The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

\checkmark
Bound with other material/
Relié avec d'autres documents

\square
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque ceia était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages cetached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

\square
Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The Canadian Engineer

The Canadian Engineer.

issugd monthly in the interests of the

ciril. Mechianical electrical., locomotive, stationary makine, mining and Sanitary engineer. the surveyor the manufacturer, the contractor and the
merchant in the aletal thades.

Sunscriprion-Canada and the United States, $3 t .00$ per year; Great Britalo and foreign, 65 . Advertising rates on applleation. Orfices-6z Cburch Street, Toronto : and Fraser Bullding, Montreal.
E. B. Bigcar
R. R. Sanuzl.
bigGar, Samuel \& CO., Publishers
Address-Fraser Building.
Toronto Tolephone, 1898. Montreal Tolophonc, 2589. Qus.

h.

All buniness cocreapondonco alopald bo addresson to our Montroal ondee. Editorlal mattor, cuta, oloctros and dranlags ahould be aduressoi to tho Toronto onice, and ahonla vo sent Whonover pay iluty on cuts from nibrohd. Chapges of adrertisements aliould Eoln our hands not lator than tho lst of each month to ensure insertion.

COHTENTS OF THIS NUMBER:

Accidents of the month. Arcblects' Assoclation, Quebec...		Nickel Extraction by the Mond	
Concrete. The compressive strengi		Pr	
25 deterained by tests made at		Petrolia. Green Grass Grows ail	
Cznaulan Electric Llehi Compary:	196	Parou	
Quebec, The	150	Parsons Stcat Turbine, Difeés	
Canadian Enkinecr, Good Work appreciated	163	Connected	
Electric Flashes		Sand Filtraton of Mubilic Water	
Great Lakes Copper Co., The...	163	Supplies	
Hudx	186		
-	${ }^{263}$	Sointh Africa. İs Pcople and Trade	
1 mp prts from Great Britald, Metal	165	Tor	
Industrial Notes	173	Toronto	4
Mrineral industiles of Oniarto	160	Ventiling and Heating Onc-Story	
Marine News	17	Water, Artleieliö.	
Mifnlor Matters	177	Water, Armeie V .	

For The Canadian Enginebr.

WATER, ARTICLE IV.

By w. M. w.itson.
The readers of the Canadian Engineer would understand the subject discussed in the present paper better if they will refer to the articles published in the issues oi June, 1897, and of May and June, 1800 . In the articles named. I tried to explain how necessary it is to be careful to lay down water mains straight, parallel, and carefully graded, having cutoff and washout valves properly placed, so that every section can be well controlled and thoroughly emptied and washed out, when required. Also, that the arrangement of street mains should be such, that when all are in full working order. the water the street mains contain is always on the move, and that in no part of the system can the water be motionless for days together.

During the fifteen years I have been in Canada, I have observed that waterworks are usually laid on what European engineers call the temporary system, that is in a zig-zag or snake fashion, laying them over hills and dipping the pipes down under vaileys and gullies or culverts, paying no regard whatever to the depressions made in the pipes, that will form receptacles for dirt and poisonous matter, or to the air pockets that will hinder the flow of water and cause water hammer and damaging commotions to exist in the pipes, which start
leakages and cause over 100 gallons of water to be pumped per head of population per day in Canadian waterworks, when the quantity actually used dues not amount to over 40 gallons per head per day. In fact, as far as I can make out, the health of the public, who have to drink, wash, and cook, with the water carried to them by the street mains, receives very scant consideration. and the fearful cost of repairs and management, after the construction is completed, appears not to weigh one feather weight, I am told on all hands that the country is rich, and can stand it, though I know by experience that my taxes alone are nearly as much as hr th my taxes and rent were tugether when living in Cireat Britain I also know that the state and local bodies have mortgaged the property so well that our very clothing fits as if they are in the grip of the money-lcuder, yet money is wasted on public works just as if it were as plentiful as sand. The purest water can be fouked and badly contaminated during its passage through the water mains to the consumer, by allowing it to have a sluggish flow, and stand motionless for long periods in the pipes; also by allowing the minute particles of icgctalle or other iorcign and objectionable matter to remain in the pipes, and cause to incubate and multiply, at the rate of, often, millions an hour, poisonous microbes, which afterwards find their way to the taps and get mised with the people's food. Experience has proved that all such objectionable matter lies in deep depressions, or is forced to the dead ends, and such street mains as are extended the furthest from the intake end of the supply. On that account it is absolutely necessary that washout valves be pro:ided at such points of the water mains, so that the pipes can be thoroughly cleaned about once a month, without wasting much water. Some two years since, I saw in the newspaper that the Toronto analyst had been analyzing the city water, drawn from taps near the centre, and he reported the result to be good. On the same day, I was engaged unstopping a blocked water service in one of the side strects, about two miles west of where the analyst got the water he analyzed. On cutting and dividing the pipe, I found a frog's leg, a few small bones of a fish and some vegetable debris. Afterwards I allowed the water to run to clear it, and the quality that the pipe delivered was far from being fit for use for domestic purposes, and the analyst would certainly have said the same had it come under his notice. All the houses in that strect are subject to periodical stoppayes, on account of the water main in the strect being dirty, and no proper means to clean it out being provided. The water at the intake pipe of the city of Toronto is excellent, but the distributing mains appear to have been laid without any thought of cleaning them out.

Theic has been said sufficient to show how the health of the people largely depends on the laying of the public water mains and service pipes, and may pass on to the costly damages and inconvenience of frozen
water mains and service pipes which are the outcome of poor construction. I have heard people say that freezing of pipes cannot be avoided, but I do not believe such statements, and if reasonable care is observed, there need be no difficulty of that kind. Since 70 per cent. of the water pipes laid never frecze, then why cannot the balance of 30 per cent. be made to resist severe weather. In several newspapers we have read during the last very severe winter that a fire occurred in a town and the firemen were badly hampered because the fire hydrant was frozen. After large sums of money have been spent to ensure security, the article is useless at the very moment its services are necessary. The citizens are living in false security, and their property may be all consumed and even their lives may be sacrificed because it takes time, a long time, to thaw out the fire hydrant before it can be used to quench the fire, and in that case the coroner would say that it was accidental death and no enguiry necessary, when the fact of the case would really be that the person had come by his or her death on account of the carelessness or want of knowledge of the person who set the hydrant. If the party who was responsible for properly fixing the hydrant were committed for manslaughter, there would be very few frozen fire hydrants. Every winter a large number of families suffer, because the private pipe supplying their dwelling is frozen solid, and to relieve them and thaw out their pipes small boilers on wheels are supplied, probably by the ratepayers, and a staft of men takes them from house to house, and thaws the pipes out by dividing the pipe at some convenient point, and working a small copper tube into the interior of the affected pipe, and blowing in steam, until the blockage is removed; but if the pipe fitter has laid the pipe in a snake fashion, and the small tube cannot be forced round the bends. then the services of the steam boilers are useless. We should insist that work be done be persons who thoroughly understand their business, and make them responsible ior the work they do, or have a fully-qualified official to inspect the work and pass it, and thus avoid the necessity of thawing appliances, and the heavy expense of repairing damages cone by frost to pipes containing water.

Perhaps a few suggestions and some practical examples of how to ensure pipes from freering and the causes of freezing may be interesting. Water attracts frost, as well as other things, and the slightest dampness will carry a current of frost down to a metal pipe. By placing an open vessel of water in a room it will attract and absorb the frost, and in this way frost can be kept out oi cellars.

B3. keeping this in mind when laying pipes and fixing hydrants, we may prevent the risk of freczing if reasonable judgment and care be afterwards observed in the management. I believe brass and copper will convey and carry frost along quicker than other metals; this is proved, because it is found that in most of the street mains that freeze and crack, the freezing first began at the brass bend, serewed into the crown of the main pipe, and attached to the private service pipe. and when water once begins to crystallize, it increases the crystallization right and left in the main pipe quickly, drawing the frost by way of the brass bend, similar to the tree getting its nourishment through the small root-
lets; on this account we should endeavor when fixing water pipes containing water to disconnect the pipe from frost currents in a similar way, that electricians prevent electricity from being wasted or coming in contact with foreign bodies. This may be done in various ways, first by encircling the metal pipe with stagnant air completely void of circulation, because air is an excellent non-conductor; second, by burying in pitch, rosin, brimstone or was, or covering the pipe with an air-tight stocking of rubber, gutta percha or dry paper with a waterproof coat of varnish on the outside, to prevent it becoming damp. If a pipe is properly insulated it will not freeze. Another important paint is not to fix a pipe in a position where a strong current of air, however small the current may be, can strike it direct, especially at a bend or coupling; for instance, a house pipe is often brought up through the kitchen floor from the cold basement; if the hole in the floor is a little larger than the pipe, the chilled air will rush through the aperture round the pipe, and freeze it. Pipes will stand a considerable amount of cold without crystallizing th: contents, if the air that surrounds them is nearly motionless. They always freeze first where the currents of air are the most rapid, however small a stream the current may be; so if it is possible to lay a main or a service pipe so that it cannot be approached by dampness, or where a circulation of air camot come in contace with it, then it must be safe from frost. Some engineers will net allow the filling over a water-pipe to be pounded down solic, except the traffic of the road demands sclidits, becalise the air between the particles of earth placed loosely over the water main forms a nonconductor, and cuts of the current of frost from descending to the pipe. Even in well pounded earth, that covers the water mains, there is some air, and no cloubt it prevents the frost from descending to the pipes a little, and together with the heat that is absorbed from the earth that is attacked with frost by the lower stratum immediately under the frosted surface, is no cloubt the cause why the dampness in the soil cannot convey the current of frost down to the main waterpipes if laid at a suitable depth.

It is unwise to allow a metal pipe containing water to touch other metal or damp stone or brick, if such metal, stone or brick communicates in any way with the cold atmosphere outside, because such metal will convey the frostsimilarly toa wire that conveys electricity. I think that the custom of fixing a bent brass union on the crown of a water main, to deliver a private supply, mightbe done away with, with advantage, and in the place of tapping the pipe at the crown, the pipe main might be tapped on one side, and in place of using copper bends and connections, amnealed or malleable irnn fittings should be used, because they cannot attract the cold on quickly as brass, and it is often the case that the water in the mains is constantly on the move forward, therefore camot readily be attacked by frost: while the water in the brass bend and service pipe only moves when water is drawn into the house, and the contents of the pipe being afterwards motionless, is easily crystallized, and then starts the water in the main crystallizing, and in that way great mischief is done. This method would lower the house service connection as much below the crown of the water main, as the brass bend extends above the water main, under the present rule,
which would be right, because the house service needs more protection than the water main. The objection that the services would break away from the main, on account of expansion and contraction, when iron or brass pipes are used for service pipes, can be overcome by using two English slow bends, kecping them sufficiently apart to allow enough movement to take place that will overcome any expansion or sudden jars that might occur. I also consider the custom of putting a separate service pipe to each house, however small that house may be, or however many small houses are srouped together, is unwise. Water rapidly deteriorates when lying idle in pipes; not only do the friendly microbes in the water die off for want of air, but the water sets up a chemical action with the metal of the pipe. The public health demands that water pipes should, wherever possible, be worked to their fullest capacity, on that account the shortest length possible of service pipes should be used between the street main and the house taps, and as many as can conveniently be served from one pipe should be. Water mains are laid down considerably larger than is needed for domestic or trade supply, as a rule, First, because they may be called upon to furnish several streams at any moment to extinguish a fire; second, because a small cast-iron pipe, placed under a road, is casily broken by heavy traffic passing over it. So we see that it is necessary to prevent the water deteriorating or freezing in winter, to so arrange them that the water at all points is kept, if possible, constantly on the mave or circulating, besides having plenty of proper provision for emptying and cleaning them out. There is a service pipe made that will resist frost: also preserve the purity of the water it contains, so far as to prevent the water from setting up any chemical action with the metal. It is made of common wrought irch pipe, having a thick, hollow core, or lining, of pure tin, forced into the interior of the iron pipe, and when forcing the tin into the inside of the iron pipe, a thin rubber cloth or other non-conducting material is placed between the two metals, which insulates the pipe, and prevents the frost having any action on the water it contains. Thus, by using that kind of pipe, the purity of the water is maintained, and the chance of freezing is nil, because it is impermeable to frost, on account of the insulator placed between the two metals, and being lined, with pure tin, it is impossible for the water to set up any injurious chemical action.

To make the causes of freezing very plan, I will here relate a few of my own personal experiences. Last wimer I was obliged to carry a small water pipe over a roof, and I knew the water would only move about twice each day, and there was a great difficulty presented against the pipe being boxed, so I simply insulated it by placing three-ply rubber hose over it, carefully sealed it at both ends to prevent any circulation of air between the iron and the rubber stocking, and the pipe did not freeze last winter, though the weather was severe and the pipe elevated high in the air. Frost will run down a pipe however well insulated, if the end is exposed to the air, because the frost will travel down the metal forward along the inside of the insulated covering. A customer of mine being troubled with mice, that ran along the pipe line of the water pipe placed under the floor boarding, crossing the joints, from the
kitchen boiler to his bathroom, took up a board and encircled the lead pipe with a small piece of tin to stop the mice from passing over the joists alougside of the pipes. The house every year was kept so well heated that the pipe had never been known to freeze, but the small piece of tin made it frecze, at the point where the tin tonched the lead pipe, because the tin attracted the little frost that was in the air between the floor and the ceiling, and drew it or focused it on to that part of the pipe that the tin touched, and just there I found the stoppage. Some twelve years since, the Grand Trunk Ry. offices, Montreal, were thrown in the dark by a stoppage of their gas supply. I found the defect was caused by the gas being frozen in the $3 / 1$ " supply main place in the false roof, where the atmosphere never was less than 50 degrees of heat, therefore nowhere near the freczing-point, but a nail had fallen out of a shingle in the roof, and the heat of the false roof being near the seventies, and the outside being about 30 degrees below zero, there was a rapid ingress of cutting cold air through the small nail hole in the roof, into the false roof, which made a bee line to one of the ventilators placed in the ceiling to ventilate the office below, and on its passage forward it struck the gas pipe about the one-eighth of an inch in width, and crystalized the damp gas at that point, cutting off the supply.

There are many waterworks' fittings that have been carelessly constructed, and to rectify the injury done would cost a great deal, therefore if anyone can come forward and show how such badly-laid pipes can be prevented from freczing and bursting, or show us an easy way of thawing them out when they are frozen, they will be public benefactors and deserve commendation. Town councils and private individuals have had to part frecly with their money, and suffer much inconvenience on account of shoddy work that could not be prevented freezing in past years. Electricity, which has a close similarity in its actions and methods of travel with frost, is proved by Professors Wood and Jackson to be able to thaw frozen pipes, small or large,

Hundreds of frozen pipes were thawed out last year by the electrical method, both quickly and at a far less cost than when the dirty steam kettle is used, and I cannot do better than repeat the report Mr. Hiem publishes of Messrs. Wood and Jackson's successful work in the thawing out by live electric currents. The attention of Mr . Wood was drawn to a service pipe that could not be thawed out by a steam boiler, nor could the kink in the pipe that was frozen be reached any other way until warmer weather should set in, so Professor Wood consulted with Professor Jackson, and both together they tried to thaw out the obstinate pipe by electricity, and succeeded beyond their expectation, and then they introduced the system generally. Mr. Hiem goes on to say:
"I will now give you the computations Professor Jackson was kind enough to give me, and which have been verified in the different cities where the conditions were proper and the thawing successful. To thaw out lead or iron services up to one and one-half inch, you should use from 200 to 250 amperes; if you are not able to get more than 125 amperes, it will take four times as long. If you use over 250 amperes you are liable to get into trouble by overheating the corporation stop-cock, and all other brass connections. Wrought-
iron pipe must be watched very closely so that the joints do not heat; it has lower resistance, higher conductivity, requiring more current, in order to make more heat, therefore you must watch the unions-that is where the heal occurs. It is necessary to use a source of current which does not affect the electric light lines or other transmission lines; if current is taken from them, danger may result. We have therefore ordinarily used a transformer in the work, but in some cases have used dynamos directly. The source of current should have a pressure of not less than 50 volts. To thaw out 500 feet of a six-inch main in half an hour requires 800 amperes; if you are unable to get more than 400 amperes it will take four times as long, or two hours. Eight hundred amperes will thaw out 500 feet of a 12 -inch main in ons hour, and a 24 -inch main in two hours, etc. The source of current for water mains should have a pressure of not less than 200 volts.
"In preparing to thaw out a water main, connect with two hydrants, winding the wire around the hose nozzle. Screw hydrant nozzle cap up to the wire, making a close connection, commence at open end, where there is no frost, with 800 amperes or less and 200 volts, and thaw say 500 feet at a time. Water should be kept running for at least an hour after the main has been thawed, as it will take that length of time before the water will be slightly warmer. Three-quarter h.p. will thaw a six-inch main in half an hour per foot length; two-tenths h.p. will thaw a one-inch, and one-elghth h.p. will thaw a five-cighths service pipe in half an hour per foot length. There is no danger from electrolysis, on account of the short duration of the thawing process and the ground being frozen. Herewith are the directions for thawing service pipes up to one and a half inches in diameter, which were prepared and sent out by the University of Wisconsin:
"'The current, which is required for thawing service pipes satisfactorily, is from 200 to 300 amperes. The source of current should have a pressure of not less than 50 volts. Where electric light lines carrying alternating currents are available, a transformer or transformers in parallel may be used as a source of current. It is very important that direct connection of pipes to house lines be avoided on account of danger of fire in which the house is placed by such connection. Where alternating currents are not available, continuous current feeder lines may be used, but these should be entirely separated from the distributing net work of conductors. The way in which the appliances should be connected when an alternating current is used with transformers is as follows: The secondary leads from the transiormer should be quite large, such as No. 3 B. \& S. gauge, or larger. In making connection to the pipes, one of the secondary leads should be taken into the house, to which the frozen service pipe leads, and contact made at that point by some form of metallic clamp or by simply giving the conductor two or three tight twists about the pipe at any point where the pipe is exposed or at a faucet in the house. The other secondary lead should be put in contact with the water system outside of the house and in a similar manner. This contact may be made at a hydrant or at an adjoining service box, or pipes in a neighboring house. When there are two houses near together, each with frozen service pipes, the two secondary leads may be connected
to the pipes within these houses and both frozen service pipes thawed out at once. While the thawing process is going on, the faucet should be open in the house to which the service pipe leads. In one of the secondary leads should be inserted a water resistance, which consists, for convenience, of a bucket of water containing a bowlful of salt, and two sheet-iron or copper plates to which the ends of the severed lead are attached. This scrues to control the current. In the primary leads from the electric light line to the transformer it is highly desirable to have a fuse in each lead, and an amperemeter. When all connections are made, the plates are placed in the bucket and are then moved towards each other until the amperemeter records a proper current. If the primary pressure is 1,000 volts and the secondary pressure 50 volts, the current should ordinarily approach 15 amperes. If the primary pressure is 2,000 volts, and the secondary pressure is 50 volts, the amperemeter reading should ordinarily approach 7.5 amperes. Water ordinarily begins to flow in a time not much less than ten minutes, or not greater than one hour. If the secondary current is quite close to 300 amperes the period seldom exceeds one-half hour. The frozen pipes are often split by the action of the frozen water, and these at once begin to leak when the ice is thawed away. For this reason it is desirable to have a plumber where he may be readily called to care for the leaky pipe. The electric current when properly used will not damage the pipes. It is desirable to watch brass and iron connections to lead or iron service pipes, as they sometimes heat on account of poor contact. If such heating appears to be excessive, the current may be reduced with a resulting increase in the duration of time for thawing. After the pipe has been thawed it is desirable to let the water run continuously for a considerable time, inasmuch as the ground all round the pipe is frozen, and the pipe is liable to freeze up again unless the water circulates.' In closing this paper let me give you an extract from an insurance paper, as to the financial result of this discovery: 'A slight estimate of the value of the invention of thawing out frozen pipes by electricity to underwriters can be found from the fact that in 1898 , insurance companies paid out nearly $\$ 300,000$ in losses caused by primitive methods of thawing out pipes.'"

