger and jacket, often with "valour" inseribed on the back, and a coloured eloth wrapped round the hend; some dressea are studded with brass knobs, to imitate arinour, and the cuirases and helmets are of polished steel, tho latter hearing red and brown plunes; they appear alt
arms-matchlorka, bowa anil arrows, nwordu, whielde, and quilted breastplates; but the paper helmett, waidiled gowna, quitted petticoata, end clumay natin hoota of other tronpm, aro mowt unmilitary.
The islands unout the coant of China offer a few peeuliaritien worth notice. At Macho, the Chinese servmits wear full white lirecechenand leggings, blue gartered, and wooden-soled whow ; und the porters blue mhists, short trousers, and straw or ghazed hata tied under the chin. The Tartar wormen, who row the pasagre-lonats, weir a long blue Nankin froek over black waterproof trousers, and a handkerchief is hound dingomally over the heal, and tied under the chin. 'The Chinese pilot is sheltered from the storm by a brond-brimmed line. , yous mime
 women of Macio wear hoose fryuced callee pomas and scarfa over their heads; and if got takue the air in sedan chairs, are followed by a slave bearing an unnlrella.
The trens of the too Chow intanders is graceful and picturesplue: it consists of a loose coloured rolue, generally of cotton, wide and long aleeved, with which is always worn round the middle a belt wrought with silk and gold tlowers; the roberg of grown persons are moestly plain, hut those of the chikdren are guadily printed with fowers. In rainy or cold weather, a sort of thiek hlue cloth great-coat is worn by the chiefs only, nod huttons in tront over the roke. Ail ranks wear straw-soled and banded sandala; the upper classes have white cotton socks, buttonug at the outside, and having a place like the finger of , slove for the great toe. The hair is invariably pulted tight up all round into a compact knot with two pins, no as to conecal the crown of tho huad. which ia shaved. On state occasions only, is worn a kind of turben, made by winding a broad band diagonally. The poorer classen tio a coloured cloth or handkerchiny round the head, and wear a thin entton body dress. 'The men wear no ornaments nor are they tattoned; thry all carry fans, to keep the sua from strikiug hut upon thir skulls, and short tobaceo-pipes and pourlues in their girdles. The women are murh neglected, and even reatricted from using fans. The islauders of Ilainan and Formosa wear scarerly any clothes; the natives of the tatter aro almost suvage, and tattoo their skin like the rudest of the South-sica Imanders.

The manufa tures fir clothing in China aro not numerous. Silk is the staple of the empire, and the Chinese fabrics are still unrivalled in richness, though they arn very litte worn in Eurepe: it is, however, stated that the Chinewe kefp the best silks for themwolves. Fiankin cotton (which grows of the yellow colour we wear it is not so worn ly theChinese, but dyed blue, black, and hrown, when it is the general clothing; some cotton ix, however,
 persona of rank. 'The beautiful conpe shawls have heen mentisned. In fans, tortoise-shell, mother-of-pearl, and silver filigree ornanents, the Chinese artisans are only fivalled by their Japanese neichbours. Furs to a grant enount are received in China from North .inerica; that of the red fox is used for trimmings nud linings of robes, and is variegated with the black fur of the pawn.

Japan.-The characteristic intelligence of the Japanese is strongly marked in their dress, which they aim at $r \cdot n-$ dering substantial and becoming, instead of ind ite ug that passion for glitter and show which is evide 't all the rest of Asia. Their principal garment is s: silk or cotton role, large and loose like a bed-gown, and a girdle. Within doors, socks are the only covering of tt: fect; abroad are worn shoes, or rather noles, of rice stisw, matting, or wood, mainly kept on by an upright pan or button, held between the iwo principal toes, which, for this purpose, project through the aocks. The diffieulty of litting a foot thus shod in walking may account for the awkward gait ascribed to the Japancse. Upon encring any house, these shoes are taken off.
'The head-drean ennatituter the chief difference, in poind of comtume, between the sexes. The men whave tha front and crown of the hend, snil draw the rest upwack mal tie it in a tun upon the bald akull. But priesta and physicians nhave off all their hair ; while surgeonem tain all theirs, gathered into a knot at the top of the heal. The women arrange their luxuriant hair into the form of a turhan, and atiek it full of piecess of fine tor. tuiswesthell, wo highly polished as to resemble gold. So jewellery or trinkets are worn. The fare is painted red and white; the lips purple, with a godelen glov; and the teeth of a Jupanese married lady are blarkened, and hem eychrowa plucked out. Neither men nor wemen wear hats, except as a protection srom raip, or when on a journey; a conical hat of plaited grana or oiled paper io then tied with a atring upon the heal; and the fisher. men generully wear these hats. The fan serves an a guord from the sun, and it in to be seren in the hand or the girille of every Japanese ; and solklicra nut priesta are no more to be seen without their fans than fine ladies am, The uses of the fan are ulmont endleses: dainties aro handed epon it; the heggar holds out his fan for almes. the fin " - it instead of a switch; the selool-mbeter for -y the prete tation of a fint, death is amuonced to the high-hem crimmal, his hend lecing struck of at the moment that he stretches it towards the fin. There is great pride in wearing sworls, and they are never hid nside. The higher brders wear two swords on the ame side: the next in rank wear ome.*

Vast numbere of rice-straw shoes are consumed by all chaseses. They cost, however, a mere trille; and the pedestrinn supplies himself with new shops as he gee aloug; whilat the more provident man always carries twe or three pnir with him for use, throwing theon away a they wear out. The consumplition ranst thas be very great ; for the Japanese travel in their own country more than perhaps any other nation.

Enst Indin Islanders.-The dress of the native poper lation of the East India Archipelngo partakes sonewhat of the clowe-fitting Eurguesn and the leose flowing Asiatic costume. The principal trit, \& are the Javants and Malays.
The phorer elassea of the Javans wear a handkerhief uratly tied aloout the head, tight drawers reaching to the knec, suld a sarong or seshl of brighteeoloured calico thrown over the shoulder, or around the hipm, whence it falls like n petticoat. The saroug is not unlike the Sicottish Highlunder's plainl, being in piece of partipoloured cloth, six or eight lect long, and thres or fuet fret wide, rewed together at the cusks. \dagger In ramy weather, a hasin-slaped basket-hat is worn; but in clear weaber, it is curried in the hand. A loose jarchet is also worn The Muhamn.edans wesr a turban-tike eap; but be wher inhahitants have the head naked. A Javan prince copies his Iress from the Europemensetters; he weass dark cloth jarket, with gold-laced entis and collar, a era vat of the fashion of fifty years aro, the unly native tasto being a handkerctief on his head, aut a saroug hanging ateut the lower limbs. 'I'he mative courtdex is, however, a full role wrapped alnut the wist, and falling over pantaloons, tho upper part of the body en. tir 'y naked, long thowing hair, a tlower-pot csp, and straight sword and curved dagger in the waistland. The boly is suncared with yellow, and rishly ornamented wia geld trinkets. The war-dress comsists of a long. slec ved robe, pantaloons, close cap, sword, dagger, and long spear.

Sumstra has some rude raees, who tuttoo their skina and otherwiwe rewemble the South-Sea Islanders; und some few wear no clothing at nll. Yet in this istand is wrought gold and silver filigree, the only fine manufic

* Manners and Customs of the Japanese.
t De Ruschenterger's Voyage round the World

Wre in the Archipela atities, mako their words; and thelir chi tron or eopper wire. toninese, "hearl-humtin \& Lue pepulation of II dition of East Indinus,
It will be seen that mperts matterinity of ilre harburic condition of ant, and the conseque renlera thin by far the ia the characteristics of

AFRIC
Arrien presenta tew ther of the other gre may be in consequence Lhe main, of Moors and the industry of the orig thite in their Itress; bin negmes ham considerala ssting of few und simpl Moors, Arubs, Berelier tee popalation of the tribes being distinguisha of cities as Moors.
The better class of 'T thes: the former worn gret consiquence, and aneists of a tight wuiste wer it a gold-laced wa hoidired sleeves; these umense trousers of sill Whar golld ; tust over th meveless waistcóat. 'I'h chier waistconts, anl o entroidered. Over both slours, are worn 13 rno wih gold lace. The Cashoreve shawls are tho be worn by the deseersida wnin ! to the Jews. re o. ."'sw moroce bo the comary. The wom asils skirt of many colou mistcuat, silk trousers, ;uly colsur, so fut on ner the hend and shon ap of eloth of gold is on the head; the eycha much rouge is used; a hacelets, of gold nond si dress of the Jewish won dielfy in showing both mear only black or yell bivited. Ältogether, the al Algicrs presents a pictu ai Moors, negroes, Jews, antume of the Moors co dirt, large brecches, an doth, a large white outer riiter, stockiugs. In thr momen are veiled, and to Horesses wear fine line istound with bue silk rib wikrelvet jarhet, with sil To the fingers, and silk pa an embroid! red wilk gown mutoceo slippers, a vill, wl Whs, and a necklace, comp tom ours principally in pticoat; and the gown is cilldren of the Moors are VoL. 1. -19 T
wre in the Archlpelago. The Bugis, the beat-arinel notiven, makn their own guna, apeara, daggera, and awords; and their chiefs wear a ehair shirt of phated fon or copper wire. Of this trile, with Malaym, Juvinas, Chinere, "heallunting" Dayaks, and a few Eiuropeans, s the pupulation of Borneo made up; and with the addifion of Bast Indines, that of Singapore.
It will he neen that Asin posmesses an abumbanee of the mpert, materlata of drens, which, conjoined with the memiharbatic condition of a grent proportion of its inhahitanta and the consequent taste for glitering dlatinctions, rembers this ly fur the most striking portion of the carth in the characteristies of costume.

african costumen.

Arica presents fewer distiuetions of costume than diber of the uther great divisions of the globe. This may be in consequence of its population consisting, in the main, of Moors and Nogroes. The former inheriting the industry of the original Arab invaders, display most wate in their dress; but that of the gay and hospitable negres ham casiderahle picturesqueness, although congisting of few und simple materials.
Mars, Ar thes, Bervers.- These distinct classes form the pepulation of the Burbary States, the wanlering tribes beug distinguished an Aralu, and the inhabitants of cities as Moors.
The hetter chas of 'Tripolines have a long and a short dees; the former worn by elderly men and persons of grent consequence, and the short worn generally. This wavists of a tight waistcont resembling a (iuernsey frock; wer it a gold-laced waistcont, and a jacket with embtroidered sleeves; these are conflued at the waist by mmense tronsers of silk of cloth, and a broad belt of ak or bild; and over the jacket is worm an emhroidered heveless waintcinat. The loug dress consists of the two ezier waistcoats, and over them a long-sleeved gown, androidered. Over both dresses, which are of the gayest ishors, are worn IHirnouse or woollen cloaks, bordered with goll lace. The turbans are various; those of Casbrere shawls are the most aplendid; green ean only sewora ly the deserbdants of the prophet; and blue is onfin to the Jews. The boots, shoes, and wlippers, ree 0. "ow marosco leather, the staple manufacture of" the coutiny. Tlu women dress magnifieently, wearing sill skirt of many colours in stripes, highly embroidered mistemat, silk trousers, and a large silk wrapper of candy eolsur, so ,ut on as to form a petticont, and hang wer the had and shoublers, showing only one eyc; a eip of chth of gold is worn with many rich ornaments on the head; the eyctuds are stained with antimony ; moch rouge is used; und the ear-rings, anklets, nind braciets, of gold and silver, are very massive. The tress of the Jewish women varics from the preceding chiefly in showing both eyes instend of one; they can war only black or yellow slippers, and hoots are probilited. Altogether, the above is a most gorgcous costume. Algiers presents a picturesque variety in its population of Moors, negrops, Jews, and Kahyles, or Berebern. The contume of the Moors consists of a loose head-dress, a dirt, large breeches, nn embroidered jacket of coloured doth, a large white outer mantle, anas alippers; and in minter, stockings. In the strects, the poorer Moorish women are veiled, and look liko phantoms; the richer Mooresses wear fine hinen, bordered with silk; the hair fis tound with blue silk ribbon; and over an embroidered wilvelvet jarket, with silk lace ruffes from the elbows to the fingers, and silk pantaloons to the knees, is worn anembroid"red wilk gown, like that of a European lady; moveco slippers, a veil, whawl, car-ringe, bracelets, armhes, and a necklace, complete this costume, which differs fom ours principally in the absence of stockings und pticoat; and the gown is only worn occasionally. 'The children of the Moors are dressed cxactly like their pa-
renta, the litto girls wearing vella, and the hoys turbans lonwibly the above admixture of Buropran tamion may be ons of the renulta of the colonization of Algiers by the French. 'The Jewa genemilly drean l.ke Europeans. the e women woar a gilt wire cap, slanting a yaril bark. fre, their heads, giving thum, as Mr. Compleill tella us, " Lhe ajprarance of alragon fliea;" they strain their hair and oychrows "to the frightful reamblance of a red cow's tail." 'Their costume often presents the extremen of poverty and wealth; an a pair of ragged amall-clothee, and a crimson-velvet and gold jucket, and cmbroilered silk mash. 'I'he Herelvers pover themselven with a black woollen garment like a sack, whirh is made to last generally a whole life, and is never takets off; nnd the headdrems in a woollen cap, like a priest's cowl. 'The women dress mach like the men; they tatoo thelr lege and arans, nul stain their hands and mails, but nevor veil; and they dolight in trinkets. Hoth xexes wear bunkina, like those of the ancient Romans; and any one who repairs a cap which is wholly repudiated at Algiera is consitered " for.

The general costume of the Aralas is a harge loose nhirt and cotton tronmers; sumbals of red leather hulf-hoota, faced; a red hanging eap, with a blue silk tassel; a woollen wrnpler worn round the body, and thrown over the head, nud hamging down the hack; and the Bornonse mantle. I'he drean of the females differs but little from that of the men. I'he pooreat class have only the wrapper or scarf, which is passed over the head and fintened at the whist, others have a woollen gown with short sleeves. The young women wear their hair in tresses, decorated with beads, coral, and a silver creseont, and they wear a large blue woollon turhnn; also silver ear and neck ringa, and charms ngainst disoriers and misfortunes. All the wouen tuttoo themselves, and stain their hands and nuils, but they never tlye their hair; they wear red laced boots, like the men. An Arab belis is almont covered with tuttooed flowers, open hands, circles, the names of gods, and of her friends; and she often wears two or three pounds' weight of jewelry.
'The countries of central Africa, explored by Denham, Clapperton, and lander, present many interesting por traitures of costume. The principal garment is the tobe, a linen or cotton garment not unlike the surplice of an English clergyman in shape and volume; it hangs loosely over the person, and is suitnble to a climate in which any kind of tight garmęnt would be oppressive.

I'he costume of the negresses of Sondan is very remarkible, in the hair being stretched over a high pad, helmet-shaped, and the hend hound with coral and other lond fillets; tho neek-laces are of coral and gold, and the ear-rings very large; glass armets and anklets are worn; and the upper and under shirts are bluo and many-coloured stripes; and a whitish dress, braided pink, with blue waist and wristhands, and a yellow close cap, bound with red, make a very effective \cos tume upon the dark negro person.
'I'he negroes of the Sheikh
 of Bornou may be noticed Aricun Woman-Kingdom or here: they wear conts of mail composed of iron chain, which cover thom froms the throat to the knees; some have helmets or skull. caps of the same metal, with chin-pieces; and their horse's' heads aro detended by plate's of iron, brass ow

[^73]silver, with holes for the eyen this armour, eaprecially the ekull-cap, in like that of the Parthians neulptured on the 'Trijan columin, and nulmequently alopted in the Roinan army, and then introluced into Africa.

Negroes of Wetern Africn.-The clothing and ofnamenta of theee people have great variety; diffisent trihes, and people of the ame trile, findulging In a diversily. This pasaion for drese is not aurprising, if we recollect that the negroea have all the requisite for beauty, anve colour ; and that the mineral wealth of their country enalilea ita chiefa to indulge in harharie magnitloence, which in astounding to more civilized uationa.

The poor negroes are content with a conrwe cloth wrapper; but the rich wear rohes of eilk, velvet, and Indian ehintz. Red mantee, gold und nilver lace, rihbbons, and veils, are much in request among the women; and bracelets, ringe, and ankleta, are worn in profuaion. The hair, or rather wool, is as earefully dremed with palmsoil as the flowing lock int other countries, and is entwined with gold; and painting the frees and tatooing are common. The general drens in a harge-aleeved shirt reaching to the knees; and a high pointed cap la much worn. The Kroomen, on the Grain Coant, wear round their waints shuwls and blue clotha, which they purchase at Bierra Leono.

Tho Asluntees lohind the Gold Coast, who are altogether a auperior clasa, dreas in barbaric aplondour. The Adhantec cloths are of extravagant jrice, from the costly foreign ailks which are unraveled to wenve then; thoy are thrown over the slooulder like the Roman toga; a amall wilk fillet pucirclea the templea, and atrings of gold leade, c° ng, and rings nre worn round the neek, wriste, arma, anJ ankles; the sandals are of fine green, red, and white leather. Lumps of rock-gold hang from the left wrist, which are supported on the heads of boys; and wolveu' end rame' healln, of cast-gold, an large as life, hang from the sword-handlea. The warriors wear caps of eagles' feathera, and of pangolin and leopard akin, tho tnila hanging down belind; their corselets are of leopard skin, covered with gold coekle-shells, and stuck full of knives whosthed in gold and silver; and their cartouch-boxen, of elephant hide, are siniilarly ornamented; silk scarfos and horses' tails stream from their arms and waistecloth; iron chains and collars dignify the most daring; and the sidea of their facea and their arms are curioualy puinted in long white stripes, having the appearance of armour. Even the executioner wears on his breast a massive gold hatchet. The pplendour of all Ashantee pageants is enhanced by large umbrellas or canopies of the most showy cloths or silks, crowned with emblens in gold.

Moidern Figyptians.-Egypt has long been inninly occupied by Arabs, whose manners and cuatoms are a combination of those which provail most generally in the towns of Arabia, Syria, Northern Africa, and in a great degree, Turkey, whose characteristice of costume have already been aketched. Nevertheless, the Arab-Egyptians "aro to be regarded as not leas gonuine Aral)s than the townspeople of Aralis itself;"s and although their dress has pointa of resemblance to the costumes of all tho countries referred to above, it will be found to possese great originality of character and interest.

The dress of the men of the middlo and higher classes hat remained almost the same during the lapse of centuries. It consista of a pair of fill dravern, of linen or entton, descending a little below the knecs or to tho nnkles; a full-sleeved shirt of linen, cotton, or silk, over which, in cool weather, in worn a short vent of cloth or atriped coloured ailk or cotton, and a long veat of the latter materials descending to the ankles, and having foll siecves divided from or a littlo above the wrixt. A coharred shawl or piece of white figured muslin ia worn
alane's Account of the Mannera sad Customs of the Modern Cryntsum
round thle veat as a ginile ; and the unual outer robeng, loug cloth coat with or without slee ven. The turban emer xisfa of white mudin, of a Cann" mere shawl wount mand u cloes red cloth cap, with a dark Whe ailk tamel and crown, lieneath which in worn a ctome cetton cap. Tis head in ahaved, exeypt just C the "run" and moderute learila are con. \cdot.\%: Stocka are occomion ally worn, but atockinge are rios in une 1 the divees at of red morocco. pointed and turned up at tho tora at sometimes theme are worn over yellow noroceo amen In the girille ia worn a case-kuite, a dagger, or a cam in ink and pens. The pipe in gencrally cartied; and to tolaceo-pouch and hanilkerchlef aro crammed into of bonom of the onker vest.
The humbler clanaen wear irnwera, and a full blo linen, cotton, or brown woullen gown, wide alreved, and open from the neek to the waist, where in nometimes white or red woollen girdle. The turban is of whie, or yellow woollen, cotton, or muslin, round a whitaw brown felt eap. The pooreat clanaes wear only this en and the hrown or blue gown, or merely a few raga cold weather, they sometimes weas coarne black orth riounly-atriped woollen cloake. A luwe and white phif is likewise wgrn over the ahoullera or wrapped dial the body. 'The shoee are of red or yellow nioroco, a of nheep-skin.
The curluan in the most distinctive article of Egyphe dross; it is genetally of black, hlue, gray, or light brom to distinguish the Moslem weaters from the Copto E . the Jews. The form of turbana now worn in Egh does not var; much: the 'Turkish is elegant, and iै Syrisn is viry wide. A descendant of the prophet alonet privileged to war a green turban. We may here ntat a few of the turlana of Africa and Aain: 1. Rounde bnn, common in Africa: 2. An elegant Eigyptian turtow 3. Fez worn at Constantinople; 4. He:al-dress of t peasantry of Lehanma; 5. Drapery to keep off coll a rain, worn by the Bedouin Araba; 6. Loose Syrian tuthe

Eatiern Head-drensea

The women of the middlo and higher orders of Eey dress elegantly; under their shift, which is like men's, they wear very wido trousers of silk, cotton, muslin, coloured or white; and over them a long th closely resembling that of the men. A shawl or ef broidered hanalkerchief is put loosely round the ruf as a girdle. The outer robe is of cloth, velvet, of is einbroidered with gold or silk, and generally resemb that of the men: though, instead of this robe, a juth is often worn. The head-dress consists of an underth upper cap, round which is tiglitly wound a kecthied printed or painted muslin or crape, and to it is atas a muslin veil enbroidered and spangled, and buth from tho back of the head to the ground. The hiu worn plnited or braided down the back, with neth
pilden ormamenta : a neth side of the fuo morn, but innep ahoee pellow alippera, with from four to nine in Bueh in the in moor dt spoad, they went ove af pinkt, rome, or viole orer tha head (black nnmarried), and a lon finm under the eyean n hort bools or sock a This dreas resemblen diplaye the eyen, wh gature of an EkJptial
The poorer class of I coarse black fare-vei leal veil. A very lar, per is also worn by the ablack eilk kerehiof, diagonally in a knot bu meso, round toed; bu freceveil are rarely scet of Cairo never concen mon female drees in brad-veil ; and in Up relope chemselven in a beadrevil, which, thous whas is that "the wom bent upon them to cove bend than the face, and ban moet other parts leas seen in ttio count miverable rags, and oth

AMER
In all those portion and tha United Statea, by in English race, the prevail, any differences importance. Peculiarit continent has therefore tive Indian tribes, and a ar Portuguese settlers. North American Indi mea of the foresta and pring the vast region to

North A
ote most interesting sp World, enthusiastically of Raphael or Hogarth. triordinary people is,
anter rote b, he lurban em I wount round clanmel at is ton caph ITw and muntactia - ate occavion the shoes an al Hie toen; moroces shom er, or a casom hr rried; and the maned into to
nded fall wh ide alreved, and is somectimes in of white, nod und a white on or enly this en a few raga bo ren black of n and white phis wrapped show low moroces at els of F Pivin , er light brom the Copts in worn in Egt legant, snd 1 - praphet alonei may here notia : 1. Round to Byyptian turban, paldetres of in eep off cold od se Syrian turta
widen omamentes ano iwo fall locks hang down on weh side of the feoc. Btockingn of socks are rarely morn, but inner whoen of red or moroceo, and over them gellow slippers, with high pointed tges $;$ or worden eloga, from four to nine inchen in height, richly ornamented. Such is the in-loot dreme of the Egyptian ladica, When ,hroad, they wear over this ilress a large loose silk gown of pink, roee, or violet colouri a aort of ailk robe tied over the head (black for the mnrried, and white for the unmarried), and a long whito uuulin face-veil, reaching fon under the eyes neuriy to the feet. Yellow moroceo thert boots or mocks are worn unter the yellow alippers. This drene reaemblea an unalghtly diaguise, though it dipplays the eyen, which are always the mout beautiful fature of an Hgs ptian woman.
The poorer class of women wear trouners, a blue shirt, b coared black face-veil, and a dark blue mualin or linen lead veil. A very large blue, white, and red plaid wrapper is aleo worn by the midulle class. The head-dress in black ailk kerchief, borilered red and yellow, and tied diagonaily in a knot behind. The ahoee are of red moroco, round toed; but In Upper Figypt shoes and the face-veil are rarely scen; and some of the joorent women of Caizo never conceal their faces. But the most common fenale dreas in Egypt is merely a blue shirt and Ledeveil ; and In Upper Egypt, aome of the woinen envelope themselven in a dark brown woollen wrapper and beulveil, which, though dull, is pictureaque. Mr. Lane tella us that "the womish wi Egypt dean it more incumhent upon them to cover the upper and back part of the bead than the face, and more requinite to conceal the faco than moet other parta of the person." Ho adds, that he hes seen in thle country women but half covered with minerable raga, and others atill nearer a etate of nudity.

american costumes.

In all those portions of Amerien, including Canada and the United Statea, which havo been long possessed by an English race, the costumes of Eugland and France pevail, any differences which exist being only of minor importance. Peculiarity of costume on the American continent has tharefore to be sought for among the nafive Indian tribea, and among the deacendants of Spsnish or Portuguese settlers.
North American Indians.-The Indian eavagen, or red men of the foresta and prairies of North America, occupring the vast region to the west of the Missouri, present

North American Iadian.
the mont interesting epecimen of costume in the Ncw World, enthusiastically deacribed as "worthy the pencila of Raphael or Hogsith." The condition of these exrroodinary people is, indeed, highly favourable to the
diatinctions of dreas : they are divided into tribea (of whom great numbers are warriors), which are much lese broken than the feudalim of those countrien of Euroge in which contumea are mont atrongly markel.
'The general dreas of these tribes conaints of a skin shist, a robe of hide, los 'ings, and mocasains, and equipmenta and decorations in great variety. The fanhion of long halr in almont univeralal but, contrary to Furopeen uage, the women are not permitted to indulge in thim tante. The length of the hair of a chief (who recelved his name and office in consequence) is stated to have meannred ten fect aix inchem,

In the costliness and elegance of their costumes the Blackfeet and the Crown are, perhapa, unxivalled. The materiula of their dreases are nearly the same ; but thero is a dintinctive mode in each tribe of atiteling or ornanenting with poreupine quills, which are the principal decorations of ali their fine dresnen. The attire of a chief of the Blackfeet consiats of a slilrt or tunic of deer skinn, the seams embroidered with porcupine quills, and fringed with the locks of the hair of victime alain liy the chinef in battle. The legginge are of the name material and trimming, as are alwo the moenasina. Over all is worn a role of young buffalo-akin with the hair on, the Inside beiag garniahed with porcupine quilla and rude representatione of battlen. A long pipe, bow and quiver, lance and shield, complete his equipmenta. He is olmoot always on his horse's buek: and thua armed and equipped, his appearance la very pieturempuc. A Crow sometimes wears magnificent crest, or head-dress, made of the quills of the wareeagle and ermine akins; and hia hores is covered with a many-coloured net terminating with a crupper, embossed and fringed with beautiful sloblla and porcupine quills. Necklaces of bearn' clawe and otter-skin, and ornamented tobacoo sacks and belts, are too numerons to describe. The medicine bag ia also an important article of costume; it in formed of the skins of animals, of birds, or of reptiles, varionsly decornted, and always stuffed with grass or mosn, and generally without drugs or medjcinea in them, as they are religiously closed snd sealed, and carried an a sort of protection throughout life. The acalpe (from the crown or centre of the head) of enemies are preserved as records of a wsrrior's prowess, and their locks used as trimming. Sometimes a war-knife and buffio horna are worn upon the head, which is ahaven: and the shied and spear are decorated with feathers. In short, nothing can exceed the picturesquo variety of these aboriginal costunses, or tho vanity of their wearers,

The women wear long loose robes or wrappere of skir, and carry their children strapped to a kind of frame ar their backs. The snow-shoe must not be forgotten; i_{1} is about three fect long and one foot wide in the broadest part, and its frame is filled with a network of twisted deer-skin, strengthenel with sticks placed crosswise; the foet is confined to the shoe by skin strings, though to walk well in these shoes requires as much practice as to navigate a canoe.

Mericans.-The European dreas is common in Mexico, and has long been worn by the higher claseen the people are fond of change ; for it is related that a travetler having left a book of Londion fashions at Xalapa for a few months, on his return found an entire revolution in female dress, founded upon the English model. Still, many picturesque dresses are seen in Mexico, in great measure the introduction of the Spaniards, whose celebrity in tho annals of European costume will doubtless be romembered by the reader.

The national riding-dress is of all the most curious, and is enormously expensive. The back and quartere of the horse are covered with stamped and gilt leather. fringed with tags of brass, iron, or silver, which jingle a: every step. The saddle, which is large, is superbly embroidered with silk, gold, and silver, and the pummo!
mlaid with theso metals; the bridle has large silver ornaments; and an Arabic bit. Tho horseman is attired with corresponding richness. His sombrero, a lowcrowned hat, with a brin six inches vide, is broadly edged with gold or silver lace; his jacket, of cloth or printed calico, is likewise embroidered with gold or silk, or trimened with fur; his brecehes are genernlly peagreen or azure, open at the knee, and terininating in two points below it, and they are thickly studded down the wide with large silver buttons. Next is the riding-cloak, otten of velvet, and cmbroidered with gold. But the beots are the pride of a true Mexican cavalier; they are formed of decr-skin, well tanned and soft, stamped with figures, and bound round the legs with coloured $r \therefore t$ rs below the knees. At the ankle commences the shoe, which, at the top, spreads out six inches, like a matiop-shell. The spurs, of silver, are very heavy, and have rowels three or four inches in diameter, and ofien a bell attached to the side.

The costume of a muletecr is likewise very striking: the jucket, of embossed russet lenther, has silver buttons; the overalls, of the same material, are cut so as to be the length of the foot, and ure sustained by a red silk sash above the waist, allowing the shirt to nppear between it and the jacket; a pair of huge silver spurs rattle at the heels, and a long straight sword hangs from the waist.
The ladies generally wear hlack, but on holidays the colours are very gay; shawls are worn over the head like the montilia; and the country ladies wear a profusion of spangles; and they are as proud of a neat shoe and a small foot as the remales of spain. Few ladies appear in putlic on foot, but in enomous coaches, in full evening costume, smoking cigars. The millibers of Mexico we so many brawny mustachioed men, who may be seen in the shops making flowers and dresses and trimming capa. Next duor, women may be scen on their knees grinding chocolate; but in all semi-harbarous nations the hardest labour falls to the women's. chare.

Colombiaze.-The Colombian costume is chicfly borrowed from the mother country. The Spanish mantle, or a wide cloak which envelopes the whole person, is the usual attire. Bat in the strects of Bugota a female may be seen smoking her cigar, and wearing a handsome broad leaver hat, pearl necklace, many rings, and a rich black mantle, ornamented with bugles, but walking without shoes or stockings. The ladies of rank, hovever, are proud of their pretty feet and stmall ankles, which are always set off by handsome silk stockings and very neat shoes. Like the women of Spain, they walk with grace and dignity, and are equally coquettish and ptayful with their fans. A black or hlue cloth mantilla, and a small conical black beaver hat, and blaek silk gown, were formerly the walking dress; but large French bonnets, with artificial flowers and gay silk gowns and neckerchiefs, are now much worn; and the walking evening dress is a pletty straw hat, with artificial flowers; a warm Norwich shawl, and chintz or cotton gowns of British manufacture. Pearls, emeralds (the largest in the world), gold chains, and crosses, and very large pendant gold and pearl-drop ear-rings, are worn in profusion. The women of the middle class generally wear an embroidered scarlet petticoat, a white beddlice, with frills and rithons, and a parti-coluured cotton land; the hair is plaited. and ade ned with artificial tlowers. The dreas of the men is Spanish, with jack-boots and long rilyer sport; and a cloak made of rushes, a large straw hat, ond bark sandale, are much worn in travelling.

Ot the native Indian tribea of this territory, the Carribheos tre the finest race; the head is shaven, except a suft on the crown; both sexes paint themselves, and weat onf a band or wrapper of blue cloth; they are of a red him copper colour, and, with their picturesque dra-
pery, resomble bronze statues. The women baybaratay ormunent their infants by raising the flesh in ulternatin stripes from the ankle to the hip. The Chaymans, an other tribe, only wear clothes out-of-doors, and then a light cotton gown.

Peruvians. - Peru presents many interesting pectu kiaritics of costume, owing to the various races of ith population. The Indians, or nativo Peruvians, in their malo dress, remind Mr. Templeton of the peasnntry of Connaught; they wear coarse brown frieze brecches open at the knces, a vest falling in strips rcund the waist, where it is confined by a cord, and a aort of loose ciook shirts are seldom worn; the legs are bare, with tha exception of low hide sandals; and the hat resemble Don Quixote's helnet, without the niche in it. The women wear a short petticost, and a scarf round the shoulders, fastened with a large sibver pin or a spoon The Cholas, of Indian and Spanish desecnt, ore very fond of dress and ornament; the girls wear a petticoat containing from twelve to fourteen yards of rich velvet or satin, trimmed with ribbons and gay flowers, a scarf ouce the shoulders, and a narrow-brimmed black hat, like that of the Welsh women. or a broad hat, with a little lace, silk, or velvet-festooned turtain attached to it. Thes wear gold and silver ormaments and jewels in profusion.

The women of Limn wear a very unique costume, consisting of a closely-fitting petticont of velvet, satin, or stuff, with a waisthand and buckle; fringe, lace, spangles, or flowers on the lower part, and elcgant sit stockings and satin shoes; the manto, or hood, of thin crimped sitk, is drawn round the waist, and then turned over the back of the head, and enveloping all the uppt part of the person execpt one eye, thus completely dis guising the wearer. The ladies of Lima sit on horse hack like men ; the dress is then Furopean, with a lame shawl over the head, and a Manilla gress hat abose dif, and huge gold or silver spurs on their satia shocs.
The Peruvinn ladies aro fast adopting the Frened fashions, and many marchandes des modes are establiseded in the largo towns; but the Spanish fan is still retoined; the mantilla may also be seen, and the long veil falling down the back. The hair is very lixuriant, and uni. versally prized, so that a poor peasant girl has leen known to refise $£ 7$ or $£ 8$ for her weaving tiesses. The shoe of the Indian city dame strongly contrasts mith the hide-sandal of the peasant ; sometimes a prir cost ten dollars; the heel spreads like a lim, an.' is sdorad with shreds of cloth, spangles, and gold and silra tissue.
'I'he Pernvian male costume has little worth natie: and it would be better for the men of Peru if the woora only took the lead in dress. The Tucumano weas trousers, and a large figured shawl over his shitt, with very broad-brimmed conical-crowned hat ticd under the chin. 'The Indian merchant has embroidered brection and jacket, a rich fringed mantle over the left shodle, and a belmet-shaped ormamented rap. Int the Peturis gentlemen mostly sess in the English fistion, and our goods are preferred to either French or German mans factures.

The cloak of the country, or the poncho, is an oblocy squere gament, with a hole in the centre for the hwi; it is made of cloth or silk and vicuna wool of very taro ful colours; it is worn constantly hy the men, hut onfte tadies when on horseback. Mr. Temple* descriksi pair of light summer boots made without seam ar sum of the skin of the hind legs of a horse, and dried redit for wenr in a week-" casy as a glove."

Chlians. \& x-- imong the changes produced in the by free trade, is the general substitution of the Encis for the Spanish-American costume; and the prinejul
peculiarities of costu and other half-wilt. d
The equipment o is truly magnificent embroidered on a w India cloth; his wais gold buttons; his shor cambric, richly tamb relvict, with gold but from under the knee worked extremities of doth, and ample as showing a pair of br bis $\begin{aligned} & \text { kin boots fit the }\end{aligned}$ fits the hand; the top: to the hecis are attuc bat is of Peruvian str atound his waist is a r as rian rabelt, braces, a nuife in a arorocco she caparisoned: the ande mounted, and the stirrt least ten lbs. of virgin oplendid than this horse America.
at Puenos Ayres an are much in request. bue sed white round seen in dishabille durin pronenade completcly e or Paris.
Brazilians,-The va traces of its original Ind nerer been incorporated Luring retiral before th Here some of tho tribes iy hanging pieces of w they hang down to the smilarly extended. A been borrowed from t costome was generally the free intercourse of 1 of dress were assumed fumiture and domestic beir introduction in 1 ray, and women might rear previous, would h: ad thick eloths, and h and slipshod. The min bample a supply of cle manalactures have mad wher of the South An impolsat fabrics are g rery beautifully wrough Ria Janeiro is almos well ss style of building blacks and mulatoes Salvadur is a gayer city dress is much followed, ative. Thus we find Indian, mounted on a m bis jacket faced with ru spurs; his but is broad phlare-band; his sath lis right shoulder, and che, while his dagger is In the provine:s, san nere the Braziliar, shoe English manufictures; infer a shirt :end drawers, adly thumbht himself a yect accordingly. 'Io t

- Travels in Pera and Polosi.

Dasbureumity

 in alternatin laymans, anand then aesting peco races of its ians, in their peasantry of eze bresches ind the wijsh loose closk re, with the lat resemblet in it. The rf round the l or a sionn ent, are ver ar a petticont - rich velvet 0 s, a scarf over hat, like that a little lace, to it. Tthey wels in pro
ique costume, - velvet, satin, ; fringe, lace, 1d elegant sint hood, of thin nd then turned y all the uppor completely dis a sit on horise n, with a lare s hat abose ath in sliocs. ig the Frind are establisted is still retained; ong veil Galling ariant, and unigirl has beem y tresses. The contrasts with hes a pair cots an! is sdorned old and silea
worth notie: U if the wowia cumano tess his shirt, with 1 tied under the jidered breecias ie left shoulien at the Perurim anshion, and our Gicman mano
n, is un obleas e for the hedi; il of very tax ien, hut only? le* describes seam or sith and dried reat
oduced in (h) of the End 1 the princif
peculiarities of costume remain among hunters, guachusa, ped other half-wilh denizens of the country.
The equipment of a rich guacho chicf at Paraguay is truly magnificent: his Per. ian poncho is superbly embroidered oll a white ground; his jucket is of fino India cloth; his waistcoat embroidered white satin, with gold buttons; his short collar and front are of fine French ambnic, richly tamboured his breeches arn of black relet, with gold buttons, and open at the knees; and from under the knee-bands are seen the tringed and worked extremities of a pair of drawers of fine l'aragnay cluth, and ample as a 'lurkoman's trousers, and just showing s pair of brown cicund woel stockings; while Lis skin boots fit the fect and ankle as a Frencli glove fis the hand; the tops are turned over like buskins, and to the hecls are attached largo silver spurs. II is largo has is of Puruvian straw, with a black selvet band; and around his waist is a rich erimson silk sash, which serves as riou., r-belt, braces, and girdlo for a huge silver-handled snife ia s anroceo sheatli. His horse is alike gorgeously caparisoned: the ardde, bridle, and reins being silver mounted, and the stirrups claborately wrought out of at least ten lbs. of virgin silver.* In fine, nothing more plendid than this horse and rider can be found in South America.
a: Buenos Ayres and Mendoza, British manufactures are much in request. In the latter town the men wear bue and white round jackets; and the women are only sea in dishabille during the day, but in the evening they promenade completely equipped in the costume of London or Paris.
Brazilians.-The vast region of Irazil presents a few traces of its original Indian harharism, the natives having aerce heen incorporated with the European settlers, fut Laving retired before them ints the depths of the torests. Here some of tho tribes paint themselves frightfully, and in hanging pieces of wool to their ears, streteh them till they bang down to the shoulders; and the under lip is sailarly extended. A seanty portion of clothing has ben borrowed from the Portuguese colonists, whose costume was generally adopted in the towns, until, by the free intercourse of Brazil with Encland, our fashions of dress were assumed by the Brazilians, as well as our fumiture and domestic habits. Within two years from bior introduction in 1818, English goods made their myy, and women might be seen dressed in silks, who, a sear previous, would have worn Lisbon printed cottons ad thick cloths, and have gone to church stockingless nd slipshod. The mineral wealth of Brazil has ensured क) mple a supply of clothing from other countries, that manufactures have made less pregress here than in any ther of the South American colorice; and the only important fabrics are gold and silver articles, which are rery beautifully wrought.
Ris Janeiro is almost a European town in dress as well ss style of building, though its crowd of half-naked blacks and mulattoes soon destroys the illusion. St. Salvadur is a gayer city; and hero the French style of dress is much followed, but tho officinl costume is more native. Thus we find the secretary of State, a halfIndisa, mounted on a mule, and dressed in white cotton; this jacket faced with red, and loggings with pomberous spurs; his hat is broad-brimmed and glazed, and has a phldact-band; his sash is yellow; a gold epankette graces tha right shoulder, and a huge loner sword hanes by his che, white his dagger is fastened to his right kuee.
In the provine"s, sandats with loops and ankle-rings mere the brazilias. shoes long after the introluction of Eaglish mantiotures; mal when a mative took to wearing a shirt and irawers, a loug ted-gown und slippers, he aldy thonцht himself a genteman, and entitled to reyect actordingly. 'lo this day the arts of bife aplear to
be unknown in some villages, where the natives are bave from the waist upwards, and the children wear no clothes whatever. Even at Rio the extremes of mankind are collected, and the slave population merely wear a waisteloth.

Irrazilian.
At Pernambuce, the benefits of its large cotton-trade are evident; white and ecloured muslins alternate with silks and satins; and the men, who formerly wore fulldress suits of black, gold buckles, and cocked hats, now wear Nankin pantaloons, half-boots, and round hats; and even the scdan-chairs and their bearers are improved The costume of the Sertancjos, the graziers of the interior, is partly aborigiual; his pantaloons or leggings, jacket, and hat, are of brown undressed leather; a tanned goat-skin tied over his breast; slippers eonfined by straps. and iron spurs upon his naked heels. He carries on horseback a change of clothes in a piece of red baize, with tinder, tobacco, and pipe, and a knife in his girdle. The Sertanejos women merely wear a chemise and petticoat within doors, and shoes ard a white head-cloth when they leave hume. Before the direct trade with England, the coarse cotton cloth of the country was worn by both sexes; and then a dress of English or Portuguese common printed cotton cost from two to three guincas!

The preceding engraving represents a Brazilian sugarplanter. He is well elothec and armed, and his horse is superbly caparisoned; the mountings are silver; and such a saddle as is here represented, when made of morocco leather and green velvet, silver-mounted, sometimes costs one hunitred guinces. He travels, with his wife, in rude state, the lady being horne by negroes in an embroidered hanmock, and uttended by a fenale on foot.

It may be mentioned, that jewels and gems are worn profusely in Brszil ; yet, although it is the land of the diamond, the splendid beetles of the country are worn as brooches. The coromation attire is magniticent. The crown, exeept the green velvet cap and the band of gold, seems one mass of diamonds; the rutl is of smanish lace; and the green velvet robe, embroidered with gohd, hats, in place of the ermine in other regal attire, a dress cape of the briaht yellow feathers ot the toucun, which was pars of the dress of the ancient cariques of the comery. Tho imperial under-dress is of white satin, embroidered with gold, high militury loots, gold spors, and is diamond-litted sword. At court the nobility wear the costumes of their ancestors centuries since; and in the national musenm are preserved the suprob fouther coroneds, dresses, and omaments of the atorisimal eliefs."

aUstraiastan costumes.

The costume of the English settlers in the Australinn montinent and islands is, ss may be supposed, purely Eusopenn, the London fashions being regularly transmitted thither. The only peculiarity of costume is among the native tribes, who, placed at a low condition in savage life, are dressed in the most primitive and barbarous style.

The clothing of the men of certain tribes consists of a skin cloak worn like a robe over the shoulders, and fastencd round the neek, the fur part being turned inside in wet weather. Around the waist is worn a belt, not unlike an officer's sash, made of opossum fur; and nttached to it are flaps of opossum skin cut in stripes, and worn before and behind; and a skin purse and tobacco pouch are carried in this belt. The jet-black hair is worn long, and well greased; but some tribes tie it to the top of the hend with bunches of reeds and cockatoo feathers; and they wear tho beard. The skin is tattooed in stripes, more especially among the natives of the south, which renders them terrific in appearance.

The women also wear opossum skin-cloaks; and they have one or two nets, in which they carry at their back an infant child, and burdens generally. Their hair is ahorter and more curly than that of the men, and is occasionally ornamented with ksngaroo teeth, affixed to their locks by wax, so as to dangle all round their heads. Both sexes are very fond of ormament, for which purpose they thickly coat their skin with fish-oil, and on high occasions smear their faces with red and white earth ; on their bolies are traced the forms of birts and beasts, and the jaw-bones of tish and the tails of dogs are favourite decorations; and through the nose is often worn a feather or pirce of bone. They carry spears, clubs, and other weapons, in great varicty.

Nete Zentanders.-The natives of New Zealand, considered by Dr. Laing to be of Asiatic origin, are physically and intellectually superior to the New IIollanders, although they are yet essentially a savage people. I'heir personal appearance is very fine; their mean complexion is that of a European gipsy; but their faces are muels disfigured by tattoning. Their chiefs have fine athletic forms; and their mat cloak tied over the right shoulder, and descending to the ankles, brings to the mind of a classical beholder the Roman toga; whilst their towering stature and perfect symmetry give even more than Roman dignity to the illusion. The young women, too, are graceful, and have expressive eyes and a profusion of long silky hair.

No two persons are tattooed exactly alike; it is generally cominenced on the lips, then on the checks, and progress is made alike in embellishment and age. Tattooing is no sign of rank, for slaves get marked as much as chiefs; but every trike has distinetive insignia. It is considered a mark of beauty; and some of the young catives have their bodies marked over with small dots, resembling the blue spots in a Gucrnsey frock. The most valuel article of dress is the pui, a sort of clonk formed ef the skins of dogs, the furs cut lengthwise, and
sewed alternately white, brown, cr black, to a stronz matting. These garments are sent to the principal chief as presenta. The common native mat is made of far acraped with the mussel-shell. Another mat is made of silken flax, interwoven with blue, red, and green baiza purchased of the Europeans: it is worked with samples. like borders of elegant design. This is a handsome summer dress ; but for warmth and comfort, the English blanket is in universal repute.
The mats are worn over the shoulders, tied across the breast; and around the waist is a similar mat, fastened with a belt. Spear-grass and redgy cloaks are worn in wet weather. The women affoct less handsome appatel than the men, but they are fond of ornament. Red manre and shark-oil are the cosmetics used from head to . Both sexes wear in the ears paroquet-skins, bones, cl . beads, teeth of friends, enemies, dogs, pige, \&c., and are generally garnished with sealing-wax : armlets, ninglets, necklets, and anklets, and fancy wood combs are worm, and nose ornaments by the men. The hair on galadayn is worn in a topknot, with sea-fowl flowers; and various paints are used.

English female garments are already much in request; and the men mny he seen strutting about in a castof cloth jacket; and this passion has been indolged by the missionaries and colonists from England. It has been well observed-" True it is, till their European costume shall become complete (and perhaps even then), they will look more noble in their mat-cloaks; but no bar barous country was ever civilized till the people had adopted the costume of their eonquerors; and the es. pensive and complicated dress of refinement and fishion is the taste that will lead the savage to industry and the arts of peace-not the head-dress of plastered hair and the garment made from the cloth-tree."*

The engraving represents a family of New Zeaind crs, two of whom wear the fine coloured silken flax-mom and the third the blanket robe.

* Murray's Eacy clopada of Geugrsphy.

BRITISH

The original inhab Caltic descent, and a them the 'Thracian cu queczing certain colo the points of needles. in appearance the tatt and although person leading object of this hase been generally

piet.
appeat to have been n the first century, whe and Eastotn Britain e tunic, reaching to the
In the dress of the They appear in two ankles, and the othe about half-way down round grown, or bed latter, distinet from bo to be ancient. This to bence our word gown of blort dimeusions dasses in England, S
anoloo-saxon
Whatever traces o Britain by the Roman arival of the Saxons apparel from northern the Romanized Britis change for several cen
The common dress tury consisted, as we kind of sateont ; cloal ders with brooches; which were worn ba disgonal erossings. I eaty Anglo-Naxons: common; it was ver comfort, being open thoug passed thrours drawn tight round the len cap, ralled lift (h vorn ty the hizher e generaliy believed th withoat any other a mature had givent then
alluough Sir Walt

BRITISH COSTUMES.

bRITISH AND ROMAN PERIOD8.

The original inhabitants of the British isles were of Coltie descent, and aro believed to have brought with them the 'Thracian custom of tattooing their bodies, by squeezing certain coloured juices into figures mado with the points of needles. Hence they mist have resembled m appearsnce the tattooed islanders of the South Seas; and although personal distinction may havo been the leading object of this speciea of ornament, it appears to hase been generally adopted by barbarous half-clad tribes. Among the Southern or Belgic Britons, at the time when Julius Casar landed in the country ($55 \mathrm{n} . \mathrm{c}$.), the arts connected with clothing had made some advance; but in the more northern parts, the practice of living half naked, with painted and tattooed bodies, was common, and remained till s much latter period than in the aouth. Such fanciful decorations are supposed to have given name to the nation of Piets, from the Latin word picti (painted) ; bat other authorilies refer the term to different origins.
The Roman dress does not appear to have been adopted until towards the close of the first century, when the better elasses of Southern and Eastern Britain exchanged the brarcer for the Roman tunic, reaching to the knee, and the foga or mantle.
In the dress of the women there was but little change. They appear in two tunics, the one reaching to the ankles, and the other has short sleeves, and reachos about half-way town the thigh; or they resemble a round gown, or bed-gown and petticoat, though the latter, dist net from body and sleeves, is not considered to be ancient. 'This tunic was called in 13ritish gevn, and bence oar worl gown; of which we still see specimens of short dimensions worn by women of tho humble dasses in England, Scotland, and Wales.

anglo-saxon and danisit pellods.

Whatever trares of costume may have been left in Britain by the Romans, they disappeared soon after the arival of the Naxons in 449, who introduced fashions of epparel from northern Gernany, which were copied by the Romanized British, and continued with no material change for several centuries.
The common dress of the males of the cighth cenbury consisted, as we find, of linen shirts; tunies, or a kind of sarecat ; cloaks fastenad on the breast or shmilders with brooches; short drawers, met hy hose, over which were worn bands of eloth, linen, or leather, in disgonal erossings. Leather sandals were worn hy the early Anglo-Naxons: but afterwards the slioe became common; it was very simple, and well contrived for comfort, being open down the instep, and there, by a thoug passed through holes on each side of the slit, drawn tight round the foet like a purse. A felt or woollea cap, called hipt (hence our modern word hat), was vonl ly the higher classes of Anglo-Savons; but it is generaliy believed that the serfs or lower orders were withou any other covering for the head than what mature had given them.
Aliturgh Sir Wulter Scott, with the natural molesty
of genlus, disclaims pretensions to complete accutacy in the eostume of the charactera in his historical romatices, the following portrait of Gurth, the Saxon swineherd, in "Ivanhoe," is nentIy correct: "His garment was of tho simplest form imaginshle, being a close jacket with sleeves, composed of the tanned skin of some animal, in which the hair had been originally left, but which hal been worn off in so many places that it would have heen difficult to distinguish from the patches that remained to what creature the fur had belonged. This prineval vestment reached from the throat to the knee, and served at olice alt the purposes of body-clothing. There was no wiler opening at the collar than was nocessary to ndmit the pussage of the head, from which it may be inferred that it was put on by slipping it over the head and shoulders in the manner of a modern shirt or ancient hauberk. Sandals, hound with thongs made of boar's hide, protected the feet; and a sort of roll of thin leather was bound artificially round the legs, and, uscending above the calf, eft the knees bire, like those of a Scottish Highlander. To make the jacket sit more closely to the body, it was gathered at the middle by a broad leathern leett, secured by a brass buckle, to ono side of which was attached a sort of scrip, and to the other a ram's hom, accoutred with a mouth piece for the purpose of blowins. In the same belt was stuck one of those long, broad, sharp-pointed, and two-edged knives which were faloricated in the neighbourhood, and bora even at this early period the name of a Shetlich whittle The man had no covering upon his head, which was only defended by his own thick hair matted and twisted together. One part of his dress only remains, bat it is too remarkalle to be suppressed; it was a brass ring resemhling o dog's collar, but without any opening, and sohtered fast around his neck; so loose as to form ne impediment to his breathing, yet so tight as to be inca. pable of heing romoved, excepting by tho use of the file. On this singular gorget was engraved in Saxon charac-ters--Gurth. the son of Beowult, is the born thrall of Cedric of Rotherwood.' "

The Anglo-Saxon females wore under-tunics, with sleeves; another imer garment, the limen kirtle; and over these the long full gown, with loose sloeves. The head-dress is a hood or veil, which, falling down incore, was wrapped round the neck and breast ; and this was the only head-covering of the women when abroad. The hair was curefully dressed, and golden head-bants, half-cireles, neek-bands, and bracelets were worn ; with ear-rings, nucklaces, crosses, and jewelled ormaments too numerous to deseribe. The hose and shoes resembled those worn ly the men. 'The long sleeves of the gown or the mantle, drawn over the hamls, served as gloves, which were not wom before the eleventh eontury. All classes used on their cheeks a red cosmetic, so that the art of painting the face is not a ereature of redinement. The general colours of the dreswes wete red, blue, and gieen, sometimes emhnomeded in patterns; and gold tissuo and cloth of goid were won
by princesses and nuns; and the lattor embroidered robes, sandals, tonies, vests, cloaks, and veils of enormous cost-for pearls and precious jewels were interwrought with the materials, and sometimes three years were spent in working one garment; and their dresses were often lined with sablo, beaver, and fox furs, or the skins of lamles or cats.

The Danes originally wore the dresses of sailors, the general colour of which was black; but when eariched by piracy, they soon became wearers of scarlet, purple, and fine limen, and in England outshone the Saxons; they were effeminately gay in their dress, and the length and beanty of their hair. 'lhe Anglo-Danish kings appear principally to have worn a red hatit, embroidered with gold, and a purple robe; and their mantles were richly embroidered with gold und pearls. Upon a matanscript of the reign of Canute, he it, however, represented in a saxon driss, the mantle being riblly ornamented with cords or riblons, and tassels; and he wears shoes and stuckings with ambroidered taps. Ilis body, when discovered in Winchester Cathedral in the year 176t; was decorated with gold and silver bands, and a richly iewelled ring; bracelets were worn by all persons of rank, and invariahly buried with them. Canute's queplo wore the tunic, mantle, and long veil. T'he materials of the Danish dreases were cloths, silks, or velvets, procured] either from spain or the Mediterrancan, by plundering the Monrs.

From the Danish Invasion to the Norman Conquest there were fiew ehanges in costime, if we except the imitation of Norman-Freneh fashions in the reign of the Cunfessor, by shortening the tunics, clipping the hair, and shaving the heard, hut leaving the upper lip unshorn. Tattooing was practised even to this, tine, althoterh it add been forbidelen by a law passed in the eighth century.

ELeventh tiln fountefntia century.

The Norman Conyuest introduced a greater degree of tasto and splendour into British costume; litt the dress of the common order of people remained long of a comparatively rude fashon, parly from the clfece of caste and smm,tuary laws, which prevented any decided change. As time adsanced, the materials of dross improved, but the cut was little different. and, till this day, we have a sample of the Angh-saxon tunic in the smork fract, a species of overall linen shirt, very generally worn by the peasantry of lingland. 'lye bhuse, 3 binen shirt of Whe instrail of white, which is now universally worn hy workmen in France, Switzerlathl, the low Countries, and part of fiermany, han an equally carly origin.

In the reign of Rufus many cosily changes were made in dress; the tunies were lengthened, and the undergarments even trailed upon the groums. The sleeves ware also dirawn ower the whole hand. athough cloves wore worn, at least by the hisher classes. The cloth mantes were limed with rish lurs ; and one lined with back sables and white spots root elot. Eistravagautly peakent-toed boote and whers were sorn; and a court coxromh, wha cansed the prints of his shoes to carl like a ram's hom, receivel the name of loc fornibue, or with the horas. 'Ibe hair, which had been shorn from the back of the head as well as the face by the Sormata-「remp, wat how benin worn hame a and the ourtien in shephen's reimenen wore atificial hair, so that wise mus late from the twelfthenture. The long teard alse re ippeated in the refien of lhenry 1 .

The nammental ethigers of Henry II. and his queron
 the abley of lomoramb, Normanly, are umboubted "xamples of the weal costume of the latter half of the
 reign, seulptarnil in thatir hatits, as if they still lay in state. 'Jh' $\begin{gathered}\text { min o of the two kings are two tunics (the }\end{gathered}$
upper called a Dalmatica), with rich waist-belte, and over them mantles superbly embroidered; that at Henry being fastened by a fibula or broach on the nigh shoulder, and that of Richard fastened upon the bream The gloves are jewelled on the back of the hand, and tho boots have spurs without rowels; both monarcha wear their crowns, although that of Henry is much me tilated. I'hese royal hathits represent also tho costuma of the nobles at the same period. Meury introduced the fashion of indenting the borders of dresses, and the shon cioak of Anjou, whence he was called Court Mantean (eurt or short-mantle). A mantle of Richard is also describesi as nearly covered with solicl silver half-moona and orts.

In the courso of the thirteently century, the sumptuous ness of apparel inereased; rich silks woven with gold, embroidered noid fringed, ard Grench vilvets, werc much used; and a rich stuff manufactured in the Cyelades was made into a dalmatica or super-tunie, called Cyclas, which was worn by both sexes. The furs of ermines, martens, stuirrels, the vair, and the minevair orminerer were added to the list of furs for winter garments.

The general male dress consisted of the cyelaa just mentioned; and the tunic open as high as the waist, to show the drawers; with chaussees or stockings. The prinerpal novelty is the super-totus, or over-all, worn like the mantle or cloak, and consisting of a kind of large-siceved shirt, with a capuehon. Long-tocd shoes aril boots were resumed, with embroidery und colours. The caps or bonnets, and hats, now resemble our modern beaven

The fermale costume d^{2} tered in fisthion and name rather than in form, from those of the twelfth certurg The vinls were of gol" tissue or superhly cmbroidertal silk. and over them :as worn a diadem, circlet, or gar land, or a cap-like coronet, by persons of rank, and some times a round hat. The headdresses were very nume rous: the wimple covered the head and shoulders and was fastened under the chin; and the hair wis worn in a met or caul of gold threnal, which contio nued in fashion for the next two echuturies. A very buly kind of wimple called the gorget, apmared in the thirtienth century ; it was a neck-covering, poked up by bins ahove the cars. The long rohe was also worn taib ing on the gromul; the cloth stockings were ablroidered with gold; and trinkets of gold, as buekles, rings, esk ringe, und chaplets, and jewels, were much worn; and sometines flowers, fresh from the garden or field, were entwined round the heal as a reliet to artilicial decorso tion. In this century, ton, we first meat with the sutcon, which sirutt calls a corset, boddice, or stays, worn ores the rest of the dress, which enlarged in the skirt, and sproal into a train; it was male high in the ner'a and hat lone tight slonves.

The dress of the working-classes may ine supposed to have leen impreved ahout this period ly the introdaction ot the worsted manafacture; it is statod to have bera brought to the country by a colony of flemines, who in the reign of Hemry II. settled at Hiusith, a village in Norfolk, nud hence the name of the fularic.

We now come to the fourtconth contury, in which Phward 112, and his quern Philipga led the fashion in apparel. As seen from the cfligy on lias tomb, the cos fume of Falusal is characterized by its diumital sime 1, licity. Thedalmation is low in the hark. talls in ar raight fobld tin the feet. and is open in front nearly hat its hejebs trimg embroideral at the ciges of the abeture; the slewses of the undor tunic have at each wrine a row hattons, a fashion of the reign of Henry IIl.; the mantle, momboidured at the edges, is worn wer the nowldars, and combed by a jewelled hand sames the have; the shous or lomkins me abo emhroidered, and the hair and la." are patriarchal; the crown has been removed or lost

- Sed note to Hallam's History of the Miduite Age a.

The effigy of Qucer equally distinguished and full, the boddice alled, and the manth coninined by a diagon the head is a low cro sind of draped urn The costame of the fir less simple than wo long robe and t gament (jupon) sul midde of the thigh, spleadid helt; from ts dips of cloth, called t wus oceasiomally wor upon the right shou extrene of foppery. gni among them wo the form: now nsed norn; but the great the front of the eap. dution of leaves, no The gay tournament tion of many costly expensive dress, be wearer, was forthidet oxaments (except fo bui the: :ayal family gold and silver were une; and persons o war silks, conlroid Jressed still moro s where the gown tits el long: in the front as

Laly of tith cemary

- Few rnaciments ha 'noperat:ont more' instris smptuary laws. by wh telegaviture sus sumb dasourad t1) procemt it bet ruits of havir intas "There is hardly;" saly Ense that are now reet Fineth hat not hel 1 den esperiluity. or the wh in cothing arte at grese.u surts bue there are: in pal in the pilory bir pr a"cessary a luxury:", wary lav a emachet in kenih certary hy th: gace of ther sthrect I.0n which Ahams stuith w.th grevan +xpendtur wets untondite dly mos 4. heir fomme chis. rend pacantr: the exelie a by their ordmances tor - The orysin of the much phumel wat tone tham from han hecino. 1 t Vuc. 1-91

BRITISH COSTUMES.

ist-belts, and d; that of on the righ n the brean he hand, gnd th monarelas is much mub tho costune itroluced the and the short urt Manteag harl is also :r half-Inoons
c sumptnous n with gold 8, were mued the Cycluules alled Cycla, of ernines ir or mineren, mentes
e cyclas just the waish, of kings. The ver-all, wom of a kind of oed shoes and olours. Tho odern bearee a and nalme lifh eet lurg cmbroidered irclet, or gro nk, and some - very nume ad shurluter, the hair x_{3} which contis A very ude ared in the poked up by Ho worn tails - cmbroideres s, riags, eas. h worn; and or fubh, wepa ficiah leverso th the surcoln s, wora over Bistr, ank (10) nert' ond sulphosed to introdaction have beed inss, who, in a village in
ry, in which re facthon in mind the cos "uificil sims Is in straith iff is twingh n"ture; the Fat a row thir maith kwlhars, and a; the shas ir and ha. sed or low
$\mathrm{c}^{2} \mathrm{Ag}$

She effigy of Qucen Phitippa, also -nt Westuninster, is equally distinguished by its simplicity ; the skirt is long md fill, the boidice clusely fitting, the waist-lielt jewalled, and the mantlo ormamented on the shoulders, and confined ly a diagonal band across the breast; and upon the head is a low erown, jewelled, and from it depends a kind of draped ornament half way down the cheek. The costume of the nobles in thia reign was, however, fir less simple than that of the sovercign. In place of tis long role and tunic was worn a close-fiting bodygaraucnt (jupon) superbly embroitered, reaching to the gradde of the thigh, and confined ncross the hips by a
nim splendil helt; from the sleeves of this garment hung long slips of cloth, called tirippes (tippets), and over the whole wus occasionally worn a long mantle fastened ly buttons upon the right shoulder. This dress was, however, the extreme of foppery. The cans were of various shapes, grid among theo we find the knight's chapeau, nearly in the formi now nsed in heralliry. Beaver hats are nlso wom; but the greatest novelty was a single feather in the front of the cap. The golden chaplets, by the addifion of leaves, now assumed the form of coronets. Che gay turnaments of this period ted to the introducton of many costly foreign fashions; so that, in 1363, expensive dress, beyond tho income or rank of the wearer, was forbidden by law; furs of ermine, and pearl wraments (יxcept for hend-cic ss), were forbidtlen to all wit th : :oyal fanity and the wealthiest nobles; cloths of gold and silver were permitted only to the next in forune; anl yersons of small income were forbidelen to war silks, emhroidery, or triukets.* But the ladies Sressed still more sumptuously, as in the engraving, where the gown lits elose in the boddice, and the train is so long in the front as to be held up, and thus display the cinhroidered under-dress; the slceveless jacket worn over the gown is also embroiderd and trimmed with fur; the hair is worn long, and the cap islow, and resembles a cornnet. Tippets from short slee, es, and the juphn, were also worn by ladies as well as hy gentlemen; nudboth sexes wore dar. gers stuck througlt pouches in their rich girdles. The particoloured tunies worn by the ladies at tourmaments were likewise very striking, and greatly encouraged the fopperies of the time. Once of the alditions to the military costume of this period was the knight's cap and crest. \dagger

* Few enactments have heren more erroncous in principle or in operation more detrimental to nutimand prosperity, than the Anptunary laws, by wheli, in the enrlier ners of our hastory.
 davourn te provent line virions rinks of mun from enjoying

 cothag but at pesent consibered inc.re indspensuble than sairte but there ares instandes on record of indwhituls bemp Pot in the pilhury bir presuning ', wear so expensive nad 1 m

 wenth erotaty liy th: governanots, to reatran the extravamace of the r athnocts, maty well justify the se veve indignaian which Adam sibuth lus penermi upot nil such interterence

 ot their tommerns, mat cobstributed fur nore. by their love uf pageantry, to excise a inste for disstuation in their propie, than by their ardm-mens 10 rיpress it."

In this reign mourning habits appenr to have been firt worn, the colours being black and brown.
The reign of Richard II. must have been the high carnival of coxcombery. The sovereign himself, accord ing to Holinshed, had a coat or roba which cost 30,000 merks. Particoloured dresses were universally worn, and even the hose were of two colours, so as to render the term, a pair, inapplicable: the coloura of the king and his court were white and red. Men and women alike wore hoods set with jewels; and their tippets were jagged, and reached to the heels; and the long-peaked shoes, called crackowes (from Cracow, in Poland), were fastened to the knees with gold

Genteman of 14th Centary. and silver chains. The engraving ahows a gentleman of this period, with shoes and hoes all in one, the mantle cut into the shape of leaves at the edges, a belt and pouch, and a fartastically-turbaned headenvering. Chaucer has left us the costume of several ranks at this period: his syt tre weare a short gown, "with sleeves lang and wide;" his yeoman " n coat and hood of grene;" his merchant many colours, with a forked beard, and a "Fluunderish bever hat," and claspel boots; the reeve or steward a long surcoat and rusty avord, his leard ond head shaven and shorn; the miller wore a whito coat and blue hood, a sword and buc: ler, and red doth holiday-hose; and the hats, caps, and bonnets of all classes were very fantastical. Knives, ornamentel with silver, and purses, were worn hy most classes in their girdles; and shoulder-belts, with bells, were n mark of rank. Liveries are also now mentioned as worn ly substantial aritisans ns well as by menial servants; but the plosghman appears only in a tabard or slecveless coat, nod the mechanic in a tunic. The hair was worn long 'ad curled, and the leard forked.

In the female costume of this reign the fantastic particoloured dresses were retamed, with the embroilerad jupons and kirties, hip-kirdes, and long tippets from the cllow ; and the surcol or external corset, faced with fur, and terminatiug in a train sometimes so long as to to carried over the arm, or shorter, opurd up the side, and bordered with ermine. The gowns, manles, and other garments, werc emblizoned with arms, or they bore sentimental motoes; and the royal badge of a white hart, chained, was mach worn at tournaments and jousts, The heai-dress centinued as in the preceding reign The attire of the carpenter's wifi in the "Canterbury 'lathe,"' with a silk girdle and head-illet, and brooch, ;adicates the condition of this class of females.

fifteenth century.

Whatever may have heen the foppery of the thirfeente and fourtenth centuriw, they appear to have heen er ceeded ly the ahsurdities of costume in the fiftecnth century, when it was diticult by dress to distinguish one sex from the other. These fantasies were mostly boirowed from Prance, whose faskioms now bigan exclor sively to guide the taste of the Euglish, and have continust to do so until the preseat time.

The elligy of Henry IV. is rematably splendid, the upper tumic, girile, and mantle being embrojdered at the edges, not the tather connected ly a richly-jewelled band ucross the chest, hesides cords and tassels. The beard anll mustachios are worn, but the poll is shaven; the
there is stat greater reason to believe the phame 10 have bean hint athucifill bulge chosen when fuathers svere firsl used an hint atherini himige chosen
herahde crests afon heltates.
I heradice crests afon helate. 3 I
arown la suipoosed to be an imltation of the magnificent «Harry Crown," broken up and pawned by Henry V. Early in this reign, too, the sumptuary laws were renved not only as to materials but faahions; нo that girments, cut or slashed in dovicen, were forbidulen, but with little effect. In thia reign appented the collar of $\mathbf{S S}$ fur Esses), which Meyrick conaiders to have teen taken from the initial letter of Henry's motto, "Souveraine." The annexed engraving represents a gentloman of thia reign in shortened tunic, buttoned in front, with girdle, large flapping sleeves, tight hose, prenked shoes, and heudcloth, with long end hanging over the left ahoulder, and tuckel in the girdle. The next cut shows a labourer of the same period in the ordinary woollen dress, with hood and tippet, hose, and leather boots laced in front. Tho female costume in this reign differed from that of tho preceding principally in a kerchiof or veil covering the head-dress, and assuming a square form.

Gentleman of thith century.

Labotrer of t5th century.

In the short reign of Henry V., there were few dianges in the civil costume : cluaks of searlet cioth or camlet, and pieces of fur, are novel outer garments. Feathers were worn in the helmets, and the bascinet took the shape of the head behind: for the jupon or surcoat was substitutud a skirt of horizontal sted bands, and large slectes of cloth or silk were worn over the armour, and the two-handed sword now first appearel.

The conft:spd costurne in the reign of Henry VI. Brffee classitication, more especially the old-shaped caps, bits, and bonnets. in which a single frather was sometimes worm. The boots or galuches, reaching half way up the thigh, the short hoots or buskins, and the highfronted whores, had very long toes, which, in the next reign, reached half a foot. The state roles were lined end trimned with furs or had only caps or collars of ermine, with bors according to the rank of the wearer. The mantle of the Order of the Garter about this period was first made of velvet, and linel with white damask or satin. Silk was worn over armour, and the salud or sallet head-piece, projecting behind, was introduced; and the armour was richly ornamented. Gowns, with long and henvy trains, continued to he worn by Ladies, whose moxt fintastic change was the heart-shaped wead-Iress of great size:* turbans of the Turkish form were aloo wors.

Edward \mathbb{N}°. on his smal, weara a tunic, dalmatica, and mantle, deep umine cape, and high-archod or imperial crown. The civil costume was very ahsurd; and juchets and doullet:; were worn so shott as to rall fort! a law in 163 ordering them to he langthened behimit the sleeves

[^74]were slit, so as to show the fine white linen shirt, and the shoulders were padded; the men wore thelr hair very long, and their bonaets either very high or cevering aimply the crown; the hose were tight, and tha boots and shoes of all patterna and lengths. Gold chaina were generally worn; and even boys struited in velveh silk, and satin. All this extrnvagnnce was attempted io be checked by law, but with little effect. In urmour, the
 prineipal novelty was tho halbert. In the fimale coo tume, trains of gowna were partially discontinued for brond fur or velver borders and the silk girdles widened, and were more richly orna mented. The loodice, laced in front over ustoracher, now first appeared. But the greatest eccerntricity was the lofty stiepule headdress, ahown in the annexed for trait ; this consist יy of a rollo of linen covered with fine lawn which hung to the ground or was mostly turted under the arm." Cups, with large wings or lappets on each
Lady of 15ih century.
m which there is Lis period painting by Halbein are the the two succeeding great painter bein dresers of his time. a portrait of earlie leautifol painting nebly-embroitlered in the nerk, heneath gohl neek-chain is gurmounted hy a elo the sides.* The mul this reign consisted of with silk round the e that belonged to th fa the possession of the doabin i were sla Edward IV.; or the bned at the shoukle drough which the laced ovir a stomac thus resenbling tha form. The outer g nith loose hauging of relvet or fur. 'Th in the upper and lushed or puffed; broan-thed, and high bead coverings there alundonte to official felt hats or caps, an decked with ostrich we slung at the gold net worn on the culs has a eap pee nora as long as in t? At the latter part mached the highest apable; and the dis of its armorial embla polished stol, had in Brery visitur to the Ue famotrs suit of nrm to Heary V II. ; and tr, eovered as it is wi a complate harness o is munted. The p d. hor velvet but in terial protect the shot ans to the lance poi pietes the janoply: blaled dagger of the on the right side. reign was loultless to was not only ribhed a berd becume the con or camon, ly the ad borrowed from the er aryuebies.
In thege distrapted Thus, the family co were white and red; and thaze of 'Tindor, w portizan figures; and vating for the Now 1 linked cloak-buttons a diwern, and a bani a rose browsh or jew toke springing up; \mathbf{x} th have heen mate

Pinuravet trom "the"
pece to it. Planchés"
m which there is often perploxing indiatinctness. At this peried painting comes to our aid; and the portraits by Holbein are the best illustrations of the costume of the two succeeding reigns, the minuto execution of this great painter being well ahown in the embroidered dersees of his time. Of Henry VII., however, we fino a portruit of earlier date than Hollsein's time, from a leautiful painting on vellum, in which the king wears a netly-embroidered doublet, with a jewelled horder, low io the neek, benenth a large mantle with n firr enpe; the goll neck-chain is massivo: the hair is in long ringlets, furmonted hy a close enp, with wing-like projections at the siles.* The mule costume of the wealthier elasses in this reign ennsisteu of a fine shirt of long lawn, embroidered with silk round the collar and wristbands; and such a shirt, that belonged to the eldest born son of Heury VII., is in the possession of M. Gage, F.S.A. The sleeves of the douhici were slashed at tho elbow, as in the reign of Edwarl IV.; or they were in two or moro pieces, fusthed at the shoulders and elbowa with laces or points, through which the ahirt protruded. The doublet was laced over a stomacher and petticont, the male costume thus resembling that of the temales in name as well as form. The outer garment was a long coat or gown, with loose hanging sleeves, and a brond turn-over collar of relvet or fur. The long hoso were differently coloured in the upper and lower portions, and in the foimer shashed or puffed; the shoes were absurdly long and broad-tocd, and high boots were worn for ridling. In the bead coverings there was great varicty. The hoods were ghandoned to officia! habits, and instead were worn broad felt hats or eaps, and honnets of velvei or fur profusely decket with ostrich fenthers; or the large phamed eap was slang at the hack, and a gmaller eap of velvet or golid net worn on the brad The knave of our playing culs has a caj. preuliar to this period: the hair was wora as long as in the reign of Henry J .
At the latter part of this century military costume had mehed the highest degree of splendour of which it. was opable; and the disnse of the surcont, and the tramafer of its armorial emblazonry, in relief or engraving, to the polished stect, had introduced great variety of decoration. Luery visiter to the Tower of Landon must remember diefamons anit of armour which unquestionally belonged to Henry VII, ; and nothing can exceed its superb beauty, covered as it is with engraving, and accompanied by a comply te larness of strel for the charger on which it is munted. The puckered skirta appear no longer in dinh or velvet but in steel; pauldrons of the same mawerial protect the shoulders; the whole frame is imperviaus to the lance point; and the plumed helmet completes the panoply: hesides the long sword, the thinbladel dauger of the time hangs sheathed at the girdle, on the right side. The disuse of the sureont in this reign wis doubtless to show the splendid armonr, which nas not only riblied and engraved, but fluted. The halberd lecame the common wenpone; and the hand-gun or cannon, by the addition of a rule lock with a cock, borowed from the eross-bow, became the arc-a-bourle or argueturs.

In these distracted times party-rolours were worn. Thas, the family colours of the Fouse of Jancaster were white and red; those of Fork, purple and bue; end those of 'Tudor, white and green. Buttons also bore partizan furures; and in 1833, there were tonnel, in exeavating for the New Humgerforl Market, in London, two linkel eloak-huttons of silver, one bearing a hast with a diaden, and a handean of roses, the rehe fasturned with a rose broweh or jewed, nad on cneh side of the bust a tow sjoriging up; whence thes, buttons are presumed 6) have been made and worn in honour of Pilizabeth of

York, whose union witu "sury VII. terminated the Wars of tho Roses.

The female costume of the reign of Honry VII, is die tinguislied by the equare cut of the boddice in the neck. and embroidered and jewelled stomachers, belta, and girdloa hanging in front nearly to the feet; the sleeves wero large and full, and when confined at the wrist, resembled "the bishops' slecves" imitated in England, from the French, in few years since. These slecves were slsohed, divided, and joined like those of the inen. 'The henddrosses were close caps and cauls, from bencath which the hair loung down to the waist; and severul kinda of capuchons were worn. In the dress of the humbler clases wo find mentioned a "furred flocket and gray russet rocket," " kirtle bristow red," "blanket hose," " Lincoln green," \&e.

At the close of this century the mourning hobita had become so sumptuous os to be limited by law ; the principle article being a barb or veil, used at funerala, which was tied on above the ehin by dychesses snd countesses, and lower by all other ranks.

Throughout the above period the principal material of the clothing of the middle classes must have heen abundant; for in the reign of Edward IH., our woollen manufacturo almost rivalled that of the Flemings, and our exports to the continent were very large; there appears however, to have been little or no linen mado at thia period in Eingland.

sixteentil centuny.

Few changes of costui e ocfur in this century unthl nfter the accession of Henry VIII., when the petticoas was laid nside; and as fashion delights in extremes, there was substituted the tight hose, or trouses, elosely resembling the Norman chaussees. The costume of Henry and of the noblemen and gentlemen of his time, appears to have been r jacket or doublet, with full skirts, and sleeves to the wrist, with rulis or ruffles, and over it a short but-full eoat or clonk, with large hanging sleeves, and a wide fur collar ; stockings and broad-toed shoes; and a large-hrimmed cap edged with ostrich feather. Hriry's wardrobe comprised coats of every lengtin, and among them occurs the rassock, of German origin, short in the waist, and reaching to the knee, having sleeven to the elbow, and thence showing the slirt: this garment was ornamented with strips or borders of clath, silk or velvet, of different colours, or of gold lace or embroidery, and gold buttons. Hall, the chronicler, deacribes several of Henry's superb dresses, and among them a frocke, or coat of velvet, embroidered all over with gold of damask, the sleeves and breast cut and lined with cloth of gold, and tied together "with great buttons of dimmonds, rubics, nnd orient pearls." The cloaks snd mantles were of corresponding magnificence. The shirts were pinchal or plaited, and embroitlered with gold, silver, or silk. The torm hose continued to be applied to the entire vestment, from the w_{i} ist to the feet, thronghout this century: the material 1.2 more distinctly stated, for Henry wore knit silk, as well na cloth hose; the precise period of the separation of the hose into breerhes nod stockings is not so clear as the derivation of the later term from the "storkining of hose," " that is, ading the lower part that covered the legs and feet to that which vas fastened by points to the doublet," "and was called the sioths. Ihe shoes ant humbins were of the Gorman lashion, very brond at the thes, and of velvet and satin, stashed and pulfel. The hat:, caps, and honnets, were of ahnost end less forms. Wie find in Henry's wardrohe actoments hats of green welvet, and caps of orame, ycllow, and green; hia favourite bonnet, and, inderd, that of the time, is seen in the portraits of Henry, by Holben. The Milan caps and
bonnets, si cloth or velvet, wero worn placed on the side of the head, profusely ornamented with feathers. The bonnet with an embattled border was also worn; but the chaperon of tiosil was almost confined to official prorsonages. 'I'he cardinnl's hat may be mentioned here: it was of a red colour, low, circular-crowned, and had a much broader hrim than, is represented in sculpture.

Henry pased sumpthary laws, directing that cloth of gold and tissue should be used only for dukes and marquissen, and that purple should bs kept for the royal family. Eartw might use embroidery, and commoners of distinction silks and velvets; and it was even thought necessary to restrict the commonalty and serving-men to cloth of a certain price, and lamb's fur, and to forbid them wearing any oruaments, or even buttons, save the badge of their lord or master. The king likewise fortade his courtiers wearing long hnir, according to the general fashien, and inade them poll their heads, which led to the introduction of the peruke. This change rendered short hair fashiomble; and ge the king grew corpulent, the doublet and lreeclies were puffed ont and wadded by his courtiers and attendants, to mako then as bulk: as himself.

One of the principal events of thia reign, illustrativo of costume, was the famous Tournament of the Field of Cloth of Gohl, at which Henry VIII. and Francis I., and their spites, vied more in splendour of attire than in prowess of arms; and the splentour of their dresses has almost exhausted the descriptive powers of Hall, who has minutety ehronicted this "most magnificent apectache that Europe ever leheld." Its mighty artificer was Wolsey, who was most gorgenosly hahited, his very shoes glraming with diamonds, and the crimoon velvet sadde-eloth of his horse glittering with burnished gold. The brillinacy of the armour, and the elaborate benuty of the costume of the gurens and courtly dumes, well became this subset of chivalry, at which even citizene and city wives disported their richest silks and their heaviest chans.

With the female costume of this reign we are familiarized by the portraits of Henry's queeas, who appear to have been sumptously attited in cloth of gold, brocade, vilvet, and other costly materinls; and they wore diamonds, goll neck-chains, and girlles, nad jewelled orna'nents in protioxion. The gowns of the nobility were open in front to the waist, so as to show the petticont; and alove was worn a waisteoat similar to that of the men. superbly mblreiderid. Another novelty was the pattet, eovering the neek and throat like a huhit shirt. It was made of lawn, embroiderent with gotd. The ladies' sheces, like these of the men's dresses, were distinct from the gown or waisteuat, to which they were tagged. They were mostly of satin, quilted and varicgated with gold, and had buitons of pearls and gold at the wrist. This fashion must late added greatly to the variety of the costune, for several pairs of aloeves might loe worn in turn with the same lowly-lress. The masques in this reign were very gplendid; and in the report of the dresses worn it whe of them, are mentioned "demy sleeves, nahnel down from the ellows," which M. Planché considers to have leen "the first appearance of hare arms since the time of the ancient Britons." Gl, ves were not miknown, for Henry left a pair to one of the executors .f his will. 'They were sonetimes finely 1 wrfumed, end Grought from spain and Italy na presents. In this and the precting reign the hemdedresses assumed a dillient character, having long lappets or ear-pieces hanging down lxhow the shoublers, and wher made of velvet studded with parls, jewels, and gohl, they were truly supert. 'Thateromerid caps of minever were also worn throuphout the reign: and the chose-fitting cap reaching to the ears, and known na "Maty Queen of Scots' cop," was firbl worn alkut this priod. The ladies' buuting-dress difered but little from the riding-halit of
the present day; across it was natrally slung, itrom the right shoulder to the left side, is horn resenbling : bugle.

In this reign pins were firat hrought from Franee, atd used by Catherine Howard, hefore which time the differ ent parts of the dress were kept together by ribbone and loopholes, laces with points and tags, clasps, hooks and-eyes, and skewers of brass, silver, nod gold; bau the poorer classes used the natural thorn for the above purpose.

The dress of the midd j_{0} ranks in this reign may to seen in prints of the time: phain russet coats, and white kerney sloppes, or In secthes

Man and Woman of 10th century. with stockings of the same pieces, were the ordinary suit; and the London ap prentices wore blue ctoaba in summer, mud gowns of the same colour in winten, as budges of servitude; for this appears to have been the age of domestic distina tions-the relics of the four dalism of the middlle ages The women wore sheep, rus set, or long wroolen gowng worsted kittles (hereafitet called petticuats), and white caps and aprons; and mille. white underlinen cane into generni itear. The enzran ing hhown a man and wo man in the ortinary dress of thes period.

The principal novelty of the reigns of Edward Y. and Mary was the flat round bonuet or cap, of thain velket a cloth, wom on one side of the hend, and decoratel with a jewet and single ostrich feather. 'The bonnet itell is preserved in the eaps worn at the present day by the boys of Christ's Hospital ; and their hue coat and yeh low stockinge are such as were worn by the landon ap prentices at the date of the foundation of the hoynual by the youthfol Edward. Tha gown of the wealthiat classes was furred with aables in funt and ronul the broad sleeves. Philip, on his marringe with May, brought into Fugland a richer style of itress for the minn particularly the close ruff; the doublet, which itted exastly under the chin, and the short Spanish clonk-ath of which remained for a consileralle time in lathion The preposteronsly large stocks, or trunk hose, continued to be worn, but the broaddoed shoes were discarded The armour contmmed nearly the same as in the pro ceding reign. To female costume the chief aldition mat the fardingale, an immense hooped petticona, introdeced from Spain mader (Qucen Mary. The entire driss mas worn wery close, so as to conceal the persion as mucbas possilde.

Queen Elizaheth's fondness for derse is proverbial, and she is statel to have left three thousiad different hation in her wardrobe. This great number is exphained iy the royal affectation of wearing by turns the costume of all the nations of Europe, which may le traced to the use of foreign materinls made up!y foreigners.: Bobun in his eharacter of Elizalsth, tefls us that "when she appared in public she was richly adorned with the mat valuable chothes, set off aguin with much goh :nd jowel. of inestimable value; mad on sueh oceasions she eria wore high shees, that she might secon taller than indere she was. 'The first day of the Parliament she wotu appar in a rola embendered with pearls." lientree gives a lese thatering portrait of the queen, in lier tow year: "Her fiewe ollong, farr, hut wrinkled. She had in her ears two pearls, with drups; she wore false harr, and that red, and ufon her heat she had a sualle cronm She was dressed in white silk, bordered with peals of
the nive of beana, an hot with silver threa noad of a chain she prels."
But the glory of th wome, as well ns its I the sixteenth century canhric, which took from the front of the ω its foll height: tro donacher, on each sic fardingale. In thla went to St. Pual's \mathbf{C} defent of the $\mathrm{Span}^{\text {pis }}$ magnificent ruff, the wing-like collar, her t pendant jevels on the ad pearls over the entir
But the ruff must its matetial been chan bric, than a ditliculty it instead of the clum ticku of ivory, wool, of starching was brou London for a lee of tio nest lay in the colour five varicties. Stul)ts of ruths, sone of which of silk lace," and "spe the moon, and the sta ears, or hanging over sills. The sanes a relver, grograin, ta. changing with the m ground, or "cast ower dort sleceres tied witl
Stockings, which w In the waridrole accon V., hecame common of Ejizatieth. In the ackings mule in Eno way was so pleased wi affer wear cloth hose. buted to Flizaibeth's de wes by her own exa set-of to her extreme hashior: of itress. Soo ing borrowed a pair from Montua, made a to the Eart of Pembro tockings known to hat Queen of Scots, at her worsted, clocked and to another pair of white generally consisted of yann, thrend, or cloth ofen seams, \&c. Th be Lee, at Calverton, hire brought stockings is silid to have worked diven hy the jealousy ress into France, wher end by no means une The garters of this p a goll and sitver, and wald to have been w Bivaril II., but they lez bandager of an "cociei shoes, prisne raised them two incho wete male of black, Epanish and Englist giver or silk, and sh tike the Anglo-Saxot
the wize of herna, and over it a mantlo of black ailk, dot with ailver threads. Her train was very long. In soed of a chain sho had an oblong collar of gold and preln."
But the glory of the Elizabethan ero of fema'? cosrume, as well ns its most remarkablo characterist? in the sixteenth century, was the ruff of plaited linen os. cambrie, which took the place of the partlet, and rose from the frent of the shoulders behind the head nearly of its full height: trom the twoom descended a huge womacher, on each side of which projected the immensa fardiurale. In this characteristic costume Elizabeth went to St. Paul's Cathedral to return thanks for the dufeat of ine Spanish Armsda; though, 1 esides the magnificent ruff, the queun woro a mun', wh a large wind fike collar, her hior intertwined with frarls, large pardant jewels on tha neck, and a superb ', thice-work of pearls over the entire dress.
But the ruff must be further noticed: no sooner had its miterial been chunged from Holland to lawn or cambic, than a dillifeulty arose as to starehing or stiffening it, insteal of the chumsy mole of supporting it ly polingdicke of ivory, weod, or gilt metal. At length the ort of starchiar was brought from Flanders, and taught in London for a fee of tour or five pounds. The fashion nest lay in the colour of the stureh, of which there were five varietics. Stulbs ossailed these "spiders' wefhs" of rufts, sone of which were "clogged with gold, silver, a silk lace," and "speckled and sparkled with the sun, tha moon, and the stars," $a .1$ either pinned up to the ars, or lunging over !t, shoulders like flags or windmill kils, The sane wir r describes the gowns of silk, relvet, grogruin, ta....", or fi.ee cloth; of "fashions changing with the moon," with sleeves trailing on the ground, or "cast ower the shonlder like cows' tails," or dort slee eres tied with " love knots" of ribbon.
Storkings, which we find mentioned as foreign rarities \ln the wardrolie uffounts of Henry VIII, and Edward Vl. theame common of home manutacture in the reign of Elizathoth. In the third year, a pair of black knit silk ankinga made in Enchand was presentel to her majesty, quo was so pleased with the article that she would never affer wear cloth hose. 'I'his resolution has been attributed to Elizabeth's desirr to encourage English manuficwes by her own example, and may be taken as some setof to her extreme fondness for foreign materials and fastiors of Iress. Soon after this, a city apprentice having borrowed a pair of knir worsted stockings brought from Muntua, male a pair like them, which be presented b the Earl of Pembroke; and these are the first worsted tockings known to have been knit in England. Mary Queen of Scots, at her execution, wore stockings of biue worsted, elocked and topped with siver, and under them another pair of white; and the stockings of this time geneally consisted of silk, jarnsey, worsted, crewel, tine sann, thread, or cloth, of nll coliurs, and with clocks, gren seams, \&c. 'Thc invention of t. stocking-frame, bs Lee, at Calverton, near Nottingham, in 1599, must bive brought stockings into general use: he or his brother is sild to have worked for (queen Elizabetl; but he was dives by the jealousy of the other stocking manuficturees inte France, where he died of a broken heart-an end by no means uneommon in the lives of inventors. The garters of this period were very costly, sometimes a gutd and silver, and $\mathcal{L t}$ or $\operatorname{C5}$ a pair; they are premaned to have been worn ly ladies since the time of Elward IL., hut they mast not be contounded with the ker bundager of an carline dute. The ladies wore "exned shoes, prisnets, pmintofiles, or slippers," which rised them two inches or more from the ground: they were made of blark, white, green, or yellow velvet, or Spanish and English leather, emhroidered with gold, silver or silk, and shapued atter the right and left foot, tike the Anglo-Saxon sandal. The Elizabethan head-
dresses wero innch hoods, hata, enps, kerchliff, cautad of net-wire, at lattieo caps, tho latter, as well as an crmine bonuet, cing forbiden by law to all but "genHewomen born, having arms." In Elizabeth's jewel-box is a long list of wigs, or rather head-dressen, among which aro cauls of hair set with seed-pearl and gold buttons. 'T" \& hair was curled, frizzled, and crisped, and under-propped with pins and wires into the most fantantio forms. The finger-rings, eac-rings, lracelets, and other jowelry, wero very splendid: velvet maske and pocket looking-glasses were carried by fashionables, with fana of ostrich foathers set in gold, silver, or ivory handles, the latter introluced from Italy, and used by both sexean
The malo costume in Elizalveth's reign was the large trunk hose, long-waisted amblet, short-cloak, hat, band ard fenther, shoes wih roses, und tho large ruff: but the great brecelies, "stuffed with hair like woolsacks," after the separation of the hose into this garment and stockings, appear to have been wom throughout the reign: they were made of silk, velvet, satin, and do mask. The doublets were still more costly, and quilted nad stuffed, "slashed, jagged, pinched, and laced:"* and over these were worn eoats and jerkins in as many varieting os thern are days in the year. The cloaks wero of the Spquan. r'rench, and Dutch cuts, of cloth, silk velvet, nnd tuffeta of all colours, trimmed with gold, silver and silk-lace and glass bugles, inside and outside equally superl, 'Tho stockings, slooss, slippers, and rufts, resen,led the of the lallies. Nor must the rapier, or tusk, he forgotten; and some coxcomhs, having introduced this long sivo ' with n ligh ruff, npproaching the roynl standard, ha queen hecane jealous, and appointed offr cers to break those rapiers and clip thense ruffs which were beyond a certain lengh and height. Hats first became common in this reign: they were of all shapes, hut the most curious was the steeple-crowned; others were flat and broud, tike the battlements of a house ; and others wih round crowns, and bands of all colouri, ond ormanented with buge feathers, and brooches, clasps, and jevels of great value. These hats were of velvet, tufleta, or sarsenet, heaver hats being then very expensive, and "fetcled it ... heyond sea." Cajs of wool were worn not by choice but compulsion, ly a law passed "in behalf of the trade of cappers;" and this led to feuda amend the wearers of black and blue caps. The numerous fashions o: wearing the hair were assailed by Stubbs, who, after saying there are no finer fellows under the sun than $1,-1$ oss, speaks of the French, Spanish, Dutch, and Italiat $\quad i^{\prime s}$, new and old cuts, gentlemen's, common, court, wid country cuta.

Elizabeth's ; sion for dress was fully imitated by her courtic: 7 , as prescrved to us in the gages of historians and in the eanvas of painters. The best portrait of the gallant Raleigh represents lim in a white sntin doublet embroidered with pearls; and his dress in the Tower was a velvet eap, laced, and a rich gown and trunk-hose. His plush cloak is preserved in the wollknown an dete of his throwing it off for the queen to walk on.

In taking leave of the British costume of the sixteenth century, we ir y observe that its splendour was almost entirely borrowed from France, "that country which bas sinee given laws in dress to nearly all Eurne."

seventeenta century.

 much in tirme as in fashions of hathits. T'lie male dress continued nearly the same us in the latter portion of
*'his doublet formed a point in front, hanging over the girdie : und. ullowing tor a litho caricature, "is to this day;" sayg M. Ylanche, " the be lyatress of our old nod inestimable friend Punch. whose warilrobe, of lialan origil. dutery ns hesrly as posen. - Trom this deateal periot."-History Dritish Costum

Dliza'seth's relgn. Under Jannes I. It was aomewhat more deeidedly Spanish, and was eliefly worn of bluck, with large trunk howe, Spmish rapier, a hat with a conieal crown, and a band with a jewel, the better to mow whiel feathera seem to have beendimearded. The trunk, breeches, and doubletr, appenr to have heen incrensed in size fron the timidel disposition of the sovervign, who had his garmenta additionally quilted for fear of atilettos. James, in his braveties, dressed immoderately, though only in keeping with the sumptuous style of the furniture and house-decoration of 11 astances he scarcely left his no \% 4.0 means of " keepnug up appentrances." Henry, Prince of Walun, mus. have drawn largely fium his father'य privy purse, for wo find his wardroto purchases in ene yoar to have been thirty-eight suits of velvet mud satin, erimson, green, carmation, orange, and watchet, ash and tiver-colour, black and tawny, "ink, rose, hair, and deer colour, hind over with Naples ailk, gold parchunent, silver and "gollowne" lace ; the cost of all which was considerably above $£ 2000$, then no trifling sum: he had also thirteen cloaks, at the rate of $£ 50$ each; gloves wrought with goll and silver at $\mathcal{L 3}$ a pair; stockinge nt £3: and every-day gartere at C4, 10s. And we tind the weak-minded James encourazing his son's prodigality by sending to birn at Madrid "the mirroure of France, the fellow of the Portugal dyamont," which the king wished him to wear alone in his hat, with a little buck feather. 'To his favenrite, Girorge Villiers, Duke of Buckinghan, who aceonpanied Prinec Ieary to S_{p}, int, lumes also went "a faire table dyamont," with a "faire pearle" hung to it. Buckingham was also "inprisoned in jevels," and wore dianonds us a nobldemm of the last century did paste buttons; he had also diamond hat-landr, cockales, and ear-rings; and his hatfeather, sword, girdle, and apurs, were set with this precioungem; and oue of his court suits was estimated to be worth $£ 80,000$. In these times, therefore, the common phrase ot "a man's wearing his estate apon his hack" could scureely have been en exuggeration; and there is no poetical license in John 'raylor's censure of the prodigals wha

"Wear a firm in shoe-4on" "r end with gold, Ant spengleot parter's wo:" anghold: A howe nutdoathet '1 ' wha isheproat: A gauly clonk lir. , , whe price nithost; A henver bund ande."miter for the bede Prized as the chuzatio sime, 'ale poor man's b

Instend of the ruff was nus sonetimes worn a starched collar or thand, plain, and edged with lace. Late in the reign the jackets or doublets were shortened, and the brecehes reduced in size, and fastened in large lows at the knees; the well-stockinged leg was admired, and the bat worn low in the crown, and with broat brim, as eeen in portraits of the date 1619. Bearls and whiskers thad becotue alinost universal in the reign of Elizabeth; but in that of James, the former was semetimes worn trimmed to a point, hanging down at the division of the rutf.
In the female costume there was little change. The huge fardingale continued to the worn by the nohility; a strong passion for forcign lace was introluced; pearls were the fivourite jewels, and the rulf maintained its away, so an to be anathematized froin the polpit; and the fancies of female costume were glanced at in a sermon preached hefore the king at Whitehall in 1607-8, as "o her Freneh, her Spauish, and her forlish Gathions; her plumes, her funnes, and a silken vizard, with a ruff like a sail, yea, a ruff like a ruintow, with a feather in her cap, like a lag in her top, to tell which way the wind will How."
Expurience had scarcely convinced the military world of the ineffecacy of steel harness to resist the death-shot of the aryuebuss and musket, when James I. wittily asid the could net but "greatis praise armour, as it not only
protected the wearer, but also prevented him from ingu. ing any nther permon." Tite warriors of hin time, hom ever, hegan to dimover that it lackel the lieyt pait of these qualitios. They firat laid aside the jambes a we:l boot, then the shifeld, and next the covering for the atms. When the cavalry disused the lance, the cuisen were no longer worn to guard aguinst its thrust ; and Itw nout leathern or buif coat hung down from wheath is body armour to the knees, and aupplied the place of the disearded ateel. In the portrnit of Henry, l'rince of Wnles, the armour ia worn only to the waint, and the trunk is covered with wite lowee strapa, through which appears the rich silk or ": 1 ces.

We now approach the fext cru of coatume in England; for whatever may have been the merith of certain gas ments worn in previous reigns, the entire dress in that of Charles I. is unrivalled for picturesqueness and elo gant thate. At this we shaul not be surprised, if we recollect thnt it wns copied from the habit of Syain, the inoat becoming of all European costumes. Early in thin reign, however, the motley fashion of the time of Jamee I. prevailed; and the Savoy neek-chain, the ruff and cuffs of Flanders, the Naplea hat with tho Roman hat baud and Florentine agute, the Milun sword, und the cloak of Creneve set with Brabant buttons, gloves from Madrid, \&c., were the characteristica of the lean of 1629. The ruff had alanost un'versally given phece to the fulling band; and collare of rich pwint-lace, harge and hanging down on the shouldera, held by a cord and tas sel at the neek, and called landyke, from its luing be mont ariking pari of the dress in which Vandyke at this time painted prortruits.

The principal lishits were vests and cloaks of velect or silk damaak, short trousered hreeches terminating in stuffich roths and fringea and points, and very rich boom with large projecting lace tops. \boldsymbol{A} drens of Charles in thas described: a falling band, green doublet (from the arm-pits to the shouldera wide and loose), zig-zug tumod up rufles, long green breeches (like a Dutchman's) tied below the knee with yellow ribbons, rad stowking green shoe-roses, and a short red cloak lined with bloe, with a star on the shoulder; the king sometimes wore a large cravat, and at other times a loug falling band nib tassels. The cavaliers were genuine auccessors of EL ward's knights, not less in costume than in high chish rous bearing. Their dress consisted of a duablet of velvet, nilk, or satin, with large loose nleeves nashed and embroidered; Vandyke collar and band, and shortemp broidered cluak worn on one shoulder; the long breeches, friaged and pointed, mel
 the ruflled tops of the troth; the embroitered sivord-belt was worn orea the right atoulder, and is it was hung a Syanish is pier; and in the thapring berever hat wes weras plume of feathers conined by a jewel. A buff cat or jerkin was often wors as a better defence than the doullet, which is sone times covered. 'The er graving represents a clik zeni of this peried mons plainly stimel. In tha roigu the hair waa noth long, and the mustaction and pointed beard formed a triangle elout the mowh as was withessed not many years since upon opening te coffin of Chastes I. at Windsor, when the severed hew of the king was found with the pointed beard periest Charles is painted by Vandyke with a jewet in one w only; at Bath is preserved the pocket-handkerclief
fin $:=\mathrm{in}$ at ths time white camlrids, mar gaitiala C. IR. Oliv witnens, in 1040, a ul-male plain cleth dcan, anil lins swor the men usually wo burs, with phain col
Charles is belies but the helmet wa midale of the suven the ancivint harnesn same regineritu of e Cuiraswiers.
The female costu Gian spleculid. deeves were worn, with a gorget ruff st French lionds were tion as to rank. and the lauds, of with curious ellict. were mucll worn ; w mear lace, jewels, tanned the elose hav Towards the close brous fardingrale dix ruff and band. Yell Gationable since M weat to the gallows whe hung fior her ell Orerbury (Mrs. Tur foon France). The peared, the fimale rich full skirt and sle nich lare, and the h thege vanities were " With the restorati kess innovatims upor the time of Chartes whe conts and wai our mant picturestue Les of a century. It character som dencu is turn changed to of Chartes 11. the tou open in front, where, mas shown ; nud the decked with ribhons buug long lice rutth wora; but the hace e anted to this day V upon the left shoulter hat remained for a sla mas soon lowered.
The petticoat bree though ormamented rrangoly appeared lo the knees; to matel only reached to the el tie ruffled sleeves of nith ribhons. Menn ben leusthened fro heres, and had butt kengh, thus becomina wey of 16it9; wherei breeches, pant:loons, arriess inention of t inds were common, are uaderstord as soe morn the hourg nquare fron Brusiels a and fl
The femule costur bstedess whtioives in
1.) Linn nt the time of his execution; it is of very fine white esnaliris, marked with the innperial crown and the nititala (\%, IR. Oliver Crumwell is dencribed by an cyowitnews, in 1640, na "very ordinarily apparelled" in an Ulemale plain eloth suit ; his linen plain, and not very dean, and his sword atuck close to his side. At this time the men usatally wore long vests and clonkn of durk coburrs, with phaia collara called failing bands or turn-overs.
Charles is believed to have genernlly used armour; but the helonet was deprived of its visor; and before the midle of the seventeenth century, nothing remained of the ancicut harness but the open eap and cuirans; nond some reginente of cavalry thus armed were thence called Cuirasiers.
The fenule costume of this period was rather elegnat Gan splendid. (lowns with cloae bodies and tight deceres were worn, though the fardingale was retnined; with a gorget ruff standing up ahout the neck like a fans. Frach hoonds were still worn, though with litte distinction as to rank. The hair was worn in amall curls, and the liouds, of all colours, fastened under the chin with curiuus efliect. Ear-ringn, neeklaces, nud bracelete, gere murlh wom; but the Purituns forbade the females ω wear lace, jewels, or cuen lraidel hair; and they retained the close bood and high-crowned hat.
Towards the close of the reign of Charles l., the cumbrous firdingale disappeared, with the yellow starched ruff and band. Yellow starch had, however, become unfathionable since Mrs. 'Turner, the physician's widow, went to the gallows widh a yellow ruff round her neck, whe hung for her share in the poisoning of Sir Thomas Uverbury (Mrs. 'Turner having introluced yellow starch foon Fraice). 'I'lose tasteless fashions having disapprared, the female dress became very elegant, with its rich full skirt nat sleeves, and falling collar edged with , nish lare, and the lair wom in grueful ringlets; but these vauitios were condemurd by the Suritan party.
With the restoration of Charles II. came certain tasteless innovatims upon the elegant Vandyke contume of the time of Charles I., which were the first resemblance w the conts mad waisteonts of the present day. Thus, oar most pieturesique nttire listed little more than a quarWe of a century. Its derline was gradual, its chivalrie character som degeneratel into grotesqueness, which in is turn chaured to stark meamess. Larly in the reign of Chartes il. the doublet was much shortened, and worn open in front, where, nad at the waistbmed, the rich shirt mas shown; and the loose sleeves nad hreeches wern deckel with riblons nul points, and from the knec-bands bung loug lace ruffles. At the wrists, too, rutfles wete worn; but the lace collar was shorn of its points, desigmated to this day Vanlyke. The cloak was retained upon the left shouller, and the high-crownet and plumed bat remained for a slort time; but the crown of the hat was soon lowered.
The petticoat breeches were another absurdity; although ornamented with ribbons at the sides, the lining atragely appeared lelow the breceliea, and was tied at the knees; to mateh which, the sleeves of the doublet only reached to the elhow, and from under them bulged the rufted sleeves of the shirt, both being ornamented with riblums. Mcanwhile, the skirt of the doublet had becn lengthened from above tho waist nenrly to the beecs, nad had buttons and hutton-holes in its entire kengh, thas lecoming a eoat, and so named in an invenWey of l6if9; wherein, also, are the items of waistroat, breches, pantaloons, drawers, and tronsers, being the arliest mention of these urtieles. Stockings of various kinds were common, and "the lower ends of storkings are understond as socks. Instenl of the luce collar was worn the lony squareendel cravat, of the same material, frun Brusisels and Flauders.
The female costume, ns if to compensate for the asteless whitions to that of the men, retained much
of its elegance in Charles's reign; indeed, from this time, "the stronger mex" appenr to have lef the art of dreas to the hidics. The portrnits of the beautien of the court of Charlea II., in Windsor Castle and Hamplon Court P'ulace, are familiar illustrations, in which we see only a pearl necklace upon the hosont, and the hair filling in luxuriant ringleta from beneath a string of pearls. The gowns are of the richest aatin, low in the bosom, and hnve long trains, so that the wearers could not "mir to the next room without a pngo or two to holl them up." The annexed engraving shows a citizin's wife performing thia office herwlf.
In the sp iping diary of Pepys (from 1650 to 1660) we obr ceral glimpses of the costume of the carly
part of 4
cither sex
Blopyolion
protty
puttier
Caxtleman
Stewner " at cocked, and a red plume and er celfimt tritle." He tells us, too, of his wife's jowels, "in creased by the ring she hath made lately as my valentine's gift this year; a Turkey stone set with diamonda; and with this mul what she had, she reckons that she huth nbove C 500 worth of jewels of one kind or other." His entalogue of conts, cloaks, breeches, and stockings is curious to tha antiquary. In 1660-61, canting bia roundheal, he appeared for the first time in the dress of a cevalier, with cont and sword; then a new lace-band; a new scallop, very fine; "shagey purple gown, with gold buttons and hop-line; a black cloth suit, with white linings under nll, to appear umber the breeches;" and a fine camlet cloak. Upon launching his coach, he gave his servants a serge livery of grecn, lined with, red: bis wifo was "extraordinary fine, with her flowered taocy gown that she had made two yeurs ago, now laced exceeding pretty; and indeed was tine all over." He put on his new suit, and so anon they went through the town, with their "new liveries of serge, and the horses' manes nud tnils tied with red ribbena, and the standards then gilt with varnish, and all clean, and green reines, that people did look mightily upon us." Elsewhere, we find him thus generous to a relntive: "I did give my wife's brother Mas. nnil a coat that I had ly me, a close-bodied, light-coloured eloth coat, with a gold edging in each scam, that wns the lnce of my wife's best pettycoat that she had when I married. He is going into Holland to seek his fortune." Then ho chronicles a shepherd's "woollen knit stockings, of two colours mixed," and the king's having no "handkerchers, nnd but three bands to his neek," the grooms of the bedelamber having taken all the royal linen for their quarter's fees. But a nore importunt note is his minute necount of the plan of Clarlen II. to introluce a national dress never to be alicred, nnd which was taken from that of Poland ; and it was worn experimentally by the king and his courtiers, and consisted of "a long cassocke close to the looly, of black cloth, and pinked with white silk under it, and a coat over it, mul the legs rufled with black rihand like os pigeon's leg." Pepys thought this "a very fine and handsome garment; but the king laid aside the pinking, as it made the wearers look too much like magpies." Dryden says these long vests "did we.ume our English gravity ;" but they soon gave wny hefore doublets, and hose, ind other impurtutions of the Duke of Grammont. These the diarist describes a new play, in which the

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation
queens Elizabeth and Mary appear dressed in the coscumes of the nge. He gives us soma curious accounts of " young pretty ladiice dressed like men, in valvet coats, caps (hata), and ribbons, with laced banus * * the ludies of honour dressed in their riding garba, with coats, and doublets, and deep skirts, just for all the worhl like mine : and doublets buttoned up tha breast, with periwigs and with hats; so that only for a long petticoat dragging under their men's conts, nobody would take them for women:" Evelyn also mentiona "thr queena in her cavalier riding-habit, hat and feather, and horseman's coat." Evelyn, too, tells us that our modern paper folding fans, much less pieturesque than the feathered fans of earlier date, were introduced by the Jesuits from Japan and China. Trifling as these notes msy appear, they illustrate manners and cuatoma, minute information an which will fruitlessly be sought in the broad path of history.
Passing to the reigns of James II. and William III., we.find few noticesblo novelties in costumo. The eoats wore often of velvet, without collars, with large hanging sleeves, and button-holes of gold embroidery. The petticout breeches were exchanged for the close-fitting garments tied below the knee, and therefore called kneepreeches; the broad-brimmed hats were turned up on two sides, and edged with feathers or ribbona; tho fashion lay in the rich long lace eravat and embroidered waistcont, the band was now narrowed, so as to resemble that worn at tho present time by elergymen. The periwig was worn still longer than hitherto, hanging down in front, or flowing upon the shoulders, though tha colour was altered from black to suit the complexion; and combing these wigs was a piece of gallantry, for which purpose a comb was carried, whence the origin of our preent porket-comb: and at court, in the walks of Kensington, the Mall of St. James's, or the boxes of the theatre, the beaux turned their wig curla over their fingers whilst in conversation; the effeet of these wigs flowing over the cuirass will be seen in the portrait of the great Duke of Marlborough.

The female costume was unchanged in the reign of James II.; but it lecams less luxuriant and more formal in the time of William and Mary, in aecordance with Dutch taste. The waists were much lengthened with velvet stomachers, covered with jewels, so as to conceal tha bosom, hitherto unsparingly exposed ; the sleeve was made tight, and trimmed with Jace lappets or ruffles, and long gloves were worn, so as entirely to cover the arm; but the skirts were worn long, full, and flounced; the hair, instead of flowing in ringlets, was gathered up, and atrained over a toupee of silk or cotton wool, carried up $\omega 0$ high as to be called a tower, covered with a lace searf or veil that hung in front helow the bosom; but this head-dress gradually shrunk into a caul with two lappets, known as a " mob." False locka and curls, set on wires te make them stand out, were also worn. Before the Revolution, the citizens' wives dressed with becoming plainness, and gentlewomen wore serge gowns, which, atter 1788, were rejected by chambermaids. The increase of rich clothes and jewela was great, and there were one hundred coachea to one kept formerly, all denoting the improving wealth of the country.

A few of the fashions and peculiarities of this century may be summed up in conclusion. From the reign of James I., the ladies appear to have dressed their hair in better taste than previously, in curla on each aida of the face, and braided in a knot at the back of the head, where it was often ornamented with jewels or pearls, or a aingle feather. It was next worn in long locka flowing below the shoulders; and the love-lock, ornamented with ribbon and twisted pearls, wsa worn on one aide. From the reign of Charles II. to that of Queen Anna, lung hair was much prized, and waa often sold by women of inferior fortune te be made into periwigs. About
this timo the fontange or top-knot, ao called from Mads moiselle de Fontange, who first wore it, was drives out of fashion by the fanatieal spirit of the time. Hnir pow der was also introdueed from France in this ceatury: it was worn of various colours, an absurdity only discon tinued at the elase of the last century. Of the fashion of hats we shall afterwarda speak.

Under the house of Stuart, the ahoe-rose yielded to tha shoe-string, the beaux wenting them of silk tagged with silver, and the humbler classes wore laces of plain gilk, or even leather thongs-the latter still to be nied with in rural life. Shoe-bueklea, in size and shaps re sembling the horse-lean, were introduced at the Rero lution; flimsy Spanish leather boots, with spurs, were also fashionable, and beaux went in them to balls.
Ostrich and peacock feathers were variously worn in hats, and twigs of yew for mourning. Before the reigo of Cbarles I., the high-crowned hat began to be lese worn; and that monarch, in his escape, is described as disguised, and wearing "a very greasy old gray steepleo crowned hat, with the brim turned up, without lining or hat-band." The brim of the hat, however, continued to be worn broad, atal when much worn, was called "alouched.". It was worn till the end of the centurs but with first one flap turned up beforo or behind, then two flaps; and the third flap being turned up, the cockeb hat wsa complete.
Towards the close of the century, wigs became fash ionalile, together with false hair, "a custom contrary to our forefathers, who wore their own hair." Full-bot tomed wigs were worn by the learned professions, Actb bishop Tillotson wat the first prelate who wore a wis which resembled a natural head of hair, unpowdered, the changes in clerical wigs ars shown in the portain of successive arehbishops of Canterbury in the state dining room of Lambeth Palace.

elohteenth century.

The pieturesqueness of our national costume, which was perfeet in the reign of Charles I., and the Conr monwealth, gradually declived in tho three succeeding reigns, and may be said to have hecome extinct in the reigns of Queen Anne and George I. The best peniod of our costume was, therefore, that of the school of por trait painting in England, led by Vandyke, when tha fine arts were highly esteemed in the Euglish court, ani a good taste began to prevail in the nation.

It has already been seen how a fanciful fashion of attire began to dwindle into the tameness of modem cot tumo in the reign of Charles II., a change which the eflorts of that gay monareh could not avert. The iter ations were of French origin. Louis XIV., whose gene ral taste was unimpenchable, introduced a new and fy from elegant fanlion of dress, which the colebrity of his court and other circumstances caused to be extensively copied in foreign countries. Alout the reign of Queen Anne, this new French fashion had heen embraced by courticn, physieinna, and other professional persons in England, also the higher order of gentry; and in the following reigna of George I. and II., it became universal.

This dress of the old English gentleman, as it afterwards came to be called, consisted at first, during Queen Anne's reign, of a periwig in formal curls, partly contained in n silk bag on the shoulder ; a small cocked hat, full bottomed coat, short breeches, blue or scarlet atockings drawn

ver the knee and high red he onls by lace alver clocks it brough three 9 hlows a gentle that the snuff-b continued indis]
The origin of the middle of t gentility, and a rore round hats lat being exha mas imported fr George III. (17 nix inclies and t between Quake hats open befor mila; some wor i greyhound; a guish by the ta mind. There ock; and while under their arm diagonally over aides of their ha and look as if th their heads. S shich should eo poined into the not above half r thallowness of trimmed with g Hgararth's pictur ithe of the entir pagce of deserip Reynolds will su The fashions c a peruke and a millies, from the rig becaine the f broko geing to c Queen Mary obs ia his night cap, fashion. In I76 makers of Lon gentemen to we tade! The fa bowerer, came to creased in size n sent day, formal of prelates and 1 ide powder nuis than hair, as the I wom, from the merly; but their ciose a resemblas uvoid detection. posililions, to mai
Towards the male dress took present day ; the been worn over t The coats of tho or satin, as well lanciful. Hoga Reynolds's, deep jised in plum. general wear ; tl lerials, and emb The court dresse
${ }^{4}$ ITonton Chron in the Archlurilogit VoL. 1.-9.5
called from Mado t, was drivea out time. Hair pom a this century: it dity only diecor Of the fastion
x-rose yielded to em of silk tagked ore laces of plain er still to te nued ize and shspe in acel at the Revo with spurs, wem em to balls. variously worn in Before the reign began to he lem pe , is described as y old griy steeple. , without lining on ever, continued to worn, wan called od of the centurs re or behind, then ved up, the cockeb
wigs became fasbr custom contrary to hoir." Fullbob professions, Artb , who wore a wis hair, unpowderedt vn in the pertraith bury in the state
al costume, which I., and the Conr e thrce succeeding ome extinet in be
The best period the school of por nndyke, when the English court, ani ation.
anciful fashien of wess of modern con change which the uvert. The ilter XIV., whose gene ced a new and fay the celelrity of bin to be extenively

vor the knee and square-toed shoes, with small buckles and high red lieels. And this formsl costume, relieved only by lace cuffs, ruffles, and neekcloth, and gold or alver clocks in the stockinga, remsined unmoilfied hrough three quarters of the century. The engraving shewa a gentleman of the yesr 1750 , and reminds us thist the anuff-box, first carried in the reign of James II., continued irdispensable for the fine gentleman.
The origin of the cocked-hat has been explainel. In the midlle of the century it was considered a mark of gentility, and a distinetion from the humbler ordera, who wore round hats. But the varietics of the native cockedwast being exhausted, a larger one, named Kevenhuller, was imperted from Germany; and early in the reign of Georgs III. (1762), hats were worn, upon an average, is inches and three-fifths broad in the brim, and cocked between Quaker and Kevenhuller. Some had their basts open before like a church-spout or a tin flourvali; soine wore them rather sharper, like the nose of a greyhound; and an account states-." We can distinguish by the taste of the hat the mode of the wearer's mind. There is the military coek and the inercantile rock; and while the beaux of St. James's wear their hats under their arma, the beaux of Moorfields wear theirs diagonslly over their left or right eyc; sailors wear the wides of their hats uniformly tueked down to the crown, and look as if they carricd a triangular spple pasty upon their heals. Some wear their hats with the corners, which ahould come over their foreheads in a direct line, poined into the nir ; those are the Gawkics. Others do ret above half cover their heada, which is owing to tho dallowness of their crowns."* Cocked-hats, richly trimmed with gold-lace and ostrich-feathers, occur in Hogarth's pictures, which, indeed, will furnish a better ilea of the entire costume from 1727 to 1760 than many pages of description; and the portraits by Sir Joshua Regnelds will supply the dress of the next forty years.
The fashions of wigs werc as various as those of hats. a peruke and s plaited and tied tail were called a Ramillies, from the famous battle of that name. The tiemig became the fashion, from the celebrated Lord Bolingbroko geing to court reth his wig tied up, upon which Queen Mary observed that he would " soon come to court ia hia night cap," a ruyal rebuke which established a fasbion. In 1764, wigs went out of wear, and the wigmakers of London petitioned George III. to compel gentemen to wear wigs by law, for the benefit of their tade! The fashion of wearing powder in the hair, howerer, came to the wig-makers' rolicf; and the wig deceased in size as the century rolled onward. In the present day, formal wigs are almost confincd to the heads of prelates and law officers ; and the latter, to get rid of ine powder nuisance, wear wigs made of other materials than hair, as the metal platina. Wizs. are, however, much wom, from the greater prevalence of baidness than formelly; but their perfection now consists in bearing so ciose a rescublance to the natural or living hair as to svoid detection. The side curls were originslly worn by positions, to maintain their resemblance to boys.
Tewards the middle of the reign of Gcorge III., the male dress took the form of the court auit worn at the present day; the breeches having, from the yoar 1760, beea worn over the kners, fastened by buckles or strings. The coats of the cighteenth century were of velvet, silk, or satin, as well as broadeloth, and thei: colours very anciful. Hogarth's favourite colour was sky-blue; Reynolds's, deep crimson and violet; and Goldsmith rejoiced in plum-colour. About 1790 , cloth became the general wear; tho waistcont being of the costlier makrials, and embroidered, and soinctimes the brecelies. The court Uresses were of velvet or satin, with steel,

[^75]jowel, or paste-buttons; the wig hall a silk bng; and the jewelled or stccl-cut hilted aword has been retained through the mutations of the last hundred and forty ycars.* Buckles were worn at the knees and in the ehoes till the close of the last century; and the large aquare plaited beckle wss the ton until 1791, when shoestrings became general ; though the Prince of Wales nnd his household endeavoured, by wearing buckles, to retain the fashion.
The female costume of the eightecuth century was as formal and tasteless as that of the men. The most odious piece of attire introduced in the early part of the century was the large whalebone petticoat, which degenerated into the hoop

Lady in the time of George II. petticoat, snd made a lady to appear as if standing in an inverted tub. In the reigns of George I. und II., loose gowns, called sacques, snd hooded silk cloaks, were worn; and a very small muff, such as have been lately revived. This cuatume is shown in the annexed portrait of a lady of Gcorge II.'s time. Ornamental aprons were also worn, as at the present day, with the watch, necklace, and the fon, which was sometimes from twelve to eighteen inche in length, and benutifully made. Gay sings :
"The ran shanl flutuer in all femsle bsonds,
And various fashions learn froin various lands. For this slantl elephanis iheir ivory shed. And poil shi'd sicks the w'sving engines spresd: lis clouded mail the tortoise shall resign, And rnund the rivel penrly circles shine, On this slanll Indians all their art employ, And with bright colours stsin the gaudy roy; Their pains shint thero in wildest raneies how; Gay "France shall make the fan her arists' care, Aud wilh the cosily trinkel smin the fair." Spanish broadcloth, trimmed with gold-lace, was used for ladies' dresses in the reign of Gcorge 1 .; and furbelowed scarfs were worn from the duchess to the peasant.

The flowing coif, or rather veil, of tho finest linen, fustened on the head, and falling behind, prevaiied under Queen Anne, until the towering head-dress was restored; and this being again diaused, the hair was worn in curls down the back. Hoods of all colours and fashions on horseback and at the opera, were worn; the projecting fontange again appeara, pointed like a stecple, with long crape streamers, their feathers piled up with flowers in stages; and even figures of four-whecled carriages were head ormaments. Periwigs were also worn by the ladies; snd the head was sometimes made up of pins, pnste, and pomatum, so as to keep for a month. Queen Ann had the good sense not to disfigure her chestnut locks with powder; but it was generally worn till 1793, when Queen Charlotte and the princesses discarded it.
Caps may next be noticed: they were at first small frilled or puffed; then the French night-cap covering the cheeks; the Renelagh mob-cap, copied from the hendkerchiefs of market-women ; the Mary Qupen of Scots' cap, of black ganze, cilged with French beads; the Hycap, tike a hutterlly, ellged with garnets, topazes, or brilliants; and Goldsmith's "Cousin Hannah's cap," a few bits of cambric and flowers of puinted paper stuck on one side of the head. Calashes, like the head of a cabriolet, were next sppended to the head-dress. A flat straw or silk hat, of emall size, and trimmed with ribbons,

[^76]way worn upon the crown of the head; and a large round gipay atraw hat fastenod by ribbons under the chin. The bonnet, in early timea gencrally made of velvet, cloth, and ailk, was in the eighteenth century changed to atraw. Gay mentiona a new atraw hat lined with green, about 1724, bot it was then comparatively rare; for the simple art of plaiting strawa together to make bonnets was only practised to any conaiderable extent about aixty yeara since ; it now employs upwards of $\mathbf{2 0 0 , 0 0 0}$ females in England-Dunstable, in Bedfordshire producing the west plait. In our time Engliah atraw has been supermeded by Leghorn plait, which having declined in foahion, our own straw, silk, and velvet, have been aubstituted as materisls for bonnets; and our hoine manufactures must bave been materially benefited by the change.

NINETRENTH CENTURY.

The formalities of the eighteenth century received a terrible blow at the French Revolution; and in the ten years from 1790 to 1800 a more complete change was effected in dress by the apontaneous action of the people than had taken place at any previous period in a century. The change began in France, partly to mark a contempt for old court usages, and partly in imitation of certain classes of persons in England, whose costume the French mistook for that of the nation generally. This new French dress was introduced by the party who were atyled the Sans Culotee. It coneisted of a round hat, a ahort coat, a light waistcoat, and pantaloons; a handkerchief was tied loosely round the neek, with the ends long and langing down, and ahowing the ahirt collar above; the hair was cut short, without powder, a la Titue, and the shoes were tied with atringa.
The comparatively simple form of dress of the Sans Culottes found many admirers in England, and aoon became common among young men; the change from antuque fashions was also greatly helped by the imposition of a tax on the use of hair-powder, which was henceforth generally abandoned. Pantaloona which fitted closely to the leg remained in very common use by those peraone who hat adopted them, till alout the year 1814, when the weating of trousers, already introduced into the army, became fashionable. Still, many elderly persons held out in knec-breechea against all innovationa, and till the present dav (1842) an aged gentleman may occasionally be ser
ing to this eighteenth-century piece of dress. TI ral use of white neckelotha continued, notwithatats: , we introduction of the standing collar, till the reign of George! V., when thia monarch'a laste for wearing a black silk kerchief or stock, and also the use of black stocks in the army, caused a remarkably quick abandonment of white neckcloths, and the adoption of black inatesd. The year 1825, or thereahouta, w \sim zs the era of this signal improvement in coatume.
While these leading clanges were effecting, other atterations of a less conapicuous nature were from time to time taking place. The diabanding of the army after the piece of 1815 led to various transformations beesides those we have mentioned. While pantalome were the faghionable drcss, it hecame cuatomary to wear Hessian boots; Luese, which had originated omong the Hessian troopa, were without tops, and were worn with small silk tassela dangling from a cut in front; being drawn over the lower part of the pantaloons, they had a neat appearance, but the keeping of them clean formed a torment that prevented their universal use. When trousers were introduced from the practice of the arny, the use of Welling ton troots to go benesth them also becume common.*
Referring to the era of 1815 to 1825, as that in which trousers, Wellington boots, and black neckcloth or atocks

- Il is proper to montion that irousers had, for the previous figteen or iwenty vark, been used by boys, and were piephapis from them ndoried by the aring. Previons to the French Revoiwnoti, the dress o' boys was a'mosi the same as that of men.
came into vogue, we may place the introductivn of w surtont in the aame peried of history. From the the when the collarless and broad-skirted coat had disappoum about the commencement of the century, tho fathion of coats had changed in various ways, till the abovernmand era, when the loose frock-coat or surtout wis added the list of garments. We remember of seeing Pread military officers, when in undress, wearing frockeme as early as 1811 ; it is probable, therefore, that the ze dern aurtout is only a variety of the loose military pis coat brought from the continent hy the British amy however it originated, it may be nllowed to be one of greutest improvements in the style of dress which yet occurred in the nineteenth century.

WELSH Costume.

The Welah, an a relic of an ancient Celtic pacte poasean remarksbly few external traits of their origial They have, like the Irish, become Anglicised in costite and wo ehoult in vain search amongst them for briacan or checkered clothing of their Seythian snceant The general naterinal of dress is home-made, or at lase common kind of woollen cloth, and flannel. Blue if general colour of attire. The women wear close-fiti jackets, and dark brown or atriped linsey-woolsey pes coats. The moat remarkable part of the Welsh cootse is the hat worn by the wosmen. All females, in paraf the country not modernized, wear round black hats, B 2 those of men; and thia fashion is supported to and extent by laclies of the higher rank. Thia use of hat is not Celtic 1 the fashion is derived fron Endan and is only two or three centuries old.

IRISH COSTUME

The Irish at an early period wore the same a foahion of attire as was preserved till recent times inf Seottish Highlands; but, an in Walen, every thing of kind disappeared as the country became Anglicised. prinitive species of attire, including coloured mala kirtles, ond other fanciful garments, retaained in quer the sixtecinth century, when laws were pussed by Ho VIII. enjoining the use of caps, cloaks, coats, dotike and hose, of English cut, but of Irish or any otheres terials.
The general dress in Ireland, at the present day, rut varies from that in Eugland. There are, however, of interesting peculiarities of costume amongst the pees ry of the southern and western counties, In Kerm saya Mr. Crofton Croker, " the inhabitanta of one ben are easily diatinguiahed by their peculiar dress from 4 of another; the greatecat is there worn in the fashima a mantle, fastened by one button under the chin, and aleeves hanging down unoecupied by the aus.". In county of Limerick the men's dress is invariahly produced by a mixture of black and white wool, rite dyeing. In the eastern parts of the county of Corky blue is predominant ; in the western parts, and in? county of Kerry, light or powter hlue; and nealf same peculiarity extends to female dress. In thenteg baronies of the county of Cork and coanty of Liarig cloaks of the brightest red are seen. In the nad Kerry and Cork, dark bluc and gray prevail.

A brown stuff gown and green petticoat is the ppe female costume, with atockings of the lrightest blaci; stockings ore seldon seen, and ahoce are scarcelss worn except on the Sabbath and other holidayas buckles and cloak clasps are much prized, and are hye down from mother to daughter. Bomnets ara quiks known ; but the highecauled mob eap is aometines under the hood. The furdakieen, or little howid, in is favourito head-drese, and is formed liy a kerchied $/$

mily folded round min.

The general e hown for its od found which perh bort coat; the co We buttons and at veine:;" the gras Fat the lega; and The mouth, whi Pat in ordinary eo
Hitha freczo grea
Dint, like the mal
hen there is no I Mr, and Mrs. Holl
fus speake of the
"The Irish clo poterial falls well poagh to envelop wently drawn fors tom sun, rain, or teral uso diapene I life cares but lit the has 'a goo spearance would fut were not alwa her garments.
win't I better tidy lisow on my cloa of frequent obser an head to foot ir e climate is damp minonly perforn hanket by night pollen retains the ecertainty that it fections, and is se ments sgainat it, at Iriah have so f d to than take fro e cost of a cloak

The msterials of
lefly the native w
sey, druggets, an wear the linen ik of the Irish weseholds or attir atsexterior mark Gall into disrepair,
ss is generally
en seems a probl d to observe, ho urse of removal, proving.

SCO
At the present da nationsl costum ple from their fe ever much the f lists of England, Edinburgh, Glas tand, sre dresse ments sa ja now asele, or the cap This general reae Eugland has exi , when foreign m ong the higher way into rank mately the peop

0 introduction of two ory. From that timen d coat had diasppent entury, the fashion of , till the abovermax surtout was added a aber of seeing Prend 4, wearing frock coun cerefore, that that mo - luose military gme by the Britiah army lowed to be one of in e of dress which hat tury.

ME.

ancient Celtic peopien rnits of their origind Anglicised in costumy amongst them for heir Scythian anceter one-made, or at leaut d flannel. Blueinter men wear closeftuin d linsey-woolsey ptoi of the Welsh costume All females, in parts ef round black hats, litu supported to a ank. Thia use of th derived fron Englan old. Tales, every thing of became Anglicised, ding coloured manter ats, retalaned in ux ${ }^{6}$ - were passed by Heary cloaks, coats, doubha Irish or any othee a
t the present day, rum here are, however, 5 he amongst the peasan countics. In Kumy hhabitants of oneburw peculiar dress from tha o worn in the fastion under the chin, andi 1 by the aims." Int hress is invarialy and white wool, mith the county of Corlida stern parts, and in r blue; und nealy le dress. In the enter and county of Linim seen. In the wat rray prevail.
a petticoat is the pay f the hrightest buat ; shoce are bcarcely 1 other hulidays. 8 h prizel, and are haid Bonneta amo quils b cap is somrtines mo or little hood, is ile med ly a kerchief?
wolded round the head, and tied in a knot under the din.
The general costume of the male pesaantry is well trown for its oddity. A round black hat or caubeen, hound which perhaps is bound a rope of atraw ; the rough dort coat; the corduroy amall clothes, open at the knecs, the buttona and strings enjoying' a ainecure "for convayaince;" the gray stockinga moat likely hanging loose ma le legs; and the short black pipe stuck in the side of the mouth, which is ever ready for a joke. Such is Put in ordinary costume; but frequently ho may be seen with a freczo greatcoat over all-and this cumbrous garment, like the mantle worn by females, seems to be used Ghen there is no plea for its use on the seore of weather. Mr, end Mrs. Hall, in their beautiful work on Ireland, bus apeaks of the female cloak:-
"The Irish cloak forms very graccful drapery; tho raterial falls well and folds well. It is usually large raugh to envelop the whole person ; and the hood is frepanily drawn forward to shield the face of the wearer forn sun, rain, or wind. Yet we would fain seo its eneral use diapensed with. A femalo in the lower ranks f life cares but little for the other pertions of her dreas The has 'a good cloak;' and certainly her ordinary ppearance would be more thought of, if the huge * cover"fut were not always at hand to hide dilapidations in her her garmente. 'Oh, then, I'm not fit to be seen; ann't I better tidy myself a bit?-but aisy! sure when fhrow on my cloak no one will know what I am,' is a of frequent observation; and away they go, shrouded fornhead to foot in this woollen hide-all. It is true that reclimata is damp, that it is cold, and that the clonk manonly performs a double office, being used as a 'anket by night as well as a covering by day. But wollen retains the damp; and this fact, together with ecertainty that it imbibes and retains all unwholesome fections, and is seldom or never washed, are serious aroments agsinst ${ }^{\text {it, picturesque though it is. The pea- }}$ lot Inish have so few comforta, that we would far rather Id to than take from their sinall store; but we conceive e'cost of a cloak' could be more advantageously laid l^{3}
The materials of the dress of the Iriah peasantry are Lefy the native wool, worked rudoly up into frieze or pey, draggets, and flannels, for they oeldom can afford weor the linen they fabricate. Unfortunately, the Ik of the lrish have little idea of tidinoss either in useholds or attire. Taking things too eaaily, as reecteaxterior marks of decency, they allow their clothing fall into disrepair, and finally ruin; consequently, their ass is generally mare picturesque than neat, and it en seems a problem how they get into it. We are N to observe, however, that this heedlessness is in urse of removal, and that the dress is everywhere proving.

SCOTTISH COSTUMES.

At the present day, Scotland cannat be said to possess or national costume which diatinguishes the bulk of the fopla from their fellow-subjects in South Britain; and wever much the fact mny surprise tho artists and druxists of England, it is very certain that tho inhabitants Euinburgh, Glasgow, and other cities and towns in othand, are dressed in precisely the alame fashion of ments as is now seen in the strects of London, Paris, ussels, ur the capital of any other civilized country.
This general resemblance of Scottish costume to that Eugland has existed since about the reign of James - when foreign manners and fashions were introduced fang the ligher classes of socicty, nod thence forced it way into ranks of professional men, traders, and matly the people at large. Previous to the er we
mention, the dress of the Scotch, both thome of the High lande and Lowlanda, was distinguished by parti-colours, woven in checks, according to taste or ancient usage. By the Celtic race in the Highlands, thia species of variegating cloth with colours was called Breacan, which signifies spotted, and by the 'reutonic population of the Lowlanils it received the name of Turtin, a word whoae origin has defied the researches of etymologists, but which it is not unlikely may have been derived from the ancient Tartar racea, who used a sinilar kind of colouring in their attire. Whutover be the origin of the terin, all doubt as to the antiquity and almost universal use of tho thing meant is at an end.
"When the soldiers of Catherine [Empress of Rusia] opened the vaat tumuli which are scattered over the great desert between the Tobal and the Irtish, among other memoriala of a high antiquity they discovered a small bronzo figure of a mounted Tartar, apparently an inage of one of those tutelary deitiea still in common use among the Calmucs und Mongols. The head was represented in the amall conical bonnet once univerally worn from Thibet to St. Kilda, still continued in China and Albania, and not extinct among the Highlanders until the beginning of the eighteenth century. The body was covered by a checkered turic, engraved in cross linea, evidently indicating a parti-coloured garment; and the whole figure might have pasacd unnoticed among the carliest Highland grave-stonea, or the remote Islesmen in the year 1716. By the traditions of the surrounding tribes, the tumull where the bronze was found are said to cover the remains of Tartars killed in the battles between Tumerlane and the Culmuca, whose descendants at this day wear vestments checkered in various colours, resembling the character of tartan. The Turka, another race of the some stock, are still attached to the same habit; and hence the wandering Turkish pedlars in Eugland frequently wear a gown of Highlind tartan, from its conformity to their ancient taste. But not only among the Culmucs and Walgusians remains this remnant of an earlier period, aeparated by diatance and by language; it is found lingering in various quarters of the world, and various degrecs of civilization. Among the Tuscans, the Neapolitans, the Albonians, and the Basques, broad striped stuffs and ailks retain the common elements of its colouring. In Wales, the petticoat of the women still preserves a tradition of their ancient breacan; and that of the Mulo-Rusbians and Don-Cossacks exhibit une quivocal tartan. It is of checkered cloth, in various colours, both of the warp and the u oof, generally red, green, und black, and so exactly resombling the Scettish patterna that it might be mistaken for the manufacture of a Scottiah loom. Theae coincidences are atrong evidence of an ancient universality, once prevalent through a large portion of mankind, and of which the tartan of Scotland is only one of the last remnants, preserved by the remote solitude and the tenacious habits of an aboriginal people, secluded from the revolutions of the world and the modifications of society."*

We do not find that tartan cloth, or indeed cloth of any kind, had been worn by the Lowlanders of Saxon or Teutonic origin in the shape of philibegs or kilts, that ancient fashion of attire being for ages previously con fined to the Highland clana. That tartan, however, was at one time as much in use for other garments in the Lowlande as Highlands, is diatinctly proved by the fullowing extract from the "Vestiarium Scoticum" ($1560-$ 1570), already quoted. We slightly modernize the or thography, to render the language intelligible to Engliah readers:-

- "Vestiarium Scoticum:" from the manuscript formerly in the Iibrary of the Scots Coltege al Douay, with an Inimduction and Notes, by John Soteiski Fiturl. Edinhargh: Will:am Tait. 1*42. The nibove exiract is from the lesmet ntroduction oi ats? staart.
"For asmeiklo as in thir present tymes been soen dyvere uncathe chaunges in the auld Bcottyah fassoun, and men do now effect forelgn and atraunge fantasies, radder nor sic holsom une and order as cumeth of their ain native guise, and has been usit be our forbeirs in the auld tyme, for nowe all do tak pryd to buake them in heich crounit hattin, Frencho cloukis, Englisles hudes, lang pyket schune, and udder aic lyk uncuthe braveries, the whilk was unknawen till our anceators of gude femen, wha was contentit to gang with ane bonnet of Kelshewhlew, and ane mantel or plaid lyk as affiore tym was usit be ther faderis begone; with ane pair of rouch rowlyns [buakins] or hemands of hartahyd, an was much usit be our umquhile lorde and sovernine King James of nobil memorye; for he had ever besydea thae of his awin colonria, twa or three plaidia of divers kyndes in his wardrobe, whilk he usit in his jornnyes when that he wald not he knawen openlye."
Tartan, for clothing, disappeared in the Lowlands in the course of the seventeeth century; but even as late as the beginning of the eighteenth century, parti-coloured plaids were pretty generally worn; and young women were in the habit of using a "tartan sereen," that is, a mall plald of variegated colours. In the fine old Scottish song, "Wat ye wha I met yestreen,' the screen of tartan ia alluded to in the following characteristic manner :-

> "Wat ye whs I mel yesireen, Coning doun the streel, my joe, My mintress in her tartan screen. Sre bonnie, blythe, and sweet, my joe."

Tho tartan acreen, which was worn in the fashion of a covering for the head and shoulders, so as to combine in some measure the properties of a modern bonnet and ahawl, was formed of costly materials; the ladica of the higher clasea employing ailk, and those of inferior station fine worated, the colours in each case being remarkably brilliant. Being often employed with a degree of real or affected modesty to conceal a part of tho features, it may be said to have performed the office of a veil to Scottish maidens ; and hence its appellation of screen. Against auch "vanitiea" the pulpit in these times often railed, and, na we auppose, with the uaual reaulta. The plaids of the men were of coarser materials, and were used only aa mantles as a defence against tho weather; yet, if we are to believe Ramsuy, they were not untasteful in their colouring: in the "Gentle Shepherd," he makes one of his shepherds speak of
"A tartan plaid spun o' gude hsslock woo,
Wearlet and green the sets, the borders blue,
Wi' spraings like gowd and silver cross'd wi' blsck."
Whatever may have been the character of tho tartan employed for the plaide of the Lowlanderr, and the general garments, including the philibeg of the Highlanders, towards the middle of the eightcenth century, it was very much obliterated in the year 1747, when all kinda of tartan, and also the ancient costume of the Highlanders, were, with a viow to break the spirit of tho elann, formully proscribed by law. The following is the provision in the act of Parliament on the subject:-
u That from and after the 1 st day of Auguat, 1747, $n o$ man nor boy, within that part of Great Britain called scotland, other than such as shall be employed as officers and soldiers in his inajesty'a forcos, shall, on any pretence whatever, wear or put on the clothes commonly called Highland clothes; that is to say, the plaid, philibeg, or little kilt, trowse, ahoulder belts, or any part whatsoever of what peculiarly belongs to the Highland garb; and that no tartan or parti-coloured plaid or stuff shall be used for great-coats or for upper couts; and if, any such person shall presume, after the said first day, to wear or put on the aforesaid garments, or any part of them, avery such person offending, being convicted by the oath
of one or mora credible witneases before any cound justiciary, 'shall nuffer imprisonment, without hail, du ing the space of six months; and being convicted for second oflence, shall be transported to any of his majenty plantations beyond seas, thera to remain tha npace aven years."
This contemptible law was repealed in the year 1782 hut before that time the tartan and the "garh of of Gaul" had been generally abandoned, except amon Highland regiments, and it is chiefly eopies from the attire that have guided modern attempte at reviving of costume.

Highland Cos/ume.-Originally the costume of th Highlanders resembled that of other Celtie tribea, an consiated of little else than a woollen garment of varim gated colours wrapped round the body and loins, with portion hanging down to cover tho upper part of the legs. In progress of time this ruile fashion was super seded hy a distinet piece of eloth forming a philibeg of kilt, while another piece was thrown loosely sa a mant or plaid over the body and ahoulders. In either case th cloth was variegated in conformity with the prescrive breacan or symbol of the clan; and hence the tarty was sometimes called cath-dath, or battle colours, in toke of forming a distinction of clans in the field of battle. . According to the author of the "Vestiarium Scor cum," the following, in the reign of James VI., wast list of chief and subordinate clans, each possessing i own tartan ; among these clans, it will be observed, arein cluded certain Lowland families or houses, who had aly adopted the same kind of cognisance.

Clan Stewart-six colours, ehiefly red, checked wis green, purple, black, white, and yellow.
Prince of Rothsay-three colours, cheeked with gre and white.
Royal Stewart-chiefly white, checked with green, $\begin{aligned} \\ \text { ald }\end{aligned}$ purple, and black.
Macdonald of the Iales-chiefly green, checked wis black, purple, red, and white.
Ranald-chiefly green, checked with black, purple,te and white.
Maegregor-chiefly red, checked with grean and white Ross-chiefly red, checked with green and purple.
Maciuff-chiefly red, checked with green, hack, purple.
Macpherson-equal portions of black and white, nit small linea of red and yellow.
Graht-chiefly red, with checks of green and purple Monro-chiefly red, checked with black and white, Macleod-chiefly yellow, checked with black and red Camphell-chiefly green, cheeked with black, parp yellow, and white.
Sutherland-chiefly green, with black, purple, red, 20 white.
Cameron-chiefly red, checked with gieen and yellon. Macneil-chicfly green, with purple, black, white, 2 red.
Macfarlane-very dark, being chicfly black checked wit white.
Maclachlan-chiefly yellow, with checks of brown.
Gillean or Maclean-chiefly green, checked with ble and white.
Mackenzie-nearly equal portiona of green and pror checked with black, white, and red.
Fraser-chiefly red, checked with purple, green, wher white.
Menzira-equal portiona of red and white.
Chisholm-chiefly red, checked with purple, green, 4 white.
Buchanan-chiefly red and white, with small bly atripes.
Lamont-chiefly green, checked with black, purple, white.
hadougall-chie frent lacintyro-chief nul white. hartson-chiefly Luanb-chiefly
black.
Tactianon-chiaf
white.
Yactintosh-chlef
white.
Pruguhareon-chi
yellow:
Gun-chiefly gree
Harthur-chiefl
harkay-chiefly
checks.
Unequeen-nearly
sellow.
Broo-chiefly red Douglan-very da deta colour.
Crurford-equal
Ruabven-chiefly
Houtromery-cht
hamiton-chiefly
Temysb-chiefly greea.
Comja-chlafly re Snclair-chiefly g and white.
Dunbar-chiefly re Welin-chiefly red Luder-chiefly gr Cunningham-chi Lidarap-chiefly t Hy-chiofly red, Dundas-chiefly g Ogilin-chiefly go black, yellow, ar Oliphant-equal I black and white. *tan-chiefly red, ple, and white. Ramsay-chiefly white.
Enkine-red and Hallace-red and Bodie-chiefly re Birclay-chiefly I nd .
Maray-chiefly gr red
Cruhart-chiefly red. Sos-chiefly red, and white. Colquhoun-green Drummond-chief Porbes-chiefly gre 8ott-chiefly red, Amastrong-chiefl Gonlon-chiefly gr Chunstoun-yollow Graham-chiefly Marwell-chiefly Home-dark purpl Dhaston-chiefly Ret-chiefly red,

To this list the have adopted a pe wrld be salded, anc

A before any cound 0 nent, without bail, dus I being convicted for I to any of his majenty remain the apace naled in the year 1782 and the "gurh of ol doned, except amon iefly copies from the tempts at reviving the

, the costume of ti

 ther Celtic tribes, an sllen garment of vsrie body and loins, with the upper part of th ule fashion was supe forming a philibeg o wn loosely as a mantl ers. In either case th ty with the prescribe and hence the tarta battle colours, in toke in the field of battle. he "Vestiarium Sec of James VI., was th ns, each posseessing it will be observed, are in r houses, who had als nce.fly red, checked with 1 yellow. -s, checked with grew ecked with green, med green, checked witt with block, purple, reat with green and white rreen and purple. with green, bleck, black and white,
f green end purple, 1 black and white 1 with black and red ed with black, purp
black, purple, red, an ith 'green and yellow. irple, black, white, an
efly black checked mil
checks of brown. en, checked with bla
s of
red.
ith purple, green,
nd white.
with purple, greea, 4 nite, with amall ble with black, paple, 2
nadoagull-chiefly red, checked with hlack, purple, and grom. gratintyre-chlefly green, checked with purple, red, and whitu.
hamtron-chiefly red, checked with purple and green. Marnab-chiefly red, checked with crimson, green, and Hack.
lerkinnon-chiefly red, checked with green, black, and white.
White. white.
Prquhareon-chiefly green, with purple, black, red, and sellow.
gun-chiclly green, checked with black and red.
Wuarthur-chiefly green, checked with black and yellow. Hacky-chiefly a bluish purple, with black and red checks.
Kacuuen-nearly equal portions of red and black, with gellow.
Brom-chicfly red, with green, yellow, and white.
Dougla-very dark, being equal checks of black and late colour.
Crafford-equal portions of red and green, with white. Rulbren-chiefly red, with purplo and green.
Hoatgomery-cheefly light green, checked with purple. Hanilon-chiefly red, with purple and white.
Henysu-chiefly red, checked with black, white, and greea.
Comyn-chiefly red, with green, black, and white.
\&inclai-chiefly green, checked with black, purple, red, and white.
Dunbar-cbiefly red, cheeked with green and black.
Lellic-chiefly red, checked with purple, black, and yellow. lauder-chiefly green, with purple, black, and red.
Canaingham-chiefly red, with black, purple, and white. lindasy-chicfly red, with purple and green.
Hiy-chiefly red, with green, yellow, white, and black. Dondas-chiefly green, with purple, black, and red.
Oilvio-chicfly green, beautifully checked with purple, black, yellow, and red.
Oliphant-equal portions of green and purple, with blsck and white.
Sebn-chiefly red, with small lines of green, black, purple, and white.
Ramsay-chiefly red, with black squares checkered with white.
Erskine-red and green.
Hallaco-red and black, checkered with yellow. Brodie-chisfly red, with black and yellow.
Barclay-chiefly light green and purple, checkered with red.
Muray-chiefly green, checkered with black, purple, and red
Crquhart-chiefly green, with black, purple, white, and red.
Ros-chiefly red, with small checks of purple, green and white.
Colquhoun-green, purple, black, red, and white.
Drummond-chiefly red, with green and da:k red.
Porbe-chicfly green, with black, red, and yellow. soot-chiefly red, with green, red, and black.
Amstrong-chiefly green, with black, purple, and red. Gorlon-chiefly green, with purple, black, and ycllow. Chanstoun-yellowish-green, with purple and red. Grabam-chiefly green, with black checks.
Maswell-chiefly red, with green and black.
Home-dark purple, with black, red, and green.
lohnaton-chiefly green, with purple, black, and yellow. Ker-chiefly red, with black und green.

To this list the nemes of other Scottish families who have adopted a peculiar set of tartan as a cognisanco wild be added, and probably the entire number of tartans
now fabricated for indiacriminate salo is not fewer than a hundred. One of the most commonly used patterna of tartan is that adopted by the 42d reglment-dark-green, checkered with purple. Some of what are called fancy. tartans are gaudy, but not in good harmony or contrast of colour.

As modernized and improved by the Highland regle ments, the "belted plaid," worn as the philibeg or amall kilt, with a separate drapery depending from the shoulder in imitation of the oncient gerb, is one of the mont picturesque and graceful contumea to be seen in any part of the world; and although it leaves the leg bare at and a short way above the knee, we are ansured that it is by no means too meagre on attire for cold weather. A gentleman in Edinburgh informs us that he nover catchen cold when dressed in the kilt and hunting among his native Highland hilla; but that he is always unwell after returning to town and donning the dress of the Lowlanders. Ancientiy, the Gael wore no shoce or garmenta for the lega. The feet were only on occasions covered with pieces of hide, tied with a thong, called brogs, which, though alender, were very lasting, and were well suited for walking or running on heathy mountains. The in. troduction of shoes, and also hose, formed from the same tartan cloth as the kilt, ia comparatively modern. The hose of the common men in the Highland regiments are still not knitted or wove like stockinge, but cut from the web and sewed.

It appears that even in ancient times the Celtic tribe did no slways wear the loose garments we have described; but that they also, or at least some of them, wore tho triughas or trius, a species of vestment "formed of tartan cloth, nicely fitted to the shape, and fringed down tho leg. They were sometimes merely striped, and wero fastened by a belt around the loins, with a square piece of cloth hanging down before. It required considerallo skill to make the trius. The mcasure was a stick, in iength ono cubit, divided into one finger and a half. Thers is preserved a Gaelic saying respecting this garment, by which we are given to understand that there were two full nails to the small of the leg, eleven from the haunch to the heel, and three to the breech, a meaaure inapplicable to few well made men."*

The cost in which the upper part of the body and arms of the Highlanders ars now invested, is of course quite modern, having come into use when the old form of tho plaid dress was laid aside. Made, as it usually is, with short skirts and small round buttons, it cannot be considered in harmony with the rest of the attire; but it is nevertheless convenient, and could not well be inproved.

The bonnet has for ages been a part of the Highland costume, as it was formerly also of the Lowlanders, and, we may add, the English previous to the introduction of felt hats. The haet of the Anglo-Saxons must heve been little else than a thick woollen cap or bonnet. "In England, it was ordained, in 1571 , that every person above seven years of age should wear, on Sundays and holidays, a cap of wool knit, thickened and dressed in the country by cappers, under the penalty of 3 s .4 d . for every day's neglect ; lords, knights, gentlemen of twenty marks' lands, such ss have borne offices of worship, gentlewomen, ladies, and wards being excepted." \dagger

The Engliah gave up bonnets sooner than the Scotch; and ultimately the cry that "the blue bonnets hed come over the border," was equivalent to saying that a party of Scotch marauders had entered England on one of their usual hostile excursions. The Highlanders, with whom the bonnct has remained longest as a part of ordb-
*"The Sconish Gael." By James J.ogan. 2 vols. Lonion 1881.
\dagger Logan's "Scottish Gael."

nary irena, have adopted very many shapen and modem of ornamenting their head-goar. The heavy plume of black feathers used in the army is quite modern, and in exceedingly bad taste, beajdes being totally unconformable to the idea of a primitive and light coatume. The true bonnet of the Highlanda is amall, either round or peakel in front, dark blue or gray in colour, and without any tartan or checkering. In fancy dresa, an for example in the adjoining cut, the bonnet fis somewhat larger, and occaaionally has a band of tartan. Highland chiefs were distinguished by three pinion feathers of the native engle atuck in the bonnet; and those who enjoyed the rank of gentlemen were entitled to wear a single feather. It was cuatomary also for the members of each clan to wear in the bonnet a peculiar badge formed of some native shrub. Authorities dilfer as to the precise shrube worn for thia purpose. Accorling to Logan, the Buchanans used a aprig of bilberry; the Camerons, crowberry; the Cainphella, fir-clubmoss: the Forbses, broom; Frasers, yew; Macleods, juniper; Robertsons, finc-leaved heath, \&c.

The full dress of Ilighland chiefs and gentlemen has slways been liberally ornamented with sword, baldrick, dirk, large brooches, bucklea, shot pouch, and purse. The purse or sporan is a most important part of the costume: it is formed of the skin of a wild animal with the hair on, and tied to the waist by a band, hanga down in front, so as to fall easily upon the lap, and not incommode the lega in walking. It ia usually ornamented with silver tags or tassels, and a flap covering the mouth of the purse is sometimes decorated with the vizard of a fox. "In many cases," anys Logan, " the purse is compused of leather, like \dot{a} modern reticule. It is formed into several distinct pockets, in which the Gael carried their money, watch, \&ce., and sometimes also their shot; but anciently they bere a aimilar wallet or builg at the right side, for the shot, or for a quantity of meal or other provision. This was termed dorlach, and was the knapack of the Highland soldier; and sinall as that of the present military is, among the Gael it was still more portable. 'Those of the English who visited our camp,' saya an author quoted by Jameson, 'did gaze with admiration upon those supple fellows, the Highlanders, with their plaids, targets [shields], and dorlachs.' The purse admits of much ornament, but according to my taste, when too large, it hides the beauty of the kilt."

After a period of indifference to the preservation of this bequtiful national costume, there has latterly sprung up a better tone of feeling on the sulject, both among Lowlanders and Highlanders. Encouraged by prizes liberally awarded by the Caledonian Suciety of London, a public exhibition takea place triennially at Edinhurgh, at which there is a competition of skill in playing the Highlard bagpipes, dancing, \&c., and taste in dressing in precer holiday costume. A bundred or more men generally atuend from all parts of the Highlanils in their respective clan tartans; and the cxhibition as a surviving relic of manners and customs the most ancient in the world, ia one of the noast interesting which can be witnessed. The last exhibition was in the summer of 1841.

In conclusion, with respect to the ancient llighland
dreas, it ia proper to mention that it in upon the whow little worn in the present day in the Highlands, int which the modern garb of jackets and treusen of plam woollen cloth has been generally introduced, and it worn on all ordinary occanions. In short, exeept as fancy costume, it in meldom ween anywhere in \&cothan

Lacland Costume.-As already observed, the costum of the Lowland Scotch in at the prement day the mames that which has for agea been common in England an Franco. Among the prasantry, however, in unaphisf cated districts of the country, there remaina a fow trat of a past atate of thingu. The Lowland amall farse of eighty years since was dressed in strong woolle clothing, perhapa home-made of a gray or light-blue colour, the lega below the knee being enveloped in coarse gray stockinga. Tho AngloSaxon amock phirt does not appear ever to have been used in Scotland, where the garments both of men and women were for the most part of woollen or plaiden. The hat eighty years since was rare. The class of prasants wo ntlucle to still wore the blue bonnet, which difficed, however, from the Highland honnet in rhape; it was flat like a bannock,
 drooping on the neck or projecting over the countenance, and was ornamented o the top with a simall tuft or cherry of red worsted. to this humble attire we add a gray woollen plaid, wor when the weather or old age required surh a meanso protection, and place in the hand a snuff-mull, or box the form of a crooked horn, we have a complete picter of the Lowland Scot in full costume, as he existed ahoo the year 1760. As Inte as thirty years since, we remea ber of seeing many such; and even yet they hase entirely disappenared.

While the flat blue bonnet has generally given was the modern hat, or only survived in the degenerate fors of a sinalt round Kilmarnock bonnet worn pretty gan rally by earters, ploughinen, aml boys of the humble rank, the gray checked plaid has withstond all innom tions. This garment, which is still universally wor by shepherds and other persons in rural districts of Q country, may be viewed as the only relic of the ancie variegated attire of the Lowlund Scotch. The checke ing is very simple, consisting only of small of hara of white and black, and the general effect gray. The plaid is made longer than broad, to enal the wearer to wrap one end round his boly and sholl ders, and allow the other to hang gracefully down to back. The right arm is generally left disengaged. T very general use of this simple kind of plaid has led frequent reference in the lyrical piccen of the Soctia bards; thus Burns, in his usually descriptive tanguas soys in one of his aongs :-
" J'lt tak my phinil and nut I'll sleal. And ower the titte to Niannie O."

The only other varicty of coatume worthy of nolis in connection with the Lowlands of Scotland, is that of remarkable community of fishers on the coast of the fif of Forth, near Fdinburgh. At Nuwhaven, a rilk westward from Leith, and at Fisherrow, a suburb Musaelburgh, these fishers have from timo iamemoly poasersed a monopoly of anpplying the metropolity market with their perishable wares, procured often at small personal risk on the bosom of the adjacentity The dress of the males diffira little from that of 24
wen general uod are confin married, whose
in to well the fie Thes dinhion

Timo is the ristences to e the past, the pr tuat for the m dard of the sat or a pint ineast of tume involve sto which we of the thing, perind of tiroe every other. or portions of t are those of t reolution of th earth and moo xitute the mer ingla day, or d tandards; and chanism of hu mathematically and record suo time as those u In accordan practice of ma the general rou wore envilized of the measure cycles, conside tive atural an

The day is the earth turn half of its cir the light of th darkucas of the

It it in upon the who in the Highiands, int is and trousern of plan ally introduced, and In short, except an anywhere in Scotland y observed, tha contum prosent day the amme mmon in England an however, in unmophits ere remaina a few trit Lowlsnd amall farme prsed in strong woolle

anen generally, and the peculiarities wo have to menwoen are confined entirely to the women, married and unmanied, whose excluaive and cheerfully perforneil daty it th well the fish in the marketa and atreets of Edinburgh. Them simhives, as they are termed, are of an exceedingly robust frame and
 constitution, and usually carry loadn of from one to two hundred weight upon their backs, in creele or willow bas keta, and evince a masculine degree of strength which is not unaccompanied by manners equally masculine. These singular Amazona dress themselves in a style which, if coarse, must also not be uncostly. Thoy are unable to wear any head-dress, excepting a plain muslin cap or mutch, and on the
front of this la looncly placed a coloured kerchlef, to lesen the pressure of a broad belt which crowsen the forehead and must be alipped over the head every time they net down their merchandise. They uaually wear a volumlnous mass of petticonts, with a jerkln of blue cloth, and several fine nopkins enclosing the neck and howom. Their numerous petticeats are of different qualities and colours, hut generally atrijed red, or yellow, or, blue; and it is customnry while two or three hang down to the calf of the leg, to have as many more bundled up over the haunches, so as to glve a singularly bulky and sturdy appearance to the figure. I'hirty or forty yeara ago, they wore no shoes or stockings, but cannot now be impeached with that defect, so often imputed to Scottish women by travellers. The rries of the fishwives are well known to vlsiters of Edimhurgh as heing musical, and fur from unpleasing. It has been conjectured that the fisher community to which they belong, and which admits of no mixture from other departments of the population, is descended from a colony of settlers from the coast of the Netherlnnds; but of this thero is no evidence, and their names and language do not materially difier from what are common in other parts of Mid-Lothian

TIME-CHRONOLOGY-TIME MEASURERS.

SPACES OF TIME.

Time is the general relation of events and successive aristences to each other-a thing of duration, involving the past, the present, and the future. It is very obvious that for the measurement of time we can have no standard of the same tangible nature with a pound, a yard, or a pint measure. We must have recourse to the lapse of tume involved in some continued or reiterated motion, 4 to which wo have all the proof possible in the nature of the thisg, that, on the whole, it requires the sane proind of time for its recurrence on one occasion as on every other. Such motions, as the measuro of periods or portinns of time not lese in duration ti' an a single day, wre those of the rotation of the earth : ic; axis, the revolution of the moon round the earth, and that of the arth sad moon round the sun. Of such as shall constitute the mensure of periods less in duration than a xingle day, or day and night, there are no explicit natural standards; and hence the utility and necessity of methanism of human invention, the motions of which, mathematically adjusted and numbered, shall measure and record such briefer and more arbitrary periols of timn as those we term seconds, minutes, and hours.
In accordance, therefore, with what is the common practice of mankind in applying such a scale of time to the genaral routine nad purposes of life, especially in its more civilized condition, we propose to treat here, briefly, of the measurement of time by days, months, years, and egcles, considered with special reference to their respective atural nnd artificial subdivisions and accumulations.

DAYS AND HOURS.

The day is that portion of time which elapses while the earth turns once completely round on its axis-cach half of its circumference passing, alternately, through the light of the sun on the one hand, and through the darkices of the starry heavens on the other-mithus pro-
ducing, to those carricd around with it, the successior of day and night, and the apparent phenomenon of a diurnal revolution of the sun from one point in the illuminated atmosphere back egain to the same point, or nearly so.

The succession of day and night would undoubtedly constitute the first great natural period reckoned by the human race-minvolving, as it does, not only the mast familiar and most strikingly contrasted phenomena within the bounds of man's experience, but phenomena peculiarly adapted to the great necessities of his nuturethose of vigilance and sleep. Yet the precise point at which the day should be held to begin and terminate must have been a mntter much less casily settled; and accordingly we find, that while amongat ancient nations-the Batiylonians, Persians, Syrians, Greeks, and almost all the nations of Asia-the day began at sunrise, and was held to last throughout the whole of the ensuing daylight and darkness (an arrangement better adapted to countries near the tropics than elsewhere, as the sun there rises more nearly abont the same time throughout the year); the Jews, Turks, Austrians, and others, with some of the Italians and Germans, have begun their day ahout sunset; the Arabians theirs at noon, as do astronomers and navigatore of all nations; the ancient Egyptians, and most of the modern Europeans and Americans, on the other hand, as well as the modern Chinese, beginning theirs at midnight, which is evidently the most convenient plan, since it throws all the waking and active part of the day under one dace.

The subdivision of the day into morning, forenoon. mid-day, afternoon, evening, and night, is natural, though somewhat indefinite, and may be conceived to have always been more or less marked by man, even in his rudest state, and at all counts the ancient Chaldeans, Syrians, Persians, Indians, Jews, and Romans, divided the day and the night into four parts; but there is
nuthing obvious in the natural changes or motions of the sun, moon, earth, or stars, which could point out the divimion of days into hours, hours into minutes, or minutes into meconde. Thewe diviaions are cutirely artificial and arbitrary, unlena, indeed, we conceive the mecond to represent that minutest portion of time which, to the human mind, constitutes ite natural unit or rudiment, as partielen constitute the units of a mans; but even seconds have been mululivided into thirds, and still it is evident that, afor all, lisese are no more the minutest elements of time than are what our chensista terim moleculen the miautest elenmente of mannes.

In the civilized part of the world, it in now eustomary to divide the day, and reckon the ninuter portions of time, by inntrumente to be afterwards dewerihed, In meconds, sixty of which constitute a minute; in minutea, sixty of which constitute an hour ; ond in lsours, twentyfour of which conmtitute a day. Mort nutions have theme inatrumenta markel for only twelve hours, the computation being twofold, like the day itself; but the Ita. lians, Bohemiann, and Poles, runs them on from the firnt to the twenty-fuurtli-from one o'click to twenty-four o'clock. The Chinese, on the other lund, divide the day into twelve hours only, each being, therefore, twiee the length of ourn. In the decimal system adopted by the Freneh, the day was divided into ten hourn.

The length of time which elapses while any given point on the carth's surface passer from a similar point in the natary tirmament and returna to the anme point, is salled the sidereal day, and is foumb, when measured by the motions of the ordinary instruments invented for the purpose of pointing out its sulstivisions-namely, time-keepers-to counist of, or be equal to, 23 hours, $56 \mathrm{mj}-$ uutes, 3 seconds, and (to bo still more exact, an astronomers reguire to be) 4 thirds-a third lwing the sixtieth part of a second. But although the distance of uny Axed star in the firmament is so imuense that the whole orbit of the earth is but as it were a point itself in comparison, and the mation of the earth in that orbit therefore carnot alter os afleet the length of the sidereal day to noy appreciuble extent, it is otherwise with the eolar or nutural day, which is that portion of time elapsing tertween the arrival of the aun at the meridian, or midday, on two consecutive days. The main length of this period of time is 24 hourn, nearly 3 misutes 56 seconds on the average being required, in consequence of the carth's motion in itforlit, to bring the sum up to the same meridinn on every succeasive day. The present inclination of the plane of the earth's equator to the plane of its orbit, however, which is diminishing, thongh with extreme alowness, and the unequal rapidity of the motion of the earth in ita orbit, which is also diminishing an slowly, with the diminution of the eccentricity of the orbit, really cause the sola: or natural days to be of unequal length: so that, though averaging 24 hours each, they sometsones fall short and sometimes exceed that average. It is the former of these causen, too, which gives rime to the differesce in the relative length of night and duy, sccording to the seasons of the year.

MONTHS AND wEEKS.

After the day, the next distinet natural manase or division of time marked out hy the lecavenly tooliera, in their time-keeping revolutions, is the month. The lunar month is a period during which tho moon revolves once ronnd the carth, and is equal to 29 days, 12 hours, 44 ninutes, 3 seeconds. The solar month is the period during which the sun appeara to panid through a twelfh Jirt of, his anumal course, or through one of the twelve erhitrary signe of the zodiac, and is equal to 30 daya, 10 hours, 30 minuters: it is not so distinetly pointed out by nature as the lanar month. The month came ultimately to he disconnected from the lenar and terreatrial revolu. t:shs, as will be atterwarda more particularly noticed, and
civil or calendar monthn, accommodated to the year, man mubatituted; theme also, as well an the names given to thein in their annual order, will full to be noticed while treating of the yoar limelf and itn andadivisinas.

The mutuivision of the month luto weeks of weves days is very ancient, haviug, from the mont remote pea riod of hiatory, been in une among the Hindoos and othen nations in the East, Including the Chaldeana and Jown According to an early practice, the days of the week in various countries received nanes from platets with whith they ware imagined to be connerted, or from cortain deitien reverenced by Pagan nations, Thus the French, at the present day, following tha practice of the Ronsuns, name the days from Mercury, Jupiter, Venua dec, while the English nilopt Sisxon appellations derived from the deitien of northern Furoje, and from the Bun and Moon. Hence our term Sunilay in from tha Sun Mondny, the Moon; 'Tuesday, I'uesce; Wednemlay, Wo den; 'I'hursiny, 'Thor; Friday, Friga; and Beturday, Scater. (See article Supeneritionn.)

yEARS and geabons.

The yenr, properly no culled, or the nolar or astronomical year, is that portion of time which chapses whila the sun passes through the twelve signs of the zodiac, or ratlrer while the earth revolven once completely round the sun in its orbit: and while, from the parallelism of the nxin of the enrth's rotation to itself, combined with ita inclination to the axis of the orbit, each tarmisphere is turned alternately, once toward and onco frons the sua; thus eonstituting, at least in the extra-tropical regina, the distinction letween summer and winter.

It would undoubtedly be this marked alternating lis. tinction which would first leal the sttention of every rude but progreswing nation not inhahiting tropical countrien to ealenhate their time by ycurn, for int these would even the moat savage nation fied an interest nalogous to that with which they had come to contemplate the alter uating distinction between day and night. The spring and autumn, too, would soon le atamped with the impress of their sensibilities an natural periods, respectively, of hope and fruition. But it is rather remuntable that the only distinctions in the acasons made by the most ancient mations known were those of summer and winter, as if these liad been ao extrense as to absorh all other distinctions.

The distinction of the seasons would suon be found to depend upon the alternate upproach and departure, ou elevation and depression, of the sun in the hemena at stated and regularly recurring intervals; but we ctect division of time into solar yeara could not have been eflected till astronomy lind made sone progress; when it would immediately appenr, in the endeavoure at length inade to incasure the year by revolutions of the mon, that an ais exnet number of days, or tines of the earth's rotation, is not contained in "a moon," or lubar month, so as exact uninber of moons, or even of days, is nos contained in a year, or revolution of the seasons, Such observations as these led to methods of necumblating the one period to the other; or, in other words, to the

anjustment of the caldendar.

The Chaldenns, Egyptinns, nud Indinus, and indeed almost all the nations of antiquity, originally extimated the yeur, or the periodical return of summer nod winter, by 12 lumations; a period equal to 354 daya, 8 hours, 48 minutes, 36 seconds. But the solar year is equal to 365 days, 5 bours, 48 minutes, 49 secouls; or 10 days, 21 bours, 13 seconds longer than the lonar year, an excess named the epact : and arcordingly the seasons were forad rapidly to deviate from the particular months to which they at firmt correxpond; so that, in 34 years, the summen montha would bave become the winter onem, had not the ensrmous aberration been corrected by the addition el
meteralation of a few wa the calendar firm mated to cousist of 12 But no account was ccumulation forred t prutimation to the e made alout 45 years Jolins Cipmar, heing Is his time, to believe the in the ymar, oriluinet and accumulated for would amount to a d alded to every fourtiz or repeating the s4th mence aright, ho oril.i \{uvion," made up of dyy which had beet and the "Julian era practically useliul and mode of time-reckon mongat Christian nat tha renewed arcunuli mautes or ao, had auso of Chriat, to 10 comul ing on the llth inste at the time of the ros birth of Christ. Thi dinturbancer, by uulix Paster, and hence of accerdingly, Popo Gr calculation, ordained from the year I 582 , l calendur, would lave the 15th of Octoher, 1 of Italy, the pope wa change took place in the 20th of December. was from the 15th I disted by the Protentn jear 1700. 'Tho Cnth bigle ordanemb by their unts were hben too n in all its relations to provement from such many, Switzerlanl, a Low Countrien, at ler had heconns necessary A bill to this etferet hat ment of England is gone beyond a secone It was nut till 1751, u been experieuted for ference of the reekoni II, 1751) for equalizi Iteland with that used was enacted, in the fir onitted after the 2 do ruing day should be t aet a certain minute $1800,1900,2100,29$ year of our Lord whi acept only every fo whercof the yoar 20 onnsidored as leap ye: the same time mate in is now the only count an adherence which is thence addressed t the date ahould be giv it will be observed, ill by us as lcap-year, h day between old and The twelve calenda Yot. L. -96
by Julius Ceaar, while reforming the calendar, that the
nerealation of a few odld days at certnin intervala. Thun nas the calendar firat adjuated, and the aolar yenr entimated to consint of 12 noonthe, comprehending 305 daya. Huc no aecount wus taken of the odd hourn, until their sceumulation forced them into notice; and a nearer approsimation to the exact mearurement of a year was proside alout 45 years luffore the blth of Chrims, when julius Cemar, leing led by Soaigenes, an antronomer of his time, to believe the error to consist of exactly 6 hourn in the ymar, orilained that these mhould be net axide, and accumulated for four yeara, when, of course, they wrould amount to a day of 24 hourn, to be accordingly alded to every fourth year. Thin wan done by doubling or repesting the 24th of Felruary ; and, in order to conmence aright, he ordained the firat to be a "year of comfavion," made up of 15 month, no as to cover the 90 dase which had been then lost. The "Julian atyle" and the "Jnlian cra" wero then conmenced; and so practically useful and comparatively perfect was thia mude of time-reekoning, that it provailed genorally anongst Christian nations, and remained undiaturbed till the renowed accumulation of the remaining error, of 11 minutenor se, had anmunted, in 1582 years after the birth of Chist, to 10 complete daya; the vernal equinox fulling on the 11 th instead of tho 21 st of March, as it dil at the timo of the comencil of Nice, 325 years after the birth of Chriat. Thiss slifting of dayal land caused great distorbancers, by unilxing the timen of the celebration of Easer, and henre of ull the other movable feasts. And, accordingly, Pope Gregory XIII., after deep atudy and calculation, ordained that 10 days should be deducted firm the year 158%, hy calling what, according to the old celendin, would have been reckoned the 5 th of October, the 15 th of October, 1582. In Apain, Portugal, and part of laly, the pope was exactly obeyed. In France the change twok place in the sume ycar, by culling the 10 th te 20th of December. In the Low Countries the change wis from the 15 th December to the 25 th, hut was resisted hy the Protestant part of the comnnuity till the year 1700. 'I'he Catholic zations in general adopted the ryle ordained by their sovereign pontiff, but the Protestents were then ton much inflamed ngainst Cutholicism in all its relations to receive even a purely scientitic improvement from such hauds. Tho Lutherana of Germany, Switzarluad, und, as already mentioned, of the Low' Countries, at length gavo way in 1700, when it had hecome necessary to onit clfven instead of ten days. A bill to this ctfeet had been brought before the Purliament of Englond in 1585, but does not appear to have gone beyond a serond reading in the House of Lords. It was not till 1751 , and after great inconvenience had theen expecieneed lor nearly two centuries, from the difference of the reckoning, that an act was passed (24 Gico. II, 1751) for equalizing tho style in Great Brituin and Leland with that used in other countries of Europe. It was enacted, in the first phace, that eleven days should the onited alter the 2 d of September, 1752, so that the enaving day should be the 14th; and, in order to counteract s certain minute overplus of tine, that "the years $1800,1500,2100,2200,2300$, or any other hundredth year of our Lord which shall happen in tino to come, eseept only every fourth hundredth year of our Lard whercof the year 2000 shall be the first, slall not be onsidered as leap years." A similar change was about the same time made in Sweden und T'uscany ; and Russia is new the only country which adheres to the old siyle; an sdherence which rendera it necessary, when a letter is thence addressed to a person in another country, that the date should be given thas:-April $\frac{1}{13}$ or June 268 ; for it will be observed, the yeur 1800 not being considered by un as leap-year, has interjected anothor (or twelfth) day between old and now atyle.
The twelve calendar or civil montha wero so arranged
Val. I, -96
odd months-the frat, third, finh, and an on, ahould contain 31 daya, and the even numbers 30 daya, except in the case of February, which wan to have 30 only in what hae been improperly termed leap-year, while on other yeara it waa amigned 20 daya only; a number which it retained till Augustua Conar deprived it of another day.

The eommencement of the yest, till a comparatively very recont period wan the nubject of no general rule The Athonlana conmenced it in June, the Macedoniaju in Septenber, the Romana firat in March, and afterwarda In Junuary, the Persiana on 11th August, the Mexicane on 23d Feliruary, the Mohanmeduns in July, and astronomera ut the vernal equlnox. Amongat Christiana, Chriattma day, the day of the Circumcisien, the Int of January, the day of the Conception, the 15th of Murch, and Easter day, havo all been used at various timea, and by various nations as the initial day of the year. Chrintmas day wan the ecelesiantical beginning of thw year till Pope Gregory XIIL., on reforming the calendar, ordered it, in 1582, to begin thenceforward on the lat of January. In France and England the same practice commenced about the same time i but, in the latter country, it wan not till 1752 that logal writs and instruments ceased to conaider the 25th of March, as the begioning of the ycar. In Scotland, New Year's day was altered loth for historical aud legal purposes, from the 25th ol Murch to the lat of January. ly a proclamition of King James VI., in the year 1600. The English plan was fonnd exceedingly inconvenient; for when it wan necessary to exprem a dato between tho lat of January, which was the commencement of tho historical year, and the 25th of March, which opened the legal one, error and confusion were aure to occur, unless it were given in tho following awk ward fushion-January 30, $1648-9$, or $164 \frac{5}{5}$. Even this was apt to lead to mistakes ; and it is perhaps, even to thin day, a mutter of doult with soone intelligent persona whether the execution of Charles I., of which the above is the usual appearance of the dute, occurred in the year 1648 or 1649 ; it in reulity oecurred in the year which, ly our present uriform modo of reckoning, would bo called 1640.

Tho present mode of reckoning time has experienced no interruption, in its leading features, for many years, execpt under the French republic. In September, 1793, the French nation huving resolved that the foundation of their new system of government should form their era, instead of the birth of Christ, whoso religion they had in a great measure shaken off, resolved ulso that a calendar should be adopted on what were termed phithsophicul principles. The Convention, theretore, baving decrect, on the 24th November, 1793, that the common era should be alolished in all civil aflaira, and that the new Freuch era should commence from the foundation of the republic, namely, on the 22d Septenber, 1792, on the day of the true autumnal equinox, ordained that each year henecforth should begin at the midnight of the day on which the true autumnal equinox falls. This year they divided into twelve months of thirty days each, to which they give descriptive names, as follow :--from tha 22d of September to the 21 st of Octoler was Vende minire (Vintage Month); to the 20th November was Brumairo (Foggy Month): to the 20th December wan Frimaire (Sleety Month;) this completed tho autumn quarter; to the 19th Jamuary was Nivoso (Snows Month) ; to the 18th Felruary was Pluvioas (Rain Month) ; to the 20th March was Ventose (Windy Month) ; which completed the winter quartor to the 19th April was Germinal (Budding Month), ot the 19th May was Floreal (Flowery Month); to the 18th June was Prsiriul (Pasture Monti) ; here ended the spring quarter; to the 18th July was Messidor (Harveat Month); to the 17th Auguat was Fervidor or Thermi
dor (Hot Month); to the 16th of September wna Fruco *dor (Fruit Month), which terminated the period of sumemer. In oninary yeam there are five extra daya, namely, from the itht to the 2tat of our Eeptember, inctusive : theno the French called Joura Complementaires, or Sanacullotiden, nud held as foativalia; the firat being dedicated to Virtue, the mecond to Genius, the third to Labbour, the fourth to Opinion, and the fith to Rewarim. At the end of every four yeara, forming what they called a Franciale, occurred a leap-year, which gave a sixth complementary day, ntyled La Jour de la Rerolution, and employed in renewing the nationai onth to tive free or die. 'J'lie week, though not exclunively a Christian or Jewish period of tine, they almo aljured. 'The thirty days of the month were divided into three parta of ten deyn each, called Derudes ; of which the Itrat nine (culled Primkli, Dumli, Triki, Quartill, Quintidi, Nextidi, Sepa tidi, Octidli, Nonidi) were working or common daya, whie the tenth, styled Deeadi, was obmerved an a kind of Sabbuth, thourh not exnetly in the Jowimh sense of the word. The French, however, in Indicating any particuhar day, either by word or writing, generally mentioned only the number of the day of the munth. The RepubHican Culendar wna firat used on the 26th of November, 1793, and was discontinupd on the 31at of December, 1805, when the calendar used throughout the reat of Europe was resumed.

cycLes.

A cycle in a perpetual round or circulating period of time, on the completion of which certuin phenomena return in the mane order, the end being thus, an it were, brought beck to the legizianing. Under such a definition, the common practice of nccumulating yeurs into centuries has, of course, no titio to be clasned; it ia merely an arithmetical computation, like the equally common mode of counting ly tens-furming, indeed, part of the same ayntem.

The Soltar Cycle is a period of 28 yearn, during which the day of the month, in every succeeding year, falls on a dilferent day of the week from the first, till the cyclo in completed; when the day of the month and week meet as at first, one cycle corrosponding to suother. By this cycle, which has no relation to the sun'm courwe, we find "the Dominical lettera," or those lettern among the first seven in the alphnhet (umed to represent tho days of the week) which point out the days of the month on which the Sundays fall during each year of the cyele. If there were 364 days in tho year, the Bunduya wouid happen every year on the aane days of the month; if 365 exactly, every 7 th year; but because the alditional fractional period contained in the year makee an alteration of a day in every 4 th year, the cycle extende to four times seven, or 28 years.
The first solar cycle in the Christian era having begun 9 years before the commencement of that era, to discover what year of the cycle the year 1842 forma, we must add 9 , and divide the num 1851 by 28, the period of tho cycie, and the quetient 66 is the number of nolar cycies that have passed during that era, the remaining 3 being the yiar of the cycle corresponding to 1842.

The Lunar Cycle, also culled the " Golden Number," from ite having been written in lettere of gold by the Grveka, and the "Metonic Cycle," from its having been discovered by Meton, on Athenian astronomer, is a perios of 19 yeurs, at the enul of which the phases of the moon occur on the same lays of the civil month as in a previons lunar cycle, and within an hour and a half of the same precise moment of time.
The first lunar cyrle in the Christian era having begun one year belore tho commeneement of that ero, to discover what year of the cycle 1842 forme, we munt add 1 , and divide the sum 18.13 by 19 , the period of the eycle, and the quotient 97 is the number of lunar cyclee
that have pamed during that era there weing no. emain der, the golden number in completed in 1842; or the yenr forms the inat in the cycie.

The Dionysian Prriad in a combination of the solem and lunar cycien, forming, by the multiplication of 28 by ID, a periol of 532 yearw, at the oxpiration of which if in again new moon on the same days of tho week and month as before: ehronological eventa are cotupared and tented by atich a calculation.

The Indiciuen may here alao be noticed ! though, were it not for mevering it from the other cycies with which it is connested in tine Julian periexd, it might perthapm nora properly appear under the hend of epochion aud era This wan a Roman period of 15 yeara, tho fiest of which commencel in the year 312 ufter the birth of Christ. It was appointed merely for the regulation of celtain pay. menta by the suljecta of the empire; but it came to $i_{\text {e }}$ obwerveid by the Greek church and the Venctian senate, an well us the evort of Rome.

The Jubium Perrion is a combination of the solar and lunnr cycles witis the lidiction; the reapecive periods of 28. 10, and 15 yeara being multipied ly each other, and the product 7080 yeare, being what is called the Julian Period, daring which there cannot he two year having the anme numbera for the threo cycles; but at the termination of this period they return in the formes order.
The yenr 1842 is the 6555th of the Julian period: hence it logan about 700 yeara previous to the date ver. gnrly nusigned to the creation of the world, and has been used insteal of thet era, to obvinte the diapute of chronologera, and to reconcile their systems; for sill agrec at to the year in which the Julian period hegtn.
Tho Preression of the Fiquinoxes, on the supposition that the motion on which it drpends is aniform, isa eycle of 25,020 yeara, during which the pointa whereat the sun crossen the equator at the equinoxes retrugrade along the whole circle of the ecliptic, and retum to their former position. The present rute of thia motion, which depende on the nolar and lunar nttraction of the quantity of matter heaped up nlong the region of the oquator, in 50 enconda of a degree acearly, or a whole degree in 76 yeara.
Bir Isaac Newton endeavoured to fix the perind of the Argonsutic expelition by this cycle, and it has given rise to some curious and intereating specilatitons teo garding the period when tho signs of the zodiac wefe invented.

The Eeliptical Cyrle is an unknown pariod of time during which the angle between the ecliptic and tho equator, or the obliquity of the celiptic, has completed all its chnages. The present rate of the dimination of the ohliquity is extimated at about 48 seconds of a degree every century. The extent of this change on either hand, like the length of the periol in which it is accompliaticd, is at preesent unknown, though astrono mers, founding on elements with regard to which there admittedly exista " great uncertainty," suppose the ex. tent of the "owcillation" to be very limited. The degreen of ecliptical obliquity at present existing in the different plancts, however, ao fir as known, vary from a atate in which it alnost vanishes in the entire coincir dence of the ectiptic with the equator, as in Jupiter, to one in which it is almust " wide ss the polea asunder," as in Uranses. The necertainment of the extent of this movement, in the case of the earth, is of great practial importance, especintly in geological chronology. Tha changes of the seasons are occasiond by the otliquity of the ecliptic, being more or less extrome accorling io the greater or leas dugree or extent of that obliquity; and, from rettain recent diseovetios in geology, which seem to imply the forme incruse of these extrenes, coincidently with the former increase of the obliquity of the ecliptic, it uppeure highly protatle that the hith.
no hipele nos comp nomieat int few yearn ${ }^{\text {an }}$ Royal Siric doun frem th

Athan lageous is more or lew world's hist branchew :-

The prin freelf to mat wents, an th day, from and for lon marting poin yeara, anul attronoinien der one of auch ntartin consiat, in intercourse, only to the form an epp stop. Thin from nill cp epochis and have treer o howover, ha la bere imp or even any a few of the the namme of presented to
The Era II alan becam of computing nise amoug Christ. Pu city in Elis, currence of namely, abo vai made n people hegan the Olynpic The computs Olympiad in usually com Christ is not lately adopte
The Eiru called the twilve yeara the ? at cons the wert whi of Syria. I amongst the reckoned by when they Lu be afteriva sccording to

The Rome

 the epoch of an cpoon no w the 753. putation of cantury of th
te being ne.emale

 d in 1849 or thenation of the wolm liplication of 28 b nration of which n of the week ond a are compared and
ticel; thaugh, wrome yelen with which in night perliapm mora epochis and erm w, the first of which birth of Christ. ion of rethin pay. ; but it canne to in he Venetian senate n of the wolar and reaprecive periouts died thy each other what is called th annot be two year hree cyelis; hut at ctuns in the formen
the Julian period: ous to the date ru: vorhl, alul has lieen ho diapultes of chro mis; for all agrec a d heghn.
On the supposition is uniform, is a cyele points whereat the pinoxes retrograde ptic, and return to rute of this motion ar nttraction of the the region of the ఎealy, or a pholl
fix the perind of le, and it has given pg speciuntions m of the zodiac wer
wh period of time e ecliptic and tho pric, bas completed of the diminution it 48 seconds of of this change or riol in which it is in, though astrono ard to which then " supplose tha eslimited. The de nt existing in the known, vary from the entire ceinct r, as in Juppiter, to pe poles usunder:' the extent of thi - of greal practras clironology. The Id ty the nllinuity trome accordiug of that ubliquity in geology, which of thrse extermes -n of the obliguity yuble that the bith
to hipelest problem of a grological chronology, in ite wout coinprehenive aenee, by a "convernion of antromomieal into geological periode"-a prohlem proposed a an yrarn nince an the mubject of a prize omay by the Rayal Sureiety of London - will receive ita complete noludous from the inovementas of this great ecliptical pendulum.