SOUTH AFRICA, ITS PEOPLE AND TRADE.

ARTICLE 1.
The obduracy of the Transvaal Boers and their president in refusing to concede the common rights of man to citizens not of their own race, is turning the attention of the civilized world to South Airica and its people. That quarter of the world possesses unusual interest to Canadians, not only from the standpoint of imperial politics. but from its commercial development and its possibilitics as a field for Canadian trade. As a prelude to a review of the prospects for Canadian manufacturers and exporters, it will be well for the reader to know something of the causes of the present political complications.

The Cape of Good Hope, though discovered by Diaz, a Portuguese navigator, six years before Columbus landed in America, and though used as a port of call by the Portugucse for a century afterwards, it remained for two English captains, in the employ of the

East India Company-Shillinge and Fitzherbert-io make formal ciaim of sovereignty in the name of England in 1620 . After some rivalry between the English and the Dutch East India companies, the latter, realizing the salubrity of the climate and the fine soil, sent out an expedition under Jan Van Riebeek-in whose honor the Hon. Cecil Rhodes has recently had a statue erected in Capetown-to make a permanent settlement, and thus began in 1652 the Duteh occupation of the Cape. Little by little the settlements extended back from the Castle on Table Bay, but the life of the settlers was the life of white slaves. Chey were not allowd to sell their produce to visiting ships, but could only sell to the company at prices fixed by the company. On the other hand, they were not permitted to purchase goods except from the company and at prices fixed, of course, by the company. They and the artisans of the town were, moreover, bled at every turn by the com pany's officials, and if they attempted to complain te headquarters in Holland their complaints were either suppressed altogether, or the complainants were imprisoned as treasonable persons or otherwise marked out for persecution. The farmers had no title to the lands they brought under cultivation, and were often ejected after working a lifetime upon their lands. They were plainly told that they held their property by grace of the company. Offences, which now would scarcely come under the criminal code, were visited with death in its most fiendish forms. Crucifixion was a common mode of capital punishment, and another was the tying of the victim with his back on a wheel, where his body was broken, and he was left "a prey to the birds of heaven." The rack and the gallows were the common means of punishing slaves. It is not to be wolldered at that the Dutch settlers sought to escape this tyranny, and from time to time, in spite of threats and the company's claim of jurisdiction, many got beyond the reach of the company, risking the enmity of the natives in their migration. Thus began the "trekking" of the Boers, which dates back to 1670 , and has been a peculiar characteristic of Dutch colonization down to the present day.

During the upheavals of the Frencli revolution, England felt the: necessity of possessing the Cape to save her East Indian tracke. and after a feeble resistance the Castle capitulate.! to Sir James Craig in 1795. At the peace of $\lambda \mathrm{mi}$ iens in 1803 the Cape was restored to the Dutch, hut was dinally taken in 1806 by Sir David Baird. The first taste of individual liberty and reasonable governi:cent emoyed by the Cape Dutch was given in them by Great Esitain. With the advent of Britain at the Cape, the Dutch farmers got their first clear titles to land they get itstrict courts, where justice was for the first time administered with fairness and without the cormption which had made their masters so odious. 'ilic people got their first regular school system, and their first postal system from their new British rulers. who also did away with the system of punishing offenders by the cross, the wheel, and the rack, those brutal instruments of torture being destroyed at the very outset of the British regime.

Such, in a few words, was the contrast betwee: British and Dutch rule at the Cape. It is not to be denied that between the Home Government and the colonial rulers many mistakes have beer made in the
subsequent history of British rule in South Africa; but more often than otherwise these errors were made through mistaken leniency or mistaken philanthrop: towards Boer and native alternately. Perhaps the most unpardonable grievance nursed by the Boers in the present century was the emancipation of the slaves in the Cape Colony in 1837. Many Boers to the present day believe with apparent honesty that a Kaffir has no soul, and class him with the wild beasts of the veldt. While other nations besides the United States have freed the slaves without compensation to the slave owners, Great Britain voted to the slave holders of the Cape $£_{1,247,000 \text {. This was only half the amount of the }}$ appraisement, but it must be remembered that the slaves of the West Indies and other parts of the empire had to be freed at the same time at a total cost of $£ 20,000.000$ -an enormous sum for those days-and the sublimest exhibition of the awakening of national conscience ever recorded in the history of nations. Though the Bocrs must have known from the agitation that had been going on in England for the preceding thirty years that the emancipation of slaves must come, there was a great outcry when the amount of compensation was announced, and, to make matters worse, from their standpoint, a horde of self-appointed agents, working on the circumstance that the money had to be paid in London, bought up the claims of the farmers for a mere song in many cases, and the enraged slave-owning farmers trekked into the interior to the number of several thousand, founding what is now the Orange Free State, the Transvaal, and a portion of Natal. British settlers had anticipated them in Natal, and after some bloodshed and a few years' hesitancy on the part of the Home Guvernment, British sovereignty was proclaimed over Natal in 1843. Although the British Government had warned the emigrant Boers that they were still British subjects, those who settled in the Free State and the Trunsvaal were allowed to rule themselves. The Free State was indeed taken under British rule for a number of years, but that rule was withdrawn under the protest of a large minority of the inhabitants, and the State was left an independent Republic in 1854 . Under the wise and common-sense rule of the late Sir John Brand. who was president for twenty-five years, the Free State has had till now the best relations, almost uninterruptedly, with Great Britain and with her colonial neighbors. There was but one serious difficulty and that arose out of the discovery of the diamond fields on the borders of the State in 1867. The land had been owned and was still claimed by a Griqua chicf, named Waterboer, and the British Government having bought up his rights. proclaimed the diamond fields British territory in 1871. The Frec State, which had claimed a part of these fields. withdrew under protest, but whatever the merits of its claims they were generously compensated by a payment of $£ 90,000$, with which the little State was well satisfied, and with which it built its first raihua-a road that stands to-day as the best asset possessed by the State. While the Dutch in the Free State and Natal, as well as in the Cape, have settled down to a fairly gencral friendliness towards the British, the history of the Transwal Boers has been marred by a strong and persistent hatred oi British Government and people. Peopled largely by the irreconcileables, who had left Natal and the Frec State on the advent of the

British, and utterly unable or unwilling to understand Whe British idea of govermment of the Kaffir tribes, they have become the Ishmaels of South African civilization \rightarrow their hand forever against the kaffirs on the one side and against the British on the other. They have so far failed to see the advantages of the golden rule, or to read the signs of the times, that thes have perpethated the same ideas of lordship as those under which their ancestors groaned in the 17 th century. In 1877, when the country was in a state of bankruptey, Sir Theophilts Shepstone amexed the Transvaal to the British Fompire, withont active opposition. Whatever may be thought of this step, it was taken with the best intentions, and with the desire to save the Boers from the destraction which would have been their fate at the hands of the Zulu King Cetywayo. The step once taken, it is now generally realized that a terrible mistake was made in giving the country back to what has proved a monstrous system of mistuk. The British (iovermment, however, gave the Boers just ground of complaint when it left the 'Transvaal tor thre years without any representative institutions, and permitted during that time a military aligarchy, composed of men who gave no consideration to the suseeptibilities of the Dutch inhabitants, a large part of whom would have been fairly contented under a system which gave them a voice in the affairs of the country. It was unfortumate that just when the British Government began to be awake to the seriousness of Boer discontent, and were actually considering the constitution framed by Sir Bartle lirere, the flames of rebellion broke out, with the result that the British were defeated in three engagements, through the gucrilla tactics of the Boer sharpshooters, and then the Gladstone Government restored the republic under that "suzerainty," which has been ever since a source of misapprehension to the Boers.

Before alluding, in our next article, to the present condition of affairs in South Arrica, it is worth while to remember this teaching of the past, that wherever the British and Dutch have co-operated either in colonization, in politics or commerce, they bave both prospered. The British possession of the diamond fields was the financial salvation of the liree State; and the lritish operation of the Transtaal gold fiekls has lifted that republic from commercial nothingness to a state that has become at once the chief power and the chief dianger to the neighboring states and colonies.

HUDSONS BAY.

A. P. Low, of the Geological Survey of Canada, has returned to ()ttawa, after fifteen months' exploration of Hudson's Bay. Mr. Low left Ottawa in the spring of 1898 for the Atlantic coast, from whence he went by steamer to the eastern mouth oi Hudson's. Straits, where he took a yacht and explored the coast down to Great Whale river, a part of the bay not previously explored. Several large rivers were discovered, and great quantities of fish were found, especially in the months of the rivers. The fish found were Aretic salmon, whitefish, trout and cod. Mr. Jow thinks that they are in sufficient quantities to make fishing for commercial purposes very profitable. The winter of 1898-99 was spent in Great Whale river. Mr. Low and his party living in snow houses. There was not much work done during the winter, as there was barely
six hours' sunlight a day: but during the past summer a very large tract of country inland was explored, and some valuable mineral discoveries made, of which details will be given in his report to the Government, which will be made at an carly date.

GREEN GRASS OROWS ALL AROUND- PETROLIA.

A wail has gone up from Petrolia, Ont., because the Imperial (it Co. has removed everything pertaining to the oil industry from Petrolia to Sarnia, Ont. As the mouthpiece of the local sorrow says, the "oil wells are there yet." But that need not comfort the town too much, because these wells can only be pumped when the lmperial Oil Co. requires oil, and when the well-owners are prepared to take the price the company feels prepared to pay. When everything has been got on a business basis, the company will pay only what is groud for it, and those who know the Standard Oil Co., know what that is. When the people of Petrolia, Ont., refused to bonus the Bushnell Oil Co., some few years ago, they were unaware that the Standard ()il Company then promised that grass would grow in the streets. They did not know, perhaps, that the Bushell Oil Co. was then, as the Imperial Oil Co. is now, one of many nice little properties which are owned by the Standard Oil Co. In the meantime the grass is beginming to sprom, and the Standard Oil Company monopolizes the oil business of Canada.
-Occasions have been numerous in Canada where one town has had to call upon another for assistance in fire-fighting, and frequently engines, etc., are sent from one town to another. It has been found that in some such cases the borrowed apparatus was entirely useless because the hose couplings were not of uniform size, and therefore they could not be used in conjunction with the apparatus already on the ground. This should be remedied.

THE COMPRESSIVE STRENGTH OF CONCRETR AS DETERMINED BY tests made at mcoill UNIVERSITY.•

hy w. h. ANuERSon, student cin. soc. c.e.
Concrete, especially in the construction of pers and foundations, is coming every year into more extensive use. It is thereiore desirable to determine its strength, and more particularly the resistance to crushing, as it is to a compressive forec that it is most oiten subjected. The results of very few tests with this end in view are given in any of the treatises on concrete or building materials, or in the enginecring journals. A few results may be found, but they are scattered and very irregular. and littir information can be obtained from them. During the pas: three years a few tests have been carried on by the students of civil enginecring at MeGill University. The first series, two years ago, was to determine the effect of different perrentages of water upon the strength, and the best perecntage to use. This was found to be about 20 per cent. of the sand and cement. Last yrar tests were made comparing the strengths of concretes made respectively from an English Portland and a German one. This year tests were made unon sand cement in order to compare it with the Portands, and also to determine the best proportions in which to mix it in making concretes. This cement was "Catiedral" brand sand cement, made by the "St Lawrence Poriland Cement Co.." of Montreal. It is made of equal parts of lortland cement and kiln-dricd pump sand. These ars run tozcther iuto a revolving cylinder half full of flint pebbles, where they are thoroughly mixed and ground to an impalpable powder.
-From a paper read before the Canadian Society of Civil Engineers.

The conditions under which the tests were made this year were the same as those of the first series (published in paper No. 117, Trans. Can. Soc. C. E.), exeept that the blocks were made $9 \times 9 \times 12$-in. instead of 12 -in. cubes, as the cubes were found, in some cases, to be too strong for the testing machine to break. The blocks were tested with their long edges vertical, and rested on a steel plate which was on a ball and socket joint, the plate above the block being fixed. Sheets of rubber were inserted above and below the block to give a more uniform distribution of the load. The blocks were allowed to stand in the moulds for about two days, and were then removed and placed in water. where they were kept until the time of testing. The results oi all the tests made in 1898, and the more striking ones oi other years, are here presented in tabular form:
volume of merstices between the stones decreases, because the murtar is not so strong as the stone. The strength alsu 11 creases with the richness of the mortar in cement, so that the strongest concrete will be one with very little sand and a great deal of stone. Those with the $1-1$ mixtures of mortar are very much stronger, though also more expensive than the others The sand cements are found to be weaker than similar min. theres of Porthands by from 12 per cent. to 40 per cent. The manufacturers clam that with a mortar, such as a 1 -io, with a great deal of sand, this cement is stronger than the Portland. This remains to be determined. If the concrete is desired to have very great strength, a Portland cement and a rich mortal anight be used. but if weight is the mam consideration, with onl! moderate strength required, a concrete of sand cement will be
rfisults of experiments on the conpressive strength of concrete.

No. ot	Date of Test.	Mixture.			$\begin{aligned} & \text { Percentage IVeight } \\ & \text { of In lbs per } \\ & \text { Water. cu. }{ }^{\text {It }} \end{aligned}$		likenncha Londs Lis. 19er se in.			Proportion of mortar to hroken stone.	Relative amounts of cement.	Relative Costs	
		Cement.	Sand.	Broken Stone.				Hour wecks.	$\begin{gathered} \text { Two } \\ \text { months } \end{gathered}$			First Assumption.	Second Assumption.
* 1	1896	1	2	4	20	139.5	746	626	507	60.80	157	174	126
*2	1896	1	2	5	20	703	...	-100	137	152	121
3	1896	1	2	6	20	728	...	-120	122	135	116
* 4	1897	1	1	1	221/4	142.3	\cdots	\times	...	60-30	367	407	206
${ }^{*} 5$	1807	1	1	2	221/3	146.7	1037	\times	...	-60	275	305	175
${ }^{*} 6$	I897	1	1	3	221/3	148.0	λ	*	\ldots	-90	220	244	156
* 7	1897	1	1	4	221/3	153.3	x	-	\ldots	-120	183	204	14.4
+8	1897	1	I	5	221/3	151.2	\times	צ		-150	157	174	135
** 9	1897	1	2	2	20	143.5	494	505	\ldots	60-40	220	259	150
** 10	1897	1	2	3	20	1.46 .0	ט́l	55.5	\ldots	-60	183	216	139
${ }^{*}{ }_{11} 1$	1897	1	2	4	20	148.5	Sin	613	.	-80	137	185	131
*4.12	1897	1	2	5	20	150.5	581	680	.	-100	137	162	124
-**13	1897	1	2	6	20	150.0	500	60.	\ldots	-120	122	143	120
${ }^{* *} 19$	1897	1	3	3	20	139.5	33, ${ }^{2}$	205	\ldots	60-45	157	185	122
** ${ }^{1} 5$	1897	I	3	4	20	139.0	...	360	\ldots	-60	137	162	117
*46	1807	1	3	5	20	145.0	\ldots	386	\ldots	-75	122	143	113
${ }^{*} 17$	1897	1	3	6	20	147.0	...	357	\ldots	-90	110	129	110
tı8	1898	1	3	5	20	146.5	144	274	400	-75	122	122	104
tig	1808	1	3	6	20	146.4	110	182	218	-90	110	110	102
t20	Id)	1	3	7	20	150.3	210	322	\ldots	-105	100	100	100
$\dagger 2 \mathrm{I}$	$180\{$	1	2	4	20	150.6	310	441	...	60.80	157	157	119
+22	1898	1	2	5	22	148.5	275	477	494	-100	137	137	11.4
$t 23$	1898	1	2	6	20	154.0	521	6.39	670	-120	122	122	111
$\div 24$	1808	1	$11 / 2$	3	20	149.8	412	490	...	10.72	200	200	134
$\dagger 25$	1808	1	1 12	4	20	151.5	446	670	...	-96	169	169	126
$\dagger 26$	1808	1	$11 / 2$	4 $1 / 2$	20	153.5	3.36	741		-108	157	157	123
-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	2	4	5	6	7	8	9	10	11	12	13	14	15

Brand of Cement-*German Portland " Hemmoor" Brand.
**English Portland "Anchor" Brand. ¡Sand Cement "Cathe-
dral" Brand. Blocks marked thus (x) remained unbroken under a load of $1,050 \mathrm{lbs}$. per square inch.

Column 13 shows the relative quantities of cement in the different mixtures, and some attempt has been made to sstimate the cost of the different mixtures on this basis. The relative costs are compared on the following two different assumptions:

First assumption-Column 14 shows the relative costs if it is assumed that the sand and stone can be secured on the spot and their cost ignored. The cost of different brands of cement is taken as below.

Sccond assumption-Column 15 shows the relative costs of the different mixtures and brands on the following assumed costs per cubic foot of materials

Tise cost of labor is not taken into account, as it will be the same in every case, and these costs can at best be only a rough approximation.

The main requisite for an economic and good concrete is in have just enough cement to completely surround every grain oi sand, and just enough of this mortar to fill cvery interstice between stones. Column 12 gives the proportion ef mortar to stone. and it will be seen that with each different mortar the strength increases as the proportion of stone increases. or as the
much cheaper and quite efficient. Of course. much cheaper mixtures than the ones tested can be made, but they will be weaker accordin: ly aiter a certain limit is passed. which limit has not been reached in these experiments. One of the cheapest and a iaisly strong concrete is No. 23. This mixture would seem the best to use if exeessive strength were not required. The loads given in the table are the actual coushing loads. The blocks showed cracks or signs of failure before this load was reached. bilt it was thonght better to make the comparison on this basis. Fo: purposes ci comparison it is best to take the results of the four-werk iests, as the concretes then show more uniform results than at one week, and the two-month tests are not complete. These tests are still very incomplete, and it might be profitable to make further tests with concretes containing more stone. The strongest of the sand cement mixtures is No. 26, and with this rich mortar it looks as if it would stand a good deal more stone. thus increasing both the strength and weight, and reducing the cost. Tests of this nature will likely be carried out at MeGill University in future years.
—S. T. Bastedo. Deputy Munster oi Fis'meries, and A. M. Wiekens, the inspector of boilers, recently made a test oi the lug "Gilphic." which the Ontario Government has purchased :o be used as a patrol boat in Lake Huron and Georgian Bay waters.

VENTILATINO AND HEATING ONE-STORY BUILOINGS.

So iar as their conatruction is concerned, the smplest of all structures requiring ventiation and heating are one-story buildings. such as mills. hops and exhibition buldangs. Bui no other form of bulding has so large an amount of wall and roof space per cubic foot of enclosed space. or such high and evtended rooms: in fact. such a bulding, as a rule, forms only a siogle room. As a consepuence the most eflicient system is necessary. It is not alone sulticent that the apparatus shall be larec, to allow for the excessme lieat loss from the bulduge. but. above all, the arrangement vi the distributing ducts must be such as to most economicall! mblize the heat supplaed; for under. heatug at the floor and overheating above is one of the most natural consequences of an imperiect system of distribution. Linder such circumstances the apparatus itself is frequenty condemmed as having insufticient capacity, when the trouble lies entircly in the manner in which the heated air is delivered to the: building. In buildings of this type the principal provision is to be made ior the heating. for the occupants are generally separated, and the air supplied for heating will answer all the requirements of ventilation. But it is nevertheless necessary that they shonld be provided with fresh air in sufficient sutantity. One of tie inherent virtues of this method of heating is that it ensures such supply. As the air provided is generally in excess of that redined firs rentilation, increased economy can be secured by using over again a portion oi the previously heated air. This: may be done by arranging dampers or doors so that part of the air entering the heater is drawn irom out of doors and part. or. if desirable, the whole from the room. In fact. in the ordinary :anufactory the common practice is to nominally take the entire air supply from within the building. This does not result.