CIRONOLOAY.

ithe subject to which we have hore fuund it advanngeoun to limit the une of the terin Chronology, an more or leva lavoiving the occurrence of evente in the world's listory, may be divided into the two following branchen:-

EPOCH AND EAAB.

the principal dilficulty which munt have prearnted fueff to nutions ileairnus of preaerving the memory of wents, as they might occur, in their annaln, from day to day, from month to month, and from year to year, and for linax periola of yearn, would be to oltain o narting point from which to numher these dayn, monith, years, and perinets of yeara a and an no very marked atronomical ovent (unleas, perhapa, eclipmen) could render one of thes, atarting pointa preferable to another, auch atarting pointe came practically and generully to conaief, in rarly timea, when nationa had little mutuni intorcourwe, of aome event, important or known, perhnps, only to the nution dating from It. This event would form an rpuch, an namped from a Greek wort aignifying to olop. The enumeration and series of yeara computed from ant epoch in catled nn era: and necordingly of epochs and eras there have leen almost aa many as thero have been of nationa. As the eras of ancient nutiona, however, have hecone obsolete, it would be useless, as it is bere impossible, to enumerate all that we know of, or even any grent nunber of them. But we shall notice a few of the moat importnnt in the mean time, reserving the nanes of all the other principal eras to be afterwarda presulted together in a tabular form.
The Era of the Olympinds in the first on record, and Halso became the most celehrated of the ancient methods of computing linathened periods of time. It took ita nise amnng the Grecka, 776 yeara before thin bith of Christ. Pubtic games had bren instituted at Olympia, a city in Elin, which t ink place every fith year, at the recurrence of the fult moon ofter the aummer solstice, namely, about the begioning of our July. As this festival mate a great impression on the pubtic mind, the people began to reckon liy Olympiads, or recurrencea of the Olympic gaines, an Oly mpind comprising four years. The computation by Olympiads ceased after the 364th Otympiad in the 440th year after the birth of Christ, an uanally computed, though the epoch of the birth of Christ is not a point of time exactly fixed. The Greeka lately alopted a new era, called
The Eiru of Seleürüz, or the Selecride, sometimes nlso called the era of Alexindria. This era commenced hwilye yenra after the death of Alexander the Great, nt dice :st conquest, by Seleneus Nicator, of that part of the wett which aftervarls formed the immense empire of Syria. This era has nlao prevailed, and atill exista, amongat the peopple inhatiting the Levant. The Jews reckmed ly it till the 15th century of the Chriatian ero, when they subutitutel the sulposed era of the Creation, Whe aflerwards noticed; nuld they still begin their yenr ecearling to it , in the months of September or Oetolier.
The Roman Era was reckoned by the Romans from Whe epoch of he foundation of their famons city Rome. an cpoen now precisely ancertnined to have corresponded b) the 7531 year belore the birth of Christ. The computation of time by the Roman era ceused in the sixth cantury of the Clitistian era.

The Chrition Era, of which we 'ow live in the elghteen hunstred and forty-weeond year, wan not ndopted na a mode of time-reckoning Immediate. y after the commencement of Chrintianity. That religion exinted long In a very obseure way: and the date of the birth of life fonmier did not, for several centuries, become a sufficiently linportant event in the eyes of enlightened nationa to cause them to make it on era. The era of the Olympiada, the Roman era, the era of Seluucua, und the datee of eceleniantical councilia, and other ev, nta then conniliered of importance, were the common moden of reckoning, und continued partially to he mo till a periol lees reusote than many people auppone. Even in Italy and its celobrated capital, Rome, which became the chief seat of Chriatlanity at a very early periol, thin ora wan not used till the wixth century. It win introduced into France in the eeventh, but not fully entablished till the eighth. In Spain, though occasionally adopted in the eleventh, it was not unformily uned in puhbic inatrumenth till sfes the mildle of the fourteenth, nor in Portugal till about the year 1415. Now, however, all nationa profesalng Chriatianity have ahandoned other erna, and confined thennelven to thin; using the Latin worda Anno Domini, "the ycar of our Lord," or their initial lettern, A. D., to diatinguish it; while for all dates previoua to the generally received epoch of the era, the words Anno anta Chratum, "the year before Chriat," their alihreviation, A. A. c., or even more uaually the letters a. c., nignifying "before Chriat," are used.
The Eira of the Hegira commencen at the epoch of th. night of Mohammed from Mecea to Medina, which tnok place on the 16th day of July, A. n. 622. The Mohammedan year ta regulated by this e:cnt, and hence it is used by the Turks, Arabs, and other Mohummelnna, comprining a large portion of the modern population of the world.
The Mundane Era, or era of the creation of the worli, han heen the aubject of much controveray. No less than 300 different opinions, aceording to Kennedy, In his "Scriptural Chronolagy," have been entertained regarding the period which elapaed between the crention and the incarnation. Some have made it 3616 yeara; others 648.4. From the creation to the deluge, the computation of the Hebrew text makes a lapse of 1656 yeara; the Samaritan version only 1307; the Srptuagint 2262 No ancient chronologiat attempted to fix the epoch of the creation : ame conceived it impious to do so. In modern times, the impiety has been supposed to lio all the other way. But some enlightened commentator huye been bold enough to return to the ancient orthodox idea, so far, at least, as to maintain that the Scriptural epoch of the creation is indefinite, being merely cursorily nlluded to in the words, "In the heginning God ereated the heavens and the earth." Geologists, in general, also adopt this wide interpretation. In the authorized version of the Bible, however, the chronology usually giver places the epoch of the creation in tho year 4004, n. co Thus, A. 0.1 is A. M. 4004 ; the letters A. m. being used as an abbreviation of Anno Mundi-" year of the world."

Yests of Principal Eran Correspondent to 1812.

Ern of Creation (Constaminorolitan ne comut - -
vears. Ahtrezy. 7350 A. M. Conat Fina of Creation (Jewish ncuomm), 7th 'Thurbut.
Julinn period, -「uliyng (1 initoo), Fira of Abraham. Ot 弓mpinis. Eita of Roine. Firn of Nuhonasent, Figyruan cra. Firn of 1)rath of Alexainder rin of 1 raik a alexatuer.

Poos or Margaly, 155053 Jah. P'er Poos or month of :iरg Yth inonth Ist yeur ot enst Olytap. afth Contiac. ajes a lig. smantl or ert of the Easara 3e month. 2lis A. Mort. Alex Duchesian, or ura of Nartyre. 24th Cuhiac, jass Gir. Docd Hegita, - - - ilhJiveb. 12.57 A. il. Chisene year, 301 h year of 71al eycle of 60 yearu

tabllar theronology

Under this head the leading eventa, phenomena, or facts, recorded in history, aro arranged in the order of time in which they have occurred-that is, in chronological order.

before cllrigt.

Twilight of history previous to a. c. 3000 . Bat fabulous or oubifip till uhout 1evo, or the period of the Trojan war. Ilomer lived at abont Ithk a. e. Fali of Assyrian empire, O(к). 800.-Chaldeans in Mesopotninia-Reckoning by Oiympiads, 7\%. New Assyrian empire-Rome founted, for (accorting to Newlon, (i2z). Fihiopians in Fgypt-Syracuat-rind of kingNabonassar, 747. firceian colonies in lialy.
7(N).-Draeo in Athens-Nebuchadnezar-Invasion of Upper
A eia by Seythans, 635. Zoronster in Persja.
600.- habylon ali Captivity, 588 . Cyrua, king of Persia, conquered the . Nedians, S40, Sythagorns fourisised, 519 . Cyrum wouk Babylon, 53%. Return of Jews. 5itu
$500 .-$ ophocles, 105. .'Tribunes and Fidiles at Rome, 493. lerototus horn. 4:1. Euripides, 44). Thucydides, 471. Athenian ascemdancy. 477. Socrutes born, 465. Zeno, 464. Zenophon born, +14. isocrates horn, $4 \times$. Metonic cycle began, 432. Peloponne:sian wur began-Hippocrates flourished, 43i. Pinto born, 429. A ristophanee tourished, 427, Diogenes born, 413. Atheis taken, dul. Retreat of 10,000 (ireeks. 401.
400.-Arsiotle born, 304. Demosthenes, 3et. Iacedremonians cxpelled from Thebes, 379 . Pomminonias-Thebnns in Greace (ull 346$),: 37$. Irators at IRone, 365 . Alexindor the Grent born-Dionysius expelled frons syracnse by bon-Theopompus flourished. sisk, Menamder born, 342. Epicuras, i41. Macedonan aserndaney, 338 . Jhehes destroyed by Alegnnder, 3k. D'ersin invoded, a34. Syrin and Fgypl conquerch. 3w,
 100,060 Jews nuto liggit. 320. Alexis lourished, Bla. Restoration of '1'heloes. 315 Seleucus in Bubylon-lira of Seleucus Atheninn democracy restore
 Thrace and Bithtun : nond telencus took Syria with most of Upper As a, all aliout thes period.
 Grececemto Asia-Zeno of Citian. Sirmo. nud Pipiearus Hourished, 278 . Silver first coined at Kome, 240 . First l'anic war. 205. Tegulas put to death, 250. Antiochus the (ireat. king of Syran-s.comel lunse war-limmbal pussed the Alps, gls. Ite Archmedes's scriw mupated-Arehimeden killed, ots. I'oly-
 Seppont hima, zurz. First Macedonian war, 201.
etho.-Sceond Mar"donan wap, lis. Macedona a Homan province, lix. Jewn delivered trom Syrians, 166. Water elocks or elepsydra' usted in Rome. 152. Thiril I'unic war, $1 \mathbf{4 9}$. Carthagr destroyed-t'ormm destroyed-Cirecee n Hownn province, ith, J.ucilius flourished, 121 , Romans deforted by Cimbri and 'leutones: dithni Romans killed, 104. T'entonen defented bri deteated hy Varibs and Catalitas: 120.000 killed and 60,000 taken prisoners-Julius Casar born, Inw.
100.-livy horm. Mit. Mithridatie war, QQ. Marins look fome, 87. Sallast born, vi. Sylla. Poman diefmor. -i. Lacrebing Gonrished, 77. Conspiracy of Camaline-lalestine conguered,
 cens, so. I'sar's war with Pompey legan. (1). Cosar declared rather of has Comitry, Binperor, and Perpelual Detator-Adfuated the l'alemiar, fo. Wna assass anted- Diodornx sconhes dourishred, 44. Second triumvirate, 43. Denth of lirutas and Cleopatr, ize Ca'sarg of Jewn, 40. Denth of Antony nit Horace, Ovil. fallua, Jollio, Varmas. 'Thiniliss. D'ropertins, nind F'htedrus thourished, e2. Cornelins Nepos died-Con first used
 Dionyblle of Mal caratasxis flourishod, 4. Jesum Christ born, 0 ; cometmen held to be tour yeary mooner.

aNso momivi (ytene of ofre Lond).

1.-Desth of Augustins. 16. Crueifixion, 23. Conversion of Sand, :N. Ther,undiol. 37. Nrme of Chrimuans given at Ao toch. 40 cabsuln nssassinated, 41 . Jondon bult or improved ly Romans, for fandins dird. and Nero nnecertled him. 54.

106.-Adrian Fitored itrimain-Roman empre extended to
 Jupter ${ }^{2}$ rected at dan. Arrinn. and Ahtoninus Fins tourisled, 1is4. Apuleina,

 of Gevinhe I'zper Rhine, 213 . Hehogahalus, 218. Juliun Afri-
canus, chronologer, 220. Origen, Dlon Cassins, ITerodimn, za Artaxerxes, king of New I'risinn empire, 230, Firsi notice of Franks, Lower Rhine, 250 . Golis in Thessaiy, 251. Vsndal Germans in Ravenna, eco. Frnnks in Ganl, 283. Goths re pelled by Odenatus, king of limmyrn, edis. Se y thane and Goha defented liy Rotnana, 267 . Silk minnutactures firsi brongh! from Vieigotis and Orirogollis in Dacia, vas. Gurmanes, 051
 rom Giont by iro
: K) - ionstintino the Great embrneed Christianity, 3n@. The rantius flomrished. 311. Sundas; nppointed to be obsirved hy Christians. Bel. Wrestern and eastern provinces unted, ose

 In (irrcce and Asi killedics Romen law urains ? 364 . Theodosins subducd litritain, 368
400.- (ie rmans in Iletvetia, 467. Vandale in Spain, 400. Alari
 dals in Africa, 4*Ki. Atilli in Upper lady-Fomblation ot Venice, lise Ilempixt, the Sinxon, tounden the kituglonn of kent 457. Homana rxpelled from Spain by Visigoths, 4is. Itelrew points invented. 475. Western Joman empre overilarown, thi Visigothe jurnmount in (ianl, 477, A:lla tounded the itingdon till. Ostopith compuerol Jtaly 493 sitt wour brought into Jiurope-Clovis bnplazed, $4!\mathrm{B}$.
50N1.-Viaigoths subduce, and Franks eatablished in (inul (aow Franee) by Clovia, 50s. Lleptareby in lingland. 55 . Cohnabus propugated Christinnity amonest the j'iets, oti 5 . iombardy kingitum 504 Mahotom proclaimed Islamism, sial
 ceas vo

 anken by persians. Who kiletimo, mo persons, 614. 'Tlie Heg. ra, 22. Parikhes in fing and first iationt, but Earneens in letsia, 0at. (itass first in EMgland,
 Arabians, 695. Sarucenh,n Cartape-inoges m vence, bas oral ilominion of the Popes began. 755 . Franks in l. ounber poral dominion of the Popes began, F.5. Franks in lomberdy, landed in lingland, 707.
NK.-Churlemagne crowned Roman emperor-J.co H1... Scholastic philosophy-Arabs ndvanced in science-Cloek: male to strtke by the Arnbs, and introduced into Flumpe from the Finst. - 0). Charlemagne conquered the Siaxons. 43; sid the surlies and Vandals, -16; died, wit. Jeclesiashes exebopled tiont mblitary service, sl7. Fighert, king of Vingland, wiz. Schasia of (ireck t:hureh, e53. Navarre fonnifed, w5is. Feudal system of cireck firs and divided it into comitien, who-9:2. First land-tax in lingiand,

gio.-France ravaged by the Normans. 9 in. Wir with the Danes in I'ngland for 12 years, 910 . Saracens defeated in Spain,
 hle iranslated into Gertana. 939. Arithmetical figur'sim'roduced into linrope by the Arabians, 941 (or U91). laty mutrd tuger. many by Otho the Greut. Imh. Hohemin subdied by (tholl.
 sion of iveinnd liy the Vormans, 960 ; ami liy the thanes ast

$10(0)$.- "anute, king of Dhemark, on throne of lingland, 1014 Moors in Spain, Jiks. filwarl the Confessor. Int: blatle of Hastings-William of Normandy conpurred 1:ngland-l'rohable begntung of tomrmamumas, inmid. llenry iV. deposed by
 gun. 10:0): finished, 10wl. William the Conquevor masded France. Origin of Crusades, 11695 . First Crusnde. IIMi. Capture of Jerusalem-Instituon of Kinights of At. John. 1/ki9. 110KI-C 'eins lirst made round in Fingland, 1101 . Sarmame introdured. 1102 . Ilenry l, united Normanily to Eingitud, 110 h ,

 Fecond Crusade, 1147. Fiantagenets ascembed limelish throne, 1164 Ilanry Il. eonquers Ireland, 1172. Giand wimmos firs used in Ginglanil for house h, HNO. Kingdom of Jrraxalam do-
 de Lion, Frederick I, and Philin \$1.4 11 e9. Knights of Thucuc rel mention of muriner's compass neratics established-Chimneys first $1200-T$ Town
1200-Towns and citien first incorporated, 1201. Fourh Crusaders; undor Ihntiface, took Conntantinople, 1:24. Inqui-
 empire-raris iniversity, len. Roger Bacon. 1214. Fith rasade, 181\%. Naga First Patiament in Eingland, 1216 lami a provinue of the (ierman empire, ity 4 . Antromome and geogrujily introdited by the Mwors into Jurope, lesa Hor.

 by Ruger llacon. 1852. Alphonso. King of Custile, construeced his celelirated astronomimal mblex-l onen first mate in tiag. land, I2s: ('adiph of lingland duatroyed by Nogals lusx

anont 1300). Find ovetern illaymund onts. crearco rime Wounded. Wrellollely Sights oi St. Johm Kiggts or ki. Jo. 13 of Brace- Ecota chwarlı, n Germm by two Brabant wo 340. Metrurch. Garter foumled, $1: 3$ Emrope, $1 ; 4 \mathrm{~h}$. Citie meat in tingtand. $1:$ bi Frencle 1375 b) French, iv yer died. I:390. 1400-Dohn 111188 410. ciumpowior sisuce, 1414 . John at Aģacoutt, Ill5 pinting insernted, I discovered by lortug F Farst. $1410 ;$ a Lity. First stanthong IVnes of the Ito persons trowned. 14 arhupake a Japi osthy 145\%. First pr 46i. Firsi almannc mercer in l.onden, made at Nurembery Fall of 'loriar dyan english throme- Yor English hrome- or Fuglant-Dinmon Cangan-Dinimo iv5. Cabrot discove vecius landeri on resched the Finst I Castle, I49. Clabo 1500.- Shillings fir roduced from tialy Catio, Jamaicn. Po hather Honrished (519. Columest of Pern. 1524 Thenth of dale. 153: by king Auppression of relig anli Cava- Rrion ond iron first cast in Ut Coumeil of 'T range res inrot
espes myented,
Fond-Crowns and Death of Helane thon Drath of de lancthon
15th. Kinves first m Anerien. litas. ISel sud. 15ti7. Massa ppain united- ters cetablished in \mathbf{S} inration of imteprem -ndar. 15:1. Tobt rmen.15~. (ircen into |reinnd, 1546 . panish Armadn d anglondt. titl " "Fn (dated shth July), 15
$155)$ Last Inlia C'o 160n,-Dutth Fast Suglish and Sco Protesinnt (icranan lurn nud spots un sut
aished out of Spin. ashed oult of Sprin.
-logarithons muent ary. 1 ijls. Phermo does, N"pimbth. Anti
 niveraity founded. I
 ased in Domplanil. It Tarmer revoluton in
Crarlea 1 . , weheraded-
 ons (hom litls, died depeadruce of Pros covered hy him, 165 piague in l.omblon. 16 inn strecta burned. Calinet ctancil firs lloffuence und larth
apont 13.300). Find of Crisates. 1291. Fdward of England verran Scallanl, 1:206. Spectacles invanted. 1200 . 180 -Rayinund Lully-Princes Roy al of England, eldest sons. ctented Trincen of Wales, 1301. Cambridge University punded. 1:R02 $13 i l l s$ of exchange first usod in Fingland, 1307 . Willimin T'rll-l lelvetic confederation, 130s. Rhodes taken by Knignts of N. John. 1310. Templars siappressed, 1312. Eatile Banneckhuris, 1314. Paper mule from linen rags, 1319. Roert Brace-s.cotiand independent, 1328 Gunpowder made by schwart\%, a (iermun, bso. Cloth weaving insroducel into Fork by wo Brahnint weavers, 1331. I3ankets first mane in Jinglani, 340. Detrareh, 1:341, funpowder in France-Fire-arins-Cannans-C'anary isles dipcovered by Genoese, 1345. Order of Garter tembed, 1.3hs. Gramerlato in retsia, lano. Turks in Burope, bith. Cities and horoughs first represented in Parlia-
 joi. Stewartion con by French, 1:177. Sehisin of double I'opes, which lastad 38 years. 13:

ser died, Lisint.

1400.-Iohn 11nss, Wickliffe's disciple, in Bohemin-Death of Taneslane, 1405. Oll painting invented by John Van Fiyek, 1410. (iunpowisr male in Iinginnd, IH13. Council of Conbance, 1414. John Husa burnt-Frenel, defeated by English, it Agincourt, 1115 . (ipsies or lohemians in Furope, 1417. hadeirs discovered. 1418. Mefal engraving and rolthop-press prating envent. discavered lif l'orthguese, 1432 . J'RINTINO in shochs ivventig or Farst, 1410; ann tn thres, ny John Giuttenbera, 1144. Sare-irade brgul, lif2. Cape de Verd islands discovered, 144. First standing ariny minotern nges established in Franee -Wisrs of the Rosers, 1445. Enumlations at Dort: 100.tho petsons drownea. 1 .

 140.2. First almanac. 1.170. Drinting wh Bipland by Caxton, a mercet in L.ondent, 1471 . Lorenzo de Mledici, 1.172. Wintehes mate at Niremberg-Vinlins invented, 1477. Inguisition exinlished in Nin't. . Fall of 'luriar dynasty in Russin. 14sl. 'Pudors nacend the Figlish thront- York and laneaster mited. 1455. Cape of Good lope discovered, 14 Vi, Maps and sea-charts first made in buglant-Diminonds polisheil at IBruges, 14-9. Cohumate Theoveazd Ambhica. Itit Getohke, 14ing, Diet of Worms,
 esched the Dast lolies by sea, 1408. Noors expelled from assile, 1499. Cabot tiseovered Florida, 1501).
1500,-Shillings first coined in Pingland-Disiaff spinning in-
 Cuha, Jamaien. Porto lico, 1504 . Batle of Flodiden, 1513.
 Sypt, Compest of M.xico, 154 . Compuest of Chiti. 1523; of Pera. 152^{4}. Ih. nth of A riosto. 1536 . Ilenry VIll. head of Chureh of England-l bble translated into Eaglish by Tindal and Coverale, 1534: by king's authority. 15ikf, Death of Firnsmus, 1536. suppression of roligione house's in Fingland and Wales. ISiN. Jom Calvin- lidormation at Cinheva-Vuriation of the connpass abserved liy Cabot. Aortars abd ron cantoon first male. and rou first enst ill Finglamp-Deation Copermicus (born 1.47:3). 1043 Councit of Trent-Needles first manle in Eughand, 1545. bange trees introduced from Chinn into l'ortagal, 154%. Thescepes invirited, 1549.
1550,-Crowns and half-crowns firet coined, 1551 . Rooks on astonamy and geonnetry destroyed in lingland as mugical, 15ix Death of Xe'hanethon (horn 14! \% - Knox-scmtish Itelormation, [Stin. Kinves first made in Fingland-Potatoes introdnced from
 land. 15tis. Mnssacre of Liartinhomew, 1572. D'ortural and Spin umited- Frake aniled mothul the world-I'arochial regislets cstablished in Fingland-Conches first used there. 15-(1, Deciarston of indepemenee by mited provinees-(iregorints caImdsf, 1.54 . Tobarceo bronght to Fugland, $15-3$. 'Turks in Crmen. 154. Cireentamd discovered. 15n. Sothtoesimtrodine,

 Figland. titl d"Finglish Mercury" and now in Britiali, Mukenm dated 24h latyl, $15-8$. Ediel of Nantr-. Nit
l6an.-Dateli liast India Company ratahlished. 1602. Unon of Euglish and coltish crowns, 1603. (inntowder plot, litho. Protestant firmonn atates unded-Satellited of Jupiter and sir-
 ohed ont of Spain. 1010. 1harnmeteies instituted. 1611. Napjer - ogarithms invented. 1614. A stermengine inventeal by Nrrars, 1 His. 'fhermonters invented, lizen. Vingish in Jharbndoes, 1 remman. Antigua, Jrovidenee. Angnitin. fund Wexst lndes. 1625. Bafon (horn 1 iniol dial liest. sathriss ping disen-
 auza-Lont I'arliament in Iugland opened. 1840 Cotbe first asd in lingama. 1641. Toreedios barometer inverated. 163:3. Tartur revolithon in Chima, 1611 . Aiperants invented, 16M13.

1300- - ? wakers in Pinglond. 1651. Cromwell Protector-Mil-

 Calnnet conneil first instinted. 1uñ (first in Finglumi. 1643) Haifucnce and farthinge first coned by government in Fing.
land, 1672. Spinnan died, 167% IFabeas Corpus Act passed, 11is8. Peliny Post in Jonilon, 1681 . Thilnitelphia fourdad by William I'em, 1682. Lord Rassel boheaded, 16s, Saturn't ist and 2d satellitus discovered by Cassini, 1644. Rovocation of Falict of Nantz-Mlassacre- 50,600 reformed quit France 1685. Newtonion philosophy published, lbe6. Telegraphs in vented, 1057. Revolution in Englani-William III., D'rince of Orange, landed there-Flight of James 11.-Smy ran deatroyed by an earihquake, 16 s. Toleration act passed-1:piseopacy in Seolland abotished, 1600 . White paper first mude in Fugland -Fuglish in Calcutta-Hattla of Joyne, 1600. T'rmu ation of war in Ireland, 1091. Massacre of (ilencoe-Warthquaks in England ant Jamaica, 1692. Bank of England established and incorporated, 11693.
1700,-1'rassis a kingdom, 1701. Petersburg founded, 1703 Finglish in Gibraltar-. Iarthorongh-llatle of Henhein. 1704 Jorijuments of Eugland and Scolland united-JBatte of Ramillies, 17\%l. Stereotype printing in Lagden. IThs), St. I'aul's re built- Peace of Utrceht, 1713 . George l., Elector of Ilanover ascented the thronte of Grent 13 ritanh-Gnelph dymaty, 1714 First Seplennial Parlimment in Lingland opened-lnooulation a Oxfort-Rebellion in Scotland-buntles of Sheriffinuir and I'res ple alliance ple alliance; Britnin, Franee, and llolland-law's Mississiphi scheme-Giruat Farthounke in Chinn-Soath Nen Scheme, $\mathbf{1 7 2 0}$ Feter the Great look the Litle of Einperor of all the Russias, 1714.
1725.-Acadeiny at Petersburg founded-Coffee trees carried to the Went lithes, 17t4, Aterration of fixed stars discovered
Dy Bradley, 1727. Gold and dianomd nimes of liraid dise by Bradley, 1727. Gold and diomond nitmes of lirazil disco-vered-Thermoneter improved by Reanmur, 1730 , Jortcsus mob in Fidmburgh. 17:36. Ilercutaneum ntul l'ompeii re-dia
covored, 1736 . Nadir Schath-Full ot Noguls, I7w covered, 1736. Nadit Kchal-Full of Moguls, 17:39. (W ar of Austrian suecession till 174s). Stereotype pructised at Ediss
burgh by William Gen, goldsmith, 17.10. Hehring's voyage, burgh by Whlliam Ged, goldsmith, 17.10. llehring's voyage 174L. Anson's voyage ronnd the worli, $1 \pi=11$. lintle of Font tenoy-Prance Charles bidsuard landed in Ncotland; is victori Ous at l'restoupans; and enters lingland. 1745 . Defcal of l'rince Charles at Culloden-Dilectric shock discovered at Ley den-Limn destroyed by an enthquake, 1746. Peace of Aix la-Chapelle, $174 \times$. Thermometer improved by Fabrenheit, 17.40,
1750.-A rificin] magnets invented in Jinginnd, 1751. I, ight. 1750.-A rifieinl magnets invented in lingland, 1751. I, ight ning rods-Franklin-luentity of electricity with lightningnew style ndopted in 13ritain, 1762. Brilish Nusebn established 1753. Fow eriml eruption of Fina-histon ant (quto destroyed by earthquakes-Finglish in Jhengal, 1755 . (Pitt (Chatham Prime Minister of England till 1781). Black liole at Calcutta 1756. Hritish empire in India firmly cstablished by eapture o Jesuits expelled from Frrace-Platina discovered-Diving-bell Jesuits expelled from France-Platina discovered-Diving-bell improven-Hyder Ali, 17 iio. L'eace of Paris-France ceded to Istitan Canmia, Cape Iretor, Ni. Vincent, St. Donningo, Toba go, rind the const of Senegni-l'ottery improved by Wedge wond. 17is. Joongitude calculated by Harrison's time-piece 1764. Tuxes inerensed in British America-Opposition, 1764-74. Napoleon Ilonapare horn at Ajoceio in Cors can. 15th August, T6. Steath-engine inproved by Whatt, at (ilnsgow, 1770 Cook's first voyuge round the world, 1771. First purition of l'o land, 1772. Congress oi 12 lfritush provinces at l’hiladelphiaWhilion and Wait's s? \quad and-rngines, 1774
1775. - W'ar of Amerien! independence-Washingion leeder 1775. United Stutes deelarad indegendent Jilt July), 1770 Frunco aifed to the Cnited Slates-Siege of ciliraliar, when ret hot bullets were first used. 1778. Eruption of Mount Ve suvins, 177! Diseovery of Uranue by Ilerschel, 1781. Inde peudence of the United Sintes neknowledged by lirimin, $30 t h$ Novénber, $17 \sim 2$. Nontgolfier's balloon-Inanardi's balloon in Dinglami-Convicts first sent to Botany Ilay-Gernum l, eague - Fimancial distress in France at its height-Discovery of $2 d$ nnt 4h satellites of Uranus by Herschel, 17-7. Massacte of 10.100 Chinese in Pormasa, 17-8. French Revolltime-Dis covery of 6ith and 7ill satellites of Shlurn. Wy llerschel, 1760 Suppression of thohility, religions orders, menasteries. \&e.. nnd
 ints. 1790. At Constantinople 32.001 honses drestroyed by an arthenake ; sliock at lighon nul in Scolant lifst census of
 Fise. Louns XVI. of France helieaded-Reign of Terror-Robesplerre-firtat Ifritain nind the (ierman e'mpire, Prussin, Holland. I'ortugal. Spain, Sardinin, the two Sicilits, and the Bope, all agn:msi Frmmet-Nupoleon limaparte then a lieutenant of arthlery- Inrie Antoinette beheaded-Niv French era -spablished. 1790. Froueh victorious ly land; Lritish by seaReigh of frror conl:med-Robespierre dutator, inntil revola-
 incales in power in Franee-Revolution in l'olnd-Koscinsko
 kirving, Gerrold, and Margarot in Fine and for ritormagitation, 794. Suppression of Saddiontership in low Cotnties-(ral llomaparte victorions in Italy-Fpench itt lollame nud Stade holiter in Figgond. 179.5. National Insutute of laris foumbed - Domaparte crossed the Alpo-Altmpe of Fremen to land in
 Alsed-Rebelion it Irelam-Mutiny tht the Noredelorious over lired Austrian armies-Revolition of hath Frue-didar-lfominarter reseived liy Directory with great distinction - llatife of S_{t}. Vincent-Nuspension of specta paymurta in Bank of Finglatid whthont sprions consedurnees. 1747. Fralteh seizure of Ifritish mepilanilisn-Foreed French lonn of En,000,000 frunes tor descent on litann-Roman repnlife-lomaperte:n Eaypt-Itathe of Nile-Ihatavinis. Delvetic, and other republe es, 179s. Ilevolut on of 3nh I'rairinl-Fourth "onstitution-Fons. arte l'irst Comanl- icre-Seringupatam hakell-lritigh att Rassians quit Ilolland-hucome tax imposed bv Pitt, 1749.
1800.-Royal Inst.tution of Tondon founded-Campaign of the Rhine-Bonaparti victorious at Mareugo-Moreeu ai Hohen-inden-Attempt to nsaassinate first consul by an infernal maChine, 1800. 1 Mnnet Ceres discovered-ligypt evacuated-NelIon ai Copenhagen-P Pace of Luneville-legislative union of reland with hirain-Pnul arangied-Aluxander 1, autoerat of Ruseia, 1sol. Peace of Amiens-Bonpparte conaul for lifaPlanet Palhus discovered-hife-pohs mvented, lst2. Naw war hetwcen Brimin and France-houg nim purchased by \mathbf{U} nited
 Napmeon emperor of rance-lif minster of ringland--Vnn poleon king of Italy-Third Conlition againet Franee-lhattla of Preanga--Death of Nelson. 1:05,-Contederntion of the Rhlne Traialga-De ath of Nelson, 1805.-Conmederntion of the Rhline Napoleon kiag of X aples-Louls of German empire-Joseph Napoleon king of Naples-Louis Nupoleon king of llollandPitt anil Fox cied-Thigish sinve trade abolished-Bragenzo fanily fled to Brazil-cole Napolvon-Bomuparte declared Britain in a state of blockitc, 1 elt. Bourhons of Spain dethroned by Napoleon-J Obeph Ronaparte king of Spain-, oachim Aturat Ving of Naples. $1=0 \%$. Wrar of Frnice with Ausiria-Peace of Vieman-Napolegn nabitrator of Burope-Swedinh revolutionGustavus IV, nud his he is excluted-Batite of Coruma-Retreat and death of Sir Joln Moore-liutle of Tnlavera. 1 tro.
1.10.-Wellinglon 1Pritish commander in Portugal-Napoleon repudiated Josephine. husl married Marin Inouisa of AustriaIlolland and north-west of Germany incorpornted with France Mexico, Peru, de., sill. Prince of Whes British volutions in Mexico, Peru, de., sill Prince of Whes british regent -Napoleonls son, king of Rome born-Nahommeil Alt pasha of farpi 7 S Sep Carnt 7th September-Freneliretreat-Nadder crossed the Irish Chatmel in his balloon-War letweenG reat Britain nud United Stupes- n ntile of Salnminnen. 1812 . Europe in nrins to recovar its independence- Wany batles: Leipsic. \&c.- Vellinglon vietotious in Span-French evacuated Spain anal Germany-holhallie conquered
 Aprh, and retired to Bha-honrbons restured-hondon visited oy alhed monarchs-Congress at Viennn-Napoleon suddenly revarned from Flba. and entered Paris in trimph. 20th Mareh - xiled agama Napoleon-Waterloo 18th June-Napoleon ex:led by Hritish to St. Helema. 12 th August-Holy Alliance beAlgiers hombiated ty Algiers bombirded hy Lord Exmomli-mdiann added to United States, sil6. Abolition of slave trade by France, Spain, and loolland-Misessipni received into Union-Denth of Princess Charlote, 1817. Congress of lloly Alliance at Aix-la-Chupelle,

Ise0.-George 111 . died-Trial of Queen Caroline-Mrine alded to United Stutes. Napoleon died nt St. Melenn, 5 th May --Coronation of George IV.-Death of Queen Cnroline-George IV. visited Duillin anil Hnnover-Floridn ceiled to United States -Missourn adigited into Union-Mexicn declared its independence, 1er?. [rord Byron in Greece; died 10th April-! Nouis XVIIL. died; Charlen X. nucceeded. 1924.
10t5.-Treaties of 1rituin with Rio de Ia Plata, Columbia. and Mexico. Fast ladian ports of the Netherlands opened to all nations. Grepee songht protection from Britain. Trenty between Portugal and Brazil-Holivian republic of Upper Peru declared.
1\&2.-13urmese paid Finsi India Company $51.000,000$, and surrendered a greal extent of territory, esth February. He roic defenca of Missolonghi: inken by Turka $23 d$ Aprif. Greece diatracted by, factions. Don l'edro gave a charter to Portugal, and (2d May) abdicated in favour of his laughter Domna Maria de Gioria, a child seven yents of age. Insurrection of Jnnissariss (Idih and 15th lune) nt Constanatiople, and fresh organization of Otoman army in consequence. Burmans aubdued by the British.
$1: 27,-$ Duke of York died, 5th Janunry. French fleet aent oo Algiers. Canning died sth August. Captain Parry returned from North Pole ansuccessful. Persians deteated by Russinns. The Greeks implored nill of Earopenn gowers. Goderich ndmunistratoon. Batte of Vaverimo. 20th Oetoher, when Egsptian Geet was destroyed by Iritish. Russian, and French.
182s.-T'Test aul Corporntion nets aloolished. Wellington administration. National. Assemily of Grepee convoked by enate. 2t1 Fehruary. War declared by Ruanin aga nat Turkey. Cnuvent an between Viceroy of Edypt nad Sir Falward Codrington tol evacuation of Morea by Egyptian troops, 6ih Auguat. Donna Mlaria received by Britiah in London as Queen of Porbugal, gith Oelolser.
1029.-York Alinster injured by fire, 2d February. Pope leo XII. died, 1 sth Fehrun ry, and wha succeedad by Piag VIIf. Duel betwean the Duke of Wellington and linrl Winchelsea. Protocol of Britain, France, and Russin, nrranging kovernment, in House of Lorda, 10th April.
18to.-French experition ngainst Algiers set nn'l 25th April (city takear 5th July). (ieorge IV. hed and William IV. proclamed. eth June. The threa fathl orlinnures isaned nt paris to overthrow the chnter. With Jnly. A conp detat violently demanded by the ultras. Stern reqistances of the Pariaians inaring three slay w^{2}, 2sih. whth. and 30th July. Flight of Charles X.; alsdicated in faveur of Duke de Bourdenix. 2d August. Lonis Philippe. Duke of Orleans, declared by Chanber of Deputics ting. 7th August. Liverpool and Manchenter railway opened, Sth isptannter. Nutional guaris re-established. Revolution in Belgu.a ; Whech rule overthrown and Helginm decinred inde-
 eltinn of Beigie imlependence by allied powers. Polignac and
nther French minalaters tried ; the ministers concomned spen patual imprianment, and Pollgnae to civil death.
1831 .-Cholera appeared at St. Petersburg 12h Jannur Gregory XVI. Pope, Oth February. Reform bill introducedut British l'arliament by Lord John Russell, 1 st Mareh; frusirated in committee. Parliament dissolved. Carriell in new Haum of Cominons, 22 N September; rejected by the P'ecrs, 7th Ocio ber. Riots at itristol. Great meetings of refor. -s. Leopol aceepted the crown of Belgium. Warsaw a. - ered to the Russinns. Cholera appeared in England, $\because h$ Wibet. 1ssi2.-Cholera in Fainburgh, Bih Februais, oulon. Joth Britioh reform bill agnin frusirated in Iouse , ords. Resiz
nation of ministers, 7h May. Duke of Weilugena nation of minissers, $7 t h$ May. Duke of Weilug inn attempted Misy fin an nditinistration; failed. Far Grey, recalled, 19ib Inay. Refortm bill pasked. Otho of Bavaria king of Greece. Insurreetion at Paris. Don P'edro lunded at Oporio 0h July Civil war for posxession of l'ortugal. Chenp periodical puly cations of a ye ppectuinte characier begen lhis yenr: Chambers' EAmburgh Journal, Feb $4 ;$ Pemy Magaxine, March :th.
tieh Proliament for abolition of slavery in Weat passed in Brio simr surrendered to Don l'edro. Openugg of China trute in Brioin Donna Maria recogmised as queen of Portugnl by Britain. Death of Ferdinatid VII., xing of Spain. Return of Captain Ross from North weas, after an abarnce of four years.
Carlos Carios and those of the Queen. Fari Gray resigned, 10th July and was buceeeded hy Lord Mtellourne. Great dimmer io hen ivey at Ealmburgh. Lord Mrlbourne diemissed ly Will:am Io after heing five months in office, and Sir Kobert Peel called to the premiership. Dissolution of Br ishi Porlinment.
tish ministery defeated on question of Speakerahip, 19tht. Br .
 ary. Resignmion ofsir Ronan Mee. Lord Melhourne recalied 18ih April. English municiphl reform act passed, 7th Septem First election of Engliah town councile under reform, 2 th December.
1836.-Ferdinnad Augustus, Duke of Saxe Coburg, msrried by proxy to Doma Meria, queen of Portugal. Isi Jobuary Nintmme Maria latitia Bonaparte, mother of Ninpolean, died at Rome, 21 February (born 24 th August, 1750). Revolution at Liebon ; constitution of 120 accepted hy Doma Maria. Par liameni of Lower Canada opened by Earl Gosford, and diseolied as refractory, Charlea X. died at (roritz, in Hungary, 6th I_{3} vember. Balloon voyage from London to Naesan on the contintont, in 18 hours. 7ih November. Prince Poliguac released 1537- and eneral ovember.
isin.-General Finpartaro smecessful in Spain. Princess Vis toria, on the 2 th May, attained the age of 18 , the perich of ms jority by act of Parimment. All the Americmi basks sus pender apecie phymenta; very extensive failures William V. died, aged 72. uther a memorable reign of 7 yeara. Queen Victoria proclaimed. zell June. Duke of Cutulerland emtered In mover (27th Junci ae king by ralique law, in place or William IV. Grnnd Junction railway from Birmangham to Liverpool and Manchester rnilway, opened in Jiy. Ruilway from l'ana osi. cermain, opened zon Alguni. Rots ni Moniregl. Caro Gni American steamer ultacked and burnt by Canadians on United Nimes territory. 20th December.
Dr. Mackeniane thead rent Canadian inaurgents undel Dr. Mackenzie at Toronto, 5th Janunry. Royal Exchange, Ley. don, burnt loih Janmary. Fiarl of Durham gent to Camada a
 Prines Tulleyrnnd. the celebrated French diplomatial, dia 17th May. The "Great Vestern" steamet, the first that ever crosaced the Allantic, arrived at Now York frotr IIristal in fis teen daya, on 17th June. Coronation or (quecn Vic uris. sin
June. Spain atill disiracted by civil wnr. The nunter of newapapers prit into the london Post-othica on 21 July jar provincial riremation wha (\%,ino. Wavery abolighed in East lodies. Ruinway from finemt to Ostend. opened id seppemberfrom 1aris to St. Clond. 6th sentember. Fimperor ef Austris crowned with iron crown of Lombnay. ohn sepermber. Lon-
 ber. Railwhy from Potsinm to bertin. oprnet e9th Oetober. Disturbmeres in Canada suppresacd, 17th Novemher. 13ritish roopa entered Atighanimian, ns allxiliarics of the legilimste king of Cabool, Shalh Soojah, egainst the usurping chuef, Dost Mehomed.
1819.-Melbourne ministry rasigned, 7th Mny. Mailway from Loudon to Croydon. opened 1st June. Hostilitics between Ibrhhim l'asha ior Mphemet Ali, viceroy of Egyst, and the Sultan. 10th June. Railwny from London into the ensteric counties opened to Romford. 18th Jume. Soltan Nahmond II. died, and his son Alatul Medjicl proelaimed, 27th June. The five power interfered hefween he Morte ent Mehemet Ali, 18th Jult. Ghizner taken liy the British in Intia-Dost Nahomed defested. nind Shah Soojah enthroned in Cnlool, woth Joly, Ruilway from l'arie to Versnilles, opened ed Auguat. Flight of Don Cari los-l'eace in Spain. 25th August. Chartist alinck on Xewport; Front, n inex-mngiatrate, and others, apprehended th Nave mbet. Queen Vietoria annonnced to the Privy-Conncil bap imemion To marry Jrince Albert of Saxe-Cobourg Gothn, 2kid Xovember. Froat and others fomd gailiy of high renaon; sentence com muted to tranamortation for life, 31st Deceminer.
140.-The Chnese emperor isatued an edict prohibiting of commerca with the Hritisli "barharianse" T'emy poatage, ais Jnnuary. Treaty of commerce hetween Turkey und sweden 2 kl Jnmuary. Marriage of Cunen Victorin to l'rince Aben solemnized, loth February. Innurrection of Syrian moua inineers agninst Pagha of Egypt. 7ih Jome. Oxfori, a potect attempted to ahoot Queen Victoria, 10th June. Prince Loub

Napuiecol Inded a: to evurturn the August. Conventin! fan, and Fupland, io sia and Furland, of goverument, 20th A government, gh A ling of Holland, w abdicatioc $=:$ Quee made Regent. 131 ou surnunced in Lond nal. November. A Du.a Philippe, 15th lilied noveracuate Syria, o evacuate Syria, heteditary her of the fota spirituous liquo eposited with grent December
1541.-Union of \mathbf{C} and anc atcamer, Espartero tleeln di. Esparity of queen, $1:$ minority of queen, Great Weatern rnilw Great 30 h June ; cost oul. unan of Grinde A roluran ont, 13 th to 18 st chester ior repeal of chester or repeal of Pisley. Melhourne Paisley. Nelhourne mimeno. Attempt to opened. Attetript to eptember. Lonton ember. Dublin. ${ }_{\text {ord Mayor. Birth }}^{251}$
fieference has all somy, for an accou as well as the most kere, thercfote, mus dines which have of alding in the c unt of astronomical fractional parts, ter there being no sucl ment obvious in na of any arlificial ma and sunset was rea ever among the rn ing, turning, and lo moks and mountains dividing the day whi first idea of

The most ancient bare any hislorical who lived aliout 74 The first sun-dial ples, however, was I of Quirinus al Rome, nere not aware tha to ther places. Th platen, and placed th the direction of the ars in use are flat, of the shadow of wl ning in the plame of noth and south; w with the horizon eq which the dial is s arth's axis. Althou justed so as to point ainules, it is necalless ot an instrument no of tun-dials being on ail through at ni.ght

Aapuicon landed a: Bonlogne in a steamer with 40 or 50 followfrs to cruclurn the Freneli govorument, and was arrested, 6th Auquet. Conventipn between Turkey, Austria, Prussia, RusAs, and Euptand, ior sottlemont of Fastern question, ratified Sith Augast. Fortification of Paris by walla, \&c., ordered by poverninent, $2(14$ August. I ouis Napolcon sentenced to perpelual imprisonment, Bth Oetober. Voluntary abdication of fing of ilolland, who retired into private life, 7th October. Abdicntior zE Queen Regent of Spain, 12th October; Espartero Abdicnterent. Bloeknde of all Fgyptian and Syrian sea-ports mada Regen in London Ginzelle, 13th October; suspended till quti. November. Another unsuccessful attempt to asaassinate Dons 1'hilippe, 15 h October. Cajturg of Sidon and Acro by Hilied troops, November 5 und 6 . Princess Royal born 21 st November. Alehemet Ali agreed to terms of allien; namely, o evacaate Syrin, restoro 'Turkish fleet, and reeeive Egypt as hereditary fuef of the Porte, 27th November. Totnl abstainers roul spirituous liquors or tee-totnllers in Ireland. estimated by Father Nathew at 3.300,000. Remnins of Napoleon Bonaparte deposited with grent pomp in Ilotsl des Invalides, 1'aris, 15! December.
1S41.-Union of Canadas proeinimed at Montreal, 10th Feb. fieneral IIarrison. J'reaident of United States. died 4th April, and bucceeded 5 th. by Mr. Tyler, Vice. ${ }^{\text {Presidems. President. }}$ Adantie steamer, Hisissing, 11th A.pril, and nover since heard of. Espartero declnred, by Sptansh eliambers, regent during ninority of queen, 12th April. Sir Henry Poltinger sent ont to China. Canona tuken, Int ransomed by Chinese for $\$ 6,000,000$. Greal Western railway from Jiondon to Bristol opened throughout. 30th Junc ; cost fit,000,000. Siatue of Napoleon placed on colutan of Grande Armé at Itoulogne : fetee in eelebration of he event, lith to $18 t h$ August. Conierence of clergy at Manchester for repent of corn-iaws : 650 ministers present. Parlament reassembled, 19th August. Dreadful destifution in Paisley. Alelhourne ministry resigned, 30th Auguet. Railway from Cologne to Aix-In-Chapelle, und other continental lines, opencd. Attempt to assassimite a $80 n$ of Louis Philippe, 13th Entember. London and Brighton railway opened, 2lst' September. Dublin. esth Oetober, Daniel O'Connell was elected ord Mayor. Birth of Prince of Wales, 9 th November.

TME-KEEPERS.

Reference has already been made to article Astnosour, for an account of the most primitive and natural, as well as the most perfect tine-keepers. Our attention teere, therefore, must be confined to those artificial madines which have been invented chicfly for the purpose of alding to the convenience of these, by dividing the unit of astronomical time-keeping, namely, the day, into frational parts, terined hours, minutes, and seconds; there being no such convenient and desirable measurement obvious in nature. Yet long before the invention of any artificial machine, the interval between sunrise and suaset was really divided, with no little sccuracy, erer sanong the rudest nations, simply by the shortening, turning, and lengthening of the shadows of trees, pxks and mountains; and it was this primitive mode of dividing the day which no doubt naturally suggested tho firs idea of

si'N-DIALS.

The most ancient nrtificial time-keeper of which we hase any historical nolice ia the sun-dial of king Ahaz, aho livel shom 742 years before the birth of Christ. The first sun-dial constructed on mathematical principles, however, was probably one placed nesr the temple of Quirinus st Rome, и. c. 293. The Romans, at this time, mere not aware that a dial made for Rome is not suited bother places. The ancients used hemispherical dislplates, and placed the ralius which throws the shado in the direction of the north polar star. The dial-platee miss in use are flat, with the style or guonaon, the edge of the shadow of which determines the hour-line, running in the plane of the meridian, and hence, also, due nath and south; while its sloping edge forma an angle with the horizon equal to the latitude of the phace in which the dial is situated, and hence parallel to tho earth's exis. Aldough a sum-dial may certainly be adjusted so as to point out tho time of day within a few oinules, it is needless here to dwell farther on the detuils ol an instiument now of litile use. 'Tho most perfect of rua-dials heing only a vailable in sul shine, and not at

are aometimee usod), they were partly superseded, even at a very r moto period, by

CLEPSYDRE AND BAND-GLASSES.

It has been thought that the regular motion of the Jropping of water, and the simpler forms of clepsydras, or water-clocks, were used for the measurement of time even provioua to the invention of sun-dials. They cer tainly were known in very remote antiquity, and were used in various parts of Asia nd Europe; in China, India, Chaldea, Egypt, Italy, and Greece ; into the lasi of which countriea they were introduced ly Plato. Julius Cesar found them even in Brilain. It was by them that he discovered some of the nights to be slorter or longer in this country than in Italy, which is nearer the equator, or line of equal days and nights. The Romans themselves had clepaydro 100 years beforo Cexar'a invasion; and it is supposed that tho Phoenicians had introdaced them into Britain through Comwall, where they traded for tin. The elcpaydra, invented by Ctesibius of Alexandria, в. c. 145, consisted of a jar c יntaining water, which slowly escaped by a holo at the bstom, while the oar of a miniature boat on the surface, as it sank with the fall of the water, pointed out the hours, which were marked on the side of the jar. It in in:a alleged that toothed wheels were applied is c.epsyaco by Clesibius. Such instruments, however, though brouglat to great perfection in the ninth and tenth centrries, and, indecd, still used in Indis, have never been made to mensure time with great accuracy, the water always dropping more slowly as its quanlity and weight diminish.

The running of sand through a tube was another obvious species of regulsr motion, 'ery analogous to the running or dropping of water; and accordingly the hour glass, still in use in this and other countries, wat alao a very early invention. It was known, if not firet made, in Alexandria, B. c. 140.

Planetariums or orreries.

It is rather a curious circumslance, that, long before the invention of clocka or watches, srtificial machines, initativo of the motions of the sun, moon, and planets, the anstural time-keepera, were constructed by the as cients.

Of the planetariuma of modern times, the first ir England was one msde for Lord Orrery, whose name has since been given to such machines. The tslented and welf-taught astronomer, Ferguson, who was originally a poor Scottish herd-boy, made several orreries, and used chronometers to keep them in motion. But though the accuracy with which wheels and pinions can be made to represent different revolutiona is benutifully illustrated by ihe lest of these mschines, they can give no juat zonception of the relative size, distance, or velocity of the planets, or hence of the periols of their revolution; and in this respect, therefore, they are mere philosophical toys, as will be at once perceived by refercace to article Asthovomy, in which an accurate representation of one is given, together with a method, first suggesled by the celebrated astronomer, Sir John Herschel, of poirting out the actnal sizes, distances, \&c., of the various bodies in the solar system in relation to each other

clocks.

The strong hold which the planctary motions appess to have taken on the minds of our ferefathers, as the great antitypes of all truc time-keepers, is also curiously manifested in the fact, that even when a more detailec measurement of time beenme necrssnry, in the intellec tual progress of nations, these molions still continued to be represented, so that the very first clock of which wo have any perfectly authenlic account-that. namely, invented by Wallingford, Abbot of St. Albans, in 1326
not only ahowed the hours, but the epparent motion of the sun, the changes of the moon, the ebb and flow of the tides, \&c. Thia, however, was by no means the first clock ever constructed; instruments with weights, wheels, pinions, and a balance, for the measurement of time, having been long previously known, though by whom invented appears to be a subject of much controveray. Doubtless they required more than the intellect of a single mind. Be this as it may, the most ancient clock of which we have any description, is that of Henry Vic or De Wyck, a German, erected in the tower of the palsee of Charles V., king of France, in 1379; and rude and imperfect as it was, the annlogy of modern
 invention, enpecially in watchen, would lead us to think that it must have been the fruit of several centurice of thought and improvement.

A portroit of this parent of modern timekeepers may be interesting to our readers; and from its comparative aimplicity, will he well adapted as a ground-work for further explanation of the mechanism of clocks and watches in their more complex and intricate forms. It will, moreover, show the gencral mode of construction adopted in the fourteenth century, including the bslance with weights instead of a peudulum, by which the motion was then regulated.

General Movement and Regulaton of Clock-work.

Without requiring to enter into any very minute detail of the manner in which motion in a clock or wateh is auccessfully communicated from one toothed wheel \mathbf{G} or I , or pinion e or g , to another, which. indeed, would in some instances only tend to perplex the mind of the general render, it will be rendily understood that the weight A below the clock-work, wound up ly a cord on the cylinder B, in its constant tendency to fall to the ground, will cause the cylioder to turn round on its axis as it falls, and as the cord uncoils; and thus one tonthed wheel or pinion will set another in motion, till the movement be conmunicatel to the crown wheel, eacafement wheel, or wheel of rencounter, I, the teeth of which so act on the two small levers or pallets, i h, projecting from and forming part of the suapended upright spindle or vertical axis. KM, on which is fixed the regulator or balance, ILL, that an alternating or vibratory instead of a circular motion of the balance itaelf wili be the result. The rotatory motion of the whecl-work, in short, will he converted into a vibratory motion by the niternate catching of the levers by the tecth of the crown or escapement wheel, and their alternate escape or 'scajement from them: this, or something always similar, is the cause of the constant ticking of a clock or watch.

Now, it will at once appear manifest that a henvy weight, such as that here represented, operating on a few wheela thus arrsnged, unless it have some counteractive welght or other check to modify and bntance its operauon, will rapidly run down even to the ground, if tiog height of the clock-work and the length of the cord attached to the cylinder permit it, causing the wheels to rotate, the laalance to vibrate, and the hands to revolve on the face of the clock, with similar rapidity, increasing avery moluent till the weight be fairly run down. It ia
thin rapid motion of the whecl-work which begins n_{s} modern clock whenever the pendulum is taken awny while the weighte are atill attached to the cylinilers; and the rapid ticking then beard is the uncounteracted ope. ration of the crown wheel, movod by the falling weight upon a piece of mechaniam similar in purpose to the levers and spindle in the abovo figure. T'o prevent this rapid unwinding of the elork-work, then, and to adjust it to the moro deliberato measurement of time, we have, in Du Wyck's elock, the balance, louded wilh tro weighis, $m m$; and the farther these are removed from the axie ot spindle, KM, the more heavily will they revist and counternct the escapement of tho levers and the rapidity of the rotation of the escapement wheel, till the clock be brought to go neither too quick nor too slow ; when, of course, it would be impraper to remove them further to warls the enda of the balanee, as the elock would then go too slow for correct time-keeping.

Pendulum and Eacnpement.

What the balnnce and tho weights attached to it in De Wyck's clock were to clocks of an ancient date, the pendulum is, in general, to modern clocks; the oscillations of the pendulum, and the vilrations of the halnnee, being completely analogous in purpose and effect, both being kept up or sustained by the "ereapement," while both require, or, as it werc, demand, hy the law of gravity, a certain time for their performance ; anil thus, by reaction, check and equalize the exercise of those very powers and movements ly which they are kept in play, The measurement of time being thus regulated by the oceillations of the halance or the pendulum, this partol the mechanism of a clock, including the escapemert, is of primary interest and importance; and we shall find this also to be the case in the numerous contrivannea, chiefly by English artists, to effect the same olject to the best advantage in the still more delicate and ingenious mechanism of watches. We may here also remark, that, so invaluable is the principle of regulntion, whether by oscillation or rotation, and so gencrally and extensively useful in other respecta, that, from the amoke. jack to the steam-engine, lias it, in one form or other, been called into practical operation.

Galileo, the great ostronomer, when a student at P_{i} a happened to discover, while engoged in the esthedral there-not in medituting on the imposing cerenunial of the Catholic church, which was then in progress, but in what, to many a good Catholic, would unloubtelly have seemed the vacant, idle, and profane contemplation of the lamps which swung from the roof-that the oscills tions of a pendulum, whether great or small. are pe: formed in equal times in each pendulum-an imporant fact, the truth of which he tested, not ly the beats of bin watch (for no such instrument then existed), lut: hy the bents of a natural time-keeper to whrch we hare not yet alluded-namely, the pulse. He afterwards discorered, what was ultimately demonstrated ly Newton, that "the shorter the pendulum the less is the time of its vibs. tion;" or, in other words, that the numplyer of osecillation performed by a pendulum in a given time depends on its length, four times the length proluciug twice the number of oscillations. A pendulum, the length of which, from the point of suspension to the centre of the weight at tached to its lower extremity, is 39 inches and 2 tenthe, will oseillnte once precisely every second in the lixituve of London; not in any other latitule, however, as has been found by experience; the number of oscillsions with the same length of pendulum diminishing tonath the equator, whero oscillations equal in leristh to? minutea 15 seconds a day will be lost; while, on the other band, they will increase towards the poles, when a proportional number of oscillations will be, grined
Thua the pendulum of a clock, made and adjures k
in in London, re perer to the polea, myator."
The first use whi mave of his valuablo und variations of the vork was sin aftertho more than suggest st do alleged, that at a indo osecution; and tion of pendulum clo Huygens, a learned I brated philosopher, in chanism previously i dimply to addl a now enable him to place borizootal instead of bouct arm of tho balt lre insteal of horizont he extended, as it wer cavereded into a pende bowover, trom tho apiudle, required a ocillation; and the eo receat popular autho disk governed the p ought to govern the el the celebrated Dr. Hoo wintroluced by Cla 1680, and enabled a bavier pendulum, whi arch, was less resistec frimed its motion wit culled the anchor ese gether with the practie us the pendulum by wath, which was liablo an evil, however, perf opualled by the variati laticity of the spring and cold. The secon luan, with the anchor ment was called the dilum. As this plan, was found to cause or cetrograde moveme wheels, and has he olled the recoil escap further improvement the eighteenth centur English artist, who in tent
The wheels are kept tepose or rest during th lun, except at the mon from the crown-whee eren than hefore, the o.
-Tho diecovery of this differnce of lemperature bifmenstrate that the ea hrough the poles ; nut t no fluid or moltell mass i of rotation: :. ernely. tot 1 4heroid of orauge sha prouberant at the eqpata centripetal and centringa teentre ; whene it follos muve. or hecone henvier. tonn. And thnt they are rep try) lighter. not only us suthry npproneh and en tenrifignt force, which n tyator. The surtace ori *is than proved to be satier the pendulum dese *oredilation there thana axined to te ar commed lowarie the efpualor
IJLI. -97
begint in aken away linders ; and cracted ope. lling weight rposes to the prevent thia nd to adjust ne, we hape, 1 turo weights, n the axis or si and coune rapidity of the clock be w ; when, of m further to : would then
ched to it in ient date, the ; the oscilla. f the halance ad effect, hoth ment," while te law of grap and thus, by of those very kept in play, guloted by the 3 , this part ol escapement., is we shall find contrivances, cobject to the and ingenious also remark, ation, whether y and exterIn the smoke. form or other,
tudent at Pien, the esthedral ceremonial of rogress, but in loubtedly bave trmplation of nat the oscilla mall, are per -mil important ne brats of hin (d), but: by the c have not yet ds discovered, ton, thot "the pe of its ribirs of oscillstion depends on itw fee the number of which, from the weight at and 2 tenths, in the latitude owever, as has of uecilitions ishing toward length to: while, on the e poles, when ill be gained dd adjurord to
time in London, requires to be lengthened if taken nearer to the polos, or shortened if taken towards the epator."
The first use which Galilco, then a medical atudent made of his valuablo discovery was to ascertain the rate and variations of the pulse ; and its applicntion to clockrork was an afterthought. It is even deniod that he did more than suggest such an application; or, as has been dso alleged, that at all events his son put his suggestion into oxecution; and accordingly the merit of the invenfion of pendulum clocks is very generally attributed to Huygens, a learned Dutchman, about 1657. This celchated philosopher, in adapting the pendulum to the mochanism previously invented, had little more to do than amply to add a new wheel to the movement, so as to anable him to place the crown wheel and spindle in a horizontal instead of a perpendicular position, that the lower arm of the balance-then, of course, perpendiculat, iastead of horizontal, as in De Wyck's clock-might he extended, as it were, downwards, and thus, in fact, be coperted into a penduluan. 'The principle thus adopted, huwover, from tho peculiar action of the levers and spiudle, required a light pendulum and great ares of asillation; and the consequence was, as Mr. Thompaon, a receat popular author, tritely remarks, that "Huygens' dack governed the pendulum, whereas the pendulum ought to govern the clock." About ten years aftorwards, tha celebrated Dr. Hook invented a better method, which wis introduced by Clement, a London clockmaker, in [680, and enabled a less maintaining power to carry a beavier pendulum, which, also making smaller swings or urcs, was loss resisted by the air, and therefore perfrmed its motion with greater regularity, This was alled the anchor eseapement, and it is atill in use, together with the practice to which it gave rise of auspending tha pendulum by a thin flexible apring instead of a wid, which was liablo to change its length ly moisture; an evil, however, perhaps fully qualled by the variation of the Jasticity of the spring by heat and cold. The seconds pendulunn, with the ancloor cscapement was called the royal pendulum. As this plan, however, was found to cause a renction of retrograde movement of the wheels, and has hence bean
 colled the recoil escapement, a further inprovement was made about the heginning of the eighteenth century by George Graham, anothor English nrtist, who invented tho repose or dead eacapoment.
Tha wheels are kept by this escapement in a stata of tepose or rest doring the whole oscillation of the pendufun, exeept at tho moment when it receives its inpulse from the crown-wheel. Requiring smaller arcs, too, eren than before, the oscillations are made in more equal

[^77]times. A still more perfect modification of the escape ment is the free or detached, but it is more difficult ψ execute. The half-dead escapement, also, has beem introduced as a mean betwoen tha dcad eacapeinont, an increase of power with which causes a clock to lose time, and the recoil escapement, with which a aimilar increase of power causea one to gain. For the purposes of ordinary clocks, this mode of eacapement has been found to answer very well.

Compensntion Pendulams.

Pendulum roda, which aro usually made of meta. though sometimes of wood, especially in church clocks, were next found to vary in length ly variations of temperature, according to that law of nature by which every body increases in volume or in actual size by heat, and diminishes or contracts by cold. The inevitable consequence of the influence of auch variations on the length of the pendulum will at once be seen, from what hat been already said, to be an increase of the number of ite oscillations in a given time while in cold temperaturea, and hence shorter than its mean length, as in winter, or even nt night or in cold situations; and a diminution of them while in warm temperutures, and hence longer, as in summer, or even during the day, or in warm situationa: and a pendulum with a metal rod will cause a clock to vary geveral seconds in a day from such changen alonc. To insure, thorefore, a still greater accuracy and uniformity in the mcasurement of time than had previously been obtained, various ingenious but simple devices have been put into practice, wherein the very cause of the inaccuracy has heen made aubservient to the end desired. And here the talent of the artist Graham again displayed itself, and led the way to every other modification of the primitive idea, however dissimilar in detail, and whether applicsble to pendulums or balancea, to clocks or watelies. Indecd, the firat method of "compensation" adopted for pendulums has, with some little improvement, ultimately superseded all its more recent modifications. 'This method Grahain called "the mercurial compensation," and it consists simply of a tube or cylindrical glass jar contnining quicksilver or mercury, and attached to the lower end of a ateel rod in the are of its oscillation. As the steel rod lengthena by heat, the inercury expands in volume and rises in the tube; while, as the rot shortens by cold, it contracta, and ainke or fulls. Thus the are of oscillation remains ever at the same distance from the point of suspension or upper extremity of the pendulum; or, in other words, the pendulum, in fact, remains ever of the same length. Graham alan conecived the notion of anotber compound pendulum, composed of different metnls so arranged as to compensate ench other by their difference of expansion or contraction. I'his modification of the iden of a compensating pendulum was more fully developed by John Harrison, another celebrated artist, who in 1726 invented the gridiron pendulum, composed of five rods of steel and four of brass, so arranged that the rods which expand the most raise the weight at the bottom of the pendulum, as much as the rods which expand the least depress it. Unfortunately, hovever, this compensation changes, as all metals do, not continuously nud gradmally, under the influence of heat or cold, but hy jerks. 'the mereurial pendulum, therefore, under certain improvements by Thomas leed. a talented Edinburgh artist, and by othera, las of late locen frequently resuned; and it has been fonnd that time-keepers provided with this pentulum and a dend escapement do not vary, on the average, more thun a quarter of a second daily-a degree of accuracy wonderful, incleed, when contrasted with the fact, that duwn to the middle of the sixteenth century clocks were incupable of going nearer to accurate thes than about 40 minutes within the 24 hours, and were nevertheless held

- 3 T
to se preciaion itself compared with all other methods of mosuring time then known.*

Other Improvements.

While improvements ware effecting in the eacapement and pendulum of clocks, the ingenuity of artists was not confined to these alone. Tiill the beginuing of the 16th century clocks wero of great loulk, and only fit for turrets or large huildings ; and although after this period they were mnde sanall enough to be introduced into apartments, there could be no such thing aa a really portable clock, far less a watch, till weights and pendulums wero got rinl of altogether. The substitution of a main-spring for a we.ght, therefore, conatituted a great era in horology, ot the seience of time-keeping; and this trok placo about the middle of the sixteenth century, and was whortly afterwards followed by the invention of the fusee, a very necessary nppendago to the innin-spring. But as these inventions completely altered the form and principles of horological machines, and, together with that of the spiral escapeonent spring and other improvements, which soon followed that of the pendulum, rather conatitute peculiar features of the watch than of the clock (although they were mostly applied at first only to portable time-pieces of the nature of clocks, in which they nre, indeed, still used), we shall reserve the explanation of thase ingenious pirces of mechanism till we come to treat of watehes. Meantime, there is another part of the works of a clock which requires to be here noticed.

Mechnnism for Striking the Hours.

It is not known when the alarm or when the striking mechanism of tho clock was first applied. The alarin was adopted for the use of the Romish priesthood, to alouso them to their morning devotions. The first atriking clock probably announced the hour by a single blow, as they still do, to avoid noise, in most if not all of the Scotisil churches. In Do Wyck's clock, the wieel \mathbf{N}, with its projecting pins, perved to diseharge the atrikiug part, which it has not been thought necessary to illustrate. Liko other old clocks, it locked against an interrupted hoop, fixed on what was called the hoop-wheel; and the 11 notches on the edge of the plate-wheel determined the hours, or particular numher of blows which the hammer should give. During the eventeenth century, there existed a great taste for atriking clocks, and hence a great variety of them.

[^78]Several of Tomplon's not only struck the quarese on bells, but also the hour after ench quarter; at 12 veluex 44 blows were struck; and between 12 and 1 , nolem than 113! Many atruck the hour twice, like that of St. Clement Danes, in the Strand, London, firat on large bell and tien on a small one. Others, aguin were invented so as to tell the hours with the least pook ble noise, also by the aid of two bells, each bluw on the small one indicating 5 hours.
The striking part of a clock is rather a peculiar and intricate piece of mechanism. In ordinary clocks the impelling power fa a weight similar to that which move the time-measuring tnechanlsin itself; but the pressury of this weight on the striking machinery is only permit ted to come into play at the stnted periods, in courne of the workings of the time-keeping apparatus, namely, the completion of every hour; when the minute whel which revolves once in on hour, and carries the minute hand of the clock along with $i t$, brings it into action by the temporary release of a catch or detent, permitting the weight wound up on the cylinder of the striking appe ratus to run down for a little, in doing which the ham ther is forced into action, so as to strike the bell. Whethe the strokes shall be one or many, is determined prine pully by two pieces of mechanism, one called a suai from its form or outline, with 12 steps, and the other rack, with 12 tecth; but the intricate action of the who it would be in vain here to attempt to explain. Suffice it to say, that the time during which the striking weigh is allowed to deseend variea according to the tuming of the 12 steps of the snail on its axis, and the position of the 12 tecth of the rack, at different hours of the day being sometimes only long enough to permit one blow 10 be given by the hammer on tho bell, and at another time long enough for 12 such blows. The lifting piece of the rack-liook, in some clocks, may be raised by pulling a string attached to a small additional piece of mechan ism, and thus the clock is made to repent the hour las struck at any time required-an meldition useful througs the night, or to the blind. The modes, however, by which clocks as well ns wntches have been made repeab ers have been very varions. Repeating-clocks were firt invented hy Barlow, an English clergyinnn, nad executed by Tompion in 1676 . Some have been made to repent both hours and quarters at noy time, and to inilicate the time hy blows which might be felt hut not heard. The size and weight of some church-bells are enormous. The great bell of St. Pauls, London, weighs between 11,000 and 12,000 pounds. Great Tom of lincoln, though amaller than St. Pauls is heavier still, being fully 12,000 pounds; and Grent Tum of Oxford, the largest in Eng: land, weighs 17,000 pounds. But these are all insigni ficant when compercd with some of the Russisn bella which weigh from 50,000 to even 432,000 pounds! A bells are made chiefly of a compound of copper and tin cast in moulds in bell-foundrics.

Curinus Clocks.

Various and ingenious, as well as often highly carion have been the forms and purposes displayed in the cons struction of clocks, even from their earlier epochs down to the present day. We have nlready instanced some of an ancient date which pointed out the motions of the sun and moon, the etb und How of the tider, Sc. Othen of a more fanciful description fullowed. The fanoon cuthedral clock of Btrushurg was formed previous w 1580 ; and besides toany other curious details, had the four quarters of the hour struck by four figures, emblo matical of the distinguishing periods ol luman lia The first was struck by a child with an apple, the second by a youth with an arrow, the third liy a man with 1 bluigeon or staff, und the fourth by an old man witha cruteh; these were followed up by Death himsell, alo ar-ack the hour at last. Other ancient clocks dieplated
precemons of sainta, child, dec; and scaro nihout some curios Many curious clocks reatury, among whic or at leant moved, by awillowed up by anc mpents, or descendin thrown up by Archim go by their own weig thus avoiding the cas weight lines are liah mere even mado to anc and ingeniously hung wat kept going loy its dating merely of pust in another, the dinl 5 wilh water, in which lously with the hour, magnetic attraction, as xive; and thia favour imple contrivances. lithe wonder of a simi by a puzzle-clock, wit the centre of a crysta and moving without dianiam. In this cane the interior of the dial, kn. The illuminatiot the seventeenth and ci than twenty years sine docks. It was first ap in lighted (though ve tro others are, throug A somewhat better oy inburgh; and in Londo light has recently cont rery useful practice. which registered the br means of a pencil cory, and mado to trav 365 parts by radij line clock once a year. T proposed by Sir Christ similar principle-an rived. A curious tim presence and nttention resfally tried of late Hewhere in England. projecting round the di marde at a cortnin int rance and attention ar do so, otherwise his ne bour at which he we tale." Among other to prevent bankers' saf al stated intervals. 'I the art of clock-makin tion of clocks, by whic town, ar even in dilfer neously, and, as it w ame moment of time.

Clocks and watche pedect, ss , in the civili dispensable, machines suity. "To become Eloud, "it is necessary ond the revolution o delermine the curve of the forces that must be to put isto execution these sciences prescril nary clocks th at which moves ut the pressury - is only permis ds, in course of itus, namely, at ${ }^{3}$ minute-whel, ries the minute t into action by t, permitting the striking appe which the ham o bell. Whetbe termined prine called a tnoih and the other ion of the who xplain. Suffiox striking weigh 0 the tuming of the position of jurs of thi day, rmit one blow k 1 at another time lifting piece of -aised by pulling iece of mechass ant the hour last a useful through es, however, by en maile repesic clocks were firs an, and execoted made to repen d to indicate the ot head. The enormous. The between 11,000 incoln, though ing fully 12,000 largest in Eng are all insigni e Russian bellh 00 pounds: AI copper and tin
a highly curiom yed in the con ir epocha dont instanced same motions of the les, Sce. Othea The fantow ad previous details, had ix figures, emble of human lito pple, the second a man with old man with h himselt, whe focks display
recemons of saints, with obeisance to the virgin and fhild, \&c.; and scarcfiy a town of any importance way without some curioaity of this sort peculine to itself. Many curious clocks were invented in tha seventeenth rentury, mong which were a variety measuring time, er at least moved, by balla running down inelined planes, wallowed up by and traversing the bolies of brazen wrents, or descending in metallic grooves, to be again hrown up by Archimedean ecrews; some were made to goby their own weight, leacending inclined planea, and thus avoiding the casualtiea to which main-springe and weight lines ara liable; othere, by meane of springe, wete even made to ascend such planes. One was simply ind ingeniously hung like a lamp from the ceiling, and wis kept going lyy its own lescent, the winding up condaing merely of pushing it again towarda the ceiling. In another, the dinl formed the brim of a plate, filled with water, in which swam a tortoise, turning marvelbuasly with tha hour, and ever pointing towards it-by magnetic attraction, as every one would now readily conwive; and this favourite idea was varied by many other imple contrivanees. Within the last few years, not a litle wondor of a aimilar kind, we recollect, was excited bs puzzle-clnck, with an hour-hand procecding from the centre of a crystal dial-plate, perfectly tranaparent. and moving without any visible connection with mochanism. In this case n piece of glass itself, rotating in we interior of the dial, constituted the requisite meclian wn. The illumination of clocks was a favourite idea in the seventeenth and cighteenth centuries; and little more than twenty years aince thia plan was adopted for publie docks. It was firat applied in Glasgow, where one clock is lighted (though very imperfectly) from without, as two others are, through translueent dials, from within. A somewhat better aystem of lighting is adupted in Edibburgh; and in London, the pure billiancy of the Bude bight has recently contributed to the improvement of thia rery usefal practice. A clock was inade by George III. rlich registered the daily fluctuations of the barometer br meane of a pencil floating on the surface of the mercrry, and made to traveras a circular card divided into 365 parts by radii lines, and turned on its centre by the dork once a year. The fiuctuntions of the wind were proposed by Sir Christopher Wren to ba regiatered on a imilar principle-an idea which has been recently revired. A curious time-keeping method of insuring the presence and nttention of night-watebmen has been auccessfully tried of late ycars at Derby, and we believe elsewhere in England. It consists of a clock with pina projecting round the dial, which can only be pushed inwadd at a certain interval, when the watchman's presare and attention are required to unlock the case and do $* 0$, otherwise bia neglect and the exact quarter of an bour at which ha was ebsent is shown by athe tellwhe," Among other recent inventions ia a lock-clock, w prevent bankers' aafes, \&c., from being opened except if stated intervals. The greateat novelty, however, in the art of clock-making, is the electro-magnetic regulation of clocks, by which the dials of all the clocks in a town, or even in different towns, may be made simultaoeously, and, as it were, by sympathy, to indicate the ame mument of time.

Watches.

Ciocks and watchea are certainly among the moat peffect, as, in the eivilized world, they are the mort indispensable, machines ever produced by human ingenuity, "To become a good watchmaker," says Berthoud, "it is necessary to be an urithmetician, in order to And the revolution of each wheel; a geometrician, to determine the curve of the teeth; a mechunician, to find the forces that must be applied; and an nrtist, to be able w put it to execution the princijles and rules which these sciences preacribe. He must know how fluids
resist bodies in motion; the effects of heat and cold on different metals; and, in addition to these acquirements, he nust he endowed by nuture with happy genius." No one who has not elosely attended to the matter, can concerve the difficulty which has been experienced even in dividing cirelea for tho wheela of a watch into the requisite number of rigorousily equal parta, and in "pitching" them in, or adjusting them one with another. All the rewonrces of art shown by Ramaden, Troughtun, and other eminent mathematical inatrument makers, have been here called into requisition. And as to the delicacy of touch and adjustment necemsary in the mere regulation of the mechaniam, after being thus accurately made and "pitched in," bomo alight idea may be formed from the fact, which wo give in the worde of Mr . Thom son, that "a second (a mere pulation) is divided into four or five parts, marked by the vibrations of a watchbalanee, and each of these divisions is frequently required to be lensened an exact 2880th part of its momentary duration " England has great honour in having advanced the art of watch-making to its preeent high condition.

Main-spring and Fuseo.
The invention of the main-apring in place of the weight was the first pre-requisite in the formation of the watch. But although the main-spring was applied an the maintaining power to time-piecea of a very imperfect description, called watches, about the midille of the sixteenth century, and although the balance had, in such instrumeuts as these, asaumed ita present form of a vibrnting ring, with the greateat weight, of course accumulnted round a circumference, it was not until the spiral hnir-spring was opplied to the balance, aome time after the invention of the pendulum, as a aubstitute in clocks for the balance itself, that a comparatively usclesw machine was converted into a time-mensurer nearly as accurate, even in its ordinury form, ns the pendulum elock. Theugh the invention of the balance-spring. however, was comparatively nn early improvement, and the greatest the wateh has ever reeeived, we must pass it over, in the man tine, till we briefly describe those parts of the mechnnism which first rendered the existence of the watch possible at all.

The main-spring consista of a coil of thu elastic ateel ribbon, enclosed in a mininture barrel or "druin," to the inner side of which the outer end of the coil ia fixed, while the inner is fixed to an axis at the centre of the drum, and round which it may he wound or twisted, so as, by its elasticity and recoil, to cause the drum to make as many revolutions as it makes turus itself while it unwinds. Here, then, we have the main power winich acts the whole mechanism of the watch in motion. But it is evident that this power, if thus at once applied to the whecls, would cauae them to move with less and less rnpidity as it became uncoiled, and as its epringing power, of course, became exhauated; so that, unless the wheela were ao constructed that only the middle turns were required to be in action, and not those in which it is at its grentest or its least power, a force sufficiently equal even for ordinnry purposea could not be thus obtained. French spring clocka, strange to aay, are still in generai made on this defective principle; but English watches and spring-clocks are aupplicd with a " fusee," which correcta the inequalities of the main-spring with a aimplicity only equalled by its ingenuity.

The fusee is
 a cone with a spiral groose. attached to the aide 0_{2} the first wieel of the writuh. and connected
with the barrel or drum zontaining the main-apring oy a
ehain, hooked, at its ends, to both. The figure to the right in the above cut, in the fusee; that to the len is the drum.
on winding a watch, the key is placed on the axis of the fusee, and the chain is wound off the barrel on to the cone of the fusee. When fully no wound, the spring is at ita greateat power of recoil ; but the chain being then round the smallest part of the cone, the influence of the spring on the whech is at ity least amount; while, juat as the power of the apring relaxes and diminishas, the cone enlarges, and its lever influence hence increases. The fusce, in short, is a variuble lever, worked by the main-spring, with more purchase when it has less power, and with less purchase when it has more power. It ia a very beautiful contrivanco, completely enawering the intended purpose, when properly made. By means of a apring contained in the interior of the fusee-wheel, the watch is maintained in motion, while the fusee itself is turned by the wateh-key in winding up the main-spring. This is called the going fusce. When the watch or spring-clock has no fusco at all (and in very flat watches no fusee can be introduced), the barrel is immediately attached to the first wheel. In evcry case, however, the power of the spring is conveycd through the wheela hy nearly the wame arrangement in all watches ard clocke to

The Eacrpement.

On the peculiar construction of this part of the meehauism, ao as beat to keep up the vibrations of the balanen, the superiority of one watch over another principally depends; though much, of course, also depende on the skill of the workmen, and the quality of his materisls, in the construction of every part of so delicate a machine. The escapement, however, according to its peculiar form, is that by which the watch is chiefly distinguished.

The vertical watch is so named from its old vertical escapement.
This particular mode of escapement is still made in common watches, though found not
to produce a sufficient accuracy.
The horizontal or cylinder watch in so named from
 the horizontal escapement of Graham, introduced in the legianing of last century.
In this mode of eocapement the impulse is given to a hollow cut in the cylindrical axis of
the balance, by teeth of a peculiar form projecting from a horizontal crown-wheel.
The lever watch is no named from the lever eacape-

evat of Mudge, in which the impulse is gived to the malance by a lever attached to anchor pallata.

The duplex watch is ao enmed from the duplor ec eapement of Honl : , perfected by Tyrer, In which \& impulse is given !., ... ouble wheol.

The detached watch is no named from the dracied eacupement of Berthoud, improved by Arnold ant Eara shaw, in which the vibrations of the balsnce ant fiee of detached from the influence of tha crown-wheet unlem at the instant when it receives its impulae and urb cking the wheels atanding still till then.

This mode of escapement, which requires no oil, form a peculiar feature of the chronometer or marine tive kceper.

On the respective merita of these different kinds, watchea a few useful hints will be afterwards gim There aro macy other cscapements, but those ouly no pointed out are in general use.

Balance and Balance-Spring.

These are the only other parts of tho mechanima the watch of which it is necessary here to treat.

The balance, as may be scen from the representation of it in connection with the different escapemente jur noticed, is a whecl finely poised on its axis; the pira holes in which it turns being frequenty, in chronomete and clocks, as well as in watches, jewelled, or made a small rubies, diamenda, \&c., as those of other of is wheels also are, for the sake of durability. I'the nsive effect of an impulse given to auch a wheel would be complete rotation on its axis. This, however, of is have already scen, is convertible, ly various escapement into a vibratory motion. But as in clocks the pendulat was found to be a most invalunblo adjunct, absontinge, it were, in its own more or less extended oscillatios every inequality in the rotation of the wheel-work, ort vilration of the balance, something of precisely the se nature for wath escapements was the great desidenate when the balance-spring or hair-spring was invented and, from this anslogy, it even acquired the name of 4 pendulum-spring-improperly so, however, as Reid marks, especially as there ia a pendulum-spring of 4 othor description altogether.•

[^79]Simple and obvious afuence of a spring, a d the watch balance i Jolum, may now appe mins-apring, as a subst had been suggeated, th inrention in the meel bonour of its first augg Wua thres very omine Rultefauille, a Frenchn tonomer. It was ultimat bas applied for a paten thid done so several male a similar applic Hooke, therefore, muat Wance-spring.

In
 watel spring dent W sprin positi bot when the impulse aown-wheel of the csc matory motion of the mough there should b wapenent to prevent mose round so far as th wne the elastic resist that resistance becomes watace will stop for a n If the elastic iecoil of ribate so lcag as the is in motion.
The recoil of the spri wance to a distance ne axtion; this is therefor binn. But when the m Icertain length of spri mole in less timo than pule is given; with as aple is reversed; whene and Berthoud, that eq weequal vibrations, cou kngtheniag the spring t wo, the stronger and sho be its vibrutions. Thus ekxription can ho prod to the slightest differenc pring. And it is thus keping is essentially de in the formation of thi linle sppendage. So n bixirspring be isochron ment, the time shown \mathbf{w} changes in the motion of

applied to all marine chr
manyal isbour. Four tho More than a single ounce -The chasel of the seulfilo "mury add immense value mar become of great price
wern wo exumple wherein Werr no exumple wherein
Wriced by humas ac:ld

Simple and obvious as the suggontion of the regulative nduence of a apring, applied to the vibrating mechanimm $\$ 1$ ho watch balance in place of either weight or penrulum, may now appear, eapecially anor the lidea of the min-apring, an a substitute for the maintaining weight, hand been suggeated, this has been held to be a crowning anrention in the mechanism of the watch; and the bonout of its fint nuggextion has been claimed by no leas bundur thres very aminent men-by Dr. Hooke, by Abbe Hutiefuille, a Frenchman, and hy Huygens, the Dutch astunomer. It waa ultimately proved, that although Huygena whapplicd for a patent at Paria in 1074, Hautefeuillo bul done so several yeara before; while Hooke had avere a similar application in England in 1658. To Hove, therefore, muat be attributed the first idea of the whance-spring

In its application to the balanco of a watch, one of the extremities of the apring is fartencd to a point independent of the balance, while the other is attached near its axis.

When the balance is at rest, the spring ia inclined neither way, thia position being culled the point of reat; wal when the impulso in given to the balance by the cown-wheel of the escapement, it is clear that now a pulary motion of the balance cannot take place, even tough there should be nothing in the form of the wapenent to provent it; the balance will now only more round so far as the impulse given is able to overwne the elastic resistance of the spring; and when the reistance becomes equal to the impulse given, the wance will stop for a moment, and then be driven back sthe elaatic zecoil of the spring, continuing thus to bibate solcag as the impulse is repeated or the watch ivin motion.
The recoil of the spring is sufficient to drive back the wance to a distance nearly double the length of its firat mation; thia is therefore called the long are of vibraion. But when the motion of the balance is free, with 1aertain length of apring, the long are of vibration is mile in less time than the short one, to which the impabe is given; with a spring of grenter length the prinaple is reversed; whence it was concluded hy Le Roy ud Berthoud, that equality of time or isochronism, in mequal vibrations, could be more easily obtained by kagthening the spring than by tapering it. In principle, bo, the stronger and shorter the spring, the quicker will to is vibrations. Thus, effects of an extremely varied dexiption can be produced on the motions of a watch of the lightest difference of length and taper in a hairpring. And it is thus that the correctness of the timeleping is essentially dependent on the principle adopted in the formation of thia apparently most insignificant limite appendage. So much ia this the case, that, if the thirspring the isochronal in a free or detached eacapement, the time shown will be the same, notwithstanding dunges in the motion of the wheels, or even in the power of the main-spring. In England, where timekeepers have becn brought to their greatest perfection, it is considered that isochronism is most easily obtninable hy using the cylindrical heliacal spring, which is
pplied to all marine chronometers.
monal :abeur: Four thnusnuat hair-springs scarcely wrigh Mre than a single ounce. bint cort often mare han . flofio. -The ehsel of the enulptor," as Mr. Thompson jusily remarks, "may add immense value to a block of murble, unt the camen my beome of great price from the labour hestowed. but art win moexample wherein the cost of the materiml is so greatly witi:ed by buana as:ll at in the balunce-spring."

One of the most recent improvementa in watchea, of rather in clironometers, has jeen invented anil patented by Mr. Dent, of London, and consints In coating the balance and halance-spting with gold by the electro-metallurgic procean (nee article on Elzctareitr), by which means they are secured from rust. Another invention of the name gentlenan is that of balance or hair-springa made of glans, which, slogular to may, appear Iecidedly preferalle to thone of ateel, their principal dinadvantago being the difficulty of making them with certainty or accuracy.

Compensation.

But let a wath be ever so perfect-in the correction of the inequalitios of its main-spring by a fusee mathe matically adjusted to it, in the formation, and the position or pitching in of all its wheels and pinions, in the principle and execution of ite escapement, and even in tha accuracy with which its hair-sp.'ng vibrates in equal times-atill it will vary in the time it indicatea on every change of temperuture, however alight, unleas it be cormpensated.

From what we have already stated in trealing of the compensation pendulum in clocks, the intelligent reader will readily appreciate the difficulties to be here overcome, and will probably conclude, that as is clocka the compensation has been effected by means of tho pendulum, so in watches it must have been effected by means of tho balance-spring or balance : ouch is the fact; but as there was no room here, and indeed ac analogous opportunity, for the introduction of mercury, the idea of connpensstion by virtue of the different degrees of expansion in different metals, as in the gridiron pendulum, was tho only one that remained to be entertained; and here also the ingenuity of human invention haa indeed triumphed; and the method of making compound balancea for watches has been juntly considered one of the most curious of our metalline manufactures. When completed, the compensation halance consists of a double or compound rim or ring, the outer part of which is of brasa, and the inner of steel, to which the liass is added while in a molten state. The opporite sides of this ring are united by a steel bar, the whole of the steel part, indeed, being filed out of ono picce of metal. One half of the ring is then cut or filed away at one side of the har, and the other half at tho other side, as represented in the figure last above given ; and the balance is loaded cither with small screwa, as in that figure, or with sliding weigits on each half of the ring, in order to regulate the rate of the chronometer or watch. The compensation, then, is thus effected: An increase of tempcrature diminishes the elastic force of the hair-spring, which would cause the machine to lose time: but the same degrec of heat expands the outer or brazen part of the ring of the balance more than it does the inner or stecl part-brass expanding more than atcel by heat, and contracting more by cold-and so, not being able to separate, a curvature of the whole arm of the ring in ucards ensuea, which lessens the inertia or checking weight of the balance; so that the hair-spring now requires iere force to influence it to the same degree as before; a d thus its loss of power ia rompensoted. On the other hand, cold increuses the clastic force of the hair-spring, which would cause the macline to gain time; but the brass contracting more than the steel, curves the arm outwards, and increases the inertia, or resistance of the balance, allowing the spring no more influence over it now than it had before. The serews ore turned in or out, or the place of the sliding weights adjusted, by experiments on the rate of the machine ; so that if an increase of temperature causes it to gain time, or a decrease to tose, the screws must be turned outwards, or the weignts moved farther from the ends ef the arms; if the contrary be the case, then of course the contrary changes must be mada
The compensation curl is another inst ument for cor
secting variations in the rate of going from vardations in comperature. It llmite or extend the length of nove. ment in the bulr-apring ltaclf, by a melf-moving action, also rauned by a diference in the effect of chnnge of temperature on tiw dilferent metala, and is called a curb, from the name of a amall piece of mechanism which operates almilarly on the balunce-apring in segulating a watch by hand.

OIHONOMETERA.

The term chronmeter is, properly apoaking, applicable to all time-keepera, but it is now more usuaily applied to marine time-keepern only, which are machines of a size between watchen and clocks. Some watchen, however, made like chronometers in every reapect but in aize, are ealled pocket chronemeters. But neither of theme are any thing else than merely auch time-keepers an combine all thowe cilief excellencies in horologieal invention just deacribed, including compenation balance, cylindrical apring, detached eacapement, \&c., ao as to conatitute the moat accurato timo-measurar ponaible ; the purpose of marine chronometern being to discover tha longitude at sea; for it is only necessary to ascertain the exact differenca in time between two places on different meridians, in order to determine their difference of longitude, or distance enatward or westward of cach other. Reverting to what has been already aad on this subject In the firat article of the present scries, the general reader will at once perceive that, ao soon as a time-keeper could be made that would keep time with perfect accuracy, such an inatrument, set to the time of any sea-port, for Instance, in Britain-whose precise meridian or longitude wan known-and carried abroad in a veseel sailing thence, would afford the means of ascertaining the longitude at sea, by simply observing the instant that the aun reached his meridisn there, when of course it would be mideday, or 12 oclock noon; and at the same time obmerving the difference between this time and that ahown by the time-kecper, which would necesaarily be differant If the longituda was different-the amount of the difference giving lim him longitude, on the calculation that 15 degrees east or weat make one hour of time, or 15 geographical miles one minute. If, for example, the timekeeper had been set to time at the meridian of Greenwich observatory (where, in fact, chronometers are now usually adjusted, and where a signal hoisted every day on the instant that 12 o'clock strikes, or rather on the instant that the sun arrives at the meridian there, proclaims the true time of day, on that meridian, to all the marinere in aight of it, that they may be able, without trouble or mistake, to adjust their chronometers accordingly], and if it was but il o'clock on the time-kceper thus set, whilo it was, of course, 12 o'clock or mid-lay at the time and place where the meridian was taken at eea, then that place mirst have been in longitude 15 degrees urest of the meridian of Greenwich; if, on the other hand, it was one o'elock instead of 11 at that moment, the longitude must have bean 15 degreen east, not west, of the meridian of Greenwich. By knowing nlso the time when any particulae star passed the meridian at Greenwieh, the mavigator, in a similar manner, could calculate his longitude by an observation of the same star at sea. Lunar chservations, eclipses, or any other of the celestial phenomena, might be mide use of on similar principles.

It was a clear perception of the fact, that the longitude might thus be at any time deteronined, could time-keepers be made to measure time with securacy, that led Sir Isaac Newton and others to recommend to government the ofler of a public reward for the accomplishment of so desirable sil object; and it was the hope of reaping the splendid rewart of $£ 20,000$, which government accordingly did offer, that formed the very main-spring to all those higiz excrtions of horolngical ingenuity which led to the mal success of Jolin Harrinon, afler an unwearied labour of forty yearg-a success which, in turn, resulted in the
present highly advanced atale of horology, the perfetion of which, an a moat acientific art, is perhaps only pand leled by the perfection of astronomy as a cognate scieme deeply imdehted to it, and indued to which it is as indiapes aable, in almost every reaject, to the prement condition eociety.

verful minta.

For the attainment of habitn of punciuality, for the regulation of the usual routine of buniness and of every day life, for the morning's timely aroumement, and the evening's nufficient rejose, and for other and innumerable purpowea of convenience, necemsity, and pleasure-muet In reality, often depends on the judicious selection of thme-kerper. And even the character of a young man has leeen known to be much influenced by the quality of his watch, the ponesamor of an sccurate time-lifeper le coming ambitious to emulate ite excellence, and thus gra dually acquiring loahite remarkable for punctuality. is therefore to be regretted-even thongh in many cas a very indifferent time-keeper may be thought all that is required for general purposes-thut no efficient hastrow tion can be given to the inexperienced, eapecially loward the selection of a watel, as none lut a workman powne ing the higheat knowledge of his art is capable of fors ing a correct opinion of its relative merits. The hime given by a skilful and practicul artiat himself, howevet who has had years of the most attentive and constan experience, cannot but he deemed invaluable; and is such, we would equecially recommend a popular lith volume, recently issued hy Messrs. Boone of New Bond Street, namely, "Thomson's 'Time and 'lime-K separ, for the uncful as well as pleasing nod interesting iastrue tion, to the inexperienced in horology, with which it is atored. A work mich as this is a novelty, openiag up the rather abstrume science of horology to the general reater much in the snme way in which the highly popuh works of Profeanor Nichol have opened up tho more abe lime and still more abstruse acienee of astronomy.