Koundhouse, East St. Panl. Minn., shows that the proper lecating of a roundiouse presents a double problem, for not only must its temperature as a whole be kept miform and sufticiently high, but provision must be made, where heavy snow storms are prevalent, for rapidly melting from the running gear of the locomotive the burden of snow and ice with which it is so frequently encumbered when first returned to the roundhouse from a long run. The general method of solving the problem is made evident in Fig. 58. An overhead system, with hot air discharged toward the walls, serves for the general warming, white special pipes, to be used when desired, conduct large volumes of air to the pits, where it is well distributed beneath the locomotives.

POWER.*

ny r. trowern.
At our last meeting I drew attention to the power of the stean boiler, not the engine. The boiler is the place we gather the force. power or energy together, and from thence lead it into the engine. to turn our shafts. pulleys, belts, mills and pumps. I will again repeat what I told you about the steam. It is not the water that gives the power, but the fire gives the heat to the water, which becomes a medium and expands, so that ene cubie inch will become one cubic foot, or one cubic inch will expand to 1.728 cubic inches (one rale says 1,680 cubic inches. another says 1.700 cubic inches, and another says one cubic foot or 1.728 cubic inches), at 15 lbs . pressure. It is very clear that the power is in the heat alone, which is embodied in the water we call steam and power in the boiler. I have laid before you some rules. They have been making boilers by them. Yet none seem to be up to the scientific mark nor satisfactory.

Chicago, St. Pacl, Minieabolis \& Omaha Railifay Co. Rocinhotise, East St, Paul, Min.
as mught be supposed, in a total lack of ventilation, for a very considerable amount of onward leakage takes place through the walls and aromd windows and doors. Sufticient, indeed, to ciuse a simular mward, but inperceptible, leakage at other points in such quantity as to result in a comparatively frequent change oi aur wathin the bulding One of the greatest diticulties in a heilding oi this character is to heat it rapidly in the morning, after it has cooled during the night. No other system can so completely and rapidly mect this reguirement as that here prescnted. When it is desirable, the engine may be rum slowly all pight and the building maintained at a moderate temperature. The exhaust from the engine being used in the heater, no expunse is entailed for motive power.

Chicago. St. Paul. Minneapolis \& Omaha Railway Co.,

I would like some of your readers to take up the subjects I have mentioned in friendly talk. The Centennial Exposition siandard is that the evaporation of 30 pounds of water per hour from feed water, inaving a temperature of $100^{\circ} \mathrm{F}$, into steam having a pressure of $\quad \mathrm{olbs}$. per square inch is equal to one horse-power. The American Society of Mechanical Engineers' standard is that the evaporation of $34^{2 / 2} \mathrm{lbs}$. of water per hour irom and at $212^{\circ} \mathrm{F}$. is equal to i horse-power. With a 60 -inch tubular boiler, properly made, well set, and carefully fired, from 8 to 10 lbs . of water to 1 lb . of coal should be made into steam oi 60 lbs . per square inch. This would depend on the quality of the coal and the temperature of the feed water. Practically no more conl will be required to convert ilb of water into

[^0]steam at So lbs. than it will at 60 lbs . Theoretically it will require +10 of i per cent. more.

Wheth setting boilers in brick work the practice is to rake in the side walls to the shell a few inches below the water-line, and thus limit the heating surface. It is customary in calculating the surface of the shell to consider that two-thirds of it is exposed to the action of the heat. In estimating the heating surface of a boiler, take 2-3 of the outer surince of the shell and the whole of the inner surface of the tubes or flues; reduce the whole to square feet, divide by 12 for two lite boiler, and by 15 for multi-tubular boilers, the quotient will be the horsepower; from I_{4} to 18 square fect per horse-power. Eight months ago I had a new boiler given to me with a shaking grate. It very soon ceased to move, and became expensive to be used. both in labor and coal. I have removed the grate and put in one, cost about one-half, pulled out the brick bridge, filled up a big pit behind called a combustion chamber, and cmlarged the ash pit. The new bars are 5 feet long by 6 inches wide, herring bone drauglit; and instead of the bars dipping behind 3 inches I have raised them $3 / 4$ of an incli per foot, and the brick bed belind to the end of the boiler one foot short, with the same grade; or in other words, the front of the boiler is 20 inches above the bars, and the back end of the boiler is 10 inches above the brick bed, or wall. This end I call my bridge, because as the flame passes from the brick bed around the end of the boiler to enter the tubes it drops the ashes and soot into the pit, to be drawn out through the ash door behind. Bulding the brick work like this gives the inspector an opportunity of seeing the boiler from one end to the other, and also to crawl through to examine the bottom of the boiler from end to end. During my past iorty years of building in boilers in this style, I. have not had a blister, nor defect in the row of rivets, because the intense heat of the fire is spread from the front end to the hack end, much alike, with a better draught. Since I have changed the bars and the bridge we have done the same amount of work with less labor and coal. I have 22 boilers like this one, built in, now in good working order. One of these was made with Low Moor iron by Mr. Currie for me, in the year 1862, and is in good working order now. Some time ago I conceived the idea of knowing the difference of the pressure of the steam on top of the water in the boiler and that below the water. 1 fitted a pipe to the blow-off pipe at the back end, and put a gauge on it at the same level as the gauge in front, which was pointing to 60 lbs ., the one at the back pointed to $\mathbf{5 2} \mathrm{lbs}$. I tested both the gauges. I have said the boiler was 5 feet diameter, if feet long. Ithen thought if the exhaust steam could be brought back to the boiler without losing much heat or pressure it might be of great use in saving the use of steam in the inture, for it appears other power is going to take its place.

I am now about to ask each one of you to assist me in solving a great question. In almost every country in the world men have been trying to make the most of the heat in the steam b) pushing it into a condenser to heat the water, to feed the boiler with it as well as to avoid the pressure of the atmosphere against the exhaust steam when leaving the eylinder. For many years I have been engaged in heating a building with hot water and returning it again to the boiler. This is the question: How can we do it with steam in the boiler at 60 lbs. and cylinder at so lbs? What arrangements with valves or any other plan could be adopted to save the heat by getting the steam back again into the boiler without condensation or losing its heat more than in passing from the cylinder to the boiler? I will now turn your attention to liquid air. Liquid air is ordinary air as we breathe it compressed to $1-78 \mathrm{t}$ of its normal bulk, or in other words $1,78 \mathrm{I}$ feet are pressed into the space of one foot, and reduced to a temperature of 320° below freczing. It has an expansive force of 2,000 pounds to the square inch; it has a latent force of 100 times greater than steam, and as a motive power it is thought that it may be proved to be superior to any known iores in or of nature.
-The Rideau Lakes Navigation Co. is a new organization of Ottawa, Kingston and Perth capitalists, who will in the course of a few days make application for letters patent. The capitalization will be $\$ 100,000$. The company proposes to operate a line of steamers between Ottawa and Kingston by the Rideatl River and lakes, and take steps to develop the country as a resort for tourists.

THE AUSTIN STEAM SEPARATORS.

The illustrations accurntely detail the construction of the horizontal and vertical separators. By the use of the Austin separators, impuritics of whatever nature are, its makers chaim, removed from exhaust steam. The steam is immediately given a circular travel (the acknowledged principle for pericet separation) and all impurities or condensation which may escape the corrugations are extracted by centrifugal forec aided by gravity, while passing over the separating plate. The steam is in continuous contact with separating surfaces during entire passage through this machine, the makers state. Grooves draining corrugations lead to separating plate, which convey to bottom chamber all impurities, which are discharged through outlet as showi. All practical users of steam power appreciate the importance of condensation being removed from live steam, as when saturated with water there is great danger of cutting the cdge of valucs and ports, which is not only injurious to the engine, but causing leakage and improper distribution of steam,

Can be connected elther right or lett hand.

makes the expense of operation far greater than should be with steam perfectly dry; if there is much condensation in live stean it is apt to cause wreckage of engine by forcing out cylinder head and damaging the working parts. With wet steam proper lubrication of cylinder is not obtained, on account of the hot water neutralizing the action of oil in cylinder and permitting its cutting, practically having the same effect as if no oil was used. Wherever live steam is carried long distances a large element of condensation takes place, which will be entirely eliminated, the makers of the Austin separator believe, by use of their machines, averting all possibility of accident from water in cylinder, the engine working much smoother and greater power obtained. When exhausting into a tank or open heater or where exhaust steam is used for heating purposes and condensation is returned and used as feed water, the oil in exhaust will not only ruin boiler but cause foaming. By using one of these separators in exhaust stean pipe all grease, oil and other impu:ities will, it is said, be removed. The Austin Separator is manufactured by the Austin Separator Co., 59 Woodbridge street west, Detroit, U.S.

tie Canadian electric lioht co.'s works on THE CHAUDIERE RIVER, QUEBEC.

The contract for the works on the Chaudicre River, Quebec, to supply electric power and light to the town of Levis, was s:gned a short time ago by John Breakey, president of the Canadian Electric L:ght Company, and C. H. Deans, president oi the New York Enginecring Contract Company. The works, which are to be in some respects the largest in Canada, to be completed and delivered within six and a half months. The contract calls for the construction of a concrete dam, 900 fect in length, and bulkheads 100 feet long, bringing the total length of the dam to r,000 feet. Besides the dani the company will huild gates, bridges, carthen embankment, boom and piers, pipe supports, power house foundations and tail race, the whole to be completed and in running order by about the roth of March. 1900 . With this dam the company guarantecs to supply a minimum of 5,000 h.p., and Levis and surrounding municipalitics will be supplied with electric light and power. At the annual meeting of the Canadian Electric Light Company held on the 27 th of Junc last, the directors in their report stated that they had secured exemption from taxation for twenty years in nearly all the municipalities in which the company' will work. Besides this a large number of contracts for the lighting of public buildings and residences in Levis and neighborhood, has already
been signed, the Chaudicre Valley Railway Company is to be constructed and operated with the company's power, and the intention is to construct, as they are needed, other electrie railways in the counties of Levis, Bellechasse, Dorchester and Lothiniere. The plans were prepared by the well known engineering firm of T. Pringle \& Son, Montreal. A. R. Henry, M.E., is the electrical engineer of the company.

MINERAL INDUSTPBES OF ONTARIO.*

Summary of mineral production in 1808 , with quantity and value of mineral production in 1808 , with number of workmen employed and amount of wages paid for labor:

Droduct. Quaintity.	Value En	Employes.	Wages.
Building stone, rub-	\$		\$
ble, ctc	750,000	1,250	520,000
Cement, natural rock barrels 91.528	74,222	85	23.78 .4
Cement, Portiand, barrels 153.348	302,096	230	104,350
Lime, bushels 2,620,000	30S,000	548	127,000
Drain tile, number. 22,668.000	225,000 \}	2,622	456,005
Common brick No.170,000,000	914,000	2,022	45,005
Pressed brick and terra cotta, No... 8,s,5o,SGS	10.344	126	42,580
Scwer pipe	93.717	77	26,260
Pottery	155,000	164	61,003
Petroleum, gal. $26,978,977$	\ldots	
Illuminating oil, gal $12,2 \mathrm{~S}, 622$	1,243.490		
Lubricating cil, gal 2,043,226	202,150		
Benzinc, naplitha, gal 1,240,967	121,840		
Gas and fuel oils and tar. gal...... 8.047,+441	$286,705$	346	263.455
Paraffin wax and candles, ll........ 2,0!6,086	116.349		
Natural gas	301.600	\$5	31.457
Cirbide of calcium tons ${ }^{1}$............. 1,040	55.976	35	16.309
Salt, tons' 50.385	278,886	191	60,629
Gypsum, tons' 3.000	4,000	15	2,000
Graphitc, tons ${ }^{2}$.... 300	6,000	10	1.800
Mica, tons ${ }^{2}$....... 34	7.500	15	4.500
Iron orc, tons ${ }^{2}$..... 27.409	48,875	100	26.700
Pig iron, tons'.... ${ }^{\text {2 }}$ \$.253	530.78)	130	61.476
Nickel, ions' 2.28314	314,220)		
Copper, tons ${ }^{2}$...... 4.1863^{\prime}	268.0501	1037	315.501
Gold, ommees 16.261	275.078	580	290.919
Silver. ounces SK. 600	51.960	59	23.430
Totals.	7.235.S77	7.405	$2.464,239$

2 Net tons of $2,000 \mathrm{lbs}$.

building materials aidd clay products.

Statistics of building materials were not collected ior the year 1897, and ior that year they are incomplete. The years oi depression had seriously affected the building trade. and production iell oft steadily for some time. But with the revival there is a brisker demand for building materials. and it is nuticeable also that there is a more generous response to the request for statistics.

The total number of men employed in the pronuction oi buiding materials last year was 4.611 . the amoum of wages iaid for labor was $\$ 1,168.240$, and the value of materials produced was $\$ 2,378,6$ it. In these statistics cement is not included. This industry cmployed last year 305 men, with wage carnings oi \$12S.134, while the value oi the product of their labos was $\$ 3 ; 6.318$. The number of workincn cmployed in brick and tile yards was 2,622, or nearly Soo more than in 18g6. Scparate statistics are given for pressed brick and terra colla. and as will b seen there is lie'te sign of revival in the production of these materials. Two or three of the works had been closed down owing to lack of demand for pressed brick, but work lias been resmued at one or two of these and it is likely that the output of this year will show an increase. The number of men employed

[^1]at the quarries last year was 1,250 or 480 more than in 1806 . Brick and tile works are correspondingly active, and the ontput of the yards is but little siort of the best year in the decade. The number of men employed at the works last year was tht. being 29 less than in 1897.

The statistics of lime production show an increase in proportion to those of other building materials, and very nearly approach the highest figures of the decade. The number of workmen employed last year was 548 , or 118 more than in 1896 .

The manufacture of sewer pipe last year gave employment to 77 men, whose aggregate wages were $\$ 26,260$, as compared with 64 men and $\$ 19$, 6 of for labor last year. The value of sewer pipe produced was $\$ 93,717$, or $\$ 20,1$ eb inore than list year.

cements.

Very satisfactory progress continues to be made in the production of cement, but especially tie Portland variety of it. There has been substantial improvement in the output of the natural rock cement works during the past four years, but values are not so well maintained as is the case with Portand cement, and the rate of increase is considerably lower in the number of workmen employed, in the amount of wages paid for labor and in the quantities produced. The following table gives the statistics of the industry for the last five years:
 $\begin{array}{lllllll}\text { Number of works... } & 3 & 2 & 2 & 2 & 2\end{array}$ $\begin{array}{lrrrrr}\text { Number of workmen. } & 105 & 129 & 120 & 161 & 220 \\ \text { Wages fo: labor. } \$ 31,858 & \$ 46,000 & \$ 4.400 & \$ 67,560 & \$ 104,350\end{array}$ Product, bbls 30.580 $58,699 \quad 77,760 \quad 96,825 \quad 153,34 \$$ Value of product. . . . $\$ 61,060 \$ 114.332 \$ 13 \$, 230 \$ 170,302 \$ 302,006$

The average rate of wages in natural rock cement works rese irom $\$=07$ to $\$ 315$ during the period, and in Portland cencent works from \$303 to $\$ 451$, while for both classes of works the aggregate of wages paid for labor grew from $\$ 44,878$ in the first year io $\$ 128,134$ in the last, bcing an increase of 185 jer cent. The product oi all cement works has grown from 85,903 barrels in 1894, valued at $\$ 109,834$, to $24, \$ 76$ barrels in $189 S$. valued at $\$ 376,318$, being an increase of 173 per cent. in quantity and of 243 per cent. in value. There has been a sligitt fall in values per barrel, the average of natural rock being 38 cents in 189t and S_{1} cents in 1898, while the average of Portiand in 1894 was $\$ 2$, and in 1808 , $\$ 1 . \infty$. The statistics of Portland cement for iSgS, it should be stated, includes 18,400 barrels of Silica Portland, valued at $\$ 32,200$. which accounts for the apparent fall in vaitue per barrel of l'urtland. But although the production ot cement in Ontario is steadily growing larger, there is no falling ofl in the quantity of imports ior all Canada. The iollowing statistics show for the five years, isgi-8, the values of imports catcred ior consumution from Grea: Brisain, itic United Stales and other countrics:

Ycar.	G. B.	U. S.	O. C.	Totals.
Iigit	\$182.974	\$33,263	\$ 69,234	§ 284,471
$1 \mathrm{ISO}_{5}$	135.693	21,103	95,130	251,9\%
IS96.	121,125	25.997	107,907	355,02r
1897.	111.551	45,200	104,081	260,84.
1895. .	106.34S	59,855	200,574	366.97

It will be noticed that the trade has undergone a marked change in this short period of four years, the imports from Great Britain having fallen off from 6 to 29 per cent. of the whole while those from the United States have increased from 12 to 10 per cent. and from all other countries from 24 to 55 per cent. 0 : the whole. Practically all imports crecept those from GreaBrisain and the United States come from Belgum and Germans, the iormer having last year supplied ecment to the value of about $\$: 50,000$, and the latter to the value of about $\$ 50,000$. Th.
amomit of duty paid was $\$ 124,868.65$, being $\$ 121,96 \$.58$ on Portland, and $\$ 2,900.07$ on all other kinds. The total quantity innported last year, including what was not entered for consumption, was 1,153 , 40 cwt. of Portland, and 11,713 cwt. of other kinds.

POTTERY.

The pottery works of the province gave employment last year to an average of 164 men , whose earnings were $\$ 61,0 j 0$. The value of products was $\$ 155,000$

petroleum and na: ural. gas.

The total quantity of crude petroleum distilled last year was $26,978,977$ imperial gallons, worth at the average price of crude \$r,122,801. This was in quantity 1,422,386 gallons, and in value \$55.753 more than for the previous year. During the first half oi the year six refincrics were in operation, owned by five separate companies; but during the second half the business was practically inthe hands of two companies, viz., the Imperial of Petrolia, and the Bushnell of Petrolia and Sarnia, and it is now in one. The following table gives the quantities and values of distilled products for the years 1897 and 1898 :

Products.	1897.		1898.	
	Gallons.	\$	Gallons.	\$
Illuminating oil.	0,891,337	1,131,0S3	12,2S1,622	1,243.490
Lubricating oil	1,959,810	199.755	2,043,226	202,150
Benzine and naphtha.	949,341	77,340	1,240,967	121,840
Gas and iucl oils, iar.	8,021,633	281,035	8,047.441	2S6,705
Paraffin wax, candles..	2,139,27Slb	83,378	2,616,0561b	116.319

In IS97 the total value of distilled products was $\$ 1.777 .591$, and in 1808 it was $\$ 1,970,534$. In 1896 the value of distilled products was $\$ 332,187$ more than the value of crude, being an appreciation by treatment of 74 per cent. In 1897 the appreciation was $\$ 710,463$, or 67 per cent., and in $189 \$$ it was $\$ 847, i 33$ or $75^{1 / 2}$ per cent. Last year it was supposed that the lower rate oi appreciation in 1897 was a result of tariff changes, but this view is-not supported by the statistics of 1898 . The average rate of wages was lower last year then in either of the previous years, being $\$ 482.6$ against $\$ 540.33$ in 1897, and $\$ 541.33$ in 1896 : but no doubt this is a conseguence of a closing down of three of the plams in the latter part of last year. The average number of workmen employed at the refineries was 546 , and the amount paid for labor $\$ 263.546$. In 1897 the number was 364 , and the amount paid for wages $\$ 196,965.70$. The proportion of refined products obtained from the crude is shown in the following table for the seven years 1892-98, and indicates in a general way the progress that has been made in the processes oi distillation curing that period:
$1892 . \quad 1893 . \quad 1894 . \quad 1895 . \quad 1896 . \quad 1897 . \quad 1898$.
Product p.c. of p.c. of p.c. of p.c. of p.c.of p.c. of p.c.of crude. crude. crude. crude. crude. crude. crude.