Among many valuable bints for the proper selectian of time-kecpers contained in Mr. Thomson's little voluma we shall take the liberty of hriefly instancing tho follow ing ; and first of clocks:-These, in genernl. mrasur time more accurately than watehea, especially eightle weight or long-rlocks, which ure also cheapeas and heavy pendulames sro to be preferreci. Tare ponios lum should orcupy the whole available length of th case, except in regulators, or in pendulums heatiry seconds. A light pridulum showa a clock to be badr constructed, or deficient in power. Steel rods are bete than hrass, well-seasoned and varnished wood than ated and compensation-roils than either. The clork shoule be steadily fixed to the wall, or firmly placed on the feet sufficiently far apart, so that the mechunism may uninfluenced by the oacillationa of the pendulum. Closis are regulated by lengthening the pendulum to make the lowo, and by ahortoning it to make them gain; this very gencrally done by turning a nut or serew beteto wright or bab of the pendulum, to the richt to gnin, 6 to the left to lose: or, if the serew in atnoe the weightith rule is reversed. Many French clocks, and a fow English onea, are liable to derangement in atriking, of less the hands are movad rapilly fow werd. The have of English clocks, in general, may loe turned either ne without injury, and the same with a watch, unless it he an alarm. An intelligent carcful man may be seff trusted with the rleanifg of repairing of dode while a diversity of talent nud experience is necessar! qualify him for the manipulation of watches. "T] possessor of a good picture would doubtless inquire is the ability of the artint before he intrusted him to relte it ; and this caution is equally necessary for a watch, many of the best conatruction have sustained inepan' injury from the hands of unakilful workmera Eveate
wochee (which are b the ald of loetter hus them" A clever art perform tolerably we denard every aecond plicated ones oftene they should the regul huyl an posible t ani deadily in the n um, thronserves. When nind he perfectly at re be placed on a moft mu aherwine the inotlor pendulous motinn of in time. Should a w Fom or not woris in whime; but the regu the ordinary temperat withes, if prouerly wen of a year or th worth of a watch. 1 A dupiex watch may may be very good, so priaciplo. Many eight or cren ten liol contly enes lanve but three shillings. "TI handsome exterior, th nes, are eflective hait onnmeat forms but a prices therelore will, tive qualities of the kown integrity and

Jixuany ned Feln to the lint of months Pomitilus, in the ye of the former month gol of the ycar of the firme day was and arlbtrated with rioton We Jearn from Ovild not spend the Kalce debauchery: ho wrou of luck throughout th

1. Cirrumisision.-A Aom abmit the year 4 ance $\mathrm{l} \mathrm{b}^{\star} 0$, in hono Tha pariks and public Gint day of the yent molera Christian wor eppronching or excere England, till a periex to usher in the year h Wasail 'ous, so calle (Be heallisy), the ton tom without the nain also customary on t? origially with the su fortuae for the year. promote grod neighth land accepted present
wethes (which are by fite the grentest number) require tha all of hetter homim than those whilla constructed wem." A clever artist may enuble even a bat watch to perform tolerably well. Wutches should ordinarily be desned every wecand or thicil year; maall, flat, or cumplicatel onea oftener. All repuire care in handing. They wonkl he regularly wouml an nemarly at the name bur an pos dhle: and whito treing wouml, should be held nesaly in the ninu, so as to have no rircular motion thenneives. When liung up let the watel have support, and be perfectly at rest ; or when lided horizontally, let it be placel on a soft nubstance for more general support, dherwine the inotion of the balance will degenerate a pendulous nutinus of the watch, cauming much variation fotime. Should a watch vary by heat or coll, as when worn or not worn in the porket, the hands may be set to time; but the regulator should not be altered, if net to the arlinary tempernture of tho meanon. Coinpensationmathes, if properly constructed, do not so vary. A trial ren of a year or two is no proof of the nuhstantial worth of a watch. Dealers themselves may be deceived. A dupex watch may he very bad, while a vertical one may be very good, no that workmanship is as important ${ }_{2}$ principle. Many low priced and bad watchea have eght ef even ten lholes jewolled, while many gooll and coatly ones have but four: a hole can be jewelled for three ehiltings. "The high mounding deacription, the handsone exterior, the offered trial, and enticing cheapness, are elfective buits to the shortosighted." External omment forms but a sinull item of expense, and the prices therefore will, in general, point out the comparabive qualities of the work in the shop of an artist of trown integrity and ability. The large thick old watch
in leas abaurd than some recently nadulitto nickur than half a crown for even much amaller, as in the latent and rareab novelty among the loautifi I and ithentous Geneveno svatchem, one of which recontly mecn at Geneva by one of the editors of the present meries of papers, was about the nine of a shilling]. The lever wateh in capa ble of great ancuracy, and is preforable to the vertical, though the prineiple of the latter is more generally un deratood and inore easily repaired; lever watchea, how ever, are aeither expenaiva to repalr nor liabie to derange ment. I'he horizontal or eyliselur-wateh is liable to greist tear and wear, hut performa with cousiderable accuracy. I'lu duplex watch, with a compensation balance, when woll coustructed, and treated with ordinary care, will keep time with the greateat accuracy, hut heing delicate, it does not stand violent exercise; a bad duplex watch is most expeusive to repair. 'Tlie detached watch, the escapunent of which is tha only one used in marine chronometern, is the mont perfect, but requirea care. Repeatera aro expensive to tepair an well as to purchase, but may be as uccurnte as others. Watches alrowing meconde are ofles useful, and, if woll mado, are neither expensive nor eusily deranged. A watch may be handmome, yet bad, but a good watch is seldom unslghtly. Tho spring for slatting the shells is not so good an the smap; it often allows dust to penetrate to the worke. The covers of hunting-watches will not protect the glass when the huntera are very flat. The extrene aceuracy of marine clironomotern ia purtly produced by their being kept constantly in a horizontal position. They are only required to show equal time; whether they gain or lope is of mo consequence, provided they are regular, and keep their known rate.

KEY TO THE CALENDAR.

JANUARY.

Jivesny and Fehruary are said to have been added to the liat of montia by the necond Romais king, Nuna Pompilius, in the year before Clirist 672. The name of the former month is ungueationably from Jnnus, the god of the year of the Roman rnythology, to whom the firat day was sacred, and in whose honour it was celebrated with riotous foastings and giviugs of presents. We learn from Ovid's Fasti, that a Roman workuan did oot apend the Kalends or Int of January entirely in debauchery: ho wrourht a little at his trade, for the sake of lack throughout the year.

1. Circumrision.-A festival of the Romish Church, ftom sbayt the year 487, and of the Church of England since 1,50 , in bonour of the circumeision of Clirist. The danks and public offires are shut on this day. As Gist day of the year, it is celebrated throughout the modern Christian world with fivtive rejoicings, too often epproaching or exceeding the bounds of propricty. In England, till a period aot very remute, it was customary to usher in the year by drinking spiced liquor from the Wasail 'oud, no called from the Anglo-Saxon Wires-huel (Be henithy), the tonst usid on the occasion. The custom without the name still exists in Scotland. It was abo customary on this day to give ond recejve gifts, enginally with the superstitious design of sccuring gook fortane for the yosar, and aflerwards for affection and to promete good neiglanorhood. Even the kings of Enghand accepted presents from their courtiers on this morn-
ing. The lat of January, uniler the name of Le dow de l'an, continues in France to be distinguinined by universal system of present-giving, in which the royal fanily partakes. It has been caculated that sweetmeata to the value of $£ 20,000$ are nold in Puris on this day.
2. The Epiphany, n festival in honour of the manifestation of the infint Jesus to the three wise men of the Enst, who came to worship him. It began to be celobrated in 813 . This continues to be observed as a featival in the English Church, and is marked by the shutting of many of the public oflices. The popular name for the festival is Turlfth Day, with reference to ita occurring twelve days nfter Christman. 'Twelfh Day, nud more particularly Twelth Night, are distinguished by joyful observances. It is n tradition of the Romish Church, that the three wise men were kings, und many sets of llames have been furnished for them, Caspar, Melebior, and Balthazar, heing the set best known: their remaine were said to have heen recovered in the fourth century by the empress IIclena, and the skulls are still shown, under circumstances of great pomp and ceremony, in the great church at Cologne. Perhaps it is owing to this iden of the regal rank of the svise men, that a cuasors lins existed from enrly ages throughout Nurope, of chousing a person to net as king on Epiphany. In England, this custom has blossomed out a little. Both a king atu queen were chosen. It was done hy placing beans in a large cake. The eake was divided among the company and whoever of the male sex got a bean was king, whoever of the fomale sex queen. Latterly, other charactera
anve been added, and theme were expressed on alipa of puper. 'The 'Twellth Night eake continuen to lve eaten by merry comjanies, and the characters of king, queen, dec, being drawn in that manner, are aupported amblat much jocularity till milnight. There is reamon to suppowe that the custion of choosing a king in alan connecterl with ancient heathen rites, an in Rome a king of the Ahturnalia was chem'n by beanm. Twelth eake in Eng. land in generally rovered with hurdened white sugur mil many lictle ornamenta, and its abundant appearance in the windown of hakerg and confectioners on thim day never faifm to arrest the attention of ntrangerp. In Ncotland, there is not the least trace of either A religioum or popular observance of Twelfth 1ay.
Till the reign of George III., It was cuntomary at court on T'welfh Night to hold a pulilic amembly for playing the game of basnet, in which the kling aul royal finnily wok part, the winningg being for the bencilt of the groom-portur, an oflicer who on thow dayw had an enpercial charge of the games of chance phayed in the palace, of which he acted an umpire.

The day after 'Twelfh Day was a popular ruatic feme 'fval, under the mork name of St. Disteift's or liock Day. (liock is the apprellation of a quantity of lint put upon a distafl:) It secum to have been a aort of farewell to the fectivities of Chriatman.
 mention that the Movahle Peanta and Holy-Days of H:" church are nenrly all regulated by Eanter-that in, mil long lefore or after Eianter. Eantes, the great fesioval of the church, is itwelf novible. According to canonlcal regulntions, Easter-lay is always the fiest Sunday after the full moon which happens ufon, or uext afler, the 2lat day of Mareh; and if the fill moon happerns upon - Sunday, Easter Nunday in the Numday after. 'I'he first of these inovalile feaves is Keptuagesimn Sunday, which occurs on Jamuary thth, when Easter Sumbay is on March 22d. In this place, we propese metting down the morable feast on the earlient days on which they ever necur; and Soptnagexima Sundiy is therefore put under dar:יary isth. All the rest will follow in order, as in the ca midar for a venr on which they oceur on the earliest possible day.] Quadragesionn is an ancient name of Lent, as menaing the forty day's fust. The first Shinday in Lent hence got the name of (Rualragesima. Farly in the meventh century, Pope (iregory appointed three Nundays of preparation for feent, and asmuming a decimal reckoning for comvenience, they ware renjectively talled, reckoning backwards, Quinquagesima, Noxagevina, and Scptuagevima.
21. Nt. Aynes's Day, a lentival of the church of Rome. The annala of canonization prevent no image of greater eweetness and purity than St. Agnes. Nhe is descrikel as a very young and spotless mail, who gutfered martyrdon in the tenth persecution under Diocterian, in the vear 306. A fow dhys nftor her denth, her parentes going t) make the olferiugs of at ${ }^{r}$ fin n ther tombl, twheld a vision of angels, anidat whicia me., if it daughter, with a snow-white lamb by her tha. . '"fore usina! reprewented with n lamh. ${ }^{\prime}$ l/, $\quad \therefore$, ter. Perhaps thim legend has bern prordy bumbid on the rememblance of the name A nnes to. Alume, Latin for a himh, for jingles of suund oftern lead to more important ithens in the midelo ages. At Rome, on St. Agnea's Day, during mass, and while the Agnow ist saying, two lambe, as white ans now, and covered with timery, ure lorought in and laid upon the altar. I'heir fleecea ure afterwarda shorn and converked into grallo, which are highly valued.
'l'hroughont the Christian world, and in England an much as elvewhere, it was custonary for young women, on St. Annes's Eve, to endenvour to divine who should one their husimnits. 'This wan called fusting St. Alyues's Fust. The propur rite was to take a row of. pins, and pull them out one afles another, aaying a pater-noster,
and sticking one pin in the sleeve. Then, soing to red without fool, their dreams were exprected to present the Irmage of the future humbund. In Keates's poem, entitled "The Eive of \&Nt. Agnes," the cuatom is thus alluded tole
'They told her how nywn Wi. Agnen' Five
Yibing vipgine im whi have viecons of deplegh,
And mon mokrnink from their loven recelve,
from the haratent midtle of the nylut,
If rerembompentun they did ariaht 1

Of heaven will upward wyye, hul pequife
Of heaven wilh ujward eyea fur all that they destre.
25.-Sexagraimis Sundily; cight weeks hefore Easter, Conuersion of St, Paul.- A fextival of the llominh and English churches, and, in l.ondon, a holilay at the pub lic officen, excepting the Excine, Stampen, and Custons The mpulace in former times thought this day prophotic as to the weathor of the year:-

$$
\begin{aligned}
& \text { If K1. Panl's day be fair ant clear, } \\
& \text { If dentimetide "haty yenpl } \\
& \text { If blnes, the is ndrado hlow alon, } \\
& \text { The } n \text { win will toutile our reitm fol on } \\
& \text { T1 } 1 \text {, } 2 .
\end{aligned}
$$

In Cecmany, when the day proved foul, the common propl. ney ' . ! rug the imagen of St. Paul and Nt. Urban in diagrace tu liuck them in the river.
'O. The Martyrdom of Kins Churles I-A haliday of the Einglish thurch, in whone behalf Charles is helf to heve low him lifr: olnerved by the clowing of all the public ollicen, except the Stampa, Fxciee, and Cuatoma i motion in the House of Commona in 1772, to repell in much of the act of 12'h Ctarlen II., cap. 30, as relates to tho ordering of tho 30th of Junuary to be kept as s alay of fasting and humiliation, was lowt by 12.5 againat 97. Tho sbeet in which the head of Charlen was receivel upon the acaffold, presenting large hack wtaing from hin blood, together with his wateh, are preserved at Ashbump ham Church in the county of Suswex, having been given at the time to his friend Lord Ashhurnham. The cap, of laced matin, which he wore on the acalfold, and whirt he directed to be rent to his friend the taiad of Carmichael in Ecotland, passed through the hande of that gentlenan's dencendante, the Barle of Myndford, and in now the property of Robert Logan, Eing., residang at Now Lanark.

Niturul Hishory-January, in our climate, is the coldent month of the year, on an nverage; for in some years Fobrnary and March are both colder. The stom of heat acquired in summer ia now completely dissipated. and the aun has not yet attained aufficient power to replace it. In the central parts of the Ishand of Great Britain, the general averace of the thermoneter this month is 37 degrees. Vegetation is nearly at a stand during January. Our ancestors thought it necessary that it should he a mevere nonth, for the aako of the rest of the ypas. 'I'him mode of julkong, however, is at confirmed hy modern experience ; lor a mild winter is nen followed by a warm nummer. A fow flowers, an the crocua, mezercon, and polyanthum, are vecusionally seen to blossom in the latter part of Junuary; and about the anme time (in England) the heolge-spmerow, thrush, and wren, begin to pipe:.

FEbruary.

The extablishment of Fohruary as the acoud month of the year by Numa Pompilan lisa alraady ben mentioned. According to Ovisl is bus "P"neti," a curions record of Roman customs, ath utyeces which were thought to have the effect of moral purgation in the religisas ceremonials of that people were called Fehrua, Ceremonials of this kinl took place at this seatno; heme the name of the month. The vanity of Augustus if aidid to huve been the cause of this month being so aud
birtened. The int Wave eontemplatal anth those of thinty. dayt; but when At and eniure that it and therefios save (T Pebruary, alreat ancerort cralled Fuh
\& the caliblge, still

1. (quinyu-gesimu adled alno Whimene $\$$ 2. Candlem is Dil) - Eetival of the Ch Eagliah Church. It Roman ritest is whit gathers of the Chure sttenlance of Mary bith, an comunumded tom on this day to anna the peopile, by processioll. 'The say Cheint in the 'Tempile the Gentilen, probabl the candle-lywing ju emal relizious prat Church male a pria drantage of the his consequenco of the e candle-beariag, it be caralles with thein w be charchrol. It was Conquetor referred it king of France. ' T ' weened too fat and "Hethinks the king -When I an chureh thessand lights in F^{\prime} r
Candlemas Day is apting tho Nt.omps, Grand Day in the two universities, and one of the three gre which atl legal and o
There is an ancion Europe, that if Catul is not half finished. peeps out of his hole now he walks alow draws back again int in Scothand fir achol money to their maste
2. St. B/nise's Int of a place in the cl bishop of Sebaste in A 316. He in the patro mal his name was ou throats, At IBrailforil of tho wool trade up brated extensively liy aill done in Ncotland name of the Canille name Blaise to hlaze practice.
Shrove Thesday,down, wo place Shir month of Feloruary. nent of Lent, it has throughaat Claristiat making of such an agned to impurt a in order to make the it is the concluting in various (Patholic

VoL. I.-UN
arrened. The irfangothint of Juhine Ciesar meemin to Gure eantermplaterl anl alternation of mentha of thirty moth thowe of thily 0 ome lays. Anguat wan one of thiry daga; butt when Augustus gave it his name, he couli gox noluce that it shoulid be one of the shorter class, and thesefore gave it an aihlitional lay, at the expense ${ }^{1} /$ Pebraary, alteuily one of that clans, Our Baxon evecian called Feblruary aprout kale, from the sprouting © the cable ige, mitl called kale in Scotland.

1. (2uinquargesima Swolly: neven weoka before Eainter: ajuel aloo Nhrove Sobiday.
2. Candlem is Day, of the Purifeation of the Virgin, a Rovival of the Choreh of Rome, and holiday in the Baglioh Church. It in auis to huve heen fouugled upon Roman riten low which cundles were carried, The carly fathers of tho Churech held it in commemoration of the atendance of Mary in the Temple, forty days after childbith, as commanded lyy the law; and it was their cuatom on this day to hilens enadles wand distribate them anong the prople. by whan they were carried in solems processlon. The say ing of Simeon respecting the infant Christ in the 'lromple, that he would loe a light to lighten the Geutiles, probably supphied an excuse fir adopting the eandle-buyring procesion of the heathen, whome exemai relisious practires the fommern of the Romiah Chureh nade a partice of buitating, in orter to take avantage of the hintites of the people. Appperently, in coasequenco of the celatration of Mary's purification by endle-learing, it bocumo customary for women to eurry andea with then when, after chilith! rth, ther winted to bechureher. It was to this custom that Williann the Conqueror efferrel in his finnous remark on a jest of the king of France. The hater, on hearing that William reened tou fir and univielity to take the firld, said, "Methinks the kins of England lies long in ehild-bed." "When I an churchel," maill Willian, "there will tue a thousand lighes in France," And bo made gookl his hoast.
Canillemas Day is a holiday at the publice ufices, exapting the Stomps, Exciser, and Cuntoms. It is called a Grand Day in the Inus of Court, a Goully Day at the two universities, und a Collar Day at Nt. James'm, heing one of the three great holidnya, during the terns, on which all legall aml olfivial husiness in suspended.
Thefe is an aucirnt superatitious notion, universul) in Eorape, that if Candlemas be a sunshiny day, the winter in out half finishect. The Germans say-The butger peeps out of his hole on thundlemas Day, and if he fiuls soow he walks abroad; if he sees the sun shining. the draws back again inta his bole. It is an ancient custum in Scotland for scholurx on this day to make presents of monay to their manters, and to enjoy it as a holiday.
3. St. Itraise's Daty.-St. Blaisc, who has the honuur of a place in the church of England calendar, was hishop of Sebatte in Arinenia, and suffered martyrdom in 316. Ho is the putrons sint of the crath of wooleombers and his numo was ouce considered potent in curing sore throats. At Ifralford there is still a septennial procession of the wool trade upon his diay. Formerly, it was celebested extensively hy tires lighted on hiths, and this is will done in Scothand ou the provious evening, under the name of the Caudlimas Mlaze, the resemblance of the amme Blaise to llaze having apparently suggested the pactice.
Shrove Tuesdaly.-Aceording to the phan already laid donn, we place Shrave Tuesulay upon this day of tho month of February. As the day before the commenceneat of Lent, it has been from an early ngo celebrated throughoat Christian Eutope by feasting and merryaaking of such an extravagant nature, as to appear derigaed to impart a disgnst with all such indulgenees, in order to make the sulbequaent mortifications leas folt, It in the courluding day of the time of Carnival, which in carious ('atholic countries is of greater or less extent,
luit celehratel with mont diatinetion at Vmire and Rome. Carnival in ohviousiy term from caro and valf, an meaning a farewell to fleah, this article of food heing unumed during the whole of lent. In thene two Italian citien, and partially in many otherm, the Carnival in diatinguished ly nhown maselueralen, racen, and a ver riety of other ansusementa. The people may be saill to live for meveral day" in public. T'he wealthier clanses papade ubout in thair carriagen, from which they pelt each other with amevetneatw. Whim and foily are colerated in their utanowt extent, mo that only there be nothing nnis or dene to burlomque ecclesinatical ilignitariem. In Germany, the masplueings and mumminga of the time of carnival, called there F'uschingy, are aaid to have given lirth to the ilramatic literature of the country.

The main tintinction of Shrove 'Tueaday, in the early timea of our own hitory, was the eating of pancakes maile with eggn n. 1 ware. The people lindulged in games at firpthall, of w weh there was generally much license; also in the bart. ns aport of liwowing nt oocks. In tho latter case, the anim. being tied by a shure otring to a peg, mon threw stick at it in maccewion, till an end wan put to itw mikeries and its life at onco. Cockfights were also common on this in, not emly amongat the runticn, hut at the publie nechools, the wnamers condescending to ruceive the deftomand and cock" as a parquinite. The fentive anll wrihful ebservancen of shrove 'Tuesday are now much mayed; but the eating of pars cakea or fritter still com. en.
4. Ash Wednesdlay, the wivat day i leent, a holiday of the Church of Englimas, obmerved b the closing of all the public offices, exceptinu f Slamps, Excise, and Customs. The falms or su atit obranchen, consecrated anil used on palm Nundas - une yenr, were kept till the present season of anot when thoy were burnt, and thoir ashen hiewerd 'y anta and aprinkled on the heails of the people: hew the name given to tha day. The sprinkling of asthes wo performed with many ceremonien and great dovotion. On this day, also, permona convicted of notorione sin $=$ - pat to open penance. In England it in etill a seagos the ayying of the "commination" in the prayer-bin by which the doers of certain kind of wickeduess nem unmad.
8. First Sundmy in Lent.-'Ihew Nedueslay, Fridny, and Saturday utter this Sumbay are ralled Einter Daya, and the week in which they occur mber Week. Bn Einber dhys, our forefithers ate no wrend but what was baken in a aimple and primitive faskien under hot ashes; luence the name. The other Enuler Dives of the year ate the Weducmlaya, Fridays, and Smaur yye afor the Feust of Pentecost, Holyroud Day (Sept. (4), and St. Lucia’s Day (Dec. 15).
14. St. Valentine's Disy,-St. Valentino was a priest of Rome, martyred in the third century, but he seems to have had no connection with the notions and practices to which his day has sinee been given up. Thia, it ia scarcely nccessury to suy, is a day thought to be ospecially devoted to the business of Cupid and Hymen. Possiliy, its being about the season when the birds cloose their mates is the caust. Antiquaries have also pointed out that the Luperculia, feasts of ancient Rome in honour of Pan and Juno, were held ut this time, and that amongst the ceremonies was a game in which young persons of the opposite sexes chose each other jocularly by lot.

St. Valentine's Day is now alinost overywhere a degenerated festival, the only observance of any note consinting in tho sending anonymous letters, by way of practical joko, and this coufined very much to the humhler clasaes. The appronels of the day is heraldod by the sppearanco in the printsellers' shop windows of vast numbers of missives calculated for use on this occasion, cach generally consistios of a aingle shect of paper on the first page of which is seen some ridiculous co.
VoL. 1.-9 ${ }^{1}$
loured carleature of the male or female figuro, with a fow burlegque verses below. More rarely, the print ia of a aentimental kind, such as a view of Hymen's altar, with a pair undergoing an initiation into wediled happiness before it, while Cupid flutters above, and hearta transfixed with his darta decorate the corners. These are paltry frivolities compared with the observances of St. Valentine'a day at no remote period. Ridiculous Jettera wero then anknown; and if letters of any kind were sent, they contained only a courteous profession of attachmer: from some young man to some young muiden, honied with a few compliments to her various perfections, and expressive of a hoje that his love might meet with return. But the true jroper cerimony of St . Vnlentine's Day was the drawing of a kind of lottery, followed by ceremonies not much unlike what is generally called the gamo of forfeits, Misson, a learned traveller of the carly part of the last century, gives apparently a correct afcomet of the principa! cemmonial of the day. "On the eve of st. Valentine's Day," he says, "the young folks in England and Scotland, hy a very ancient custom, celebrate a little festival. An equal number of maids and bachelors set together; cuch writes his or her true or some feigned name upon stparnte filleta, which they roll up, and draw by way of lots, the uratds taking the men's billets, and the men the naids'; so that each of the young men lights upon a girl that he calla his valentur, and each of the girls upon a young man whom she calls hers. By this means cach has two valentines; but the man sticks faster to the salentine that is fallen to him than to the valentine to whom lae is fallen. Fortune having thus divided the comprany into so many couples, the valcutines give bialls and treats to their mistresses, wear their billets several days upon their bosoms or sleeves, and this little sport often ends in love."

In the various jestit. x ceremonies of tho day, there alwaya seems to have been a disposition to believe that the person drawn as a valentine lad some considerable likelihood of trecoming the associate of the party in wedlock. At least, we may suppose that this idea would be gladly and easily arrived at, where the party so drawn way at all eligible from other considerations. 'The common people seem to have inagined that an influence was inherent in the day, which rendered in some degree binding the lot or chance by which any youth or maid was now led to fix attention on a person of the opposite sex. It owas supposed, for instance, that the first unnarried person of the other sex whom one met on St. Valentine's morning in walking abroad, was a destined wife or hubland.
15. Scrond Sunday in Lent.
22. Third Sunday in I.ent.
24. St. Matthits the . fuostle. - A festival of the Church of England. St. Mathias was chosen by lot after the Crucifixion, in place of the trator Judas (Acts j. 23).

Nitural Ilistory.-The propular voice allots a course of snow, rain, and their hylribl sleet, to this month, and considers it necessary that such should be its features, in order that all the powers of humidity may he exhausted before the commencement of Marrh, whon an opposite kind of weather is looked for. It is indeed true that frost followed by regular thaw, and that sheremed ly the sharp winds of March, hring the ground into the most favourable state for plowhing.

The general average of the thermometer is 39 degrees; that of daberent years varies from 34 to 42. 'The showdrop and erocus are the chief ornmments of our flowerborders at this season. 'I'te primrose will also flower, sud the heputioa come forth in sisme strength. In bingland, the raven and rouk huild their nesta; the louseplgeon has yoming; the ringlove coos, the gelafinch sings, snd thrushes pair. In seothanl, the notes of the unrush and blackbird give token of the approuch of erring.

marcy.

March, which with the ancients ranked the first mund of the year, was named in honour of Mars, the suppooed
father of the founder of Rome. Our Anglo-Sarpu father of the founder of Rome. Our Anglo-Saxon ancestors called it Lenct Monuth, that is, Lent ar Spring Month.

1. Mid Ient Sunday.--A holiday of the Churct of Ehgland. It was considered as incumbent upon all trao Christians on this day to pay a visit, if possib? ${ }^{3}$, to their mother church, or church of their mative parish, and there make some small offering. 'The epistle for the day accordingly contains an appropriate allusion. Hiern solyma muer ommium, Jerusalem the mother of all (Gial iv. 21). And it was customary on the sume day for people to visit their parents, carrying with them nomo gif, and receiving the parental blessing in return toge. ther with a mess of furmety-that is, a porridge camposed of whole grains of wheat, hoiled in milk, and swectened and spiced. This practice was culled "going a mothering," and the day was sometines called Mothering sumbluy. The festival is rupposed, with all its obe servinces, to have taken its rise in the hathen festival of the Hilariz, cejebrated by the ancicut lionans in hosour of the mother of the gods, on the ides of March.

Si. Darib's Day.-'The interest attached to this saint and his day is confined to the Welsh, whose gatron saint st. David is considered. 'I'le most rational accounts of St. David represent him as Archbishop of Denery (since, from him, called Nt. David's) in the sixth set. mory. He is said to have been the difegitimate son of a prince of Cardigan, and uncle of the fimous, hut mata than half fabulous, King Arthur. Learning, and maro particularly asceticism, the great sources of promotion in those days, raised him to high esterm and reclesiastio cal rank, and gave him the reputation of a puwer to pere form mirncles. At a synod called at Brevy in Cardigan, in 519, in consequence of the Pelagian Iloresy, he mado and eloguent und convincing display against the errone ous doetrines, which were therefore condemned. H_{8} died in 544, at an advaneed age, and was borted in the church of sil. Andrew, but in 962 his renains were transferred to (ilastonbury Abley.

While the Wolsh venerate the memory of St. David they are unacguainted with our iden of him as their patron saint, a notion which has sprung up in conse quence of the popular fiction of the Seven Champions of Christendom. 'They observe the lat of March as the anniversary of his death. On this day, all true Welshmen, whether in their own country or fir remased from it, make it a point of ronscieme to wear a leek in their hats, and this custom is alluded to in writings of considerable antiguity. How the leek has tecome rotr nected with St. David and the affertions of Welshmen, is not ascertained. The most proballe story is, that at a great battle hetween the Welsh and saxons in thg sixth eentury, the former, by advice of St. Javid, adonnd their hats with lecks, for the sake of distinction foom their enemies, taking the herb from a ucighbaring field, where they grew in ahondance. 'I'le victory gained by the Welsh ising parily attributed to this catue, tho leck was ever afler held in voneration, and associaldd with the nome of st. David. "The most honomatle and loyal society of Aneient hritons," inatinted in lare don 1714, and who support a school in the metropelias for the support and columation of pror Weish chidren, have an ammal procession on St. David's Day, un whah oceasion rach momber wemrs a reprocaintion of the leek in his hat, the marshals in front leiug decorated in like manner. In the houselolde expensers of the Prinecs Mary. in 1544, is a gift of filtion blillimas among the
yeomen of the kinn
grace on St . David 8. The Fifth S tinguished as Cure pear to the of a and yeomanry use then, and then, fr of them on the aft molikely that the superatitious notion epecting lrans, as The preas, as caten carlings. We ma from this word, car It figures in an oli dajs of Lent by po
"rid. M
Carling
The three first wor from the beginning Mi deus, Miscrere
15. Pulim Stents the Sunday next Passim Sunday, as Weck, or the week wion of our Joord. a partly joyous cha rating the brillinut reception which C immediately before thlic eountries, th at some other tree in memury of those into the holy city. cumstances will adn nsed are burnt, and be laid on the heal with the priest's ble
After the Refor the carrying of pral aremonits not to 1 tom was kejt up b VI., when it was le pople. Fuller, wh of it respereftully, Christ into Llicrusa we may have the hearts." It has co not to the present of Eaglind to go a sumday ; that is, yo of wthow, which se in England as a su count it oftell rece with slips in their their mouths, bearit nany years agn, market supplied the Wham, perhaps, scan the willow, with it some rural prish el
17. s'. P'thrik's Church. 'The inter is licwerer, chichty saint he is comside ef St. Dasid, is of Irish venerate St. 1 Christianity into the born a: Kilpatrick, have first isvited Ire wards traw lling int a learned priest, he
first m.nuth he supposed Saxon anat or Spring pon all trua ithe, to theis parish, and istle for the ision. Hiern rof all (Galh the day for them sone return toge orridgo com1 nuilk, suld alled " going illed Motherh all its ob. then festival Romans in the ides of
to this saint patron saint accounts of of Menesy c sixth eflrate son of a as, hut mare g. and more of promotion id ecclesiastip rower to per. in Csrdigan, rsy, he mado the erroneemued, Ha miried in the enains wen

of St. David

 him as their 1p in conse Championa of March as lay, all true fir removed ear a leek in writings of become corWelsbmen, ry is, that at xons in the avid, adornd inction fion nighborman ictory gained is cause, the ad associaled thomounde uterd in Iapr te meetropais ish chiluren, ay, on which ntion of the decorated io the Princis $\$$ among theyeomen of the king's guard for bringing a leek to her grace on St. David's Dsy.
8. The Fifth Sunday in Lent.-It was populnrly distinguished as Cure or Carling Sunday, ternns which appear to le of a very dubious import. The peasantry and yeomanry used to steep pens and afterwards parch then, and then, frying them with butter, made a feast of them on the afternoon of this day. It is thought not anlikely that the custom bore some reference to the supersitious notions which the ancients entertained respecting heans, as containing the souls of tho departed The peas, as eaten in the north of England, were eatled carlinge. We may presume that the day took its name from this word, carling being in timo softened into Care. It figures in an old rhyme which enumerates the Sundsys of Lent by popular appellations-
"Tith, Mid, and Misers.
Carling, Patia, and good Pace-day."
Tho three first words are supposed to have been derived from the beginnings of certuin psalms-thus, $T \mathrm{c}$ deum, Mi deus, Ahscrere mei.
15. Pulm Studay, called in the English Prayer-book the Sunday next before Easter; also sometimes called Pession Sunday, as being the commencement of Passion Week, or the week eelebrative of the sufferinga or passion of our Lord. It is a festival of grent antiquity nnd a partly joyous charicter, as more particuhrly commemorating the brillinnt though short-lived pepnlarity of tho reception which Christ met with on entering Jerusalem, immedtately before his passion. On this day, in Cathalie countries, the priests bless branches of palm, or or some other tree, which are then carried in procession, in menory of those strowed before Christ at his entrance into the holy city. The procession is as splendil ns eircunstances will admit of: and after it is done, the boughs nsed are burnt, and their ashes preserved, that they may be laid on the heads of the people next Ash Weduesdny, with the priest's blessing.
After the Reformation, 1536, Henry VIII, declared the earrying of paims on this day to be ono of those aremonies not to be contemned or dropped. The enston was kept up by the clergy till the reign of Edward VI., when it was left to the voluntary observance of the papte. Fuller, who wrote in the ensuing age, speaks of it respectlully, as "in memory of the receiving of Christ into Jlierusalem a little before his death, und that wo may have the same desire to receive him into our hearts." It has continued down to a recent perion, if not to the present day, to be customary in many parts of Englanal to go ar mhining on the Saturday before Patm Suntay; wat is, young persons go to the woods for slips of Whlow, which seems to bo the tree chiefly employed in Eugland as a sulatitute for the palm, on which account it olten receives the latter name. They return wihh slips in their hats or button-holes, or a sprig in their mouths, boaring the branches in their hands. Not nany years agn, one atall-womm in Covent-Garden market supplied tho article to a few costomers, many of whon, prerhaps, scarcely knew what it mennt. Slips of the willow, with its velvety buds, nre still stuck up in some rural parish churches in Eugtand.
17. S'. Patrik's Day, a high festival of the Romish Cburch. The interest attached to this saint and his d.y is, bewerer, chiclly confined (1) the Irish, whose patron saint he is considered; though that term, as in the case of St. Dasid, is of menlorn and Euglish origin. The Irish venerate St. latrick as the person who introndiced Christianity into their country. Ho is said to have heen horn at Kilpatrick, wear Dunhartom in Seothand, fund to have first wisited Irelind as a boy and a prisomer. AfterWards travelling into (iaul und lady, und growing op an slearned priest, he was commissioned by Pope Celestine
to convert the Irish, a tnsk which he immediately com menced, and carried into effect with unexnmpled ardour and perseverance. He travelled throughout the whole of Ireland, preaching everywhere to the barbarous people, whom he baptized in multitudes. He also ordained clergy to presido over them, gave alms to the poor, mado presents to the kings, founded monasteries, and, in short, established the Christian religion and a full apparatus for its support in Ireland. Monkish annsls and popular tradition sttributo to him an iminense number of miracles, most of which have probably no basim in fact. He died in 432, at Down in Ulster, and was there buried.

As the Welsh are solicitons to display tho leek on St David's Day, so are the Irish to show the shamoock on that of St. Patrick. The shamrock is n bunch of trefoil, a species of grass. It is associnted with St. Pstrick and his day in consequence, as popular story goes, of the saint having made a very adroit use of the plant in his first preaehing immedintely alter landing. The people being staggered by the doctrine of the Trinity, and disposed to show somo violence to him, he took up a tre* foil growing by his side, and illustrated the point by showing its three blades growing on one witk; wheroupon they were immedintely convinced, 1. : yeame converts. In Dublin, St. Patrick's Day is, or was lately, a sceno of festivity and mirth unparalleled. "From the highest to the lowest, nll seem inspired by the saint's beneficence.. At day-break, flags fly from the steeples, and the bella ring out incessant jeals till midnight. The rieh bestow their benevolence on the poor, and the poor lestow their blessings on the rich, on each other, and on the blessed St. Patrick. 'The 'green immortal' she 3 rock is in every hat. Sports of manly exercise, exhibit the capabilities of the eclebrated shilelah. Priestly care soothes querulousness; lnughter Irowns casualty ; lassee dance with lids; old women run about to share cups of consolation with each other: and by the union of wit, humour, and frolic, this miraculous day is prolonged till after the dawn of next morning," "
19. Maundy Thursday, called also Shere Thursday, the day before Good Friday. Its name of Shere Thurs day appenrs to have arisen from the practiee which the priests had of shearing their hnir on this day, to make themselves as trim ns possible for Easter. The other name is more doubtful, but seems most probably to have been derived from maunt, an old English word for a basket, in consequence of the distribution of gifts on this day in baskets- the word manndy used by old authors for alms or gifts being apparently derived in its turn from the practice of this day. The religious customs of the day consisted in works of humility and in conferring gifts on the poor. The olgeet seens to have been to commemorate, or imitate, the humility of Christ in washing the feet of his disciples-the giving of maundies being an additional good work. Cardinal Wolsey, at Peterborough Alhey, in 1530, "made his maund in our lady's chapel, having fifty-nine poor mell whose feet he wamed and kissed; and after he had wiped them, he gave every of the said joor men twelve penee in money three ells of good canvas to make them shirts, a pair of now shoes, a cast of red herrings, anill three white herrings; and one of these hat two shillings"-the numher of the poor men heing pobhally in corraspondence with the years of his age. Even royalty comadescended to this practice. The king of Eingland was uecustomed on Maundy Thursday to have brousht lofore him as many poor men as he was yoars shl, whose fect he washod with his own hamds, after which his majesty's mannds, consisting of meat, clothes, mul money, were distributed nmong then. Queen Elizabeth, when in her

- Itone's Every-day thook.
thirty ninth year, performed this ceremony at her palace of Greenwich, on which occasion ahe was attended by thirty-nino ladies and gontlewomen. Thirty-nine poor persons heing assembled, their feet were firat washed by the yeomen of the laundry with warm water and aweet herha, afterwarda by the sub-almoner, and finally hy the queen herself, knecling; these various persons, the yeomen, the sub-alinoner, and the queen, after washing each foot, marked it with tho sign of the croas above the tocs, and then kissed it. Cloths, victuala, and money, were then distributed. This atrange ceromonial, in whicll the highest waa for a moment brought beneath the lowest, was last performed in ita full extent by James II. King William left tho waahing to his almoner; and such was the arrangement for many yeara afterwarda. "Thursday, April 15, [1731], being Maundy Thursday, there was distributed at the Bnnqueting House, Whitehall, to forty-ight poor men and fortyenght poor women (the king [George II.]'s age being forty-eight), boiled beef and ahouldera of mutton, and amall bowla of ale, which is called dinner ; after that large wooden platters of fish and loaves, viz. undressed, one large old ling, and ono large dried cod; twelve red herrings and twelve white herrings, and four half-quarter loaves. Each person had one plater of this provision; after which were distributed to then shoos, stockings, linen and woollen eloth, and leathern bags, with one penny, twopenny, threepenny, and fourpenny pieces of silver and shillings-to each about four pounds in value. His Grace the Lord Archbistion of York, Lard High Almoner, performed the snnual ceremony of washing the feet of a certain number of poor in the Royal Chapel, Whitelatl, which wha fornerly done by the kinch themselves, in imitation of our Saviour's pattern of humility." For a considerable number of yoars, the washing of the feet han been entirely given ap; and since the beginning of the reign of Queen Vieteria, an ndilitional sum of money has been given in lieu of provisions.

20. Good Fridiy.-This day, as the preaumed anniversary of the Crucitixion, las for ages been solemuly observed throuphout Christian Europe, the only exceptions being in Prestyturian countries, such as Scotlond. In Catholic times, the observanees of the day in England were of the same character with those which are still maintained in many parts of the continent. It is still a solemn festival of the Chureh of England, and the only one hesides Christmas which is honoured by a general nuspension of business. Striet church-of-England people ahatain from all kind of animal food, even from crean to tea; such, we ure informed by Boswell, was the custom of Dr. Johnson. The churches are well attended, and it is considered proper to appear there in black clothes.
Among the nages of this dny wns a strange ceremony of creeping to the cross, which even the king was not exempt from performing. The king also distributed ringe at Westminster Abluey for the cure of the crandp. The ceremonions borying of a ctucifix, as representing the burial of Clarist, is caleulated to give less sur It is atill in sonar measure kept up in the service of the Tenebre, performed in St. Peter's at Rome. It was also customary at grent churches to have a small luiding in the form of a tonib, in whirh the host was this day depasited, by way of representing the hurial of Christ. In England, and prrhaps also in other countries, erge nud bacon were the kinds of food appropriate to Good Friday. 'The eggs lain on this day were thought to have the power of extingai-bing nuy fire into which they might be thrown. lu modern times, the only species of vands conneted with the day is the well-known hot crose bun, a small spiced cake, marked with the figure of a crows, and sold not ouly in lanker's dhops, but by persons traverving the streets with baskets.
Lu Luadon, us well as in almost every other consider-
allo town in England, the first aound heard on the morn. ing of Good Friday is the ery of "Hot Crosa Bunal" uttered by great numbers of people of an humble order, who parade tho strects with baskets containing a plep, tiful atock of the article, wrapped up in finmel and linen to keep it warm. The cry, which ia rather musical, io atrictly-

Hot conss buis-
Oice
Onc a peemy, buns-1wo a penny, buns
One a penny, wo a penny-hot cross buis.
Hucksters of all kinds, and many persons who attempl no tratic at any other timo, enter into the business of aupplying buns on Good Friday morning. 'They mako a atir on the streets, which lasts till chureh time, and it is resumed in the afternoon. About a century hgo, there was a baker'a shop at Chelsen, so famous for its manufacture of excellent buns that crowds of waiting customers clustered under ita porch during a great part of the day. The huns wero lrought up from the oven on small black tin trays, and so given out to the people. The king himself had stopped at the door to purchase hot cross buns, and hence the shop took the name of the Royal Bun-House. As always happene in London when any thing original and auceessful is atruck out, tha royal bun-house soon obtained a rival, nud was obliged to adyertise as the Old Original Royal Bun-house. The wars of theso two houses, like those of York ond Lancaster, have long since been huahed to rest, nad we find it stated in a recent work* that neither of them is now distinguished for this article above the other bakers' ohops of Chelsea.
In old tines, Good Friday was distinguished in L_{n} m don by a serion preached at Paul's C'ross (a wooden pulpit placed on stone steps, and surmounted ly a cross, which stood till the time of the civil wat, in the open air, near the north-east corner of St. Paul's Cathedral), 'The sermon was generally on the subject of Christ' passion. Connected with it, two or three others were preached on Monday, Tuesday, and Wednesday, in Easter week, at the spital in Spitalfields, where the Lord Mayor and all the most cmincut persons in london go nerally attended. The "Spital sermons" are still kept up, but take place in St. Bride's Church.
21. Easter Eve,-In Catholic times, it was customary to put out all fires on this day, and light them anrw from thint. The priest blessed the new fire, nal a braml from it was thought to be an effictual protection against thun-der-strokes. A latge wax taper, called the Paschal Taper, was aloo blessed and lighted beside the representatise sepulchro above-mentioned, and there a vigil was kept till morning. The taper used on one of these occasions in Westminster Abley church was 3100 pounds ia weight.
22. Easter Day, a solemn festivnl in celdhration of the Resurrection. The word used hy us is from the saxon oster (rising). Faster is observal with much ceremonial, not only throughout Catholic Europe, and ia the countrien where the Greek Church is rstublished, but in 'Turkey and the Mohnmmedan countries ar ng the const of Africn. The featival is an chgraftment upon the J'wish Passover, the name of whirh (pusehq) is still applied to it in almost every country besides Eugland The Catholic ohservances of Easter are of nu chaborate character. At Rome, the Pope is curricd in state to perform high mass in St. Peter's, from the halcony of whech he afterwards bensies the prople ansembled it the piazas below-perhaps one of the most imposing rctipious ppectacles which the world nuywhere prescouts. In Einglanh, lofore the Refirmation, the Catholic olservances of Easter were as fully macted an in any other country. Early in the monning, a sort of thratrical repres'ntation of the Resurrection was jerformed in the churches, t.

- Hone's Every day Book, i. 404.
priests coning t Friday, thoy had brought forth wit the rising of the the elergy had a of which it is n bave existed.
At pressnt, in day Is distinguish of the service, an tire es gay as pos exist a few vestig neeted with the d probahly still is on Enster mornit tely after his risi the fellds to see th
The viands app were, first and nh ding, and hread ar tion of egga with antiquity. They England. There quantity, and to gi ing, "Jesus Chris * Yes, he is risen,' formerly blessed et Christiar world fu instead of the egg with some lines in land had humitreds a roll of the expen accounts of Easter his reign, "Four h pence." The cust Jewish.
At this day, the boiled harl in wate out coloured. Th kind of gnme, eitl on the green awn breaking his eggs against cach other case the owner of t the day.
It was customar dy, and to eat it of Jutaism. The into Easter feasts, by the Jews ut the well sugared.
It was a custom aclesiastics found Pentecost, and ina moncy. This was tles after Christ's 1 whe a relic of this marious parts of E, airrond, and whate of her, and pull off to her upon her anm, it is done by a:cost her with, The trilling sums fest at nircht. of apurs, travellers of thase articlos, tetcem. On East by going abroad in deem their shoes.
"Lifting at East af presiuned to ha bizing the events wisisted in hoisting
priests coming to the little sepulchre where, on Good Friday, they had deposited the host, which they now bronght forth with great rejoicings, as emblematical of the rising of the Savieur. In the course of the day, the clergy had a game at ball in the church, a custom af which it is now difficult to believe that it ever could have existel.
At present, in large seats of population, Easter Sunday is distinguished by little besides the few peculiarities of tha service, and the custom of going to church in attire as gay as possible. But in rural districts there still exist a few vestiges of old superstitions and custons conpected with the day. It waa once a general belief, and prabably still is so in a few out-of-the-way places, that on Easter morning the sun danced or played inmedistely after his rising. Pcople rose carly and went into the fields to see this suppesed phenomenon.

The viands appropriate to Easter Day in the old times were, first and nbove all, eggs, then bacon, tansey pudding, and bread and cheese. 'I'he origin of the connection of eggs with Faster is lost in the mists of remote satiquity. They are as rife at this day in Russin as in England. There it is customary to go about with a quantity, and to give one to ench frimd one meets, saying, "Jesus Christ is risen," to which the other replies, *Yes, he is risen," or, "It is so of a truth." The Pope formerly llessed eggs to be distributed thronghout the Christiar world for use on Easter day. In Germany, instead of the egg itself, the people offer a print of it, with some lines inscribed. Formerly, the king of Encland had hondreds prepared to give to his household: in a roll of the expenses of Edward J., there ofeurs, in the accounts of Easter Sunday, in the eighteenth year of bis reign, "Four hundred and a half of eggs, cighteenpence." The custom is supposed to have been originally Jewish.
At this day, the Easter eggs used in Englantl are boiled hard in water containing a dye, so that they come out coloured. The boys take these eggs and make a kind of game, either by throwing them to a distance on the green sward-he who throws oftenest without breaking his eggs being the victor-or hitting them ayainst each other in their respective hands, in which case the owner of the hardiest or last surviving egg gains the day.
It was customary to have a gammon of bacon on this day, and to eat it all up, in signification of ahhorrence of Julaisin. 'The tansey seems to have heen introduced into Easter feasts, as a successor to the bitter herbs used by the Jews at the Passover. It was usually presented well sugared.
It was a custom in the thirteenth century to aeize all aclesiastics found walking abroad between Easter and Pentecost, and make them purchase their liberty with moner. 'This was an acting of the seizure of the apostles after Christ's passion. We have still what appears whe a relic of this fashion in a eustom which exists in vanious parts of England. A band of young men go abroad, and whatwer female they meet they take hold of her, sud pull off her shoes, which are only returned to ber upon her paying some trifling forfit. In Duraun, it is done by boys, who, on merting any woman, a:cost her with, "Pay for your shoes, if you please." The trilling sums which they thus collect are spent in a frast at night. At Ripon, celelorated for its manufncture of spurs trawillers riding through the town are stripped of thase articles, which in like mamer they have to releca. On Easter Monday, the women make a return by going abroad in groups, and causing the men to redeem their shons.
"Lifting at Easter" is nnother old custom, which may of presumed to have originated in a design of dramatizing the events comeneted with Christ's passion. It comisted in hoisting individuals up into the air, either in
a chair or otherwise, until they relieved themselves by a forfeit. A curious record makes us aware that, on Eas ter Day, in the eighteenth year of the reign of Edward I., seven ladies of the queen's household went into the king's chamber, and lif/ed him, for which fourteen pounde appears to have been disbursed as a forfeit. The men lifted the women on Easter Monlay, nad the women claimed the privilege of lifting the men on the ensuing day. Three hoists were always given, attended by loud huzzas.
23. Easter Monday.-This and the ensuing day are helidnys ot the church. The week commencing with Easter, and called thence Easter week, is a season of festivity, and the earlier days of it after Faster itself, are in London devoted by the working-classes to recreation and amusement, which they chicfly seek for at Greenwich fair, and in excursions to taverns near town.
25. The Anmunciation of our Ludy, a festival of the Church of England. It is commonly ealled in England Lady Day, as an nbridgment of the Day of our Blessed Lady. This festival is in celebtation of the inearnation of Christ, or the announcement by the Holy Ghost to Mary that she should bear the Son of God. The Annunciation is observed as a holiday at nll the public offices, excepting the Stomps, Excise, and Customs I is a gaudy day in the Romish Church. In Catholic countries, the service of this day resounds with "Heil, Mary !" uttered in n stroin of the highest enthosiams The 25th of March is held as a quarter-day for many commercial purposes in England.
29. The first Sunday nfter Easter, called Low Sumday, because it is Easter dry repented, with the churchservice somewhat abridged or louered in the ceremony from the pomp of the festival the Sunday before.

Natural History.-March is eminently a spring month, and the senson more particularly devoted to sowing. It general character, as far as the extreme uncertainty of our clinate warronts us to speak, is dryness. The frosta of winter. followed by the sharp dry winds of this month. have the eflect of pulverizing the soil, and fitting it for the reception of the seed. The value of the weather appropriate to March is expressed in the saying, "A peck of March dust is worth a king's ransorn." This month is also expected to undergo a ehange hetween its beginning and its end. The English say, "March comes in like a lion, and goes out like a lamb;" the Scotch version of the same idea is, "March comes in with an adder's head, and goes out with a peacock's tail." The general average temperature of Mareh (41 degrees) is so little above that of February, as to make the grester dryness nppear to arise in but a small degrec from heat There is in March a general bursting of the trees into leaf, of the meadows into flower, and partly, if may be added, of the birds into song. It is the season for planting garilens as well as sowing the fields, although there are few which may not he deferred for a little longer without disalvantage.

APRIL.

The Romans gave this month the name of Aprilis, from aperio, because it was the season when things opened. By the Saxons it was called Ostre month, probably from the same word from which Easter is supposed to have been derived. The Dutch and Germans call it Grm month.

1. All Forl's Day,-From a very early nge, this day has been considered as one set apart for the exercise of all kinds of mirthful folly and practical joking: the term given to it we may hold as a travestic of the festival of All s,ants' Day. The custom of playing off little tricks on this day, whereby ridienle may he fixed upon unguarded individuals, appears to be universal throngh-
$3 U$
out Europe. In France, one thus imposed upon is called Un poisson d'Avril (an April fish). In England, such a person ia called an April fool; in Scotland, a gowk. Gowk is the Scotch for the cuekoo, and also siguifies a frolish person, being in fact from the same root with the Engush word gawky. The fuvourite jeat in Britain is to send one upon an errand for something grossly nonsensieal, as for pigeon's milk, or the history of Adam's grandfither, or to make appointments which are not to be kept, or to call to a passer-ly that his latchet is unloosed, or that there is a spot of mud upon his face. When he fulls into the snare, the term April fool or gowk is applied with a shout of laughter. It is very remarkable that the Himdoos practise precisely similar tricka on the 31st of March, when they have what is called the Huli festival.
i Tho fifternth day ufter Enster is marked by an old Engtish festival, to which the inexplicable term Hork Day is applied. The custom peculiar to the day consisted in the men sud women of rural districts going out the road with ropes, and intercepting passengers jocularly, and raising money from them, to be bestowed, it may well be presumed, in pious uses.
2. St. Grorge's Day in the Romish calendar. St. George is held as the tutelar or patron saint of England. He is said to havo been a native of Cappadocia; and it is tolerably certain that he was held in great veneration by the Grecks in the fourth rentury. Throughont the countries once cunstituting the Loover Empire, in the Crimea, and in Tartary, he las for nges been worshipped, in tho former cepmeries, ns a saint, in the latter as a deity. By all he is invarially represented as a man on horseback, spearing a dragon. With a regard, apparently, to his military character, our Edward III. adopted his name 4s his war-cry, and his figure as a badgo in connection with the order of the garter; thuy originated the association of St. George with Englanel, since in many respects on conspicuous. It is renarkable that in Russia st. George is as murha a favourite saint as be is in England. The sovereigns of that country have borne his enblem from a time previous to Edward III. The derivation of Russian Christianity from the Greck Church suggests a ready explanation of this fact. The Euglieh do not mark the day of their national saint with any of those olnervances which give St. Ditvid's and St. Patrick's days so peculiar a character; but it was cuatomary at no distant period for people of fashion to wear a bluc coat on this day, in honour of St. George.
3. S. . Mark the Erangrist's Day, a boliday of the Church of England. It was once customary to bless the fruits of the earth on this day; hence, perhaps, a notion amongst the peasantry, that to plough or do any other work on St. Mark's day will lee apt to bring down divine wrath. The eve of SI. Mark was distinguished by some superstitious ecremonies. Maidens met to make the dumb calk. This was done by a number not exceeding three, and it was to be done in ailence. At twelve o'clock, the cake being prepared, each broke off a piece nut ate it; then walked backwards to her sleep-Ing-rom. It was thought that those who wete to be married would hear a noise ns of a man appronching. Those who heard nuthing were to remain unmarried. Watching the church porch was another practice of this eve. A man went fasting and took his station there before midnight. It was thought that, during the hour between twelve and one, he would see the spirits of all who were to die in the farish during the ensuing year walk into church, in the order in which they were to dire, those who were to perishl ly violence making gestirulations appropriate to the preuliar modes of their death. There were similar superstitions regarding the eve of st. Johr (June 24); which see.
4. Cocra iun Nunday.-'The Sunday before Ascension to always no called. The thice days immediately follow-
ing are alao called Rogation Daya. The Archuisaop ur Vienne in Dauphiné, about the yesr 469, caused the litanies or supplications to be said on those days for los liverance from earthquakes, by which his eity had been much injured. The days were thence called Rogation (that is, supplication) days. They were distinguished by great processions of ecclesiastics throughout the bound of their districta.
5. Ascension Day, or Holy Thurshay, a hoiiday of the Church of England, observed by the shutting of most of the public oflices. This festival, which invaris bly occurs on the fortieth day nfter Easter, is designed is celebrato the nacension of Christ into hraven It was once distinguished by greut festivities. On this day, aloo, there was a custom of the purish sclooolmaster going with his pupils round the bounds of the parish, the pupils carrying peeled willow wands wherewith they struck the boundaries. This was an expedient for keeping thase boundaries in memory, in an nge when more accurate menne of attaining the same end did not exist.

Natural History.-Mild weather, with genial showers, is the character usuatly given to April; bul in modern times, the wenther is often the reverse of this, being dry, with cold winds. On the average, ituleed, there is more north wind and less rain this month than in nuy other. Tho progressive advance of temperature from winter towards summer is very apparent this munth, the general nvernge height of the thermometer leing 46 degrees, This month is the usual seed-time for larley. In the gardens it is the lusiest time of the year for secd-sowing.

may.

Among the Romans, this was the mensis muianum, or month dedicated to the elder persons of their conmanity, while the next was the mensis juniorum, or month of the younger people. Thus, most probably, arose the names of May and June. Others suppose that May would derive its name from Maia, the mother of Mercury, who was worshipped on the first day; but it is not impossible that Maia nad her day were afterthoughts, when the real origin of the name of May was out of mind. The Saxons are said to hnve given this month the strange looking name of Trimilehi, because they then begen w milk their cowa three times a day. The Remana bo lieved it to be unlucky to marry in May.

1. St. Philip and St. Jomes the Less, n holitay of the

 Church of England.As a popular festival, under the name of May Day, this day has been eclebrated from time immemorial. The celebration must, doubtless, have bern prompted by nature herself: the time of the young llower and leaf, and of alf the promise which August fultils, could nat but impress the minds of the simplest people, und dispose them to joyful demonstationa in word and net. Tha sun, ne the immeliate author of the glorica of the season, was now worshipped by the Celtic nations under the name of Baal; hence the featival of teltrin, still fainty observed in Ireland and the Hichlands of Sootsand. Even in Ayrahire, they kindled Daal's fire in the evening of May-day, till alout the ycar 1790. The Romsas held games called Flornlin, at which there was great display of flowers, and where women danced, if we are to believe Juvenal, only too enthusiastically. The May: day jollities of modern Europe seem to be directly de scended from the Floralia.

In Englame, we have to go buck a couple of hundred yesrs for the complete May-day ; since then it has gro. dually declined, nud now it is almost axtinct. When it was fially observed, the business of the day lugun with the day itself, that is to say, at midnight. We have hss authority of Shakspeare, that with the populace of Eng land it was impusithle to sleep on May nurning. In mediately afuer twelve lad struch, tilev wero all asir
mahing each the nallas hour on the buppy new year. and the blowing o where they employ gathering branche carly hour, and pla light the wholo vill rens of London we tanding their com went marshulled in parishes; their may real of Heary VII (freenwich to Shoot n joiu in tho sport: boma a garland sum danced. In others, there was an estall it was their busines and dance around day. A May-pole Gify tons, painted w and properly tixed Iads and lasses dunc sounds of a viol, nn Little John, Maid Shecorod company performed their still kending to encoura denued by the Puri eupported them in gether suppressed du but got up again a manuers has done tI conld net do. Th national poetical lite land.
A certain supersti The dew of that mo of the highest effic women, who ate nev spect, used to go alir tis dav there is a re ing to Arthur's Seat, mashing their faces diary, gravely tells u a litide air, and to gat hath taught her is 1 leer face with." Scot speaks of a spriz of bung in the entry to szanst all maliyn inf oi making fools on: the first of the prec callad May-roosings. May, a notion whic anong the Romans. very few marriages ta being equally supersti
In London, as has much olserverd is it wote enexcral May-pol one near the byitom which, rather oddly, for a large telescope a of the Royal Sixcicty. list conspichous at le dress themselues in 1 conne in bands with tio by a strange-luoking plates, riblons, and upon his head, or by wis called their karl tra also made this a 1
whang euch ther a merry May, as they still, at the wuae hour on the lst of January, wish each other a happy new year. They then went forth, with music and the blowing of horns, to some neighbouring wood, where they employed themselves in breaking down and gathering branches I'hese they brought back at an eally hour, and planted over their doors, so that by daylight the whole village looked quito a bower. The citirens of I ondon went a-Maying in this fashion, notwitlysanding their comparative distance from woolls. They went marshalled in parishes, or in unions of two or three parishes; their mayor and aldermen went also; and wo read of Heary VIII, and Queen Catherine riding from (irenwich to Shooter's Hill, attended by lords and ladies, to join in tho sport: In some places, the Mayors brought bome a garland suspended from a pole, round which they daneed. In others, and this was a more general custom, there was an established May-polo for the village, which it was their business to dress up with flowers and flaga, and dance around throughout all the latter part of the day. A May-pole was as tall ns the mast of a sloop of Gity tons, painted with spiral stripes of black and white, and properly tixed in a frame to keep it erect. Here lads and lasses danced in a joyful ring for hours to the mounds of a viol, and masquers personating Robin Hood, Little John, Maid Marian, and others of the celebrated Sherond company of outlaws, as well as morris-dancers, petformed their still more merry pranks. Muy-poles, as knding to encourage levity of deportment, wero condemned by the Puritans in Elizabeth's time ; Janes I. rupported them in his Buok of Sports; they wero altogether suppressed during the time of the Cominonwralth, but got up again ut the Restoration. Now, change of manaers has done that which ordinances of Parliament could net do. I'his object, so interwoven with our national poetical literature, is all but rooted out of tho land.
A certain superstitious feeling nttsched to May-dny. The dew of that morning was considered as a cosmetic of the lighest efficacy; and women, especially young women, who are nuwer unwilling to improve in this reepect, used to go ahroad lefore sunrise to gather it. To thes dav there is a resort of the fiiir sex every May morniog to Arthur's Seat, near Edinhurgh, for the purpose of arashing their faces with the dow. Mr. Pepys, in his diaty, grsvely tells us of his wife going to Woolwich for a little air, and to gather May-dew, "which Mrs. Turner hath taught her is the only thing in the world to wash lierface with." Scott, in his "Discovery of Witcheraft," seeaks of a sprig of hawthorn gathered on May-day, and bung in the eutry to a house, as a presumed preservative against all maliga influences. There was also n practice of making fools on May-day, similar to what obtaius on the first of the preceding month. The deluded were called May-soslings. It was held unlucky to marry in May, a notion which, us already mentioned, existed anong the Romans. It still exists in Scotland, where very few marriages take placo in May, the higher classes being equally superstitious on the suhject with the lower.
Ia London, as has been said, May-day was once as much observed as it was in any rural district. 'There were several Muy-poles throughout the city, particularly one near the botton of Catherine Strect in the Strand, whieh, rather oddiy, became in its latter days a support for a large teles opre at Wanstenal in Essex, the property of the Royal Society. 'I'he milkmaids were amongst the hat eompicuous ch homaters of the day. 'They used to deess themselues in holiday guise on this morning, and come in bands with fiddles, whereto they daneed, attended b; astrange-loohing pyramidal pile, covered with pewter plates, ribbons, and streamers, cither borne by a man upan his head, or by two men upon a hand-larrow : this was ealled their karland. 'The young chimmey-sweepro ere also made this a peculiar fistival, coming fo:th i.to
the strects in fantastic dreasca, and making all sorts of unesrthly noises with their shovela and hrushes. The benevolent Mrs. Montagu, one of the firs: of the clase of literary ladies in England, gave these home slavea an annual dinner on this day, in order, we presume, to aid a little in reconciling them to oxistence. In London, May-day still remains the great featival of the sweeps, and much finery and many vagaries are exhibited on tho occusion.

The Rohin Hood games and monis-dancers, by which this day was distinguished till the Reformation, appent, from many scattered notices of them, to have been entertaimments full of interest to the common people. Robin has been alternatively styled in at least one documant as the King of May, while Maid Marian scems to have been held as the Quecn. The varjous scattered particulars respecting these festivities, which make but dry reading by themselves, have been wrought up to some atvantago by Mr. Strutt in his "Queen Hoo Hall," where he describes May-day as celelirated by the servants and dependants of an English baron of the fifteenth century.
3. The Invcntion of the Cross, a festival of the Romish Church, designed to commemorate the finding of the cross upon which Jesus had suffered, by St. Helena The festival is shortly called Rood Day.
10. Whit-Sunday, a tistival of the Church of England, designed to commemorate the descent of the Holy Spirit upon the apostles on the day of Pentecost. In Catholie countries, on this day, while the people are assembled in ehurch, pigeons nre suspended above, and wafers, cakes, osk leaves, and other things, are mude to shower down upon the altar-all this as a dramatic representation of the mirucle.
11. Whit-Monday.-A festival of the Church of England, as ia
12. Whit-Tucsday-These three days together are called Whitsuntide. It forms a term, for which the 15 th of May is fixed. The Wednesday, Friday, nal Saturday of this week are Eulber Days, and the week is consequently an Ember Week. (Sce 8:h Felrutry.) This also was a period of festivity among our ancestors. They now had what they called the Whitsnn me, which consisted in a meeting of householders with their families at the church, after service, to partake of a feast provided by the churchwardens, at which the young danced and played at games, while the seniors looked on. In the days before the poor were supported by rates, in collection was made on this occasion, usually found sufficient to provide for them. The Whitsun Ale is now degenersted, where it exists at all, into a morry-making at a barn. Whitsunday and Martinmas terms (Muy 15 and November 11) are those ulone regarded for the leasing of all kinds of property, paying of rents, und enguging of ser vants, in Scotland.
17. Trinity Sumday, a festival of the Church of EngIndd, which always takes place eight weeks after Easter.
21. Corpus Christi, a festival of the Romish Church, always hed on the Thursiay after 'l'rinity Sunday, It celclirates the doctrine of transubstantiation. In nll Roman Catholic countrics it is observed with music, lights, flowers strewed in the street, rich tapestries hung upon the walls, and processions and plays representing Scripture suljects.
29. Lics'oration Day, a holiday of the Church of England to celebrate the restoration of monarchy in the person of Charlen M., May 29,1660 , after its suppression for the preceding twelve years. The populace at one time wore oak leaves in their hats on this day, with reference to the coneealment of Charles in the Royal Oak, while skulking after the hattle of Worcester, 1651.

Nithorth History.-May is a month of the best repu-tation-indeed a general favourite in imagination; but it often halks the hupes of its worshippers. In fivouru!he seasnots, it presichts mialy benutiful appearances, a
herbage and foliage of the brightest green, a profusion of natural flowors, sof and genial skies, fishea leaping, swallows twittering, bees humming, the cuckoo ropeating her note, and the corn coming into blade. But theso appearances are often prevented or much clouded by cold enst winds, most destructive to the fruit blossom. The greater prevalence of this wind during May than in any other, seems to be chiefly the cause of the wellknown injunetion, "Clingege not a clont till Mny be out." The general average temperature ts about 51 degrees. Wo are now arrived at the latest period of seed-time. In the most bsckward parts of the country, barley is still sown, and the seeds of some of the tenderer gatilen plants are committed to the earth. The ash, last-budding of the trees, comes into leaf in the later part of the month.

JUNE.

The proballe origin of the name of this has been explained at the same time with that of May.
11. St. Farnabas the $A_{p m o t h}$, a holiday of the Church of England. In the days of old style, the 11 th of Jume was the longest day of the year-hence an ancient rhyme-

Rarmaty liright.

The longest day and he shortest night.
15. St. Vitus's Day-st, Vitus was a Sicilian martyr. From him, though for what reason is unknown, is named a well-known nervous atfection of the limbs, proceeding frem a disordered state of the viscernl system. It was a popular belief that rain on this day indicated rain for thirty days therentter.
24. St. John's Day, the Nutivity of St. Jolm the Baptist, a holiday of the Church of England. The Five of St. John, varionsly called Midsummer Five, was formeriy a time of high observance amongst the English, as it still is in Catholie countries. Bonfires were everywhere lighted, round which the people danced with joyful demonstrations, occasionally leuping through the flume. A certain number of citizens formed a watch, which perambulated the strects all night. It was also believed that, on this eve, ly fasting, waking, pulling certain herbs, and going through certain ceremonies, it was poossible to obtain an insight iuto tuturity on some important points Fusting St. John's Fast was a great feat of young women a century or two ago. Thre was also a custon of holling vigil in the ehureh-poreh, precisely the same as deseriled under St. Mark's hay (April 2i5).
29. St. Petcr's Day, a high festival of the Romish Chureh, and a holiday of the Chureh of Eugland. It is celebrated at Rome with illuminations and magniticent ceremonials. In Finglaud, till a recent periorl, the honfires and watelings of St. John's Eve were also customary on the eve of this festival.

Nutural Histriry,-In the eentral parts of our ishand, this is in general a dry coldish summer month. The days, however, are st the longest; and though June ranks only third hishest as to temperature, drought or evaporation reaches the extreme point. June here resembles the May of more southern climes. The foliage being now quite fresh and fully expanded, and the verdure of the pastures and eom fields being also at the best, the face of nature apprears to the greatest adsantage. Towards the end of the month we meet with a near eoneidence of four stages of vegetation-the earing of wheat, the flowering of the rose, the ripening of atrawnerries, and the commencement of hay harvest. The general sverage of the thermometer is 57 degrees. In the enurse of the month we have the flowering a great number of tine perennials and slarula, so that the gardens are usuatly in grent glory. It is also the time when weale give tho gardener the greatest trouble.

JULT.

Thus, being at first the fifth month of the Reman yeu, wis called Quintilis. It hecame the seve: th in conm quence of the reform of the ealendar ly Julius Cesear, in whose honour, a ho was born in it, Augustua gave it the present name.
3. The dny fixed in the calendars as the first of the Dor-Duys, the last being the 11th of August. The doo. days precede and fullow the heliacal rising of the star Sirius (in the constellation of the Greater Dog) in the morning, which in Pliny'a time was on the I8th of July The extreme hent of this season of the year, although to us pulpally the effect of the continued high pasition of the suu, was connected by the ancients with the sp pearance of this star in the inorning. They eonsidered the dog-star ns raging, and gave the time thie appellation of the Dog-Dnys. The lialility of Jogs to ralies in conseyuence of the heat of the season was cosinected with the same star, though there was nothing but aceident in the collusion; and they butchered there animals without mercy. At Argos, there was a festival expressly insti. tuted for the helling of dogs during thia scason. By the precession of the equinoxes, the heliacul rising of siniza ift the moruing has leepn clanged to the latter end of August, and in a few thouannd years more it will ake place in the depth of winter.
4. The Translation of St. Wartin Eullion, noticed as a festival in the Churel of Enghand calendar, though not observed. There is an old saying, not heretofore in print. "If the deer rise up dry and lie down dry on \& 4 Bullion's Day, it is a sign there will be a good gose har'sit" meaning, apparently, that dry weather st this season is favourable to the crops.

St. L'iric's Day.-On this day, in ancient Catavic times, the people l,rought tish to the ultar to abtain the fuvour of St. Ulric, und one sat there selling the same back to the public for the benctit of the Church.
7. The Transhation of Si. Thomas à Fecket, noticed as a festival in the Churelt of Englund calevdar.
15. St. Suithin's Day-remarkable on account of well-known popular notion, that if it rain an this day, there will be more or less rain for forty days to come. St Swithin lived just a thousand years ago. Ie was an eminently pious and learned bishop of Winchester, and priest to King Eghert. He was the deviser sud angig nator of tithes in Eiugland. 'The story runs thast, being buried by his own request in the ehurchyard of the catheital, the priests a hundred years ufter fell desirous of giving him greater honour, and commenced the wook of translating his remains into the interior. This was on the 15th of July. They were stopped in their work by n heavy fall of rain; beither coold they resume thein Juty next day, for the hravy rain still rontinued. In short, this rain lasted forty days, by which time be priests became convinced that it was dexigned to stop them in a work which, though well meant on their path was ill taken on that of the saint; and they gave up te point. Ever siuce then, it has been beld as a maxim, - that if there be ruin on St. Swithin's Day (the 15thod July), there will be rain for the forty ensuing days, la a suientific work on the climate of Lomden, it is seknon. ledged that, "in a majoity of our sumenars, a showery period, which with some latitude as to time and lad circumstances, may le admitted to robe-titute daily ran for forty days, does come on about the time indieated by this tradition-not that any long spuce Influre is ofien w dry as to mark distinetly its commencemen."
20. St. Margarel's Day,-This day figures in be Church of England calendar. St. Margaret was a hady Italian virgin, martyred in 278. She seems to ban been the Christian A, ueina: formerly, at Paris, there ry a flocking to church on this day of all women whoren

Fragnant r thought th year.
t5. St. James the A England. In Catholi priest on this day to Lay, but according to ogders appeared in L tinn that he who eats o money for tha reat of Natur dl History.gau, the general aver, With us it may be ace lemperature in a good the crop, that is to sa easly or lata; and in ou be reckoned a criterion his month. The great year tskes place in t The list includos all th ollers. At the same ti dance, cherries and str willowed by currants, g heil vsricties. In the and oats come into ea kusons a little barley i rery rately any other k before August. A gre dea comes to perfectic fover, turnips, peas, be loo make their appear nunth.

Ta early Roman time abring tha wixth of th made it the eighth. I banour of the second ben a fortunata period, consulatip, celehrated meived the oath of all pied the Janiculum, a Rome. As already mer being a month of thirty ary to make it one of gncle Julius. At the vember were each depri in the one case to Octob

1. Lummus Day, calle is now only remarkahle poes. It was prohably our beathen ancestors ; batit occurs exactly thr -Beltane. Cromac, Bi wry, reconls that in his up on the four great fe Pebruary, May, August une and Lammas were whave been held as a fruits of the Barth. It aheat; and there was distant period for tenant d the new crop to their mast rational explanation dies it from the Saxot baffestival), the f heing :wunt of the difficulty of the middle of the last ce parts of Scotland were a ings on Lammaa day, o morf towers and benche strucled for the purpose mbly from the Celtic C_{u} The early Christian pr
pegnant r thought they might be 20 in the course of to year.
2. St. James the Apostle, a holiday of the Church of England. In Catholic times, it was customary for the prieds on this day to bless the apples. On St. James's Cay, but according to ohl atyle (7th August, new style), ojulets appeared in London, and there is a popular noLion that he who eats oysters on that day will naver want money for the rest of the year.
Natursl History.-July is the warmest month of the goar, the general average temperature being 61 degrees. With us it may be accounted the most important, as its lemperature in a good measure regulates the ripening of the crop, that is to sny, determines whether it shall be early or late; and in our climate this for the most part may bereckoned a criterion of its value. Flora is in her glory this month. The greutest display of flowers in the whole pear takes place ins the course of July in our clinate. The list includes all the hardy amuals and a great many duers. At the same time all our small fruit are in abundance, cherries and strswbersies in the beginning being Wilowed by currants, gooseberries, and raspberrios, in ull theit varicties. In the early part of the month barley and oats come into ear, and sometimes in very forward asuona a little barlay is cut before the end of July; but nery rarely any other kind of grain is ready for the sickle \&fore August. A great part of the produce of the gardea comes to perfection, such as carly cabbage, caulidower, turnips, peas, beans, lettuce, \&rc. Early potatues tso make their eppearance, lut are not mature till next nuath.

AUGUST.

Ia early Roman times this month was called Sextilis, ubeing the sixth of the year. The Julian arrangement asde it the eiglth. It acquired the name Augustus, in honour of the second of the Cresars, to whom it had been s fortunate period, he having in it assumed his first cnsulship, celebrated three triumphs, suldued Egypt, meeived the oath of allegiance of the legions that occupied the Janiculum, and terminated the civil wars of Rome. As already mentioned, being dissatisfied with its being a month of thirty days, he took a day from February to make it one of the longer class, like that of his wide Julius. At the same time, Septemler and November were each deprived of a day, which was added in the one case to October, and in the other to December.

1. Lammas Day, called also the Gule of August. It is now only remarkable as a day of term for some purpoes. It was probably one of the great festival days of our beathen ancestors; and it is worthy of observation that it occurs exactly three months after another of these -Beltane. Cromac, Bishop of Cashel in the tenth century, reconls that in his time four great fires were lighted up on the four great festivals of the Druids, namely, in February, May, August, and Novenber: probably Beltune and Lammas were two of these. Lammas seems Whave been held as a day of thanksgiving for the new fruits of the earth. It was observed with bread of new wheat; and there was a custom in some places at no distant period for tenants to he hound to bring in wheat of the new crop to their lord on or before this day. The most rational explanation of the word is that which defires it from the Saxon Hlaf-Masse (loaf-mass, or the baffestival), the f leing in time softened away on anczount of the difficulty of pronouncing it before in. Till the middle of the last century, the shepherds in varions parts of Scotland were accustomed to hold festive mecting on Lammay day, on the tops of conspicuous hills, torf towers and benches having been previously conkrucled for the purpose. The Gule of Auguat is prohbly from the Celtic Cul or Gul (a festive anniversary). The early Christian priesthood, finding this word in
ogue, Latinised it into Gula, which meare throat This, taken in connection with ita being the day of the featival of $\mathbf{8}$. Peter ad Vineula (instituted in honour of a rolic of St. Peter's chains), neems to have auggested to thom to make up a atory of the daughter of the tribuna Quirinus baving boen cured of a disorder in the throat by kissing the aud relic on the day of its featival. And the Celtic Gul (an adversary) has thus been the remote canse of a Christian festival being instituted to Gula (the throat), and held on the day of St. Peter's Chaina.
2. The Assumption of the bleased Virgin, a grand few tival of the Romish Church, and a day noted in tha calendar of the Church of England. It was instituted in 813, to celebrate the ascension of the Virgin into hoaven. In Catholic countriea, this day ia marked by splendid ceremonies und processions.
3. St. Barlholomew's Day a holiday of the Church of England. Bartholomew was an apostle, but thare ia no scriptural account of his labours or death. The legend of the Romish Church represents him ss preaching in the Inlies, and concluding his life by being flnyed alive by order of a brother of the king of Armenia. In memory of his death, it was customary at uur monastic institutions, in the middle ages, to distribute small knivea amongst the people. The day has a horrible celebrity in conncction with the massacre of the Protestants at Paris in 1572.

Nutural Ilistory.-The mean average heat of this month (60 degrees) approaches so near that of July, that a warm dry August often compensates for a low temperature in the preceding month. In the beginning of August, we have often the heaviest rain of the whola year, termed in Scotland the Lammas Flood. July and August, always our warmest, are often our wettest monthe. Southerly and westerly winds have now the ascendency; but in the case of very heavy rain the wind usually falls. Harvest, in the nverago, commences about the middle of this month, but in late seasons not till the very end. The order of ripening of our cereal grains is-barley, wheat, oats. The earliest of our larger fruit begin to pipen this month-apples and pears, but hardly plumbs. The lat ter and more tender exotic annusla now come into flower, such as the amaranths, xeranthemum, zinnia, jacobea, China asters, \&c.; also the gigantic biennial shepherd's club, which sows itself, and the also gigantic annual sunflower. St. John's wort, monkshood, flox, also flowes about this time.

EEPTEMBER.

This was the seventh month in the Roman year beo fore the Julian reform of the calendar. The two first syllables of the name are thus readily accounted for: the last, which also figures at the end of the names of the three following months, is an ancient particle of doubtful signification.

1. St. Giles's Day.-This saint's day figures int the Church of England calendar. A native of Greece, he travelled into Fronce in 715, and became abbot of Nismes. He literally obeyed the seriptural injunction by scttling his patrimony for the benefit of the poor, and on one occasion gave his coat to a sick mendicant, who was cured miraculously by putting it on. St. Giles has thus hecome the patron saint of heggars and cripples. St. Giles's Church, Cripplegate, London, and the High Church in Edinburgh, are dedicated to him; and he is the patron suint of the Scottigh capital, as br as it can he said to have one.
2. The Nutivity of the I'lesserl Virgin, a grand festival of the Romish Church, and still retained in the Church of England calendar. I'his festival baa been held in honour of the Virgin, with matins masees, homilies cullects, processions, and other ceremonies for upwarde of a thoumand years. According to the Catholic writers.

- religious contemplative, every year upon the 8th of Eeptember, heard nost aweet muaic in heaven, with great rejoicings of angels. Ouce he asked one of them the cause, and was told that upon that day was celebrated in heaven the nativity of the mother of $\mathbf{G}(\mathrm{sl})$. The hirthduy of tho Virgin being thus miraculoualy communicated to mankind, Pope Serviua instituted a festival to holl it in honour.

14. Holy Rood Day, or the day of the Fixaltation of the Holy Cross, a featival of the Romiah Church, atill retalued in the Church of Eingland ealendar. It celebrates the miraculous appearance of a cronn in the heavens to the emperor Constantine. The We.lneslay, Friday, and Saturday after Holy Rool Dny, are Emher Days, and the Week in which they occur consequently an Eimber Week.
15. St. Matthew the Aposile, a featival of the Church of England.
16. The Featival of St. Mirhat and all the Holy Angels; shortly, Xirherelmas Day, a grand festival of the Romish and English churches. St. Mirhsel is singlud out for particular mention as heing the chief of angels. or archangel. The theological character of Michuel is obscure. Suflice it here to quete the remark of Whatley, in his exponition of the book of Common Prayer, that "the frast of St. Michael and all Angels is ohmerved, that the people may know what bemefits are derived from the ministry of angels."

Michaelinas, hesides lieing one of the quarter daya in England for the payment of reuts and wages, has been diatinguished from an esrly period in that and other countries as the time for the annual election of corporatind oflicers, magistrates, and other civil guardians of the peace It has been suggested that the selection of the day for this purpose might arise from "the old opinion of tutelar apirits, who have, or are thonght to have, the particular churge of certain bodies of men, or districts of country, as ulso that every man had his guardian angel, who attends hin from the cradle to the grate, from the moment of his coming in to the moment of his goinr out of lite."

It is an ancient and extensively prevalent custom to tave a goose for dinner on Michsclmas day. Queen Elizabeth is said to have been eating her Michaclmas grose when she recived intelligence of the defeat of the Spanish Armada. Very curious and recondito origions have been assigned to this custom, hut it weems to have arisen simply from the goose being at its hest immediately after it has had the range of the reaped harvest fields.

Natural Hisoory.-This is ofien the finest month of the year; yet as with other portions of our scasons, it is not to be depended on. In temperature (the general average is 55 degrees) it ranks between May and June, yet the first three wooks are oftell as warm as any part of the suminer; but there in usually a sensible filling off in the Jatter part. In Scotland the luin.. of the harvest work of the season is usually effected during this month. It is likewise the time when large fruit comes to perfec. tion. The thower borders have still a gay nppuaranee, the latest exotic anmuals only leginning to flower at thia tume. 'Ilie dahlia, a thagniticont flower oí recent introIfuction, appeara in all its grundeur during Neptember. It has been remarked that at no other season ia the house-fly so numerous.

october.

As alresily explained, October has its name from laving been the eighth month of the lioman yrar thefore the Julian reform of the calcular. In the time of the emperor Domitian it was called Domitianus, in lis honour; but after his death that name was ahandoned hy general consunt, from a wish to sink the memory of © execrable a tyran:. The Saxulus "alled October

W'yna'-monat (wine month), from ith being the the when winen were ammally brought into Germany (nome
being then made in that country).

2. The festival of the Holy Angel Guardiant in the Romish Church.

0. The day of St. Dennis, the patron asint of France, St. Dennis was put to death, with some companions, in
the year 272 , upon sn cuinence near Paris, the yenr 272, upon an cminence near Paria, aince called from that circumstance Montinartro (Mon: Mar:yrum). According to the legend, his head had no mooner been cut off, than the body rose, and taking up the hend walked with it two miles, Portraita of et. Denala
carrying his head in his hand, shound in old prase carrying his head in his hand, shound in old prayes. books.
1. The day of St. Iuke the Evangetiat, a featival of the Church of England. This day wns appointed to be St. Iuke's fertival in the twelfth centory.

St. Iuke was usually reprearnited in the act of writing with an ox by his side, having wings and large homas T'he natural hahit of this animal in rominating uponito forsl, caused it to be selected as an cmllem of medis tion, appropriato to this evangelist. At Charton, village near Blackhenth, alout cight miles from London, a fair is held on St. Iake's Day, snd at this fair there was kept up until a vory recent period a curious cistom originating evidently in the emblem of St Luke. Peoplo came to this fair masked; the men generally wore women's clothen; and many bore horns upon their beads. It wna a scene of wild riot and confusion. The bootlat had horns of varioun animals, gilt and otherwies, for sale, and even the gingerbread was marked vith that figure, "Horns! Horns!" was the universal cry. The gentry used to come in multitudes to see the sports of ibin occasion. Some fragments of a stained-glass representr tion of St. Luko and his homed companion still exirt in a window of the parish church.
25. The festival of St. Crispin aun St. Crispinina, The nsme of Nt. Crispin is in the Church of England calendar. Crispin and Crispinian are said to hare beta two Roman youths of cood birth, hrothers, who, in tho third century, went as Christian missionarics to France, and preached for rome time at Soissons. In imitation of Sl . Paul, they nupported themselves by working al the trade of the shoemaker during the night, while they preached during the day. I'hey were successful in canverting the prople to Christianity, until arrested in theo courne by Rictius Varus, governor under the emperof Maximian Herculcus. Butler, in his " Lives of the Sainta," says: "They were victorious over thia med inhuman judge by the paticuce and constancy nith which thry lore the most cruel toments, and finishod their course by the sword alout the year 287 ." The two young nartyrs were of course caumized, and 1 splendid church was huilt to their honour at Soissons io the sixth century. The ahoemaker craf: throughout the whole Christian world have from an early period io garded Crispin nud Crispmian an their patron saints, bof particularly the tirst. 'I'luy often celebrate the day apart for these sainta in the calendar, with processions in which Crispin, Crispinian, an Indian jrince, and soney otler personagea whom tradition has associated with theit history, are repremented in sphendid antique dresses. Some times a coromation of Crispin in part of this ceremons for there is a rution that he w..s a royal personage and hence we find the shoemakers, in Scotland at leas assuming for their arma a leather knife, sarmonated ty a crown, and styling themselves "the roysl ctati" Whecher they celelernte the day hy procession or nol they are sure to distinguish it by giving themselvee op for the time t, jollity.
28. The day of St. Simon and St. Sucle, a featival of it English Chure li. Sinen, usually surnamed the Coname ite, remained with be other aiostlea till after Pentecal
han bees surmised suffred martyrdom. and thought to have rito, in anid to have On thia day, form dso winter vertmon riny, A character firl, sayn, "Aa well and Juda's Day." I wethan atage, nome Simon and Jude's r down as pancaken." botween this notion n in old calendars, na! xen adopted in consi veen fiahermen.
Nalural History.emperature of which jecided symptoms of wather of the month tharacter. Barc har the course of being 1 conspicuous feature of the treen become chan tints, which gives the is generally adnired, tre soon to be stripper migtatory birds assen fight to more genial el Africa, the nightingale ond some others rithe the end of the month, a good deal bared. Ir remarked. Tho flowe nce; tho hollyhock, being yet in goorl cos laving up of potatoer. time for brewing, on a and October is a secone beverage. In this mo uppesrance, floating lik meshing the prassing tr

November obtained amath in the Romnos y Ciesar. Our Suxon all math).

1. All Saints' Day English churches-oth The crening of the 3 ! Even, or Hallow E'en Hallow Day. Hallow both days. The Komi, hell in honour of nll t lar daya appointed for t It doee not appear wa ever marked by Catholic Church. Ne time more distinguishet out the Britigh inlands e'rn. This is probably It having been one Pagan ancestors. The and the firat of August tieat names of the two and Lammas. These tindling of fires in con certain ceremonies. 'I' hnve already been spok the F'cbruary festival blase, with a alight chn m Wales, Ireland, the England, on the lat ermuly (now
nhan beet nurmised that he vialted Hritain, and there wifred martyrdom. Jude, otherwise calied Thaddeun, nad thought to have been a mon of Joueph by a former vith, ha snid to have sufliered martyrdon in Persia.
On this day, formerly, it was coneidered proper to inthe winter veatmente. It was alwaya expected to be niny. A charseter in an old play ealled the Ruaring firh, says, "An well as I know 'twill rain upon Simon and Jude's Duy." In another production of t ' 'izavehan atage, mome one exclaims, "Now a c. ual Simon and Jude's rain host all your feathers as llat down as pancakes." Perhaps there is sone connection between this notion and the emblem assigned to the day in old calendars, namely, a ship, which seema to have aren adopted in consideration of Simon and Jude having veen fishermen.
Natural History.-During this month, the average temperature of which is $49 \ddagger$ degreen, there are usually deided symptoms of the approach of winter; yet the weather of the month is often of a steudy and agreeable tharacter. Bare harvest fielila, some of which are in the course of being ploughed for winter wheat, form a compicuous feature of external nature. The foliage of the trees become changed from green into a variety of bint, which gives the wools a beantiful appearance, and is generally admired, although felt to betoken that they wre soon to be stripped of their aumner honours. 'The migratory birds assemble, and commence their nnual Wiaht to more genial climes-the swallow to the shores of Affica, the nightingale to Lower Figypt, and the puffin and some ethers either to Africa or to Spain. Towards the end of the month, if high winds prevail, the trees are g good deal bared. In the gardens less decline is to be rematked. I'he flower-borders still have a gay appearance; tho hollyhock, drhlia, and some other flowers, being yet in good condition. This is the time of the bying up of potutoes. In England, it was the favourite time for brewing, on account of the equable temperature; and October is a secondary name for We yeoman's brown beverage. In this month the gossamer has astriking ippearance, floating like nn aërial veil over the fields, and meshing the passing traveller.

NOVEMAER.

Norember obtained its name from leing the ninth month in the Roman year, beforo the reform effected by lisar. Our Saxon ancestors called it uint-monat (wind munth).

1. All Saints' Day, a fertival of the Romish and English churches-otherwise called All Hullow Day. The evening of the 31st October is called All Hallow Bren, or Hallow E'en, as being the vigil or eve of All Hallow Day. Hallow-tide is a comprehensive name for both days. The Romish Church designed this day to be beld in honour of all those saints who had not particulor days appointed for them.
It does not appear that All Suints' Day or ita Eve, was ever marked by very particular observance in the Catholic Church. Nevertheless, there is scarcely any time mare distinguished by the common people throughoot the British islands than All Hallow Eve or Hallowe'en. This is probably owing to the fac: of November tat having been one of the four srea: festivals of our Pagan anceators. The 1 st of Peloruary, he lat of May, and the first of August were the other three; the antient names of the two latter are still in vogue-Beltane ond Lammas. These four days were colebrated by the kinlling of fires in conspicuous plsees, and performing certain ecremonies. The lires of Beltane and Iammas hava already been spoken of; it is probable that those of the Pebruary festival ure kept up in the Candlemms Une, with a slight chance of day. Fires were kindled an Wales, Ireland, the Scotish Highlands, and even in England, on the lat of November, until a very recent
period ; and the custom may atill be kept ip in som reinote placen.
l'enrant atatem an follown:-1 In North Wales there is a cuatom upon All Suints' Eve of inaking a great firo called Coel Cueth. Every family, about an hour in the night, makea a great bonfire in the most conepicuons place near the house, nud when it is almont extinguialsed, every one throws a white stone into the ashes, having first marked it; then having said their prayers turning round the fire, they go to bed. In the morning, as moon as they are up, they come to search out the stones, and if nny of thein are found wanting, they lave a netion that the person who threw it in will die before he sees another All Hallow Eve," The Welsh alao practise many of those rites for divining the future, which are ao prevslent on HaHowe'en in other parts of the United Kingdom. It is nentioned by another writer that they dance round and jump through the bonfires, and at the conclusion always run away " to escape the black short tailed sow."

Generul Vallaneey atates that the Irish have now generally subatituted a candle illumination for the firs of the 1st of November.

The Rev. Mr. Shaw, in his "History of Moray," written in the latter part of the last century, speaks of the Hallow Eve fire being still kindled in Buchun. In the "Statistieal Account of Scotinnd," published at the clone of the century, the same fire is apoken of as kept up in various parts of the Highlands. In the parinh of Cullendar for instance, "On All Saints' Eve, they set up bontires in every village. When the bonfire is consumed, the ashes are carefully collected in the form of a circle. There is a stone put in, near the circumference, for every person of the several families interested in the houfire: and whatever stone is moved out of its place, or injured before the next morning, the person reprosented by that stone is devoted, or fey, and is supposed not to live twelve months from that day." How strange thus to find a superstitious custom of this nature existing in a form so nearly identical in Wales and Perthshire.

Severnl writers in the Gentleman'a Magazine, in the latter part of the last century, sjeak of Hallow Eve firea being still kindled in various parts of England, chiefly by persons of the Catholic persuasion. The practice geems to have been to carry shout n quantity of burning stuff, under the name of tinley or tindle.

These ceremonies oppear to be among the earliest connected with the 1st of November. They are, or have recently been, everywhere prevalent throughout these irlands. As they are obviously of a Pagan character, we conclude that the notability of this season is of older date than the introduction of Christinnity, and that its eharacter as All Snints' Day has comparatively little allected the popular mind.

We have notices from both Perthshire and Ireland of the 1st of Novensher heing partly regarded as the proper time for returning thanks for the realized fruits of the earth. The Irish, in this regard, called it La Mas Ubhal, that is, the day of the apple fruit, and celebrated it with a drink or mess composed of bruised roasted apples among ale or milk. This drink in time nequired the strance appellation of lumb's vool, a corruption, appsrently, of the name of the day in the Celtic lannuage.

Ringing of bells was one of the modes of celebrating Hallowmas in England in the days of our ancestors. It ivas a Roman Catholic practice, being designed in some way to favour the souls of depurted Chistians. For this reason Qucen Elizabeth prohibited it.

It was also n custom of our Catholic forefathera to have a eake buken on this eve for every member of the family, ss a soul muss cake or sond cabe. It was cuntposed of oatmeal, and seeded; and pasties and furmety were infidental to the same evening. In familiea of
gand condition, a quantity were baken and aet up on a hoard, like the shew-bread in old pieturea in the Bible, to the given to viaiterm, or dimtributed among the poop. Tliere was a ryhme for the occasion-a A moul cake! a moul enke! Have mercy on all Christian souls for a soul cake !" People went from pariah to pariah n-aowling, an they ealled it, that in, beggina in a kind of chant for aoul-cakes, or any thing to make them merry on this eve. It in very curious to find that a century and a half ago the inhabitants of St. Kilila, no far removed from all other parta of Britain, hat a eluatom of byking a large trinngular eake, furrowed on the edgen, on All Baints' Night.