Illuminating oil...38.67	39.12	41.10	43.31	45.09	42.62	45.52
Lubricating oil....12.35	12.45	10.91	9.51	9.07	7.67	7.58
All other oils.....27.34	28.14	30.45	28.07	31.09	35.10	34.42
	-	-	-		-	
Totals...... 78.36	79.71	82.46	80.89	85.24	85.39	87.52

In the seven years the increase of all refitied products obtained from the crude has been 9.16 per cent., made up of 6.85 per cent. in illuminating oil, and 7.08 per cent. in all other oils cxecet lubricating; in the latter there has been a decrease of 4.77 per cent. The wax product last year was larger than in $1 \mathrm{S97}$ by 481,800 lbs., and larger than in 1896 by $1,234.415 \mathrm{lbs}$. There is periaps no other industry in the country in which such marked and satisfactory improvement has been made as in the oil industry, and those employed in it deserve great praise for the intelligent methods they have so diligently pursued.

A great deal of exploring and developing was carried on during the year for supplies of crude. and the situation was improved in consequence. A small field north of the London road in Sarnia township has been added to the producing territory. Ther southern part of the township of Plympton has also given good restilts, although in these two localitics the oil deposit is
not quite 30 uniform as in the old districts of Petrolia and En. niskillen. It was thought last summer that the township of Prooke gave evidence of a good deposit, and quite a number of wells were drilled there; but the supply did not prove to be permanent, and most of the wells have been abandoned. In the township of Zone, near Thamesville, the same experience was realized; several wells yiedded liberally when first drilled, but the flow did not last. Bothwell is getting its producing limits as an oil field defined, and during the year its yield was little more than 6,0w barrels monthly. Euphemia and Dawn have each a small field, the area of which is being expanded by exploration. In the old territory, which runs from the southern part of the township of Sarnia in a southeasterly direction through Enniskillen by way of Petro!ia, wells may be struck at nearly every attempt. Small detached areas in this region not previously explored give good returns, one of the best being near Oil Springs. It takes time, experience and risk of loss to discover these treasures of Nature's ztorehouse, but it is not improbable that anywhere throughout the countics of Lambton. Kent and Essex a discovery of oil may be maile. A new locality that has recently been attracting attention as in oil field is in the sombiern part of Dunwich township, in Elgin.

calciusi carbide.

For the thirteen montins ending December 31, 1897, the product of the Willson Carbide Works Company at Merritton was 574 tons oi calcium carbide, valued at $\$ 34,440$, the average number of workmen employed being 30 , and the amount of wages paid for labor, $\$ 32,544.62$. Last year the product of the works increased to 1,040 tons, valued at $\$ 55.976$, the average number of mea employed was 35 and the amount of wages paid for labor was $\$ 16,397.95$. The only interruption to operations during the year was caused by a cyclone which swept over the town and destroyed a number of buildings, among them being one of the power-houses of the company The damage to the power-house was quickly repaired, however, and meantime the mill and furnace were run at a reduced capacity. The demand for calcium carbide continues to be very setisfactory, more indeed than the Merritton factory has been able to supply. But although this is the case the selling price at the works has been reduced by $\$ 6$ per ton. Further reductions will no doubt be made when larger works are erected. and more experience is gained in processes of manufacture. Important advances are likely to be made during the present year as a result of racent methods and tests.

graphite and mica.

The graphite mine in Brougham township was worked during only six months of last year. In that time 300 tons of ore were raised, valued at $\$ 6,000$. Ten workmen were employed.

Mifa has been discovered at a mamber of points during the last few ycars, chiefly in Muskoka and Frontenac. At most of the propertics however, operations have not got beyond the development stage, and the returns show that only one of them was a producer last year. The Stoness-Kent mica mine, which is on lot 4 in the thirtecath concession of Bedford township, produced 34 tons of mica, valued at $\$ 7,500$. From 12 to 18 men were employed. Only small lots were taken out at other locations. Alica for boiler covering is growing actively in demand PIG IRON AND IRON ORE
The following table gives the statistics of the Hamilton blast furnace ior the three years it has becn in operation:

Schedule. \quad \& 66.	1897.	1893.
Orr. smelted. tons............. 51,138	37 r492	77,023
Scalc and mill cinder. tons... 5.883	5.350	8,614
Limestonc for flux, tons..... 8.657	9.473	13.74)
Crike for iucl, tons........... 30.348	27,810	50,407
Pig iron product, tons. 28,302	24.011	-8,253
Value of product $\$ 353.780$	S2S8,128	\$530,789
Wages for labor $\$ 47.000$	\$ 40.000	\$ 61,476
Arerage workmen, No...... 125	130	130

The proportion of Ontario ores used in the furnace last year was 27 per cent. of the whole, being 20.968 tons, whereas in 1897 it was only cight per cent. Two mining companies, whose operations were carried on cinefly in Hastings county, ratsed during the year 27,400 tons, nearly all of which was shipped to

Hamilton. Its selling price at the mines is given in the returns as $\$ 8 . \$ 75$. or $\$ 1.78$ per ton. At the furnace the value of On^{2} tario ores smelted was $\$ 02.904 .81$, or $\$ 3$ per ton, which is the same rate as for Americat ores. The value of mill cinder at the furnace was $\$ 17,229.22$, of limestone for flux $\$ 11,039 \cdot 44$. and of coke for fuel $\$ 158,783.22$. The total value of raw materials and labor at the furnace was $\$ 479.597 .64$, and the total value of pig irol product $\$ 530.7 \mathrm{Sg}$. At the iron mines an average of 100 men were employed whose wage earnings were $\$ 26,700$, and the value of ore mined, computed at the selling price at the mines, was S4R.875.

colypar and mickri.

There has been a stir in the copper and nickel mines during the past year, and a number of new properites have been developed. Besides the mines in the Sudbury district, several lucations north of lake Huron, in the vicinity of Bruce Mines. have been receiving the attention of prospectors and capitalists. The Joseph Powers Syndicate on the Missisaga river has sunk one or two shafts, the old mues at Brace Mines have been unwatered with a view to the resuming of operations there, and a new company has been opening up large showings oi ore at Rock Lake, in Coflin township (now called Aberdeen). This las: venture has been acquired by a syndicate now organized as the Rock Lake Mining Company, with an authorized capital of $\$ 1.000,000$. The locations are situated about 10 miles north of Bruce Mines station. and comprise an area of 1,400 acres. The vein has been traced on the propery for a length of three miles. and samples of thoat ore may be pieked up to the south of it a long distance. Work was commenced in April of last year upon an outeropping of ore about 300 fect above the level of Rock I.ake, and two adits 1,200 feet apart have been driven in frualt opposite sides of the ridge which holds the vein that prove its thickness to be 16 to 17 fect. A shaft is in course of being sunk. and test pits have been dug at various points. which indicate that the vein is well mineralized throughout its whole length. Worl: has also been resumed on Michipicoten island, where native colper occurs in amygdaloid trap and conglomerate. but although good samples are shown and rich outcroppings have been discevered. enough work has not yet been done ior a judgment to be formed oi their extent and value. In the township oi Garson. about ten miles north of Sudhury, a copper-nickel deposit was opened last year. and a furnace to smelh the ore was in course oi construction. North oi Markstay station also active development work has been earried on and extensive bodies have been expesed. some oi which carry gold as well as copper and nickel. The Canadian Copper Company, however. is the principal operator, and several new mines have been developed by this con fany. The following table shows for the seven years. iSozgS. the quantities oi ore raised and smelted in the Sudbury district, and the per cent. oi metailic coments in the ore smelted cach year:
 in ore smelted.

licar.	Ore raised. Tons.	Ore smelted. Tonc.			
			. i ckel.	Coppuer.	Cobalt.
1-92.	72.349	61.924	3.36	3.10	. 1007
1S,	64.043	6.3 .24	2.21	2.35	.0.500
1,	112,037	\$7.916	2.92	3.14	ワ21
נins.	75.4.2	N6.5-56	2.67	2.7 .3	
3inti.	109.097	7,3.503	208	2.54	
$18) 7$.	03.155	96.09.3	2.09	2. $\mathbf{*}$ (
1835.	$1 \times .3 .930$	121.924	2.28	3-4.9	

The total quantity of ore raised in the sever: years was Giv.aso toms, and the quantity smelted 501.852 tons. Last year's onifunt alike of the mines and smeiters was considerably more than in any previnus year. It will be notiecel that the increase in ore smelted has licen almost stadily comimanas irom year :n year, and while last ycar's record was more than 25 per cens in racess oi the precious year it was nearly 100 per cent more that in dign. The percentage of nekel contents ic fairly well maintained. but the percentage of copper was higher last year than in any one oi the seven years.

The intal number of workmen employed last year was larger than in any previous year exrepting iSg2 and iSot. and the amoum of wages paid for labor was larger than in any year cx-
cepting the first. The aggregate amount of wages paid ior labor in the scven years was $\$ 1,929,894$, or an average of $\$ 489.45$ per year; for last year the average was $\$ 403.74$, which is higher than for any of the other years excepting 1893 and 1806 . In the seven years the quantity of ore smelted was 591,852 tons, which on being reduced to matte gave 80,929 tons ordinary, and $4,233^{1 / 2}$ bessemerized matte, or in the proportion of 100 to 14.38 . The estimated metallic coments of matte product in the seven years are $14,8521 / 2$ tons, or $29,705,000$ lbs. nickel; $17,2851 / 2$ tons, or 34.570 .500 lbs . copper, and $303 / 4$ tons, or 61.500 lbs . cobalt. At the selling price of matte at the furnaces, which is the form in which it is exported to the refueries, the total value oi niekel product for the seven years has been $\$ 3,224,000$, oi copper $\$ 1,302 . \$ 05$, and of cobalt $\$ 14,613$, or a total of $\$ 4,611,478$. The selling value of last year's product was $\$ 782,300$, the estimated quantities being 4.567 .500 liss. nickel and $8,373.500$ liss. copner. Comparative values of the metallic contents of the matte based on the selling price at the works are given for the seven years in the next table:

Itar.	Nickel		Copper		Cobalt	
	perion. \$	perlb. cents.	perton. $\$$	perib. cents.	perton. $\$$	per ll cemts.
$1 \mathrm{SO}_{2} 2$	283.81	14.100	119.90	5.995	436.82	21.S41
1803.	$275.0{ }^{\text {S }}$	13.754	So. 50	4,025	494.73	24.736
ISO_{4}.	238.36	11.918	71.23	3.561	461.54	23.077
1895.	174.83	S.741	68.02	3.401	
1806.	183.22	9.166	69.94	3.497
1 S 97.	179.91	3.995	72.75	3.637	
1S88. .	184.72	9.236	64.02	3.201		

These figures show a slight rise in the value oi nickel compared with the averages oi the previous three jears, but a large d-ce ease compared with the first three years oi the period. In the case of copper the lowest point oi the period was reached last year. althougin the price of copper had gone up to a point not reached during many years. Obviously the value should be considerably higher than it appears.

COBD AND SILVEK.
Gold was produced last ycar at if locations, but as only four oi these have reported an output in excess oi $\$ 20.000$ it will be readily understood that a large majority of them are yet only in the carly prospecting stage. The leading ones are the Sultana. the Mikado. the Regina and the Belmont. The Regina howcrer was closed down ior five months, during reconsifnction oi the mull. The Foley was also idle for the greater part oi the yeat, pending a sale oi the property in England. In tive eastern part of the province the Belmont and Deloro mines promised well at the beginning oi the year, but unfortunately the mill of the Deloro was destroyed by fire carly in the spring, and a new one erected in its stead was not completed until the close of the year. lloth oi these mines give assurance oi good results for the presem year. and in the west the outook is very hopelal. The iollowing table gives the statistics oi gold mines and mills in the province for the five years, $1594-95$:

Schedule.	1504.	1895.	1\$96.	1897.	ISos.
dines worked		S	S	9	17
Men abnie ground	40	126	103	223	20
Men under around	s?	111	56	216	$2{ }^{2}$
Ore treated, inns.	2.42S	6.500	13.092	27.3E\%	37.893
Gold product. 67..	2.0231/2	3,038	7.154	11.412	16.261
Gold value	\$32.7,6	\$50,jS1	\$121,48	\$190.244	\$275.07\%
J.abor wages jamid.	\$3S.032	\$56,234	\$91.210	\$217.566	\$30.919

The total quantity of ore milled doring she seven years. 1So $2=98$. has been 116.074 tons. and the value of gold product was \leqslant Sjo.s个\%, being an average oi $\$ 6.33$ per ton. This is proni of the low grade character of the ore. but as nearly all oi it is frec milling. it is high enough to carn a good margin oi prolit when derclopment is sufficiently advanced to prowse an amole quantity in kerp the milis running steadily. It will then be prosible to select the ore. instead oi treating all that comes irom the mines. Therciore an increase of average may reasonahly cunugh be looked ior. unless, as seems likely. some extensive low arade deprosits are worked on a large seale.

THE PRACTICAL MAN.

h.Cumbasits bun cleting tool.s.

Material. Tool Stecl. .	Turning.	Chuckine. Oil or Suda Witer	$\begin{aligned} & \text { Drillins.: } \\ & \text { Oil } \end{aligned}$	Tappin: Reaming. Millink.	
	Dry or Oil			L.ard Oil	Oll
Soft Steel.	Dry or	Soda	Oil	L.ard Oil	Oit
	Soda Water	Water	Soda Water		
Wroht Iron	Dry or	Soda	Oil or	Lard Oil	Oil
	Soda Water	Water	Soda Whater		
Cast Iron...	Dry	Dry	Dry	Dry	Dry
Brass	Dry	Dr:	Dry	Dry	Dry
Copper	Dry	Dry	Dry	Minture	Dr:
labbitt	Dry	Dry	Dry	Dry	Dry

Class.Turpentine or Kerosene.
Mixture is one-third crude petrolemm and two-thords lard oil. When iwo labricants are mentioned the first is preferable. Cil is sperm or lard; sperm is preferable.

To Harden Cast Iron.-Many times it is very convenient to ratec an articie of cast iron that needs to be finished. and whish should be very hard. Cast iron can be hardened as easily as stecl, and to such a degree of hardness that a file will not touch it. Take one-half pint vitriol, one peck common salt, one-hali pound saltpetre, two pounds alum, one quarter pound prussiate potash, one-quarter pound cyanide potash; dissolve in ten gailons soft water. Be sure that all the articles are dissolved. Heat the iron to a cherry red, and dip it in the solution. If the article needs to be very hard, heat and dip the second and even the thisd time.

Annealing Cast Iron.-To anneal cast iron. heat it in a slow clareoal fire to a dull red heat; then cover it over about two inches with fine elarcoal; then cover with ashes. I.et it lie until cold. Hard cast iron can be soitened enough in this way to be filed or drilled. This process will be exceedingly useful to 1 ron ionanders, as by this means there will be a great saving of expease in making new patterns.

To make a casting oi precisely the same size oi a broken casting without the original patterns.- Put the pieces oi broken casting together and moald them, and cast ircom this mould. Then anneal it as above described: it will expand to the original size of the pattern, and there remain in that expanded state.

How to Anneal Brass or Copper.-In working brass and copper, it will become hard, and if hammered to any great extent will split. To prevent eracking or splitting. the piece must be heated to a dull red heat and planged in cold water: this will soften it so it can be worked easily. Be careinl not to theat brass too hot. or it will fall to pieces. The jpiece must be annealed frequently during the process oi hammering.

The Relative Weight of Different Aletals.-The weight of wrought iron being t. cast iron will be 95 . steel 1.02 ; cupper 1.16. brass t.09. and lead 1.48 .

Weight of Castings.-If you have a pattern made of soit pinc, put together without nails, an iron casting made from it will weigh sixteen pounds to every pound oi the pattern. If the catting is of brass, it will weigh cighteen pownds to cvery pouml of the pattern.

A metal that will expand in cooling is mate of 9 parts lead. 2 parts antimony, and I part bismuth. This metal will be found very valuable in filling holes in castings.

Lead Explosions.-Many mechanics have had their patience sorely tried when pouring lead around a damp or wet joint: 0 lanes it explode. blow out or seatter from the effects oi steam generated by the heat oi the lead. The whole trouble may be aroided by puting a piece of resin. the size of a man's thumb, imo the ladle ard allowing it to melt before pouring.

Glue.-入 little powdered chalk added to common glue makes it much stronger: and a glue that will resist the action ni water may be made by using skimmed milk instead of water. A few drops of vinegar put in mucilage will kecp it irom spoiling.

To Sharpen Keamers.-IIand reamers, when dull through wear. should be stoned first on live face oi tie flutes. then on inn of the flutes. The stone should be always held periectly Bat with the face and clearance that the original shape of the flutes may be preseried. End cuting reamers should be first urned on eentres with a wheel, and then recleared to insure reaming
a hole the satme size of reamer. The Norton Emery Whed Co. makes an emery stone for the purpose, which is well adapted, and is said to give quicker results than any oil stone. The stone should be kept clean by the use of turpentine.

ICE BREAKING.

There was built last gear in the shipgards of Sir W. G. Armstrong. Whitworth \& Co., an ice-breaking steamer for the Kussian Government, designed by Vice-Admiral Makaroff. and her business is to be to keep some of the principal ports of the Baltic open during the winter. From "Engincering' we take the following account of her first voyage:

Admiral Makaroff first met the ice in the Baltic. It was drift ice. apparently about five feet thich, and judging by the report oi Mr. Gulston, of Neweastle, who accompanied Admiral Mlakaroff on his royage, there seems not to have been the slightest dificulty in getting the "Ernack" through this obstruction, as she went comparatively easy at nine knots, the engines working slowly: Before going into the ice the engines had been slowed down to ten knots, so as to reserve the powers of the engine-room staff for the harder work which was to come. The worst piece of ice which was encometered was estimated at twenty-five iect thick, and the ship went nearly through this formidable obstraction beiore she was brought up by it. Accurate measurements were taken as soon as possible and the report reads that the field ice was five feet in thickness. the pack on top was nine ieet, and there was ice below the ficld amounting to eleven feet, so iar as could be measured. but there nang have been more, as there was no means of measuring furthe: below the bottom oi the field. It was evident that a large mass oi iec had been washed off a shoal and frozen on the field. The worst field ice that they had much of was apparemty fonr iect thick, with snow on top of th. The snow seems :o be the greatest impediment to the vessel'; progress, as the designers of the ship had always been led to expect. Mr. Gultion reports that iwelve inches oi snow was a serions impediment, and cighteen inches almost blocks her. This is, oi course, on the top oi thick field ice. The ice generally in the Balue seems to have been much more serious the winter than was expected, and it is said to be beyond 1833. Which we gather was a record winter. The "Ermack" did not run contimously, but rested at night and started early in the morning. working with the scarchlight. There was apparently no difficulty in starting, although the ship had become fast in the ice. Ice anchors were put out, and the vessel was warped backwards from her berth, after which she started without difficulty. One of the most satisiactory ieatures is that she stecrs, as Mr. Gulston says, " In any way, at amy time, in any ice." This has never been the case with any jec-breakers that have previously been buit, and is no doubt duc largely to the form of the ship. for there is no flat place on her side. cither vertically or horizontally, so that unless absolutely irozen in solid she can be given some movement, and can thas be worked loose by her own propellors and by ice anchors laid out. Her arrival at Cronstadt was evidently an exitraordinary sight. The ice was about eighteen inches thick. with a good deal of snow on the top. and the slip steamed through this at six and a half knots up to the sea wall and past the batticships. She swung around on the port hand and entered the harbor through an entrance only ninety-five lect wide: the ship jtself is seventy-one fect beam. She swung once in the inside harbor, and one charge astern put her into her berth alongside the coal store. Some namocuscring irials were rade in ice of about two feet to thece feet in thickness when the tarning circle was icund to be about six hundred iect. and there wis apparently very listle difference in which direction the ship was turned. The effect oi the bow propellor was most marked. and it seems practically to be that if the bow propellor is einpped. the ship siops. 100.

Mr. Gulston examined the ship both inside and outside, as far as be conld. and could find absolutely no sign oi weakness. The outer skin has been polished bright where the vessel has been rumning through the ice: but there is no sign oi breakage anywhere. The ice varied enormously in guality: Drift ice was passed through, and appeared to offer practicaliy no imp:diment: pieces described as quite two to three aeres in extent were pushed aside. the ship moving through quite casily. Pack ice with eighteen inclies of snow on top, seems to have been the greatrest dieniculty.

The "Ermack" is 305 feet long, 71 feet beam, and 42 feet 5 inches deep. She is capable of developing 12,000 horse-power, and of making 16 knots an hour. She has four screws, all four bladed, and varying in diameter from 13 feet to 14 feet 6 inches. The blades are enormously thick, and made of very strong caststeel, are calculated to be brought up by the ice when the vessel is running at full speed without breaking. The draught or the vessel is calculated to be 19 feet, in fresh water, and 25 feet when working in the Kara Sea, with 3,000 tons of deadweight. The screws are arranged, three at the stern and one at the bow.

Reference should be made to the arrangements for coupling up this ship with another or others, in order to make a train of ships for more effectively dealing with thick ice. Although the "Ermack" is so big and strong a ship, there is, of course, a limit to her capacity of breaking upice, and to the speed with which she could perform the operation. A vessel pushing astern of her would supply additional power to do the work. Forward the stem is set at an angle of seventy degrees irom the vertical. So in going through the ice she would slide up, raising her bow, and this would cause the ice to break down. She migit, of course, mount the ice until her forward propeller came into conlact with it; but, as has been said, this is made of sufficient strength to stand the shock. That, however, is not what is expected generally to occur, as the form of the bow is designed to keep breaking down the ice continuously. Of course this would absorb an enormous amount of power; but if another vessel. cither an ice-breaker or an ordinary steamer, were pushing astern, naturally the speed would be increased. Moreover, a "essel not so strongly built as the "Ermack" would be protected by following close behind her. For this reason a recess has been built into the counter of the ship. This recess is designed to take the stem of the following vessel, arrangements being made for lashing the latter in firm contact with the leading craft. It may be mentioned that the "Ermack" has also a specially strong towing windlass abaft.

ACCIDENTS OF THE TIONTH.

An explosion occurred in the Blockhouse, N.S., gold mines, Sept. 13th, resulting in the death of one man and the serious injury of another.
S. Gagnon, a young apprentice in Gilmour \& Hughson's sawmill at Ottawa, was killed while attempting a horizontal bar act on a fast revolving shaft which turns beneath the mill.
H. Dooley, Division street, Ottawa, 25 years of age, a millhand at J. R. Booth's sawmills, while at work, Sept. 14th, was caught between two rolls six inches apart and drawn in front of a five-foot circular saw, and was mangled in such a way as to die shortly afterwards.
J. Benoit, about forty years of age, living at I8a Soulanges street, Point St. Charles, Montreal, was killed instantly at the G.T.R. shops. a short time ago. He was struck violently on the chin and side of the head by some machinery operated by shafting, and his brains scattered.
W. A. M. Pollock, electrician, in the employment of the Almonte, Ont., Electric Light Company, met with a fatal accident, Sept. 18th. While working with a large driving belt he was caught and drawn into the wheels. One arm was torn irom his body at the elbow, and he was hurt internally. He died two hours later. It took over an hour to extricate him.

TORONTO EXHIBITION NOTES.

D. K. McLaren, leather belting and mill supplies. Montreal and Toronto, had a fine exhibit of various kinds of belting, and a great variety of textile and other mill supplies.

The Still Motor Co., successors to the Canadian Motor Syndicate, had two storage battery vehicles in the Machinery Hall, and one in constant operation through the grounds

The Royal Electric Co., Montreal and Toronto, had the whole of the eastern end of the central tier of exhibits, where 3 great aggregation of motors, transformers, dynamos, meters and switch-boards were shown. Among these was a 3,000 -light machine and a 2.000 -light and 1,500 -light machine, all of which were sold. It was the most comprehensive exhibit in the fair in the electric line.

The Northey Mnfg. Co. had a small building all to themselves, near the western entrance to Machinery Hall, where several of their well-known Imperial gas engines were in operation, and attracted a large number of investigators.

The Robb Engineering Co. had an exhibit of the celebrated Robb-Armstrong engines, which are now known not only all over Canada, but in many foreign countries, where they have gained acceptance in competition with the best makers in the world.

The Dodge Mnfg. Co., manufacturers of pulleys, had an imposing trophy formed of their celebrated wood split pulleys, which were also to be seen in actual use on many other exhibits. This company are the largest manufacturers of wood pulleys under the British flag.
A. W. Spooner, of Port Hope, " the handsomest town in Canada, and the only place in the world where Spooner's copperine is made," had a striking display of copperine. The genial owner of this metal reports that it continues to grow in popularity among engineers.

The Northey Mnfg. Co., are showing gas and gasoline engines in great variety. Machinery Hall exhibit contained a combination gasoline or gas engine, which is used for operating a pump. To the right of the western entrance they had a building in which the bulk of their exhibit commanded much attention from the visitors.

Cowan \& Co., of Galt, only showed wood working tools although they manufacture the Corliss pattern of engine. They publish a very complete catalogue showing the different styles made by them. Their exhibit comprised 12 - in. moulders, planers and matchers, band saw filers and "Clark" pattern band saw set, and one power feed rip saw. The Cowan people are advocates of the fast gear type of machine gearing, and their arguments are interesting and instructive.

Just outside the east end of Machinery Hall was a complete exhibit of road-making machinery shown by the Good Roads Machinery Co., of Hamilton. It consisted of a Champion rock crusher, a road roller, a mud scraper, a road grader and road ploughs. Mr. Challen, the manager, was always surrounded by an interested crowd of enquirers. He reported that the Government of New Brunswick had adopted the Good Roads Machinery Co.'s system, their latest order being a No. 4 mounted crusher, a 12 -ton steam roller, a McAdam spreading wagon, and other machinery.

One of the most attractive exhibits was that of the Jones $\&$ Moore Electric Co., of Toronto. They exhibited a complete line of electric motors up to $40 \mathrm{~h} . \mathrm{p}$., as well as several direct current dynamos, enclosed arc lamps, telephones for private lines, etc. This firm make a specialty of lighting and power plants for factories and mills. Some of the plants on order and installed are: D. S. Perrin \& Co., London, 400 light dynamo; A. R. Williams Co., Montreal, 8o light dynamo; Gadsby \& McCann. Toronto. 20 h.p. motor; Massey-Harris Co., Toronto, $20 \mathrm{~h} . \mathrm{p}$. motor; Meaford Woolen Mills, 80 light dynamo; Toronto Grain and Seed Cleaner Co., Toronto, $20 \mathrm{~h} . \mathrm{p}$. motor; McFarland, Gray \& Southgate, Toronto, 8 h.p. motor. They now have over 500 machines in daily operation.

In Machinery Hall this year power was supplied to the line shafting and individual machines by different makes of engines. The Corliss type, the well known Wheelock and the Ideal; one of the Wheelock $100 \mathrm{~h} . \mathrm{p}$. being the purchase of the Industrial Fair for Machinery Hall. The Still Motor Company exhibited one of their motor carriages, and the company have, owing to the great number of orders, been unable to spend time in preparing exhibition goods. One of the features of Machinery Hall was the Hardill tandem compound engine exhibit. This new engine was patented in Canada in January, 1899. A company has been formed in Mitchell, Ont., to manufacture them. The engine exhibited was $5-\mathrm{in}$. H.P. and $81 / 2-\mathrm{in}$. L.P. cylinders, and 7 -in. stroke. In January and February of this year Prof. J. T. Nicolson, of McGill University, tested the economy of this engine and made a report on April 14th, 1899 , a copy of which can be procured upon request. According to the report the ergine showed $211 / 2$ i. h.p. working double acting. Prof. Nicolson says: " I am surprised at the economy shown by so small an engine. It is accounted for by the compounding of the expansion and the high speed."

At the close of the Exhibition a mumber of the enhibitors in the machinery hall met and presented Thomas Eversfield, the chief engineer, with a handsome bedroun sute in ouk. The sift was accump,nied with an address capressung the donors' appreciation of Mr. Esersficld's attention to the exhibuts during the fair.

Rice Lewis \& Son, Ltd., of Toronto, are to be compls. mented on the large and artistuc display of parlor mantels, grates, tilings, railings and other interior house fittungs. A tjled bath-room and two or three parlors were represented, and each exhibit was in excellent taste. The rooms were filled with an admiring crowd each day, and the display was voted the best oi the kind in the Exhibition.

The Mica Boiler Covering Co., not content with having a boiler and a range of piping covered with their mica covering in the Machinery Hall, had their covering placed on several enwines in other parts of the grounds where engineers could test for themselves the remarkable properties of mica for this purpose. All the pipes connacted with the motive power in the Machincry Hall were covered with this material, which received much favorable comment.

The Luxfer Prism Co lad a long dark gallery built, in onc and of which was a swinging window fitted with Luxfer prisms. It was a source nf never ceasing wonder to the thousands of visitors here that when the window was closed the whole gallery was lighted from end to end with a soit light, in which the colors of every object could be distinguished; but when the window was opened to the full light of the sky there was enmparative darkness through the gallery, and no colors could be made out in the placards on the rear wall. As a means of shedding light in dark places everybody almitted that Luxier prisms were a remarkable discovery.

LITERARY NOTES

The Daily Review is a new paper, which reaches us irom St. John's, Newfoundland. This will be a welcome addition to the journalism of Great Britain's oldest colony in America.

Glaziers' diamonds of every known style and type are illustrated in the catalogue of A. Kudd \& Co., St. Melens, Lanciashire, Eng. This concern also makes nippers, vises, atmospheric soldering irons, and other tools for the manipulation of shect, plate and stained glass work. Messrs. W. J. Woodburn \& Sons, Montreal, are Canadian representatives.

The interesting history of the "Beginnings of the St. Lawreace Routc." by Arthur Weir, B.Ap.Sc., Montreal, which recently appeared in The Canadian Engineer, has been reprinted in pamphiet form. Mr. Weir has gathered a great. amount of hitherto unpublished matter in this essay, and has presented :t in such an attractive form that many will be glad to have it in this convenient form for future reference. Although the edition is a very limited one the price is only so cents per copy.

The Quebec and Lake St. John Railway have published some books descriptive of the seenery on the line of their well known road. which also contain many good illustrations of the sportsman's variety. The names of the books are as follows: "Guide to tte Lake St. John and its Tributary Waters;" "Yc Ancient Quebec," and "A Tale of Lake St. John." Any or all ot these will be sent to any person interested. Their time tables are original in design, and much more complete in information and description than the ordinary run of railway folders.

Few people, execpt those who have made a special study of Canadian books. would belecve that a mere cataloguc of Canadian poets and their works would make a volume oi 72 pages. and contain about 500 names. Such, however, is the array of Canadian versifiers presented by C. C. James, the Deputy Minister of Agriculture for Ontario, in a work just compiled by him inr the Victoria Unuversity Library. Mr. James recently preserited the Unucersity with what is probably the largest library oi Canadian books of poctry yet collected, and this bibliography is his crowning tribute to the poctical literature of the comury. It is from the press oi Willam Briggs.

- I stecl bridge will be erected wer the Pembina River near Rivierc. Man.. to cost about $\$ 3.000$. Anuther stect bridge rill be built over the same river 20 miles south of Manitou.

QUEBEC ARCHITECTS' ASSOCIATION

The ammal mecting of the Provincial Architects' Assuciation was held in Quebec city, Sept. 23. A. Raza, president, was in the chair, and presented the annual report, which states that the association now mumbers 139 active members, of whom ten joined during the gear. The meeting elected the following oflicers for the ensuing year: Presidem, S. H. Capper; vicepresident, G. I.. Tanguay; second vice-president, Joseph Venne; secretary, \dot{G}. O Monette; treasurer, W. A. Doran; council. Messrs. A. Raza, J. S. Archibald, E. Maxwell, A. Chausse, H. Staveley and A. H. Lapierre. The next meeting of the association will be held in Montreal in September, 1900.

THE GREAT LAKES COPPER CO.

Much interest is being taken by everyone realizing the value of the mineral industries to Canada in the plant now being established at Sudbury for treating the nickel-copper ores of that district by the Great Lakes Copper Co., of Sudbury, Ont. The president of the company is Jno. MeKinley, 60 State street. Boston, and the superintendent is C. M. Boss. The plamt is now in process of construction, and is to a certan extent experimental. The process is being patented in Canada, and when the necessary formalities have been completed the fournal will publish a more extended notice of it. The great advantage attained by the use of the process of the Great Lakes Copper Co. is a reduction in the time of ore treatment. In fact it is said that instead oi weeks only three days is required to produce nickel of 60 per cent. fineness from, the ore.

GOOD WORK APPRECIATED.

The Canadian Engineer has a splendid report in this week's issue of the C.A.S.E. convention held in Berlin in August. The report is very full and accurate, and every engineer should obtain a copy: Mr. Smith, The Canadian Enginecr's representative at the convention, deserves credit for the manner in which he looked aiter C.A.S.E. interests.-The News-Record. Berlin, Ont.

METAL. IMPORTS FROM GREAT BRITAIN.

The following are the sterling values of the imports from Great Britain of interest to the metal trades in August, 1898-99, and the eight months ending August, 1893 and 1899 :-

	M	August.	$\text { Eight } M$	its coding ust.
	1898.	8899.	8898.	1899.
tlardwa	\{2,115	¢ 2.025	f 14.617	¢ 13.170
Cutlery	5.043	4.149	35,848	33.766
Pig iron	1,007	1.743	8.113	8,815
Bar, etc.	229	2.580	6.271	10.969
Railroad	-	8.363	6.972	58.59x
Hoops, shee	12,095	12.852	36,122	68,307
Galvanized sheers	7.270	${ }_{4} 0_{43}$	39.34 I	40.117
Tin plates	12.571	20.175	96,169	128.266
Cast, wrought, etc., iro	1.454	7.903	16,662	32.315
Old (for re-manufacture)	-	421	3.574	2,42.4
Steel	2.542	9.134	35.185	52,760
Lead	3.668	5,118	19.726	32.440
Tin, unwrought	652	1,773	11.875	14.285
Alkali	3.139	2.950	27.558	21.508
Cement	2.671	2.700	${ }_{17} \mathbf{4}$ S24	18,939

-A Washington special to The Detroit Free Press says the United States War Department has referred the protests of their Lake Carricrs' Association against the construction of the canal through Kent county, Ontario, connecting Lake St. Clair with Lake Erie, to Col. Leydecker, with the request for a full investigation and a report. Col. Leydecker will report both as to the probability that the project will find adequate financial support, and as to its effect upon the level oi the lakes, should it be corried out. It seems probable that if it is jound that the Canadian project is being seriously considered with any prospect of its being actively entered upon in the near future, the State Department will take the matter us with the Canadian Government un the basis of a propesituon to appoint a commesson. which was earnestly .dhocated by Col. Leydecker and his colleagues in their report on the Sazalt power canal.

NICKEL EXTRACTION BY THE HOND PROCESS.•

bi she willian chandeler ruherts-austen.

The rules of the institution provide that an associate shatl submit a paper within a year of his electoon. In complying with this direction, the author was satisfied that no better subject conld be selected for consideration than the interesting process which marks an entirely new departure, m metallurgical practice. ircin the principles which have hitherto gunded \mathfrak{t}. This proces: depends on the remarkable property possessed by nickel of forming a volatile compomed with carbome oxude, or, as it is called iamodern chemical nomenclature, carbon-monoxide. When this gaseous compound is heated to $180^{\circ} \mathrm{C}$. mekel is relensed in the metallic form.

The author was much impressed during a recent visit to Canada with the imperial importance of the great nickeliferous district of Sudbury, Ontario. In view of the magnitude of this deposit, the annual production of metallic nickel in Canada seems madequate, as it has hitherto not exceeded 2,750 tons. The description therefore of any new process which affords a hope of hastening the development of this remarkable district should prove to be interesting. The deposit itself presemts many points of interest. According to Professor Coleman, of Toronto, the nickel ores of Ontario resemble the gold ores of Rosisland in Bittsh Columbia, as they consist of a mixture of pyrrhotite (magnetic pyrites) and copper pyrites. These sulphides form enormous masses :ear the margin of large areas of diorite, or weathered gabibo oi Huronian age, the amom of nickel contained in the ore averaging between $21 / 2$ per cent. and io per cent., the lower proportion being the more common. It is worthy of note that pyrrhotine from other parts of the country, found in association with Lauremtian rocks, is almost barren of nickel. The importance of the nickel deposits of Ontario ma; be judge 1 f_{1} om the fact that, until the mines in the Sudbury region were werked, the world's supply of the metal was drawn chiefly from the mines of Sew Caledonia, an island in the Southern Pacific. supplemented by the Gap mine in Pennsylvania, and a few isolated mines in Norway and Hungary. The extem of the Sudbury deposits is greater than any of these and New Caledonia, which belongs to France, is virtually the only rival of Ontario in the production of nickel.

The ore at Sudbury is smelted i to a regulus, or matte, whech contams between 12 per cent. and 20 per cem. oi mokel, and about the same amout of copper, although usuaty there is rather more conper than nickel. This mate may be cariched by suitable treatment, and is "bessemerized" into a regulus which comtans abom to per cent. of nickel, and is especially iree irom iron, as the following analyses show:

	1. Per cent.	11. fer cent.
Nickel	. 40.938	31.35
Copper	+5.714	+4.36
Iron and (Al:O.)	. 0.405	0.81
Cobalt	. 0.1.36
Sulphur 11.960	

It is unnecessary to give a hostory of the metallurgy of nickel. but it may be well to state that Chronster isolated the nectal in the year 1751, and that Berginan confirmed his discovery in 17j4. The methods hitherto employed ior extracting the metal irom its ores are very complicated; they have involvel cciocentrating the nickel cuther as a sulphide (matie or regulus). or as arsenide (speise) followed by cither"dry" or"wet"treatmem. In the case of certain ores. wet methods only have been employed. The metallic nickel has ahways to be subjected to a precess of refining, mainly, as in the case oi cast iron, with a view to separate it from associated carbon.

As regards the process which forms the subject of this paper a few brice historical details may be offered. In ISS, Dr. l.udwig Mond. F.R.S.. in collaboration with Dr Carl langer was charaxed in workug out a medind ior eliminating the carbonmb:analle trom gases comaining hyelrogen' which they wanter ior :les in theor gits batery. In attempting io effect this. they

- This paper on the Mond lrocess by Sir. W. C. Roberss-Austen. D.C.L.F.R.S. asis read before the Institution of Clvil Iingineers. London. England, on Sih Niov 183.
 tent No. 12 .roy. isss.

were guided by the observation they had presionsly made that fitely divided nickel has the remarkable properts of removing carbon from carbon-monoxide at a temperature oi 350 C ., convertung it into carbon-dioxide, while the dissociatton of carbon monoxide by heat alone, according to Victor Mejer and Carl Langer, remains incomplete at the high temperature of $1,6 \times 0^{\circ} \mathrm{C}$. In the course of these experiments, which they carried out in conjunrtion with Dr. Friedrich Quincke ${ }^{2}$, finely divided nickel formed by reducing nickel oxide at $350^{\circ} \mathrm{C}$., by hydrogen, was treated with pure carbommonowide in a glass tube at varying emperatures. In order to keen the poisonous carbon-monoxide out of the atmosphere of the laboratory the gas esciping froms the apparatus was ignited. They found to their surprise that while the tube containing the nickel was cooling, the hame of the escaping gas became luminous and increased in luminosity as the temperature sank below $100^{\circ} \mathrm{C}$. Metallic spots were. micreover, deposited on a cold plate of porcelain held in this liminous flame, just as spots of arsenic are obtained in applying the Marsh test for that metal. It was also observed that on howating the tube through which the gas was escapmeng, a metallic mirror was obtained, white the luminosity of the lame disappeared. On examination these metallic deposits were found is be pure nickel. The next step was 10 endeavor to isolate this curious and interesting nickeliferous compound, by preparinif niekel with great care at the lowest possible temperature, and treating it with carbon-monoxide at about $50^{\circ} \mathrm{C}$. The amount of the volatile nickel compound in the gases passing through the apparatus was thus gradually increased. The gases issuing from the apparatus were treated with a solution oi cuprons chloride to absorb the excess of earbon-monoxide, and in this way a residue of several cubic centimetres of a colorless gas was obtained, containing the volatile nickel compound. By passing this gas through a heated tube the nickel and carbon-monoxide were again separated, and the volume oi the carbon-monoxide thus set iree was found to correspond to about four equivalents of carbon-monoxide to one equivalent of nickel. By further improving the method of preparing the finely divided nickel. and by passing the resulting gases through a refrigerator cooled by snow and salt, the investigators at las: succeeded on obtaining the new compound in a liquid state, and were able to produce it with facility in any desired quantity.
dickel carbongl in its pure state is a colorless liguid boiting at $43^{\circ} \mathrm{C}$.; it has a specilic gravity oi 1.3185 at $17^{\circ} \mathrm{C}$., and solidifies at- $25^{\circ} \mathrm{C}$. into needle-shaped crystals. It is soluble in alcohol, petroleum and chloroform; and it is not acted upon by dilute acids or alkalies. It can be readily distilled without decemposition, but on heating the vapor to $150^{\circ} \mathrm{C}$. it is completely dissociated into its components, pure carbon-monoxide being ch:itined. white the nickel is deposited in a dense metallic film upon the sides of the vessel in which the compound is heated.