Enaentially connected with all these cuatoma are thone hetter known ones which Burna has so well and ao faithfully deacribed in his poem of Halloween. All over the Britiah indands, the festive and fortune-teling practicen of this eveaing aro very nearly the name. A A mome prond of this, pasanges from an Engliah, Irinh, and Ncottiah poet may be presented sille by side:-

> Two hazel-nutist thres into the flane,
> And to ench mut tgne a swrethenrín name: This with the lourteat bounco me sore nmazed, That in a thame of brightest colvor blaced; As blazed the nut, mo inay thy pass on grow,
> For twas thy nut that did so brighty glow.

Tha Spell, by Gay.
Theas glowing nutn sre emhlema trac Of whit in human life we view :
The ill-matehed coaple frel and fum, And thus in atrifo themselves contails,
O_{r} from earh other wildly ntarl,
Or from earh other wildiy atart
Hat wees the happy, happy pair,
Of genuine loven mind Iruth sincere
With mutual fonitness. white they burn,
Still to each other kindly tirm;
And as the vither sparks decay;
And ns the vital sparks deray
Together genlly sink away;
Their mingled ashes ress nu last.
Nuts-Burning, dll Lalloweve, by Charks Graydon.
Jean slips in twa wi' ientice ee, Why 'w in blio wadnm tell
But thin in Jo $1 t$ ad this is me, She saya uite hersel';
He bleezed owre her, sul whe owre him, An thay wad ne'er mair part,
Till fuff: he slarted up the lum, And Jean bad e'en n anir heart To see't that night.
-Hallowen, by Burns.
Nut, besides being thus used for divination, are cracked and eaten; and hence, in the north of Eugland, All Hallow Eve is often called Nu-crack Nigh. Apples are also extensively eaten, this consumpt of fruit having probably some reference to the heathen character of the day, at that of thanksgiving for the produce of the aeaeon. The fortune-telling customs descrited by Burus, besides the above, are--for the girls to pull stalks from a corn-atalk, and ascertain, from the presence or absence of the top pickie, an interesting point in their moral history - for a molitary female to go to a kiln, and throwing a blue clue into the pot to wind it, expecting that are finished it will be held back, when, hy inquiring who bolds, a rexponse will be obtained diselosing the namo of the future hubband-to eat an apple at a looking-glase, expecting to see a vision of the future husband peeping over the whoulder-to sow hemp-seed in the yard, saying, "Homp-seed, I saw thee, hemp-seed, I saw thee, and her that is to be my true love come after mo and draw thee," expecting that, on looking over the shoulder, a vision will be obtaned of the future apouse in the act of pulling grown hemp-to win three wechts o' naething in the bars, expecting to see a like viaion-mothom a barley-stack thrice, expecting at the last to embrace your mistress-to dip a ahirt sleeve in a rivulet at the meeting point of the lande of three proprietors, and then hang it by the Are to dry, truating to see sueh a visionary permon come in and turn the other site-to pull stalks of
decenaod cahhages, blindfulied, without choice, ana augur, from their etraightnens or crookednean the figure of the future npouse, from the earth which clinge to the root, the fortune she will bring, and from the taste of the hearh, her temper-finally, to oet three dishen on the floor, one empty, one with clean, and one with foul water, and cause the company to approach them blindfolded and dip in a hand; when he who dips in the empty one in expected to remain nnmarried, he who dipe in the foul one to marry to a widow, and he who dipa in the clean one to marry a female not hitherto married. The whole of these rites are as familine to the Welah, Irinh, and Northumbrian, as to the Ayrahire pearantry. Many of them are alao practised in Eugland on St. John's Eve the 23id of Junc.

Hallowe'en is still observed, but the more daning ritee are generally given up. Meetings of young persons take placo, and a plentiful ntore of nuta and appleabeing provided, a few simple amusements are practised. The experiment of the burning nuts, to teat the duration of love or friemship, is still n favouritr. Jucking for applea is another. A tul, being provided, nearly full of woter, and the fruit thrown in, the young prople endeavour to seize an apple with their teeth-a tank of much more difficulty than might be aupposed, and which generally puts the ilress and tressea of fair experimentalists into considerable disorder. The haffled eflorts of the various parties raipe, of course, shouts of laughter. Or a crosestick is suapeniled by a string from the ceiling, with a shot burning candlo on one end and an apple on tha sther, While it awings rapidly round, lads and laasea, with their hands tied, endeavour to eateh tho apple with their feeth, but generally suffer a good deal from the candle befort they succeed in their object. Here, also, failure in a source of infinite amusement. It is rather remarkable that Burna has not introduced into hie poem any notice of these aports, which, like the othera, are prevalent onet the whole of her Majesty'm home dominions. It may not be oat of plate here to remark, that the jest of the apple and candle is nearly the ssme as that of the quin. tain, a favourite sport of our aneestors, commonly practised in aummer. 'The quintain was a heroje figure of wood, on a vertical pivot, used as a lutt for the praclire of tilting. In this case it had a cross board, one end of which was brond, while the other was furnished with a heavy hag of sand. 'I'he triek was, to come tilt againg the broad end, and eacape receiving a knock-down blow from the aand-bag.
2. All-Souln' Day, or the Commemoration of the Failh ful Departed.-A very nolemn fentival of the Romish Church, which has masses and ceremonies appropriste to the occosion, designed in favour of the aouly of all the dead. "Odillon, Abbot of Cluny, in the ninth century, first enjoined the ceremony of praying for the dead oo this day in his own monastery ; and the like practice was partially odopted by other religious houses until the year 998, when it was eatablished as a general festirnd throughout the weatern churches. To mark the pro eminent importance of this festival, if it happened ana Sunday, it was not postponed to the Monday, as was the case with other such solcmuities, hut kept on the Soturday, in order that the church night the sooner aid the m. fering souls: and that the denal might have cvery henefit from the pious exertions of the living, the remembrance of this ordinance was kept up by persons dressed is black, who went round the different towns, ninging 1 loul and dismal-toned bell at the corner of each stred every Sunday evening during the month, and calling upon the inhubitants to remember the deccased buffering the expiatory flamea of Purgatory, and to join in pragen for the repose of their souls."
5. The anniversary of the discovery of the Gunpown
" "Brady's Clavia Calendaria."

For in 1605, and in 1488 ; oheerved it and celebrated by it prayer with thankeg bration of thil day. hout collecting mat with to purehase the they rurried with th old suit of clothes n fiwkes. They cali banders to "romemine memes. In the ev (fuy Fawkes in the meriment. The fir we are glad to may, end we trust the oth disappear.
II, St, Martin's I of England calendar. remarknhle duys of th Whitsuuday and Ma lesey and engageme at which the ocenpa Pormerly, it was a payment of corn at N Survey. On the con bas been tlistinguishe fot two reasona, nami the wines of the acas to be salted for their these arimals, prepart became the subject of of the meat was salted diso, the goose, which mas, was now present tinnas for winter prit northotn Europe, in means of keeping the provenent of huaband has leen given up, pound. The feasting rersal. So inuch wan that in Scotlund a bee mazt or mair!. In th nenosly) to David I, o firshours sall serve blauchter of Mairts," tinmas bullock is calle metrical treatise on h Henry VIII., says-

When Baster co That voral nat bit And Martinmas When country to

Bishop Hall, in hia Su L., mentions

Ifanged Dried flitchea
Ifanged on a writi
It appears that the co in England, were com and thero was an en that "blood without birth without fortune the end of the lant cen the poorest condition which had not a mart was the enly food of t is no such practice kno Martin, in whose h elituted, is said to has about 316 , and to huv Bumber of miraculo mit in the hol ow of a
a, ane angur, figure of the to the root, of the heart, he floor, one 1 water, and adfolded and empty one is po in the fruel in the elean The whole h, Irish, and y. Many of - John's Eve,
e daring rites oung personn 1 inplea being actised. The de duration of cing for apples full of water, endeavour to f much more uich generally nentalista into of the various Jr a crose stick g, with a shott on the other. ases, with their ith their teeth, candle befors 0 , failure is a ler remarkable em any notice prevalent oret ions. It may I the jest of the 1at of the quin. ommonly prac. neroic figure of for the practive ard, one end of urnished with pme tilt agains ock-down blow of the Romish ies appropriate souls of all the ninth century, for the dead on pe like practie houses until the mark the pros happened ons rilay, as was the it on the Saturmer aid the sh: ve every beadit e remembraice ons dressed is wous, singing of eneh atrecth hth, snd celling ccased suffeing , juin is prajer

The Gunpown

For in 1605, and of the landing of King W' limm jIf, a 1889 ; obwerved in the Britiah dominious an holiday, and celebrated by the Chureh of England by is arna of proyer with thankagiving. 'There in also a popular celebration of this day. From an early hour, the boys go thout collecting materials for a bonfre, or money wherewith to purchane them. In nome, perhape mont places, they carried with them a frightful figure compowed of an ald suit of elothen atulfed with straw, to repreaent Guy Powkes. They called on the pusangers and housebonden to "remeinher Guy," or shouted nome bulderdash nymes. In the evening, the bouftre is lighted with (iny Fawkes in the middle of it, amidet tumultuous meniment. The flring of guns as a token of rejoicing, we are ghad to say, is now diseontinued on this day, and wo truat the other alsurd unages will soon likowise disppear.
11. St. Martin's Day, or Martinmas, in the Church of England calemar. Popularly, thia ia ono of the most nmarkable days of the year, eapecinlly in Ecotland, whore Whitsunday and Marfinmos are the tivo great terms for leases and engagement of eervants, the latter being that it which the occupation of farins usually commences. Pormerly, it wan a quarterly term day in England: a payment of corn at Martinmas occurs in the Doomaday Survey. On the coutinent, from an early age, the day 'has been distinguished convivially; and this apparently for two reasons, namely, that now the people first tasted the wince of the season, and killed the animals required to be salted for their winter provisions. The entruils of these animals, prepared an sausages, or blood-puldiuga, became the subject of an immedinte lenst, white the reat of the meat was salted and set aside. In some countries, also, the goose, which is elsewhere enjoyed at Michaelmus, wan now presented. The killing of beeves at Martinnas for winter provision was formerly univernal in aorthern Europe, in consequence of there being no means of keeping them alive in winter: since the ionprovement of husbandry in some countries, the custom has leen given uf, and fresh meat used all the year sound. The feasting upon the entrails was equally unisersal. So much was all this associated with Martinmas, that in Scotland a beeve killed at that time was ealled a mart or mirirt. In the old book of laws attributed (erroneously) to David I. of Scotlond, it is provided that "the firshours sall serve the burgesses all the time of the thachter of Mairfs." In Northumberland, also, a Martinnas bullock is called a mirt. Tusser, in his curious metrical treatise on huabandry, written in the time of Heary VIII., says-

> When taster comes, who knows not than That venl nut tmeon is the munt? And Martinmas beef toth tear goot taek, When eountry toiks do dacoues taek.

Biahop Hall, in his Sutires, written in the time of Jamea J., mentions

- Dried flithes of some smoked heeve,

Hanged on a writhen wy the since Martin's ece.
It appears that the contents of the puildings, as inade in England, were composed of hoool, suct, and groats ; and thero was an eniguatical proverb thence ariving, Hat "blood without groats was nething," meaning that birth without fortune was of little value. Down to near the end of the last century there was not a fumily above the poorest condition in the sural districts of Scotland which had not a mart, or a sha'c in one, and salted meat was the only food of the kind used in winter; now, there is no such practice known, except as a matter of tralition.
Martin, in whose honour this festival was at first inatituted, is said to bave been bem in Lower Hungary thout 316, and to have origimally been a soldier. After i number of miraculous adventures, he settlod as a liermit in the hof ow of a rock near 'Tours in the south of

Fran. where he wan greatly venerate?!. Indle bishop of Tt 10 in 397. When a fow flase faysor red aluent this t of the ur, they wan called so. Murtin's suvmer.
23. At, Clenven y, in the C reh of Engrand calendar. Clement \#spulten of st. Paul as one of his fellowalubour: Membinh itr ination has supplied him with a himpry moul a matty cuorta. He is asid to have been thrown finto the sea with as anchor fixed abous him neck. An anchor 15 therefire ansigned to him as an emblem: of this the metropolia presente a conapieuous memorial in the anchor which forins the vane of the chureh of St. Clement Danes, in the Strand. St. Clement is held an the patron asint of the blackamiths. It was formerly customary for hoya, and the lower clasa of people generally, to go about on thin day begging for liquor, wherewith they made a regale at night. Hence, in a certain class of old ulmanace, the day was signified hy the figure of a pot.
20. 'This is olle of the days on which Advent may commence. Advent [literally, tho Coming] is a term applied from an early periol of ecclesiastical history to the four weeks preceding Christman, which vere obeerved with pennnce and dovetion, in reference to the approaching birth of Chirist. There are four Sunilaye in Advent, the first of which is alway the nearest Sun day to St. Andrew's Day (November 30).
30. St. Andrew's Day.-The festival day of this saint in retained in the Cluurch of England calendar. 8t. Andrew wis one of the apostles. His history, as related by the Catholic writers, represents him as martyred in the year 66 at Patras in Greece, upon a cross of the form of the letter X, which sccordingly is atill recognised an St. Androw's Cross. A supposed relic of this crofs, carried to Brussels in the middls ages, caused its figure to be adopted as a badge for the knights of the Golden Flecee. Some relica of the apostle himself are said to have been carried by a Gireek devoteo named St. Regir lua, to Scolland, where they were placed in a church built at a place which subsequently became disungnished by the name of St. Andrews. St. Andrews became tho seat of the Scottish primacy; and from this cause probably it was that St. Andrew was in time considered as the patron saint of Seotland. In that country, however, there is acarcely any observance of this day in any manner; it is only when Scotsmen are abroad, and have occasion to select a day for an annual convivial meeting, that St. Andrew's Day comes into notice. There used to he a procession of Scotsmen on this day in London, with singed sheeps' heads borns before them. It is remarkable that St. Andrew is also a tutelar ssint of the Russians, probably in consequence of tho Greek locality of his martyrdom. There is an ancient and widely prevalent custom connected with St. Andrew's day, to which Luther ham adverted. Maidens, on the eve of this day, stripped themelves, and sought to learn what sort of husbands they were to have by praying in these terms"Oh, St. Andrew, cause that I obtain a good pious hus band; to-night slow me the figure of the man who w: tuke me to wife."

Natural History.-In this month the businces of vegetation experiences its death. The trees are now tho roughly atripped of their folioge. It is reputed as a gloomy mouth; but the temperature is sometimes agreeable in the earlier part of it, and its average for the whole term is 43 degrece. A considerable number of planta remain in flower throughont November. The gloom of the month is snid to huve a depressing effect on the spirits of the English notion; let those who are liable to such intluences lay to heart the following remarks of Johnson in the "Itler: "-"'He distinction of seasons it prodnced only by imagination acting upon luxury. To temperance every day is bright, and every hour is propitious to diligence. He that resolately excites his facul-

Hea, or exerth hin virtuen, will aoon make himmolf supeflor of the measona, and may set at deflance the mornisg mint and the evening damp, the blasta of tha cast and the clouds of the south. Instend of looking for spring with ansiote and carink mind, elljoy the present day there are pleasure even in November."

DRCEMRER.

So called an being origimally the tenth of the Roman year. Our Anglo-Saxan ancentora called December uinta monat, that in wister month; but, after becomIng acquainted with Christianity, this name was changed into heligh monnt, or holy moith, with zeference to the celebration of the nativity on ita twenty-fith day.
6. St. Nichelun's Day.-Retained in the Chureh of England calendar. St. Nicholas was Archhishop of Myra, in Greece, A. N, 342. Ho las reganied an the patron saint of children and of onarinore, prohably in conmequence of hin lenevolent xenl in the protection of orphanas and stranded neamen. Churches built uear the sen are in many inetances delicated to S t. Nicholas. He in almo midd to have nhown much kind interest in the fate of young wounen, nometimes mecretly throwing pursex inte the chanber-windown of thowe who lacked dowrics. Heuce has arimen a custom prevalent over a large part of the Chrintian world. On his eve, presenta are hid in the shoen of those to whom any one wisher to give a pleasing nurprise: and thewe, being found in the morning, are jocularly naid to he gittes from St. Nicholas.

St. Nicholan in almo considered an the tutelar saint of aclaolurs, or clerks, and of roblers. 'The fraternity of parishoclerkn have thought themselven entitled by their name to adopt him an their patron. How foblem should have come to be called SL. Nisholasis clerks, or St. Nichotas's knighta, it in nut eany to mee, anleas it were from the coincidence of his name with one of the slany appetlations of the devil.
'fhroughout the middle ages, there was a univernal cuntorn of electing a kind of mock binhop on St. Nieholas'n Day. A boy, possilly taken frotu among the choristers, was chosen by his associates as hishop, arfayed in suitable veatments, and endued with appropriate powern, which he enjoyed for sume days. Ther infant prelato was led along in a gay procession, hlesning the grinning multitude as he went, and be was even allowed to, aing uawn and to mount the pulpit ant preach. Edward I., in his way to Scothand, in 1299, heard vespers ly a boy bishop at the chapel of Hetom, near Newcastle. The boy bishop at Sulisbury is said to have had the power of disposing of any prebends that fell vacant during his term of office; and one who died at that time had a monument in the cathedfal, representing him in his episcopal robee. Mr. Wharton in of opinion that wo mee nome faint traces of the rise of dramatic mitertainmenta in the strange nummerics connected with the election of the Boy Bishop.
8. The Conception of the Blessed Virgin, in the Romish and English calendarn.
11. The fourtect dayn from this to Chistmas Eve were casied tho Haldryon Days, und surposeell to lie, in their camn, and tranquil character, an exception from the weason. The terin, which is now a regular arljective in our langunge, is derived from the hiril king-fisher or halcyon, which, from the daya of Aristutle at least, has been the nubject of a curious superstition. The nacionts mupposed that it built its nest on the ocenn, and brought forth ita young at the winter molstice. To account for the preservation of the nest and young amilat the neverity of the season, they imazined that the bird had - power of lulling the raging of the waves during the periut of incubation; and this power was believed to staide in ite mang.
13. St. Lutia's Day-Retained in the Church of Eng-
land calendar. Ml. Iacia wne a ynung lady of Syracom who mitalned a high chnructer for a devout and chanip table life, and diend in the year 304. The last of the foont merien of Eimiwer Daya commencen on the Wedneeshay following thia featival.
16. O Supirention-Thin day in sa marked in the church calemelar, probatly from an anthems sunis out thin day in the Rowninh Chureh, leginning, "O mapientia que ex ore altimalini prodidinti," \&c.
21. s\%. Thomas the Apostle, a fentival of the Englion Church. It was cunstonary in E:ngland for women to go a-gorading on St. 'Thouma'm Duy; that in, tiey went alown logging money, and preaenting in return ajpign of polm and bunchea of primmones, probiably with a view to the deeoration of their housee ugninat Clinimtman.
25. Chria/mis Dey, observed from an early period a the nativity of our lard, and celobrated not only by the religion ceromonlea from which the name of the dyy is partly laken, but hy populur festivities of the moat joghoul kind. In Fiuglamil, Cloristmas in held lye the chusechas a sulemun fentival, and destinguished ly the complite com mation of buxinran-an homour paid to no wher day benider (Gonil Frilay. But within the hast huadred ywatm, the fentivitics once approprinte to the day hare much tillen ofr: 'Theme at one time lanted with mote or Hras brilliancy till Candlemas, and with great apinit in Twelnh Day; but now a meeting in the evening, litth different froin a cummon diuner party, though sure to be marked hy a fomut and plum-pudding, amid proty gane rally fillowed lyy a gane ut cards, is all that dintinguldey Chrintmas in most families.
In former timem, the celletration of Christmas laman in the latter prote of the previous day-Christman kite. The house was first deckell with holly, ivy, and othen evergreens. Candles of an uncommonn size wore then ligheted under ther name of Christmas Catides; an encon mous log, callet the Yule Clog, or Chrintmas Black, was laid upen the fire: the preople nat rount realing themselven with here. In the conrke of the nigh, amall partien of nomgsters went nhout fron houwe to hove, of through the streets, singing what were calleil Christas Carola-simple popular dittices full of joyful allumiona to the great gif from God tw man in the Redermen. A maxs was commenced int the churches at miduight, a eve tom still kept up in the Catholio C'hurch. Ae one perivid, the people had a custorn of wassailing the fruit trese on this evening; that is, thry took a wassail bow, threw a toast from it to the trees, and wung a soug, expecting thu to necure a gnowl crop of fruit the next semon. It wa thought that. during the night, all water was fer a shour time changel into wone, and that hremb baked on tha ave woull never lweome mouldy. 'These notions se essentially forlimh, but as they are all well-meant adoration of the simple spirit of the people, they should not te hastily condemned.
The curols were more generally sung in the monaing of Christmas Day. A contributor to the " ienulemant Mayazine," in 1811, describing the manner in wheh Christmas is cellelrated in the North Riding of Yorke shire, sulys: "About six o'clock on Christmas Day! was nwakened by a sweet simeine under my wiador; murprined at a visit mo eatly and unexpected, I arooe, and looking out of the window, I beheld six young wonen and four men welvoming, with swert music, the 佔est morn." It may scarerdy be imagined how delightá" at surh a momint woulil fall upon the half-slumbenin car such strains as the following:-

> Goil rest vent morry gemilemen, por mank youandy.
> For lomian Mirisi mur saciour
> Was borm phon the day:
> To sive us all from sumin power,
Whan we werp gone astrave.
> Oh we were gone astray. For Jestum chriet our saviour Was Lorn on Chirimuas Day.

Chandmu rarula a A eollection of the b1531. They yre will by chapuicu of balo mure than o proluctions of form
The religioun mur amall ahare of atte day wan chiefly din Is grand feature w which a few purtict dll, plum-jorridge phethes of a man there wam a hoar's Wh cuntomary for ble deprudants, and lity, as considering tha ruligiun of him Ing. A surt of list tiptoe heinis luing the youths wers u madidn whom they the frecturn of the nguluy proclamatio mul gamblers to cor fir a fertioin numbe rlect a prosuon as I. the lead inl every) ment which the wit and functious of th ingular part of the we fenst of Chrixt wherever he lolges mery Dixpmerts, anc every Nobleman of apititual or temporal of the Sheritts, hat contending, without the farese pastimo to seginuing their rul met till the morros commanly called Ca_{4} were finc and subtule wih playing at Car in every llouse, mor The manayement mas in the hulls of care of the Lorel of dected in the inna all the dutics and for a fortnight, at a pounda, was knighte of the land.
In Scotland, befi bouses hal a simil called the Abbot of are graphically pour Abboth:" The cu. 1353.
26. S\%, Stephen's Church of Englanil valent dogina that it time of the year, an by inest peopile for ti ings were inplased
27. St. Juhn the val by the Church I 110 other day - last hundres o the day have ed with noute of krval gpinit till e evening, litll ough mure to to int frety gine lat diatingurthea
hristuas luxan -Christmas E.re. , ivy, and sthem size wrre tien audies ; an enor. hristinas Black, (romind regaling the night, snaul nuw to house, ore vailled Christan ffil allusions 10 - Rellermer. A minduightes eve Atone penind he fruit trees on il thow, threw: :, "xureting thus wewon. ll wı wis fir a shorts 1 buikrd on thin ese notions are neant alorations should not te
in the moning n " (irnilemani moser in whima RRiting of Yok hristmas Das er my window ted, 1 arose, nes young wonen Insic, the blew now delightifily hallf-sluaberiy

In Pethehare n Je vFY "Thit bleswe halise was hofa
Aid taid boen a maner
U'man thin hleaned morn!
The whileh bie moilier Mary vishing tid luke it seofin. Oht lidiuge, he.

Chantmu carola arn ainong the oldeet of English monga s eellection of thens wan printed by Wyakyn de Wiade 1521. They are still printed on single sheeta, which are adil hy chapunen or dealera in cheap literature. There baleo mure than one molern collection of the ene curiona proluctions of former ages.
The relighona merviee of Christman Day receivea hut a amal share of attention from ohd writers. In fret, the day was chiefly diatinguinhed by the pmpular foativitics. tw grand featire was a feant, of great abundance, and at which a few particular dishes regularly appeared, above dil, plam-porrilge and mince-pie. In every great hall, whether of a man of rank or of a great corporation, there was a hanr's head ushered In hy minatrelay. It wnenatimary for the rich and nohle to treat their humble dependunta, und to meet with them on terms of equahity, as considering that all men are regaried alike ly tha miligion of him whose natal lay they were celebrating. A art of license prevailed. A branch of the mis. detee lofing hung up in the hall or over the doorway, the youtho wero underntond to have ar right to kian any mailen whom they coukl inseigle umier it. At York, the freclon of the time wan so extreme, that there were regula proelamations allawing women of evil repute and gamitera to come to the city and walk abont openly fin a certain number of doys, It was also customary to flet a purson an Lorrd of Misule, who went about taking the lead in every kind of extravagant sport and merriment which the wit of man could devise. The election and functions of this personago were perhaps the moss dingular part of the festival. According to Stow, "at the feast of Christimas, there was in the king'a house wherever he lonlged, a Loord of Misrule, or Manter of mery Disports, and the liko had ye in the house of avery Nobleman of henour or good worship, were he opiritual ir temporal. The Mayor of Jondon, and either of the Sherills, had their eeveral Lords of Misrule, iver centending, without quarrel or offence, who should make the rarent pastine to delight the leholders. T'hese lorls, reginaing their rulo at Allhallond Eie. continued the mene till the rnorrow after the F'cust of the Purification, commanly ealled Uandlemas Day: in whiehs spuce there were fine and sultite disgnixines, truskes, und mummerion, with playing at Carda for Counters, Nayles, ond Pointa in every Ilouse, more for pastinues than for gaine,"
The management of the plays ustually acted at Cliristmas in the halls of colleges mid haw wocietice, foll to the care of the l.ord of Misrule. The particular functionary elected in the inns of court in Landon, after excreising all the duties and going through the parade of royalty fer a fortnight, at an expense of a couplo of thousand pounda, wus knighted at Whitr-hall by the real sovereign of the land.
In Scotland, before the Reformation, the religious housea bad a sinnilar ollicer for tho Christmas revels, called the Abbut of C'irerson, whose particular functions are graphically pourtrayed ly Scott n his novel of y The Abbutt." The custom was suypressed by statute in 1555.
26. St, Strphen's Day, ohserved as a festival of the Church of Englans. There was formerly a widely prevalent dogma that it was gool to blecel horses about this time of the yeur, and St. Stephen's Day was that chosen by most people for this purpose. On this clay, also, blessings were implured L. pon pastures.
27. Sl. John the Feungelis's Day, ohserved ns a fistiral hy the Chureh of England. Because John drank
polson, whout dying in conmequence, it was supposes that thowe who put their trus' 'a him wera afe from all injury from that caume.
28. Chidermna or Jinly fmorent's Day, obmerved by the Church of Jome with massea firr the chlidren killed by Heroct. It was renalitered unlucky to marry, or to hegin any work, on Childermas Day. 'The learned Oregery sayn, "It hath treen a eustom, and yet in elmewhere, to whip up the chililren upon limocent's Day monniug that the memory of Ilerol'a murder might atick the closer, and in a monlerate proportion to act over the "cructier again in kinde.'"
31. 'The lant day of the year in ralled in Eeotland flogmumny, a word which han frnitiomaly oxercimed the wits of the ety mologiste. 'The Sionttinh grophe, overlook. ing Chrintonas in obedience to the helorata of their religlous teachera, have transferred the merriment of the meamon to Hogmanay and Now Year'm Day, which they accordingly abundon to all kinds of fistivity. Ilamdmel Monday, or the firut Monday of tho year, is also an occasion of fertivity. On Hogmansy, the children in amall town permmbulate among the neighbours of the better clasn, eryiag at their doora, " Hoginmay!" or nometimen the following rhyme:-

Topmanay, Irolloday,
Gie'n of jour whito bread and none of your gray
in obedience to which call, they are merved each with an oaten cake. In the evening, there are merry manings, which are alwaya prolonged to twelve o'clock, which has no mooner struck than all start up excitedly, and v ish each other a happy new year. Sumall vinturoun partiea tuke a kettle with hot alo poseet, called "a het pint," and go to the honses of their iriculs, to wish them a hapily now yrur. Whoever comes ifst, is called in that house " the First Foot," and it is deemed necensary on such occasions to offer the inmates both a pieco of cake mud 2 sip from the froset ketto, otherwise thry would not he lucky throughout the yenr. T'his is called "hirgh-Footinc." Next day, all prople go about among all other perple's houses; presenta are given among relations; and dinner-phrtien close the evening. Fonmerly, the tirat Monday of the year was also much observed an a testive day, and ti:an for giving prewents, from which lutter circumstance it wan called handerl Monday. The Handsel Monday, old style, is still, it some rural districts, the rhicf feast day of the season. On the evening of Christmas, Iogmanay, New Year's Day, und Hanisel Momlay, parties of young men and boys went about disguined in old shirts and paper vizards, ninging at the various houses for a small guerdon. Thenc guizurta, an they were called, also acted a mastic kind of drama, in which the adventures of two rival kuights, and the feata of a doctor, wero conspicuolt, Almost everywhere in Scotland the festive and frolicsome observancea of the New lear tide have much declined.

Nitural History.-December is the dapkest, but not the collent month, of the year: the general average temperature is 40 degrees. The deciduous trees ate now completely stripped of their folinge, and the ground often shows a anowy covering, although it is rarely that there is much strong ice in December. Amidet the general desolation, the pines and other evergreenn form an ugrecable resting-place for the eye. The rose also continues to how during this month. Formerly, the (ilistonbury thorn was a great wonder in England, being supposed to how regularly on Christmas Day. The monks of the ablicy there reprenented it as the stafl of Joseph of Arimathea, which, being inserted by him in the ground, had iniraculoosly sprouted out into a living tree. But it seems to have been only n menser of a certain species of thorn well known in the east for blow. ing in the depth of winter.

pRINTING-ENGRAVING-LITHOGRAPHצ

ortain and history of printing.

Privtine is the art of producing impressiona from characters or figures, movable and inmovnble, on paper or anv other substance. There are several distinet branenes of this important art-the printing of books witn movable types, the printing of engraved copper and atcel phates, and the taking of impressions from atone, enlled lithography. Our object, in the first place, is to describe the art of printing books or sheets with movable types, generally called letterpress printing, and which may undoubtedly be esteemed the greatest of all buman inventiont.

The nrt of printing is of comparatively modern origin : four hundred years have not yet elapsed since the first book was issuci from the press; yet we have jroofn that the prineiples upon which it was ultimately developed exiated amongst the ancient Chaldean nations. Entire and unlecayed brieks of the fromed rity and tower of Babylon have been found stamped with various gymbolical figures and hieroglyphic characters. In this, however, as in every similnr relic of antiquity, the oljeet which stamped the tigures was in one block or piece, and therelore eould be employed only for one distinct subject. 'This, though a kind oc printing, was totally uscless for the propngation of literalure, on aceount both of its expensiveness and tediousness. The Chinese are the only existing jeople who still pursue this rade mode of printing by star.ping paper with blocks of wood. 'The work which they intend us be printed is in tho firat place earefully written ujon ahcets of thin transparent paper ; each of these slaerts is glued, with the face downwards, upon a thin tablet of hard wood; and the engraver then, with proper instruments, cuts away the wool in all those parts on which nothing in traced; thus leaving the transcribed characters in roluff, and ready for printing. In this way, us many tableta are necessary as there are writen pazes. No press is usel; but when the ink is laid olt, and the paper carefully placed above it, a brush is passed over with the proper degree of pressure. The Chinew chrouicles atate that the nlave mote of printing was discovered in China about tilly years before the 1 'hrintian era, and the ari of pajer-making ahout 145 sears afterwards; previous to which period, nll their uritings were transeribed or printed in volumes of silk cut into leaves of proper dimetisions.

It ir a nomewhat curious circumstanee, that amonget the fint attempts at printing hy meana of wookleengrav. ug. which ean be traced to have been made in Burope. -an the making of playing-carta for the ainusement of Sharlea VI. of Fenuce. 'Ihis was towards the latter end W the foorterenth century. 'Thereafur came printes from
wood-blocka of human figures, single or in groups ; toe earliert existung specimen of which is in the possession of Earl Spencer, and dated 1423. It is by un unknown artist. These prints were at first without any text, on letterpress, as it is modernly termed; lut after the ground work of the art had been completed, its rise lowarde perfection wsa almost unparnlleled in rapidity. Its professors composed historical suljects with in text or exples. nation suljoined. The pages were pluced in pasra fac. ing each other; and as only one side of the leaf was impressed, the blank pages came nlso opposite one another; which, being pasted together, gave the whole the appearance of a book printed in the modern farhion.

The next step in the seience of typography was that of forming every letter or elinracter of the alphatet sepa. rately, so as to he capable of re-arrangetment, and forming in succession the pages of a work, therely avoiding the interminable labour of cutting new horks of types for every puge. It is exceedingly remarkahle, that thin most important and yet simple iden shouht not have oc curred to the Romans; and what renders it the more surprising, is the fact, which we lenrn from Virgil, that brands, with the lettera of tho owner's name, were io use in his time for the purpose of marking eattle. The credit of the diacovery was reserved for a German, Jobn Gutteulierg (or Guttemberg), who accomplished this in. portant improvement about the year 1438 . As this man was the first great improver of typograply, to the stody of which he exclusively devoted his whole time and atention, a short sketch of his life will only be a part of the listory of the art. Ciuttenterg, who is supposed to have been born at Mayenec, or Mientz, in the beginning of the fifteenth century, settled at Strasburg ahout the year 1424. In 1435, he entered into purtuership with Andrew Drozhenis (or Dritzehen), John Riff, and Andrew Heelmon, citizets of Strashurg, binding himelf therelly to diselose certuin important secrets connected with the art of printing, by which they would attuin opmlence. The worknhop was in the house of Dritzehen, who, dying shortly afler the work was commenced, (iuttonberg immediately sent his servant. Lawrence Bieldieh, to Nicholan, the brother of the decensed. and requented that no pernon misht be admitted into the workshop, lest the peeret should twe discovered, and the forms (or fastened-tugether typess) stolen. But they had already dimpppesred; and this frand, as well as the claime of Nicholus Dritzehen to succeed to his brother's share, produced n lawsuit among the shrviving partures. Five witnessen were examined; mad from the cvidence of Bieldich, (iuttenberg'e sarvant, it was ineontroverilly proved that Guttenberg was the firat who practised the art of printing with unovablo typea, and that, on the

Ireth of Andrev the forme to be persed, leat any or result of this lawsui solution of partner eshausted hi, mean - hia native city of graphic labours. ordinary invention being at the same ti his mind to a wealt metala, named Joh him to advance larg further and more en being thus nasocinte ing establishment w ing carried on in a of the art. After the capshilities of h berg had the hardi Bible, which he suct the yents 1450 and was tho first import and which. judging tainly esteem as the of human productio types, on six hundre onpy atil, in existe somo of them apper The work was print
Tho execution of has justly conferred Guttenberg, was, II cause of his ruin.
on a fatiguing and for a period of five y than what were oris tlituted a suit again quence of the decisio intereat, and also a p rancel. 'This stait partncrship; und the fell into the hands 0 ostensible agent in the wonder express sheeta, soon acyuired compact with the de he appellation of D_{1} in evil notoricty.
Besides the abovemene of the work of to be in existence. of notice, was found old papers in the ar nac for the year 14 register of accounts would most likely be and may consequent cimen of typographic That Guttenherg w execution of his wor I very ancient custs of the Scriptures ani 1 large ornamental and chaptern, finely nariaty of figures no the first psalin thus art of printing in it mented with foliage and in atill more bea blue colour, while th tranaparent appeara immediately sfter ti awsuit with Fres!, i VoL. I. -100
weth of Andrew Dritzchen, he had expressly ordered the forms to be broken up, and tho characters disperred, lest any one sloould discover his secret. The resalt of this lawsuit, which occurred in 1439, was a diasolution of partnership; and Guttenberg, after having exhausted hi, means in the effort, proceoded, in 1445-6, hia native city of Mentz, whe. . he resumed his typographic lahours. Being ambitious of making his extraordinary invention known, ond of value to himself, but being at tho same time deficient in the means, he opened bis mind to a wealthy goldsmith and worker in precious metula, named John Fust or Faust, and provailed on hin to odvance large sums of money in order to mako further and more complete trials of the art. Guttenberg being thus associated with Fust, the first regular printing eatablishment was hegun, and the business of priating carried on in a style correaponding to the infancy of the art. After many smaller essays with respect to the capabilities of his press and movable types, Guttenherg had the hasdihool to attempt an edition of the Bible which he suceceded in printing complete, between the years 1450 snd 1455 . This celebrated Bible, which was the first important apecimen of tho art of printing, mul wheh. judging from what it has led to, we sloould certainly esteen as the most extraordinary and praiseworthy of human productions, was executed with cut-metal types, on six hundred nad thirty-seven leaves; and, froun impy stil, in existence in the Royal Library of Berlin, some of them appear to have bren printed on vellum. The work was printed in the Latin language.
The execution of this, the first printed Bible-which has juatly conferred undying honours on the illustrious Guttenberg, was, most unfortunately, tho immediste ause of his ruin. The expensus incident to carryiug on s fatiguing und claborate process of workmanship, for a period of five years, being much more considerable than what were originally contemplated by Fust, he inatiuted a suit against poor Guttenberg, who, in consequence of the decision agniust him, was obliged to pay interest, andl also a part of the capital that had been addranced. This suit was followid by a dissolution of partnership; and the whole of Guttenberg's apparatus fell into the hands of John Fuat, who, from being the ostensible sgent in the business of printing, and from the wonder expressed by the vulgar in soeing printed sheels, soon accuired the name of a magician, or one in compact with the devil. and under this character, with .he appellation of Dr. Faustias, ho has for ages eijoyed an evil notariety.
Beaides the atove-mentioned bihle, sume other speeimene of the work of Guttenharg lave been Hiscoverel to be in existence. One in particular, which is worthy of notice, was found sone years ago among a bundle of old papers in the archives of Mayence. It is an almaane for the year 1457, which served os wrapper for a register of accounts that year. This, says Hansaril, would most likely be printed towards the close of 1456, and may consequently be decmed the most ancient specimen of typographic printing extunt, with a rertain date. That Guttenlerg was a person of refined taste in the execution of his works, is sufficiently obvious. Adopting a very sucient custon, common in the written copues of the Scriptures and the missals of the church, he used a large ornamental letter at the commencement of hooks and chapters, finely embellished, and surrounded with a ruisty of figures as in in frame. Tho initina letter of the first psilin thus forms a heautiful specimen of the art of printing in its carly progress. It is richly ornamented with foliage, tlowers, a birl, and a greyhound, and ia atill more heautiful from being printed in a pale blue colour, while the enhellishments are red, snd of a tmasparent appearance. What became of Guttenberg inmedistely after the unsuccessful termination of his 'awsuit with Fret, is not well known. Like the illus-
trious discoverer of the grest Western Continent, he seems to have retired almost broken-hearted from the world, and to have spent most of the remainder of his days in obscurity. It is ascertained, however, that in the year 1465 he received an annual pension from the Elector Adolphus, but that he only enicyed this small compensation for his extraordinary invention during three years, and died in the month of February, 1468.

It long formed a subject of co itention amongst antiquaries and Bihliomaniars, ty what mesus Guttenberg formed his types, but it is now pretty clearly ascertained that they were at first all individually cut by the hand. The mode of casting types in moulds has been very genersily, and scemingly correctly, assigned to Guttenberg's successar, Shoeffer. This individual was an industrious young man of inventive genius, an apprentice with Faust, who took him into partuership immediately after his rupture with Guttenberg, and who is supposed to have been initiated into the mysteries of the art by the latter. The first joint publication of Faust and Scheffer was a beautiful edition of tho Psalms, whicl came out only about eighteen montha after their going into partnership. Along with it appeared a declaration by them, claiming the merit of inventing the eut-nutal types with which it was printed; but this pretension was evidently false; and, in faet, it afterwards appeared that the hook had been four years in the press, and must, consequently, have been chicfly exceuted by Guttenberg. It is worthy of notice that the above pullication was the very first to which the date, printer's name, and place of publication, were sffixed.
To Scheffer, however, as said before, must be awarded the honour of completing Guttenberg's invention, by discovering the method of casting the characters in a matrix. In an aecount of Scluceffer, given by Jo. Frid. Faustur of Aschalfeuburg, from papers preserved in his family, we are informed that the artist privately prepared matrices for the whole alplablet, and showed the letter: cast from them to his master Fsust, who was so well plessed that he gave his daughter, Christins, to him in marriage. Faust and Schoeffer concealed the new improvement, hy ndministering an oath of secrecy to all whom they intrusted, till the yesr 1462, when, by the dispersion of their servants into different countrics at the sacking of Mentz, by the Archbishop Adolphus, the Invention was publicly divulged, and the art was spread throughout Europe.

early progress of printing.

Hacrlem and Strashurgh were the first places to which the art of printing was tramsplanted from Mentz, and this at so carly a date, that each of these places has its respective advocates as being the birth-place of it. From Hacrlem, it passed into Rome in 1466, where its first professors were Conrul Sweinheim and Arnold Pannarta, who introduced the present Roman type in the following year, in printiug Cicern's Fipistola Faniliares. The Gothie character, from which our own black-letter wos derived, was the next which was employed hy the ancient printers; affer which, in 1476, the first set of Greek characters wns cast by the Italians-whether at Venice, Milan, or Florence, is a disputed point. In 1489 , hewever, a!! previous attempts at the Greek character were celipsed ly a spleuslid cditoon of Homer's works, published at the last-vaned place, in folio, and printed by Demetrius, a native of Crete. The first book in the He brew character was an elition of the Pentateuch, printed in 1482 ; the whole Bithe, iucluding the New Testamens. not heing excented till t488. This was done at Soncino, a smsll town in the Ducly of Milan.

In 1467, printing was set up in tho city of Tours; at Routhlingen aml Venico in 1469; and, it is helieved, at the same time in Paris. I'his city was the tenth town in Europe in which the printing-press was established f

It was set up by Urich Gering, a native of the Canton of Lucerne, in the house of the Sorbonne, and in the year 1469. This Girring had been taught the art by Eliaa Helic von Lauffen, who introduced it into Switzorland, and he comunenced the operations of the Lucorne preas, by publishing Marchesini's Billical Lexicon Mnmetrectus sive Primicerius, in the yeur 1470 . The first work which issued from Gering's press, at the Sorbonne, was the Epistole Gasparini Pergamensis; it was also publiabed in the year 1470. Gering continued his Inbours uncil 1508, and died on the 2:3d of August 1510, bequeathing very consideralite property for the beuefit of young scholars and the poor of Paris, Strasburg was the next town which had the advantage of a press, and moon aftervards Lyons-the one in 1471, the other in 1473. It was introduced into Russia about the year 1560 .

About the year 1496, the letter which we now call Ilalic was invented hy Aldus Manutins, n Roman by birth, who set up the business of printer in Venice. At first, Manutius usefl his Italic, or Venetian, as he salled it, for the printing of entire volumes; but this was not generally approved of hy typographers, and aner a short period, Italic was employed only for particular werds, prefaces, and introductions. Latterly, it has been the practice to use Italic only in very particular cases, as its constant requisition indicates a poor style of literary composition.

PRINTINO IN ENOLAND.

The early history of printing in Eugland is ohscure. The credit of introlucing the art into that country was long believed to be due to Mr. Williama Caxton, a mereer and citizen of Landon, who, during his travels alroad, and his residence for many years in Holland, Flanders, and Germany, had tharoughly informed himself of the process, and upon his return, was induced, by the encouragement of many men of wealth and rank, to set up a press in Westminster Abbey, about the year 147 l . Such was the tradition amongst writers, and it is still generally helieved. Its groundlessness was ascertained about the time of the Restoration, when a little book, which previously had bren little thought of, fell under the notice of the curious, ns bearing date at Oxford in the year 1468, heing three years antecedent to the presumed commencement of Caxton's lalours. 'This book, copiea of which are yet extant, is a small quarto of fortyone leaves, entited "Exposicio Sancti Jerovimi in Symbolum Apostolirum ad Papum Laurentium." At the same time (1664), a work was published by a Mr. Atkins of London, entilled "Original and Growth of Printing in England;" in which an account is given of an aneicut chronicle, said to have been found in the archbishop's palace at Lambeth, containing the particulars attending the first introduction of the art. By the latter, it would appear that it took place during the reign of Henry VI., under the auajices of T"tomas Bourchiers, Archbishop of Canterbuiy, who sent R. Tournour, master of the robea, and William Caxton, merchant, to Haerlem, who persuaded an under workman, named Corsellis, to come to England and set up a prese at Oxford. The manuecript mentiona, that tho transaction cost King Henry 1500 merks. But a single preso was soon fuund insuffisient for Eugland; ufon which the king met up anothar at St. Alban's, and a third at Westminster ; the last iveing placed under tho charge of W'illiam Caxton, in the year 1471.

It would the ueless for us here to enter Into the merits of the question concerning the autheraticity of the abovementioned chronicle, which at one tume divided the literafy worlif to a violent degree. We shall only observe, that the result of the dipputation ajprears to be thin :Tho existence of the twok before named entablishes heyond a doult that looks were printed at ()xforl by Coredin ecveral yeare before Caxton set his press to work at

Westminster, and therefore that that city has the honour of having leen the first sent of the art in England; but Caxton was the first who introducel the printing with numulded metal types, the works ly his predecessor having heen exceuted merely with wooden ones. It is by out early writers not having attended sulficiently to this ling of demareation between the two stages of the art, hay the misunderstanding has, as far as we can judga flet much caceful investigation, solely ariwen.

After the art of printing hal been thus introduced into Oxford and Westminster, it spread to St. Alban's Cambridge, Tavistock, Worcester, Cauterbury, Ipswich, \&ce., in almust all cases by the cneoumyment of the churchmen of these places, and generally with the view of printing works of piety. Alout the year 1500, at probably somewhat earlier, Pyuson was, ly patent of Henry VII., nnvested with the office of king's pringer, which may le regarded as the first instance of an ap pointment of this noture. At the close of the fiftecath and the commencement of the sixtenth century, Loa. don possessed a number of printers, lut nono whowe name has ieen so celelrated as that of Wynken de Worde, a foreigner, who hat heen instructed under Caxton. Ife improved the nrt considerably, and was the first printer in England who introduced the Roman letter-all provious printing, and much of 1 later date, being in the black or German leter.
Although at first countenanced by the elergy, the sit of printing was soon looked upon with eatreme jealoway by the church, which at leugth discovered that this in vention was but too certainly calculated to revol ationize the whole falric of society. The carlient eflorts of the art, as we have seen, were directed to the multiplication of the Bible; but for a period of sisty or seventy yras from the date of the invention, all the copies of the Scriptures which were printed were in the Latin or some other elassic language, not understood by the people, But now a new era commenced. Certain printers began to issue the Bible in the English tongue, translated from the original, and this gave mighty ulfence to the chumb or Romish hierarely.
In 1526, Richard Grafton, a gentleman of liberal cdecation, having adopted the profersion of printiug, issed an edition of the New Testament in the Euglish lan. guage, which drew down the wrath of the then Bistop of London. A proclamation was issued thy this prelde prohibiting ita une. "Understanding (nays this doctu ment) that many children of iniquitie, maintsynere of Luther's sect, bynded through extrearo- wishamer wandrying from the way of truth, anu the soan. fayth, craftely have translated the New 'Testanent into our Einglish tongue, extermedlying therewith many ha reticall articles and crroneous opinions, pervicious ano offensive, seducying the simple people,' \&c. The prom clamation goes on to order all copies of the said lim 'Testament to be brought to the bishop'a vien-general, to the burnt, inder pain of excommunication, and incurrius the suspicion of heresy. It does not appear that the fulminations of the bishop were of muth effect. The New Teutament having been readily purchased, it lel to the publication, in 1535, of the whole Bille in the Englind language, into which it was translated by Miles Cover. dalo. But this noble undertaking was necoupplieded abroad. In 15:19, England had the honour of produring an edition of the nible in the English tongue, under the auspicen of Crummer and Lienry VIII., the work being executed by Graftos and Edward Whitechurch.

The progress of the art in England, after its first rust into notoriety, was remarkally slow. In the sixterent century, it was interripted liy the bruils couscquent on the Reformation, and in the seventecuth centary ly tho still greater harassments of the civil war, and the gloomy religioua spirit which prevailed up till the Restorativa Thus lant event was even unfavourable to it, by iutrodeo
maza general licent and reapectable liter ant of partiament twenty printers to pr tho fire of London about St. Paul's lost meunting, accordin were accustomed to cathedral, and of ot fime the people wi thirk ; and as new the conammed stock tivity once nore in nuaber of printers bad long fallen int catalogue (the first books printed in \mathbf{E} to the end of 'Tria catinued to 1685 , mas failly say one mions and tracts.
"The whole num wen years from 160 was 3550 , of which physic-so that two books; 297 were sc geography and navi arerage of these fo werks produced ye reprints, pamplalets, Giily assuane that t much under 100. on edition, we hav have been small, fo can ssectain it, was
"Reger North, day who had the na nary mattern, says: ، eelling subjectiz, and meat, to write and ectaro to a sufficien current fir an hou logue, with prices, p we have just notic an octavo was fite
After the Revolut mpidly increased, by gence or news, as productions. In the increased still furthe tator, and other lite considerable impeti teman's Magazine, periodicals.
Printing was intr Edinburgh, duriue Caxton had brough it hue continued to tish metropols, an there liecomo the Printiag was not k t55., when a book in loullin; but till wrad executed in Ire country has at quire partment of the art ble piutuing establis
progress nn tul
The progress of bas been re markab of Germany, where
the a general licentiousness and contempt for any solid and resprectable literature. At this period there was an art of parliament still in force, preventing more than wenty printers to practise their art in the kingdom. "At the fire of London in 1666, tho booksellers dwelling about St. Paul's lost an immense stock of boaks in quires, anounting, according to Evelyn, to $£ 200,000$, which thoy were accustomed to stow in the vaults in the inctropolitan cathedral, and of other neighbouring churches. At that time the reople wero beginning to read again, and to thirk; and as new capital naturally rushed in to replace the consumed stock of books, there was considerable activity once more in printing. The laws regulating the number of printers soon after fell into disuse, as they had long failen into contempt. Wo havo before us a catalogue (the first compiled in this country) of all the books printed in England since the dreadful fire, 1666, to the end of 'Trinity term, 1680,' which entalogue is continued to 1685 , year by year. A great many-we may faity say onc-half-of these books are single sermons and tracts.
"The whole number of books printed during the fourwen years from 1666 to 1680 , we ascertain, by counting, was 3550 , of which 947 were divinity, 420 law, and 153 physic-so that two-fiths of the whole were professional books; 297 were school-books; and 353 on olyjects of geography and mavigation, ineluding maps. Taking the average of these fourteen years, the total number of works produced ycarly was 253 ; but deducting tho rejrints, pamphlets, single sermons, and maps, we may \&uily assuane that the yearly nverage of new books was much under 100. Of the number of copies constituting an edition, we have no record; we npprehend it must have been small, for the prico of a book, as far as we can ascertain it, was considerable.
"Roger Nortl, speaking of those booksellers of his day who had the nack of getting up volumes on temporary matters, sayi, 'l'hey erack their brains to find out selling subjecta, and keep hirelings in garrets, on hard mest, to write and corroct by the grate; so puff up an octave to a sufficient thickness, and thero ia si.e shillings current fir an hour and a half's reading.' In a catalogue, with prices, printed twenty-two ycars after the one we have just noticed, we find that the ordinary cost of an octavo was fire shullings."*
After the Revolution of 1688 , the business of printing mpidly inereased, by the demands for shects of intelligeace or news, as well as for a better class of literary productions. In the reign of Queen Anne, printing was increased still further by the issue of the Guardian, Speetator, and other literary sheets; and in 1731 , it received considerable impetus by the estublishment of the Cientleman's Magazine, bsing the first of tho class of larger periodicals.
Printing was introluced into Scotland, and legen in Edinburgh, duriug the year 1507, only thirty years after Caxton had hrought it into England. Since that period it has continued to be pursued with success in the Scottish metropols, and, within the last thirty years, has there become the must distinguished craft in the eity. Printing was not known in Ireland till about the year 155., when a book in black-letter was issued from n press in Inldin; lut till the year 1700, very little printing was excecuted in Ireland, und even since that priod, the country has noqured no relebrity whatever in this dopartment of tha urts, although possessing some respectable priating establishments.

Progress en tue continent and in america.

The progress of printing on the Continent of Europe has leen re markably slow. Uhless in the freo states of Cermany, where the art is pursued to an incalculable
extent, the profession of the printer is almost overywhere under the severest rcatrictions, and little can le pullishal without coming first under tho scrutiny of censors appointel by the governments. The art is carried on in Paris perhape with a greater degree of freedom than usual in other continental capituls, and from the plesses in that city some exceedingly elegant works have been issucd. But at Paris, an everywhere else, there is a general inferiority in the mechanisun of the printing-office. when compared with that now in uac in Englana and Scotland, except in those cases in which the presses employed have been imported from Great Britain.

While the art of printing las been by slow degrees crecping through the despotically governed states of Europe, and establishing itself at isolated spots in Oriental countrics, everywhero creating distrust, and nowhere allowed to be exercised with perfect freedom, it has readily taken root and flourished among the civilized inhabitants of North America. 'The first printing-preas established in tho American colonies was one get up at Cambridge, in Massachusetts, in the year 1638, the era of tho foundation of Harvard College of that place. It was only established by the exertions and joint contributions of different individuals in Europe and America; and there is no doubt that the mechanism and types were imported from England. The first work which issued from this press was the Freeman's Call, and the second the Almanack for New England, both in 1639 ; the first book printed was the New England version of the Psalms, an octavo volume of 300 pages. In $\mathbf{1 6 7 6}$, hooks began to be printed at Boston; in 168 f , printing becane known in Philadelphia; and, in 1693, in New York. In the year 1700, there were only four printingpresses in the colonies. Since that period, and especially since the revolution, which removed every thing like a censorship of the press, the number of printing-presses has greatly increased. The mechanism of the press has likewise been much improved in that country; and the Amoricans have copied the patent stoam-press of Cowper of London, and now possess machines of this description. In 1800, the number of presses land increased to 300 ; in 1830, they amounted to 1200 ; and we learn that they are still increasing in number and extending their influence. A few years ago, the Cherokees, one of the tribes of native Indians, set up a press, and commeneed a newspaper-a circumstanco which may be regurded as an extraordinary proof of the growth of knowledge in America.

We shall now proceed to a description of the art in ita various branches, though without entering into the more minute, and what would be tiresome, details of the pro fession.

OF THE TYPES.

Printers in early tines made the letters which they used, but, in process of time, the necessity for a division of lahour created the distinct trade of a manufacturer of types, and it is only in rare instances in the present day that printers supply their own letter. The preparation of types requires much delicacy and skill. The first step" in the process is the cutting of a punch or die, rescmbling the required letter. 'The punch is of hardened steel, with the figure of the hetter cut, the reverse way, upon its point. On this die heing finished, it is struck into a piece of coppror, blout an incli and a quarter long, one-eighth of an inch deep, and of a width proportionate to the size of the type to be cast. This copper, being so impressed with the representation of the letter, is called the matis. The matrix is now fixed into a suall instruncut or frame, called the monkl, which is composed of two parts. The exiernal surface is of wood, the interual of steel. At the top is a shelving orifice, into which the metal is puured. The space within is of the size of the required lody of the letter, and

10 made exceedingly true. The melted metal, being poured into this space, sinks down to the bottom into the matrix, and instantly cooling, the mould is made to open with the instantancous movement of a spring, and the type is cast out by the workman. This process of casting types is executed with great celerity. Of course, every separate letter in the alphabet, every figure, point, or mark, must hnve its own punch and matrix. In casting types, the founder atnnds at a table, and has beside him a small furnace nad pot of hented metal, which he lifts with a small Jadke. Type metal is a compound of lead and regulus of antimony, the latter giving liardness to the composition. The proper proportions of these metals is regulated hy the size of the type, a greater quantity of antimony being employed for small than large letters.
When the type is enst from the mould, it is in n rough etate, and as soon as a herp has accumulated on the castcr's table, they are removed ly a boy, who brenks off the superfluous tag of metal hanging nt the end of each type. From the breaking-off hoy the types are removed to another place, where a hoy is constantly engaged in rubbing or smoothing their edges upon a stone. Being now telerubly well cleaned, they are next removed to a table, and set up in long lines upon a irame, where they are polislued and made ready for use. Whatever be the aize of the types, they are all made of n uniform height, and must be perfectly true in their angles, otherwise it would be quite impossible to lock them together. A single irregular type would mont likely derange a whole page. The height of a type is, or ought to be, exactly ong inch; but founders, inuch to their diseredit, do not act with uniformity in this particular, the letters of some founders being higher than those of others. But all the types of one clase of any fourder are always uniform in size and height ; and to preserve their individuality, all the letters, points, \&cc. belonging to one class, are distinguished hy ane or more nutches or nicks on the body of the type, which notches range evenly when the types are set. These nicks, as we shall immediately see, are also exceedingly useful in guiding the compositor. Types are likewise all equally grooved in the bottom to make them stand steadily.

The varietics of size of types in the present dny nmount to forty or fifty, enlarging by a progressive scale from the minutest used in printing pocket Bibles, to the largest which is seen in posting-hills on the streets. Printers have distinct names for each size of letter, and use about twelve sizes in different descriptions of hook-work; the emalleat is called Diamond, and then follow, in gralation upwarde, Pearl, Raby, Nonpareil, Minion, Brevier (the type with which this sheet ic printed), Bourgeoir, Long Primer, Small Pica, Pica, and Eaglish. The larger sizes generally take their names thus-Tion-line Pira, Troolime English, Four, Six, Eight, or Tcn-line Pica, \&c. Other nations have adopted different designations for their letters, principally from the names of their inventurs ; for instance. the French entitle Small Pica, Philosophie, from the first mnker of the letter. Some of these classes of letters have derived their names from having been first ennloyed in the printing of the prayers in the Romish church. Thus, Pira, from the service of the mass, termed Pira, or Pic, from the glaring contrast between the black and white on the page-Primer, froin Primarius, the bomk of prayers to the VirginSrevier, from lireviary-Canon, from the canons of the cuurch, \&e.
All kinds of type are sold by weight hy the founcers, the price varying in nmount according to the aize of the ketter. The amallest size. Diamond, costs about 12s. per pound; Brevier, atout 3s. 6.l. ; English, aloont 2N. ; and © in propsrtion for all intermediate sizes. Expensive as types thus are, their prices wili not apperar too high conwdering the inmense outlay in cutting tho puaches and
the general manufacture. In the Diamond aize, 2800 go to a aingle pound weight of the letter i, and of tha thinnoed space about 5000.

A complete assortment of types is called a Fount, which may be regulated to any extent. Every type founder has a scale slowing the proportional quantity of each letter required for a fount; and a peculiar scale in requirad for every language. For the English language, the following is a type-founder's acale for the sinall leb ters of a fount of types of a particular size aind weight:-

a	8500	\mathbf{h}	6400	\mathbf{o}	8000	\mathbf{v}	1200
b	1600	\mathbf{i}	8000	\mathbf{p}	1700	\mathbf{w}	2000
c	3000	\mathbf{j}	400	\mathbf{q}	500	\mathbf{x}	400
d	4400	\mathbf{k}	800	\mathbf{r}	6200	\mathbf{y}	2000
e	12000	\mathbf{l}	4000	\mathbf{a}	8000	\mathbf{z}	200
\mathbf{f}	2500	\mathbf{m}	3000	\mathbf{t}	9000		
g	1700	n	8000	\mathbf{u}	3400		

It will be seen from this scale that the litter ε is used much more frequently than any other character.

Types are nowhere manufactured so well as in Great Britain, and for their eleganco and regularity of form, they have been much indebted to the late Willian Caslon, letter-founder, in London. Mr. Caslon was originally on engraver of ornamental devices on the barrcls of firearma, and a maker of bookbinders' tools. The neatnesa with which he executed his work brought him into notice, and he was appointed to cut a fount of Arabic letters for an edition of the New Testament. This occurred about the year 1720, and fron this period he entered on a suc. cessful carcer as a ietter-founder. Hitherto the type used in England had been mostly imported from Holland; but Cas!on's letters, by their decided superiority over those of all competitors at home and abroad, soon put a stop to the importation of foreign types, snd were held in such estimation, as to be frequently sent to continental countries. From 1720 till 1780, few books were printed in England with the types of any other than this foundery, which still continues in existrace in Loudon.

The ingenuity and success of Caslon mect with parallel in the case of the late Mr. Alexander Wilson, type-founder, in Glasgow. This person, by. a stong efliort of perseverance under difficulties, began to cul punches for types at his nutive town, St. Andrews, about the year 1740, and there opened a letter-loundery \rightarrow the first estahlished in Scotland-in company with an equally enterprising individual named Dain. In 1744, Mesma Wilson and Bain removed with their fuundery to the neighbourhood of Glasgow, where it long tlounished. The types produced by Mr. Wilson were exceedingly neat, and even elegant, and became the real foundation of the famo of the Messrs. Foulis, printers, whose editions of the Classics were printed from them. Branchen of the (ilasgow letter-foundery were nfterwards established in the Euglish and Scottish capitals. In Edinburgh, besides the foundery of the Messrs. Wilson, grandsona of the first of the name, the principal estanlistment of the kind is that of Messra. Miller and Company, whose types we consider as atanding in tho first class in respect of neatness, beauty, and regularity. They are largely fmployed in the printing of Bibles, newspapers, and othes works in which a small type is required.

The large letters used in poating and hand-billa are manufactured chiefly at sheffield. In this kind of typet very great improvements have also been made in rement times; and the varieties nre becoming yearly more nomerous and varied in character. The letter used in printing in North Ameriea is made principally at Xew York and Philedelphia; and the style of both typogra. phy and presswori in that country is rapidy improving, and now competing with the prolucts of the English press. The type used in this edition of Cuambrasi Ifronmation yoa the People, was cast in the fundig of L. Johnaon \& Co., Philadelphia.

Ali the types in cues, ot shanllow h binds of cases-the neareat the compo In the upjer caso a fals, accented letter berences to nutes. kere, points, and spa lower, no alphabetic tan a larger or sma more or less frequ most in request are lance to the compo lar division of the 1 conpositor, who re opot where lies th stranger in a priutia oble as the rapidity work; but habit ve mechanically to the have to be introdu pair of cases of the The process of pages may now b manuscript before in front of the low left hand what is te this instrument is o of \& particular widt iron or brass, with I screw, may be r either case the co and squarc. One the letters of each points, into his sticl bis leff haud, and P right along the lin stick, he docs not r it with the face in conplished by looki must be plac (See adjoinin one of those bour which e art, and whict cost of produc of machinery line, the comp the carctiunes The first litter and the line: there mue and no crowding in script. Each meta far as regards that the letters are not menta, therefors, to my rate with a syl thickness of the sp compositor is diatin! will ot allow the x inatances, and with Ilis duty is to equa bly can; and this is composing puetry, always a blank sp opscing is very easil with largol spaces, poetry, the mintter and justified, so as with the previously - Mreatly facilitated α brase, called a se f the thinnem
led a Fount Every type al quantity of uliar scala is ish longuage, the smoll leto ud weight:-
v 1200
w 2000
x 400
y 2000
z 200
tter e is used seter.
1 as in Greal arity of form, llian Caslon originally an arrels of fire l'he neatness In into dotice, bic letters for curred obout red on a suche types used Holland; but ty over those "11 put a stop e held in euch inental counre printed in his foundery,
meet with a ader Wileon, by. a strong oegan to cut Idrews, about oundery-the th an equally 1744, Messm ndery to the ig tlourished. exceediagly al foundation 4, whose edi1. Branches ds established o Edinburgh, grandsons of hment of the , whose typee n respect of Iargely emres, and other
rand-billy are kind of types ade in recent rly more nuetter used in pally at Nc oth typogroly improving, the English Cuavarraí the foundry

COMPOSING

Ali the types in use in the printing-office are sorted in uses, or sballow boxes, with divisiona. There are two kinds of cases-the upper and lower case; the latter lying pearest the compositor upon the frame for their support. In the upper case are placed all the capitals, small capitale, acceuted letters, figures, and charactera used as references to notes. In the lower case lie all the small lethirs, points, and spaces to place between the words. In the lowet, noulphabetical arrangement is preserved; each letter bes a larger or smaller box allotted to it, according as it is mors or less frequently required; and all those letters most in requeat are placed at the nearest convenient distance to the compositor. By this ingenious and irregular division of the lower ease, much time is saved to the compositor, who requires no Inbel to direct him to the opot where liea the particular letter he wanta. To a stranger in a printing-office, nothing appears so remarkable as the rapidity with whieh the compositor does his work; but habit very soon leads the hand rapidly and mechanically to the letter required. When Italic letters have to bo introduced, they are taken from a separate pair of cases of the same fount.
The process of composing and forming types into pages may now be adverted to. Placing the copy or manuscript before him on the upper case, and atanding in front of the lower case, the compositor holds in his left hand what is termed a composing-stick. Sometimes this instrument is of wood, with a certain space cut in it of y particular width; but more commonly it is made of irou or brass, with a movable side, which, by means of a screw, may be regulated to any wilth of line. In either case the composing-atick is innde perfectly true and squarc. One by one the compuaitor lifts and puta the lettera of each word and sentence, and appropriate points, intu his stick, securing eael with the thumb of his left hand, and placing them side by side from left to right along the line. When he places a letter in the stick, he docs not require to look whether he is placing it with the face in its proper position. His object is accoaplished by logking at what is called the nick, which most be placed outwards in his composing-atick. (Sce adjoining representation of a type.) This ja one of those beautiful contrivances for saving labour which experienco has introduced into every art, and which are na valuable for diminishing the rost of production as the more elaborate inventiona of machinery. W' he arrives at the end of his line, the compositor a task to perform in which the carefulness of the workman is greatly exhibited. The first letter and the last nust be at the extremities of the line: there must be no spaces left in some inatances, and no crowding in others, as we see in the best manuscript. Each metal type is of a constant thicknese, as far as regards that particular size of letter; though all the letters are not of the same thickness. The adjuatments, therefore, to complete tho line with a word, or at any ra'e with a ayllable, must le made by varying the thickness of the apaces between each word. A good compositor is diatinguished by unifurmity of spacing: he will ot allow the words to be very close together in some instances, and with a large gap between them in othess. His duty is to equalize the spacing aa much aa he poasibly can; and this is in monie cases very troubleaome. In composing poetry, or similar matter, where there is always a hlank space at one of the ends of tho line, epacing ia very easily accompliahed by filling op the blank with largel spaces, or quadrats. But whether prose or poetry, the mstter of each line muat bo equally udjuated and justified, ao as to correapond in point of compactness with the previously set liaes. The process of composing - mreatly facilitated by the compositor using a thin slip α bras, called a seitingrrulc, which he places in the com-
posing-atick when he begina, and which, on a line being completed, he pulls out and places upon the front of the line mo completed, in order that the types he sets may not come in contact with the types behind them, but glide amoothly into their placea to the bottom of the composingatick.

When the workman has set up as many lines as his compoaing-stick will conveniently hold, he lifts them out by grasping them with the fingers of each hand, and thus taking them up as if they were a solid piece of metal. He then placea the mass in an elongated board, termed a galley, which has a ledge on one or perhaps hoth sides, The facility with which som compositora can lift what ia called a handful of movable type without deranging a aingle letter, is very remarkable. This aort of akill can only he attained by practice; and one of the severeat nortifications which the printer's apprentice hae to elldure, is to toil for an hour in picking up abont a thousand letters, and then see the fabric deatroyed by his own unakilfulness, loaving him to mourn over his heap of broken type, technically called pic.

Letter by letter, and word by word, is the composingstick filled; and by the same progression the galley is filled by the contents of auccessive aticks. When the compoaitor has set up as many lines as will fill a page, he binds them tightly round with cord, and renjoves them from the galley. The annexed cut is a representation of a small page of types tied up, and placed on a board.

Sometimes, as in the case of nowspaper and aimilat work, the handfuls of type aro accumulated till they fill the galley, and are then removed in lang columns. After the matter is thus so far prepared, it is the duty of the pressman to take an impression or first proof from the types, in order that the compositor may criect the errors which are aure to have been made. Proots are usually taken by means of an old large press kept for the purpose. After the galley matter is corrected, and re-corrected by the compositor, it is livided into pagea of the aize wanted; and head-lines, or figures indicating the number of the page, being added, the pages are arranged upon a large firm table, and there sceurely fixed up in an iron frame or chasc, by means of slips of wood and wedges, or quoina. $^{\text {and }}$

Thia process, which ia called imposing, being completed, and the face of the types being levelled by a plainer and mallet, the form, as it is called, is proved and prepared for press. Proof-sheets being taken, they are oubjected to the acruting buth of a reader employed in this peculiar function in the oflice, ond of the author. These laving made their marka pointing out worda and letters to be altered or correctrd, the compositor once more goes over the form, ccrrecting the errors by lifting out the lettera with a bodkin, and when revised, the sheet is pronounced ready for working. It may be explained that the imposing table at which all these corrections are made, is usunlly composed of smooth stone or marble on the top, and requires to be a subatantia' fabric.

It need scarcely be told that the aize ot booka greatly variea; but the aizes are all reducible to a standard determined by the number of leaves into which a sheos of puper is folded. The most common aize is octava
3×2
each sheet of which contains cight leaves, or sixteen pagas ; the next is duoderimo, containing twelvo lenvea, or tiventy-four pages in the sheet; and the next octordccimo, or aighteens, containing thirty-six pages in n sheet. Thero are many other sizes, such as the larger quarto, the smaller tuenty-finurs, \&cc. To know how to pince pages of types in n form so as to produce, when printed, a regular series upon paper, is one of the branches of the art to be acquired by the young compositor.

PROGRESSIVE IMPROVEMENTS IN TYPOGRAPHY.

The following particulars relativa to the early productions of the press, will show how the style of book. printing was gradually improved:-" With respect to their forms, they were generally either large or small folios, or at least quartos; the leaser sizes were not in use. The leaves were without running title, direction word, number of pages, or divisiona into paragraphs. The character itself was a rude old Gothic mixed with Secretary, designed on purpose to imitate the handwriting of those times; the words were printed so close to one another, that it was difficult and tedious to be read, cven by those who were used to manuscripts, and to this method, and often led the inattentive reader into mist:akes. Their orthograplyy was various, and oftern arimtrary, diaregarding methol. They bad very. frequent abhiraviations, which in time grew so numerous and difficult to be understood that there was a necessity of writing a book to teach the manner of rending them. Their periods were distinguished by no other points than the double or single one-that is the colon and full point ; but they a little after introduced an oblique stroke, thus /, which answered tha purpose of our comma. They used no capital letter to begin a sentence, or for proper names of men or places. They left blanks for the places of titles, initial letters, and other ornaments, in order to have them supplied by the illuminators, whose ingenious art, though in vogua before, and at that time, did not long survivo the masterly improvements made by the printers in this branch of their art. Those ornnments were expuisitely fine, and curiously variegated with the most beautiful colours, and even with gold and eilver; the marginn, likewise, were frequently charged with a variety of figures of saints, birds, beasts, monsters, finwers, \&c., which had sometimes relation to the contents of the page, though often none at all. These embellishments were very costly; but for those that could not alliord a great price, there were more inferior ornaments, which could be done at a much easier rate. The name of the printer, place of his residenct, \&cc. \&c., were either wholly naglected, or put at the end of the book, not without some pions cjaculation or dixology. The date was likewise omitted, or involved in some crampt circumstantial periol, or else printed either at full length, or by numerical titters, and sometimes partly one and partly the other-thiss, one thousand CCCC and Ixxijii, \&c.; but all of them at the end of the book. There was no variety of characters, no intermixture of Ronan and Italic ; they are of iater invention: but their pagea were continued in a Gothic letter of the same size throughout. They printed but few copies at once, for 200 or 300 were then extepmed a large impression; though, apon the encouragement recejved from the learned, they 'ncreased their numbers in proportion."

About 1469-70, alphatiptical tablea of the first words of each chapter were introduced, as a guide to the hinder. Cat-h-worth (now geverally abolished) were first used at Venice, by Vindeline de Spire. Karly printed sooks hud no signatures. Nignatures are those lettens of the alphalret which are put at the bottom of the right hand pagea of sheets to distinguish their order. When the alphabet is finidied, it second begins A a, or 2 A, ir. dead of a ningle A; ani when that is terminated, A a a, or - A, Irgia the thiril, and so on Ir. urder to indicate
more correctly the order of each alieet, printers add figurea to the initinl letter on the third, finth, and seventh pages ; tho numbere of these figures, which do not pus the middle of the sheet, point out the size of the edition Thus A 2 on the third pago, A 3 on the fifth, and A 4 on the seventh, show a work to be in 8 vo; in the 12 m size, A 5 on the ninth page, and A 6 on the eleventh page, \&c.; but it is now customary to give signaturen only on the first and third pages of 8 vo , and on tha first third, and fifth pnges of 12 mo .

In aome modern French works, figures are substituted for letters, and tho other leaves aro marked by anteriska Tho invention of signatures ia ascrilied by M. Marolles to John of Cologne, who printed at Venice in 1474; the Abbe Rive attributer it to John Korlhol; a printer al Cologne, and a cont mporary with the former, from whom we have a work dated in 1472 . It is, however of little consequence who was the originator, for, on the whole, aignaturea are rather a clumsy expedient cierely to direct the binder in folding the sheet, and are gens rally much too conspicuous upon the phiges.

One of the chief inprovements in the style of typo graphy has been the dismissal of abbreviations and connected letters from the founts. Formerly, ab', via tions were very common : the word the was indies. 'by tha letter y and a amnill e above it; the conjunction and was indicated by \mathcal{G}, which is a contraetion of et. There wore many of thia species of abbreviations in printing both the Engliah and Latin languages, and these were not inore unscemly than the connected letters; sucb for instance, as the junction of the letters c and t by curve stroke from the top of one to the other. In recent times all these connected letters have heen disused, with the exception of $f l$ and f, because the hend of the common f would press against the l, and be broken. Another very great improvement has been eflected in the dismissal of the long s, in the case of two of this letter coming together.

STEREOTYPING.

We may now offer a brief explanation of the process of stereotyping, which has been of immense service to literature. Stereotyping is the manufseturing of fictitious pages of types, and the invention is generally attributed to a Mr. Williain Ged, of Edinhurgh, about the year 1725. When the art was properly made known, it was hailed with acclamation by the printing and publishing world; but as experience developed its powem it was found to le strictly spplicable only to a particular kind of work.

When a page is intended to be as areutypal, the aame process of putting up the types is gone through that we have already described; instead, however, of lejing catried to the press, the page is plastered over with liquid stuceo to the thickness of about half an inch, so that a level cake is formed on tha nurface of the types. As soon as the stucco hardens, which it does almost imme diately, the cake is separated from the types, and on being turned up, shows a complete hollow or rrouldilite represertation of the faces of the types, and every thing else in the juge. There being no longer any "se for the types, they are carried of and distributed. As for the cake, it is put into an oven, and baked to a certain des gree of heat and hariness, liko a piece of poltery. It in next laid in a square iron jran, having a lid of the same metal, with holes at the corners. At the bottom of the pan there is a movable plate, called the floating plate; and upon this plate, which has a amooth accurate surface, the mould is placed with its face downwards. The li being now placed and held tightly on by a screw, the pan, by tho assistance of a crans and other mechanism, is immersed in a pot of multen lead, and being allowed to fill hy means of the holen, it is at length taken out and put aside to conl. On opening the pan a curious y
paralice in presen inte of the cake, a titing the perfect which the stucco plate or fictitious dirth of an inch. is in a somewhn proned at the edge necessary, one or by soldering in the ia also planed upon rotatory cutting in
The stereotype tha printing-ollice, done by placing th that both plate and page of real types. iid of small meta which catches are I wedged. Notwit making the plates seldom that they a rate os possible f pasteboard or paper blocks at the thimut monpleted, the plat aidue for future u stereotyping.
In all cases of from types to the den distribute the published in parts, comes absolutely ne ceason for this. it often happens th nutnoer than of nn up to complete sets priat copies accordi loss is sustained.
ix, therefore, simply to answer future do to that of keeping t the types up anew.
In the case of \mathbf{C} feature of utility w stcreotyping art. I pression of that w nished tne means. imposed, are sent to type plates are cas usa in Edinburgh, and there subjecte of setting up the ty of errors being incu vision, are thue a pracess heen availa unpression or the a upon, and the progr sequently obstructe mas alterwards take the proprietors of the Penny Magazin upiwards of a dozen ex printed in differe

PRO
The dules of th cess of printing. the composing-roon nom, where they c men. The earlies rade, and seem to prese, with a contriv puiat of pressare.
parance is presented. The lead has run into the mould cile of the cake, and formed a thin plato all over, exhititing the perfect appearance of the faces of the types on which the stucco was plastered. Thus is procured a plate or fictitious page of types, not thicker than the dixth of an inch. When the plate comes out of the , mn, it is in a somewhat rudo state, and has to bo carofully pruned at the edges, its little specks picked clean, and, if neeessary, one or more had letters cut out, and replaced by soldering in tho heads of movable types. The plate ia slas planed upon tho back ly means of an ingenioua rotatory cutting machine upon which it is fixed.
The stereotype plates, so prepared, are next taken to the printing-otice, and made ready for press. This in done ly placing them upon iron or wooden hlocks, so that both plate and block make up the exnet height of a page of real typles. They are fixed to the blecks by the sid of small metal catches at the sides, head, and foot, which catches are held fast by slips of furniture properly wedged. Notwithstanding the great care taken in making the plates level and of a uniform thickness, it is meldom that they are perfect; and to make them as accurate ss possithe for a fair impression, scraps of thin pasteboard or paper are placed between them and the blocks st the thinneat parts. When the impression is smpleted, the plates are unfixed, packed up, and lind sisie for future use. Now for the specific utility of stercotyping.
In sll cases of common hook-work, it is best to print from types to the mmount of the copies required, and dien distribute tho types; but in most cases of books puhlished in parts, wheets, or numbers, stereotyping becomes absolutuly neccssary. It is easy to perccive the rason for this. When books are published in numbers, it often happens that many more copies are sold of one numise than of nother, and unless the types be kept up ta complete sets in the hands of the publishers, or to print copies according to the increased demand, a serious loss is sustained. 'The manufacture of stereotype plates, is, therefore, simply a means of keeping up fictitious types to answer foture demands, at an expense greatly inferior to that of keepiug the actual pages standing, or of putting the types up anew.
In the case of Chnmbers's Edinburgh Journal, a new festare of utility was for the first time developed in the stereotyping ntt. It was desired to have a sepmate impression of that work in London, and stercotyping furnished the means. The types being first set up and imposed, ore sent to the foundery, where theo sets of stereotype plates are cast from them, one to be retained for ase in Edinburgh, and the other to be sent to London, and there suljected to a separate press. The expense of setting up the types noew in London, and the danger of errors heing incurred from the want of editorial supervisioa, are thus avoided. Had not the stereotyping process heen available, the arrangement for a separate umpression o.: the Journal might not have been entered upon, and the progress of the work in circulation consequently obstructed to an indefinite extent. Advantage was sferwards taken of the art to the same purpose by the proprietors of other cheap periodicals, particularly the Perny Magazine, of the cuts of which we believe upwsids of a dozeu sets of stereotype copics are sent to be printed in different parts of the world.

process of printing.

The dates of the compositor do not involve the proasss of printing. Wt.on the furms are duly prepared in the composing-room, they nre carried into the pressmom, where they come under the charge of the pressmen. The earliest printing-presses wero exceedingly rove, and seem to have resemblet the conmon serew press, with a contrivance for ruming the furn under the poiut of pressure. 'lisis must have been bot ouk a
laborioua and slow operation, bat one exceedingly de fective, from the difficulty of regulating the inpresion and the risk of injuing the faces of the typen. The defects in these original pressea wore at length remedied by an ingunious Dutch mechanic, William Jansen Blaew,

who carried on the business of a mathematical instru ment maker at Ainsterdam. He contrived a press, in which the carriage holding the form was wound below the point of pressure, which was given by moving a handle attached to a serew hanging in a beain having a spring, which spring caused the screw to fly back de soon as the impression was given. This species of presa which was almost entirely formed of wood, continued in general use in every country in Europe till the beginning of the present century With certain lever powern attached to the screw and hnndle, it is lare represented.

In connection with the representation of the old common press, the process of printing may be described The form, being laid on the sole of the piess, is fixed at the sides so as to render it inmovable from is position. There are two men employed; one puts ink on the form either by means of stuffed balls or by a composition roller-the other works the press. The latter lifts a blank shect from a table at his side, and places it on whnt is called the tympan, which is composed of parchment and blanket stuff, fitted in a frame, and tightened like the top of a drum (and hence its name), and which, by means'of hinges connecting it with the sole, folda down like a lid over the form. As the sheet, however, wonld fall off in the act of being brought down, a skeleton-like slender frame, called a frisket, is hinged to the upper extremity of the tympan, over which it is brought to bold on the paper. Thus, the frisket heing first folded down over the tympan and the tympan next folded down over the form, the impression is ready to be taken. This is done by the left hand of the pressman winding the carriage below the platten or pressing surface, and the impression is performed thy the right hand pulling the handle attached to the screw mechanism. The carriage is then wound back, the printed slect lifted off and another put on "he tympan, the form again inked, and so on successively. In the above engraving the press appears with the frisket and tympan sloping upwanls, ready to receive the ahect, the frisket. being sustained from falling hackwards by a slip of wood depending from the ceiling. One of the grentest niceties connected with this art, is the printing of the sheet on the sccond side in such a manner that each page, nay, each line, shall fall exactly on the corresponding page and line on the side first printed. To produce this desirable effect, two iron points are fixed in the middle of the sides of the frame of the tympan, which make two small holes in the sheet during the firs. pressure. When the sheet is laid on to receive an impression from the second form, these bolen nre placed on the same points, so as to cause the two impressions to correspond. This is termed prolucis: $r_{s}+$ ecer, and unless good register is effected, the printunt
ban a vary indifferent appearance. Expert workmen purform these operations with surprising rapidity, though whit considerable latour. Two men employed at press take the process of pulling and inking for alternate quantities. After the forms are wrought off, they are washed in a solution of potass to remove the remains of the ink, which is of a thick oleaginous character, and then carried back to the composing-room to be distributed. This last operation is very speedily performed by the compositors.

To auit paper for printing, it is necessary to wet it eome hours previous to its being used. This is done by dipping alternate quires in water, and afterwards press. ing the anass with a henvy weight, till tho whole ia in a half dry or damp state.

After the sheets are printed, they are hung up on poles in the printing-office to be dried. On leing dried, they are individually plsced between fine glazed boards, and in this condition subjected in a mass to the prossure of a powerful press. On removal, the indentations of the types are found to be levelled, and the whole sheet to be amooth aus ready for the operations of the book-binder. Latterly a great improvement has been effected in the amoothing process, hy employing the hydraulic or water press, which gives an enormous pressure with little aid from manual labour.

INK AND INKING-ROLLERS.

Much of the beauty of good printing llepends on the quality of the ink, which it requires censiderable skill to manufacture. The ink used by the earliest printers was of such excellent quality, that in many instancer it remaing intensely black to this day; but a long period afterwards elapsed, during which very bad ink was employed. Within the present century, great improvemonta have taken place in the composition of printing ink, which is now produced of a good quality in London by several manufacturers; it is, however, still inferior to the finer kinds of ink used in Paris, the French laving evidently surpassed the English in Frolucing a pure and intensely black ink which will preserve its colour. Printing ink is composed of genuine liuseed oil, boiled to the consistency of a syrup, and then well-mixed and ground with lamp-black. The qualities desired in the composition are depth and durnbility of colour. and that it should be stiff without strong adhesion, and keep sof and mellow, but dry quickly after being put upon the paper. It is made of different qualities, from 1s. 6d. to ba, and upwards per pound weiglit.

One of the greatest θ, recent improvements in the art of printing is in the π de of inking the forms. From the daya of Guttenbur, this had lieen done by stuffed cuahions, or loills cove ied with skius, by which no regularity could be preser ied, and no speed acquired. Eairi Btanhope, when he anvented his improvement on the preas, attempted the plan of inking by means of rollers, but he couid not discover any speciea of skin suitable for the purpose; all that this nobleman so anxiously desired, was at length accomplished, in consequence of a chance ohservation of a process in the Staffordshire potteries, where rollere formed of a composition were used. A Mr. Formter, amployed at a booksellcr's printinz-offies at Weybridge, was the fust who ap, lied it to letter-press printing, by af eading it, in a melted slate, upon coarse canvas; the inventora of printing machises soon caught the idea, and, hy running the composition as a coat upon wonden sylinders, produced the perfect inking-rollers.

The composition is formed of treacle and glue, which, bring heated and meited together, are poured into long iron moulds, in which the central rod has previously neen inserted. The process resembles that by which moulded candlen are made, the central rod being nearly in the same predicament in the one case as the wick in tho other When taken out of the mould the roller is a
cylinder of moft and elatic matter, resembling ind rubher. If required for the hand-press, it in connected with a handle after the manner of a garden roller. The link leing placed, in moderate quantity, at the back of sinooth metal table, the workman, grasping the hande, draws the reller backwards and forwards along the table, diatributing a Jittle ink equably all over ita surface; and having thus diffused some ink all over the roller, he ap plies the same to the types, drawing it backwarde and for. wards over them, to make nure that all have been inked. By this plan the typea are inked more equably than by the lialls, and in less than half the time.

Within these few yeara, a plan has been davieed for moving the rollers over tho forms by an apparatuat tached to the press. Self-inking presses are now coning into use.

improvid printino presses.

As already mentioned, the original printing-preas an slightly improved by Blaew, remained in general use thronghout Europe till the beginning of the present century. Its defects were of such a nature, that it seems wonderful that no effort was made, during so leng a time to remedy them. The surface communicating the impression, or platten was genercilly only the size of half a sheet, and ao after one portion of a form was pressed, the carriage had to be still farther weund in , and the ra maining portion pressed. The consequence was, that besides losing time, the impressions upon a vingle sheet were not always uniform, one purt being perhaps harde pressed than the other.
At length, near the close of the eighteenth century, the celebrated Charles Earl of Stanhope applied his ingenious though eccentric mind to the improvement of the print ing-press. :Iis lordship's insprovements did not go the length of altering the general form or construction of the press. He left the same plan to he pus.sued of winding the carriage below the platten by a haudle and rounc, and of pulling the impression by the application of the right hand to the seat of power. What he pecemplished was the constructing of the press with irma instead of wood, and that of a size sufficient to print the whole sur face of a sheet, and of applying such a combined action of levers to the screw as to make the pull a grest deal less latorious to the pressman; the mechanism altogether being such as to permit much more rapid and efficient working.

The Stanhope press, which is here represented, consisth of a massive frame of iron, cast in one piece. This in the boly of the press, in the upper part of which a nul is fixed for the reception of the great screw, and its poia

operatea upon the upper end of a slider fitted into a dunt tail groova formed ietween the two vertical bars of the frame. The slider has the platten firmly attiached to tho lower end of it; and, being accurately fitted butween to
wide gridea, the platte when the serew is t and alider is countert the press, nusperded w lith it up, and keep of the screw.
There are two pro frame, to support the whese, rails are scre - the carriage to run pures to receive the it the printed sheet. Tb handle, with leather proses. Upon the ax pund which leather the lack of the carri ahich pass roumd the drew it out. By this one way, it draws out molion, it is carried in which limits the motic the action of the carri of Earl Stanhope's pi motion to the main se br a lever attached to tho main serew has end of it, and this con wanother lever of rat rpon the upper end al hundle or lever by wl Sow, when the wor mond the spindle, and mina screw turns with wend with it, and pror simply this alone, for nilled to the screw in trquired at the differe when the pressman tak pranallel to the frame, lever (being nearly pe at ight angles to the he serew makos a con herefore acts upon a lecause the real pow lever is not to be consid of the lever between it a perpendicular, drawn sapplied to the centre
The obvious excelli meat in gaising powe priters to apply this si of the commen press, accesse. 'The improv yedily followed by th Great Britain and Ams in printing mechanis these attcmpts been s cenury, that it is qui them in detail. With, 1ll the modern improve fined their efforts clicfl: passure to the platten, cure greater rapidity strew has been general wemetunes by the actio nooking against each cums and levers, and jobht The latter is an form of power, and mr we say, that it resemble of the knce-joint: whe the press is lent, the pl kree is forced by a leve Le platitn sinks, and Pol. 1.-10i
century, the is ingentoun of the print not go the uction of the l of winding and rownce, cation of the recomplished 1 instead ol ne whole surbiued action a great deal in altogethe and efficien

Itcd, consista ce. This is which a nut and its poin

5

wide goides, the platten muat rise and fall parallel to itself when the screw is turued. The weight of the platten anl dider th counterbalanced by a henvy weight behinit the presa, auspended by a lever which acts npoon the slider wlift it up, and keep it alway bearing against the point of the screw.
There are two projecting pieces east with the main frame, to support the carriage when the pull is made: w these, rails are serewed, and placed exactly horizontal the carriage to run upon, when it is earried under the fude to receive the impression, or drawn out to remove the printel sheet. The carriage is moved by a rounce or handle, with leather girths, very similar to the wooden press, Upon the axle of this handle a wheel is fixed, pund which leather helta are passel, one extending to the lack of the carringe to draw it in, nad two others atich pass round tho wheel in an opposite direction to hraw it ont. By this means, when the hande is turned ne way, it drawa out the rarringe; and ly rever-ing the molion, it is carried in. There is likewise a check strap whiel limits the motion of the wheel, and, consequently, the action of the carriags. The principal improvement of Earl Stanhope's press consists in the mole of giving motion to the muin screw of it , which is not done simply by a lever attached to the screw, but by a second luver. tho main screw has a short lever fixed on the upper end of it, and this communieates by an iron bar or link wanother lever of rather shorter radius, which is fixed upon the upper end of a second spindle, and to this the tunde or lever by which the press is worked is fixed. Sow, when the workmun pulla this handle, he turns rund tho gpinille, and. ly the connection of the rad, the min screw turns with it, and causes the platten to dowend wilh it, and produce the pressure. But it is not simply this alone, for the power of the handle is transnitted to the screw in a ratio proportioned to the effect nquired at the different parts of the pull; thus, at first, when the pressman takes the handle, it lies in a direction prallel to the frame, or acrosa the press: and the short liver (being nearly perpenticular thereto) is also nearly atright angles to the connecting rod; but the lever of the screw makes a considerable angle with the rod, which herefore acts upon a shorter radius to turn the serew; lecause the real power exerted ly any action upon a lever is not to the considerec as acting with the full length of the lever between its centres, but with the distance in a perpendicular, drawn from the line in which the action wapplied to the centre of the lever.
The obvious excellence of the Stanhapian improvement in gaving power for the handle, ied a number of priters to apply this species of lever power to the screw of the common press, but we believe not with marked viceses. The improvements of Lord Stanhope were yendily fallowed by the attempts of other individunls in Grat Britain and America, to remedy the ancient defects in printing mechanism. So numerous, indeed, have tuse sttempts been since the beginning of the present counry, that it is quite out of our power to mention Liem in detail. With, we believe, one or two exre;tions, wl the modern improvers of the printing-press have confind their eflorts eliefly to the process of communicatiug phasure to the platten, so as to modify labour, and procure greater rapidity of working. In these cases the witew has been generally disnissed, and power procured mmeturnes by the action of two or more inclined planes moking against each other, in other instances by fulcrums and levers, and in others by the straightening of a jint. The latter is an exceedingly simple and berautiful brim of power, and may exsily be comprehended when ne say, that it resembles the hending and atrsightening of the knec-joint ; when the knee of the upright har of the press is lent, the platen is drawn up; and when the kree is forced by a lever into a perpendicular position, Lir plattrn sinks, and the pressure is conmunicated.

Thin may be connidered the mast efficient mole of compressing the platten yet discovered, and it would he difficult to rival it in the properties of simplieity and rapidity of execution. Nevertheless, such is the number and variety of improved presses in the present dny, that it would not he easy to decide upon which han the bew claims to the notice of printers. Among thone which have gnined a large share of approliation, may be mantioned the Columbian press, which is of American livention. 'I'his new press was brought to this country in 1818, by Mr. George Clymer of Philadelphin, and made the object of a patent. The pressing power in this instance is procured by a long bar or linndle acting upon a combination of exceedingly powerful levers alove the platen, and by many workmen this press is greatly preferred to any other.

I'lie varions improved preases which we have noticed, are, in most cases, made of at least three sizes, namely, deniy, roynd, and super-royal-that is, they nre respece tive!y able to print sheets of these sizes; and they accord ingly vary in price from about $£ 50$ to C 80 ench. They are nearly all manufactured by the patenteca in London. In the present day, the old wooden press of Blaew ia entirely discarded from use in printing, noml it is only to te aren occasionally in an obscure corner of the printingollice, reduced to the humble character of a proof-prese.