After the production of nickel carbonyl had become casy, Drs. Mond, Langer and Quincke directed their attention to the action of carbon-monoxide on other metals. A series of exprimems was made with a view to obtain a similar compound with cobalt, which in its chemical and plessical behavior so much resembles nickel. The experiments gave, however, the unexpected result that, unlike nickel, cobalt will not combine with carbon-monoxide. Experiments were then made with iren and indications were soon obtained of the existence oi a volatile compound of iron and carbon-monoxide: a long time clapsed beiore this new compound was obtained in a pure state. It was fimally isolated in a way similar to that by which the neckel carbongl had been prepared, and proved to le : somewhat viscous liquid of pale yellow color'. Its specific gravily at $\mathbf{I N}^{\prime \prime}$ C. is I. $46 G_{7}$; and it distils completely without decomposition at $102.8^{\circ} \mathrm{C}$. under a pressure of 749 millimetres of mercury. When ecoled to $-21^{\circ} \mathrm{C}$. it solidifics into a mass oi yellowish neculleshaped crystals. Its chemical composition is somewhat different from the nickel carbonyl. as it contains five equivalents of car-ben-monoxide to one of iron. The liquid compound, to which the name of iron penta-carbonyl was given. undergoes 110 change when protected from the action of light, but exposure to daylight for several hours in a sealed tube is attended with the formation of gold-colored. tabular crystals. and carbonmonoxide is crolved, so that the pressure in the tube rises con-

MLudwig Mond, C. Langer, and F Quineke. Journal of the Che mueal Sociecty. 01.2 vil., p dos.
"Ludwir Kond and Carl Langer on "Ienn Carbonyls." Journal of the Clietnica Soclety, vol. IIx. p. 1000
siderably. The crystals have, when dried, a metallic lustre, and resemble dakes of gold; they contain two equivalents of iron to seven equivalents of carbon-monoxide. None of the other metals which were submitted to investigation showed indications of ccmbining directly with carbon-monoxide.

The discovery that in a mixture of metals only mickel amb iron would form volatile compounds with carbon-monoxide, and that they could, therefore, be separated from the other metals, was sufficiently important to induce Dr. Mond to arrange lal.oratory experiments with ores containing nickel, cobalt, iron. cciper, etc., such as "kupier-nickel" and "pyrrhotite." The experiments afforded such promising results, that apparatus oi considerable size, though still well within the limit; of the resources of a laboratory, was set up, and in it several pounds of ore could be treated with carbon-monoxide." A patent was also applied for on the $12 t h$ August, 1800 , which describes the way in which such ores may be treated. It is pointed out that the principal nickel ores which are metal. lutgically treated contain the nickel in combination with arsenic and sulphur besides other metals and gangue. These ores have first to be stibmitted to the process of calcination, in order that the: nickel may be present in the form of oxide, and to drive off. as iar as is practicabie, the arsenic, sulphur, and other volatils bedies. The resulting oxide of nickel is treated with reducing gates, such as water-gas or producer-gas, in order to convert the oxide of nickel into finely divided metallic nickel; the material containing it then is cooled to about $50^{\circ} \mathrm{C}$., and is treated with rarbon-mo:10xide. In dealing with nickel ores which contai:s

nichel oxide in elamisal combination with silicte acte, arseme: acid. or other substances which cannot be removed by calcmation, the ores are so treated as to convert the nickel into mekel sperise or niekel matte, which is then subjected to calcination.

In 1892 an experimental plant on it large seale was erected at Smethwick, near Birmingham. After some years of patient work, during which the plant had several times to be reconstructed, in order to meet all the conditions of this somewhat
"Luderts Mond on "Metallic Carbonyls." Proceedings of the Royal Instleution" vol, xili., p. C6S.
delicate process, the plant gradually assmmed the shape shown in Figs. I. Before describing it in detal at wall be well to give a brief account of the operations moolved in the process. which are the outcome of many years of practical experience.

The process is more especially suitable ior the entraction of nickel from ores whish comann copper maddton to mekel and iron. These ores, which have on an average between 2 per cent. and 6 per cemt. of meliel and about the same amount of copper. are first subjected to "heap roasting," to elimma:e the greate: part of the sulphur, and to convert the iron wheh forms the:r chief constituent into oxide. The roasting is necessary to enable the iron in the following operation of sueltang to combene with the silica present in the ore to form a slag, and thus to effect the sebaration of the iron from the mekel and copper which units with the remainder of the sulphur to form a regulus or matte. This matte contains the nicliel and copper in a more concentrated form, the amount of each metal being usually 15 per cent. to 20 per cent., the residue consistug mainly of sulphur and iron. To concentrate the nickel and copper still further, the matte is "bessemerized." A sample of such "bessemerized" matte is enhibited; it contains 31.37 per cent. of nickel, 48.62 per cent. oi copper and 0.70 per cent. of iron. It was prepared by the Canadian Copper Company, Sudbury, Ontario, from their ores, which contain an average of 4 per cent. of nickel and 4 per cent. of copper. This "bessemerized" matte is crushed, ground, and subjected to a calcining operation so as to convert the sulphides into oxides, and it is then passed through a mill and dresser. This calcined bessemer matte then consists practically of nickel oxide and copper oxide in varying quantities. It has been found in the practical working of the process to be advantageous to further concentrate the nickel by extracting part of the copper at this stage by treating the mixtures of oxides with dilute sulphuric acid, which dissolves about two-fifths of the copper present without taking up more than I per cent. to 2 per cent. of the nickel. The copper thus dissolved is in the form of copper sulphate and is obtained in a marketable form by crystallization. The undissolved residuc from this operation contains between 45 per cent. and 60 per cent. of nickel, and after drying it is subjected to a carefully regulated reducing process by means oi water-gas, after which it is treated with carbon-monoxide to entract part of the nickel present. In this first treatment with carbon-monoxide about two-thirds of the nickel can be easily extracted; after this amount is volatilized the extraction becumes much slower, so that it has been found advantageous to recalcine the residucs and repeat the copper extraction. the reduction, and the nickel extraction.

The five operations involved are diagrammatically illustra:cd in Fig. 2. The process begins, as will be seen. at one end with the material to be treated, "bessemerized" matte; it ends with the market product nickel. The "bessemerized" matte proceeds, as the arrow indicates, to the first operation (1) oi dead roasting. and for this purpose any suitable furnace may be employed. After roasting, the matte contains 35 per cent. vi nickel, 42 per cent. of copper, and about 2 per cent. oi iron." It then passes to the second operation (2) for the extraction of part of the copper (about two-thirds) by sulphuric acid. the copper being sold as crystallized sulphate of copper. The residue irom this process contains about 51 per cent. of nickel and 21 per cent. of copper, and passes to the third operation (3) ior relucing the nickel and incidentally the remaining copper. to the metallic state, care being taken to avoid reducing the iron. This is effected in a tower provided with shelves, over which mechanical rabbles pass, the reducing agent being the hydrogen centained in water-gas. The temperature does not exceed 300° C. and should be kept lower when mach iron is present. From this tower the ore is comeyed cominuously to the fourth operation (4) of volatilization, in which part of the nickel is taken away by carbon-monoxide and forms the compound nickel carbonyl. The formation of this volatile compound is effectel in a tower similar to the reducing tower. but the emperature is much lower, and does not exceed $100^{\circ} \mathrm{C}$. From the volatilizer. the ore is returned to the reducer (3), ard it continues to circulat: between stages (3) and (4) for a period varying between 7 days and 15 days, antil about 60 per cent. of the nickel has bera removed as nickel carbonyl. The residue from this operation. amomating to about one-third of the original calcined matte, and not differing much from it in composition, is returned to the first operation and then naturally follows the same course
as before. The nickel carbonyl, produced in the fourth operation. Prisses to the decomposer (5) This appliance ts cither a tower or a horizontal retort, which is heated to a temperature of $180^{\circ} \mathrm{C}$. \cdots as to decompose the nickel carbonyl and release the niekel in the metallic form, cither on thin sheets of iron or, preferably,

Fic. 2.
ungrantles of ordinary commercial nickel. Carbon-monoxide is also released, and is returned to the volatilizer to take up a fresin charge of nekel. It will be evident that, when the operation is in progress, the gascous carbon-monowide and the partiaily reduced oxides of nickel and copper are continnously

Aicragesesulis aregiven in :he Figure, rather than the best which bave been
obsaned.
revolving in two separate circuits which join and cross each other th the volathater (4). The commercial product comains buween 90.4 per cent. and 99.8 per cent. of nickel.

It will now be possible to proceed to a description of the working as the author saw it in full operation in Smethwick a few months ago. The material under treatment during the authors visit was of Camadian origin. and had been received os calcincd bessemer matte containing 35.4 per cent. of nickel, $41 . S$ per cent. of copper, and about 2 per cent. of iron. This material was first passed through aball mill and dresser with a sixtymesh riddle, and was then treated in quantities of 3 cwt. in a small lead-lined miser with 200 lb . of ordinary sulphuric acid. which had previously been diluted with about 20 cubic feet of mother liquor from previous operations. These appliances are shown in the right hand portion of the plan and elevation, Fig. 1. The temperature of the mixture soon rises by the action between the copper oxide and the sulphuric acid, and is kept, b; means of a steam-jet, at a temperature of about $85^{\circ} \mathrm{C}$. for $1 / 2$ hour. From this mixer, the charge is run out intn a centrifugal hydro-extractor, provided with a filtering cloth, in which the solution of copper sulphate is separated from the solid residur containing the nickel. After the filtration of the charge is finished. the speed of the bydro-extractor is increased, and the residue is thus rendered sufficiently free from the liquor.

The solution comaining the extracted copper runs from the hydro-extractor into a well, from which it is pumped into the crystallizing vats shown in the Figs. After a period of about dight days to ten days, the crystals of copper sulphate are taken ont of the vats and the mother liquor is mixed with fresh acid and is again used for the extraction of copper. As already mencioned, a small amount of nickel and a little iron are also dissolved in the sulphuric acid during the copper extraction, so that the mother liquor from which the copper sulphate has erystallized becomes gradually contaminated with these two metals. It is therefore necessary to replace some of the mother liquor frem time to time by fresh water, and to recover the nickel from the solution. The simplest method is to evaporate the solution to dryness and to roast the nickel and copper sulphates so obtained. The oxidized material is again introduced into the main process. The copper sulphate crystals from the crystallizing vats are charged into a second hydro-extractor, where they are washed with a little clean water to remove all acidity; they are then dried and are ready for packing. The copper sulphate thus obtained is sufficiently pure for the market. as it contains only 0.05 per cent. of nickel and 0.048 per cent. of iron.

The residue from the copper extraction is taken from the hydro-cxtractor and stored in a bin until a sufficient quantity has been collected to make upa charge of five to six tons for the nickel extracting plant. It now comtains 52.5 per cent. of nickel. 20.6 per cent. of copper, and 2.6 per cent. of aron. The material is clarged by hand at the rate of $1 / 2$ ton per hour into a feeding-hopper described as the matte inlet in the lower part of the plan, figs. 1 , plate 1 , which communicates, through a rotary valve, with the conveyor, consisting of a tube enclosing a revolving spiral, which transports the material to an clevator. This lifts the material to the top of the reducing tower, and discharges it through another rotary valve into this reducing tuwer.

The reducer and the volatilizer (shown in the centre of Figs. 1). in which the treatment with carbon-monoxide takes place are fully described in Dr. Mond's patent (No. $=3.665$ of December 10th, 1895). The reducer consists of a vertical tower about 25 feet high, containing a scrics oi shelves, which are hollow so as to atimit of their being raised to a temperature of $250^{\circ} \mathrm{C}$. by producer gas. The roasted matte falling on these shelves from above is stirred and made to cleacend from one shelf to that below it bs rabbles actuated by a comral vertical shaft. Water-gas passes up the tower to effect the reduction of the material. There are about fourteen of these shelves or trays in the tower. The five lower shelves are not heated by producer gas, but are cooled by a strean of water in order to reduce the temperature of the roasted and reduced matte to the temperature at which the volatilizer is worked.

The volatilizing tower resembles the reducer, but the shelves are not hollow, as there is no necessity to heat them. The redueed niekel requires a temperature of only $50^{\circ} \mathrm{C}$. to enable it to enmbine with carbon monoxide and form a volatile compound, and the matte and gas are sufficiently hot to main-
tain this temperature. In the plant at Smethwick the volatiizer was made the same size as the reducer, but in the new plant it is somewhat smaller.

The decomposer has been devised with much care, and has. in its present form, only recently been patented. The nickel is deposited in it, from its gascous compound with carbon mon oxide, on granules of ordinary commercial metal. The arrangements by which this is effected are very ingenious, and may be described almost in the words of Dr. Mond's latest patent. The ohject is to obtain netallic nickel from nickel carbongl ut the form of pellets, which are specially suitable for the production of nickel alloys. For this purpose gases containing nickel carbonyl are passed through granulated nickel, which is kept . 1^{1} the temperature required for the decomposition of the carbon!l -about $200^{\circ} \mathrm{C}$. The nickel which thus separates from the cabbonyl becomes deposited on the granulated nickel, which censequently increases in size. In order to prevent cohesion oi the granulated nickel, it is kept in motion. When a number of the pellets have attained a convenient size, they are separated by sifting without interrupting.the depositing operation, the smaller granules being returned to receive a further deposit from th: nickel carbonyl. A convenient form of apparatus for effecting the process described is shown in Figures 3, which reptesent vertical sections of the app.ratus on planes at right angles to each other. A is a cylindrical vessel, preferably built up of shor: cylinders, a a, bolted together; it contains a central tube, C, pro vided with gas outlet holes, O, through which the gas containins nickel carbonyl, entering at the gas inlet, B, passes into the vessel which is filled with shot, or small granules, of nickel. The gas permeates through the interstices between these granules. and is brought into intimate contact with them, and when the nictel carbonyl is decomposed the nickel is deposited on th: granules. The gases finally escape through the outlets, L, into the gas-exit pipe, M. In order to prevent the granules from cohering, they are kept slowly moving by continuously with. drawing some of the granules from the bottom of the cylindrical vessel, A, by means of a right and left-handed worm conveyor. U. which delivers the granules into two sifting-drums, N. The snialler gramules iall on to the inclined plane. W, and collect it tle base of the elevator, E, which conveys them again to the to: o: the cylinder, λ. and feeds them through the feeding hole, X. Ir, order to avoid the deposition of nickel from the nickel carbonyl in the central tube, C, it is kept cool by causing water to circulate down the tube, F, and up through passages F^{2}. formed in the central tube, to the water outlet, F^{2}. The cylindrical vessel, A, is surrounded by a wrought-iron casing, Ω. which forms heating spaces. H. communicating with heating. flues, P, which are so arranged that the temperature of eaci cyiinder can be separately regulated by dampers, so as to maintain the temperature of the granules of nickel contained in the vessel, A. at about $200^{\circ} \mathrm{C}$., at which temperature the nicke! c thonyl is decomposed. With a view to ascertain whether the e! linder. A. is full of granules, a rod. R, is fixed to the spinale of an external handle, which can be turned partly round, so that if the operator feels resistance to the motion of the R. it is cestain that the gramules extend to that height. The appliance used for depositing the niekel originally consisted of a scries oi retorts lined with thin steel shects, on which the nickel was derosited in layers. It was found, however, that the metal so obtained was very difficult to cut, and the apparatus above described was accordingly devised.

A magnified section of a granule of nickel shows that there is a core of nickel which under higher magnification shows a crystalline and convoluted structure, and this core is surrounderl by concentric layers. The central core is ordinary commercial nickel, and the layers are nickel deposited from its carbonyl. In some cases granules of deposited nickel are found without any central corc. These have grown from minute fragments oi deposited nickel which have become detached during the course of deposition.

The water-gas used in the reducer is generated in gasproducers. Anthracite is used to decompose the steam, and the water-gas is collected in a gas-holder, whence it is taken to the reducing tower, to which reference has just been made. This gas contains, on entering the reducer, about 60 per cent. oi hydrogen. The reducing operation is so regulated that only a sri all quantity of hydrogen remains in the escaping gas, as a rule not more than 5 per cent. to to per cent. This waste gas is
subjected to the action of a fine water-spras, which condenses the steath generated by the combustion of the hydrogen in the walc:-gas. Yart of this waste gas is used fur making the carbonn:onixide required in the volatilizer, by passing it through the CO retort charged with incandescent charcoal, which reduces the carbon dioxide contaited in the waste gas, and this increases the amount of carbon-mononoxide in it. The gas issuing from this retort contains abou 80 per cent. o: carbonm:onoxide, and is stored n another gasholder, which communicates with the mam circuit of carbnn-monoxide gas. The main circuit of the carbon-monod..: pases through the volatilizer already referred to, where the nieke' is taken up. Ths carbon-monoxide, now charged with nickel, passes through .. filter to separate the fine particles of matte-dust from the gases. then through an apparatus called the decomposer, and so deseribed in the Figure. In this decomposer the nickel taken up in the volatilizer is deposited. The gas now deprieed ot its nickel passes to the CO blower, Figure I , which sends the carbon-monox se to the volatilizer in order that it may take up a f:esh charge of nickel.

The solid material from which the nickel is being extracterl is kept circulating through the reducer and volatilizer for a period varying between seven days and 15 days, during which time the oxides are gradually reduced to the metallic state an-l the nickel solatilized. When the material originally charged in has had the bulk of its nickel extracted it is run out through a ro.ary calciner roaster, Fig. I, which converts the metals int, oxides, so that they may be treated for the second time with sulphuric acid and carbon-monoxide. The ratio between the nickel and copper in the residues from the nickel extraction in practically the same as in the calcined Bessemer matte, with which the operations were started, but the amount of iron hat increased by the removal of the copper and nickel, as the following figures show: Original matte contains, nickel, 35.27 per cert.; copper, 41.87 per cent.; iron, 2.13 per cent. After th.first treatment of copper and nickel extraction, the quantitics arrnickel, 35.48 per cent.; copper, 38.63 per cent.; iron, 4.58 per cent., and aiter the second copper and nickel extraction, nickel. 35.83 per cent.; copper, 35.56 per cent., and iron, 7.82 per cent. Fhe amount of nickel extracted in these two cases was, after the first treatment 6 i per cent., and aiter the second treatment 80 per cent. of the nickel present in the original matte. It must be remembered, however, that in the second treatment only onethird of the original amount remains to be treated, while the final residue is only one-tenth. To avoid the formation oi iron carbonyl, the temperature in the reducer has to be kep: vers low. and if this is done the nickel extracted from a matte originall. containing as much as between six per cent. and ten per cen:. of iron will not contain more than 0.5 per cent. of iron. Ii th. amount of iron in the renidues rises above this percentage, the extraction of the nickel is very much delayed, on account of th: low temperature which must be maintained in the reducer. It is necessary, in such a case, to re-smelt the residucs before proceeding with the cxtraction of the nickel and copper. Tin: following are analyses of the deposited nickel:

	I. Per cent.	IT. Per cent.
Nickel	99.82	99.43
Iron and (Ar:Oi)	. 0.10	0.43
Sulphur	. 0.0068	0.0099
Carbon	. 0.07	0.097
Insoluble residue	0.026

The experimental plant at Smethwick has been working ior some time, and about 80 tons of nickel have already been ex. tracted in it from different kinds of matte. The results obtaned were quite satisfactory, and they point to the conclusion thit: the process is fully able to compete with any other process a: present in use for the production of metallic nickel.