The only instance worth mentioning, in which an inproved press was made of quite a new conatruction, wat in the ease of the ingenious invention of Mr. John Ruthven of Edinburgh. This mechanician contrived a prese in which the types stand upon a fixed frame or table, while the pressing part or platten is brought over the form by heing hurled forward on wheels. On being brought over the form, a depending hook or noteh at each end of the platten is caught and pulled down by the combined action of levers beneath the table, and operated upon by the left hand of the pressman. This was an exceedingly meritorions invention, and many presses on this plan were manufactured and sold, but experience has evinced that the contrivance is only valuable when applied to small presses, not larger than foolscap size, and chiefly ueeful for executing johs. Mr. Ruthven makes his presses as small as quarto size; ond as they stand on a tuble, and can be casily wrought by any gentleman, no better press could be recommended to the notice of the amateur printer. The above cut presents a correct representation ol Mr. Ruthven's press, which in will be perceived is of an exceedingly conpact and port able forn.

the chaple.

It is worth while to remark, that till the present day the phraseology used in relation to the meehanial dotuils of the printer, poesesses cergoin traces of the eart
connection of the art with men of learning. A number of the technical terma, as may be wen from the demcrip. tion we have given, bre a corruption of Latin words. We tumy instance tympan, frum tympaoum, a drum, and a/el, (lot it wand), which is uned as a mark in correctiug proofaneets. 'The name brcuer, applied to a certain size' of type, originated, as has been already mentioned, in that letter heing first used in printing the Breviaries of tho Romishs church. An exceedingly old practiere prevails among printers of calling their otfice a Chopifl, and under this title the compositorn, fremsmen, and all otheres otugaged in the office, have tween in the habit of meting tugether, and forming a apecies of lislge, in order to settle allairs connected with the internal urrangenmente of the olfice, or miy disputes which may occur annong menilure. The general improvenent in every thing connected with printing patalisismenta, and the ndvance of mannors. have graally modified the spirit which used to prevail in thone confederacies; neverthelens, the n!pellation of the chapel comains, and is of tenditionary interems. It has treen supposed by many writers that the title of Chapel originated in Caxten's exercising the prolension of a printer in one of the chapels in Wextminater Ablsev; and it is exceedingly probible that it has an origin of this noture, for printing was at first carriod on in many phacen in England in connection with religious houses. Ilenee, it M.Creery's penim, entitled "I'he Press," the nuthor bas the following lines:
"Oar nel was hal'th from kingilom a far ahiroat, Ant riberestit in the hallow'd house of tive: From which we leurio liee lowange it recelced. Abll how bur miren lia lieavenly birth believerl. tisch primer hence. bowe'er cuitherst his walls, - Een to his day his hawy a Cuarel culle."

LAWS AFFECTING PRINTERS.

The proprivtors and printers of newspapers are auliject to various laws, euforeing the mokle of publication, the ceve of stamps, and payment of advertisement duties; but printers of hooks, or any common species of work, are practically left at liberty to carry on their husiness in any manuer or way that seems suitahle to themselves. Each printer, however, iy the act 2 V., c. 12, is requireds t.) priat upon the front of any sheet, if printed on one mile only, or upon the first or last leaf of every bouk consisting of more than one lenf, his name, place of alode, and husiness; penalty for omiswion $£ 5$, and the like penalty for dixpersing nny such pullifation without the imprint. But no actions ior prinalties ean he instituted except in the mane of the Attorney or Solicitor General for Eingland, or the Quecn's Alvocate in Scotland. The quefle enjoys the preregatise of printing the authorized versions of the Bille, Book of Common Prayer, Acts of Parliament and other state papers.

printing hy machinfs.

After all the ingenuity of Lord Stanhope and that of his successors had been lavished on the press, still the procese of priating could not be exceuted hut with consideetable fatigur, und at a rate of specil seldom greater than that of throwing off 250 inpressioun, or 125 complete sheets, in an hoor. It must appuar evilent that this was a state of things yuite incompatible with the aivancement of knowlidge and the necessity for proJucing a lage quantity of impressions in a short rpace of time, praticularly as regarded newapapers. It hecame apparent that an cutire revolution was required in cie atructure of the press; that the flat printing surface mould be disearded, and cylinalers brought into use. We have now to descrile how this great netw invention, appliad to priating-narbines, came to the adopted.
In 1790, Mr. Nicholson, the editor of the Phicu. .hienl Jnurual, procured a pratent for certain improv aments in panting, which patent imbolies almost every principle auno so sucecssfully mpplied to printurg-machines; and
although he did not carry his view into practiral effeet little has been boft for nubsequent engineren to do, hut to npply, in the mose julicious munner, the priaciples he laill down in his patent. Ho may therefore be juady considered as the originator of the great modern improve. ments in printing machinery; for with him orgginated the ldea of laking the ilupresmions from typen hy meane of cylin lors, und of inking the forms with collors inatead of lulls, which constitute the two emential parts of all elfective modern printing-machiner.

Whether Mr. Nichohem's inlaas were known to Mr, Künig, a (ieriman, is now uncertalis: but to him in dum the distinguished morit of carrying steam printing firat into ellect. Mr. Künig, conceriving it powille to apply nteam-juwer to prohluce nccelerated aperd with the com mon press, afor various unavniling elforts to obtain ansiatance from the printers on the Continunt, came to Eingland. Arriving in loondon alout 1841 , he sulmitted his wehome to aeveral printors there with no hetter aun cens, until introduced to Mr. Hensley, nenior. who, attracted ly Mr. Künig's plans, contered into arrangementa with him. Aner persecering for some time in variona attempta to accelerate the speed of the commen pross, and at the same time rember the attendance of tho man who noks the types unnecessary, his exprtions resulted, to use hin own words, "in discovering that they wem only emplay. ing a horse to do what had been lsefore done hy a naan." Ho in consequence gave up all idea of his projected improvements of the common press, nul turned hia atter tiun to Cybivirifical Pion'ringi,

After continued exprements for nome yeara, 1 amo: machine was made, in which the two lending leatures of Nicholson's invention were ambruced (the cylinders nud the inking-rollers), which the exhilited to Mr. Walle:, propuricter of the Times newsipnuer; and on shewing what further improvements were contemplated, an agreement Was entered into fur the erection of two narhines for priuting that journal. Accordingly, on the 28th No. vember, 1814, the pulific were apprized that the number of the Times of that date was the firet ever printed ly machinery, steam-propelled. At this jeriod but few per: sons knew of any attempts going on for the attainment of this object; whilet, nuablg those eonnected with prina. ing, it had onten lecen talked of, hat treated as chimerical

After the utility of cylindrical printiog had been thon proved, it was thought highly dosimble that the prinaiph should be applied to preinting fine luok-work, where no curate register is indisjensuhle. This was, to a certaia extent, attained, by using two large eylinders, the sheot of paper being conveyed from the bottom of the firt cylinder (where it had recoived the first impression) by theans of tajes, leading in a diagonal direction to the top of the sccond cylinder, round which the sheet wo carried till the mocond side was printed. Tlte first inachine of this description wns erected at Mr. Benaleg' olfice, where it continued at work for some years it more molern machines supereded it.

So sanguine were the patenteres (Mr. Kinig, Mr. Bens Liy, and Mr. R. 'I'ayloe) that no further improvement could be efferted, that in Murch, 1817, they issued a prospectus, oflering three kinds of marhines at bigh prices and requiring a considerable: annual premimen; but wo believe these offers wepe not embrnced.

In the course of 1815, Mr. Napier, nod Mrssrs Apple. gath and Cowper, took out jatents for improsements in cylindrical printiog machinery. Mr. Nippor's invention consisted chiefly in using grippers insteal of tupee, as is König's, for seizing hold of nud lea.ling the sheet of po per round the cylindecs. Ingeniously as this rachima was constructed, the principles upon which it wotkd caased it to give wny in gencral estimation to those d Aprlegath and Cowper. 'I'hese mechanicians' patent which expired in 1832, referred priacipually to the appo cation of two drums placed betwixt the cylinders o
onenre accuracy ir he shert was con to the other, inaten rhine, in a straigh ahet; and the mo inateal of polleranachines of this fine work. Machi spplegath and (Co mphennente in lom citive ; and it is nea that other manufi prosees fur the exec Printing archin alapted to the pe they are required. disued uniler two of newnpapars, one better kind of shoe There can be nothir cepable of firat prin lerwarda the seco a introdection of produce register: th the back of the firat inferior applearance pupera, it, the work quired. This kind to gain that end; fo printed deliberately, the last moment of duce a machire to perfect register, no racy, and no amall are required. Tho taned in this kind is: hat seceived its nides of the cylinder tho types of the se will cauae the secos upon the back of th ingly deairable end, at precisely the sain so. therefora any in the cutting of tho feciency, however ali and create an enorm With these explana of four different ma and nen-register she rates of sped.

1. A machine wi chine, generally use off from 900 to 120 hoys, one to lay on when printed.
2. A machine \mathbf{w} machine, but only the rate of from 1 boya to lay on the axelusively used for cylinders, about ten inches apart, and st A camb or eccentri with them the cyliut of an inch. The and to the machine cylinder only which the types is permitt the impression, so th altenately every tin v furwarils. Tiwo at two drums phared and the sheet is led priaciple ho fore lue jutily nlern improve ilin originated pers by meana rollers invead al prorts of all down to Mt . to him in dur 1 printing firs mible to apply with the com rita to obtain bent, crume to , ho sulimitted no hetter sum who, attracted igements with rious attemput ens, and at the man who ink ted, to use his - only employ. ne ly a man. x projected im ned his attern
years, 1 \&mra mading leatures (the cylinden to Mr. Walter, showing what , an agreement machines fot the 28th Jio. tat the number cuer printed by od but few per. the attainment cted with prinh. I ns chimerial had heen thua at the principh vork, where so nas, 10 a certaio iders, the share on of the firt impression) by ircction to the the sheet wo 'The first ins. Mr. Brasler' rome years in
inig, Mr. Bens r ithprovement ry isulued a pro * at high pricen chiam; but w

Messirs Apple mprovements is pies's invention 1 of tyes, ss in the sibet of po Is this machim hich it worked ion to those od nicians' patent II to the appo lie cylinders in
onanre accuracy in the regiater, over and under which he sheet was conveyed in its progrean from one cylinder w the uther, inntend of heing carried, an in König's machine, in a atraight line from the one cylinder to the other; and the mode of diatributing the ink upon table inatead of rollen-twa princlplem which have securnd to machinea of thin construction a decided jireference for fine work. Machliem of this construction were made by Applegath and Cowper for the princlpal printing eatabliahnents in Jondon, Parla, Edinlurgh, at,d many other citien; and it in nearly umon the molel of their machnen that other manufincturera now conatruct their mearnpremes for the execution of hook-work.
Printing machlner are now made of various kinda, adapted to the peculiar deacriptions of work for which ticy aro required. 'Ihene descriptions of work tnay be dassed under two riatinet huds, namely, the printing of newspugars, one nide at a time, and the printing of a better kind of shetets, or book-work, both sides at a time. There can lee nothing more easy than to make a lanchine espable of firat printing one side of a alient of paper, and lerwards the second, by the remeval of one form and ce introdection of another; but this process will not produce register: the second side n.ay or may not he on the back of the first, and the work is therefore of a very inferior appearance, though suitable coough for newspapers, in the working of which despatch is chietly roquired. 'Thia kind of press is thereíces the hent alitited to gain that end; for the first side of the paper ina; he printed deliberately, and the meco:al side be made uf to the late moment of time, and then thrown off. To produce a machine to print both sides at a time, and with perfect register, no small degree of nathematical accisracy, and no small shnre of ingenuity in the nechanician, aro required. The great and important olject to he attaned in this kind of machine, is to cause the shoet, after that texeived its firat inpression, to travel aloug the nides of the cylinders and druma at such a rate as to meet the types of the second side at the exact point which will cause the second side to fall with perfect accuracy opon the back of the first. To accomplish this exceediugly deairable end, the cylinders and drums must revolve at precisaly the same speed as the carriage underncath; ad therefore any inaccurucy in the turning of the axles, the cutting of the tecth of the wheels, or any other deficiency, however slight, will produco ill-registered shects, and create an enormous degree of vexation to the printer. With these explanatory remarkn, we pass on to a notice of four different machines, calculated to produce register and non-register sheets, under various modifications and rates of epeed.
l. A machine with one cylinder, called a single machine, generally used for printing newspapers; it throws off from 900 to $\$ 200$ an hour on one side, requiring two hoys, one to lay on the paper, and another to reccive it when printed.
2. A machine with two cylinders, called a double machins, but only printing from one form of types at the rate of from 1600 to 2200 an hour, requiring two boys to lay on the sheets, sud two to take them off, erclusively used for newspapers. It consists of two small cylinders, about ten inches in diameter, placed alout five inches apart, and auspended from a beam at each end. A camb or eceentric causes the beams to vibrate, and with them the cylinders to rise and fall about one half of an inch. The cylinders turn in opposite directions, and as the machine only prints one forn t a time, that eylinder only which is turning in the same direction as the types is permitted to rest upon the form, and take the impression, so that a sheet is printed by ench eylinder aternately every time the type-zarriage goes backwarda 4 forwards. Two hoys feed the paper into the machine, at two drums pluced about three fert ahove the carriage, and the sheet is led lown to the cylinders by tapes, which
alno convey it, wfter belng printed, to the end of the mechine, where two boye receive the sheetn and lay them atraight In a heap, ready to be agnin put through the machine when the wecoml form is placed on the typecarriage to print the other shles. Thare in a dintinct und completer apparatus for laking the typen at each end, aimilar In primeiplo to that which la mentioned in the account of the book machine. Many of the largent aizell and lwat newspapers sre grinted by machines of thim comstruction. 'They are generally moved by manual Iahsur, two men turning a winch, which uperater upon the mechanimn und fly.wheel.
3. A machine, uinilar to that used by the 'Thone, with four printing cylinders, requiring the attendance of eight boys, and throwing off ahout 4000 inpressions an bour. 'lo atte mpt to deacrile thin machine without diagrama, in difticult, but a general doa may be conveyed of ita priuciple, by its being conaidered as two doublo machine placed in contant. There are four printing cyliniter, aliont nine inches in thameter each, placed close tagether in parm, but with a space of nbout seven inches between the centre ones, in which apnee there are two inkingrollers. Euch puir of cylindere are secured to the ende of two strong lenma, by memis of indjustable connecting rods; to there beums a slight viliratiug motion is given, ly means of cambs, no us to cause the alternate cylindere to risa and fill shout one-fourth of on inch. 'I'he ijpeo curringe and inking-tables hnve a reciprocating motion, and the movements are so adjusted that those tivo alternate cylinders ahall be deprisued and press upen the types, whose motion coinciles with the iarriage, and, of courne, the other two alteroate cylirden are by the same means raised sufficiently to permit the types to pass ivee under them, till the carriage chnnges the direction of ins motion, when the position if the cylinders is reversed, and the pair which formesy took the impression from the types are in their turn raised. Thus, evary time the form of types moves backwards or forwards, two sheeta of paper are pritited. The paper is fed into the machine over four drums, placed in pairs over each other, at a considerable height above the machine, by four boys. The shects are led down from the drums to their respective cylinders liy neeans of brosit tapes, and by other tapees they are comlucted out to the ends of the machine, where they are received by fat other boys, when printed, ready to be agnin passed throngla the machine, to receive the impression on the secord side.

This ingenious machine has enly two inking appara tuses, one situated at each end. There sre three paire of inking-rollers, one pair at each end, close to the two outer cylinders, the remaining pair being placed betwon the two centre cylinders. The inking-tables are ab. at three feet wide, and the motion of the carriage is sufficiently long to bring ench table not only under its respective pair of inking-rollers, but also to enable each table alternately to ink the centro pair. Thus, the form is first inked by one of the outer pairs of rollers; the first cylinder is raised; in pussing under the second, an impression is given, and, of course, the ink is taken from the form, but it immediately becomes inked anew by the centre pair of rollers; the third cylinder is raised; the form passes to the fourth cylinder, where another inpression is taken; and the motion of the form being continued a little fanther, it gets ngain inked from the outer pair of rollers at the opposite end of the machino from whence it started. In its return, the two cylindere which had just taken the impression are raised; the other two now print in their turn, the inking prucese going on as hefore; and two sheets are again thrown off. Machines of this complex deseription are only used whene extraordinary despach, in the production of a large number of copice, is required. Fcw, besides that employed by the Thines, and other London daily papers, are in uee. The only one in Scotland, as far as we know, is that
ased in Edinhurgh, for printing the Nurth Britiah Advertiser of Messrm. (Oray, snil which was made by Morten end Aon, inachine-makera, I, ith Wulk.
4. The fourth kind of machine is calleed a book or perfieting machine, printing both wides of the sheet in reginter hefors it leaven the machine. 'I'he machine from which the annexel engraving in taken, in one of this deacription, and beara a remonblance to that of Appleanth and Cowper. It in about fiteen feet long ly five

broud, and conmists of a very atrong cant-iron framework, accured together liy two enils and several croms hars. To this frame afl parts of the machine are fixed. In external dgure, an eeen in the cut, it in a large appraratus, of imposing appearance. On approaching it when at work, we perceive two cylinders, an large aw hogsheads, revolving on upright supports; two smaller cylinders or drume revolving above them; and bencath, within the framevork, a talle on which lie the types at both emde, going constantly backward and forward. A bell from a ateanerngiae, acting upon a nhat in the frame, given motion to the whole apparatun. It will further he observed that a boy marked a in the cut, is standing on the tup of some stepe feeding in sheets of paper, ench of which, on being delivered, is swept round the first cylindre b (heing held on ly tapen), gets ita imprestion below from the typea, is carried over and hetwixt the drume abive, and then brought round on the mecond cylinder c; now it gets ite second aide printed, anal issuing into the apace between the cylindern, is meized by the hoy d, who lays it on a table completely printed. The whole operntion is accompanied with a loud noise, from the revolving of the cylinders, the working of the notched wheels, and the driving of the table to and fro liy a rack leneath, hut without any strain on the mechaninm, or risk of injury to the attendants. On minutely examining the purts, we observe that at each end there is an appuratus of rollera taking ink from a ductor or remervorr of that material, and placing it upon a portion of the moving table beneath; here other rollers distribute it, while others tuke it off and roll it upon the pagen of typea, ready for cach impressiun.

The two printing cy:indera are nearly nine fret in eircumierence earh, and are placed about two feet apart. They are accurately turned, so that the surfaces of the ty pe-carriagen and the cylindere may be perfectly parallel. The axin of each cylinder workn in brass hearinga in the upright fasmework, where, by means of serews, the degree of pressure with which the cylinders are allowed to rest upon the types may be regulated to any degree of nicety. Over about two feet of the circumference of each cylinder which forms the printing surface, two folds of cloth, called blanketa, are atretched by means of rollers placed inside the cylinder. 'Ihe lower blanket is seldom chanyed, but the upper one, on the second cylinder (which stand in the atead of what are called slip-shects in handpress printing) must be shitited as soon as the ink which it bas abourbed from the printing on the firkt side of the sheet begirs to eet off, or soil the paper when receiving the weiond imp:ession, This shifting in speedily effected, by unroling a sufficient quatity of the coth of one
roller, and winding it up on the other, to oremann a chan portion to the printing nurface.

The cylimiers have a continuoua rotatory mution to warils each other, given by two large toothed wheerk whilst the typerearriagen move backwardm and forwand under them. The movementa are so centrived that the type-carriagen shall have gone and returned to the name pmint during the perial thut the cylindern have male onie entire revolution; consequently, each surcensive impres sion in taken from the typea by the anme part of esich cylinder; and thina, in order to bring the impreamion level, the same fucility for patehing or overhying is aflorted ans at the hand-preas. The two druma placed betwren the cylinders are for the prirpone of enusing tho mbeet of papar to pasa amoothly and accurately from one jriutiag cylinuler to the other.
'T'o preserve the sheet in its proper place on the eyline dern, and carry it forward through the diflerent parta of ita joumey from the hand of the one lmy to that of the other, there is an extensive appluratun of tapena, some of which nre observalle in the cut. Theme tapee are half an luch broad, and are formed into meries of cndiks bamals, mrranged it certain distances apart, wo as to fill into the interstices and marginn of the farma, ond thers fore cenpre being crumhed betwcen thr ty pen and cylin. ders. The machine may be stoppeed at any inatant, by turning the handle of a lever, which shifte the belf foon the fast to a loose pulley, without atopping the engine
To produce an impreswon with a dat surface from large form, requires a fores of about from forty to fity tona; and even with a cylinder, where a line only is impreaned at a time, the presmire is little short of a lon But, in the machine, to prevent any undue pressura of the cylinders upon the forms, there are worklen bearen, of the same height as the typers, serewed upon the sibis of the carriagea under the emiss of the cylindera; thus offectually shielding the typen fron the enormous and injurious pressure which a cylinder might, through accident or otherwise, be caused to exert.

Four machincs such an haa been described are constantly amployed printing the work of Mcwsr, Cham bers at Edinhurgh, the whole, together with a fat pressure machine, iwing moved by a ateamengine of four-horse power. At the large printing estabtistbment of Messrs. Clowes \& Sim, in London, we hel' at least twenty machines of this kind are to be aen daly at work.

Besides thowe various descriptions of marthness abore alluded to, as being princtpally in une, there ane otien calculated to "xecute work of a mose peculfar nature. Perhapa the mont wonderful of theme mgenious piera of mechanisun is a unchine whith has been masde to print two colours hy only one impression-a lower form charged with one coluthr being caused to rise drough and come upon a level with another fomm, so that both may be printed at once. Hithesto the work which has been executed by this machine has consisted chiudy of the atamp-duty markn for the Excise, and for bank-Dotes, fancy labels for druggists, and other similar jobw.

A machine for printing newapapers (on one side ats time) has also come into use, constructed by Carr and Smi'th of Belper, on the plan of an mancing and re tiring cylinder, while the bulle for the types is slativnarg. It is more easily turned than the other kinls of news pajer suachines, and is sand to be exceectingly suitabio for printing newspupers of a limited number of inprior sions, such as are issued in many country towns.

The only other cylinder machine which we masy leers notice, is one invented by Mr. Cowper, intended to print frem convex stereotype plates. The plates, iustesd of being fixed flat upon thecks, an will shortly be described, are fastened upon the cylinders, so as to give them : bent form, and the priatir g ta effected with the face of the plate or type surface downwards; wherefure the
oure we placed u all other printing. preuliar alvantage
We have now printing, anal it in certain drawhack by a ronad or cyli given ly ans even of pressing partly lag up to the impl impreation, in teel dight blurring, or Girness that in re printing, from the nore quivkly than defect is the time forma, for the mac whlom requirea and a slicet of ater presuare of the cyl jefect in the leveln printing surface, is puting patches le tine is thus consu der muchine, that any thing at it, u wanted. In other suitable for long fineness of work in
Thene deficienci nuneroun and exp to machiner with cessful of these att and another by a g hava been working printing ollice. 'I' eoming into genorn and priuting phatte with a type carria, go betow the plate fact, the apparatus face to sirve hoth type carruagra, an are effected hy mac inked by an appar retuirea a laycr-on besides a superinte hour, or 350 comp
By the introlue hase now describs within these few y revolution; and ail we now emplayed ment to compositor dec, muxt be very profession hax been ing of cesenp litecar a fortunate cesincid having ahout the s given to the trade Whicre printed witl cal publications. in itsell' hecome a don lately mention regularly every thr round, cach at a pr turess in Latudon, larly engaged; the parts of Europe, In a few yeara the

[^80]ribed are con Ifsers. Cham with a dlat amrengine of extablishment we hell al be men uaily
ar hroes athov re anc other cullar nature ehious pieces heen made to - a lower form , rise through , no that both th which ha ted chiefly of or benk-notes jobs. one side at 2 by Carr and ncing and re fis atationary finls of ack ingly suitable wor of inpros towns.
we may licm onded to prist tes, instead of - be describer give them a hi the face of wherefore the
neppry placed undermost inntead of uppermont, ate in all other printing. We have never heard what are the preuliar alvantagea of thin fanclful contrivance.
We have now deweribed the advantagea of cylmier printing, and it is hut proper that we ehould mention certaln drawhack to jta univermal use. The preasure by a round or cylimitical murface is lena perfect than that given by an even aurface. The cylloder haa the effict of preseing partly on the cilge of the type, both in comiag up to the impromion and in leaving it therefore, the inprewtion, in technical language, is not clean: it has a alight blurriag, of waste that degree of marpmena and fuirneas that in reguired fin fine look-work, Cylinter printing, from the mame canse, weara down typea much more quivkly than llat presmes. A fully more important defect is the time repuired to preparn a mheet of typen, or furma, for the machine. A wheet, nuch an the present, mellom requirem lown than three hourn to make ready, and a whect of atureotype plates an hour longer. 'The promure of the cylizulery is so searching, that the mallest Sefect in the levelnems of the forma or of the blanket and priating surfice, In olservahle, and munt be remedied by puting patehes bensath the outer blanket. So much fine in thus consumed in preparing a whect for the cylinder marline, that it wonhil be a positivo losas to print any thing at it, unlesm a grent number of copies were wanted. In other worily, cylinder machinem are only suitable for long impremsiona, and where a moderato fineness of work is sutlicient.
These inficiencies of the cylinder inachine have led to numerous and experaive attempte to apply ateam power to machines with flat printing surfaces. The mont aucaesful of these attempts has licen one by an Anserican, and another by a gentleman in loonlon, whose mochines have been working for nome years in Mr. Spottiswooke's printing-olfice. The latur in by far the leat, alud is now eunaing into general use. It consints of an upright frame and printing platten, resembling the common hand-press, with a type carriage at cach nide. 'I'he type carriagen go befow the platten alternatuly; so that, in point of fact, the apparatus is two presses with one printing surface to survo hoth. The movements to and fro of the trpe carrages, and the pull downwarls of the platten, are effected loy machinery beneath. The forms aro also inked by an apparatus for the purpose. 'This machine requiree a layer-on and tuker-ofl of sheets at each end, besides a superintendent, and works about 700 sidea per hour, or 350 complete sherts.*
By the introduction of the steam-presses, which we have now described, the profession of the printer has within these fow years unlergone a mont extraordinary revolution; and nlthough, $\boldsymbol{p}^{\text {rerhapas, fewer hamd-pressmen }}$ are now employed than formerly, the increase of employment to compositors, enginesra, bookhimders, looksellers, de., must be very great. The principal alvance in the profession has been sine the year 1832 , when the printing of c'uap literary shects rese into importance, and by a fortunate colncilence the patents of various machines having ahout the same time expired, a new impulse was given to the trade. liardly a newsuaper is now anywhere printed with a hand-press, and few or no periodical publications. The makime of printing-machines has in itself become a great bowimenw. One maker in Lentdon lately namtioned to us that he prociuced a machine regularly every three weeks uion an average all the year round, cach at a price of ahout \llcorner ltolo. Other manufacturess in Loondon, and aloor now in Scotlaml, are similarly engaged; the machines being sent not mily to all parts of Europe, but to Anerica, Australia, ant India. In a few years thero will not he a civilized country of

[^81]any convequence on the giohe which nows not poneme these powerful iliatributors of human knowledge.

It will readily be mupposed, that the intrombuction of a ateam-preas anch an we have demeribel, han caumed a very extenuive alteration, buth in the cimenaions of inany printing-officea and in their organization. Printing is now a manufacture, 'The printing-oflice is fuctory' and the interior of one of these concerna uaualiy prementa a remarkahle apectacle of induatry, animate aisd inanio mate, which to a stranger leaven is lanting impremaion wa the mensory,

ENGRAVINO.

In the printing of betterpress or woolents, an has been ulready noticed, the impressionn are eflected by the raised facea of the lettera, or marka, in the manner of a matop. Jrinting from engraved plates ia performed on a primeiple diractly the reverse! in this came, the fare of the metal, cleared of the ink danbed upon it, given no reprenen-tation-the printing is eflicted from the munk lines. Whilo woodengravings may be printed nlong with typematter, engravings on plates of metal require to be pininted by themaelvea,

The discovery of the ort of engrating on metal, for the purpone of making impresmiona on prper, in genee rally ameribed to Finiguerra, a goldmaith of Florence He excelled in an art then much practised in Florence, called niello. It was the cuatom with jewillura, in thowe times, to engrave the outlines of Scripture aubjects upon tho vesach which they malo for the use of the church. When this engraving wan completed, they filled the linee with a black subatance composed of a mixture of lead and silver, in molution will borax and sulphur ; and impressions were taken from this in clay or sulphir, 'The hack wulstance usid was called niello, and hence the mane of the art. 'Ihe same process was almo umid when piecea of armour, houschold plate, and other articles, were engraved for the purpose of being italail with metals, wood, or ivory.

German writers elain the honour of the invention for a citizen of Antwerp, Martin Schoengauer, asserting that ho practised the art before Finiguerra. It seems probable that it appeared nearly amultaneously in both countrics. The enrlicst distinguiaked engravers, after the diseovery of the art, however, were Italians.

It does not appear that Finiguerra pursued his invertion any further than to tuko impressions on paper instead of clay. A contemporary, of the same profession and city, Baccio Baldini, improved upon tho invention by engraving on plates for the expreas purpose of taking impressions on pujer. He was greatly assinted by a distinguished painter, Antonio Pollajuolo, who furnished him with desigus for his engravings, and also by another artist, Sundro Botticelli, who made a set of drawinga, from which Baldini engraved plates for an edition of Dante, published in 1488, and supposed to be the firat book ever cmbellisthed with enpperplate engravings; though this notion has been proved false by a German writer. The works of Baldini attracted the attention of a Roman engraver, Andrea Mantugna, who had alrealy hecome distinguished as one of the nost succeseful of the niellutori. This artist not only assiated Baldini with original designs, but also turned his own ethorts to the promotion of the newly discovered art, in which he soon thecame proficient.

In our notice of the early days of the art, we must not onit mentioning Albert Durer, one of the cariiest Duteh engravers. Some knowledge of the art secms to have bern previously possessed in Holland by Martan Schoengauer, who in thought by some German writere as we have seen, to have invented it, and who was certainly a contemporary of Finiguerra. The works of Matin, and his disciple Wolremuth, inspired the genius
of Allart Durer, who did much for the improvement of the art, excelling equally on copper and on wood.* Marc-Antonio Raimondi, an Itslian artist, having seen Durer's prints, improved upon them, and became at Rome master in the art. Thus the profession was apread simoltaneoualy over Holland and Italy. Although dhere have been varioun improvements in the profession of the engraver since thia early period of its history, the mode of etching the plates remains aubatsntislly the same.

At present there are several kinds of cngraving, each effected in a different manner, and of these we shall offer a ahort account.

Line-Engraving.-This ia the principal as well aa the most ancient species of engraving; it is employed for all elegant pictorial embellishments, and ia more expensive than any other. This, as well as every other kind of copperplate engraving, is commenced by a process called etching. The plato is made perfectly clean on its polished surface, and hested sufficiently to melt a composition of asphaltum and Burgundy pitch, called etching-ground, which is rubbed upon it, and rendered equal all over by dabbing with a ball of wool covered with ailk. The plate ia then held up for the aurface to receive the emoke of a wax taper, until it is rendered black and glossy, into which state it comes on not being suffered to cool during the process. These preparations being effected, and the plate becoming cold, the etching-ground, which is not thicker than a coat of varnish, is found to be of a hard consiatence, and ready to receive the tracing of the subject intended to be etched. 'I'he previous preparation of the subject is a very important step in the process. The subject is drawn upon transparent psper with a black-lead pencil, and being laid with the face downowards on the etching-ground, the lines or marks of the drawing are pressed upon it with such force thr: they are left on the ground on removing the paper. This is called transferring; and, of course, the excellence of the representation to be produced, depende on the excellence of the drawing. Engravers, therefore, in copying paintings, require to possess a degree of akill in the art of delineation hardly inforior to that of the original artist. The drawing being transferred in the manner dascribed, the engraver appliea hia tool, or etching needle, over the lines, carefully removing the ground, at the same time pressing aufficiently hard to scratch the surface of the copper. A wall of wax ia now placed round the margin of the plate, and into the enclosure so formed, squatortis ie poured, to the depth of half an inch. This aquafortis decomposes or bites into the copper where the etching. ground has been removed. During this process, globules of air arise from the decomposition, and these are esrefully removed with a feather, to allow free scope to the biting liquid. The length of time employed in biting the plate ia regulated by the depth required, also by the state of the atmomphere; in ordinury casens, the operation may be performed in about on hour. When it is ascertained that the plate is properly acted upon, the aquafortis in poured off, the wall of wax removed, and the ground cleared with spirits of turpentine. The plate is now said to be etched, and when printed from in this state, exhibits the appearance of a pell and ink sketch. To this atate of etching, but regulnted by the nature of the sulject, profeswional engravern bring the plates to be finished in the line manner. Different gradations of power are given by the aquafortis, and parta are rebitten to the depili required; after which, the light parts are put in with a sharp needle. Other parts are then cut with gravers of various sizes and forma, suited to the lines which will bent express the respertive objects. The engraver, in thus finishing his work, rests the plste on a wanll cushion, mo that it may be conveniently turned dith the left hand, while the incisions are cut with the
graving tool by the right. These tines are re-entered crossed in varions directions, or cut in the apacea bo tween the diagonal crossinge, until the desired effect in produced. Landscepes and architecture ore generally executed with the needle and aquefortia: portraits and
historical aubjects are chiefly cut with the graver historical aubjects are chiefly cut with the gaver.

Dotting is a style of engraving, in which dots of various aizes and deptha in the copper, instead of lines, express the form ond ehadea of the subject. They are first carefully made in the etching-ground, then bitten, and some parts atopped out, to prevent the farther action of the aquafortio on them; while other parts receive additional bitings, till the subject has the power required, After this, the plate is cleaned, dotted up with the neeile, stippled with the graver, or rebitten, until sll the grada tions of force sre communicated. This style is genorally used for portraits.

Mezzotinto engraving is in a great measure a reversal of those stylea elready described; being the reducing of a darkened aurface of copper to one that is light. The operation is generally commenced by grounding or puncturing the plate with a circular-faced tool, on the edge of which are a number of points; this instrument by being rocked regularly coer the surface of the copper in every direction, covers it so completely with marks or epots, that, if it were printed from, the impression would be perfectly black. On this dark ground the subject is traced, directing where the various gradations of light and half-tint are to be seraped out ; which operation is performed with tools sbuped like a surgeon's 'surct, while the highest lights are hurnished with a poished atcel instrument, until the proper effect is produced. This style of engrnving is used chiefly for portraits and historical subjects. It has a pleasing solt sppearance, butit in underatood that the copper soon faila in producing strong impressions, and it is therefore not well adapted for subjects of which grest numbers sre required.

Aquatinto engraving is an exceedingly eomplicated style of producing pictorial effect ; but being executed at a lower price than that of the kinds previously men. tioned, it is commonly resorted to for embellishing book of travels or other works requiring illustrations of a sim. ple nature. In appearnnce, it resembles tinting with Indian ink, and the prints are ausceptible of being finished with water-colours. In commencing the procesa of aqustint engraving, the plate must be cleaned with an oil rubber, which is a strip of woollen cloth rolled up hard, to about two inches in diumeter; this, with a little impalpable crocus and aweet oil, will gire to the copperplste, when peifeetly cleansed from the ail, a proper surfuce to receive the ground, which is made with pulverized sifted rosin and spirits of wine, incorporated by gentle heat, till it appears like a varnish. This composition is poured over the plate while placed in a alanting position, so as to permit the superflunus liquid to run oft. The operation nust be so managed ss to preo serve an equal surface. As soon as the granulation, or drying of the grain, appears, the plate must be placed horizontally, when the spirit will evapornte, and the particles of rosin will adhere to the copper. When dry, the aurface appesre evenly covored, as with a diminutise honey-comb, and perfectly smooth. On this the subject is trsced, and the highest lights painted out with a sable pencil in t inixture of turpentine-varnish and lampblack, so as to prevent the squafortis acting on those parts. The margin is also covercd, and on it a wall N wax is tixed, with a npout at one comer. The aquas fortis in regulated in its atrength ly the temperature of the wenther and the hardness of the copper. Being boured on the plate, it remains until the first gradation of tint is bitten-the aquufortis having acted on the copper between the particles of rowin which adhered to the plate. The aquafortis is then taken off, the plate dried, and this first degree of tint atopyed out or coven'
wer witn the b aquafortia le agai of int; and so or been bitten in. a proof taken an lar ot re-biting g before: when co Heck, well mixed of foliage on ligh of tint may requ of the plate mus varnish rednced tho untouched ip, must then the repl short time the w and loosen them. water is taken off, remain until a bu waches, and the y graving las been Plate-Priating above styles. are finished by the from these is ve daubed over with are cffectually filt the plste, it is nc the workman wi and then with thy whiting. It may more ink is thus indentations; ho being thoroughly piece of damped a roller covered impression on the at a moderate we quent rubbing of may be suppose such is the weur platea will yield siona in good o alweys the best al of this defect in plates, for all sub become very com Seal Engravia altogether distine While the harde by a tool wielded kinds of stone re engraver are bo e erfol instrument The cutting too lathe, and is ma motion. The la tion, erected on the artist, and is engrsver of met resl-angraver in command over ? be exceedingly would perhaps elbows resting o of his left hand daped bolt or p in preseing the or guiding it ao tations. One to the device. Th lred tools, vary also necessary t tool in shaperd a adge like the

LITHOGKAPHY.

ro re-entored the spaces be ore generally portraits and genver.
Which dots of stead of lines, ct. They are $d_{\text {, }}$ then bitten, forther action perts receiva owver required. ith the needle,
all the gradis style is gene-
sure a reversal ne reducing of is light. 'Tha ading or punc. 91, on the edge instrument by the copper in with marks or ression would the subject is ations of light a operation in yeon's 'ancet vith a poished is prodiced. portraits and carance, butit aducing strong lapted for aub
y complicated cing execuled eviously men. Hlishing book tions of a sim. tinting with ble of being cing the proo st be cleaned woollen cloth rameter ; thin, oil, will giro from the oilh lich is made vine, ineorpoarnish. This ${ }^{4}$ placed in umus liquid to ged as to prersnulation, or at be placed , and the pa: Vhen dry, the a diminative is the subject I with a sable h and lamping on those 1 it a wall N The aquar nperatore of pper. Bcing rst gradation reted on the 1 adhered to off; the plate ut or coveral
wer witn the blackened varnish. When hard, the aquafortia in again poured on, to bite the second degree of int; and so on until all the tints have in succession been bitten in. The copper must then be cleanaed, and a proof taken and compared with the originnl. A similar or re-biting grain must then be laid on the plate as before : when cold, a composition of treacle and lamphack, well mixed, must be used to paint the projectiona of foliage on lights, or other touches which the mssses of tint may require. When these are dry, the whole of the plate must be washed over with a thin coat of varnish reduced with turpentine, which will adhere to the untouched parts of the work. The wall of wax must then the replaced, and clenn water poured on; in a shart time the water will mix with the treacle touches, and loosen them. When all appear to be removed, the whete is taken ofl, and aquafortis poured on, and nilowed to remain until a sulficient degree of power is given to the touches, aid the subject completed. Latterly, aquatint engraving has heen in many eases supersed dod hy lithography.
Plate-Priating.-Copperplates, engraved in any of the above styles, are rendy for press as anon as they are finishel by the engraver. The method of priuting from these is very simple. Their engraved aurface is daubed over with a thick olenginous ink, so that the lines are effectoally filled. As this dirties the whole face of the plate, it is necessary to clean it, which is done by the workman wiping it first with a piece of canvas and then with the palms of his hands rubbed on fine whiting. It may be calculated that a hondred times moro ink is thus removed than actunlly remains in the indentations; however, such is necessary. The plate being thoroughly cleansed, it is liid on a press, with a piece of damped paper over it, and being wound beneath a roller covered with blanket stuff, it is forced to yield an impression on the paper. The plate requires to be kept at a moderate warmth during the operation. 'I'ho frequent rubbing of the plate with the hand to clean it, as may be supposed, tends greatly to wear it down; and wuch is the wear chicfly from this cause, i ' at few copperplatee will yield more than a few thous.ads of imprese aions in good order. The earliest, called proofs, are always the best and most highly prized. In consequence of this defect in copper, the practice of engraving steel plates, for all subjects requiring long numbers, has now become very coinmon.
Seal Engraring-This is a branch of the profession altogether distinet from that of the engrnver of plates. While the karclest metala are susceptible of being cut by a tool wielded hy the hand of the artist, the different kinds of stone required to be operated upon by the sealengraver are so extremely hard, that a much more poweful instrument than the hand has to be resorted to. The cutting tool is fixed into a turning machine or lethe, snd is made to operate while in rapid rotatory motion. The lathe is of a light nnd mininture construction, erected on an elevated bench or table in front of the artiat, and is moved by a foot-board benenth. The engrever of metal plates sits while at his work, but the neal-engraver in general stands, in order to have greater command ovez tis operations. He likewise requires to be exceedingly stendy in the hand, for the slightest error would perhaps be irremediable; therefore, with hoth his elbows resting on cushions on the bench, and the palm of bia left hasd leaning on the top of an erect roundishhaped bolt or pillar, his fingers of both hands are busy in presejing the atone to the edge of the whirling tool, or guiding it so that it may receive the appropriate indentations. One tool, however, cannot executo all parts oi ${ }^{-}$ the device. The cutter possesses from one to two hunlied tools, varying from a large to a amall size. It is also necessary to explain, that the cutting part of each tool is shaped so as to present to the stone a sharp thin Nge like the rim of a wheel. (By sticking a small
wafer on the point of ain, and contciving the edge of the wafer, when turning roand, to he the cutting part, good ides may be obtained of this curious inetrument., As the tool projecte horizontally, tho artist, by holding the atone heneath it, with its surface to be cut uppermont, is thus enabled to watch the progress of his operation from beginning to end. Sharp as the cutting tools of the seal-engraver are, they would entirely fail in perforating the gems to which they are applied by the lathe, unless they wore given an additional sharpness, by meane of a foreign material occaaionally epplied to them while in rapid motion. This material is diamond dust. The diamond is so expensive an article, that the particles used by the seal-engraver are those which have been rejected as wate by the lapidary. These being placed in a hollow steel tube, hnving a tight-fitting rammer of the same material, a few smart blowe on the upper extremity of the rammer reduce the particlea to powder. A small portion of this dust is then mixed with a little highly refined oil, and being held to the tool in a state of motion, it is attached to or forced into the metal. If a powerful magnifying glass were taken to examine the tool after its nbsorption of the dianiond duat, its edge woull be ohserved to resemble a rasp or saw, the particles being partly imbedded and fixed in the ateel; hence, properly speaking. it is not the tool, but the diamond dust upon it, which cuts the surface of the stone.

To cut an clahorate device, gueh as a bust or a coat of arms, upon the surface of a cornelinn or other gem, a vast deal of care is necessary on the part of the artist. The precise depth of every turn and indentation is matter of serious study, and a momentary heedlessness might have the effect of ruining the work of several days. The operator, however, exercises caution in his ingenious labour. The stone being dimmed by friction, is drawn upon with a brass point to show the subject ; the artist first traces the outlines of his figures, next opens them with the bolder tools, and gradually proceeds to the details with finer and finer instruments, frequently stopping to take impressions on wax, to see the effect which has becri produced, before he gives the finishing stroke to his workmanship; lastly, the surface is repolished, and the seal completed.

Engraving, in all jts bronches, is a species of labour which requires payment higher than almost any other department of art; for not only must there be great alility brought to the task, but a degree of patience and perseverance beyond what is required in most other employmente.

LITHOGRAPHY.

Lithography (from lithos, a stone, in Greek) is the art of printing from a peculiar kind cf stone, and generally in a style which resembles the more ordinary kinds of engravings. It was invented at Munich, in Bevaria between the years 1795 and 1798, by Alois Sinefelder a person of literary ability, who, being too poor to pay for the printing of books in the usual manner, endenvoured to fall on a method of executing hia productions from the surface of various metala and also of stone. Proceeding in his ingenious attempts, he was at length successful in discovering that drawing made on the surface of stone will form a sufficient type to yield inked impressions on paper. From Munich, the invention shortly spread over Germany; it was also introduced into France and Eugland; and finally, after encountering the usual quantity of derision, lithography took its place alongside the more ancient arte of letterprese and cop. per-plato printing.

The stone employed for lithography is of a calco argillaceous nature (lime end clay), resembling in appenratice a snooth yellow hone, and is found in quarries in Bavaria; it is likewise found in England but mostoue?
are so good as those from Germany, and their importation if a consilerable object of commerce. The atone, when prepared, usually varies in thickness from an inch and a half to two inches and a half; those which are large requiring the greateat thickness, in order to endure the severe pressure to which they are exposed. Of whatever dimensions, the stone requires to be perfectly flat, and highly poliahed on the upper aurface. The ink to be employed in making the drawings for the atone varion in compusition according to the precise nature of the work, and whether the drawing is made direct on the stone or transferred to it from paper. One kind, of a good quality, consists of dried tallow soap, mastic, subcarbonate of potash, (ninese or tahle varnish, and lainjpblack, the varniah being the principal ingredient. Tho materiala are incorporated in a close vessel over a fire, and when prepared are cast into moulds. The sulstance taken from the moulda forms a chalk, which may be pointed like a pencil, or it may be dissolved in water to form an ink.
The drawing is made on the atone either by the pencil or chalk, or by tho ink and a fine pen or camel-hair pencil. "To render the lithographic procese intelligible, let it be aupposed that the artist now completca a Jrawing with the chemical chalk juat deacribed, upon a grained stone. If, while in this state, a sponge filled with water were passed over the face of the stone, the drawing would wash out, the chalk with which it is ronde being, as we have seen, soluble int water, by reason of the soap which it contains. Before, therefere, it is capable of yielding impressions, a weak solution of nitrous acid is poured over it, which unites with and neutralizes the alkali or soap contained in the chnlk, and renders it insoluble in water. After this, the ukual course is to float a solution of guin over the whole fice of the atone, and when this is removed, it a sponge and water be applied to its surface, as before supposed, the drawing is found to be no longer removable, because the chalk with which it ia executed is now no longer soluble in water. In thia atate the work is ready for the printer,
who obtains impressions oy the fellowing procen-, Having thrown with the enda of hia fingera a few drope of water on the atone, and apread them with a eponge, so aa to wet, or rather damp, the whele surface equally the printer finds that the water has been imbibed by the atone only on these parts not occupicd by the drawing, which, leing greasy, repela the water and remains dry, A roller properly covered with printing-ink ia now passed over the whole atone, which will not even be soiled where it ia wet, from the antipathy of oil and water, But the jauis occupied by the drawing being, us we have seen, Iry and greasy, have an affinity for the print ing-ink, which therefere passea from the rollcr and ath taches itself to the drawing. In this atate it is eaid to bo eharged, or rolled in. Damped paper is thes, put orer it, nud the whole being passed through a press, the printing-ink ia transferred from the ateno to the paper, and this constitutes the impression. By repeating in this manner the operations of dnmping the stone and rolling in the drawing, an almoat unlinited number of impressiona may be oltained. No:v, as we have said, the modes of lithography are various, but the illustration just given will explain the principle of them all. It coneists in the mutual antipathy of oil and water, and the ntfinity which the atone has for both, that is, in its parver of imbibing either with equal avidity."-Penny Cyclo paria.
The art, in whichever way pursucd, requires great delicacy and dexterity. In drawing on the stone, the slightest mark of the hand will fnsten on the surface and appear in the impicssion. Tr execution of the impression in an equally clear and dark manner is evidently a matter of difficult a complishment, there bcing nothing more common than ', lithographic impressions light at one part an.i is is te ather. Tho process ol printing differe froir $: \therefore$ ietterprees or copper-plates The atone, proper!. atd with paper over it, lies in a box on the talle of the press, covered by a piece of leather, and ia drawn bencath a hard edge or scraper, the mechanisun being assiated by a lever power.

RESOURCES OF IIUMANITY-USEFUL RECEIPTSTHE TOILET.

RISOOURCES OF IttMANITY.
Unorn thin head may be appropriately included thome inventuons which have reference to the prearevation of life trom ncridenta ly water, fire, and other agents of perwonal uit.ry.

escapes from drowning.

Lifc-boats--The attention of the public bas leeca called at an early period to the perils and fatalities of sbips wrecks. Several honts for preserving lives in such cases were invented, and namong others, one by Mr. Lukin in 1785. But an accident which occurred on the Herd Sands of Suath Shiclds, in September, 1789, led to material improvements in the nrt of constructing these rea sils. The Adventure, a merchunt-ship of considerable bulk, was wrecked within three hundred yards of the shore, in presence of an immense number of spectators; and alnost every man of the unhappy hand of mariners perialied. without the possilility of receiving assistance from the shore. 'She consequence was, that the people of South Shields met soon afterwards, and offerel a reward to any one who should invent n loat capable of heing aunched from the shore to the aid of slips in distress. Mr. Creatheal gained the premium; and in 1790 a life-hoat, constructed upon the plan propewid by hum was effectually used in saving the crew of a vesed stranded under circumatances rimilar to those of the Adventure. Sevcral other trials of the life-hoat proved its utility so fully, that in 1802 the Society of Arte possented the inventor with t^{\prime} :eir gold incial and finy guineas ; and Parliament also decreed to Mr. Greathend

- reward of $£: 20$ nample; and the C io the purpose of by by these and other consta have been ve prewrreera.
The form of M edapted to give it bu It is uavally " mado breadth, and three both extremitics are that It goes through and its shape lengt line drawn from the would be two feet a dips. In this boa rowers, double-bank ten oars. it is case nuch bueyancy thu though so damnger pieces; and this the well calculated to | lour inches thick, a chear, or side of the and the whole quan It is firmly secured lastened with coppe an stated to he, this in tumung, a sing lo there is one at c ch to ; that the coveri the gunwale, gives over its balance aft hesry wave; and th end forwards incre the life-boat in acti article.
The life-hoat is k wheela, in order tha notice. Where the mole of moving the been found better onder the axis of th less injurions. At in is under the elarge o Juur men, composing in its navigation. cases of shipwreck, pected to contribute men are picked po franes; and the indi preuliar skill and k
It has been olise boat men gives as elevates their tone o been performed by penste. Of their g guthered from the Greathead's inventic been saved at the a
Mr. Greathead re white on the outside the eye. He also ai of the heat to the relocity to mect tl waves renders it great caution, and accees. Oi course wrecked crews on t) must he done ly de the impratience of c their e t/m boats. 'I lifebost is on the s
Captais Menly
VoL. I.- 102
procem. -
a few drope th a spoage, ace equally jibed by the he drawing, emains dry, now passed n be sailed and water, reing, us we or the print. ller and at is anid to bo or. put over d. press, the 0 the paper, repesting in 3 stone and. number of have said, the iltustrohem sill. It ter, and the in its porver enny Cyclo-

quires great

 e stone, the surfece and of the im: is evidently sing nothing essions light process of spper-plates. er it, lies in 4 a piece of ' scraper, theIreen called ies of ship. such cases r. Lukin in the Hend , led to dis. y these res onsiderable inls of the spectators; of mariners ascistance the prople Tereil a recapable of hips in dis nd in 1790 od by hum, of a veseel sse of the oat proved Arts pre and fifly Greathead
reward of $\mathbf{£ : 2 0 0}$. The Trinity House followed the axample; and the Committee of Lloyd's Jevoted $£ 2000$ io the purpose of building boats on the same principle. By these and other means, the dangerous parts of our coasts have been verj go, erally furnished with these lifeprewrvers.
The form of Mr. Greathead's life-bont is one well pdapted to give it buoysucy, and keep it afloat in any sea. It is uaually "made about thirty feet in length, ten in breadth, and three fect three inches deep at midships; both extremitios are made preeisely of the same form, so tbat it goes through the water with either end foremost; and its ahape lengthwise is a curve, so formed that in a line drewn from the top of ulo stem to that of the other would be two feet and a hulf above the gunwale at midwips. In this boat there are five thwarts, or sests for rowers, double-banked, so that it must be manned with ton oars. It is cased and lined with cork, which gives it such buoyancy thut it will flont and be serviceable, though ao damaged by hard knocks as to be almost in pieces; and this the sntness and elasticity of the cork is well calculated to prevent. The cork on the outside is four inches thick, snd it reaches the whole length of the shear, or side of the boat; on the inside it is thieker, and the whole quantity is about seven hundred weight. It is firmly secured with slips or plates of eopper, and fastened with copper nuils. Tho advantages of this hoat are stated to be, that its curvature gives it great facility in turning, a sinple stroke of the steering oars, of which there is ono at o ch en '. moving it as though on a centre; that the covering of cork, heing immediately under the gunwale, gives great liveliness or disposition to recover its balaned after being suldenly canted sside by a heary wave; and that its eapahility of going with either end forwards inereases its manageability." A view of the life-boat in action is presented at the head of our raticle.
The life-boat is kept in a boat-house, and placed on wheels, in order that it may be moved at an instant's notice. Where the road to the sen is smooth, this simple mode of inoving the hoat does well enough; but it has been found better in miny eases to suspend the boat onder the axis of the wheels, so that the shaking may be less iujurious. At most of the life-hoat stations, the boat is under the clarge of a committec, snd twenty or twentyfour men, composing two crews, are alternately employed in its navigation. A reward is given to these men in cases of shipwreek, and the vessel receiving sid is expected to contribute to this end. Of course the life-boat men are picked persous, of steady habits and netive frames; and the individual in command requires to possess preukar skill nad knowledge of the coasts and eurrents.
It has been observed, that the occupation of the life. boat men gives a sort of dignity to their eharacter, and elevates their tone of thought. Many noble actions have been performed by them, which no money could compensate. Of their general usefulness some idea may he gathered from the fuct, that, between the date of Mr . Gresthead's invention and i804, three hondred lives had been saved at the entranee of Tynemouth haven alon..
Mr. Greathead recommends the lifc-bont to be painted white on the outside, as a colour that most rendily catches the eye. He atwo advises tho steersman to keep the head of the boat to tho sea, and to give her an sccelerated velocity to meet the wave. The strong reflux of the waves renders it necessary to approach a wreek witt great caution, and the leeside is usually the safest of accers. Of course the first ohject is to convey the wrecked crews on the shore, which, if they are numerous, must he done by degrees. Many lives have been lost ly the impatience of crews, in attempting to go on shore in their o!!m bosts. This is al ways an act of folly where a life-bout is on the scenc.

Coptann Munly's inventions.-Since the date of its
discovery, some imprevements have been made on the common life-bost of Mr. Greathesd ; but the most ins portant aubsequent inventions for the humane end of ssving lives at sea. have been those of Captain Manby This philsnthropic gentleman was in the corps of engineers, and held the situstion of barrack-master at Yarmouth, on the Norfolk cosst, in the year 1807. That coast, it is well known, is full of shoals, and many vessela have gons to picces within a hundred yards of the shore, in sight of nultitudes of people, without sny chance of giving relief. Life-boats could not be stationed at all points of an extensive coast, and perhaps could not be always used if they were present. Tho lamentable case of the Snipe, where sixty persons lost their lives near Yarmouth, made so deep an impression on Captain Manhy, that he resolved to devete his mind and his life to the dis overy of some menns of relieving similar csses of distreis. It appeared evident to him that the desired end was the discovery c: me means of throwing a rope from the shore to the ship, or from the ahip to the shorc. Boats with the crews would obviously be thus drawn sshore in almost any circumstances.
"The active and philanthropic mind of Cuptain Manby was nc: carly in pointing out a probable method. It struck him that a cannon shot affixed to a rope, and projected from a piece of ordnance over a strsnded vessel, was a prscticable mode of cstabliahing the communication. But to reduce it to practice wss found to be attended with much greater difficulty than the simplicity of the object scemed at first sight to promise. In the first place, the folding or manner of laying the rope, so ss to unfold itself with the rspidity equsl to the flight of a shell from a mortar, without breaking by sudden jerks st each returning fold, and without entanglement from the effect of uneven ground and boisterous winds, was no easy task. But it was at length attained by adopting what is called a French faking, in folds of the length of two yards; and by laying the rope in " flat basket alwaya kept ready, with the rope in order, in a secure place, so that it could be transperted at a moment's notice to the situation required, and laid $u_{\text {pon }}$ rocks and uneven ground even in the most boisterous weather, without fear of disarrangement.
"The next difficulty consisted in the means of connecting the rope with a sliot, so as to resist the indammation of g^{\prime} powder in that part of it which must neccssarily occupy the interior of the mortar. Chains in every variety of form and atrength universally broke from the sudden jerks or play to which they were liable, which proved that not only an elastie, but a more connectud body was nocessary. 'At length;' says Captain Manby, 'some stout plnited hide, woven extremely close to the eye of the shot, to prevent the slightest play, extending about two feet beyond the muzzle of the picce, and with a loop at the end to receive the rope, happily effected it.'
" This sppnratus, projected from a small howitzer over a vessel stranded on a lec-shore, so light as to be easily conveyed from one part of the coast to another, affords a certain means of saving the lives of the eres in the daytime, and when from eold and fatigue they are not dibabled from seizing and fastening the rope, and in other respects joining their own exertions to those of their friends on shore. The following extract, from an account of experiments made before some colonels and fieldoffieers of artillery, shows the celerity with which the service may be performed:-
"، A person is completely equipped with every necessary apparatus to effeet communication with a vessel drivan on a lee-shore. A man mounted on horscback was $4 x$ hibited, necoutred with a deal frame, containing 200 yards of log line ready coiled for service, which was slung as a knapsack, with a brass howitzer of a threepounder hore on its carriage, and two rounds of amu vo nition, the whole weighing sixty-two pounds, strapped ta
the forv part of the aaddlo. The permon thua equipped is aupposed to be enabled to traved with expedition to the aid of ships in danger of heing wrecked on parts of the moast intermediate to the mortar atationa; and with thia amall apparatus the log-line is to be projected over the remsel in distress, from which a rope ahould be attached to it to haul the crew on shore. Captain Manby caused the howitzer to be diamounted from the horse, and in a fove rainutea fired it, when the shot wan thrown, with the line attached, wo the distance of 143 yarla. At v subsequent tial, the horseman, fully equipped, travelled a mile and a third; the howitzer was diamounted, and the line projected 153 yards in aix minutes.'
"Such is the simple but efficacious nature of Captain Manby'a first invention; and a few practical experiments ooon ascortainel the allowaruce to be made in pointing the mortar to the windward of the ohject over which the rope is to fall, in order to obviate the effect of a strong wino, which would of course carry it conaiderably to leeward. Experience also proved that the mortar should be laid at a low elevation, in order to insure the certainty of the rope's falling on the weathermost part of the rigging.
"This original invention, however, was obviously capable of many improvements. The îrst of these was to afford assistance to vessels whose crewa, either from their being lashed to the riguing, or from extreme cold and fatigue, are incapable of assisting to secure the rope to the wreek when projected over it from the mortar. This was attained by adding a guadruple barb to the shotthat is, making four hooks project from the ball-ly means of which, when the rope is hauled tight by the people on shore, one end is firmly secured on some part of the rigging or wreek, and a boat can of course be hacied to the relief of the crew, without any assistance on the ir part."

But in order to make this invention effective in the darkeat pight as well as by the light of day, the ingenious pisilanthropist had yet much to do and discover. Ho attained hia end, difficult as the task was. "The requisite objects were-r'irst, to devise the means of discovering precisely where the distressed vessel lies, when the crew are not able to make their exact aituation known by lunoinous sisnals. Sreonilly, to discover a method of laying the mortar for the ebject with as much accuracy es in the light. Thirdly, to render the fight of the rope perfectly distinguishable to those who project it, and to the crew on board the vessel, so that they cannot fail of eceing on what part of the rivging it lodges, and consequently may have no diffieulty in securing $i t$.

To attain the first olject, a fire-ball is ueet, auch aa is ofen thrown up in the attack and defence of fortified places to discover the situation of an enemy by night. It consiats of a hollow ball of pasieroard, having a hole at top containing a fusee, and filled with about fifty luminoua balis of star composition, and a aifficiest guantity of gunpowler to burat the ball and inflame the atars, The fuses is luated so ps to set fire to the bursting powder at the bought of 300 yarda. On the stara being released, they continue Meir aplendour while falling for nsarly one minute, and strongly illumine every surroundIng object: ample time is therefore allowed to discover the aituation of the diatressed vessel.
"During the perjod of the light, a board, with two upright aticks st each enil (painted white to render them more discernible in the dark), is puinted towards the veanel, so that the twos white aticks shall meet in a direct line with it, the wreck berng a fixed object. 'Ihis wilt obviously affird an undeviating rule by which to lay the mortar, making an allowance, as by daylight, for wind, te. Thas the mecond object is attained.
"For the third, a shell (insteal of a shot) is affixed to the rupe, haviug four holes in it to receive fumees, and he hody of the shell is filied with the fiercest and nowt
glaring composition, which, when inflamed, displays no aplendid an illumination of the rope that ita fight cannot he mistaken."

Such are tho most promisent featurea in the achrim of Captain Manby for the reliet of ahipa in distress, The number of persona anved by these inventions has been very great. B Imost immediately after turning his mind to the aubject. Cnptain Manby had the gratificy tion of rescuing ninety persons from a grave in the deep The whole expense of his apparatus did not exceed $£ 10$ Captain Manby was deemed worthy of a parliamenisry reward.

Flosts and bunys.-In addition to such a flat boat ur that recommended hy Captain Manly, with roda and roper furnished with hooks for grappling, humane soci eties usually possess floaters, consisting of short bars of svood, with huoya or masses of cork at each end. 0 ne of these being thrown ont with a rope, a party in dane ger may grasp the bar, and be readily borne up till pulled ashere. A nother provision of late invention consiats of hollow girdles of eloth, air and water-proof, which being anatained by strapes from the shoulders, con be filled with air from the mouth, and when tho pipe is closed, will sustain the wearer perfectly in water.
Safety iape.-Thia ia of later invention than the abore mentioned float-belts, which it is likely to supersede, ipasmu:h as it combines an article of dress with its princi ple of life preservation. It is the invention of a mankes of the Skating Club of Edinhurgh, and ia furnished by the Allion Cloth Company of that city. The cape, which is suited to lic easily round the neck and shouk dets, is formed of Mecintush cloth, which may be pro tially inflated with air at pleasure, by means of a amall mouth-piece hid from external observation. The cape we saw is outwardly a grayish serge (it may, however, be made of any material), and hangs down all round an linw as the elhows. A tape from the inner part of tha hack, to be tied round the body, kecps the cape down, in the event of inmersion in water. When blown up, tho cape swells to ahout an ir h in thiekness, which pre sents nothing unsightly ; however, it need not he inflaled till the wearer goea into a condition of danger-into a boat on a sailing excursion, for instance, or upon unsafe ice. As a piece of dress, it may be worn ly ladies w well as gentlemen.

With reapect to the buoyant powers of the appaiatos, thry have been the subject of a critical experiment by the Edinhurgh and Leith Humane Society, wiach is mentioned in nearly the following terms in the newsppers of the day:-_T The use of a large cast-iren tamk or tun having been ohligingly placed at the serviee of ths directors by a brewer in Edinhurgh, it was filled with warm water to the depth of six fect two inches. A stont man, a anilor, fivo feet six inches in height, and Hhout ten to eleven stone weight, went into the water with his elethes on, wearing the safety-cape, and, to tis satisfaction of all present, flor ed verticaliy at his ease, with his head, neck, and part of his shoudders sbovi water. Wishing to amcertuin what degree of buoyancy he had to spare, weilhts were given to him, which bo held in hia hands. Neven pounds sank him to the throa, and four more to the lip, proving that he could have fle tained annther person in the water. The man came out repeatedly, ond again plunged into the water, always des claring it difficult to immerse his lieal even for on instant. On this fact, the directors of the socifty found that, in the event of the ice giving way unler a skater, the reartion will effectually protect bim till relirved from his perilons situstion."

Aiter this antiafactory tertimony, nothing more need be said on the suljeret. It is quito clear th us, that ú people would hut he pursuaded to wear one of thes mafety-capes, they need lee under no apprehension p ever of immediato drowning in the case of auden
monsion in water ; bipwrecks at a buoyancy for onl wary life. The on rivera, for lack nevation, who on meatl
Dangers upan i gered by tho hroak of Captain Manty der are used for th sted, but Captain all possible circun recommennor as o noose, distended b of wood or cork grasped by the hat to be thrown water, who for a t the edges of tho i sons in similar ca is a boat of wiek and placed upon dered buoyant by is pushed over th charp iron points, of danger in almo peril has sunk, a g four in number, or dragging him f guarded, so that Tho boily will alv ladder, with a con forms another inst a braken portion tbrown to a part between the boat the shore.
Eoat accidents, way precipitated suim, draw in the es possiblo, and Endeavouring to buoyant powers hands-but only ber that the less y are you buoyed u from struggling an
Treatmerit of pe ment of persona lifeless condition is to humanity. It ing of the lungs p ate cause of death ment; but, in rea very small quantit circumstances. stand to be the merged for the viokent elfort is m but no air, of eot pelled, sull as the again and again, ohrious lumbles at pletoly exhausted. want of oxygenat its arterial or rel heing then incap the brain and oth snimal heat, sen warmelh, are grad A comulsive coas great measure, an rrouçlit up into
in the schrim lipe in distresk inventions hat ofter turning his d the gratifice ave in the deep nut exceed $£ 10$ a parliamentary
h a flat boas ur with roda and 3, humene soci of short bers of tach end. One a party in danborne up till invention con nd water-proof, a shoulders, can when the pip in water. than the abore o supersede, in with its princon of a mumbe is furnished by y. The cope eck and shoul. ih may be pro cans of a amall on. The eape : may, however wn all reund as ner part of the : cape down, in blown up, the 288, which pre I not be inflated langer-into or upon unsafe m loy ladies an
' the apparatos, experimeni by 'iety, wiich is in the newspa. cast-iren lank e service of the vas filled with wo inches, A in height, and into the water ape, and, to the iv at his case, moviders abors ee of hueyaicy him, which bo m to the throm could have ans man came eut iter, alwzys de ven for an in society foume under a skgter I relieved frolla chension p of sudden
enter even the stomach. It is the collapee of the lunge from want of nir which weighs down the body, and causen it to rest below the surface, till the formation of gases of putrefaction again lighten and raise it.

The phenomena attending the extinction or cessation of life by aubmersion in water, are of importance at regulating the attompts that may be made to restore the vital spark. It is impossible to say at what distance or time after aubmeraion theae attempts will be fruitlena, A person has been found irrecoverable after being four minutes in whter, and many have been restored after submersion for twenty minutes, and even for half an hour. Much depends on the treatment applied. Misled by the notion that the boily was in all cases gorged with water, people were wont to hold up the drowned by the heels, roll them about, and use wher means calculated only to destroy all chances of recovery. This fatal error is even yet too often practised. The true remedies in such casem are few and simple. The first object is the reatoration of the animal heat. Fri isis purpose, the wet clothem are to be removed without delay, and the body, after being well dried, is to be surrounded with warm air, for which purpose every humane society should have a portable warm-air bath. The heat should at first be moderate, and gently increased. In absence of the warm-air bath, the body should be laid in a well hcated bed or blankets, and bottles of hot water laid to the feet and arm-pits. A warming-pan or heated bricks should be passed over the body, or gentle friction exercised with other warm aubstancea. Meanwhile, by means of a pipe or bellowa, continual though gentle attempts ahould be made to excite respiration artificially ; and, if the apparatua be at hand, alight ahocks of electricity should be kept up at the saine time. If there be any signa of returning life. auch as aighing or convnlsive twitching, a vein may be opened. The throat n; be tickled to excite a propensity to vomit, and a tea-spoonfol of warm water administered to test the power of swallowing. If it exist, a table-spoonful of warm diluted wine or brandy may be given.
Even if no vestige of returning animation be discovered these means of recwery shnuld be persisted in for three or four hours. in a late reinarkable case, mentioned in a note below, a person who had been under water for ten minutes was reatored to life at the end of fous heurs.*

One of the most extraordinary enses of restoring animation on a human being atter it had been suspendelf for nearly four honrs, was mentioned to Mr. Haker. the eornner, at an inquest held belore that genleinan, and the following particulars rela. live to it will nol unly be read with interest. but will mstruct and shnw the necessily in all cases of inmersion in the wolar for diligence und perseverance to he used by the medical men called on to assiat:-A few eveniuge since y yourg genteman callen on to named terury Sanhope, was anmsing hunself by angling in one of the basins of the West India Dnek, when. by some means, he fell "into the water, and iminedistelv sank. A cry was raised of a man overboard," hind the drags were scont in requisition ; but ten minutes clapsed berore the body was reco vered. ife appenring quite extinet. Mr. Bloomfield, of High Streel. Poplar. sargeon, was etched on the first alarin, and was in mendunce when the body was recovered. He immediately had it conveyed to the receiving-house on the tioeks. and placed ma warm bath. It was then taken ont, wrapped in blankels, and botles of hot water applied to the chest and soles of the feet Several of the doek inhourers were then ealed in. nnd were oridered to rib the body. This they did for aboul a quarter of an hour. when it appeared to gre colder nond mare livid about the face. By their prossure and rubhing a great quantity of mud begren to goze from the mouth. npon seping which Mr Bloomiteld ordered the in to contimu their exertions. In half an hour the maseles began of tose their rigdity, and a sligh vibration of thein was ohservet. This stimulated them to contimue their exarticns, nad ntier four hours indefatigable exertion, animation was an in restored that the person was able to articulate. Mr. Blownfed applied a to an lepehes to his tem ples. ann, our hours after bled him. Stimblants were after warls, prified, hul he whs restored, but remains in a very wrak state, The enromer, after puying a compliment to Mr. Hlombield for his prosecworthy exertion, said the case was ons of the most extraortinary he hat ever knowa but thought the best things to be used in cases nit drowning were vapour be ia
-- Times, June, tst.

ESCAPES FROM BURNTNG.

Precantions as to Fire.-Houses are said to take fire 0y accilents, but theso accidents are m general only sete of carelessness, and could with a reasonablo degree $0{ }^{\prime}$ prudence be avoided. As prevention is better than cure, we offer the following precnutionary alvicea :-
Never leave a candle hurning at your huddide, or on a table when you go to hed, except it be a rush, wax, or fioating light, buruing in a basin at a copaiderable ulistance from the bed or window-curtains. The best place for setting the light is on the hearth.
Never put hot cinders or ashes into a bucket to set aside in a closet.
If you light candles with jueces of puper, take care that the burning pajeer is ccmpletely trampled out after being used. It is always nafest to light candles and lampe with a small wax tuper, which can be at onca blown out. In large manufuctories, where there are many lamps or gas-buruers to light, let the lighting apparatua be a small hand-Jamp, which shall be in charge of a particular person in the premisea.
Never blow gas lights ont; alwaya turn them off; and turn off the gas at the main atop-cock at the door. Bhould tho gas, from any cause, have excaped, and the amell be suduenly and offenvively felt, at once tunn off the supply at the meter or stop-cock, sind open the windows to allow the entrance of freeh air. Be careful not to take a lighted candle into the apartment where the escape has taken place.

Cause the chimncys to be swept once in three monthn, or oftener if necessary, so as $t \frac{\text { prevent the accumulated }}{}$ ooot from eateling fire. Sometines housea are set on fire from beams which encroach upon the chimneys. House builders ought to be particularly cantious in preventing any part of the woodwork from touching the fluec.
The following are advices how to act when the catastrophe of fire netually takes place:-

Chimney on fire.-'To extinguish speedily the fire in a chimney, it is only necessary to hang over the fireplace a piece of wet carpet or blanket : some handfula of salt thrown into the fire at the ame time will greatly aid the extinction. Unless to prevest the chance of timbers in the walls calching fire, it would be generally preferable to allow the burning in the chimney to exhaust itself.

Clothes catrining fire.-'The moment you see that your Jothes are on fire, remain atill aul collected; do not, on any account, run away in a fright. If there be a loose rug, carpet, or table-cover at hand, snatch it up and roll it tightly about you. If you can get this done smartly, the flames will immediately be extinguished. Should no cloth of any kind be at hand, and no one be present to give assistance, lay yourself down on the floor, and try to extingush the flames by rolling yourself about, alwayy taking care to keep the gannents as close together as possible. If a man be present, let him take off his coat and wrap it round you; and if a woman, her shawl will answer the same purpose. By ous or other meana, ouch as are hure pointed out, the tire will be stifled, and perhaps the only personal injury will be some slight acorching of the hands, which must not be regarded in averting an intinite?, greater evil.

House on fire.-In making way through a burning house, we ought not, if it be full of smoke, to walk upright, for then we shall run the risk of suffiocation. It ia best to creel along on hands and knees, the freest aur being to be 1 wd elose to the floor. On being awakoned ly an alarm of lire duting the night, it ia \mid uticularly innportant to preserve presence of mind, and oot to ett till a monent has been given for reflection. Precervation may depend on the clinice we inake of poing wr or down stairs, or ou some selection of mov'ner, equally unimportant in ordinary circumplances.

Fire escapes.-The escape from a house V . fire is sometimes prevented by the ataira being of wood and either burning or already destroyed. In anch en emergency, there are only two means of escape-iseuing by the wky-light, and wo reaching the next houre, or go ing over the window. On this account, every houm with wooden stairn should have a sky-light, accessible from the upper floora, and aleo some kind of apparatuen for getting anfely from the windows to the ground. The apparatus which meets with most general approbation it a rope-ladder, and this may be made in different forman Captain Manby recommenda "a rope with noosea disa tended by flat veats for the feet at convenuent distancer for stepping from one to anuthicr. In cases of danger, this might be instantly fastened by one end to a table or bed-post, whiie the other is thrown out of tho window, thus furnishing a ready escapo when perhaps there is no other possible means nenr those who aro in momentary dread of being burned to death." Such a ladder mey be serviceably kept by privute parties; and we should advise that at all events every house with wouden stain ought to be provided with one or more pieces of knotided rope, and these be deposited in the bed-rooms, for use when ruddenly required. Where, from carelessness, no fire escape of this kind has been provided, two or more sheets or blankets taken from the bed may be tied to each other by the cornars, and thus a rope of abeet be formed. There is no instance on record of a person be ing burnt to death in Edinburgh by fires in dwelling. houses, although the buildings are more than usually high; the reason of whic' i , that there the stiita ara all of atone.
Fvery fire-atablishment in owwa, besides fire-enginea and buckets, ahould possess several long ladders, ready at a!l times to be applied to windows ; also cords, whick may be brought to hear wherever they are required.

Purna and Scalds_When you receive a burn \propto scald, instantly plungo the part affected into colld weter, or cover it with some cold moiat substance. This wid prevent the skin from rising in a blister, and the part will bo canily healed. If you delay applying the cold water or cold aubstance, even for a few seconds, the slin will rise, and the application will have no good effect If atockings or other coverings are upon a part at the time of its being burnt, they should be taken off imme diately, as delay will only render their removal more difficult. One of tha best applications to a burnt part thast can be used is cotton or cotton-wad, an article gene rally abundant in every family. In many cases it is opplied perfeetly dry to the part. and in others it is wetted, on the sidn next the sore, with a mixture of lincowster and linseed oil. A rag wetted with some mixure mas be used, where cotton cannot be had.
Cuts.-Almoat any conimon cut may be cured by simply closing the elges of the wound, and holding them togethe er as to kcep the air out. This may be done by aticki . piece of plaster on the closed wound, and keeping that plaster on till the part :s completely well The plaster hus no healing property in itself-its entis use is to hold the edges of the cut together. A piece of linen rag may serve the same parpose, but the tying of it is apt to stop the circulation of the blood. If any dirt or foul substance has got into the cut, it must he carefully removed, otherwise the wounil will fester, and not heal till it has been drawn and elenned by a poutica

Preservation agunat lightning.-When persons hap pen to be overtaken by a thunder-sturm in the open sit, it is cust nary for them to fly for shelter to cay tree which :" $a y$ bo at hand. They expone themselves to in cres'f danger by an doing, particularly if the tree be Pr ninent one and standing alone, hecause it thus beramea a peculis: mark for the electrical fluid. Buitit better to be ptaced at a short distance from such a tree or large object, than to be far from any tiang of the

Hed. On min oper den not rux any git mank if lightning be dis ahort diataree Tha human person dy -another reason treeh All motallic atmosphere is char houve aro rendered contre of their apar Leep tho mind aa ca Large buildinga o pletely secured agai of metallic roda, risi than that of che edi ifit does alight on 4 to the earth, and is odis or shock.

Vomtilation and f that the habitationa pure air and all nox this end is to effect freeh air, either by the windows for ata Grees also promotes rents. Noxious efflu oy occasional sprin lime upon tha fioors open the while. It fected house should recommendations to d:m, and burning a on the floor. In un dengerous ; and we the funigating proc lime, and to ventilat Lives are sometines whieh charcoal' is bu aifed with noxious, apartment sloould be bed with charcoal bl rooms aro always be Honging, suspe a body is ? iogly extinet, the ch temples or opening the head of tho bloc icial veina in conser body is cold, from \mathbf{h} and the other means drowned persona, ah tricity or galvaniem Poison.When 5 have accidentally aw proper medical advi This may be done al a capful of warm-w nusiald. If you ho you are almost sure tity from that put int Ne stomach. As m use, it should never duald thera be no itrelf forms a tolerab
Coach actidents.ance of any reatrain feetly still, and in an keep your $\log _{8}$ and and compactly, so th over in the direction ladies in those circu their arns out of the
vad. On on open hare moor, a single haman body dees not run dny great risk, yet it la the moat prominent mark if lightning be naar the spot; whereas a large tree in a short distance would be tho moat attractive body. The human person is more socure when wet than when dry -anather reason for refraining to seek the shelter of trees. All matallic bodien ahould be avoided when the stmospbere is charged with lightning. People in a honse are rendered moat secure by sitting quiatly in the aente of their apartmenta; and it is aven important to tuep the mind as calin as poasible.
Large buildings or atablishmente may be alnost completely aceured againat the effects of lightning by meana of metallic roda, rising from the earth to a height greater thas liat of the edifice to be protected. The lightning, if it does alight on the building, is conducted by the rod os the earth, and is there diffused or diapersed without nais' or shock.

miscellaneous.

Ventilation and fumigation.-It ia easential to health that the habitationa occupied by ua should be free of impure air and all noxious vapoura. The firat atep towarda this end is to effect and maintain a liberal circulation of fresh air, either by ventilatora or by regularly opening the windows for atated daily periods. Tha kindling of fres alao promotea tha circulation of atmospharic currents. Noxious effluvia may be most effectually remored of occasional aprinklings of a aolution of chloride of lime upon the floors and walls, the windows being kept open the while. It is alwaya proper, also, that an infected house ahould be white-washed. We have seen recommendations to purify the air of rooms by closing $\mathrm{H}: m$, and burning aalt and oil of vitriol in a dish placed on the fleor. In unskilful hands auch plana are highly dangerous; and we atrongly advise every ons to confine the fumigating proceas to aprinkling with chloride of lime, end to ventilate by opening all outlate to the air. Lives are sometinea lost by alceping in a close room in which charcoal is burning, the person in this case being aifled with noxious gas. Wa advise that every aleeping apartment should be airy, and that no one ahould go to bed with charcoal burning in the grate or atove. Bedrooms are alwaya beat without fires of any kind.
Hanging, suspension by the neck.-In casea where bods is 1 in a auspended state, and life ia seemingly extinct, the chief remedy consiata in cupping the temples or opening the jugular vein, and ao relieving the head of tho blood which accumulatea in its auperficial veina in consequence of the ligature. Where the body is cold, from having been long suspended, friction, and the other means used for reatoring animal heat in drowned peraons, should be likewise resorted to. Electricity or galvaniem may also be of service.

Poison.-When you hava reason to know that you have accidentally awallowed a poisorioua aubstance, and proper medical advica ia not at hand, take an emetic. This may be done almost inatantaneously hy awallowing a capful of warm-wator mixed with a teaspoonful of nusiad. If you have not dry muatard in the house, you are almost sure to have a muatard-pot, and a quantity frem that put into the water will very quickly empty Ne stemach. As mustard may thus prove of ao much use, it ahould never be wanting in any house; but even dnuld there be no mustand at hand, warm water by itelf forms a tolerably efficacious emetic.
Coarh acridents.-Sliould the horaca run off, in defiunce of any restraint, while you are in a coach, ait perfectly still, and in anticipation of the possible overturn, keep your legs and arma from atraggling. Sit essily and compactly, ao that, when upset, you will gently roll over in the direction you are thrown. We havo sien ladies in these circumstancea scream wildly, and throw their arms out of the windows, thus axposing themselves
to the chance of broken limba. If run away with in a gig, either ait atill collectedly, or drop out at the back, so as to fall on your handa. Never jump from a rapldly moving vehicle, unleas (supposing it imposaible to slip down hehind) you see a precipice in front, in which cano any risk of personal damage is preferable to remaining atill. The Duke of Orleans lost hia life by neglecting these simple precautions.

Alarms in churches and theatres.-Alarms, w' ether with reference to fire or the falling of galleriea, often taka place in these and aimilar plac of resort. In general, they are raised without due cause, ffen from a circumatance of the moat trifling nature, and perhaps occasionally from a deliberate apirit of miachiec. However originating, they almoat invariably gcnerate a panic, and occaaion much damàge, which a little reflection would have enabled thoae present to avoid. The newepapers teem with accounts of incidents of thia nature. In most instances, tha whole mischief is caused by yiclding too much to alarm. We anxiously rccommend every one to cultivata tha power of suppressing auch idle emotions. When a cry of fire, or of the falling of galleriea, is raised in church, sit atill, and remain tranquil till the assemblage is allowed to disperse in the usual way. On nu account yield to alorm. Granting that there is a real cause of danger, you are infinitely more aafe aitting atill than trying to ruah wildly to the door.

Attacks of madmen.- Λ person in a house may be come suddenly inaane, and make a violent und deadly attack on those within reach. The beat way to avert any aerious calamity in caaes of auch attack is to remain calm and collected, and, if necessary, humour the madman till assiatance be procured. A lady of our acquaintance kept a boarding-house; and one day a boarder on tered the room in which she was sitting, armed with a carving knife, and with great coolness said he had taken a fancy to cut off her head. The lady was alone. She asw her extreme danger, but did not scream or appea alarmed, for that would have precipitated the catastrophe. Sne humoured the madman, and proposed that she shouid go and fetch a cloth to lay on the floor, so as to prevent the blood from damaging the carpet. This bait took, and ahe got safely out of tha room, and into her bed-chamber, in which there was a key in the door in the inside. She instantly locked the door, and flying to the window, cried for help to the passengers in the atreet. The madman was apeedily secured. This laiy clearly owed her life to presence of mind.

Wa would add, let ceery door in a house have ita key, and let tha kay remain in it both night anil day. Every night, on going to bed, iaolate each room, by locking it, and lock your own door in the inside. Alwaya look beneath the bed and into any cupboards in the room before going to reat.

USEFLL ADVICES AND RECEIPTS.

Under this head we propose to offer a few adviced connected with housekceping, and certain operations in reference to the cleaning of dwellings, furniture, apparel, extirpation of vermin, removal of atains, \&c.

house furnishing and managing.

Choice of a housc.-'There are certain important points' on which you should obtain satisfactory information in making choice of a house. First, take care that it ia not damp. Dainpness may arise from auveral eausea, but imperfect drainage, and a too close contact of the thons with the ground, are the principal. When a house is dainp in any part, no matter from what cause, wa advise you by all meuna to avoid it, for it may produce the most pernicious effecta on the haalth of your family. Second, see that the house has a free open exposuro for fresh
air, and, if all other circumatances sult, prefer that which hne an axposure to the nouth, and posmesmen the beneficial influence of the sun's raya, A house with a pleaeant mouthern exposure enjoys a climate several degrees warmer than a house which is not so favourshly situated. In general, too little attention is paid to thin circumetance. Third, nacertain If there be a plentiful aupply of good water in the premisen, and if there be pruper means at hand for drying and bleaching clothem Fourth, learn whether the venta go well, and do not sinoke. The Inquiries you may mako in reference to freedom from vermin and other particulars are lon to your own judgment.

Fwornishing.- When you deaign to furnish a house, take cure to set out on a right prluciple in the selection of articles. It is essential, for the sake of neatneas, and for pleasing effect to the cye, that there ahould be t har. mony' of coloura, and also a similarity of style in the main articles of furniture. Therefore, if you do not exercise a little taste and judgment in your first selections, you may find that you have committed a blunder which will cost you much subsequent annoyance. For example, let the tints of the earpet, of the paper or paint of the walls, and of the window curtaina, be all in harmony in each room-that is, either possess a general reeemblance of colour, or varions colours in pleasing contrast and hammony with each other. If the colour of your curtains be scarlet, and the colour of your walls or carpet blue, a most inharmonious and unpleasing effect will be produced; but brown and green, or green and gold, will be in harmony, and may therefore twe placed together. Carpets being the most expensive articles, it in afest to buv them first, and then to let their colour lead the tone and atyle of curtains, paper-hanyingn, clasir-covers, hearthrugs, and all other articies. It is also a good ecenomical plan to buy carpets for the same pattern for several rooms, because, in the event of renoval to a house with different sized apartments, a piece of one carjet may be* taken to eke out another.

Tables, chairs, \&r.-When you are bargaining for tables, chairs, and other woolen articles of a fine quality, take care to sjecify that they must be of a solid fabric, and not vencered. Veneering is only toleralle in a few -rticles which are not to be subjectel to much tear nnd - -ar; nevertheless, a practice has begun of veneering articlem in daily use, wuch as chairs and tables, and conequently they are noon deriroyod. This practice, we are sorry to say, is done in casen where the highest price in paid for solid articles, and we mention the circumetance to put you on your guard. Examine closely the back and seat-framen of every mahogany chair, and reject it if it le veneered. In ordering nofas, you should alno take care to lurgain for genuine hair stuffing, for in many instances the stutfing is compowed of what is technically called poh, or a composition of tow, wool, and other kinds of ruhbish. Ilikewise, the hair should be well baked or prepared. We have seen a hair sofa, for which the highest price war paid, swarming with a species of louse, shortly after being sent home from the upholsterar's, in consequence of the animal substance about the hair not having been properly dried by baking.

Earthenuore and China,-In purchasing sets of carthenware articles for the table, also take care to met out on a right plan. Select that met which, in cam of breakage, can at all times and in all places be easily matched. If you buy a se: of table ware which is peculiar or rare in its patern, and afterwards break soveral picces, you may be put to a very great degree of troulile, or even find it impossible, to restore them. Thus, a peculiar set of earthenware or china, however beautiful and cheap. may ultimately prove a source of vesation and conaiderable expense.

Plate.-Whatever silver articles you require, buy them a a sesuine kind, or of sherling silver plate, which
alwuys keops lis value, however old and worn it may on come. A void all platel gooda, for the plaiting la not lung in weariny off, and then the article ia valueless. A tas niahed plate fork, apoon, or salver, has an exceasively mean appearance. If you find it inconvenient to par chnse aterling silver plato, your most economical plan, consiatont with elegunce of appearance, will be to pur. chase a iew articles of German silver. This is properly the metal called nirkel, and clowely resembles sterling silver in texture and colour' it is not just so white as sterling silver, but the differetice in not noticed unlew a close comparison be made. In hardness and durability, it is much superior to eterling silver, and its prise is in some casel only about a tenth of what genuine plate would cont. German silver is now manufactured to large extent in England, and is made into spoons, fork, ladles, tea-pota, salvers, dinh-covers, and all ather articles for the table. It is not probable that German silver will ever be purchased to a large extent in order ta supersedo the sterling article, because it posaersos no intringic value like bullion, but it forms a great stretch in rlance of plated or Britannia metal gooda, and in lik, y to come into extensive use. Tha notiles in Brita inia metal were once of a durabls fabric, hut they are po no longer; their good character ia gone, and they shoul. on no aco count be purchased by an economical :. ollse-wife. A tea-pot, for instance, of that metal, fr. common use, and costing seven or cight elaillings, dill probahly not las twelve months, while a tea-pot of German silver, "oning about three pounds, will last f,r fifty years. Thus ihe German eilver article in by fper the cheaper r ctie two, independent of all conslderetions at to elegasice of ap. pearance.

Fire-grates.-In choosing fire-grates or stoven for your rooms, do not buy those which have buruished steel fronts, an they require a considerable degree of care in clenning, and are very liable to ruat during sumaner when not in use. 'I'he best and neatest, as well as tho cheapeat, grates, are those which are made of cast-iron, and of an ornsmental pattern. Let the grates which you select be small or of moderate size in the fireplace. Wile, open frates, by as'raitting cold air into the chimney, are exceedingly liable to mmoke.

Giliting- Order all the gilding of your picture framen and other articles to be done in oil. Oil gilding is not susceptible of flatting and burnishing like water-gilding, but it is infinitely more durable. You may wash an oil gilt frame without injuring it, whereas one that is wateso gilt cannot be cleaned, and ia soon turnislicd. We never knew a gilder who would gild in eil unless it was enpressly insisted upen.

Bathe and foot warmers.-Few houses possess the convenience of baths, but every one may command the use of amnll movable bathing vessels for the feet, or for infants. The beat kind of foot and leg bath is a diep wooden pail; those of earthenware are exiceciugly liable to lireak, and besides, are very exponsive. There are various kinds of clone vessels for holding warm water, which are used for producing warmth in hed. The bes article of this nature which we have seen is a ressel made of slieet tin. It measures twelve inchrs in length and six inches in diameter, being round like a bottie, with hulaed out rounded ends. At one end there in a sumall brass screw cap, placed over an oritice at which the water is admitted. This cap being well serewed down, and a small leather wayer being used to assist in the tightening, not a drop of water will ooze out when the vessel is laid in bed. With this simple npparatug, tied in a flannel bag, the feet or any part of the body will be eflectually warmed, either during illness or in tha cold of winter.

Housekerping.-Every good housewifo is expected to keep a recular and continuous acconnt of het incons and exjenditure. This is, indeed, perhaps the mod
anontial in the ri quesess an ill-reg ducation, who 1 and methodically leoping the hous ane method, and that we are addre rankn of society, beg to suggest the accounts:-Proct book canposed o This, which you day-look; it is al note of outlay, a) sccounts at a tim the entries of ou paper book, whic devoted to mone muney paid out. Ing the entriea of expended, so as to you will find that expenses, natisfact band, should tho m keeping of an acc this or sny other have the most aal dency to over-exp is cunstantly chec upon the subject, treas in circumatal
In reforring to vou on your gua. of buying on cre men. If you can paying fur every a pew two deciciac al? as you want $i t$, ant best markets. 11 c alaves of tradesin. peadence of prine
Servants.-The for aix montha at treases and servan for such a length ments. . It is best ahould be only on notice for bepraratio a place which does delay; and in the rant watning to qu that she is unsuital tious obligation to always take place who tyy this plan like ta change it. though hired on month to munth, o fixed period, but j that, in the event week or a month's tice has been long in universal the be
It is a very old re eorvants; and thou there is, on the w treas endeavours to herself. She effer simply laying befo of duties, or what her undisturbed to thatic manner. in her work, or to nother; nevertie?
unontial in the routine of domentic dutien, snd she must peosess an ill-regulated mind, or have had an insufficient alucation, who negleets it. When properly net about and methodically managed, there is little or no trouble in heeping the household accounta. Some housewives have ne method, and some have another. Alwnya presuming that we are addressing young housewives in the mlddle rankn of eociety, with whom frugality in an obj :ct, we beg to auggest the following simple plan of keeping house coounts:-Procure a minall slate-book-that ia, a little book composed of three slates, hound in a plain cover. This, which you write upon with a alste pencil, ia your day-book; it is alwuys at hand for you to scroll down any note of outlay, and will keep eeveral days' or a week'a scoounts at a time. At any leisure moment, you carry the entrics of outlay from tho slates to a small ruled paper book, which is your ledger. One page of this ia dovoted to monay received, arit the oppoaite page to munty paid out. By doing this regularly, and comparlig the entries of sums received with the entries of sums espended, so as to see that they square with each other, you will find that you possean a completo record of family expenses, satisfactorily slike to yourself and to your husband, ahould ha make any inquiry into the subject. The keeping of an account of recoipts and disbursements, in this or any other convenient manner, is caiculated to havg the inost salutary and agreeable effecta. The tendency to over-expenditure, or living bevond the means, is cunstantly checked, or at least you sro not deceived upen the subject, and in all likelihood much future distress in circumstances is avoided.
In niferting to rousekeeping sccounts, we muat put pou on your guar - sgainst the very mischievous prsetice of huying on credit, and running up bills with tradesmen. If you can at all avoid taking credit, do so. By paying for every srticle with ready money, you will pospess two deciueci advuntages-you get every thing chesper as you want it, and yon cun go anywhere to scek out the beit markets. 1)eusewives who run up bills become the slavea of tradeamen, and can possess no proper independence of printiple or self-respect.
Servants.-The old practice of hiring domestic servants for aix months st once is rapidly declining. Both mistresses and servanta find, by experience, that a bargain for such a length of time very often produces disagreements. It is best for ull narties that the term hired for should he only one month at u time, with one month's sotice for separation. I3y this plan, a servant can leave a place which does not please leer without any lengthened delay; and in the same way a mistress can give a servant warning to quit at a short notice, should it be found that ahe is unauitable. In this manner there is no vexatious ohligation to !ieep together, and a separation can siways take place anicably. All servants and inistresses who try this plan, find it so agreeable that they never like to change it. Many wervants remain yeara in a place, though hired on the understanding that it is only from month to month, or, what is the same thing, hired for no fixed period, but just so long us both parties agree; and that, in the event of any dissatisfaction, there shall be a week or a month's warning given to leave. This practice has been long common in London, and the sooner it is universal the better.
It in a very old remark, that good mistressea make good servants; and though not strictly correct in all instanees, there is, on the whole, much truth in it. A good mistress enderavours to seek out and attach e good servant to herself. Sha effects this attachment and good-will by simply laying betore the servant what is to be her ino of duties, or what is expected of her, and then lesving her undieturbed to execute these duties in a regular mothodic manner. No servant likes to be interfered with in her work, or to be called away from one thing to do nother; nevertheless, sunce mistresses are not hajpy
unlemen they are going in and out cf the kitchen, or bust ling up and down the house, ordering and counter-ordering, or in some other way worrying the servant out of all patient endurance. Mistreases of this filgetty turn can hardly expect to keep good servanta, should they be no fortunate as to procure them. We advise the young housewife to commenee on the wise plan of prescribing to her servante, in simple plain terms, the duties which she expects they will daily and regularly execute; snd if the servants are unfit to take advantage of this friendly and liberal arrangement, and require to he continually urged and "spoken to," it is letter for hoth that there should be a meparation. Whers two or more servanta are engageal, it is abmolutely necemany that the precise duties of euch should he expressly defined, in order to prevent disputes between them, and that the work of the house may lie duly performed.

cleaning

The bent way to clean a house ix to kcep it clean by a daily attention to amall thinga, and not allow it to get into such a state of dirtiness and disorder as to requirs great and periodical cleanings. Some mistressen, and also some servants, seem to have in idea that a house should undergo "regular cleanings," or great washing and scrubbing mstches, once every three or six months, on whieh occasions the houne is turned almost inside out, and made most uneomfortalle. All thia is had economy, and indicatea general alovenliness of habits.

Wooden floore, if kept in order by daily sweeping and other small attentions, may be effectually cleuned by wasling them witb warm water and sosp; but if spots of grease are to be removed, the ajots must provioualy le taken out with fuller's curth. Ink spots may be diecharged with spirits of salt. Sume mistresces make a practice of ordering the floors of bed-ruoms to be frequently washed. Wo wish to , guard buth mistresses and sorvants against this practice. It is most dangeroua to the health of the person who oceupies the bed-room to wash or scour it, unless the wenther be very fine or warm, in order to allow the window to be opened for thoroughly drying the reom hefore night. The utmost that ahould be done, except in is vouralle circumstances, is to pass a dnmp mop lightly o'er the floor.

C'arpcts.-Ordinary Kiddermnster carpets can only be cleancd by shaking and beating; if cleaned by meana of washing, they become so soft as to he speedily dirtied again, and their appearance is apuiled. Brusaela carpets may be cleaned as follows:-Take them up and shake and beat them, so as to render them perfectly free from dust. Have the floor thoroughly scoured and dry, and nail the carpet firmly down upon it. Take a pailful of clean cold apring water, and put into it about three gill of oxgall. Take another pail with clean cold water only. Now, rub with a son scrubbirg brush some of the oxgall water on the carpet, which will raise a lather When a convenient sized portion is dine, wash the lather off with a clean linen cloth dipped in the clean water. Let this wster be changed frequently. When all the lather has disappeared, rul the part with a clean dry eloth. After all is done, open the window to allow the carpet to dry. A carpet treated in this manner will be greatly refreshed in colour, particularly the greens It is very advisable, in layi..g down carpets at first, to cover the floor bencath them with large shects of paper. so as to prevent dust from rising between the boards. A carpet lasta longer by adepting this precsution.

Oil-Cloths.-Oil or painted cloth should be laid only on dry floors; if the floor be in the least degree ilamp. the cloth will soon mildew and rot. Such cloths, laid even in the diest aituation, should be wetted as little as possible. When to be cleaned, they should be wiped with a wet elorh, and rubied gently till dry.

follows:-Mix a gill of soap-lees, half a gill of turpentine, and a bullock's gall, and tnake them into a pante with pipe-elay, which tay upon the marble, and let it remain a day or two, then rub it off, and the atains will have disappeared, unless they are of long standing, when the pante must lie aguin applied. Polished marbla requiree careful treatment, as any ach will deatroy the polish. In general, warin water and soap will be found the nafent thing for clenuing chimney-pieces.

Walls of howses.-T'he outer surfaces of walls, formed of brick or mandstune, sometimes imbibe moisture from the atmosphere, and thin given a dumpness to the interior, If it be found unsuitable to plaster and whitewanh the outside, the danp nay be groatly prevented by painting the walle with a single eoat of oil-paint, which, by being light in colour, will give a neat and clean effeet.

Walls of romes.- When walla of rooms or ntaircames are to be painted in oil, let the paint be of the lwest leacription. It is not unusual f. inferior tradenmen to use whiting, instead of white lend, as a pigment: hy this deception the puint will afterwardn ecarcely endure washing. Supposing, however, that the paint han been of the beat kind, cunniderable cure will be required in cleaning it. The anfert and moat simple plan is to take a pail of hot water and $\mu u t$ into it as much common yellow or soft soap an will raise a lather or froth. Now wash the walls with - flannel cloth dipped in thin water; then wash this soapy water off with clean flannel and clean warm water. Dry with a clean liness cloth. Jo all thin equally, so an not to leava ameara or parta better washed or wiped thans ochers.

Puper-hanging should be first dusted, and then cleaned by a stals loaf of breal, with the crumb surfuce cut amoothly, and gently rubbed, the dirty face of the bread being cut away from time to time. The imitative marblepaper, highly varnished, may be washed with cold water and soap. Papier-miche, now much used for mouldings and ornaments in rooma, may be cleaned with soap and water.
Picture-frames of varniahed or French-polished wood may be washed with goap and warm water, and aponge or flannel. As already montioned, framea which are gilt in the ordinary manner. or "water-gilt," cannot endure washing or rubbing; but if " oil-gilt," they may be wanhed with cold water and a soft brush.
Ivory may be restored to its original whiteness by eleaning it with a paste of burnt punice-ntone and water, and then placing it under glasses in the sun's rays.

Bross inluid work is lest cleaned as follows:-Mix tripoli and tinseed oil, and dip into a rubber of hat, with which polish the work. If the wood te ebony or rosewood, polish it with a little finely-powdered elder-ashes; or make a pasto of rotten-stone, a little atarch, sweet-oil, and oxalic actd, mixed with water. The ormaments of - French clock are, however, hest cleaned with breadcrumb, carefully rubbed, so as not to apoil the wood-work. Ormolu candlesticks, lamps, and branches, may be clenned with soap and wnter. They will bear more cleaning than lacquered articles, which are spoiled by frequent rubbing, or by acids, or strong alkalies.

Windows and looking-glasses.-Dip a mointened rag or dannel into indigo, fullor's earth, ashes, or rotten-stone, in impalpatio powder, with which smear the glass, and wije off with a dry sof rloth. Powiler-blue or whitening, tied up in muslin, and dusted upon the glass, and cleaned off with chamois leuther, also gives glass a fine polish. The spots in the silvering of old looking-glassea are caused by damp at the back. Tha Vauxhall platen are no longer prized, for the glass made in the present day is whiter aud hetter. Window-panea may be made ω resemble gronnd glass by daubing them with putty, of - bruah with a little thin pante.

Brast and copper are bewt cleaned with sweet oil and tripoli, prowdered buth-brick, rotten-stone, or red brick-
dust, rubbed on with flannel and prifished woth leatnom A strong molution of oxalic acid in water given brases the colour. Vitriol and apirits of anles soof makn brate asal eoppler very bright, but they very woon tarnish, and consequeutly require more frequent cleanlug. A ntrony ley of roche-alum and water will almo improve liraw,

Soveegrates are clemned with black-lond mixed vith turpentine, or with atala beer and yellow moap, and poo linhed oif. 'The finer lead is used dry, in lunip or poow der. 'I'he bronzed work of stoves should he only lighitly brushed. Rottenutone, or fine emery and aweat oil, used for the bright work of atoves and poliahed fire-iruns; the higher tha latter ars polislied, the lesa likely are they to rust. I'o prevent ruat in articles not often umed, rut them with onveet oil, and dust over them tine lime; of with the following misture:-l'o a quart of cold water add half a pound of quicklime; let it stard until the top is clear, when pour off the liquild and atir up with it some olive oil, until it becomes of a prasty consintenc* when it should to rublied on the metal articles to be preserved To fill erack in stove-backn, muke a priste of wood-ushem salt and water. To remove rust, mix tripoli, sulphur, and sweet oil, and clean the articlen with it; or mix lwiled sof soap with emery No. 3, which will also dis charge the fire marks from brigitt hara. Steel-work may also be kept from rust hy varnishing it with turpentive in which in dissolved a small proportion of India rubber (caoutchone). Polished fire-irons may be best preserred froin rast by heing closely wrapped up in atrong brown paper.
hilchen vesucls.-The crunt on boilers and rettlen. arising from the hard water boiled in them, may be pros. vented ly keeping in the veasel a marble, or a potato tied in a piece of linen. 'Tin plate vessels ase rleanly and convenient, but unless dried after washing, will soon rust in holes. Iron coul-scopes ure liable to rust from the damp of the coals. The tinning of copper saucepans must be kept perfectly clean and dry, in which case they may be uned with safety. Copper pana, if put awar damp, or a boiling-copper, if left wet, will becone coated with poisonnus crust, or verdigria. Untinned copper of brass vesala, even if scoured loright and clean, are alway dangerous. If made dishea be ullowed to cool and stand for some time in copper vewsela, the articles will become poisonous. In tho year 1837, a lady and her family, re siding in Paris, were poisoned by partaking of a stew which had heen allowed to stand and get cold in a copo per pan. A German saucepans ia best for boiling railk in Thia ia an iron aaucepan, glazed with white cartheuware instead of being tinned, the glaze preverating its tendency to hurn. A stewpan mado liko it is nlso preferable to a copper pan, since simple washing keeps it sweet and clean. A method of glazing qauceprans with carthre ware has lately been the object of a patent in England Zine sieven are more eadily kept clean than those made of hair, will lant longer, and not rust.

Dish-rovers are cleaned with fine whitering and awell oil, and polished with dry whitening ןowler. Britanais metal teupots, dec., should be rubbed with swect oil on flannel, then polished by the land with ottenstonse, and next washed with soap and hot water, and tinished with wash-leather and whitening ${ }^{\text {nowder. Powter is scoured }}$ with fine white sand and a ley made with woodeashes, or sola and water.

Knives ara best cleaned by rubling on a flat boart, on which is put finely powdered irick-duat. Sone tecommend leather to te put on the board; this may preseat the kuiven from wearing, but it sleprives then of an edge fit for cutting. Nover put knivea in hot water, for that loosens the handlen and apoils the temper of the stern For simple claaning after use, wipe then ouly with : damp and then with a dry cloth.

Lamps.- When lamps are foul inside, they should be cieaned with bot water and vearl-aulies, and well nowd
and ant by the fire t Spirillaniny moulit apirite take fire: and at will net burn. \mathbf{N}_{4} in to inttammahle as Lamp-ghrasts.-If apots upon them ca cleaned from the elfe and water, and the glases should alway Inviure.-Mabo by continuul rubbinge applied will compe Sone furniture is wh wis Freach polinh is only hy cubinet-111a) mousekecpera. In ot furniture muat be we curable material. II auggest :-'I'uke a gi une gill of turjenti loaf-sugar. Shake on the lumiture with a linea doth.
An vil for darkenin - Wix in one pint of weepink, to which we in a metal mortar: l for a few days, when and the oil, of a dee use: or mix one oul thell-hac varnish, two quantity of erraped and when they have maly for use.
Fumiture paste is pound of bees'-wax letting it stand to di light If, however, a added to the above, th Another paste, useful lowe:-In a quart of pearl-ash, ndd a quart simmer the whole for of the fire, and whe upon the surface, and a little hat wnter, into any be highly polishs pieces. It in necessur with paste has the dij more readily than if towever, requires ino the furnituro should b lefore polishing is att washing the wookl wi The safest way to he tha vessel containing apoan the fire.
A fine varnish for be thus made:-Put i drac, ono ounce of she an ounce of gumbren. tine, and a pint of dragon's blood, or $y+1$ s warm place until th it for use.
tirnishing.-Brefor thould have a coat of on linseed oil, and br this size, made from wolved in water, or ve pores of the wool he to thus saved. A go
$V_{\text {OL. }}$ I.--103
and net by the fire to dry liefore the oil in again put ins. Epirithampu uhould be filled with great care, leat the apirite take fles ; and unlem the apirite of wine be pure, if will not lourn. Naphtha, whleh is hurnt in some lampu, io so iuflummable an to be dangerous to use.
Lampoghanes,-If the lainp-glanser lie ground, burnt apots upon them cannot lee reinoved, but they may be deaned from the effecte of amoke by wanling with monp and water, and then rubling with a dry cloth. The glases should always be grouml on the outside.
t wrminure.-Mahogany liurnisure is always hent cleaned by continual rubbing; nod no milinary atuff that may he applied will compensute the want of thin requinite. some furniture is what in called "French polinhed ;" but this French polinh in an unguent possessed and applied only by cabinet-makern, and cannot readily be had by bousekeepera. In ordinary cirenmatancen, therefore, the funitore inuat be well rublied, and with eome canily-proa arable material. 'Ihe following are the matrialat we enggest:-'lake a gill and a lualf of unhoiled llamed oil. wie gilt of turpentine, and a teaspoomfinl of pontuded loafsugar. Shake all well together, and rub a portion on the furniture with a piece of flanmel, and polinh with s liuen cloth.
An vil for darkening furniture may be made as follows: - Mix in one pint of linmed oil an ounce of powdered tosepinti, to which ald one ounce of alkanet root, heaten in a metal mother; let the mixture atand in a warm place for a few dayn, when the mubatances will have settled, and the oil, of a deep rich colnur, may be poured off for use : or mix one ounce of alknet root, four ounces of dell-lac varnish, two ounces of turpentine, and tho same quantity of scraped bees'-wax, with a pint of linsced oil; ond when thoy have atool a week, the mixture will be rpady for use.
Fumitare panto is made ly seraping a quarter of a gound of hees'-wnx into half n pint of turpentine, and letting it stand to dissolve. This will kocp the wood light. If, however, a yourter of a pint of linseed oil lie added to the above, the composition will darken the wool. Another paste, useful for very light wool, is made as fol-lowa:-In a quart of hot water dissolve six ounces of pearl-ash, add a quarter of a pound of white wax, and simmer the whole for half an hour in a pipkin; tuke it off the fire, and when it has cooled, the wax will float upon the surface, and slould be worked in a mortar, with a little hot water, into a soft paste. With this, forniture any be highly polished, as may also marble chimneypieces. It is necessery to montion, that forniture cleaned with prato han the disadvantage of recciving heat-marks more readily than if polishod with linseed oil, which, bowever, requires inore time and labour. In any cnse, the furniture ahould be cleansed from grease and stains lefors poliahing in attempted; and this may be done by washing the woot with hot beer, or with soap and water. The safest way to heat furniture pante or oil is to place the vessel containing it in another holding boiling water upon the fire.
A fine varnish for mahogany or other furniture may be thus made:-- Put into a bottle two ounces of gum-sandrac, ono ounce of slifll-lac, half in ounce of mastic, half on ounce of gam-benjamin, one ounce of Venjce turperntine, anil a pint of mpirits of wine. Colour red with dragon's blood, or yellow with saffron. Let it stand in a warm place until the gums are dissolved, when strain it for use.
C'urnishing.--Before new furniture is varnished, it कould have a coat of boiled oil (if wished to be darkened) or limeed oil, and be lott a day or two to harilen; or a this size, made from isinglass or gum-tragacanth, discolved in water, or very thin glue, is used; so that the porea of the wool be filled up, and both varnish anil time thus saved. A gond varnish may be made by dinsolv-
$V_{0 L}$ I. -103
ling eight ounces of white wax and half an ounce of yek low ronin in a pint of apirits of turpeintine.

Botlea,-Cut a raw potato into mall piecea, and put them in the bottle along with a table-wpoonsul of malt, and two tahle-mpoonfula of water. Nhake all well together in the bottle till every mark in removed, ald rinne with clean water. This will remove atains of winf, green mark: of vegetation, and other discolourations. Haril eruat in bot then mny he eleaned off by rinciug with water and amall shot. Take care to wall out all the ahot betore putting the hottles anide.

Phitr-Articlen of plate, after being uned, whould be washed in hoi water, or, if atained, they whonld be boiled, and rinued and dried before you attenjpt to clean them. 'r'hey should te carefully handled, whe they may receive derib morntelies, which ure very dithicult to renove. Bewhlom, the object ia not merely to cleun the plate, but to polish it, no that it may nppear almont un lrilliant as when it wan recrived new from the silvermmith. For thia purpose quirksilver was formerly much used in platepowder, and it given the wilver grent luntrs, which soon, however, dinappeared, and the article becane turnimbed and blackened.
The hert plate-powder consists of dricd and finely sifterl whiting or chalk. The greater pait of the whiting solid in the mhop, is coarae trank, unfit for rubting upon plinte, rund great care inust be taken to procure the fineat I,ondon whiting, which will not serateh.

Bramiwn, hard nuld soft, sponge, and wislt-leather, are requisite for elemang plate; if the powder be nixed with spirita of wine hid on with a sponge, nul rubled off with wsels-leather, all tarnimh will bo removed. Salt stains (blarkinh spots) nod sulphur inarks from eggs are more diflicult to remove. It is a good plan to boil a soft flas ohl cloth in water with some prepreed chalk dissolved in it, and to dry the cloth, and use it for polishing The soft brish is for tho name purpose, the hard bruak leing for chasid work, edges, and crents, no that no portion of dry puwder inay remain in them. Plate mhonld in all cases be finished with a fine dry wash leather.

Plated articles should be carcfully wiped dry after washing them, else they will rust or canker at the alges, where the silver first wears off; and on this account, also, they should te cleaned as rarely as pomerble. Girman silver may be cleaned in tho same manner as plate.

Imbroidery and gold lace should be cleaned only with spirils of wine, or brushed with finely-powdered rochealuin and chalk. For gold chaina, dissolve three ounces of sal-nmmoniac in six ount ef water, in which boil the chain; then boil it in solt sonp and water, wash it in cold water, rub it dry with flannel, and slake it in a bag with very dry bran.

F'linnel or woollen articles,-W ${ }^{\text {sha }}$ them quickly in warn water, with soap. Wring and shake them well. mil hang them up to dry. Do not let them lio wet. The more quickly they are dricd, the less likely are they to shtink.

Niliss-No silks look woll after washing, howeves carefitly it be done, and whould therefore never lee resoited to hut from absolute necessity. We have seen it recommended to sponge faded silks with warm water and sosp. then to rub them with a dry cloth on a tlat board, after which to jron them on the inside with a smoothing iron. Sponging with spitits will nlso improve ohl bhack silks The froning may be donn on the right side, with thin paper apread over them to prevent glazing.

I ed fenthers,-Put a manageable quantity into a pillow case or hag, which wash with warm wnter and soap Wring ont the father anil rinse them in clean water Wring them asilry as poosible, and hang them up so dry Shake them frequently while drying. When quite dry
beat them to free them from any duat. They may be now taken from the lag, and are realy for une.
. Larr.-When lace has loes ita colour, moap il well and put it in coll water, junt enough to cover if. If murh discoloured, change the water at the end of twenty-four hours. When atanped aufficiently, rinee it out starch K a littlo: piek it out ab ovenly an poenible; roll it in a wowl, and when nearly dry, iron It. All kinde of lace wilw may be treated in a similar manner.
Scallet cloch.-Pour boiling water upon hran, atrain it, and, while hot, wash the cloth in it, and rinue with hot water. Soap should not be used. I'urple cloth may he washed in hot water and pure ley. Saxony or dark print dreswes should be washed in two lathers, and in the erecond ahould te poured a little ox-gall, which will freshen reds, blacks, anul greens; and a handful of salt aidel to the laut rinsing-water will provent the coloure parning.
Clcar aturching in practised as follows:-Rinse the artielea in three waters, dry them, and dip then in a thiek atarch, previously atrainel through mualin; aqueeze thein. ehuke thein geutly, and again hang them up to dry ; and when dry, dip them twice of thrice lin clear water, ajueeze them, apread them on a linen cloth, roll them up in it , and let them lie an hour before ironing them. Some permons put augar into the atarch to prevent it alicking white ironing, and othere stir the starch with a cundle to eflect the same end; we olject to thene practices an injurioun to the article atarched, or as very naucooun. The bent plan to prevent nticking is to make the march well, and to have the irona yuito clean and highly polishied.
Stain,-Stains of fruit or wine may be generally removed from linen or cotton cloth hy placing the articlee over the top of a pail, and pouing hiniling water through them till the marks dimappear.
Ink morks or iron monlds may the removell by pheing a plate (a pewter one is the best) on the top of a businful of boiling water; then spread the articher on the plate; wet the spot, and rub it with a sual quantity of the saltes of lomon; as the article dries, the athin will dinappear. If lhis fail, repeat the operation. A small box of alta of lemen will be found very useful in a nonseloold.
l'aine or grease apota may be removed from woollen cloth by turpentine. Smith's scouring drops is a liquid cold in small hotlen, which will also be fonal efficacious in removing oil or greano marks ; it is more expensive than tulpminine, but has a lesa offernive odour.

To extruct grease from sill,-An soon after the diacovery of the injury as posaible, hold the part firmly, and with a clean soft white cloth, or an old cambric handker. chief, rub the spot hriskly, changing the portions of the handkerchief frequently, and in a minute or two the spot will disalppear. On silks which fray ensily, this plan will be unsuitable.

miscellaneove.

To remove a tight atopper,-lt frequently happens that the stopper of a glans bottle or derairer becomes fixed in its place so firmly, that the excotion of force sufficient to withdraw it would endanger the vessel. In thin case, if n cloth be wetted with hot water, and applied to the neck of the hottlo, the glass will expand, and the neek will be enlarged, no as to allow the stopper to be emaily withdrawn.
Etonomical fucl.-In placea where coal is scarco and dear, a tolerably good fuel may be made ly mixing the culm or refuse dross of coal with clay, and muintening the whule with water-masses in the form of bricks or bulls may te made, which, when dry, will hurn with an Intense heat. Where peat prevails, that article may be e nime charred lyy burning in a covered pit or stove; and thim charred peat will be fonnd to give a great heat when umod in an cpen s.e. The Dutch make much use of
their turf in this manner. Another ecunomical fond eanily procurabte where there are wookla of Bcocth Are consinta of fir conen or topw, which comitain a gratt quam city of aolid woody matter in aldition to the rewimana and are excellenty adaptent for domestic firea.
To light afre, olear the awhes from the grate, leavinge fow cinders for a foundation, upon which put a plece of dry crumpled brown paper, and lay on a fuw siaill attelt cromawise, then anme of larger aize, and on them a fent pluces of coul, and neat the large eindera: and whea the flamen have eaught the coal, ald n lacking of amall coal and cinders. When the firy has hecoms low, amitiu tesether, but to not turn the large cindera; clear the front of the lower bar to almis air, and pase tha polen into the bottom of tho flre to clear it of ashew; and then with tougs put on a fow large pieces of coal towerds the fromt of the fire, hut not on the upper har, elve the fin will smoke. Coals ahould not be tlirown on, hut put an gently with a acsop or shovel; ainl even the smaleon anlies muy be burnt at the back of the fire, if they be covereil with amall conl. The hest and quirksal wew of rentoring a neglected fire in to atir out the ashes, and with the tonge to till up, the apmees between the hars with cinulera. If carefully dowe, it is surprising how moon this procems will produce a glowing fire.
Ashew and nomall clindern mixed with water into a mam and put on the hack of a fire with a few coals, turn mellh, no that anhes may thus be entirely burnt up. In soven under lwilers, this mixture is very umful, as it lasts lang with little aldition.
Smoky fhimucys.-The enusen of smokiness in chime neyn are various; hut all are connected with the propertiva of air and heat, for the amoke ia only particies of culin ascending through the agency of heated air. To make a chimney vent well, the column of heuted din from the fire must not be entangled with cold ai:s fro beneath, nor retariled by cold air coming down the chim ney. To elliect these objects, the fireplace nuast rox to much larger than the grate, and the chimney muss beof a certuin length mad thend. The great leading caveo of smokincen is cold air somehow or other nising with tha warm nir about the inouth or threat of the chimney, and mo causing a sluggivlinens in thic ascent, or to ament u all. Thirefore, the nearer the air is made to pass the fire on all sides, the more rarefied it will be; and the lea vacuncy there is in the chimey -place, it will ascend with the greater rapidity. A proper contraction of the mouth of the chimney, at the name time allowing the fire to to fed freely with air, will the found in most instances to cure mooko. Of late, certain contrivances called damp ery, by which the chimucy throat ean be narrowel, bay been the bacan of effecting draughta, and so ening smoke. It should be noted, that in contracting chimney throats, the contraction should not the all at once, but it first gradual, and then strightit uf ward, so as aut is allow a volune of cold air to lurk in a hollow above A chimney being wide at bottom, and graduaily narroving towarils the next story, allowe the collish air to hag alout the lower parts, ly which, when a gust of ried comes, the smoke is driven back into the room. This kind of smokiness is the mont teasing of all the formad chimncy diwenses. Every little pull' of wind send a smaller or larger quantity of sumoke ints the sparment and often when it is least expected. Perhaps this hind of moviness is not in all cases caused by wrong oon struction, but arises from the situation of the house; und of thim we slanll immediately say a few words,

If a fumel of a chimuey be made too narrow teaflod an eany pusage to the top, the amoke will theu nuturlly be forced into the room to tind some ether pusage; thin defect is very common, and the rennedy troublesone and difficult. The most effectual cure, if the situstien will nulmit, is to build a small additional flue, and open a bolt into it from the back of the cliumney, near the leedd
to mansel-piece, alat Sios supplemental Il willing to recive path a certain cure. the axpelient, the fis breadith and height, mey heightened at th pus clone over the grever rupidity, for II in muiren. Should on fruit plater, to put of use. But if noue wnething must bo tomanda the fire. T the want of ventilati
If the chimney a moke, it in almost et hation. In ordinary nitted by chink n in w but if thn room be many chinks an pon According to the pl built, ventilation in I rentilate an old hou whlowing plana are w found to ungwer :the oxternal air, or beneath the grate, so mach the fire. If thr be lapped with a cov falling into it. Sorr ollice in Elinnourgh thin aimple I rivan Another plan consint comise or Imof, for th tunastrly, unlems care is apt to be worse th.
Cusea are by no a ing out a pruff of sma in athut. 'The cause mant of ventiation il pulla out a certai affirided to be loat, current towards the f op the smoke ia der othet worls, a rush ehimuey-is the con this amokiness occur en the saine side o would therefore alvi aionzement. If poon wile from that in whi in which the chimne of the gables, have t this anokinees ia to ond, if poasible, heig be pretty long, tho he - force that the su least not to so great the door is ahnsting divesase will be foun grate, if a register, a fire, the action of the in tharefore an argan register atoves quite erevice for air to stea through the fire.
In erecting chimno upa good way in a ing a turn, hy which in ita primary vertica difficulties, In wallm in inmediately below w grl a perfect strai leading cause of nixing with the the chimeney, and - of 110 ascent a made to pass the te; and the lea will arcend with ion of the mouth ing the fire to bo oust instances th rea called domp e harrowed, hay - and so curing (racting chimnet) il at oace, but a 'd, so as aul x nollow above. A lually nurrowing dish air to hom a gust of wind the room. Thin i all the formed f wind seads 1 o the spartacere rhaps this kind 1 by wrong cor If the house; and words.
narrow to uflod il then naturily ner passage ; tin troublesome and he situation will and opea a how near the levelod
to manel-piece, slanting uur do in an easy directon: sis supplemental flue nuas. be carried to the top of the wilding to reccive the aurplua of the minoke, and will prove a mertain cure. If the mituation will not allow of thi espedient, the firepilaen mayy be contractod both in beadth and height, a smaller grate uned. and the chimney heightened at the op; which will oblige the air to man dom over the fire, and earry up the moke with prester rapility, for the quicker tho current, the lase room it mquires. Should the ehimney still anoke, a blower, or fruit plater, to put on and take off at plensure, will be of use. But if none of these preacriptions nnawer, then wnething muat be done to improve the current of air fowarle the fire. This bringa tin to a conaideration of the want of ventilation in the room.
If the chimney and fireplace be faultleas, and yet anoke, it in almant eertain that there ia a want of ventilation. In ordinary eirechnutances, in much air in adaitted by ehinka in windowa and cloors as witl fued a fire; but if thes room be rendered very close by clowing as many chink as ponsible, how in the fire to receive air? Accosding to the plan on which houmen are generally buile, ventilation in left to the anater of chance. 'To reatilate sn old house in therefore no easy task. The following plana are worth concilering, for they have been found to unawer t-Contrive t ' bring amall tulve froun the esternal air, or from a ataireasa or lohhy, to a point beneath the grate, so as to canae a free eurrent of sir to rach the fire. If the mouth of the tube below the grate le topperl with a cowl, the asher, will to pre:nated from Galling into it. Some years ago, the rooms of a puhtic olice in Edinluargh were completely cured of amoke by thisainple s rivance, after all other moans had failou? Aaother plan consista in perforating smull holes in the comice or 1 off, for the air to gain admissio , hut, unfortunatrily, unlems care lee taken to prevent ofos the cure is apt to be worse than the dimense.
Cases are by no means uncommon of ure-placos giving out a putf of smoke overy time the door of tho room ib ahut. 'The cause of this kind of smokiness is the mant of ventilstion in the room. In shutting the door, it pulle out a cortain quantity of air, which canmot be uffirded to be losi, or it causes such distraction of the curreat towarde the fire, that the equibibrium that carries ap the smoke is destroyed, and a puff downwards-in other worls, a rush of air loaded with mmoke from the chimney-is the connequenco. It will be romarked, thint this smokiness nccurs most freyuently when the door is en the sane side of the room as the fireplace. Wo would therefore alvise houso-plannern to avoid thia bad aningement. If poasible, let the door be on a different dide from that in which tho fire is placed. Mont houses in which the chimnoy, os the middle walla instead of the gables, have the. isablt we inention. A reinedy for this mokiness is to contratit the mouth of the chinney, und, if possible, heighten the stalk; for if the chimney be pretty long, tho heated air ascending it goes with such a force that the suter heavy air cannot get down, at leant not to so gieat an extent as to cause a puff when the door is ahutting. In mome casee, the cause of the disease will be found to be air rushing up behind the grate, it a register, and then comning down to supply the fire, the action of the doon diaturhing the current. This is therefnre an aggument for always taking care to build register stoves quito elose behind, not leaving the smallest crevice for air to ateal isp the chimney without Cirat going through the fire.
In erecting chimneys, it should the a rule to carry them up a good way in a perpendicular direction, before making a turn, by which means the heated air gains a foree in its primary vertical ascent, which earries it over future difficulties. In walls in which the fireplace of one story Is immediately below the fireplace above, it is iupossible wogt a perfect straight for any groat length; thereftro
thia muat be left to the judgment of the bnilder. if is almo advantageoun for all chimneya to have a bend in them hefore reaching the top, and in garret chimney whoakd have two benda. For want of attention to this top band Ing, many cottagn and amall vilin chimnoya amoke. The ume of henda is obvious. Btrong, suiden, and accidental guats of wind sometimes enter, and beat into the top of the chinmey; a turning or bend, therefore, will break the force of the wind, and prevont it repelling the heated air downwarda. But if the chinney batraight, and th gust meet with no interruptinn, it will atop the paasag of the mnoke for a while, and of course foree what riser from the fire immediutely into the ehamber. It is to be observed, that the farther the wind gete down the funnel the grenter utrength will be required to repel it ; therefore the nearer to the top the bond or winding la, the bettor. Almo, If there is atorin of wind, with heavy showers of hail, snow, or ruin, falling perpendicularly in great drops, the firat bend of turning will, In part, atop thoir progress; but if the finmel in perpendicular all the way down, the great dropr of hail, anow, and rain, will fall freely to the bottom, repelling the moke into the room; aind if the funnel ia foul, great quantitiea of soot will be driven down. These reasons recommend a bend in eome part of the funnel as almolutely necemary.

Ciarret chimneyn are more liable to ainoke than uny other in the house, owing to the whortnens of the funnels for when the composition of rarefied air and amoke has mado its wny up a high funnel, it forms a strong column, and to repel it requires a proportionably great force; but 11. a garret chimney thin strong eolumn cannot be obo ned; therefore, what cannot ba had from nature mut be aimed at by art. The fault in moat garrel chimneye is being earried up in a straight direction from bottom wo top in a mivenaly manner, and with funnela as large as any in th fonso; whereby the little internal rarefied at han the whole immadiato pressure of the atmosplere to reaiat, which, in general, in ton powerful for it. But e garret or cottage chimney carried up and exacuted in a proper inanner, with due proportion in every part, acconding to the size of the room, and the funnel in an eany crooked direction, will draw and be as elear from smoke an any other.

When mokincas is produced by too short a chimncy, it will be necessary to add to its tragth either by building the atalk higher, or inserting an carthenware pot or irom tube at the suminit. The luilding of higher stalks is an infallible remedy, provided all be right below, but it in attended with danger to adjoining roofs. Pots or can are useful both in adding to height and in causing a freo disengagement and shooting of the amoke as soon as it enters the outer atmosphere.

Another very common cause of amokiness is fires ovarpowering one another. For instance, if there be two chimneys in one large room, and you make fires in both of thom, the doore and windows clowe shut, you will find that the greater and strongor fire shall overpower the weaker, und draw air down its funnel to supply its own demand; which air descending in the weaker funnel, will drive down its smoke, and foree it into the room. If, instend of being in one room, the two chimnoya are in two different rooms, communicating by a door, the cave is the same whenever that door is open. In a very tight house, it has leen known that a kitchen chimney on the lowest floor, when it had a great fire in it, has overpowered any other chimnoy in the house, and drawn air and mmoke into its room, as often us the door was opened communicating with the staircase. The remedy for this is, to take care that every room in a house has the means of supplying itself with what air 't requires, no that it does not need to borrow air from other roome Back smoke is only cold air loaded with amoke coming down into a room from an adjoining chimney-top, im order to supply, in the readiest manet, air to that room

Thus, fires in the lower part of a house will draw air even from a garret room, and this garret room will draw air to supply its deticiency, by taking it in a amoky condition from next house.

Smokiness ia also produced when the tops of chimnoya are commanded by higher buildings, or by a hill, so that the wind blowing over such eminences falls, like water over a dam, oll the tops of chimneys that lie in its way, and beata down the smoke contained in them. Sometimes we have scen the droll phenomonon-though it is no laughing matter-of every particle of amoko all of a oudden pouring into the room, in consequence of a gust of wiad blowing pertinacionsly for several minutes down the chimney. Such a form of smokiness arises chiefly from the situation of the house, and the want of a bend in the chimney. The remedy to be applied is fixing on the top, of the chimney a turbing cap or cowl, which acts like a weather-cock, and keeps its closed side to the wiod. 'These covls, however, are creaking, noiny things; mod being hence insufferable near slepping rooms, are only to be resorted to when more simple menos have failed.

Preserving meat.-'To preserve meat for a few days fresh in warn weather, wash it lightly over with a brush or sponge, with a mixture composed of two thirds pyroligneons acid, and one third water. The arid, which is a kind of vinegar, gives it no flavour, and the meat requires no washing before being cooked.

Meat may he preserved fresh for any length of time by being put in tin cases secluded from the air. To do this effectually, put the meat in the case; then solder on the top or lid, but leaving in it a sarall hole the size of n pea: now plange tho case in a vessel full of steam, where let it remain a few minutes, hy which the air will be expelled. The case is now to b taken ont, and the amsll hole instantaneously closed lyy soldering a piece of tin the size of nuafer over it. By means such as this, meat, fish, and soup, may be preserved for years, and when used, they will be fousd quite fresh.

Salting and smoking meat.-The following method, Which requires on!y forty-eight hours, may be adopted for salting and amoking meat:-A quantity of salfpetre. equal to the common salt that wonld be required for the meat in the usual way, must be dissolved in water. Into this the meat to be sinoked must be put, and kept over a slow fire till all tho water is evaporated. It must then be hung up in a thick smoke for twenty-four hours, when it will be found equal in flevour to the beet Hanburgh mmoked meat that has been kept several weeks in salt, as red throughout, and equally firm.

To purify uater, put into a hogshead of it a large table-sponnful of powiered alum, stir it, and in a few hours the impurities will be sent to the bottom. A pailful of four gallons may be purified by a aingle teaspoonful of alum. Freshly-burnt charcoal is also an excellent aweetener of water.

To filter water.-Put into on earthen vessel (such as augar-bakers use ty farm the loaves in, with a small hole at the bottom or pointed end) some pieces of sponge, and on them a sufficient number of small claun pelbles to quarter-fill the vexsel. Wang this filter end downwarl, in a barrel with the head out, leaving a space of nhaut two or three inches between the ond of the filter and the bonlom of the barrel. The upper part of the filter shoudl be kept a littio above the top of the harrel, which must alwnys be kept full of water. 'I'he sedinent of the water will remain at the hottom of the barel, and the pure water will rise through the spouge and pebbles to the vacant part of the filter. It may be humg in a cistern, or water-butt if inore convenient. 'I'he pebbles und nponge should be clennerd oceasionally.

Another economical filter inay le trall by taking out he head of a rask, metting it upright, and st a distance of about one-thind from the bottom puticis in a shelf or pertixion vierced with amall boles; his shelf being
covered with pebblea, upon which is a layer of fresh charcoal made from bones; and over this lay fine aand, to the depth of an inch, covered with another layer of pebbles; and upon this should be placed another shelf, pierced with holes, to prevent the pebbles, sand, and charcoal being disturbed by the wator which is poured or runs in at the top of the cask; and after passing through the filter, is drawn off by a crane placed at the botum of the cask.

Drying flouers as sprcimens.-A writer in the "Neu Monthly Belle Assemblée" recoumends the following plan:- As pressure is necessary for drying flowers, the first thing requivite is to constrict a press, which in this instance is composed of two of the thickest milled boards, earh twenty inches in length and fourteen in width; also two leather strar: with buckles, and holes at intervals, to allow for the varying hulk of the press; then procure two quires of coarse sugar paper, which can be purchased at a grocer's. After having selected the mot perfect specimens of flowers, with their stems, lowes leaves, and roots, when pructicable-and carufully ob, serve that the plants be free from dew or inoisture-lay every portion out nieely on one of the coarse sheets, being careful, at the same time, that one part of the apecimen doea not interfore with another: the lraf should be filled. Allow sevoral slicets to inturvene before gnothet sheet is occupied !y specimens. If the flowers be deli. cate, their colour will be broter preserved by placing blow ting-paper between the folds, to absorb the moisture The plants are now ready to be put into the press, the straps forming the pressure, which, however, unust not lo great at first. It is necessary to remove the flowers every day, and dry the papers at the fire. When the specimens are quite dry, they should he taken from the press, and rach plant separately sewed or fastened with gumon to half sheets of foolseap (a very sullicient substitute for gom will be found in the margins of the penny stams, whon cut into narrow strips); they may then be arranged in their natural orders, with the Linnean class and order, and their place of growth, appended in the lower corners of the paper. The sheets chus classed nake up the Her harium or Hortus Sirrus, and are kept in truys, hoyes, or in a cabinet constructed for the purpose, in a dry roolm, when they witl he realy for future refirence, which is the prineipul use to bo derived from making a collectica of plants."

Preserving flowers fresh.-In the "Gardeners' Chro. nicle," the following appears on this subject:-"It is now cighteen years ago sinee we lirst saw, in the draw. ing-room of a gentleman, in the hot dry weather of the dorg-days, flowern preserved day nfter day in all their freshness by the following simple contrivatuce:- A fat dish of poreelain had water poured into it. In the wates a vase of flowers was set; over the whole a bullglas was placed with its rim in the water. This was "Ward's casa' in principle, nlthough differpit in its construction. The air that surrounded the flowers, beng confined beneath the belt-alass, was ceuntantly owis with the water that rese into it in the form of vapurn As fiat us the water was condensed, it ran down the sides of the bell-glass back into the dish; and if nams hat been taken to enclose the water on the outsile of the |x.ll-glass, so as to prevent its evoporaling into the air of the sitting-room, the nthosphere around the flowes would have remained contimully damp. What is the explamation of this! Da the flowers lead on the view less vapour that surcounds them? P'rhaps they do: but the great cause of their preserving their freshates is to be songht in unother fact. Whent flovers are brough into n sitting-room, they fale hecause of the dryness of the air. 'The air of a sitting-room is usually something drier than that of the garden, and atways much more wo than that of a good grecuhouse or stove. Flowen whel. gathered, are cut off f..r7 the supply of masum
sollected for them dems are far from up fuide as the roo powers of foeding, t piration, as is the o that the bolance of and of loss on the cannot be maintaine sruction. Now, to to restore this balan ing by their wounut power of perspiring thena of no waterThe only difference b fowers in tho little the former is inteade able space of time, v scrvation for a few round the flowers quatit!y of vapour, w at the will of him w reconmend those wh in their sitting-rooms experiment can be rosebhad in a saucer

> DES

The best plan for houkes is to kcep where there is clean rerinin will generate Ruts and mirr.completely prevented giring a solid founda proach by gratine th ill opea spares henen ditious, Nice inight ug up the spaces trich scant spaces aro inv the first thing any pe nession of a domicile the skirting-boards a ter. When mice ar house, they should b when oae kind of tr shemes for poisonin dients are dangerous
Bugs.-These pe carefal housewife or them. The surest them individually w When their lite is f and capture them. there be not a grea them. When there gained a lodgment in and fill in all the ap sof soap and Scote called a bug-trap, pla ?eceptacle for them, till as anore are left. sod rarely effertuat, Did-paiating a wall dentroying them.
Fleas.-There is there vermin bot exc well swept and wa and wash it frequen or among dust.

Lice are now alm ever they are found ness. Ignorant peo min breed spontan clanliness they are
a layer of fred sis lay fine sand, snother layer of ed snother shelf, bbles, sand, and hich is poured or psssing through at the bottom of
er in the " N_{ew} ls the following ying flowers, the sN, which in thias thickest milled and fourteen in kles, and boles at f the press; then er, which can be selected the mant dir stcms, hower ad carufully obs or moisture-lay 10 coarse sheets, e part of the spe he leaf should be ic before anothe flowers be deli. I by placing blow of the moisture. to the press, lute ver, nust not to the flowers every When the specio 11 from the press ned with gumon ent substitute fot te persny slamps, then be arranged c class and order, the lower cornes sake up the Hertruys, hoxes, a e, in a dry room, terence, which is king a collectica

Gardenere' C'hro subject:-"It is aw, in the draw. weather of the day in all the rivance: $-\mathrm{A} \theta_{3}$ it. In the water hole a belloglas r. This was firput in its cons ar flowers, being coustantly anis form of vapous, It ran down the ; and if mana the entside of the jny into the ain and the tlowem

What is the rol on the view rhaps they do: their freshaess u vers are brough' the drynes of ;ually something 8 much more wo tove. Flowera inly of merintun
willected for them by their roots, snd their mutilated uems are far from having so great a power of sucking upfulds as the roots have. If, then, with diminished powers of feeding, they are exposed to augmented permiration, as is the case in a dry sitting-room, it is evident that the balance of gain on the one hand by the roots, and of loss on the other hand by their whole surface, annot be maintained. Tho result can only he their dearuction. Now, to placo them in a damp atmosphero is to eestore this balance; hecause, if their power of sucking by their womaled ends is diminished, so is their power of perspiring ; for a damp atmosphere will rab then of no water-hence they maintain their freehness. The only differenco between plants in a ، Ward'a case' and fowers in the little apparatits just described is this-that the former is intended for plants to grow in for a considerable space of time, while the latter is merely for their preservation for a few days; and that the sir which sursuanls the flowers is always ehargen with the same quantity of vapour, will vary with the circumstances, and It the will of him who has the management of it . We recommend those who love to see plenty of fresh flowera in their sitting-rooms in dry weather to procure it. The erperiment can he tricil by inserting a tumbler over a ros-bud in a saucer of water."

destroying vermin.

The best plan for preventing the attacks of vermin in hauses is to keep the house serupulously chean; for where there is cleanliness and ordinary precautions, no rennin will genernte or exist.
Rats and mirr.-'Thess might in most instances be completely prevented from encroaching in dwellings by giving a solid foundstion to a bouse, cutting ofl' tho approach by gratina the drains, but especially by filling up all open spaces beneath pavements and in watla and partitions. Niee might be effectually kept out by only fillung up the epaces behind skirting boarde in rooms. These narant epaces are invariably the habitations of mice, and the firs thing any person should do in entering into posuession of a donicile, is to cause sll the spaces behind the skirting-boards and wainscot to be filled with plaster. When mice and rats hase gained a footing in a house, they should be taken off by a cat or trup, and when one kind of trap fails, another may be tricd. All whemes for poisoning them with arsenic or other ingredients are dangerous, and cannot be recommended.
Bugs,-These pests exist only in dirty houses. A areful housewite or servant will sroon completely destroy them. The surest method of destruction is to catch them individually when they attack the pereon in bed. When their lite is felt, instantly rise and light a candlo add capture them. This may be troublesome, but if there be not a grent number, a few nights will finish them. When there is a large number, and they have gained a lodgment in the timbers, take the bed in pieces, and fill in all the apertures and joints with a mixture of soft soap and Scotch snuff. A piece of wicker-work, called a burg-trap, placed at the head of tho bed, forms a receptacle for them, and then they may be daily caught till no more are left. Fumig tions are very dingerous, and rarely effeetunl, therefore nttempt no such projert. 9ilepainting a wall is a sure means of exeluding and dentroying them.

Fleas,--There is no way of ridding a bed or house of thee vermin but excessive cleanline'ss. Keep the floors well swept und washed, and if you have a dog, comb and wash it frequently. Fleas sre breal in the ground, of among dust.

Lice are now almost unknown in Fingland. Wherever they are found, there certainly also ia found dirtiness. Ignorant people imagine that these nuuseous ver\min hred spontaneously; this is a gross error. By clanliness they sre completely prevented; alld the more
warm the climate, so is the necessity for cleanlinem grater.
leetles, Cockrouchcs, and Crickets., Theae may lo esught in traps. A simple trsp for them is a glszex basin or pie-dish half-filled with sweetened beer or milk, and to the edge of which a piece of wood is laid from the floor as a gangway. Do uot attempt peisoning or fumigation.

Fifes.-It is difficult to rid a house of flies by any other plan than poisoning, and that is too dangerous to be recommended. A composition of mitk, sugar, snd pepper, will attract and kill them, and so will a decoction of quasia; but hoth cause them to make offensive marka on the walls und furniture before they dio. Gilt frames and chandeliers should be shrouded in thin yellow gauze or paper, in situations where the flies are likely to spoil them. Trees sbout a house form a harbour for flies, as well se dirt of all kinda. Cleanliness and airiness are he best preventives.
Moths.-The best way to preserve furs or worsteda from moths is to sew them closely up in a bag of new unwashed linen; if thia be not done, the next best ia to take the articlea frequently out and brush and air them. The odour of eamphor, shavings of Russia leather, lavender, \&c., are much less efficacious than they are supposed to be. Kill every flying moth which you see.

Shus.- Pako a quantity of cabbage leaves, and either put them into a warm oven, or hold them beforo a fire till they are quite soft; then mb them with unsolted hutter, or any kind of fresh dripping, and lay them in the places infested with slugs. In a few hours the leaves will be found covered with snails and sluge, which may then be destroyed in any way you think fit.

small domestic manufactures.

Tho attempt to make all sorts of articles for domestic use is now far from economical, as the time and expense bestowed upon them are oftelt of greater amount than what would buy the things ready mado from the shops We therefore contine our directions to srticles which may require to be manufactured in fumilies at a great distance from towns, or for the families of emigrants in remate settlements.

Elaching for shoes.-There are many ways of making this srticle, the chief ingredients employed being ivoryblack, vinegar or sour beer, sugar, a little sweet oil, and oil of vitriol. A good blacking may be made as follows: -Mix three ounces of ivory-black, two ounces of treacle, a tuble-spoonful of swect oil, one ounce of vitriol, one ounce of gum-arubic dissolved in water, and a pint of vinegar.

For blacking-balls, mix one pound of jvory-black, one pound of lamp-black, a quarter of a pound of gum-arabic dissolved in water, six ounces of brown sugar, half an ounec of melted glue, and a quart of water ; and make into balls. A line blacking for dress-shoes may he made hy well beating two eggs, and adding a table-spoonful of spirits of wine, a lump of sugar, and ivory-black to thicken. This blacking may also le used for restoring the back leather seats and basks of chairs, \&c. It shonld he laid on and polished as other blacking, and then left a day to harden.
foot-fop liquid-Dissolve in a quart of water, one ounce of oxalic acid, and the ssme of white vitriol; with which sponge the leather previously washed with water; then wash off the composition with water, and dry. 'Jhis mixture is for white tops. For brown, mix one ounce of oxalic acid, one onnec of spirits of salts, a scruple of cochineal bruiseal, sud a pint of boiling water and use as above. These mixtures should be labelled "poison." For lirown $\mathbf{\omega} \boldsymbol{p}$, also, mix with a pint of skimmed milk, lualf un ounce of splrits of salts, half an ounce of npirits of red lavender, one ounce of gum-srabie dissolved in water, and the jucee of two lemona; keey

3 z 2
the mixture closely corked, sponge the tops when dry, and peliah them with a bruah or piece of flannel.

Blacking for harness.-Melt two ounces of mutton suet with six ources of bees'wax; add six ounces of augar-candy, and two ounces of aoft soap dissolved in water, and one ounce of indigo finely powdered; and when malted and well mixed, add a gill of turpentine. Lay it on the harnass with a aponge, and polish off with a brush.

Cement.-Various preparations are used for mending broken china, earthenware, and glasa. The moat succesaful are as follow:-Beat the white of an egg with quicklime, in impalpable powder, into n paste ; to which is sometimes added a littlo whey, made by mixing vinegar and milk. A little lisinglass, diesolved in mastic varnish, is another cement. Nature suppliea some cements ready to our hands-as the juice of garlic, and the white alime of large snails ; and it has been stated in a respectable scientific journal, that a broken flint has been joined so effectually with this snail cement, that when dashed upon a atone pavement, the flint broke elsewhere than at the cemented parts. In their anxiety to unite broken articlea, persons generally defeat themselves by spreading the cement too thickly upon the edges of the article, whereas the least possible quantity should be used, so as to bring the edges almost close together; and this may be aided by heating the fragments to be joined.

Paste is useful in a house for papering walls, cupboards, boxes, labelling, \&c. Dr. M•Culloch, of Edinburgh, employs paste inade of flour in the usual way, but rather thick, with a proportion of brown sugar, and a amall quantity of corrosive sublimate. The use of the ungar is to keep it fexible, so as to prevent its scaling off from smooth surfaces; and that of the corrosive sub-limate-independent!y of preserving it from insects-as an effectual check agaiat its fermentation. 'I'his salt does not, however, prevelit the firmation of mouldiness; but a drop or two of oil of lavender, pepperinint, or aniceed, is a complete security against this.

Waterproof stuff for ahoes.-In winter, or during wet weather, ahoes may the rendered durable hy applying to the soles and seams a composition made of the following materials :- II If a pint of unhoited linsed oil, two table-spoonfula ot nurfentine, one ounce of bees' wax, and a quarter of an sunce of Burgundy pitch. Melt the whole together, and apply with a brush before tho fire. Repeat the application till the soles will absorb no more. Neats'-foot oil, alone, will be found an excellent preservative of shoes in wet weather.

Ink.-An excellent ink suitable for writing with sted jens, which it does not corrode, may be made of the following serticles:-Sixty graine of caustic soda, a pint of water, and as much Indian ink ns you think fit for making a proper blackness.

Bottle tax.-A good kind of battle wax or cement may be chcaply made as follows:-Put into an iron ladle half a pound of rosin, two ounces of bees' wax, and when riclted over the fire, atir in Venctian red, lamp-black, or other colouring; and apply while hot. If kept for after use, melt with a candle as usual when applied.

Potatostarch.-Wash and peel a gallon of good potatoes, grate them into a pail of water, atir frequently, and then let thrm ortle. On the following day the starch will se found at the bottom of the pail; when pour off the water, add fresh, stir as before, and let it subside ascond time; when pour of the water, and dry the sediment in the sun or a flow oven. An excellent starch may also be maile by setting in a cool place the water in which rice has been boiled (though not in a eloth), which will in twenty-four hours become a strong stareh.

Potashea.-Settlers in the backwoods of America, or other woody regions, have an opportunity of nanufac-
turing potaahes, an article of great use and coasides able value. A vast quantity of this substance is annus ally made in Canada, and exported to Great Britoin. Potashes are inade from the ashes of hurnt tees. in burning timber to clear the land, the ashes are carafully preserved and put in harrels, or other vessels with holes in the hottom ; and water being poured ovel them, a liquid or alkali is run off; this ley being boiled in large boilers, the watery particles evaporate, and leave what ia called black salts, a sort of residuum which, when heated to a high degree, becomes fused and finally, when cool, assumes the character of poh ash.

By these potashes the Canadiana make their ont soap; the ley of a barrel of ashea, boiled along with lea pounds of tallow, till it ia of a proper consistence, pro. duces about forty pounds of very good aoft soap, Itio related, that when the land has been covered with heary timber of a hard nature, there is such a quantity of aahea produced that their value will pay for clearing the land.

Maple sugur.-In the woody districts of Canada, the inhabitants have it in their power to make augar fot domestic conaumption as well as for exportation. This augar is produced from the sap of the mapla tree, ons of the most valuable vegetable products of the Ameriean forests. An active farmer and his wife may make, it is said, about 700 tbs . of sugar annually, not inferios in quality to that of the West Indies, and worth ahout $4 d_{\text {, }}$ per pound. I'he manufacture of this native sugut greatly tends to lower the price of West Incia sugar, which would be otherwise as high as Is. Gd. a pound 'Talbot, in his "Five Years' Residence in the Canadas," writes with enthusiasm of the valne aad use of this manufacture, which it scems ia far trom being propely attended to by the settlers. "Maple sugar might be manufactured," says he, why the rudest mountaineer in your country, as well in the first season after his arivel here, as hy the most eminent sugar-sefiner in Jamain The manufacture is generally commeneed carly in be month of April, when the sap of the tree is first pul into motion at the return of spring, and when no othet agricultural operation can be carried on to good purpose by the farmer, on account of the unpleafant westhen which occurs at that period. A part of the estate in selected which contains the largest quantity of flounish. ing maple-trees nearly contiguous to cacb other, and teinporary hut is erected tor the accommodation of the operators, but not more than two or three being required for the management of a hundred trees, from every one of which the sap is ouzing out at the same time. In rainy weather, the trees yield their valuable juice rathen tardily; and, during the whole month which is some times devoted to this employment, it often happens tht only eight or nine dsys are propitious to this part of the settler's labours. The best weather for the purpwe in thul in which the sight is frosty, and the day cheend by th, ys of a warm aun. If the process of beifing wm not continued hoth day and night, the sap wonld aro mulate ton rapidly in the reservoir, and moon evina symptoms of vinous fermentation, which would change its quality, and render it useless for the manufacture of sugar.
"'f'he first thing necessary for commencing the manofacture of this article is a metal loiler, which coss in Upper Canada about £2 10s. sterling. This bolle nearly thirty gallons, und, with a small cooking.pona suflicient, in a prownerous keasom, to hoil down 500 lise Oue humdred and fifly troughs, cight reservous, and four h:ond-buckets, will be necessary for the regula supply of this hoiler. 'I'le troughs cost about 16 s 3 d per hundred; the reservoirs, which are harrels withoul heals, about 4 s . each; and the huchets 2 s . 6d. eard These are the only utensila which an cmigrant will neti
the troughs may t any skill in the 0 winter. An expe troughs in a day ase, will last for coror during sum aeans of an incis of an auger. Bu injuriaus to the g mare approved pl: long is mave the c to its respeetive tr is conveyed in bue to subside. Whe nava heen left to s into the buiters, a process of evapor: is thea drawn frem voirs or coolers, u strained through and, after bring blood, is boiled it poured into moul intended to assum as soft sugar, the left in a sugar-ca moist particles, in the botton. Mal molasses, and cen sugar; hut by as at which I have giv int might manufa ported into Engl called ta smark, the kind of wool wometimes from boiling, and suliir nge, will from a luns of salp, and a ber of incisions sap contain at leas Dyes.-The mo dye into very hot the stuff through lour, but on no ac hung up, and whe and then into ba in it; the stuff in nearly dry, ironed brigliter hy the ad darker by pearl-a prepared. We dycing, and partic are required, shou professed dyer; a dane at home. I from a decoction with green coppe to the Aars.)
Tomperance dr ing and pleasing Guid, is lemonade pouring boiling w with augar to tas to be procured, a of tartar, may be is made with lum follows:-'Tnke o \& ounces, cream aliced, boiling wa the whole stand then bottle off for
Treacle bier is bllows:-1boil a

- and couviden astance is annu , Great Britain burnt trees. In ashes are care r other vessela ng poured ove ley being boiled evaporate, and rt of residuum, becomes fused haracter of poh
make their own d along with ten :onsistence, prosoft soap. Itia ered with heary a quantity of for clearing the
of Consda, the make sugar for portation. Thin maple tree, one of the American may make, it is not inferior in worth about id. is bative sugu est Incia sugan, ls, fid. s pound in the Canadas," sad use of this bring propely sugar night b - mountaineer is ufter his arrival finer in Jamaina ced early in the tree is first pul d when no othe to good purpose plearant westhen of the estate is intity of flourish "ach other, and a minodation of the ec loing required s, from every one same tithe. In nable juice tother whicb is some ften happens that o this part of the r the purpres es c day cheerad by s of boiling स२! sap would acco and soon eripy h would chang - manufseture of
neing the manb r, which cost in g. This looda il dowa 500 lu reservars, and for the regulut st about 16 s. 31 - berrels withool ete 2s. 6d. end igrant will nex'
tha troughs may be made by himself, if he has acquired any skill in the use of his axe during the preceding winter. An expert hand can make thirty or thirty-five troughs in a day, which, though formed only with the are, will last for many years, if carefully placed under covgr during summer. The t. ces are tapped either by means of an incision made by an axe, or the perforation of an suger. But the latter mode is considered the less injurious to the growth of the tree, and is thorefore the more approved plan. A small shoot about nine inches long is made the conductor of the sap from each incision to ita respective trough, from which, when nearly full, it isconveyed in huckets to the reservoirs, and there allowed to subside. When the grosser particles of the sedionent navs leen left to sink to the bottom, the sap is drawn off into the boilers, and reduced to molasses by the simple process of evaporation. The liquid in this purer state is then druwn from the boilers, and pheed in the reservoirs or coulers, until it becomes nearly cold, when it is atrained through a woollen cloth into a smaller beiler, and, sfter being claritied with tggs, milk, or bullock's blood, is hoiled down to the consistency of surgar, and poured into moulds of the particular sliape which it is intended to assume as a sort of candy; but if to be used as soft sugar, the syrup in its last stage of purification is left in a sugar-eosk, which is perforated, to allow tho moist particles, in the form of molasies, to ooze through the bottom. Many people neither clear nor strain the molasses, and consequently make very eoarse and dirty ougar; but hy a strict adherence to the simple directions which I have given, the most ignorant novice in the ort inight manufacture sugar equal to any that is impored into England. Some of it, indeed, has what is called 'a smark,' or peculiar taste, derived often from the kind of wood of which the troughs are made, and cometines from being neglected whilo in the act of boiliag, and sullired to burn. Every tree, on an average, will from a single wound yield aboui twenty galluns of ala, und a proportionate quantity from any numbet of incisions not excueding four. Five gallons of sap contain at least one pound of sugar."
Dyes.--The most simplo rule for dyeing is to put the dye into very hot water, and when well mixed, to pass the stuff through it until it sufficiently imbihes the colour, but on no account to squeezes it ; it should then be hung up, and when cold, planged twice into soft water, and then into hard water with a little atum dissolved in it; the stuff may then be again hung up, and when vearly dry, ironed or pressed. Most colours are made brighter by the addition of a little eream of tartar, and darker by pearl-ash. Dyes may be purchased ready prepared. We would recommend that all ordinary dycing, and particularly when fancy or delicute colours are required, should be consigned to the hands of the professed dyer; and dyeing of a coarse kind only be done at home. In such cases, brown may be produced from a decoction of birch bark; and black from logwood with green copperas. (See article Chemisticy appleid то тне An'ra.)
Temperance drinks,-The aimplest beverage of a cooling and pleasing quality, which contains no intoxicating fuid, is lemonale; this may be very easily made by pouring boiling water on sliced lemons, and sweetening with sugar to taste. Lemons, however, are not always to be procured, and in such a case, citric acid, or tream of tartar, may be employed instead. Superior lemonade is made with lump sugar. Ginger becr may he made as follows:-Take of lump sugar 3 pounds, bruised ginger 2 ounces, cream of tartar 1 ounce, one or two lemons diced, boiling water 4 grallons, and yeast 8 ounces. Let the whole stand to work in a cask for four days, und then bottle off for use.
Treacle brer is a cheap drink, which may he made as bllows:-Doil as much water as will fill twelve com-
mon quart bottles and to it ada one pound of treacle, or more, according to taste. When the treacle is dissolved, take the pot from the fire, and let the solution cool. When lukewarm, put into it half a gill of yeash. As soon as it is cold, bottle it, but do not put in the corks till next morning, when th; yeast will have wrought over the top of the bottlea. let it stand in a cool place for two or three days, when it will be fit for use. Unless care is taken ea to the proportion of yean and keeping cool, also to corking tightly, the bottles may burst, which is a serious loss to a poor family.

THE TOILET.

Personal cleaning and decoration are the proper duty at the toilet, which requires regular performance daily. We shall speak first of matters connected with the genthemun's toilet.

Shaving.-Sone beards are more hard and difficult to shase than others. The usual plan is to soften them with soap lather, but this is not sufficient with beards which are somewhat stubborn. We recommend all to try tho following plan: Rub the face or beard with a little soap and water with the hand over the basin, and when prexty well rubbed or softened, apply the lather. Raise the lather from warm water, and apply with a brush. The best kind of soap for shaving is Bandana, but Windsor is also generally liked. Although warm water is most agrecable and suitable for shaving with, it is advantageous for every one to accustom himself to shaving with cold woter, as it will renter him indopendent of assistance when travelling or in cases of emergency.

It is of no use going to great expense in purchasing razors. A razor of the best kind may be had for from five to eight shillings, and as their tempering ia very much a mntter of chanee, sometimes a first-rate razor may be had for two or three shillings. Supposing a slarpand grood razor to be procured, it may last a whole lifetime with ordinary care. We have used one fur twenty years, and it is still as good as new. Sorre persons prefer keeping six or seven razors, and changing them daily, but in this there is no absolute utility. Ruzors become blunt more from bad management than fant work in shaving. When to be used, dip the razor in hot wator, fur this adds keenness to the edge; and before puturig it , way, wash the razor gently to remove all impurities. Do nut wipe it with or upon paper, for that sponle the $\mathrm{rd}^{\prime \prime}$; is it only with a line rag. Before putting; it away in its case, give it a turn or two on e. atrop. Several kinds of strops are $\quad \forall$ offered for sale; and all, very properly, are mounted urd board. 'The best we have seen has several sides, rent degrees of fineness; one being for use in takng out small bluntnesses or flattenings on the edge, called setting, and another for simple stropping. In any case, take care alway's to draw the razor smoothly and flatly from hecl to point along the strop. Do not draw first one way and then push another. In general one or two turns will bo enough. Never leave your razors in drawers or cases which are accessible to servants or children. By locking them up, you will keep them in better order than by all the other means you employ.
d 'ut is shaving,-'The bleeling may be at once effeetnally stcpped by placing on the wound a amall portion of wool from a beaver hat. We have known cases in which bleeding from very serious wounds have been stopled by the application of hat studt when all other means latiod.

The tecth.-The cleaning and proper management of the teeth is the most dillicult operation of the toilet Whether urising from heat of the stomneh or other corr
stitutionel causes, the teeth of some persons are much more liable to becomo discoloured and decay than others. In general, even in the trorst cases, much might ire done in youth to prevent future deterioration of teeth; but children are ignorant. and parents are lamentubly careleas on this important matter of pernonal economy, and remedien often require to be applied when too late. Parents desirous of seeing their children grow up with good teeth, whould cause them to be cleaned with scrugulons regularity daily, though only with a brosh and tepid water. If the teeth appear crowded, so that there is a fear of one tooth shooting over anoher, a dentist ought by all means to be employed to thin the row, and nllow all to grow straight.

The daily cleaning of the teeth should take place every morning after washing the face. Employ in prelerence tepid water and a moderately hard lirush. Various dentifrices or powders are offered for sale, and which the opulent have opportmities of texting; but we klow of none better thar finely-powdered chareonal, that is. charred wood well gromd in a mortar, and kept in a bax sectuded from the air. It may he purchased, ready for use, at a small price from perfumers. By putting a little of this on the wet brush, and rubbing the teeth with it, impurities ard discolourstions will he removed without injuring the enamel. Rinse well afterwards with clean water. A ,much more strong dentifrice comsists of the powder of burnt tobaren; hat it contains silica, or gritty particles of sand, and combat be recommended for eommon use.

The mails-Kicping the nails of the fingers in order Is a proper duty of the toilet. 'They slwould he brushed with song and water when washing she hands. While still wet, or when wiping the hands with the towel, push back the skin which is nat to grew over the nail, and thus keep the top of the nails neatly rounded. The proints of the nails should he regularly pared once a week.

Stres hass.-These sonctimes grow in the nose and ears to an uncomfortable extent. Remove them sinartly with a pair of tweezers.

Pomutum.--This is a sof ur guent which is valuable for softening the hands, and preventing them chopping in cold dry weather, or for mositening the hair. It was originally named from its containing apple ($j^{\text {omum, }}$, I, atin), and consisted of lard, ruse-water, and the pulp of apples. It now consists of pretimed hog's-laril, the opple bein: onitted. The famed suliana pomatum is made as follows:-Melt together half a pound of beef shet, the same of lear's grease, an ounce of white-wax, nad two ounces of oiive oil; and add to it, ticel up loosely in maslin. one ounce of liruiacd cloven, hatf an onnce of cince mon, two bruised tonquin heans, mad four grains of musk; strain and put into pots. 'Ther article calledl bear's grease, usually sold in the shops, is lit ie clae than perfumed heef-marrow; and the many oils offered for restoring and soltening the hair are chielly olive or almond oil, perfumed with diflerent scents. In general, if the hair be wall brushed, no such rpplications are necessary, and in most cases they croate a semf on the aeal which it requires consideratile trouble *o get rid of.

Ponsule divine.-'Ths is a wof and valuable noguent, possessing a fine aromatie ollour. Dr. Hidtoes recommends it to te male as fullows:-Sterp twelve ounces of beef-marrow in water ten days (changing the water ercasionally), nod then sterp it in rose-water. Put it into a jar with half an ounce of flowere of henjamin, the name of sturax and orris-root in prowiler, and two drachuse rach of cinuamon, nutmeg, and cloves, in puwder. |

Cover the jar closely, set it in a vease, of water, and pan it on the fire; and when the pomade is thus meltell strain it for usc. As a very small quantity is ever used at a time, in general it will be fonnd much more economical to buy a emall bottle of it than to prepare the article.

Cold rream.-This is n simple and cooling ointment, exceedingly serviceable for rough or chopped hands in winter, or for keeping the skin soft. It is very easily made. 'Tako half an eu:se of white wax, nond put it inta a small hasin, with two ounces of almond oil. Place the basin by the side of the fire till the wax is dissolved in the oil. When quite meltod, add two ounces of rosewater. This must be done very slowly, little by little; and as you pour it in. beat the mixture smortly with a fork to make the water incorporate. When all is in. corporated, the coll cream is complete, and you may pour it into jars for future use. This cold cream is unch better than that which is usually sold in shops, and whish is too frequently malle of interior ingredients.

Syermaretiontnicnlo--'l'his is a cooling and healing ointment for wounds. Take a quarter of an ounce of white wry and half an ounce of npermaceti (which is a hard white material), and put them in a small basin with two ounces of almond oil. Place tho basin by the wide of the fire till the wax and spermaceti are dissolved. When cold, the ointment is ready for use. 'Ilus is an article which it is a'so much better to make than to purchase. W'hen you make it yourself, you will know that it has no irritating or iuferior materiale in it

The fect-corns.-To keep the feet in a proper condition, they should be frequently soaked and well washed. Ai these times, the nails of the toess should be pared and prevented from growing into the tlesh. Coms are the most tioublesome evils connected with the fect. They ure of two kinds-sont nend lard. The soft corns are thowe which grow between the toes. They may be easily removed by applying ivy leaf steoped in vinegar; if the corn be very painful, change the picce of ivy leaf every morning. The leaf may lee steeped for one or two days lofliore using. Hard corns, which grow on the outide of the toes, are cnused by friction from the shows, and we know of nothing so likely to prevent them as casy sot shoes and very frequent soeking of the foct in wam water. Every method of extracting corns serms but to atford temporary relicf, and never will be uttended with complete auccess maless attention is paid to the shoses. It is very dangerous to cut corins too dep, on arcount of the multiplicity of nerves ruming in every direction of the tuess. The hunion, or swelling on the ball of the great toe, is produred by the same cause as the corn-pressure and irritation by friction. The treat inent recommended for corns will succed in cases of bunions; but in consequence of the greater extension of the disease, the cure of course is more tatimas. When a bunion is commencing, it may be eflectuatily stupped by poulticing, and then upaning with a lancet; bat this must be committed to the hands of a surgical attondant
Cosmetirs,-'Ilacse consist of washes and pastes for improviug the skin, and are in general highly objectionshle; for the greater number cont in joisonous ingredients, and while removing from the burface any discolouration, drive the disense inward, nul therefore do much more harin than good. Leotions lir pimples, freckle Washer, milk of roses, rouge, and all sumh tranh, we todiously discomment. The lest purifier is water with cloth; the best beautifiers are health, cacrise, and ooas тем户口и.

A passe balance juat weight is A lool uttereth :ill afterwards A focl's wrath covereth sham A good name is and loving finv A man that has there is a friet A man of under A man's pride uphold the hu A merry heart do apirit drioth th A righteous man tender mercies A sof. answer t nit up auger. A virtuons wome that muketh av A wise son mah the heavinces A word fitly spoo gilver.
As a lind that wn \rightarrow andereth fron As a dog returise his folly.
As a jewel of gold who is without As a madman wh so is the man Am not I in 8 A's the crackline ter of a tool.
As the whirlwind the righucous is Aa rinegar to the the sluggaril to Be thou diligent well to thy her
Before honsur is
Better is a dry r house full of s
Hetter is a dinnes ox and batred lletter is a little v without right.
Blessings are u_{l} covcreth the m Boast not thyse? what a day ma Bv mueh slothfals idlleness of the By pride cometh Cast thy bread after mony day Even a fool, wha and he that sh derstanding.
Faithful are the s enemy are dect Favour is dereit that feareth the Fear God, and k whole duty ol' Vul. I.-104
water, and put
3 thus melter. y is cver uned t rore econo - prepara the ling ointment, pell honds in is very casily and put it into nd oil. Place ax is clissolved unces of rowe little by little; shartly wilh hen all is in. and you may cream is sunch in shops, and redients. and healing an arnce of ceti (which is a small basin - busin by the are dissolved.
Thus is an make than to 00 will know a in it proper coniliwell washed. be pared and Sorns are the efeet. They oft corns are may le easily negar; if the wy leaf exery cor two days in the outside thoes, and we as casy met feet in wam Its seems but be attended paid to the 100 deep, an ing in every elling on the me cause as . The treat in caves of entensian of 1ills. Whea maidy stupred ceet; but this at atteniant al puites for Iy oljectiona. hous ingredif y discolourz. re do nuch plos, frectle raih, we to. water with se, and ooos

PROVERBS AND OLD SAYINGS.

s:RIPTURAI, PROVERBS.

A yasse balance is an nhomination to the Lord; but a juat wright is his delight.
A fool nttereth nill his aind; but a wise man keepeth it ill afterwards.
A foul's wrath is presently known; but a prudent man covereth shame.
A good name is rather to bo chosen than grant riches, and loving favour rnther than silver and gold.
A man that has friends must show himself friendly ; and thero is a friend that sticketh closer than a lurether.
A man of understanding holdeth his pence.
A man's pride shall bring him low; but honour shall uphold the humble in spirit.
A merry heart doeth good like a medicine; but a broken gpirit drioth the bones.
A righteous man regardeth the life of his beast; but the tender mercies of the wicked nre cruel.
A sof, answer turneth away wrath; but grievous words atir up anger.
A virtuous womnn is a crown to her husband; but she that maketh ashamed is as rottenness in his bones.
A wise son makoth a glad father; lut a foolish son is the heaviness of his mother.
A word fitly spoken is like apples of gold in pictures of silver.
As a bird that wandereth from her nest, so is a man that \rightarrow adereth from his place.
As a dog returncth to his vomit, so a fool returneth to his folly.
As a jewel of gold on a swine's snout, so is a fair woman who is without discretion.
As a maduan who casteth firchrands, nrrows, and death, so is the man that deceiveth his neighbour, nud saith, Ain not I in sport?
As the cracking of thorns under a pot, so is the langhtur of a fool.
As the whirwind passeth, so is the wieked no more; but the rightuous is nn everlasting foundation.
As Jingar to the teeth, and as smoke to the eyes, so is the sluggaril to them that send hion.
Be thou diligent to know the state of thy flocks, and look well to thy herils; for riches aro not for ever.
Before honour is humility.
Better is a dry morsel and quietness therewith, than a house full of sateritines with strife.
Hetter is a dinner of herbs: re love is, than a stalled ox sud hatred therewith.
Iletter is a little with righteousness, than great revenues sithout right.
Blessings are upon the head of the just; but violence covereth the mouth of the wieked.
Boast not thyself of to-morrow; for thou knowest not what a day muy lorimg forth.
Bv much slothfulnes the building decayeth; nud through ideness of the 1 : uds, the house droppeth througt By prile eometh courntion.
Cast thy bread upon the waters, for thou shal ? it ster many days.
Even a fool, when he holdeth his peace, is counted wise;
and he that shutteth his lips is esteemed a man of understanding.
Faithful are the wounds of a friend; but the kisses of an enemy are deceitful.
Pavour is deceitful. and benuty is vain; but a woman that feareth the Lord sho shall be praised.
Fear Gol. and keep his commandments ; for this is the whole duty of man
Vul. I.-104

For men to search their own glory is not glory
Go from the presence of a foolish man, when thou yev ceivest not in him the lips of knowledge.
Go to the ant, thou sluggard; consider her waya and le wise.
God hath made man upright, but they havo sought out many inventions.
He becometh poor that denleth with n slack hand; bus the hand of the diligent maketh rich.
He that observeth the wind slall not sow, and ho that regardeth the clouds shall not reap.
He that passeth by, and meddleth with strife belonging not to him, is like one that taketh a dog by the eara.
He that is slow to anger is hettor than the mighty, and he that ruleth his spirit than he that taketh a city.
He that loveth plensure shali be a poor mon: ho that loveth wine and oil shatl not be rich.
He that is greedy of gai:1 troubleth his own house; but he that bateth gifts shall live.
He that is of n merry heart linth a continual feast.
He that is first in his own cause secmeth just; Jut him neighbour cometh and searehfth him.
He that hath pity npon the poor lendeth unte the Lord; nud that whici, he hath given will he pay biso ugain.
He that hideth hatred with lying lips, and he that uttereth a slander, is a fool.
He that spareth the rod hateth his son; but he that loveth him ehaste reth betimes.
He that gathereth in summer is a wise son; but he that sleepeth in harvest is a son that causes shame.
He that walketh uprightly walketh surely; but he that perverteth his ways shall he known.
He that is surety for a stranger, shall smart for it ; anc he thint hateth suretiship is sure.
IIe that krepeth [silent] his mouth, keepeth his life; but he that openeth wide his lips shall have destruction.
He that troubleth his own house shall inherit the wind; and the fool shall be servant of the wise of heart.
Heaviness in the heart of n man maketh it stoop; but a good word maketh it glad.
Hell and destruction are never fuil; so the eyes of man are never satusfied.
His own iniquities shall take the wicked himself, and be shall he holden with the cords of his own sins.
Mope deferred maketh the heart sick.
If sinners entice thee, consent thou not.
If the iron be blunt, and he do not whet the edge, then must he put to more strength ; but wisdom is profit. able to direct. \dagger
If thine enemy lie hungry, give him bread to ent; and it he lie thirsty, give him water to drink: for thou shalt heap coais of fire upon his head, and the Lord shall reward thee.
If thou faint in the day of adversity, thy strengt is small.
If ye cast pearls before swine, $t \mathrm{l}, \ldots$ il turn again and rend ye.
In all labour there is profit; but the \ddagger k of the lips tend eth on!y to penury.
Iron sharjeneth iron; so a man sharpencth the countenance of his friend.
r ; nought, it is nought. man h ir. - buyer; but when ne i* : Mre his way, then ho trasidit.
It is better to dwell in a voser of the bouse-top, than with a brawling womnn in 16 wide house.
Let another man praise there, and not thine own mouth: a stranger, and not thine own lips.

[^82]Leve cot sleep, leat thou come to poverty : open thiso eyea, and thou shalt be satisfied with bread.
Much food is in the tillage of the poor; but there in that ia destroyed for want of judgment.
Of making many book there is no end; and much study is a weariness of the flesh.
Pride goeth before destruction, and a haughty apirit before a fall.
Remove not the old land-mark; mod enter not into the fields of the fatherlesa.
Reprove not a scorner lest ho hate thee: retuke a wiae man and he will love thee,
Righteousness exaltoth a rextion; but gin is aratioch ω any peoplo.
Say not unto thy peighbour, Go, and come again, stal to-morrow I will give, when licu hest it by thee.

T.efore kings; tas shall not stand before moan me : 0

Beeat thus a man that is have, in his words: there is mare lape of a mot than ot tum.
Strive the with a man whout cause, if he bave done the no tharm.
The blessing of the Iord, it maketi. rich, and he s.detis no sorrow with is
The curse cubseies shai' not come.
The drunkard and ibe ginton slalicote to peverty; and drowsiness shall clotive a man with ragr
The hand of the dligets shall hear rule; Lat the sloninful shall be undec tribute.
The lalour of the righteous tendeth to life, the fruit of the wicked to sin.
The memory of the just is hlessed; but the name of the wicked whall rot.
The race is not to the swift, nor the battle to the strong,
The rich mall is wise in lis own cenceit; but the poor that hath understandins searcheth him out.
The rich man's wealth is his strong city; the destruction of the pror is their pwerty.
The rich ruleth over the pexir; and the berrower is sorvant to the lender.
The eimple believeth every word; but the prudent man looketh well to his going.
The sleep of the labouring man is sweet, whether he eat little or much; but the abundance of the rich will not auffer him to sleep.
The sluggard will not plough by reseon of the cold; therefore shall he beg in harvest, and have nothing.
'I'he slothful mas saith, There is a lion without ; I shall he slain in the streeis.
The poor is hated even of his neighbour; but tho rich hath many fricnds.
The profit of the earth is for all: the king himself is served by the field.
The upriglit shall dwell in the land, and the perfect shall remain in it. But the wicked shall be cut off from the carth, and the transgremsors shall be rooted out of it.
The wicked flee when no man pursueth if but the zightcous are bold as a lion.
The wise shall inherit glory; but shame shall be the promotion of fools.
There in that maketh himself rich, yet hath notling ; there is that muketh bimself ponr, yet hath great riches.
There is that mattereth, at? yet increaseth; and there is that withholdeto merr w. . w meet, but it tendech to poverty.
To ail the living ther: than a deall 1 in.
Train up e chik , \because is old he will

[^83]Trensures of wickedness profit nothing; but rightrone noss delivereth from death.
Wealth maketh many friends ; bitt the poor in epparated from his neighbour.
Whatsoevor thy hand indeth io do, do it with thy might, for there is no work, nor device, nor knowledge, not wisdem in the gravo, whither thou goest.
When goods increase, thoy are increased that eat tlem, and what good is there to the owners thereof, saving, the beholding of them with their eyea.
Where to counsel is, the people fall; but in the multitude of counsellors thagre is safety.
Where no wood is, then the fire goeth out; so where thero is no tale-bcarer, the strife.ceaseth.
When pride cometh, then cometh shaina; but with the lowly is wisdom.
No con find a virtuous woman? for her price is far above rubies.
Whoso findecih a wifo findeth a good thing, anil obtaineth favour of the Lord.
Wine is a mocker, flrong drink in raging ; and whoseever is deceived thereby is not wise.
Withdraw thy foot from thy neighbour's house, lest he be weary of thee, and so hate thee.
Withhold not good from them to whom it is due, when it is in the power of thine hand to do it.
Yet a little slecp, a little slumber, a little folding of the hsnds to sleep: sc shall thy poverty come as one thet travelleth, and thy want as an armod man.

E.vGlisit proverbs.

A had workman quarrels with his tools.
A bird in tho hand is wortht two in a bush.
A happy heart makes a bloomiug visage.
Absence couls moderate paseiona, and inflames volest ones.
A burden which one choosea is not felt.
A cat may look at a king.
Aching tecth aro ill tenants.
A chip of the old block.
A clear conseience fears no necusation.
A contented mind is a continual feast.
A creaking door hangs long on the hinges.
A day offer the feast.
A drowning man will catch at a atraw.
Adversity flattereth no man.
A fat kitchen makes a lean will.
A fault confessed is half redressed.
A fool and his money are soon parted.
A fool can make money; it requires a wise mar n spend it.
A fool may give a wise man cours?
A fool's bolt i., swo shut.
After death the doctor.
Afer dinner sit a while, after supper walk a mile.
After meat, mustard.
A friend in need is a friend indeed.
A full purse nover lacks friends.
A gentleman without a living is like a puditing without suet.
A good layer-up is a gnoel layer-nut.
A gond maxim is tee at ne nason.
A good name keeps if: watre in the iods.
A gras? servant al a a good master.
A good word it soon said as an ill cre.
A goose canmel graze iffer hims.
A great dowry is a hed full of troubics.
Agues come on horseluack, but go away on fook
A guilty conscience needs no ?ecuser.
A hair of the dog that lit him.
A handful of good ife is wetter than a bushel of leaning
A hungry man's an angry inum.
A king's favour is no inhlieritance.
A libertine's lifo is not a life of liberty.

A lie has no te
A light-heeled
A light purse
A little body ds
A little leak wi
A little pot is a
All are not frie
All ars not hun
All are not thie
All feot tread n
All gone to six
All is tish that
All is not gain
All is not gold
All lay loal on
All the honesty
All the fat'a in
All things are
All work and n
Almost and ver
Always put tho
A man forewar
A man may bu
A man may ca
A man may ho
A nan may los
A man must as
A man never 8
A man without
A miss is as go
An apple, an er
An empty purs
An evil lesson i
Anger dieth qu
An lonest man
An hour in the
A nico wife aun
An idle lrain is
An oak is not f
An obedient wi
A nod from al
An old knave
An old sack ask
An ounce of m
Antiquity is no
An unlawful od
Any thing for
A penny saved
A pina day is
A pitcher goes
A quiet conacie
A quict tongue
A rolling stono
A rotten apple
A rottun slieep
A single fact is
A small pack
A small spark
A smart reproo
A spur in the
As the bell is,
As the crow is,
As the fool thi
As the old coek
A stirch in tim as welcome as
As you inake y
As you suw,
A tree is know
A wayer is a f
A willuel man
A willing mine
A word before
Aye be as mer

A lie has no lega, hut acandal has wing.s.
A light-heeled mother makes a heavy-heeled daughter,
A light purae is a heavy curse.
A little body doth often harbour a great soul.
A little leak will sink a great ahip.
A little pot is soon hot.
All aro not friends that speak us falr.
All are not hunters that blow the horn.
All are not thieves that dogs bark at.
All feet tread not in one ahoe.
All gone to sixes and acvens [confusion and ruin].
All is fish that comea to the net.
All is not gain that is got into the purse.
All is not gold that glitters.
All lay loal on the willing horse.
All the honesty is in the parting.
All the fat'a in the fire.
All things are aoon prepared in a well-ordered house.
All work and no play makes Jack a dull boy.
Almost and very nigh, save many a lie.
Alwaya put the saddle on the right horse.
A man forewarned is forearmed.
A man may buy gold too dear.
A man may cause his own dog to bite him.
A man may hold his tongue in an ill time.
A man may lose his goods for want of demanding them
A man must ask his wife leave to thrive.
A man never surfeits of teo much honesty.
A man without reasen is a beast in season.
A miss is ne good os a will.
An applo, an egg, and a nut, you may ent after a alut.
An empty purse fills the face with wrinkles.
An cuil lesson is soon leamed.
Anger dieth quickly with a good man.
An honest man's word is as good es his bond.
An hour in the morning is worth two in the afternoon.
A nice wife and a backdoor often make a rich man poor.
An idle brain is the devil's workahop.
An oak is not felled with one bluw.
An obedient wife comınands her huaband.
A nod from a lord is a breakfast for a fool.
An old knave is no bahe.
An old sack osketh much pntching.
An ounce of mother-wit is worth a pound of clergy.
Antiquity is not always a mark of verity.
An unlawful oath is better broke than kept.
Any thing for a quiet life.
A peany saved is a penny earned.
A pin a day is a groat a year.
A pitcher goes often to the well, but is broken at last.
A quiet conscience sleeps in thunder.
A quict tongue shows a wise head.
A rolling stone gathers no moss.
A rotten apple injures its companions.
A rotten slieep infects the wholo flock.
A single fact is worth a ship-load of argument.
A small pack becomes a sinall pedlar.
A amall spark makes a great fire.
A sosart reproof is better than amooth deceit.
A spur in the head is worth two in the heel.
As the bell is, so is the clapper.
As the crow is, the egg will be.
As the fool thinks, the bell clinks.
As the old cock crows, tho young cock learns.
A stitch in time saves nine.
as welcone as llowers in Mav.
As you make your had, so muat you lie on it.
As you sow, 品 you ahall resp.
A tree is known by its fruit.
A wager is a fool's argument.
A wilful man will have his way.
A willing inind makes a light foot.
A word before is worth two behind
Aye be as uerry as you call.

Bachelors' wives and maids children are alwags wer taught.
Beauty is a blosaom.
Beauty is no inheritance.
Before thou marry, be sure of a house wherein is tarry.
Beggare have no right to be choosers.
Be it for better, or be it for worse, be ruled by him thet beareth the purse.
Be not too hasty to outbid another.
Be alow to promiso, and quick to perform.
Better do it than wish it dono.
Better go ahout than fall into the ditch.
Better known then truated.
Better late than never.
Better ride on an ass that carries me, than a horwe that throwa me.
Better to be alone than in bad company.
Better to be beaten than to bo in bad company.
Better to bend than to break.
Better to go to bed aupperless than to rise in debt.
Between two stools we como to the ground.
Birds of a feather floek together.
Birth is much, but breeding is more.
Borrowed garments never fit well.
Brag ia a good dog but Holdfast is bettor.
Bread at pleasure, drink by measure.
Brevity is the soul of wit.
Building and marrying of children are grent wasters.
Burning the candle at both enda.
Business is the salt of life.
Buy at a market, but sell at home.
By others' faults wise men correct their own.
"Can do" is easily carried.
Care killed a cnt.
Carrying coals to Newcastle.
Catch not at the shadow, and Iose the substance.
Catch the bear before you sell his skin.
Change of fortune is the lot of life.
Charity begins at home, but does sot end there.
Cheating play never thrives.
Children and chickens must be always picking.
Children are uncertain comforts.
Children suck the mother when they are young, and teo father when they are old.
Climb not too high, lest the fall be the greater.
Confession of a fault makes half amends for it.
Confine your tongue, leat it confine you.
Conscience is never dilatory in her warnings.
Conseience is the chamber of justice.
Constant occupation prevents temptation.
Content is the true philosophers' stone.
Contentment to the mind is as light to tho eye.
Conviviality should ever be free from intemperance.
Courtesy on one side never lasts long.
Covet not that which belongs to others.
Craft bringeth nothing home.
Custom is a second nature.
Cut and come again.
Cut your coat according to your cloth.
Daub yourself with honey, and you will have plenty of flies.
Death is deaf and heare no denial.
Death keeps no calenilnr.
Debt is the worst kind of peverty.
Deeds are fruits, words nre but leaves.
Deep rivers move with silent majesty, shallow brooks are noisy.
Defer not till the evening what the morning may accoas plish.
Delays are dangerous.
Deliherate slowly, execute promptly.
Dejeisd not on fortune, hut on conduct.
Dependence is a poor trade to follow.
Berido not any man's infirmitiea.

Dedinw are nourished by delayn.
Deserve success, and you aluall command it.
Deeppise none, deapair of none.
Diligence is the mistresn of success.
Dineases are the interesta paid fir pleasures.
Do as the most do, and fewest will apeake evil of you.*
Do as you would be done by.
Dogs wag their taile not eo much in love to you as to your hread.
Doing nothing is ding ill.
Do not burn daylight ueron it.
Do not halloo till yea are out of the wood.
Do not make fish of one and fleah of another.
Do not rip rij, old sores.
Do not spur a free horse.
Do rot throw your opinions in everyhaly's teeth.
Den't be all your days troting on a cabbage leaf.
Din't buy a pig in a poke.
Dun't mearure other people's corn by your bushel.
Din't neglect to feather your neat.
Do. 't run away with more than you can carry.
Don't value a gein by what it is set in.
Do what thou oughtest, and come what can.
Dovn with the dust [pay the money].
Drankenness is a pair of spectacles to see the dovil and all his works.
Trunkenness reduces a man helow the standard of a brute.
Faglen fly alone, hut sheep flock together.
Early to hel, and carly to rise,
Makea a mun healthy, wealthy and wise.
Eat what you like, hut pocket nothing.
Elspty versela make the greateat sound.
Enough is as good as a feast.
Ente:tain honour with humility, and poverty with patience.
E.ening oats aro grod morning's folder.

Ever drunk ever dry.
Ever apare and ever have.
Every bean hath its black.
Every dog has his day.
Everyboly's businens is nobociy's buainesr.
Every rouple is not a pair.
Every herring mast hang by its own head.
Every Jack has his Jill.
Every man is the architect of his own fortune.
Every one for himself, and God for ua all.
Every one puts his fault on the times.
Every one to their liking, as the old woman said when sho kissed her cow.
Every path hath a puddle.
Every shoe fits not every foot.
Every thing hath an end, and a pudding hath two.
Every thing in goos in its season.
Every thing is the worse for wearing.
Example teaches more than precept.
Experience is the mother of science.
Experience teaches fouls.
Evil communicationa corrupt good manners.
Fvil gotten evil apent.
Faint heart never won fair lady.
Fair and softly go far in a day.
Fair words make foots fain.
Fall not out with a friend for a trifle.
False friends are worne than open encmiea.
Fancy may bolt liran and think it flour.
Far-fetched and Jear-bought is good for ladies.
Fat paunches make loan pates.
Fat morrow is hetter than lean norrow.
Fow take care to live well, hut me:", on live long.
Fidder's faremmeat, irink. and :a
Tine feathers make fine birde,
Fine words butter no parsnips.

Fire and water are gool mervanta, hut bail memeract
Firs is not to be quenehed with tow
First donerve and thes desire.
Fly pleasure, and it will follow thes
Fools mako feasta, and wiso men eat then.
Feoln should never see halfodone work.
Fools tie knots, and wise men loose them.
Fools will be meddling.
Forbearance ia no acquittance.
Forgive and forget.
Forgive any sooner than thyself.
Fortune faveurs the brave.
Fortune has no power over discretion.
Fortune knoeks once at leust at every man's gate.
For want of company, welcome trumpery.
From fame to infatry is a lieaten road.
Gather thistlen, except prickles.
Gentry sent to market will not huy one bushel of eom
Get thy spindlo and diataff ready, and God will aend flaz
Give a dog an ill name and hang him.
Give a rogue rope enough, and he will hang himsori
Give it plenty of elhow grease [hard rubbing].
Give the devil his due.
Gorl help the rich, the poor ran heg.
God bolps those who help themselves.
Giod aend you inore wit, and me more money.
God tempers the wind to the shorn lamb.
Go farther and fare worse.
Good counsel id alove all price.
Good harveata make mell prodigal, bad onee provideos
Giood to he merry at meat.
(iond ware makea quick markets.
Good wine necda no hush.
Good words cost nothing, but are worth much
(ioods are not theirs who enjoy them.
(Gossipping and lying go hand in hand.
Grusp all, lose all.
(Great harkere are no biters.
Great rry and little wool.
(ireat gain and little pain make a man aoon werry.
Half a loaf is hetter than no bread.
Handrome is that handsome does.
Ksppy is he whose friends were horn before him.
Huppy is he who knows his follies in his youth.
Happy is the wooing that is not long in doing.
Harm watrh, harm fatech.
Hasty resolutions seldon speeci well.
Have not thy elonk to make when it begins to rain
Hear twice hefore youl apeak once.
He dances well to whom fortune pipes.
He douhlen his gift who gives in time.
He fights with his own shalow.
He giveth twice that gives in a trice.
He has a bee in lis bonnet.
He has brought his nolle to ninepence.
He has hasd a bite upon his bridle.
He is a wise man who speaks little.
He is proper that hath proper ronditions.
He knowa no: a B from a bull's foot.
He knows not a bawk from a hand-gaw.
He lacks most that longs most.
Hell is paved with grod intentions.
Help the lame dog over the stilo.
He liveth long that liveth well.
He'll find some hole to creep out at.
He loses nothing for the asking.
He loseth his thasks whor. th and delayeth.
He loseth nothing tha: : Cinifor his friend.