PARSONS' STEATI TURBINE DIRECT-CONNECTED.

With the steam turbine the conditions are favorable to the larger machines for obtaming the best results, and the increas: in the sizes manufactured has been rapid, the average at present being about $300 \mathrm{~h} . \mathrm{p}$. , and we understand that turbo-plants of $4,000 \mathrm{k} . \mathrm{w}$. output are being designed under the Parsons patents. for the generation of electrical energy from steam at a very low
-Reprinted from Enginecting, London. England.
cost to cumpete with water power. In the turbine engine, as in the compound triple or quadruple reciprocating engine with which we are more familiar, it is essential for the most economical results, that the capacities of the eylinders should be proportioned to the various stages of the expansion of the steam between the boiler and the condenser. In the ordinary tupleexpansion engine this is very incompletely obtained. In the mercantile marine, the ratio of expansion seldom exceeds 10 . iold, and in war ressels 9 -fold. In the compound turbme any ratio of expansion can be obtained without a material increase III weixht or butk, and in the larger condensing turbine motors. being constructed for driving dyamos, or for marine propulsion, the ratio of effective expansion within the engine is between 100 and 200 -fold. It is to this exceptional ratio of expansion, and the economy of the engmes themselves, that the satisfactory results which have been obtained in the harger engines are attributed. In the stean turbine the adrantages of working expansively are obtained by increasing the length of the blades and diameter of the turbines: and therefore, of course, increat ing the area acted on by the steam In this way, what corusponds in some degree to compounding in a reciprocating rongine is obtained. though of course there is not the need to divide the expansion up into stages, as in a reciprocatnge engine. lise expansion being continuous and gradual. So long as the initial pressure is kept constant. the temperature of any one ring af blades will not vary.

The plants, when completed in the machine and erecting shops, are transferred to the testing shop. Where they are put under steam, and undergo the usual tests of full and emergency load; the steam consumption being accurately mensured. At presemt the boiler and condenser capacity of the shop is sufficient ior prolonged tests up to $500-\mathrm{kw}$. output, but this will shortly be increased to $2.000 \mathrm{k} . \mathrm{w}$., when plants up to this size will undergo a full series of tests before being sent out irom the works. New large machine-s!ops, erecting-shops, patternshop and offices are at present in course of crection, and will be specially cquipped for the production of the larger turbine plants of standard sizes and design for comtinuous current and single, two, or ithre-phase alternating current.

We do not propose in these articles entering into the construction oi varions types oi generators made by Messrs. Parsons, as that would take us too far afield. but any description oi the works would hardly be complete without some notice of the product. There are thirteen $350 \mathrm{k} . \mathrm{w}$. turbo-alternators now in use ior lighting London at the Metropolitan Company's stations at Manchester square and Sardinia street. In the illustration we show a $75 \mathrm{k} . \mathrm{w}$, turbo-generator of another type, four oi which have been installed at the Hotel Cecil, London.

Steam Turbing.
The central station of the Neweastle and District Flectric Company at Forth Banks, is one of the most important installations undertaken by the Heaton works. A $500 \mathrm{k} . \mathrm{w}$. turboalternator has been more recently erected in the same station.

This company obtained powers to supply energy in 1889. and on January io, 1890 , the works were opened with liree Parsons turbo-clectro generators of $75 \mathrm{k} . \mathrm{w}$. capacity each. The company has been a success in cvery respect from the first. paying a dividend which has increased every year from a per cent. in the first to $81 / 2$ per cent. in the last year of working.

The small cost per unit for repairs and renewals-and this figure inclides all plamt, cables, buildings, etc.-is worth noting; as also is the moderate figure which represents the amount required per unit sold to pay interest on capital at 5 per cent. This is important in view of the results obtained. The works are
near the River Tyne, from which water is drawn for condensing purposes. The water pipes are laid in a brick lined tunnel about :oo yards long, and terminate in a condenser chamber sunk to mean tide level. There are iwo sets of plant, one for surtace condensation, dealing with light loads, the other for jet condensation, and capable of condensing $48,000 \mathrm{lbs}$. of steam per hour. The works are peculiarly formed, being placed on the stde of a hill, and the various rooms are as it were terraced ont. The place originally formed part of Messrs. R. and W. Hawthorn, Leslie and Co.'s marine engine works, and at present is bounded on one side by that company's locomotive shops. As is well known. Messrs. Hawiorn's marine engine depatment was, some time back, transferred to St. Peter's, lower down the Tyne, and the electric light company thus were able to find a site well suted for its purpose. Adrantage could hardly have been taken of the position, however, had it not been that the Parsons steam turbo-generator occupies so small an amount of space, and also on account of the absence of vibration, no ioundation being required for the machinery. With regard to the latter ienture, it is of interest to point out that Messrs. liawthorn's drawing oflice wall forms a continuation of the engine room retaining wall of the electric lighting station; a fact which, in itself, would prohibit the use of ordinary reciprocating engines. The total area of the engine room is only 400 square yards, and in that space there are at present fixed turbogenerators representing nearly 1,720 k.w., with provision for a total of $3.200 \mathrm{k} . \mathrm{w}$.

The use of the steam turbine for actuating electric generators has hitherto created the chief demand for this motor, but there are some other applications of the steam turbine; amongst these that to fan and pump machinery is of considerable importance. It has been found that a centrifugal pump when somewhat modified, is equally efficient whether it is run at 1,200 revolutions, as it generally is, or at 3,200 revolutions. An ordinary 6 -inch pump at 1,200 revolutions will give a lift of about 40 feet, but we learn experiment has shown that the modified pump running at 3,200 revolutions will give a lift of about 200 fect, with proportionately greater output. This equals a discharge of about 1,000 gallons per minute, and gives about 60 water h.p. When this is combined with a $100 \mathrm{~h} . \mathrm{p}$. turbine. a very compact arrangement is obtaincd, suitable for mining purposes. A plant was recently erected at Messrs. Storey Brothers'. Lancaster, for 850 gallons per minute, at $160-\mathrm{ft}$. lift, when run at about 3,200 revolutions per minute, and is reported to have given execedingly good results. For low lifts, the centrifugal turbine pump is not so suitable, and propeller pumps with serews, somewhat like those of a ship's propeller, are adopted. These are suitable for lifts of irom to to 40 feet.

Another department of these works is devoted to the manufacture of fans for ventilating purposes, and also for induced and ioreed draught. For the last three years, a fan 3 fect in diameter has been running at Mr. Cookson's works, Howdon-on-Tyne, drawing hot gases, and exerting a pressure of 7 -inch water gauge with 2,000 revolutions per minute. It has practically run day and night since the start. Fans have also been made at the Heaton works for forced draught on board ship. and for land purposes. At the time of our risit one was being ereced to give induced draught at 3 -inch water gauge to two marine boilers capable of evaporating $25,000 \mathrm{lbs}$. per hour.

Another application of the fans is for colliery ventilation. Fangecring describes a 5 -foot fan which has now been running for nearly three years at the Clara Pit, Wylam-on-Tyne, a large colliery in the Tyne district exhausting 120,000 cubic feet per minute at $21 / 1$-inch water gauge; and another fan has just been crected at the Tredegar Coal Company's pit in South Wales for 300,000 cubic fect of air ner minute at 3 inch water gauge.

Both fans and pumps are reported to have given good results for conomy. One advantage is that practically no foundations are required; in one case the total cost of fan, brickwork and foundations amounted to one-third that necded for an ordinary slow-speed fan. This was largely on accomnt of the small quantity of brickwork and foundations which were necessary. Although we are net entering into many details of construction reference may with advantage be made to the interesting feature of the governing of turbines. It may be effected by an electrical governor, or by a centrifugal governor, as may be found most suitable for the special work. If constant speed is required, as in alternators which have to run in parallel with
others. the centrifugal governor type is adopted; if, however, constant voltage is desired, the electrical governor is used. In the latter the voltage is automatically controlled by the govcrnor, and so accurately can this be done that any desired voltage can be obtained at cither full load or no load to within i per cent. without altering the governor. Thus, if 5 per cent. rise of voltage is desired at full load in a 100 -vol: machine, the governor can be adjusted to give 100 volts at no load, and 105 volts at full load. The governor is exceedingly prompt in its action, and large variations of load cause little variation of voltage, thus making the urbine specially suitable for traction purposes.

In both types of governor, one end of a lever is moved up and down either by the centrifugal governor or by a core controlled by a spring, and actuated by a solenoid in shunt with the terminals of the machine. This lever actuates a small valve. which is further moved to a small degree up and down at equal intervals. This small valice, by a steam relay arrangement, actuates the piston, which, in turn, actuates the main adnuission valve. The result is that at small loads the steam is admitted in a series of equal puffs, titus getting the advantage of the high-pressure steam, and securing great economy at small loads. As the load increases these puff get longer and longer, until at full load the admission of steam is continuous. The puffs are at such rapid intervals that there is no perceptible variation of the speed of the turbine between each puff. Another advantage of the movement of the valve up and down is that everything is kept in a state oi movement, and therefore there is no liability to stick, and all hunting is avoided.

SAND FILTRATION OF PUBLIC WATER SUPPLIES.:

by r. S. lea, assoc. h. can. SOC. C. e.

(Continued from last issuc).

The operations which have been described in the foregoing pages are those connected with the earrying on of what is known as contimous sand filtration; and in determining what methods produce the best results, our only test has been the degree of bacterial purification effected. The reason of this is. as we have already seen, that in waters at all likely to be used as public supplies, the actual amount of organic matter is relatively so small as to be of little sanitary significance. Nevertheless, there is a certain degrec of chemical purification effected by this process. Analyses of the effluents show a reduction of the dissolved organic matter of from 301060 per cent. This is brought about by the action of the bacteria, which, though existing under adverse conditions, are yet capable of producing this result in the presence of the free oxygen in the water, the amount of which is usually quite sufficient for the purpose. Now, in the case of sewage, which is only very highly polluted water, the amount of free oxygen is very small in comparison with the organic matter present. And it was found, in making experiments on the purification of sewage by passing it through beds of sand, that if air were artificially introduced a very complete reduction of the organic matter would be effected by the bacteria. This was accomplished by working the bed intermittently: that is to say, at regular intervals of time-say 24 hours -the bid was allowed to drain, and fill its pores with the air drawn in aiter the sewage. After taking this breath the bed rested for a day; then the sewage was again turned on to the surface, preventing the escape of the air which was necessary to provide oxygen for the next 24 hours' purification. The same method used in connection with water is what is termed intermittent filtration. The first filter of the kind was built at Lawrence, Mass., by IH. F. Mills. C.E., member of the Siate Board of Health. Since then, small plants on the same principle have been built at Mt. Vernon, N.Y., and Grand Falls, North Dakota. The results do not seem to indicate any necessity for their use. unt being at all superior to those of continuous filters. while the method of operation is not suited to cold climates, and either recuires a greater area of bed or a higher rate of filtration. A description of the Lawrence filter may be found in Trans. Am. Soc. C.E.. 1893, p. 350.

From what has been said, it will be evident that where the water is at any time liable to turbidity, a setting basin, capable of holding from 12 to 24 hours' supply at least, must be provided Also. in order that the filter may be able to work continuously

[^2]at a uniform rate, a clear water basin will be necessary of a capacity sufticient to cover the maximum fluctuations in the consumption. If the supply is from a storage reservoir, the filters are placed below the dam, and are, of course, supplied by gravity. But even when the supply is from a river or lake, the topegrapliy of the ground often admits of the same economical arrangenent. If this is not possible, the water must be pumped into the settling basin by a separate pump of the low lift varicty. The extra expense of two pumpings may be almost climmated if the same station, boiler plant, etc., can be made to serve for both pumps. The total area of filter beds required depends in the first place upon the maximum rate adopted; and, second, tepon the area out of use while being scraped and refilled. The higher the rate of filtration the less the total area, and therefore the first cost of the plant. The principal item of expense connected with the operation of this plant is that for scraping; and it is found that the amount scraped for any given quantity of water filtered is independent of the rate. Also, the allowance for the area out of use will not vary with the rate to any extent. Hence an increase in the rate will not by any means produce a proportionate reduction in the cost of filtration. A rate of $3,000,000$ gallons per acre of bed in use will give results entirely satisfactory from the standpuint of efficiency, and at a cost which is usually by no means excessive.

The size of the individual beds will depend in part upon the extent of the total area, the smaller plants having necessarily to use smaller beds. A large bed costs less per unit of area than a small one, on account of the proportionately greater length oi wall in the latter case. With a large bed it is, however, probably more difficult to obtan a uniform rate of filtration over the whole area. During the winter of cold climates the cost of maintenance is considerably increased by the expense of removing the ice which forms in the bed. It is also difficult to avoid injuriously disturbing the surface of the sand. Beside this, when the water is drawn down the surface sometimes freczes before it can be scraped. On account of such disadvantages as these filter beds should be covered in all cold climates. The best method of constructing these roofs has already been referred to. The proper number, shape, and area of the beds of a system can only be determined for any particular case by careful study oi the local conditions, and by making comparative estimates of the different items of cost of construction, maintenance, etc. There will be opportunities for the exercise of considerable ingenuity in the general laying out of the system, the relative placing of its parts, the arrangement of the piping, drains, etc., in order that convenience and cconomy may be happily combined.

The cost of construction will of course depend on the local circumstances and the kind of materials used. As in all hydraulic work, great care is required in the construction, and the best quality of materials must be used. In the main, it is the sanie class of work as is required in the building of distributing reservoirs. The following table gives the cost of construction for several European and American filters:
Place.
Cost per Acre.

Lundon.
Covered.
Berlin ($1884-87$)
析年
Warsaw (1885) 78,000
Zarich (1885) 86,000
Nantucket. Mass. (1892) ..
Hudson. N.Y. (1874-88)...
Ilion (I 803)
Ashland, Wis., (1897).....
Somersworth, N.F. (1898)
Poughkecpsic, N.Y. (1872)
Pouglikeepsic. N.Y. (1896)
Lindley gives the general cost of continental filters as $\$ 45,000$ per acre for open, and $\$ 68,000$ for covered. The following figures, giving in detail the bids received February 15th, 1898, for constructing the water filtration plant now in process of construction at Albany, N.Y., will be of more interest. When compicted it will be by far the largest plant yet built in America; and in general design and completeness of equipment it will be second to nonc.. It will consist of a settling basin of $16,000,000$ gellons capacity, eight covered filter beds, cach with 7-10 of an
acre of sand surface, and a clear water reservoi- with a capacity of 600,000 gallons. There will also be provided an oflice building containing fully equipped chemical and bacteriological laboratories. The price for the sand and gravel included the necessary screcuing, washing and putting in place. The sand washer is of the ejector type. The bids are as follows:
acre, depending upon the wages paid. At Mount Vernon, 'J.Y., the shovellers and barrow wheelers are paid $\$ 1.10$ per day, and the scrapers $\$ 1.25$. Chas. Fowler, for many years in charge of the filters in Poughkecpsic, N.Y., says that one man working one hour is required for every 150 square foot of surface cleaned and remored. This would cost at $\$ 1.50$ per day, about $\$ 43.50$ per

The itens of special interest are marked thus *
It will thus be seen that a covered filter plant of this area (5.6 acres) with settling basin, clear water basin, and all other appurtenances complete can be built for less than $\$ 56,000$ per acre. For further details and information concerning this plant see Enginecring News, Feb. 1oth and Oct. 20th, 1898.

The total cost of maintenance of a filtration plam is made up of the operating expenses, and the interest and sinking fund charges. The former-the operating expenses-comprise: (a) The cost of supermtendence, and oi attendants to look aiter the regulation, etc.; (b) the cost oi scraping and removing the sand; (c) the cost of rashing the sand; (d) the cost of replacing the washed sand when renewal of the bed becomes necessary.

It is only in very large plants that a special superintendent is required, so that the expense for that purpose would not form a very large part of the total cost. The proper handling of the gates, and the running of the plant in general requires a degrec of intelligence considerably above that of the ordinary laborer. The wages of the gatemen therefore will be from $\$ 2$ to $\$ 3$ per day. Scraping and removing the sand by wheelbarrows seems to cost, under ordinary circumstances, between $\$ 40$ and $\$ 50$ per
acre. Lindley gives 30 days at to hours each for every acre, which at the same rate is $\$ 45$ per acre. In the small plants at Ilion, N.Y., and Ashland, Wisconsin, the cost is at the rate of about $\$ 50$ per acre. The cost of sand washing varies with the method employed. In Poughkeepsic, when they used a simple inclined trough and water jet, it cost as high ats \$r. 50 per yard. By improving their methods they reduced this cost, till to-day it is only 27 cents per yard. In Hudson, the cost is 20 cents per yard, and in Ilion 18 cents. In Germany it varies from 14 to 20 cents per yard.

The periodical replacing of the sand in the bed must be done carefully of course, but should not cost, meluding whatever is necessary te be done to the permanent layer, more than 40 cents per cubic yard The cost of these various operations will of course depend upon the scale on which they are carried on. It will obviously be easier to keep the price low with a large plant than a small one. In the case of the former a force of gatemen and laborers can be permanently employed. In the smaller plants the operations of scraping and sand washing only take place at intervals, and are performed by laborers hired tempurarily for the purpose, or by employees from other parts
of the water system. In using the above data to make an estimate of the total operating expenses. We shall employ as a unit the cost per million gallons of water filtered. Assuming an average yield of 50 million gallons per acre between scrapings, the total cost would be as follows:
Scraping and removing at $\$ 45$ per acre. $\$ 0.90$ per mill. gals. fit. Washing $100 \mathrm{cu} . \mathrm{yds}$. sand at 25 cc yd... 050 per mill. gals. fit.
Replacing, etc., at 40 c . yd. 0.80 per mill. gals. fils.

Superintendence, etc
0.25 per mill. gals. fit.

Total.
$\$ 2 .+5$ per mill. gals. fils
To this should be added the cost of bacterial analyses ot the cilluents which should be made as frequently as possible in order to test the working of the filters. In many of the European plants a fully equipped laboratory is included in the equipment; and some of the superintendents, like Pieike, chief engineer of the Berlin works, are also expert bacteriologists. The actual cost of the operations discussed above for nome American filters is as follows:
Poughkeepsie, N. ${ }^{\text {P., for }} 20$ Years aver. $\$ 2.90$ per mill. gals. till. Hudson, N.Y., is given as............... 1.38 per mill. gals. fill. Mount Vernon, N. K^{\prime}., a little less than. . 2.00 er mill. gals. fit. Ashland, Wisconsin, estimated to cost. ... 2.2s per mill. gals. fit.

The following table furnished by IV. B. Bryan, Espy., chief engineer, East London Water Co., gates the yearly cost oi filtration of the London Water Companies from 1\$90 to 1895:

COST HER MLIION U.S. (i.MLI.ONS.