T". :" y well he contented wao need neither borrow in 8.

He must needs run whom the devil drivea
He must stoop that hath a low door.
He plays well that wine

Ho's a Jack in
He's gone upo Ho that alway He that blows He that fallo it pun.
HIs that goes a
Ho that has no He that has nc
his tongue.
He that hath a thistes.
He that is ang
He that is war
He that lendet
and hia frien
Ho that licka h
He that lies do fleas.
He that lives n
He that liveth
He that reckon
He that rung fa
He that tuns ir
ait cu.... sown n
He that staye in
He that will no
He that will n
He that will stc
He that would
thriven may
He was lorn wo
He who is hust
Ho who knows
He who lies lon
He who inarriet
Ho who rises la
He who rung at
He who sows b
He who spends
H_{0} whe vions
llo wL. would
He who woulld
Hiders are goo
His hread is bu
His cye is bigg
His tongue's n
1tumia is loone
Hope is a good
Hot love is soo
Hot aup, hot an
Humility is the
Hunger is the
Humgry digge
I can zee as far
Hlle folks have
Hile folks have
Wleness is the
Wlleness is the
Illencss is the
rileness is the
if every one w
If the brain sov
If the cap fit, w
If the mountai
must go to 1.
It things wern
If we suldue n
If wishes were
If you give an
If you have tor will lurn.
If you would e
cesurance is the

He's a Jack ln office:
He's gone upon a aleeveleas errand.
He that alwaya complaina is never pited.
He that blowa in the dust fills his oyea.
He that falla in an evil cauac, falla in the devil's fryins pan.
He that goes a-borrowing goes a-sorrowing.
He that has no shame has no conscience.
He that has no silver in his purse should have silver on his tongue.
Ile that hath a good harvest may bo content with some thistles.
He that is angry is seldom at case.
He that is warm thinks all are so.
He that lenileth loseth double. [Losea both his money and his friend.]
He that lieks honoy from thorns pnya too dear for it.
He that lies down with dogs, must expect to rise with fleas.
He thast lives not well one year sorrowa for it seven.
He that liveth wickedly can hardly die honestly.
Ho that reckons without his host must reckon again.
He that runs fast will not ran long.
lle that runs in the night stumbles.
rie cine. © ons not corn plants thistlea
He that stays in the valley will never get over the hill.
He that will not he saved needs no preacher.
He that will not be counselled cannot be helped.
He that will steal an egg will steal an ox.
He that would thrive inust rise at five, he that has thriven may lie till seven.
He was horn with a silver spoon in his mouth.
He who is hasty fishes in an empty pond.
He who knows himself best estecms himself least.
He who lies long in bed his estate feels it.
He who marrieth for wealth doth sell his liberty.
Ho who rises late never does a yood day's work.
He who runs after a shadow has a wearisome race.
He who sows brambles mast not go barefoot.
He who spende all te gets is in the highruall to beggary.
He whe exins in sin will sink in sorrow.
II wh. would eatela fish must not inind geting wet.
He who would reap well must sow well.
Hiders are good findera.
His treal is buttered on both sides.
His cyc is bigger than his belly.
His tongue's no slander.
15om is home though it be ever so homely.
Hope is a good breakfast but a bad supper.
Hot love is soon cold.
Hot sup, hot swalliuw.
Humility is the foundation of all virtus.
Hunger id the best sauce.
Hungry dinge cut dirty puddings.
I can see as far into a millstone as the picker.
Idle folks have the most latour.
Hile folks have the least leisure.
Wleness is the greatest prodigality.
illeuess is the parent of want and shatue.
Heness is the root of all cvil.
Illeness is the sepulchre of a living man.
if every one would mend one all would be amended.
if the brain sows not corn, it plants thistles.
If the eap fit, we .r it.
If the monntai, will not come to Mahomet, Mahomet must go to 1 ic mountain.
It things were to be done twice all would be wise.
If we suldue not oer passions they will subdue ua.
if wishes were horses, begg:rs would ride.
1 you give an inch, he will take an ell.
If you have too many irons in the tire, some of them will buen.
If you would enjoy the fruit, pluck not the flower. caurance is the parent of many injuries.

I have a crow to pluck with him.
I have lived too near a wood to be frightened by owla I have other fish to fry.
I'll trust him no farther than I can fling him. Ill examplea are like contagious diseasos.
III gotten goouls seldom proaper.
III news travel apace.
Ill welding and ill wintering teme boih man and boast.
Ill weeds grow apace.
In a culm sea every man la a pilot.
In at one car and out at the other.
In vain he craves advice that will not follow it.
Inconstancy is the attendant of a weak uind.
It costs nore to revenge injuries than to bear them. It cuta both ways, like a tworedged sword.
It is a bad horse that refusea to carry his provender.
It is a long roald that has no turning.
It is an ill wind that blowa nobody good.
It is better to do well, than to say well.
It is good to begin well, but better to end well.
It is less paiuful to learn in youth than to be ignorunt in age.
It is never too late to learn.
It is no small conquest to overcome yourself.
It is not the cowl that maketh the friar.
It's a bind cause diat none dare speak in.
It's a bad sack will alide no clouting.
It's a good horse that never stumblea.
It's a poor sport that's not worth the candle.
It's a sad heart that never rejoices.
It's a wise child that knows its own father.
It's an ill procession where the devil holda the candlo
It'a easy to bowl down hill.
It's ill healing an old sore.
l's itl shaving against the wool.
It's merry in the hall when beards wag all.
It's inoce prainful to do nothing than something.
It's not the gay cont makes the gentleman.
It'a possible for a ram to kill a butcher.
It's wit to pick a lock and ateal a horse, but wisdom to let them alene.
Jack Nokes and Tom Stiles.
Jack of all trades and master of none.
Jeating lies bring serious sorrowa.
Judge not of a siin as she lies on the stocka.
Judge not of men or thir, s sat firat aight.
Keep a thing seven years, and you will find a use for it Keep counsel thyself tirat.
Keep good men company, and you s^{\prime}. If the number.
Keap no more cats than will eatch whe.
Keep the bowels open, the head cool, wat the feet warm and a fig for physicians.
Keep thy shop, and thy shop will keep thoe.
Kerp ywur tongue within your teeth.
Kill two birds with one stone.
Kindness is lost upon an ungrateful man.
Kindnesses, like grain, increase by sowing.
Kissing goes oy favour.
Knavery may serve a turn, but honesty is best in the end
Land was never lost for want of an heir.
Lazy folks take the most pains.
Least said is soonest mended.
Lend thy horse and thou mayent have back his okin.
Let every pedlar carry his own burden.
Let every tub stand on its own bettom.
Let not your tongue cut your throat.
Let sleeping dogs lic.
Let the cobbler stick to his last.
Let them iaugh that win.
Life is half spent before we know what it is.
Life without a friend is death without a witneses,
light eome, light go.
Lips however rosy must be fed.
Little and often fills the purse.
4Δ

I, ittle bonts munt keep near shora
Little pitchers have great ears.
Little stick kindle the fire, but great onee put it out. live and let live.
Live not to eat, but eat to live.
Lowly met, richly worn.
Loek the stable door when the steed io atolom.
Long looked-for comes at last.
Look before you leap.
Look to the main cliance.
Laok twice ere you determine once.
I.ookern-on we inore than playprs.

Losers are alwaya in the wrong.
Love aske faith, and faith arke firmuess.
love me, love my dog.
Lovers live by love as larks hy leek.. [Ironical.]
Jucky men need little counsel.
Mike a virtue of neceesity.
Make hay while the sun abines.
Make not your sail too large for your ship.
Make the beat of a lad largain.
Makin". 「a plennure.
It:an doth what he cat, and God what he will.
Man proposen, God liaposem
Mannnra ofles make fortunem.
Many a slip betwixt the cup and the lip.
Many a true word is spoken in jest.
Many can pack the carils that eannot play.
Many go out for wool and come home ahom.
Many hande make light work.
Many worde will not fill the bushel.
Marry in haste, and repent at leisure.
Marry your wons when you will, your daughters when you call.
Milla and wives are ever wanting.
Mischiefs come by the pound and go away by the ounce.
Misfortunew meldom eome alone.
Miareckening is no payment.
Modenty is the handmaid of virtue.
Aoney makey the inare to go.
Money will de morr than my Lord'a letter.
More afraid than hurt.
Much is expected where much is given.
Mueh water goes by the mill the miller knows not of.
Much would have more and loat all.
Muffled cats are bad mousera
Murder will out.
My son is my son till he gets him a wife,
But my daughter's my daughter all the daya of her life.
Necensity is the mother of invention.
Neither praise nor dispraise thyself; thine actiona serve
the turn.
Never carry two fuces under one hood.
Never fall out with your bread and butter.
Never find any thing before it is lost.
Nevar firb in troulled waters.
Never light your cande at both ends.
Never look a gif horne in the mouth.
Never torice a mountain of a mole-hill.
Nevar quit certainty for hope.
Never ride a free horse to death.
Never sound the trumpet of your own praise.
Jever eplit against the grain.
Never 1 read on a sore toc.
Never trust to a brokert atsfi.
Never venture out of your depth till you can owim.
Never wado in unknown waters.
New brooms swecp clean.
New lights often come through cracks in the tileing
New lords, new laws.
Next to love, quictness.
No alchomy is equal to saving.
No man can reve two masterb.
No man should live like a toad under a harrow

No mill, ne meal.
None are no deaf an thoee mat will not hem.
None knowa the weight of another's burden.
None no blind an those who will not nee.
Nb pot in so ugly as not to find a cover.
No receiver, no thief.
No rome without a thorn.
Nothing comes out of the mack but what was in in.
Nothing dries mooner than teara,
Nothing down, nothing up.
Nothing is imposaible to a wllling mind.
Nothing veature, nothing win.
Of all studien, study your present condition.
Of all the crafis, to be an honext man is the master cinh
Of all procligality, that of time in the worat.
Of two evils choone the least.
Old heee y! wid no honcy.
Old birde are not to be cuught with chaff.
Old frienils and old winea are beat.
Old friende to meei, old wine to drink, and old wood to burn.
Old reckonings breed new diaputes.
One bad example apoila many good precepta,
One barber shaves not so elose but another inda mort
One eye-witness is better than ten hearnayn.
O: flower makea no garland.
One gooll turn dewerves another.
One half the world knows not how the other half livee
One bour's sleep lefore midnight is worth two after.
One is not no soon healed as hurt.
One man may steal a hurso, when another may not look over the bedge.
One mail's meat is another's poison.
One nail drives out another.
One never luses by doing a good turn.
One ounce of discretion is worth a pound of wit.
One erallied sheep will mar a flock.
One awallow make not a apring, nor one woolcock a winter.
One :air ia good till another ia told.
Open renuke is better than meervi hatrod.
Oppor in ity makea the thief.
Cpportu. uta neglected are irrecoverable.
Our own opinion is nevef wrong.
Out of dwht, ont of danger.
Out of kight, out of mind.
Out of the frying-1sn finto the fire.
Passion is a fever that lenves us weaker than it finde me Passion is ever the enemy of truth.
Patience and time run through the longest dey.
Patience is a fower that grows not in every one's garden
Patience is a plaster for all sores.
Pay as yougo.
Penny wise and pound foolish.
Prople who live in glass houses should never throw sones
Perfection is the point at which all should aim.
Petulent contentions engender malice.
Plain dealing's a jewel.
Poxitive men are most often in error.
Posseasion ia nine pointa of the law.
Poverty makes a man acquainted with atrange bat fellows.
Poverty parts friends.
Praise a fair day nt night.
Praive the sea lut keep on land.
Prevention is hetter than cure.
Prettincss dies quickly.
Pride of heart forerune deatruction.
Pride will have a fall.
Procrastination is the thief of time.
Promise little and to much.
Promises arc too much like pie-crust.
Provide for the worst, the hest will asvo itmolf.
Pry not into the affairs of others

Pull halr
Put no fin
Quick at
Guiblk rea
Quick ret
Quit not
Raise no
Ratify pro
Realy mo
Rockless y
Remave n
Romo was
Rule the a
Safe bind,
Bauce for
Saving at
Say no ill
Sayiug and
Search oth
Seo a begg
Sceing is b
Seck till y
Seldom see
Self.prosers
set a thief
Rhan welegs
Sharp stom
She showa
Show me a
Short reeko
Silence doe
Silles and a
Sit in your
Slicep willoo
Sloth is the
Soldieste in
Soon ripe,
Suon well,
Sooner said
Sotrow will
Sour grapes
them.
Opare well
Spara when
speask the t
Speceh is th
Stars are no
Stick your
Stretch your
Strike while
Study to le
Such a wele
Such as the
Take care of
themselve
Taka heel o
on all side
rake heed
Take the wi
Take time b
Talk of the
Taiking pay
Tell me the
you ate.
T'emperance
That is well
That peuny
That's placin
That wes lai
The alsent p
The ass that
Tha best ph
Merryman
The better d

Pull halr and huir, and ycu'll make the cerre bald. Put no faith in tale-bourere.
Quick at meat quirk at work.
Guhik resentments are often fatal.
Quick returns make rich merchants
Quit not certainty fire hope,
Raise no more epirits than you can conjure down
Ratify prominem by performances
Realy money will oway.
Reckless youth makes ruoful age.
Remave no old tree anl it will wither.
Romo was not built in a day.
Rule the appetite and temper the tongues
Bafe hind, safe fint.
Bauce for the goome is mauce for the gander.
Saving at the spigot and apending at the bung.
Say no ill of the year till it be pant.
Saying and doing are two thlogna.
Beurch others for their virtuen, thymelf for their faulte
See a beggar and catch a louse.
Secing is believing.
Seek till you fibl, ant you'll not lose your lebour. Seldom seen, moon forgotten.
Self-prescrvation is the firat law of nature.
Net a thief to take a thief.
Sharweless craving must have ehameleme way.
Sharp atomarha make short gracea.
She shows many more aira than gracen.
Show me a liar, and I will show you a thief.
Short reckanings mahe long friends.
Silence does aeldom miy harm.
Silks and aatins put out the fire in the kitchen.
Sit in your place and none will make you rise.
Sleep without anper and wake without owing.
Slath is the mother of poverty.
Boldiera in peace aro like chimneys in aummer.
Soon ripe, soon rotten.
Soan well, long ill.
Somer said than done.
Sarrow will pay no debt.
Sour grapes, as the fox said when he could not reach them.
Spare well and apend well.
Spare when you are yuang, and apend when you are old.
Epeak the truth and shane tho devil.
Speech is the git of all, hut thought of few.
Staris are not geen by zunsline.
Stick your opiniona on as person's aleeve.
Stretch your legs accoriling to your coverloh.
Strike white the iren is hot. '
Stuly to lee worthy of your parento.
Such a welcome, such a farewell.
Such as the tree is auch is the fruit.
Take care of the pence, und the pounds will take care of themselves.
Take heel of an ox before, niz ase brhind, and a knave on all sides.
「'ake heed will surely speed.
Take the will for the deed.
Take time by the forelock.
Tualk of the devil and he'll appear.
Talking payb no toll.
I'ell me the company you keep, and I'll tell you what you are.
Tempersnce is the best physic.
That is well spoken that is well taken.
That peuny is well sp-nt that ravea groat.
That's placing the cart before the horse.
That was laid on with a trowel.
Tho ubsent party is still faulty.
The ass that brays most eats least.
The best physicians are Dr. Diet, Dr. Quiet, and Dr
Merryman.
The better day the better deed.

The blind man's wlfo needa no painting.
The cobbler's wifn is the wornt ahod.
The comforter's heal nover ached.
The covetoun man in his own tormentor
The crow thinke her own biri the fairent.
The davil is not as black as he in paintel.
The devil was nick, the devil a monk would be:
The devil grew well, the devil a monk wan he.
The end of a feast in better than the beginning of a fray.
The eye of the master doen more work than beth hila hande
'The flurtheat way ahout is ofen the neareat w y home.
The faulty stand on his guard.
The forment dog entehes the hare.
The galled jade will wince.
The goolness of a pulding in known in the eating.
The gray mare is the better hores.
The greateat burdena are not the gainfulleat.
The greatest strukes make net the liest musir.
The greatent wealth is contentment with little.
The grant is ill aaved that shames the master.
The guilty mind needs no accuser.
Tho handsomest flower is not the eweetest.
Tho hasty hand cetchea froge for fiah.
The hastient man that in mut wait while hin drons a drawing.
The highway is never about.
The highest branch ia not the afeat roont.
The hotter war tho aooner peace.
The last irop makea the cup run over.
The last suitor wins the maid.
The lion's skin in never choap.
The longest day must have an end.
The market in the beat garden.
The married man muat turn hia ataff into a atake.
The mill cannet grind with the water that is pask.
The mob has many heads but no braina.
The more noble the more humble.
The more the merrier, the fower the better cheer.
The more youl heap, the worse you cheap.
The nearer the church the farther from God.
The offender never pardona.
The patls of virtug is the path of peace.
'I'he rat which has hut one holo ia aoon caught.
The receiver is as bad as the thicf.
The ntill now sucks the moat wash
The sweetest wine makes the aharpest vinegar.
There is a tide in the alfinirs of inen, which taken at it
flood leada on to fortune.
There is luck in leisure.
There is reanon in roating egga.
There's a salve for every sore.
Theres no compassion like the penny.
'There's no fool like an old fool.
There's no general rule without an exception.
There's no joy without alloy.
The table robs more than the thief.
The truest jests sound worat in guilty esra.
The truth may be blamed but not ahamed.
The weakest must go to the wall.
The wearer best knows where the shoe pinches him.
'I'here would be no ill language if it were not ill taken.
There would not be great ones if there were no little.
They love too much that dic for love.
They must hunger in frost, that will not work in heat.
They neel much whon nothing will content.
Think of ease, but work on.
Those who live longeat will aee most.
Those who play with edge tools muat expect to be cus Threatened folks live long.
Time and tide atay for no man
Time is a file that wears and makes no notse.
Timely honnom, timely fruit.
"I'is the serond how that makes the fray.
Tou child all weather is cold.

To a crasy ship all wind are contrary.
To be bail fellow well met with one. (In good fultow. ship.]
To be in a merry pin.

To efr in human, to forgive divine.
To find a mare's newt. ['To diwcovcr mumething already well known.)
To give and keep there is neet of wit.
To go through thick and thin. [Stick at nothing.]
To go to port.
'To have nothing but one's lutbour fur one's paina.
To have the law int me's own hund.
To have two strings to men's bow.
To kill two birids with one ntone.
To laugh in onén sleceve.
To leave a mornal for the Duke of Rupland. [That into teuve it for the auke of nomnery, Manners being the fanily surname of the Duke of Rutland.]
Too many cooks quil the broth.
Too much familiarity breellw contenpt.
To play the digg in the unanger. [Not to eat yournelf nor let anylody elme.]
To put une's nowe out of joint.
Tro rob Peter to pay Prail.
To aeek a needlo in a buttle of hay.
To send one away with it thea in bis ear. [In a atate of trepidation anal aminnimbment.]
To set up ono's atatr of rewt. ['To propose to abide in a place.]
To stand in one's ow. light.
To starve in a cook-shop.
To strain at a grat and awallow a camel.
T'o take a wrong sow hy the ear.
T'o tell tales out of meliool.
T'o throw the helve atter tho hatchel. [Giving up a thing in despair.]
To twint a rope of and.
Trade is the muther of money.
Tread on a worm and it will turn.
Trim-tram-like master, like man.
True pruise takes root and appreada.
Truth has alwaya a fant totem.
Two headm are better than one.
Two of a traide seliden agree.
Two swallowe do not make a numner.
Unknown, unmisesed.
Cinminded, uniluverl.
lise the means. and (ioul will give the blessing.
Valour is worth little wihhunt discretion.
Valoor that parleyn is newr yielding.
Venture a amall fish tu cutch a great one.
Venture not all in one bottorn.
War in death's feast.
Waute not, want not.
Wealth makee worslip.
Welcome is the best theer.
We nust eat a peck of salt with a man before wo know him.
We never know the worth of water till the well in dry.
What cannot be cured munt be endured.
What is bred in the bono will not come out of the fleal.
What is got over the devil's back tis spent under hia belly.
What the eyo seen not tho heart rues not.
What the good wife apares the cat cass.
When a dog is drowning every one offera him water.
When all is consumed, repentance comen too late.
When fortune smiles on thee, take the advantage.
When many utrike on an anvil, they atrike by mensure.
When poverty comes in at the door, tove flica out at the window
When rogues fall out, honeat men get their own.
When sorrow is usleep, nake it not.
When the cat'y away tho mice play.

When the goodman's froin home the gookiwifis table is nooll mpread.
When whe's in wit's out.
When two Sundayn meet. [Nover.]
When you are at Rome, do an they do at Rome.
When we have gold we are inf fear, when we have nene we are in danger.
When drink entera, wimlom departa.
Where much amoke in there must be soine fire.
Where the carcase in, there the ravelim will collect lo gether.
Whers the king in, there in the cours.
Where the will is really the fect are light.
Where there in a will thero in alwaya a way.
Write injurien in dumt, hut kindnemenea int marble.
While the grames growa the cow atarvea.
White there's life thero's hope.
Whos diantien love shall heggara prove.
Whe loweth hin due geteth no thanks.
Who perisheth in ueeslecon danger in the devil'a marty.
Who merads more than he should, whall not have to apend
when he wonld.
Who apitx nazinast the wind apits in his own face.
Wilo will wear, but narrow will tear.
Wilfol waste makea woful want.
Wise mesi care not for what they camet have.
Wisely and nlow: they atumblo who run fast.

Worls may paak, hut blows fall heavy.
Wranglerv never want worda.
Yook-every man pay his share.
You are buny an a hen with one chick.
You cone like a gollíther after the chinntenaing.
You coullowk at teeth and mot be hitten.
You cun't mee green ehcere but your teeth muat watet.
You cannot eatch old hirds with chaff.
You camet cat your cake und have it nlmo.
You cannot have bloud out of a atole
You camos hide an cel in a sack.
You camuen hill a dog with a hone.
You cumot make a milk purse out of a sow a ear.
You cannot wash the blarkamore whito.
You nered not greane a fat now.
You laste the broth soon an tho meut ia put in.

scots puovitus.

A hegun turn is half ended.
A lit is uten better gi'en than caten.
A blate cat makes a prout mouse.
A black hon lays a white egg.
A hurrowed len' sheold gae laughing hame.
A fidging mare should be weel girded.
Affront your frirnd in dulfin', and tina him in earnex.
A fou man mud a hongry horse aye mak haste hame.
A friemel's dinter's soon dished.
Af etto, whiles hit.
After a storn comes a culm.
A gi'en hurse bhoulda be laoked i ' the month.
A gi'en picee ia som caton.
A greedy e'e neéer gat a gude pennyworth.
A green Yule makx a fat kirk-yard.
A gude causer maks a ntrong arm.
A handfu' 0^{\prime} trade is worth a gowpen o' gowd.
A hantle cry murder, yet are ayo upliernowt.
A hasty man never wanted wau.
A hunger and a burst.
A kiss and a drink o' water mak but a poor breasias A man's weel or wae as he thinka hitusel sac.
Ane cannot wive and thrive buith in ae year.
Ane may be lo'e a haggis, that wadna hae the bag throm ip his tecth.
Ane ne'er tinen by doing gude.
An ilka-day braw makes a mabbath-day daw
An ill whearer never got a gude heuk.

An ill wiff anil a henis hadiless I An inch 0^{t} gnale i An inch 0° a misas A nod 0° homent A pound o' care " A pough hate ma Ao darik an a Yiut Lo gude filh in th lo gule may lana A seoteh mist will A aillertem mang A merowfiu' hasart A^{\prime} Newarts nee m A tile never tiumen A tarrowiug hen A tocherised dame At oper dinera dow A wee montere call A wee thing puta A wight will no'in A wiffu' min shou Aulld men are tivi Auth namprown are Aull ppringa gie Bairnn appeak int the Marguin is bargain Be a friend to you Itear and forlpar i Brar westlh weel,
lle aye the mame Re lang sick that Best to be off with new.
Be thou weel, he 1 Hetter a bit in the Better a finger off Better ì tocher in Better a tomm hou Beter a wo luaxi Better a wen tire to Better be blithe wi Better buy than loo Better lang someth Better aknith saved Better smin' fivld th Better to haud that Breter wear whoon Blind men shouldn Bode for a silk gow Broken hreal make Hluraing a halfient Burnt bairna dread By chane . a crippl Codger nave aye : ('ann, stretch, goor Crirying saut to D. Jast a bane in a de Cast not a clout till Casinn out the dow Cauld cools the lov Change your friend Cheatery kythes. Cleanliness is nae Come unca'd sits Come wi' the wim Confess and be han Confesa debt and \mathbf{c} Cora him weel, he Count agnin ia not Count ailler after a Courtesy is cumber Covetousness bring Craft maun hac ela Vob. I.- 10 i
fe's table

An if wife and a new-kindled candle ahould hae their heala haditen down.
An inch o^{\prime} gute tortune in worth a fathom 0^{\prime} forecaut An inch ós misad in na gude na a apan.
A nox o' honent inen lit enough.
A pound o' care winnu, ..y nil ounce o' debt. A gough base maken a tiou wane.
As dark am a Yule miduight.
togude fish In the werane e'er came out o't.
In gude may land the wirrup as be that loupm on.
I Heoteh miat will wet an Englinhman to the skin.
I dillertens mangangs fient through the market
A mirow fin' heart is nye dry.
A^{\prime} Ntewartm are no nilh to the king.
A tale never times in the telling.
A tarrowing hen was never fat.
A tieherless dame sita lang at hame.
At open doure daga gue ben.
A wee moum can crope under a great corn utack.
A wee thing puts your brard in a blewze.
A widht wat wot'r wanted a weapon.
A wilfu' men month be tanco wine.
Auld men are iwien birna.
Aulit eparrows are ill to tume.
Aull ripringagie tave price.
Buirns spenk in the flell what they bear in the ha'.
Hargain is hargain.
the in friend to yoursel, and others swilt.
Hear and forbear in sudo philosophy.
llear weallh wed, poortith wifl bear itsel.
le aye the name thing you would be ca'd.
Bo lang wick that ye may be noon hale.
Bett to be aff with the old love before we be on with the naw.
ge thou weel, ho thou was, thou wilt not he aye aac.
Hetter s bit in the inorning than fust a' day.
Hetter a fiuger off than ayo wagging.
Uetter ä tocher in her than on her.
Better a thom house than an ill tenant.
Better a we bush than nae hield.
Better a weo fire to warm you than a big fire to burn you.
Better be blithe wi' little that mad wi' naething.
Better buy than borrow.
Hetter lang something than woon naething.
Better skaith saved than menda made.
fletter sma' fish than unne,
Better to haud than draw.
lletter wear mhoon than wear sheeta.
Illind men shouldna judge a' colours.
Bole for a silk gown and ye'll get a aleeve o't.
Broken bread makes hale bairns.
Burning a halfuenny eandlo seoking a farthing.
Burnt bairns dread the fire.
Hy chane a cripplo may eateh a hare.
Cadger nave oye mind of lode saddles
thanr, stretch, soen ruach.
Cr,rying saut to Dysart.
jast a bane in a deil's teeth.
Cast not a clout till May be ont.
Cgatns out the dowed water till ye get the fresh.
Cauld cools the love that kindles ower heto
Change your friend ore you hae need.
Cheatery kythes.
Cleanliness is nac pride, dirt's nne honesty.
Come unca'd sits unserved.
Come wi' the wind med gang wi' the water.
Confess and be hunged.
Confess debt and crave daya.
Corn him weel, he'll work the better
Count agnin ia not forbilden.
Count siller after a' your kin.
Courtesy ia cumbersome to him that kens it na.
Covetousness brings nacthing hame.
Craft maun hae slaes, but truth gaes nakod
Vol. J.-105

Cradit in better than Ill luck.
Credit in hetter than ill-won gear.
Credit keepa the erown o' the canney.
Credit loat in like a troken glana.
Dallin and want o^{t}, ris 1 l ita auld wives donart.
Jnme, deom warll', y"t wan na wha wytea yournols
Jaming and lavit: in gro ' sure fahung.
Danghters and ina i fiv! we nae keeping ware.
Dasted bairna dow bear little.
Dnyliyht will peep through a ama' holo.
Deal ama' an' merve a'.
Death and marriage break ternodlay.
Jeath nt ne dour and bardmhip at the other.
Deil he in the loouno that ye're beguiled in. Doil stick pride, for any dog died o't.
Ding down the neat, and the rookn will fee away
Dinna cint awa' the cog when the eow flngun
Dirt borden luck.
Dinnn gut your fish till yo get them.
Do an the lamea do, nay Na, an' tak it.
boge lark as they are bred.
Ihoum min linirns are aye fond o' fools.
Do not medillo wi' the deil an' the laird's bairna
Do not tourh him on the wair heel.
Dool an' ill life noon mak an muld wife.
Double drinks are ayo gude for drowth.
Do wrel ar: doubt nae man, do ill an' doubt a' men. Da weel an' hae wed.
Dowe an' dominien leave ayo a foul houre. Do your turn weel, an' nano will speer what time ye tove Dratf he mought, but dring was his errand.
Dice out tho inch when ye have tholed the span.
Drink un' drowth come ne aye thegither.
Drink little that ye may drink lang.
Drive a row to the ha', she'll run to the byre Early birde catch the worma.
Early manter, smon knave.
Bant or west, humo is best.
Easy learnel, soon forgoten.
Fasy learning the cat the rond to the kirn.
Jasy to that thy ain heurt wills.
Easily working wheus will's at hame.
Fat in measure, nu' defy the doctor.
Eiat pun 'vi' a prince, an' cherries wi' a chapman.
Lat-1 \quad ink-weel's brither.
Eathy \quad ing only require a beginning.
E0'u'r "ng putsawn the stamach.
$\mathrm{E}_{\mathrm{L}} \mathrm{i}$, . . l e merebandise.
S.,.... "the soul and torture of the body.

- turn but when it meane an ill ane.
it .ay may you wear't.
E … - a
E a dyke where it's laighest.
Livery , ari trade, quoth the browster to the bishop.
Fvery lurd .unks its ain nest beat.
Fvery eock craws cronnest on his ein midden head.
Every du" no Yuloday-cast the cat a castock.
Every fault has its fore.
Every llow has its ebb.
Every ineh of joy has an ell of annoy.
Every man bows to the bush he gets bield frae.
Every man buckles his bett his ain gate.
Every man cang guide an ill wife weel but him that has hee
Fivery man can tont hest on his ain horn.
Every man has his sin draft pock.
Every man's tale's gude till anither's be tauld.
Pivery May-we hath a May not be.
Every mille; wad weise the water to his ain mill.
Evory play man be phyed, an' smon maun he the playeat
\mathbf{F} ir words treak wae blaes, foul words mon*.
Fancy floes betore the wiad.
Far-awn fowls hav fair teathers.
Farther east the shorter wist.
Fause folk should hae mony wacer
4 4i

Fauschood makea ne'er a fair hindor-end.
Favour unused is favour abused.
Fill fu an nand fu', that makes a man stark.
Flaes an' a girning wife are waukrife bed-fellows.
Flee aceer so fist, your fortune will be at your tail.
Fleeing a bird is not the way to grip it.
Fling-nt-the-goad was neer a gude ox.
Plitting o' farms mak milena dear.
Fools are aye fond o' flitin',
Fools are aye aeeing ferlics.
tool's haste is nao speed.
Fools hugh at their ain aport.
Fools set firr tryats.
Fools alouldra hae chappin'sticks.
For fashion's sake, as dogs gang to the market.
For want of a steek a shoe inay be tint.
Forbid a fool a thing, an' that he will do.
Frae saving comes having.
Fresh fish and poor friends grow soon ill-faured.
Friends are like fiddlestrings, they maunna be serewed ower tight.
Friends gree lest at a distunce.
Friendship camba stand aye on ac aide.
Ery stanes wi' butter, and the broe will be gude.
Gathering gear is a pleasant puin.
Gaily wad be better.
Gear is easier gotten than guided.
Gentle partans hae lang taes.
Gentle servants are poor men's tinsel.
Get weel, keep weel.
Gie a bairn its will an' a whelp its ill, and neither will do weel.
Gie your tonene mair holidays than your head.
Giff-gatf maka gude friends.
thlases and lasses are brittle ware.
Glowerint's no cainsaying.
God ne'rr scint the month, but he sent the meat wi't
Goyl send water to that well that folk think will ne'er rin dry.
I iod shapes the back for the burlen.
Gool wine makes a bal head and a tang atory.
(iratitule is a heavy burden.
(ireat enmfor: is like really gold in need.
(ireedy folks hae lang arms.
(iriening wives are aye greedy.
Guebsed work's best if weel done.
Gude alvire is ne'er out o' season.
Gude ale necols nae wisp.
Gule bairns are eith to lear.
Gude breeding and siller mak our aone gentlemen.
Gude claes open a' doors.
Gude company on a jomrney ia worth a coach.
crude gear's not to he gapped.
Gude fishing in drumly water.
Gute folk are searee, tak care o' ane.
Gude forecant fathera the wark.
Gude health is better than wealth.
tiude kail is half meat.
Gule watch prevents harm.
Gude will ne'er wants time to show itsel.
Gide will should be ta'en in part prayment.
Ciaduly cow, gawsy culf.
Ihe, gars a deaf man hear.
Ifand-in-use is father o' lear.
Hane a thicf when he's young, an' he'll no steal when hoe's auld.
Hang hunger an' drown drouth.
tiankering an' hinging-on is a poor trade.
Happy the wife that's married to a motherless son.
He cem hide his meat und seek mair.
He can sqy Jo, and think it no.
Ho can see an inch brfore his nose.
he ears hat whis hims greet of his laugh.
Hic com. w oftener wi' the rake than the shool.

He complains early that complaine of his kat.. He doesna ken what end o' him's uppermust.
Ho doesnn aye ride when he saddlea.
He doessa liko his wark that says now when its dom He cats the calf i' the cow's wame.
He gangs awa in an ill time that ne'er comes again,
He gangs lang barefoct that wears dead men's shoon
He girns like a shepp-head in a pair o' tangs.
He has a coup for a' corn.
He has a gude judgment that doesna lippen ta bis an
He has a hearty hand for gieing a hungry mealtith
He has a slid grip that has an eel by the tail.
He has been roved on his mitaer'a sark tail.
He has brueght hie pocket to a braw market.
He has come to gnde hy misguiding.
Ho tas coosten his cloak on his ither shoulder.
He has coun:'t the meiklo pot into the little,
He has fnut o' a wife that marries mam's pet.
He has feathered his nnat. he may flee when he liken
He has gotten the whip hand of him.
He has lain on his wrang side.
Ho has ticked the butter off m : bread.
He han mair wit in his little finger than ye hae in a yous bouk.
He has muckle prayer but little devotion.
He bas some wit, but a fool has the grinding o't
He has the best end of the string.
He has wit nt will that wi' an angry heart can sit till
He has't o' kind, he coft it not.
He hears wi' his heel, as geese do in harvest.
He kens his ain groats aneng ither folk's kail.
He keus whilk side his cake is buttered ou.
He'll gie ynu the whistle o' your groat.
He'll have eneugh some day, when his mouth'sfu'o'moth
He'll mak an ill runner that canna gang.
He'll mend when he growa better, like aour ate in summen He'll neither danee nor haud the candle. He'll no gie an inelno' his will for a span o' his thrith He'll no let grass grow at his heels.
He'll no sell his hen on a rainy tay.
He'll soon be a beggar that canna say No.
He'll tell it to nae mair than he inets.
He lo'ed mutton weel that lieked where the eme lag.
Hi lojes me for little that hates ine for mought.
Ho looks like the far end of a French hiddle.
He maun be soon up that cheats the tol.
He mann hae leave to speak that canna hand histegros He may find lasitt that cama mend.
He needs a loges spoen that sups wi' the dril.
II e ne'er did a gude darg that grawl grumbling about it He reats his sin in his punialment.
He rides sicker that never fa's.
He's a fool thin: forgets himsel.
He's a fool that marries at Yule; for when the bein' to lear, the eorn's to shear.
He's a hawk of a right nest.
He's a man of a wise mind, that of a fie can mak a fiend
He'm a proud cook that maunna lick his ain fingers,
He's a prisud fox that winna scrape his nin hole.
IIe's a silly chiel that can meither do nor say.
Hu's a worthless puidman that's no miss'd.
He's as welcome as water in a riven ship.
He's himen deaf on that sile o' the head.
He should sit close that has riven breeks.
He sle lis as doge do when wives sift meal. He's line a flar iv, a Hanket.
He's like the si, get rat, hetter than he's likely.
He's no the lest wripht that easts maist syals
He's no sar dalt as he lets on.
He's ower somon up that's hanged e'er noon.
He's juor eneugh that's ill lo'ed.
ILe's sairest dung that's paid wi' his ain on and
His starts at straes, and lits windling gae.
He's the gear that wima traik.

He's unco fu' in his neichbour He'r weel worth He's weel boden ten'.
He's wise that's
He's worth nan He that blaws b He that buya nu buyn nacthing If that camana He that cheats twiee, shame He that counts ground.
He that deals in
He that does yo
He that lorecant
He that la's a g
He that fishes 1,
He that gets for
He that gets gea
He that hus a m
IIe that has but
Ha that has mic
He that has nae
He that has twa
He that kerks th
He that lends hi
He that looks to
He that tides or
He that's aught
He that's ill to 1
He that secks m
He that shows h
He that sjueers n
He that steals c
He that tholes o
He that witl che
He that will net
He that will to
He that wima
He that would e
Ile wal gang a
He wad zar you
He wal tine his
He was mair tle
He was scont o
He was the twe
He winha sind
Highlamerss-al
I carna wel' the
I hac mair to do
I kea ly my co
If ar slucep lou
If the dieil be la
If the theil tind
If the lift fa', th
If you win at th
If ye enll your
the largain.
Inl hairme are ay
III himps aye ge
Ill heel' neer m
Ill comes upon
III counsel will
III dores ari aye
IIl eetting bet w
III hating mak
III hererld mall: fa
IIII hying me mas
Ill payers are ay
III will neer spad
'llswon grear wil

He'a unco fu' in his ain house that canna pick a bane in his neighbour's.
He'f weel worthy o' sorrow that huys it.
Ife's weel boden there ben, that will neither borrow nor ten'.
He's wise that's timely wary.
He's worth nao weel that can bide nae wae.
He that blaws best let him beat the horn.
He that huys nuls huys shells, but he that buys gude ale buys naething else.
Ife that eanna mak sport should mar mane.
He that cheats ine ance, shame fs' him; if he cheat me twice, shame fa' me.
He that counts u' costs will ne'er put plough i' the ground.
He that deals in dirt has aye foul fingers.
He that does you nom ill turn will ne'er forgie you.
He that forecasts a' perils will win nae worship.
He that fa's a guter, the langer be lies the dirtier be is. He that fishes before the net, fishes lang or he fish get.
He that gets forgets, but he that wanis thinks on.
He that gets gear lefore he gets wit, will die c'er he thrive.
He that has a mickle nose thinks ilk ane speaks o't.
Ile that has but ae e'e maun tent that weel.
Ho that has mickle wad aye hae mair.
He that has nae gear to tine may hae shins to pine. He that has twa huards will get a third.
He that keeks through a hole may see whast will vex him.
He that lends his pot mey seethe his knil in his loof.
He that looks to freets, freets will follow him.
Ile that rides or he be ready, wants nye some 0° his graith.
He that's aught the cow gangs nearest the tail.
He that's ill to limsel will be gude to nacboly.
He that secks motes sets motes.
He that slows his purse briles the thief.
He that speers all opinions comea ill speed.
He that steals can hide too.
He that tholes overcomes.
He that will cheat in play winna be honest in earnest.
He that will net tole maun flit mony a hole.
He that will to Cupar maun to Cupar.
He that wima when he mav, shanna when he wad.
He that would rat the kirnel maun crack the nut.
IIe wad gang a mile to flit a sow.
He wad gar you trow that the moon's made o' green checse.
Ife wad tine his lugs if they were not tacked to him.
the was mair theyed than hurt.
Ile was crant o' news that taull his father was hanged.
He was the hee that made the honey.
He winna send you awa' wi' a sair heart.
Wightamers-shulder to shombler.
I carna sel' the cow an' sup the milk.
I hae mair to do then n dish to wash.
[kea ty my coz my cow's milked.
If ae sherep loup the dyke, a' the rest will follow.
If the did be haird, ye'll tee temat.
If the deil tind you ille, he'll set you to wark.
If the lift fe', the laverneks will he smoored.
If you win at that. you'll lose at naething.
If ye sell your purse to your wife, gie her your hreeks to the largain.
Ill harus are aye best heard at hame.
IIl buirns aye het broken brows.
Ill treef neecr male gude broe.
Ill comes apon wau-a back.
111 counwl will gar a man stick his nin mare.
Ill dows ard aye ill dreaters.
lil getting het water frae 'nenth cauld ice.
Ill heaning maks wrany rehearsing.
III herils mak hit firsen.
IIII hying ui. maks mony thineses.
Ill payers are eye gude cravers.
III will neer syak weel.
Il.wom gear wimu enrich the third her.

Ill workers are sye gude oulookers.
I'll ne'er brew drink to treat drunkarda.
I'll no'er keep a cow when I can get milk aae cheap. I'll no'er keep a dog and bark mysel.
I'll ne'er lout saa laigh and lift sse little.
I'll ne'er put the rogue alooon the gentleman.
I'll rather strive wi' the lang rigg thsn the ill neighbour I'll serve ye when ye hae least to do.
I'll tak the best first, ss the priest did o' the plums
I might loring a hetter speaker frac hame than you.
I'm no every man's dog that whistles on ne.
l'm no obliged to summer an' winter it wi' you.
I'm no sae blind as I'm bleer-eyed.
T'm no sae scant o' clean pipes as to blaw wi' a brunt cutto
l'm o'er nuld a cat to draw a strae before.
I'm speaking '' hay and you o' horse corn.
I ne'er sat on your cont-tail.
I think mair o' your kindness than ite a' worth.
It maun be true what a' folk ssys.
It's a far ery to Lochnw.
It's a hard task to be poor and leal.
It's a mean mouse that has but se bole.
It's a nasty bird that files its sin nest.
It's a silly hen that cama serape for ae lird.
It's an ill pack that's no worth the custom.
It's better to sup wi' a rutty than want a spoon:
It's ly the head that the cow gies milk.
It's firr to seek an' ill to find.
It's gule haking beside the meal.
It's gude sleeping in a hale skin.
II's gude to be sib to siller.
It's giule gear that pleases the merchant.
It': gule to be in your time, ye kema how lang it may last.
It's gude to tread the warst, the best will be the wercomer.
It's hard both to lave aud want.
It's hard for a greedy e'e to hae a leal heart.
It's haril to sit in Rome an' strive wit tho pope.
It's ill lringing hut what's no ben.
It's ill speaking between a fiu' man and a fasting.
It's ill wared that wasters want.
It's kittle for the eheeks when the hurlbarrow gees oea the 'riz 0 ' the nose.
It's kittle shooting at corbies and elergy.
It's kittle to waken s?, rping dogs.
It's lang before the diel be found dead at the dyke-side.
It's lang ere the deil dee.
It's nae laughing to cirn in a widdy.
It's uat phy when atw: laughs and anither greets.
It's needless to pour water on a drowned mouse.
It's n r, lost what a friend gets.
It's not what is she hint what has she.
It's ower fir between the kiichen an' the hs'.
It's ower late to spare when the haek's bare.
It's past jouking when the heal's aff.
It's stinking praise emes nut o' ane's ain mouth. It's the hest spote in your whene.
It's well that our faults are not written in our face.
It was never for naethine that the gler whisted.
It will he frathered out o' your wing.
It will be lang ere ye wear to the knce lids.
I wad twe seant o' tlaith to sole my hose wi' dockens.
I would rather see't than hear telif ot.
I wadma le deaved wi' ye're keekling for a' your egge
I wadna ca' the king my consin.
I wish you readier meat than a rinnin hare.
Joke at hisure, you kema wha may jibe yoursel Jouk and let the jaw gany liy.
K'r'ju sut o' his company that cracks o' his cheatery
Kerep something fes: a sore foot.
Keen the feant till the fe. ist day.
Krep the staff in your ain hand.
Kecp your ain fish guts to your aun ses-mawes

Keep your breath to cool your own porridge.
Keep your mouth ahut and your e'en open.
Ken when to apend and when to spare, and ye necdna be busy, and ye'll ne'er be bare.
Ken yoursel, and your neighbour winna miaken you.
Kend folk's nae company.
Kings and beara aft worry their keepers.
Kings' chaff's worth other folk's corn.
Klnga' cherse gaes half away in parings.
Kinge hae lang hands.
Kindle a candle at baith ends, it will soon be done.
Kindness comes o' will, it canna be coft.
Kindness will creep where it canna gang.
Kiss a carle ond elap a carle, that's the way to tine a carle.
Kythe in your ain coloure, that folk may ken you.
Laith to bed and laith to rise.
Lang fasting gathers wind.
Lang fasting haina nae meat.
Lang standing and little offering maka a poor priest.
Lang straes are nae motes.
L,augh at leisure, ye may greet ere night.
Law's costly, tak a pint and gree.
Law makers shouldna be law breakers.
Jay the head o' the sow to the tail of the grice.
Lay your wame to your winning.
Jeal heart never lied.
learn the cat the road to the kirn, and she'll aye be lickin.
Learn you to an ill habit, and ye'll ca't custom.
Learn young, learn fair.
leet n° trades live, quoth the wife, when she brunt her besom.
Let alane. maks mony a loon.
Let byganes he byganes.
Jet him cool in the skin he het in.
Let him tak a spring on his ain tiddlo.
let his ain wand ding him.
Let iliza ane soop before their nin door.
Let ilka sheep hang by its nin shank.
Let na the plough stand to kill a mouse.
Let the horns gang wi' the hide.
Let the miekle horse get the mickle windlin.
l,et the tow gang wi' the bucket.
lat them eare that come hehind.
Let your meat lit your mouth.
L, ight burdens lireak nae banes.
Like a cow on an unco loan.
Like a sow playing on a trump.
like hutter in the hark dog's hause.
1 ike hens, ye rin ave to the heap.
Like the bairns o' Falkirk, ye mind naething hut mischief.
fike the eat, fain fish wad ye cat, but ge are laith to weet your fiet.
Like the wife that aye took what she had, and never wanted.
Like the wife that ne'er cries for the ladle till the pot rins o'er.
like the wife wi' the mony daughters, the best comes hindmost.
Like's an ill mark.
lipipen to me, luat look to youracl.
1 ist to meat's gule kitchen.*
little doys hac lang tails.
I ittle folk are soon ancry.
Little Jock gets the little dish, a:d that hauds him lang littls
I tule kennel, the less cared for.
i ittle meddling maks fair parting.
I.itle wats the ill-willy wife what a dinzer may haud in. Little wit in the heal maks mickle travel to the feet.
Little meuse to the cheeks to lite atf tha nose.
siving at heck and manger.

Lock your door, that you may keep you: neigtboun honest.
Lo'e me little, an' lo'e me lang.
Love and lairlships like nae marrows [equala].
Love is as warm among cottara as courtiers.
Love overlooks mony faults.
Maidens should bo mild and meek, quick to hear and slow to speak.
Mair by luck than good guiding.
Moir haste the wour specd, quoth the tailor to the lang thread.
Mair than eneugh is ower mickle.
Mak a kirk an' a mill o'L.
Mak nae toom ruse.
Malice is aye mindfu'.
Marrizge and hanging go by destiny.
Marry a beggar, and get a louse for your tocher.
Marry aboon your mateh, and get a master.
Marry for love, and work for siller.
Master's will is gude wark.
Mastery maws the meadows down.
Maundo is a fell fallow.
May-be's are no nye honey-bees.
Measure twice, cut lout ance.
Meat feeds, cloith cleads, but manners mak the man
Mickle musing mars the memory.
Mickle power maks mony faes.
Mickle ahout ane, quoth the deil to the collier.
Mickle gifts mak beggara bauld.
Mickle head, little wit.
Mirkle maun a gude heart thole.
Mirkle meat, mony maladies.
Mess and ment ne'er hinder'd wark.
Mettle's dangerous in a blind mare.
Moncy in like the muck buidden, it does nae gude in it be spread.
Money is welcome any way.
Money maks a man free ilka where.
Mony an honest man needs help that hasna the fice o seek it.
Mony ane kisses the bairn for love o' the nurse.
Mony ane lacks what they would fain hae in their pach
Nony ane serven a thankless master.
Mony ane almers the gate they ken fu' weel.
Mony ane's gear is mony ane's death.
Mony gude-nichts is laith away.
Mony kinsfolk, but tiow friends.
Mony littes mak a mickle.
Nony purses hand friends lang thegither.
Mony ways to kill a dog, though ye duna hang him. Mony wyte their wife for their ain thriftess life.
Nac tiecing without wiars.
Nae man can live langer in pese than his neighboursthe Nae nam can thak his ain har.
Nac man has a tad o' his life.
Nae wonder to see wasters want.
Nacthing but fill mod fitch mair.
Narthing is a man's truly but what he comes by daly
Narthing is got without pains hut dirt und lang naiks
Naething is sae dillicult but we may owercolle lis nereo vernace.
Nastling sa bould as a blind mare
Nacthing to be done in haste but eripping flaes.
Nacthin, to do lme draw in your stool and sit down
Nane are sae weel lout they hope to he letter.
Nane ean $p^{\text {lay }}$ the fiol sue weel as a wise man.
Need maks gread.
Need will gar an aold wife trot, and a naked man rint Ne're drav gour dirk when a dunt will dio.
Ne'er fast! your thoom.
Norer lit on, but hagh in your ain slecere.
Ne'rer lipgen owre miekle to a new friend or an sul eluemy.
Ne'er marry a widow unless lier litst man was hanged

Ne'er owre a
Ne'er put a a
Ne'er put the
Neer put yo
rearh.
Ne'er rax abo
N'er aca'd y
Ne'er seek a
Ne'er shaw n
Ne'er ahaw y
Ne'er speak
Ne'er strivo
Ne'er tak a
Ne'er tell you
Neither to ha
Neither sae s
Next to nae
Nobility with
0 ' a' sorrow,
Owre braw a
$0_{\text {wre reckless }}$
Owre sicker,
Owre strong
Of a^{\prime} flatterers
of ae ill emme
or ill debtors
Ony thing for
day's wark.
Open conferssi
Our sins and
Out o' the pei
0 wre m. my g
Pay him in hi
Placks ond bia
Play's good w
Please your k
Plenty maks
Poor folk's tri
Poverty is the
Pride and gra
Pride finds ni
Pride ne'er le
Pride that dil
Provision in :
Put a coward
Put on your
Put twa pron
Put your fine
Put your han pouch.
Quality with
Quey calves.
(quick, for yo
Quirthess i.
Rather spoil y
Raw dads man
Raw leathel
Reckon up y
Red woond ma
Reputation i erime.
Rich folk hae
Bich mixture
Riches are go
Ride fair and
Right wrang Rob (iil's co
Roore the fia
Rue and thy
liule youth
Suut, queth
the tail.
Saw thin, sha
Say still N
to hear and
: to the lang
d man in

Ne'er owre auld to learn.
Ne'er put a sword in a madman'a hand.
N P 'er put the plough before the owsen.
Ne'er put your hand farther out than your aleeve will reach.
Ne'er rax aboon your resch.
Ne'er sea'd your lips in ither folk's kale.
Ne'er acek a wife till ye ken what to do wi' her.
Ne'er shaw me the meat but the man.
Ne'er ahaw your teeth unless ye can hite.
Ne'er speak ill o' them whase bread yo cat.
Ne'er strivo against the atream.
Ne'er tak a forchaminer to hreak an egg.
Ne'er tell your fao when your foot aleeps.
Neither to haud nor to bind.
Neither sao sinfu' as to sink nor ano haly as to ewim. Next to mee wife, a gude wife is the best.
Nobility without ability is like a pudding without euet. 0^{\prime} a' sorrow, a fu' sorrow's the best.
Owro braw a purse to put a plack in.
Dwre reckless may repent.
Owre sicker, owre loose.
Owre strong meat for your weak stamach.
Of a^{\prime} flatterers, self-love is the greatest.
Of ae ill comes mony.
Of ill debtors men get aiths.
Ony thing for you about an honcat man'a houso but a day's wark.
Open confession is guda for the soul.
Our sins and delts are ofen mair than we think.
Out o' tive peat pot into the gutter.
Owre rany grieves only hinder the wark.
Pay him in his uin coin.
Placks and bawbees grow pounds.
l'lay's good while it's play.
Please your kimmer, and you'll easily guide your gossip. Plenty maks dainty.
Poor folk's friends soon misken them.
Poverty is the mother o' a' arts.
Pride and grace ne'er dwell in ae placo.
Pride finds nae cauld.
Pride ne'rr leaves its master till he get a fa'.
Prile that diues wi' vanity sups wi' contempt.
Prowision in spason makes a lien house.
Put a coward to his metal and he'll fight the dei..
Put on your spurs and be at your spect.
Put two ${ }^{\text {wembes }}$ in a $\mathrm{p}: \mathrm{a}$ and they'll keep thegither.
Put your fiumer in the dire, and say it was your fortume.
Put your hand twice to your bennet for ance to your

pouch.

Quality without quantity is litle thought of.
Quey catves are thear veal.
tuick, fon you ll ne er be cleanly.
Quirtness i.. hest.
Rather spuil your joke than tine your friend.
Ruw dads mak fat lals.
Raw leather raxes weel.
Reckon up your winning at your hed-stock.
Red woul maks gool spindles.
Reputatim is often got without merit and lost without crime.
Rich folk hao routh o' friends.
Rich mixture maks gude mortar.
Riehes are got wi' pain, kept wi' care, and tint wi' grief. Ride lair nal jap nane.
Right wrangs nae man.
Rob Gilis contrict-stark love and kininesa.
Roose the fiur day at e'en.
Rue and thyme grow baith in ae garden.
liule youth weel, for eild will rule itsel.
Baut, quath tho souter, when he had eaten a cow a' but the tail.
Saw thin, shemr thin.
Kay still N, and ye'll ne'er be married.

Seanty cheeks mak a lang nose.
Scart-the-cog wad sup mair.
Send your gentle bluid to the market, snd see what a will buy.
Scrve yoursel till your bairns come of age.
Set a stout heart to a atey brae.
Shame fa' them that think ahame to do themaelves a gude turn.
Sho brak her elbow at the kirk door.
She hauls up her head like a hen drinking water.
She looks as if butter wadna melt in her mouth
She looks like a lady in a landward kirk.
Sho that gangs to the well wi' an ill will, either the pis breaks or the water will spill.
She'll keep her uin side o' the house, and gang up and down yours.
She'll wear like a horse-shoe, aye the langer the clearer.
She's better than she's bomny.
Show me the man, and I'll show you the law.
Sic as ye gie, sic will ye get.
Silence grips the mouse.
Slander leaves a sair behind.
Sinooth waters run deep.
Soon eneugh if weel eneugh.
Soon eneugh to cry Chuck, when it's out o' the ahell.
Sorrow and ill weather come unsent for.
Sorrow is aoon eneugh when it comes.
Speak good of pipers, your father was a fiddler.
Spilt ale is waur than water.
Stay nare langer in a friend's house than you're welcome Stilfing hauds out storming.
Tak a man by hia word and a cow by her horn.
Tak the bit and the buffet wi't.
Tak time ere time be tint.
Tak wit wi' your anger.
'Tuk your ain will, and ye'll no die o' the pet.
Tak your thanks to feed your eat.
Tak your venture, as mony a gude ship has done.
That's Halkerston's cow.*
The black ox ne'er trod on his foot. \dagger
'The boek o' maybes is very lraid.
The cost owergangs the profit.
The deil aye drives his hogs to an ill market.
The deil doessia aye show his cloven cloots.
The dril gaes awa when he finds the door steekit againg him.
The difl's hairns have aye their daddy's luek.
'The deil's aye gade to his kin.
The deil's gime ower Jock Wubster.;
'The deil will tak little ere he want n'.
'The deil's aye husy wi' his ain.
'The first fut o' a biat huggis is the bauldest.
The fiot at the cradle and the hand at the reel, is a aign that a womam means to ds weel.
The grace o' a gray lamock'a in the baking o't.
The head for the washing.
The hisher the hill the laigher the grass.
The hurs man vrites wi' stefl on marble staice.
The king may cone in tho cadger's gate.
The kirk's mickle, hut you may say mass in the end o't The laird may be laird, and yet need his hind's help.
The naster's foot's the best measure.
'The s'ereome only fashes folk to keep.
'There is an art in the Lairil o' Grant's court, that no aboon eleven spenk it ance.
There was a wite that kept her supper for her breaktiast, and she was dead ere day.
There was ne'er a gude town but thero was a dub at the end $0^{\circ} \mathrm{t}$.
'Fhere was never a silly Jocky but there was as silly a Jenny.

[^84]Thare was ne'er a thrifty wife wi' a sheet about her head. There's a dub before overy door.
1'here's a tough sinew in an culd wifo's heel.
'There's a whaup i' the raip."
There's aye some water where the atirkie drowns.
There's beild aneath an auhl man's beazd.
There's steel in tha needle point, though little o'b
There's the cnd o' an auld sang.
I'he si:nple man's tha beggar's brither.
The smith's mare and the souter's wife are aye the warst ahod.
The tod ne'er sped better than when he gaed hissin crrand.
The thing that liea na in your gate breaks ns your shins.
The thrilt o' you and the woo o' a dog wad mak a braw web.
The worth o' a thing is best kenned by the want o't.
The wife's aye welcome that comes wi' a crooked oxter.f
They'll gree better when they gang in by different kirk doors.
They tuat board wi' cats maun count upon searts.
They that burn yon tor a witch lose a' their coals.
They that gie you hinder you to buy.
They that lie lown for love should rise up for hunger. They that love milist speak least.
They were semnt o' bairns that brought you up.
They are sad rents that come in wi' tears.
Fhey hae weed of a canny cook that hae hut ae egg to their dinner.
They may ken by your beard r. hat has been on your board.
Theo ne'er aw great daiutic, that think a haggis a feast. They should hiss the guidwite that wad win the guidman
 They that get a word o^{\prime} som risine may lie a day
Thay that see you a' day wina break the house for you at night.
Three call heep a secret when twa are away.
Thrift is a gule revenule.
Time tint is merir to be fomnd.
Fime and thinking tame the strongest gripf.
I'ime tries n'.
l'ine heart and a's gane.
Tine thinalic, tine thrift.
Tit for tat's tair play.
Fo him that willw, ways are seldom wanting,
Toom stalls mak hiting horsis.
Truth will aye stand withont a prop.
Try your friend ere you need him.
T'wa words mhun ging to that burgain.
Virtue never grows auld.
Wacs the wife that wints the tongue, but wepl's the man that gete her,
Want σ^{\prime} wit is waur than want ${ }^{\circ}$ ' wealth
W'ar maks thievers, and peace bungs them.
We are aye to learn as lamg as we live.
We are bound to be honest and no to be rich.
Wealth hay maile mair men covetons than covetousurss has made men weallhy.
Wealth maks wit waver.
Weans mann : trep ere they gang.
We cama bith sun and blaw.
Wedeling and ill wiutering tame baith man and benst.
Weel kuns the monse when the eat's ont a' the house. Weol in that weel does.
Wrall nuwer ken the worth of water till the well gae dry We monn live be the livine and no by the deat.
Whas can had inhat will be awny.
Wha can help minhork.
Whas can holp sickn'ss, quoth the wife, when sle lay in the guther.
Whan conuen witurr abd bringe you less.
Wha dadur thell the cat.

Wha invited you to the fenst.
Wha wad misea' a Gordon on the rnws of Strathbogn
What better's the house when the daw rises soon.
What may be done at ony time will be done at nae tima What put thent i your heal, that didna put the sturdy wi't What's my case the day may be yours the morn What's waur than ill luck.
What we first learn we best ken
What winna do by might do by flight.
What ye do when your drunk ye may pay for when your dry.
What yo want up and down ye hae hither and yont.
When a' men speak, bae man hears.
When ne door steeks, anither ane opens,
When frienls meet, hearts wartn.
When he dies of age ye may quake for fear.
When ilka nne gets his ain, the thief will get the widey When my head's down my house is theiked.
When petticoats woo, brecks come speed.
When the harn's fu' ye may thresh before the door When the cap's fu', carry't even.
When the eow's in the clont slie soon runs out
When the guidman drinks to the guidwife, a' wad wo weel.
When the guidwife dinks to the uidmun a's weel.
Whens the heart's fin' o' lust, the mouth's fu' o' leasing.
When the tod prenches, tak tent o the lamis.
When the tod wins to the wood, he earesna how mony ket is at his tail.
W't a the wame's fit, the banes wal be at rest
Wian the well's fu' it will rin owre.
When wine sinks, worls switn.
When ye're gaun an' 'wmin' the gate's no toom
When ye are weel, hand yoursel sar.
Whon ye win at that, ye may lick nff n het girdle.
When you're served, n^{\prime} the geese are watered.
When drums bent, laws are dumb.
Where the buck's lomul there be maun bleet.
Wrans has nae warrant.
Yr're like auld maidens, ye look sae high,
Ye're like gute mant, ye're lang o' coming.
Ye're like Macfarlane's gerse, ye hat mair mind o' you play than your meat.
Ye're like the chapman, ye're aye to hambel.
Ye're like the miller's dog, ye liek your lips ere the rock be npened.
Ye're like the pow's tail, ye grow backward.
Yo're like the tod, ye srow gray before ye grow gude
Ye fand it where the Highlandman fond the tan?".
Ye hat fasted i.sng nud worried on a mislge.
Ye hae gotten the ehapman's drowth."
Yo hare gotes a ravellod hesp o't.
Ye hae ower foul fiet to come sae fat hen.
Ye hae put a toon sipori in my mouth.
If lue stayed lang and hrought little wi' ye.
Ye hae taris the monsure a' his foot.
Fe hae tint the tongue of the trump.
Ye'll get nue mair o' the cat lut the skin.
Ye ll hae baith your ment ani your mense \dagger
Ye'll wit till ye sworat, and work till ye freeze.
Ye'll worry i ' the that, like M•Fwn's calf.
Yo look as sharp ns a lochabar a:e new come frae to arindstane.
Ye lewk like Jet-me-be.
Yelping curs will raise mastiffe.
Ie maun have it simmered rend wintered.
Ye're a guile deekrr, but in ill funter.
Yore Inent whell yere shoping.
Vare bonny enough to them that k'a ye, and owes
bonny to them that hore yo mit rane a get ye
Ye're basy soeking the thing that's ne tant.

- Ifungar
 at least nave the cichar having made the otter.

Ab initi
Ab uno
infer
Ad capt
Ad innen
All Gree
Ad iufin
A fortior
Alias.
Alibi.
Alma
the un
A mensa
Amor pa
Aumus
itself.
Amo Do
Aano Mu
A posteri
A prori.
Arbiter el
Algumen
Ars cet eu
art.
A illialter
Autito m
little.
Auri sacria
An: Cess
lody.
llakis virt
of virt
Beatus ill retire if
Boma tide.
Brutum fi
Cacoethes
seribend
Causus the
Ca;ut mo
Cele Dco.
Cinde mas
Cedant art
Certum pis
Commani
with pr
Comprist in
Conerdia
union.
Confide re
Cenitra hus
Corpus de

Yo're come o' lluid, and sae's a pudding Yer een's yer merchat.
Yo're feared for the day yo nevor saw.
Ye're gear will ne'er owergang ye.
Ye're never pleased, fu' nor fasting.
Ye're of sae mony ininds, ye'll nevor be married.
Ye're sair fashed hauding naething thegither.
Ye're tecth's langer than yer beard.
Yo shape shoon by your nin shachled feet.
Ye wad be a gude piper's dog, for smelling out bridals.
Ye wad be gude to fetch the doil a drink.
Ye wanta where a llessing may light.
Yo are a sweet nut, it ye were weel cracked.
Young folk may die, and uuld folk mann die.
Your head will never fill your father's bonnet.
You: purse was steekit when that was paid for.
Xour tongue rins aye before your wit

LATIN PROVERBS AND PHRASES

Ab initio. From the beginning.
Ab uno disce omnes. From a single instance you may infer the whole.
Ad captandum vilgus. 'To eatch tho rabble.
Ad finem esto fidelis. Be faithful to the end
Ad Griecas kalendas. Never.
Ad infinitum. To infinity.
A furtiori With stronger reason.
Alias. Otherwise ; as, Allan ulias Thompson. Alibi. Elsewhere.
Aima mater. A berign mother; applicd gonerally to the university.
A mensa et thoro. Divorced from bed and board.
Amor patrim. the love of our country.
Animus c anscius se remordet. A guilty mind punishes itself.
Anno Domini (a.n.). In the year of our Lord.
Amo Munli (i.v.). In the year of the world.
A posteriuri. From the effect to the cause.
A prori. From the cause to the effect.
Arbiter elegnatiarim. Master of the ceremonies.
Atgumentum al hominem. An argument to the man.
Ars cst eclare artem. The perfection of art is to conceal art.
A wi alteram partem. Ifear the other party.
Aulito multa, sed loquere pauca. Hear muel, lut say little.
Auri sacra fames. 'The aceursed appetite for gold.
Aln: Cesar aut nullus. He will either be Casar or nobody.
Masis virtuis constantia. Constancy is the foundation of sirtue.
lleatus ille qui procul negotiis. Blessed aro they wbo retire from toil.
Bona fide. In good faith; in reality.
llitutum futhen. A harmless thunderbolt.
Cacoethes. An evi! custom. Thus, eacoethes loquendiscrikendi. A rage for talking-scribling
Causus belli. Thle cause or reason for war.
Gaut mortum. The worthless remains.
Tede Doo. Subuit tor (iml.
Cinle magnis. Give way to the powerful.
Cedant arma togar. Lat arms yield to eloquence.
firtum pete finem. Aim nt a sure end.
Cemmunia proprie dierre. To express common things with propricty.
Couprid mentis. In a state of sane mind
Concordia res parve cresennt. Sunall things increase by union.
Confide recte agens. Fear not while acting justly.
Cuntra bunce mureq. Amainst emen morals.
Corpus delicti. 'The body un the canc.

Credat Judmus apella. Let the circumcised Jew believe that.
Cui bono? To what good?
Currente calamo. With a rumning pen.
Data. Things given or granted.
De facto-de jure. From the fact-from the law.
Delectando pariterque monendo. By imparting at once pleasure and instruction.
Delenda est Carthago. Carthage must be destroyed (Tho words of Cato.)
De mortuis nil nisi bonum. latt nothing be said of the dead but what is favourable.
Deo favente-juvante-volente. With God's favour-help-will.
Desideratum. The thing; desired.
Desipere in loco To play the fool at the right time.
Desunt extora. The remsinder is wanting.
Deum cole, regem serva. Worship God, serve the king Deus protector nocter. God is our protector.
Dilige amicos. Lovo your friends.
Divide et impera. Divide and govern.
Dutco et decormin est pro patria mori. It is sweet and glorious to dio for one's country.
Dum vivimus vivamus. Let us live while we live. Est modus in relus. Thero is a medium in all thinga Esto perpetua. Be thou perpetual.
Esto quod videris. Be what you seem to be.
Ex cathedra. From the clair; authoritatively.
Exempli gratia (E.g. and Ex. gr.) By the way of ex ample.
Ex nilito nihil fit. Nothing produces nothing.
Ex officio. By virtue of his office.
Ex parte. On one part.
Ex pede Herculem. Judge of the size of the statue of Hercules ly the foot.
Experto crede. Betieve an experienecd man.
Extemporo. Without premeditation.
Fae simile. Do the liko: an engraved resemblance of handwriting.
Fama semper viret. A good name will shino for ever
Familias firmat pietas. Dovotion strengthens families
Fas est et al hoste doceri. It is allowable to derive in struction even from an enemy.
Felo de se. A suicide.
Fiat justitia, ruat colum. Let justice be done, though the heavens should fall.
Fortuna favet fortilus. Fortune favours the hold.
Fruges consumere nati. Men born only to consuyw fod. Hand passibus requis. With unequal stepos.
Hine ille lachryme. Hence proced these tears.
Il est (i. e.) 'fluat is.
Id genes omue. All persons of that description
Imprimatur. Let it be printed.
Iupromptu. Without study.
In forma pauperis. In the form of a poor man.
In propria persona. In person.
In re. In the matter of.
In terrorem. In terror.
In transitu. In passing,
Ipse dixit. He himself said it : dogmatism.
Judex damnatur cum nocens absolvitur. Guilt attachea
to a judge when the guilty are suffered to escape.
Jure divino-humano. By divine-by human law.
Lahor ommia vincit. Lathour conquers every thing.
Lapsus lingue. A slip of the tonguc.
Lex talionis. The law of retaliation.
locum tenens. A deputy or sulstituto.
Mayna est veritas, et prevalelit. 'The truth is powerfuh, and will ultimately prevail.
Materien superahat opus. The workmanship surpassed the materials.
Meclio tutivsimas inis. A medium course will be the saleat Aromento mori. Remember death,
Hens sthe cuncla recti. A mind conscious of metitude

Mirabile sietu. Wonderful to tell.
Multum in parvo. Much in little.
Mutatis mutundif. After making the necesoary changes.
Necessitas non habet leges. Necossity hat no law.
Nem. con. An abbreviation of nemine contradicente. Without dissent or opposition.
Ne plus ultra. - Nothing beyend-the utmoat point.
Ne quid nimis. Too much of one thing ie good for nothing.
Ne sutor ultra crepidam. Let not the ahocinaker go beyond his last
Nisi Dominus frustra. Unleas the Lord assist you, all your eflorta are in vain.
Noacitur ex rociis. He is known by his companions.
Nota Bene (N. B.) Mark well.
Obiter dietum. A thing said by the way or in passing.
Onus probandi. The weight of pisof; the burden of proving.
0 si sic omnir! Oh that he had alwaya done, or apoken thus!
0 tempora, \mathbf{O} mores ! Oh the times, oh the mannera !
Otium cum dignitate. Ease with dignity.
Palmam qui mersit ferat. Let bim who has won bear the palm.
Pari pasau. By a similar gradation.
Par nobile fratrun. A noble pair of brothors.
Particeps crimiria. An sccomplice.
Passim. Evorywhere.
Per fas ot nefas Through right and wrong.
Per me. By itself.
Poeta nascitur non fit. Nature, not study, must form a poct.
Primâ facie. On the first view, or appearance.
Prime vix. The first passages : the upper part of the intestinal canal.
Primum mobile. The main spring; the first impulse.
Principiis obsta. Oppose the first appearanco of evil.
Pro aris et focis. For our altars and firesides.
Pro bono puthico. For the public good.
Pro et con. For and against.
Pro re nata. For a special business.
Pro tempore. For the time.
Suid nunc ${ }^{1}$ What now !-applied to a news-hunter.

Quid pro quo. What for what ; tit for tat.
Quoad hoc. To this extent. -
Quod erat demonstrandim. Which was meant to ma ahown.
Rara avia in torris, nigroque simillima cygno. , A rare bird in the earth-vory like a black awan.
Reductio ad abaurdum. A redncing to an abourdity.
Re infecta. Without ettoining his end.
Requiogcat in pace. May he reat in peace.
Res angoata domi. Nurrow circumstahices at home
Respice finom. Look to the end.
Strintim. In order.
Sic itur ad astra. Such is the way to immortality.
Sic passim. So everywhere.
Sic transit gloria mundi. Thus the glory of the werld passes away.
Sine die. T'o on Indefinite time.
Sine qua non. An indisponsable condition.
Status quo antè bellum. The state in which both parties wero before the was.
Suaviter in modo, fortiter in re. Gentle in the mannar, but vigorous in the deed.
Sub silentio. In silence.
Summum bonum. The chief good.
Suum cuique. Let every man have hia own.
Tabula rasa. A amoothed tablet.
Tempore mutantur, et nos mutaunur in illis. The timee change, and we change with them.
Totics quotica. As often as.
Ubi supra. Where above inentioned.
Vade mecum. Go with me: a conatant companion. (Usually applied to a pocket-book.)
Veluti in speculum. As if in a mirror.
Veni, vidi, vici. I came, I saw, I conquered.
V is inertix. Force or property of inanimate matrer. Versua (v.) Against.
Vice versa. Tho terms or cases being changed.
Vi et armis. By main force.
Viva voce. By or with the living or loud voice.
Viz. (videlicet.) Namely.
Vox et praterea nihil. A voice and nothing mora.
Vox populi, vox Dei. The voice of the people is the voice of God

Lat.
Is meant to at
cygno. 'A rare an.
n absurdity.
te.
es at home
mortality:
ry of the world
n.
hich both par-
in the manner,

Jwn.
is. The timee
 people is th

[^0]: - Dick's Felential Scenery, 135.

[^1]: - The is pronoulced inard, and the as in gem

 26

[^2]: - Maclaren's Gcology of Fife and the Loltinat

[^3]: - Comstock's Ceology, New York, $1 \$ 30$.
 i Mvinel's Woadera of Geolory, ót

[^4]: - The Arabs are likely to he dislodged in turn by a more eutiveted perple. While they ure pushing themselves inv power amid the negroes of the interior, a Caucasian race, is higher civilization, lias set its foot on the Mediterranean shornt of Airica, and begun to push them ont of their previous conquests. We reter to the occupation of the Algerine conat ! the French Strange how ceaselessly the round of substite unns seems to go on! From the immense extent to which thev are spresding, one would say that the Caucasiens beern das uned to filt the esrth. Certain it is, that they app jar to lise peeuliar capabil ties for surceatful colmuieation

[^5]: - tialf an inch may be recknof us equivale. it to the aline

[^6]: * A hiogramme is as near! ns possible $21-5 \mathrm{lbs}$. Finguimh.
 t The mean weight, herempe, of man ia telgun at the smas mum periof. is litle moro itsan, 140 lta . linglish. Thici: : muel below the average of maa in Britain.

[^7]: - Travels in llin

 Vol. I-12

[^8]: -Travels in thintuwan and China. (fropte's Editions.)
 Toc. I-12

[^9]: - liaj's "Chinese an they are."

[^10]: - For much of the mater in the present sheet on shipi suw navigation, we have been indebted in apveral articles., the Encyclopadia Americana" (Converaationa Lasicun.

[^11]: "The word fall,' na wefl as mant ollers used in the fish ery. is clerived from the Buth inaguage. In the nriginat it . writen ral, implying jump, drop, fall. and is eca si lered expres s: ye of tha conduct of the smilors when mameng the bosis of sul occasion requiring evireme despatch.

[^12]: - The only eauent hat the caluel lins cere are mixta bree Virt $\because-17$

[^13]: - Bi

[^14]: - Turnikes wern so called trom poles or bars. awung on pivol, having been placed on them. and lurned either way wollen dues were phid. (iaten are now nulbilluted for then poles in Cirem tiritain. In Germany, the pole ss sitt ued, obs end heing depressed to raise the other and wopermi fow bsssage.

[^15]: - In scimntific works, the term meharics is umunlly tratric*ot th the art on of thids, while methanemi or merhanirnly is wo Whed io the selior of toth aotitn and flitide. For exnmylie. the wraring away of stonin l'y tha espion of the water, Is anid to te smehomienl aetion, or that the mier mete mechancenty.

[^16]: *ithen is givellonly asageneral rule 'The sea is ac unformi-

[^17]: - It is known thal ira vellart, and even their pracised guidas, often fill down suddenty ea if struck by lighining, when ap: prosohing lony eammits, on eccount chiafy of the thinness of the ar which they ere bresthing, asd soma minutes cispse be-

[^18]: - Volume. in che quantity in bulk of gases. Thus, one v yart, or sny othery iun dauble it o cubic previounly tuemione

[^19]: - Volune. in chemistry, is a term employed to denote any quantity in butk of n sulistunce. fi is usinutlj applied to the gasen. Than, ons volume of hydrogen gns is, say, u cubic foot,
 yard. or any other quantity ; hen iwo volumes are of courge yard, or any other quantity; then iwo voluripa are of course

[^20]: - Aricle Flectricity in the Encyeloperdia Bratanniag. the most comprebensive, philosophicst, complete, and intelligible trealise opon this interesting science which we huve evar ye mel wish

[^21]: - In cestain conditions of the ammonphere, eleetrical sparks are evoved in abundancu from paper an it insues from the sifinlers in the paper-making tonchine, the friction of the dry materiai on parts of the apparatus being tha apparem eauge of the phellomena. If a battery of Inyden jars wers empioy. ad to colleet these sparks, electrican wipermeus might be fostily periorined with them.

[^22]: - Life of Sir iname Newton, ip 78

[^23]: - See Easay by Dr. Andrew Combe, Ihrenological Joarnul,

[^24]: - Dr. Gall created a prejudice againat the acience by namay cerrain facu'ties from ineir aluuse, as the orgnis of thay and murder, \&e. This was corrected by Dr. Spurzhaira.

[^25]: - Seo Notes on tho United Srates.

[^26]: - 3tr Combe hn
 in Rinck's Lifo of?
 the Alemnivs of the
 at his delirinis, be
 Dise day, when 1
 one diy. whend
 by reasos. I shall
 in which yos refu arcepted ilis offer sal by the fire con sal by the fire con dow, gnit lroking
 pletely shaorhed, pletely shoorhed,
 Ees. said he at

[^27]: - Mr. Conhe has thus trabklatel from the French, as givell
 in Binck's Life of Tasso, the following anecdote. Pxuracied from
 the Memairs of the Ma vnais of Villa, the friend of Thsso. "Thsso, Dar day, when the marguis endencouret io drive that itha from his mind. Tasao suld to him, 'since I eannot convince you br reason, I shill do so liy experience; I shall cause the spirit in which you refuse to helieve to appear liefore your eyes!' . I accepled the offre.' snya the matquis, 'alul next dny when we sni ly the fire converaing, hes lurned his eyes townrids the windew, had loving with slesiffast sttention. nppenred so completely nhaorhed, that when I called in him he dill nol snswer.' Eee.' said he at leugh; 'sun! tuy familiar spirit comes to con-

[^28]: *Thoge who may have litle opportunity of knowing the exlent of phrenologient liternture, are referred to the tollowing list of works, and their authors:-

[^29]: Mensiso.
 Ox.
 Hunse.
 Camel.
 Hollow.
 Huok.
 Armour.
 Travelling scrip.
 serprut.

[^30]: - Though we thin distioxuith one clans of notns--tuser. namely, whinch com" from ndjucuren or are elonely conureteil With siein-ty the titte abstract, we are far from w. ahing is io De inlerted that commom noustare not apprehemled by the anme Eculty. On the contrars. Mrlaphyescal ptopsivty eompela us to adrait that such is the case inditany oi oar reasiers firei an
 alerest in the gllestion. We requent hith hefore condemmite Gup opinion. to perpise the third chapirp of the thiritimok of Locker Eindy concening Moman toicstantirn, and

[^31]: * It munt he confessed that it is unt in all cases easy for the mind to apprenend the nwiurvo of the relalion pointed out by a preposition. The atudent will do wetl to tinmiliarize his mind with physiend redations in the first place, and maral will afterwadd hecome nore easily rccognisable. In the following sentonee it is at onee perceived what relation the firat in expresees, but much more diticult to get the diatinet idea meant to be conpeyed hy the second:-"Diogenes wil in tab, but he was dieral. in good humaur.n

[^32]: - "A little reflection may, 1 thitik, suffice to convince sny prranli, that wr huve no more bukiness with a fulure tense in our langunge than we linve with the whole syriem of tatim mends wat renses: hechuse we have no modification of our verts to correspond to it: and if we liad never heard of a fir ture tense ill some other language. we shoult no tore tave givell a particulur mam. to the conab nution of the verle rith the huxiliary shath or will. thent to those hat are mols wian the Anvilinting if have. enn. must, or any other."-Puestratis Rudiments of Enghsh Grammar.

[^33]: ${ }^{\text {a }}$ A sugle banlly water d. a numer manly called Single ant annuol be en Lufe, a nou munalve eas atserted. I Ibth, a ved is at the pre inrular, to lett, does be coning Done.
 Whll an at
 a the the
 Wril: Compe
 Well: Comp
 With, a pre
 cturehmen w
 Churchmen
 the oljreet sh
 bson rith.
 remembered
 For, a eon
 on' which w
 Charily, B
 m.ad, and
 that diapos:ti
 tetb teild
 Will. s ver
 bongree with
 Hardly is a
 Thate is a
 Thiter is a
 Snitive, is sun
 onn of the in.
 Proters Tense
 The. numer
 fround.
 Ground, a
 oung which
 fa mbere of t
 wherh, bems
 for" rall it a
 fis a prore
 suppiping tho
 therb mu

[^34]: * Accoant of V.ord Ilacou' Ninum Ongamen, in Libiary of Uneful Knowledge.

 Francis flacon, crosied Baron Verulam, who rosc to the
 obtanned the highest rrputation es an rentosophicul writer. In

 eary on our pursuit of sho.. if: in siler to arrive at Irwih.
 place, hind then to reumb uper li, in townrdn conclusions-a
 able, but which wha neverthotexs inhuown thll explaned by aph lo conce 10 particulars, Bucon teils us-
 bring the courne of events ns much mos possible umber our owa controh, in ordire that we may turn it lo our owis ndvantuge.
 II. That as each event deperods ujon a certata combatation of circumatances wheh prevele at, and cunslitute th cause, it is evtdent we madl be alile to command the event whemever we have it in our fowar to produce that rombination of circumstances out of the uteatis which nature hus placed within our reach.
 ItI. 'that the urans of producing many event wheh we
 modng prevents un irom tasing those means, but our ambulty they wre disgumed nitd surremuled.
 toon. to find out what caresmatamers hote exsential. und what

 ocear in malures, we shati precelve it once whe ther wre ran

 tahgle sis operatobntrom one amollur, to reier math event In
 unto thear tussi ulesiract torm

 bes thade all thaks low belore his leet.

[^35]: - The numbers introfaced in this manner refer to volutnes of Chambers's Educational Courne, according to a list las fer as published) given al the clone of the section "Inteliectuel Education." It wilt be understood that the volume referred to bither treata that department of the theory and praclice of education fully, or is a school book in which the sut fect is sme bodied.

[^36]: * A plot of hure ground. na survej ell by the pupils, and drawn by one of the number. wus presemed to me, showing the dela:ls of the atrangernemt. whit the classifiention of its parts. The conatruction of this trawing was one of the practieal exereines of the ciuss.
 Bach's's Report on liduestion in Jurope. Philudelphia, 1819.

[^37]: - Anaceo enata of fixuree and their subordinate paris may be ted frora d. At- -ent manainelurera of modela of this deneription in Lepdes. Edub argh, and other large owns.

[^38]:

[^39]: - "In France, it w 4.515.774 permons bot 2, i5s.065 mates mad every 15 froma'es. I are gex. 951 malis. 2ry that, in Fratice, jor, theren will be lims,5at thers will be lems.s: englimate fomujob. bair: so that the pr 1 ímale agrester it Buldage

[^40]: whrk. We tar the larsest porlom of copiees ,* sold in lreland

 " halin' buy a triangle, ns liey dor at lreasul. and plemy of

 formis sum is meluded 10 ut6 whose peromae or whin net asecrumned.

[^41]: lies＂Prated by W．Clowes．Landon，tor ham Majeaty＂Sia． thonery Ollies：dejs．

[^42]: * "Prospects and Present Condition of the Inbouring Ctasses." By a Beneficed C.ergyman. T. and W. Boone, fendon

[^43]: * "Instruelions for the Fistahlishment of Loon Societel London; Printed by \mathbf{W}. Clowes snd Sona, for bis Majenfi Sintoncry Office; Ig37.
 \dagger Scee A Guide to neariy One Flundred Loan Sncielem' London: W. Strange.

[^44]: Age of the pe Ammity is to

[^45]:

[^46]: - Tounl number of pawns received sit ce the eatabtishment - Dened, to Mareh 19, $184 \mathrm{tt}, 400,905$:

[^47]: * Letler from
 f"1linif 10 soone, London.

[^48]: *Tlese and the preceding culcutations refer is prices a nors

[^49]: *. The Manae fiariten. by Nothaniel Pstlersoa. D.D., miss ter of \& Andrew's chureli. (jissuow. filssgow: Colling. La don: Whituker and Co. ts:39. If ablords us much pleasurn w reconuscud this velusblo and modesi treatise to aotuca

[^50]: - For our infurmation upon the manufacture of cheese in the Engliss countuen, we liave been intetited whe Brinsh Itusoand:; and the different coumy reports; and ior the account of th : 'arme san checoe, prine:psill' 10 the Journat de I'lis к., we.

[^51]: Gebrerat Reporl of Seotund, vol. viii, p. G - Farmer's Mugazimu. vol. vií

[^52]: Henlworbis Ni:w ! Buler on Austrulia smra's Lamd, p. 50.

[^53]: - Wentworth's Now Somblh Wates, p. tian.
 t Ifuler on Ausiralia, p. in
 TWralloch's Declionary, article Wiol; and Widowson's Van apara's Lamit, p. 50.

[^54]: - Quarierly Journal of Agricullure, No. 1.

[^55]: © Dick on Foc:-rol. Quarterly Journal of Agriculture, No. all prs.
 "Wilson on the Natarel History ot the Sheep, p. 355.

[^56]: * Mrimmaphat ib.

 VuL. I. -74

[^57]: - Metamarah. lib. vii.

[^58]: *This is a valumb, practical trentipe, which it aforde na planari to revoturesut. Th was published by R. Goombridge, Paternoster tow, Lombon, in two.

[^59]: - Thoughts and Recotleoliona, by one of the last Century Landon lurray. tcon.
 - Encyetopcedia of Rural Sports, 7P8

[^60]: - Fas manual has heen republishitin an improved and tandsome forin in the voluras entitlex "The Rod end the Gum." - and C. Luck, Falit: urgh.

[^61]: - "On River Angling for Snlmon and Trom," by John Yvang *. Beanells Eduburgit: Blackwood and Sons. tsto.

[^62]: *Repablished in the hendsome volum , "The Rod and the Gun." A, azi C. Black, Ediuburgh.

[^63]: - The lerm gymunstic is from a Gréek word sifnifying naked. the athete or young persona who practisert taotly txerecses in he puthic ar cria or gymanainun of ancient (irecce, being nearly in a slate of nut iy. The mor' gemle kind of gymusties lior frennies are wrmed enlisthenics from woric signifying elegsult or graceitul exer \boldsymbol{r} iant

 394

[^64]: ': 1. No golfer, or cadie, to be allowed to dig tee within tot yards of the hote, and no ball to be teed nearer tha hole than twe elub tengtha, nor fariher frem il than four, unleses by consem of parties, ond the ball to be teed on the ground
 or 2. Two or more parties meeting al the hole, the party who playa firsi to be allowed to play their second strokes before the aueceeting party strikes off. Bul sliould the firat parly'u ball be in a hazard, that porty shall allow the aecond party to rass.
 "3. Fivery fiole nust be played out with the same ball the ia struck from the ee.

[^65]: - In a batule helween the French and Fnglish, in the year 1tir, nn Finglish knigh seizing the bridle of lonuis to Gros, and rrying to his eninrades, "The king is taken!" the prince saruct him to the ground with his sword, shying. "Ne sçnis tu pas qu' anx echees nn ne prend pas la mi?" (Dosi thou not know thu at eheas the king is never tnken?) The meaning of which ix Ifan ni the game of chess, when the ling is reduced to that pusi that hisere is no way for him to escape, the gnme embls; becsuse the royal pieces is not to be exposad to en imuginary atiront.Philitor on Chass.

[^66]: - Notes to I'ictorial Bible, Samael, ch. ver. 18 .

[^67]: - "Germaty snd the Germaas." 1 l'uget'v "Hungary."

[^68]: - Notes oi a Rumble \&e., by a Lover of hit Picuresyb

[^69]: *Abridged irom "Longworth's Year ia Cireassa."
 t Votuilis "'Iravels ir kiberia," \&c.

[^70]:

[^71]: - Mustin is said to hio

 Le spital of ath:sopo ten
 10 ne of the: grealest et
 Iso sanned from Culien eace this colton cloth
 isx monilis it Cli.ua.

[^72]: 'Vuslin is said to hi., (,we. nuned from Mosul. former's
 to ne oi the greatest entat, sot en-ern commeree.
 iso namett from Calicut, the once proul capital of Sialabar, eace this cotton cloth whs fitst exprorted.

[^73]: * Lettery from the South.

 242

[^74]:

 when If fill: drive. hut wo thak, whit Sl. I'lanclee. that lhe
 to be mentivat phtsenta;

[^75]: - Ionion Chirnucte, quoted in M. Repion's paper on Hals, a the Arelifrologia.
 YoL. 1.-5.5

[^76]: *The Murguis of Wesiminster occnsionntly wears n court swnril. on the hilt of which is, we helieve. tai the ce.ebratad Nassuck diamond, sold, in 1637, for f7200, though originalk vnlued at $\mathrm{E} 30,000$.

[^77]: The diacovery of this fuct, when eleared of the effects of diference of temperature on the lengh of the peadulum, served witmonsirate that the carth is in rotation on an axis passing through the poles ; sud that its form is that which must result toa fuid or molten mass iron preeisely such n line sud mensure of potation: : $:$ "myly. not a nerlich aphere or circular globe, but - qheron or ornyge-shajow mnse flatened at the polres and prouberane at the equator. This it dill on the maturnl law of centripetal and cemtrnagal foreess or forces tending to and trom centre ; whenco it follaws, that hohbes are atmeted more ond mote. or become henver. ns they npproach the eentre of ntrmetenn and that they gre repelled more and more, or beoome positris) lighter. not only as they recerde from that centre. but also anthey approach and enter inte the vortex of rotation. or the tearifugal force, which missl of course be in the region of the apator. The anriace of the emrih towaris the noles, therefore. whs thun proved to be nearer the centre. or, in other words, anter the pendulum leseending with more weight oull rapidity Vonimion the re than cisewhe re; and a anrplus diference reanned to the accounted for by the centrifugal force, strongeat bowartis the equator.
 1sLI. -07

[^78]: - Before quithing the subject of pendatuma, it is worthy of remark that he:r mutual nction or sympalhy, white oseiltating aene each ohter on the same wall, so long as they are mumally connected by a rail or shelf common to hoth. so long na the cases of the clocks to which they belong are either fixed in each other or stauling on the anme flooring piank. is a yery angular phenonenon, observed by Haygens. Ellicol. De Lac Red, ant many other artists. One prendulum will even stop noother, 1 is *nd. in such eireumatnnees, nuit wif, nguin enuse it to reaume iss vilorations till is stop. alternatuly, itself. It has siso been found that wo clockes with pendulums of nearly equal lengh and power, or weight, thouglt difering in thear тенsurement of time while npart. will so vilirate in unison when thas connected. as to keep tume tagether with the mont Eirprising accuracy, tifl they are nga.n separated, or tilt the plank conmeting them be sawn asumbr. This singular but bon altogether unaecotumble infuence appenra to be not unlike that sympahy of sound betweell iwo mum cal insirameats lined in un:son. where.n, when a chord of one is struck, the other, placed in a proper situntion, though untonctied. responds or echors bnek the sounds at first culted forth. And as in the combinations of certain medical substances, or in various other combinations the g"llerat result of all the ele'iments in obtained an a senty inean to be depenifed on. without the spereal failure, failh, or disad camage of any one elemens in the combtantion, necuracy of time keepng of a remuriable k ind, on ght readily lie obinined ty this singular mode of hringing out. by' n combimation of pendulam clocka. all average rate of motion. "I is the opinon of an em uent foreign art'st." say* Renl, the authur cia a sisndard article on etnck and watch-muking in the new ad ion of the "Ineyelopedia Britamion." niturwards enthrged and eeparately repulhahed, "than n jew clacks placed in this way would communuate the motion of the ir pendulams 4, rach other. ull hies carne nit at last to beat at the same insimit;" an optaion in whecin Reid hitwelf expresses hit entire concurrence

[^79]: *This litule instrument, the hair-spring, is no less rematiol for the oxiremo delicacy of its construction, llan for the en value which it shows the possibility of giving to \& pitecs steel of excecdingly small and insignificant appearanct

[^80]: Renare the expioy
 been maile by J. Uro been mate tiy J. Mro

[^81]: - Sin: the expi-y of the patent. machines of this kind have beea masite by J. Hrownand'o., eng neery, Kirkaldy. The meckanim in very 'eastifil and ellectuve.

[^82]: * To talk of their nwn domge.
 t Knowledge is , ower.-Dácon.

[^83]: - Anciently. is th us, in honour to be permitued to mand the thesello: -
 nogeo.dite makes sows of wall-Shakpears.

[^84]: * A story toll the reverse of the reat occarrences
 t temh hevergatve him sorrow.
 \ddagger All thigs are gote wromp.