To get the total cost of maintenance, we must elude with the operating expenses the charges for interest and sinking funds. This will of course depend upon the cost of construction; and the latter will vary with the maximum rate of filtration adopted, and the proportion of the total area to be out of use while being cleaned. These being decided upon, it will then be easy to calculate the first cost per million gallons of daily yield. For example. if, with the rate chosen, the daily yield of the plant will be $2.000,000$ gallons per acre of the total area of beds, the first cost per million gallons will be half the cost of constriction per acre, and so on. The diagram gives the cost per million gallons filtered. corresponding to different construction costs, which will pay the interest an sinking fund charges necessary to cancel the whole first cost with interest at the end of 40 years. For example, with a first cost of $\$ 60,000$ per acre, and a net yield of $2,000,000$ gallons per acre of total area. the cost per million gallons with interest at 4 per cent. would be $\$ 4.15$. With interest at 4% per cent., and a first cost of $\$ 80,000$ per acre, first cost would amount to about $\$ 6$. Add to this $\$ 2.50$, for the expense of operation, and we should have $\$ 8.50$ as the total cost of filtering $1,000,000$ gallons of water, or 1,000 gallons for less than $9-10$ of a cent.

Having now discussed the method and cost of sand filtraton, the next and last question to be considered is the nature of the results which this process can be depended upon to produce. There can be no question as to its efficiency from an aestinctic point of view. The complete removal of even the most minute particles in suspension, together with a large part oi the dissolved organic matter, ensures the entire elmmation of any characteristics the water may possess which would be disagreeable to sight, taste or smell. Yet it is because of the effectiveness of the purification from a sanitary standpoint that this system is especially noted. This is due to its destructive effect upon the bacteria, which is almost sufficient to cause their disappearance during the passage of the water through the filter. The average reduction in a well designed and well managed plant will be as great as 98 or 99 per cent., as shown by comparing the number of germs in the effluent with that in the applied water. But in reality it is even greater than this. For it has been shown that of the few bacteria which are present in the effluent, a certain number come from the underdrains. and have therefore not passed through the filter in all. These
belong to some of the species of water bacteria, and, conseguently, will be quite harmless. From tests made on the experimental filters at Lawrence with an easily recognized and hardy species, the actual reduction was found to be from 90.9 to 100 per cent. Now, when it is considered the filter is capable of producing such effects upon bacteria which exist normally in water, it will be evident that the effect upon the pathogenic or disease germs which are out of their natural habitat and in a decidedly unfavorable environment will be much greater. Thus what may be called the "hygienic efficiency" of this system must be remarkably high. The process is comparable to mature's method of purifying the surface water which furnishes the underground supplies; and if properly carried out, the water produced is probably of almost equal wholesomeness. The continued experience of places where sand filtration plants have been in operation for some time only goes to strengthen this conclusion.

In America the method is only just beginning to be employed. Up to the year 1892 there were but two plants of this description in the country, viz., those at Hudson and Boughkeepsie, which have been already referred to. Since that time 14 new ones have been completed, and three others are under construction, the latter including the large plant at Albany. The experience to be derived from these plants is too limited to be of much value for some time to come; but the officials connected with the majority of them have invariably expressed their entire satisfaction with the method oi working and with the results obtained.
(To be continued).

The Calgary Milling Co. will build an elevator.
At Truro, N.S., T. G. AreMullen is completing a pulp mill.
Goderich. Ont., has voted a bonus of $\$ 10,000$ to the Sensington Furniture Co.

Windsor, Ont., is buying a site for a drill shed to be built there by the Dominion Government.

The contract for the new public works office at Regina, Assa., has been let to Willoughby \& Mallard.
G. H. Hopkins and J. D. Flavelle have bought the Lindsay, Ont., waterworks. F. K. Begbic will be manager.

The ratepayers of Woodstock, N.B., will vote on a bylaw to give a $\$ 50,000$ bonus to a pulp mill on October 16 th.

Kamloops. B.C.. has voted $\$ 27,000$ to improve the waterworks, and $\$ 15.000$ to extend the electric light plant.

An addition will be erected to the John H. Strafford Hospital, Brantford. An isolation hospital may also be built.

The overhead bridge across the M.C.R. near Kingsmill, Ont., which was recently burned, is being replaced by a new one.
H. M. Whitney, Boston, president of the Dominion Iron and Steel Co., has given $\$ 25,000$ to build an hospital in Sydney, Cape Breton.

The Canadian Rubber Co., Montreal, has ordered a $100 \mathrm{~h} . \mathrm{p}$. Mumford Improved boiler from the Rob Engineering Co., Amherst, N.S.

Joseph Black, Toronto, has been continued as editor of The Iron Moulders' Journal by the Iron Moulders' Association of North America.

The boiler inspectors in Montreal are enforcing the city bylaws requiring the use of smoke consumers, and heavy fines are being imposed.

The L.E. \& D.R.R. is pulling down its grain elevator at Port Stanley, Ont., which was built four years ago, and removeins it to Sarnia.

Smith's Falls. Ont.. has appropriated $\$ 1.50 .000$ to puce in a system of water supply and sewage Willis Chipman, C.E., has prepared the plans.

Graham Moon, of the Postoffice Department, Ottawa, is said to have invented a roller boat, which it is claimed is better than Knapp's failure.

The Kingston School of Mines is trying to secure $\$ 6,000$ to equip a new laboratory. The expenses last year were $\$ 2.070$ in e::cess of the receipts.

The contractors have commenced work on the Hoepiner Refning Co.'s nickel works at llamilton.

John Dittrick's bolt and nut factory at P'erth, Ont., is nearly completed and will soon be in working order.

The ammal convemtion of the lntermational Building Inspectors' Association :ook place a month ago in Quebec.

Brantord. Ont., will buhd a new Isolation Hospital, and make a large addition to the John H. Stratford Ilospital.

The scale mannfacturers of the United States are, it is said, to form a trmst which will combine most of the keading makers.
W. J. Hamiton. Petcrborough, Ont., has invented an improvement in gasoline engines, which is auracting some aitcntion.

Rolft. Cameron, comtractor, Amonte, Ont. has a contract for building a new wing to Rideatu IIall, the official residence of the Governor-General. Ottawa.

The Lillie foundry, Perth, Ont., has passed into the lands oi a new firm, The James Bros. Foundry Co., which will operate it on a large scale. it is said.

A bylaw granting W. W. Ogilv:c, of Montreal, exemption and free site for his hour mill and elevator at Fort William. Out., was carried Serp. Ith.
J. E. Asquith and others of Ottawa. Ont.. propose to yut in waterworks and sewage in Arnprior, Ont. They would also take over the electric light plant.

The Mattawan Iron Co. is in correspondence with the town oi Fort Willizm over the $\$ 50.000$ boms ior a smelter, which that town has been offering for some time.

A steam plough has been successimlly tested at Morris, Man. I: wiil plough 18 acres per day with ease, according to the testimeny of the mechanic who made the test.

The contract for raising the piers of the Edmonton, N.W.T.. bridge has been let to the Dominiun Bridge Co. It has been decided to add eight fect to the present height.

The acetylene gas apparatus in T. Ivory \& Co.'s store. Omemer. Ont., exploded. September $26 t h$. The generator was wrecked, but no considerable damage was done the building or contents.

The William Kennedy \& Sons. Ltd., Owen Sound, is buikling an cxtension to its ioundry. The aldition. which will be used for the manufacture oi steel castings. will give employment to between twenty-five and thirty men.

The ioliowing were elected officers at the convention of the United Brotherhood of Railway Tracimen in Ottawa: President. J. logan. Ottawa East: vice-president. J. Mogan. Ottawa: secretary: Il. McKenny, Ouawa: ireasurer. A. Thompson. Ollaw:

St. Ilenri. Que., council bas granted a tax exemption to the Merchants' Cotton Company to crect a inctory in :he municipality. The iollowing provisn was maste: " The company will have to asree to employ three hamired persons. in whom a yearly sum of $\$ 30.000$ will lave in be paid as ealary:"

The Nova Sentia Sicel Company is making preparationc int building another smelting furnace The large steel buidding will be extended some cighty feet to enver the new furnace, and bring the sted traveliing crane in ennnection with it. The lurnace will produce 100 tons oi stecl a day.

The large isen works of Carrice. Laine \& Co.. J.cvis. Duc. are crowded with orders The extablichment employs about +25 hands. and all are becy. Within the lact threc monthe a general increase in the wages lias tation place. and the men are now reeciving about fitecn per cent. more than inemerle:

Mel.achlin Bros. Arnprior. lumbermen and sawmill owncrs. chartered two CPR trains and gave a iree trip to the Ottawa Exhibition th thrir cmployecs, and paid not only the fare nit the eveursinnists. hut their entrance for is the Fexhibition Thifteen humired men, women and chidiren were thus entertained.
A. S. Chrystal is giving up his business as steam boiler manufacturer here. and will remore in lominn, to enter the I-ondon Eugine Supplies Co The company will manufacture steam boilers and steam heating appliances, will sell engincs. boilers, cte.. and will conduct a repair chop ine engines and ollor machinery - Gonderich Sigmal.

The Simeoe Peat Fuel Company, Barric, Ont., commenced operations a short time ago, and this industry promises to give employmem to a large number of men.

Frank White, representing the Canadian Peat Fuel Co., Toronto. has gone to Tullamore, Ircland, where be is going to install a plant for the Cimadian Peat Fuel Co.
II. E. Ihill, of Halifax, N.S., has ordered a 100 h.p. steam plant from the Robb Enginecring Company, Lid., Amherst. N.S., for the new works of the Maritime Explosives Company.

The Good Roads Machinery Co., of Hamitoon, has taken action against the Sawser-Massey Co., of the same city, to restrain it from using the phrase, "good roads" in connection with its business.

Notice is given of application tor the incorporating of the Aroostook Power Company to crect mills and plant for the manufacture of lumber, pulp and paper at Aroostook Falls in Victoria county. New Brmmswick.
J. W. Wilson, Outawa, has bought two marine type 3 h.p. gasoline engines from the McLachlan Electric and Gasoline Motor Co., Toronto. One of these Mr. McLachlan states is for export to the United States, having been bought for a summer visitor by Mr. Wilson.

The IV. R. Brock Quarry Co., Toronto, has bought the Mcamt 'insun uranite Quarry Works from J. M. Hazel \& Co., amd has also purchased the Stanstead, Que., granite quar--ies, melading the rights and plam of the Dorr Gramite Co., with three miles oi railway track.

As mentioned last month the business of Tingley \& Stewart Mnig. Co.. makers of rubber stamps, etc., Toromo. has been bought by Bernard Cairns, whose familiarity with every detail oi the business and exact knowledge and careful methods oi carrying it on ensure all patrons that their work will be turned out promply and as ordered.

The Georgian Bay Portand Cement Company. Lid., is a new industry established this year in Owen Sound, Ont. Buildings are now practically completed. and manuiacturing operations commenced. Seventy-five men will be given employment. and the wages will amount to between $\$ 2.500$ and $\$ 3.000$ a month. The output will be 400 barrels per day, and it is expected this will be doubled in the next two years.

The British Government, aiter careful tests oi every known material used for boiler covering. has selected mica covering for Her Majesty's new yacht. After looking into the qualitics oi mica as a jipe and boiler covering a number oi English cenpitalists have iormed a strong company to manniacture hoiler covering under the patents of the Mica Boiler Covering Co.. of Toronto.
R. H. A. Humter, W. Hunter, A. Matcolm, G. M. Mackendrick, I. L. Mlurray. D.D., W. C. Loscombe, J. Boycr, DelW. H. Martyn, M.D., J. Ructtel, G. Wood and J. B. Watson. Kivcardine, Ont., and J. Warren, C.E.. Walkerton. Ont., have been incorporated as the Hunter Bridge and Boiler Company of Kiacardine. Letd.; capital, $\$ 25.000$; to carry on the busiuess oi flutter Bros., Kincardine, Ont.
P. I.yall E Sons, Montreal. have installed a large diamond saw. elecirically driven, in their stone cutting yard. This saw is a part oi the $\$ 20,000$ electric plant recenty purchased by the firm. and includes a travelling derrick and two planers. one of line largest capacity yet made. and the second of smaller size. There are but iotir of the derricks in use in the stone yards oi the United States, and no other in Canada.
E. J.conard \& Son made a very fine display oi their engines. cte., at the Exhihition recemty held in St. John. N.B. Amons those who have bougltt their engines recently from this from are. W1. II. Fowler, of the West End, a 250 h.p. engine to be used in his formr mill. J W \& W. A. Intehinson, of Berwich. λ.S., have bought the large engine exhibited in the booth. The Acadia Electric Co., of Woliville, N.S.. have sent in an order for one oi this firm's 130 h.p. pecricss self-oiling engines. J. R. Candice \mathbb{E} Son. of Peppervilic. N.S. have ordered a 60 hp . oumfit: F. H. Pickelt. of Bridgetown. N.S.. a 35 li.p engine: M. Graves. of Annapolis. N.S.. a high-speed engine, and Cliarles H. Brown. who is starting in operation his new flour mill at Gagetown. hase orrlered a stcam outfit.
A. O. Norton, manufacturer of ball bearing jacks at Coaticooke, Que., has just shipped a large order to Denmark. Sereral other important orders for export to Indin, Australia and South Africa have just been received.

Hon. George G. King, Chipman, B.C.; Ion. Ambrose D. Richard, Dorchester: Henry C. Read, Sackville; M. Lodge. Moncton; E. Hutchinson, Douglastown; W. Kitchen. Fredcricton, and W. Frank Taylor, Hillsboro, are to be the provisional directors of the New Brunswick Petroleum Co., Ltd., for which a charter has now been applied for. The cemonny will bore for oil; its chicf place of business is to be Moncton, N.B., and its capital $\$ 1,000,000$.

The Owen Sound, Ont., Iron Works Company, Ltd., have revived the business of the old Corbett foundry firm, which closed up during the hard times of a few years ago. They commeneed operations last Jamuary, and give employment to twentyfive men. The company contemplates enlarging its foundry, increasing its staff and going extensively into the manufacture of propeller whecls, according to a recent report in The Toronto Globe.

The following tenders for the construction of the new drainage system for Lachine, Que., were received: Albert Dini. \$200,129.74; Rheaume \& Danserean, $\$ 144,816.90$; Leopold Leger. \$163,230; Chartier \& Rebin, $\$ 174,095 ;$ Martincau, Son \& Lemoine, $\$ 185,000$; Bastien, Valiquette \& Parker, $\$ 152.523 .15$: O. L. Hainault \& Co., \$149.552; Amyot, Lemay \& Gamhier. $\$ 141.518$.ss. The contract was awarded to Bastien, Valıquette \& Parker, whose tender, though not the lowest, was deemed to offer the best guarantees for the satisfactory execution of this important public work.

Harding \& Lcathorn, Iondon, Ont., have the contract for building the waterworks at St. Mary's, the figures being \$to,03n. The specifications call ior: All labor in laying the cast-mron pipe distribution system, comprising 1,000 fect oi 10 -inch pipe; 4,000 feet of 8 -inch pipe; 10,600 fect oi 6 -inch, and $\$.050$ fect of 4 -inch; setting 52 fire liydrants; setting 34 valves; furnishing material for and building 17 valve chambers and setung 17 valve boxes. The contractor also furnishes all materials required exeept the east-iron pipes, the pipe sjecials, the fire hydrants and the valves.

The Camadian Hardware issociation at its annual comvention in Hamilion. Ont.. last month, elected these officers ior the ensuing year: President, T. H. Newman of Cavcrlill. Learnont \& Co., Montreal; vice-president, Peleg Howland oi Howland, Sons \& Co., Soronto: secretary-treasurer, R. and T. Jenkins, Toronto: Exceutive Committec, Thomas I.ce oi Rice Lewis \& Son, Toronto; R. Angers of Frothingham \& Workman, Montreal; E. Jeanotte of L. H. Herbert \& Co., Montreal; llilliam Viallance of Wood, Vallance \& Co., Hamilton. Ont.: John Bowman oi Bowman Hardware Co., London, Ont.

For purposes of record and identitication, the Detroit Lubricator Co.. Detroit. Mich.. has numbered its sight eed lubricators consecutively irom No. I upwards. so that the mumber appearing on any lubricator shows how many lad beca mamuactured up to its time. On Sept. 15. 1899. there was completed lnbricator ion. $\{(00,000$. When it is considered that as a rall only one lubricator is used on an engine this figure gives cloquent testimony to the very gencral use of the Detroit labricators. The present output of sight leed lubricators alone. oi ihis company, amounts to over 5.500 per momb. The Detroit L.ubricator Co. also reports a rapidly growng trade in its new style glass oilers and oil pumps.

The F. D. Cummer \& Son Co., Cleveland. Ohio, the mannfincturer of the well-known Cummer Alechanical Drgers, reports the following sales and shipments ior the past two months: I-afin \& Rand Powder Co., Pleasant Prarrie, Wis.. one spectal dryer to dry 1 h tons of nitrate of soda per hour: C'nited States Navy. Indian Mead. Md., one special dryer to dry 1 tun oi nitrate of soda per hour: Trent Valley Peat Fucl Co.. Peterborough. Ont.. one No. ∞ "Salamander" dryer to exaporate 2关 tons of water per hour irom peat fuel; W'arren-lhuraham Portand Cement Co., Craigsville. Va., one No. 3 style "F." dryer to dry $2 \not 2$ tons oi slack coal per hour; Pecrless Poriland Cement Co., Union City, Mich., one No. ∞ " Salamander" dryer. 10 evaporate 2 tons of water per hour, irom marl: Joln MeGillen. Chieago, one Cummer portable railroad asphalt paring plant. guarameed to lay 2,000 yards of 2 -inch topping per
day of ten hours; Societe Anongme de Ciments de Vise, Brussels. Belgitum, one No. 000 size "Salamander" dryer to dry 15 tons of chalk per hour, and one No. 2 size "Salamander" dryer to dry four tons of clay per hour; T. Herbert Wymonds, Vancouver, B.C., one No. 00 style " F." dryer, to dry 50 tons of fish scrap per day; Pennsylvania Salt Mnfg. Co.. Natrona, Pa., one 3 tunnel, 6 track tunnel system cumplete, for drying iron ore briquettes; Vulcanite Portland Cement Co., Phullipsburg, N.J., one No. o style "F." dryer for drying 75 tons of slack coal per day; Wm. Krause \& Sons Cement Co.. Martins Creck. Pa., one No. 8. style "F." dryer ior drying $21 / 2$ tons oi coal per hour: Premicr Tripolite Co., North Sydney. N.S., one special dryer for drying tripoli.
lectric Tlashes.
The Montague, P.E.I., Electric Light Co., is making preparations for lighting the village.

Nelson, B.C., is installing additional power for its lighting service, and will shortly be able to supply 4,50016 -c.p. lamps.

The village of Weston, Ont., intends to buy the water-power on the River Humber, and run its proposed electric light plant.

It has been stated recently that the strect raihway, gas and clectric light and power companies in Brantiord, Ont., were to be combined.

At the annual mecting of the Quebec Electric Railway. Lisht and lower Compary, A. Thomson wa; clected president in place of II. J. Beemer.

A project ior the construction of an electric railway irom St. Catharines to Wellandport, Ont., traversing Fonthill and Pelham, is under consideration.
W. W. Brown. in charge of the lighting plant at Petrolia. Ont., sunce its establishment, has gone to Camp MeKınney, B.C., to take charge oi the plant of the Minnchaha Minung Co.

The transice of the Hamiton and Dundas Railway to the Cataract Power Company was completed Sept. 17th. The company paid \$'i0.000 cash besides assuming bonds amounting to Sno,000:

Application is to be made for a charter ior an electric or steam railway from Ottawa to Brockville. Ont., with power to operate a ierry on the Si. Lawrence, between Brockville and Marristown, ‥Y.

The Brantord Electric and Operating Co., Brantiord, Ont.. is rapidy increasing its power business. The Keys Somerville Printing Co. has installed a 3 h.p., two-phase S.K.C. induction motor with which to operate its new printing presses.
E. H. Caughell, Mary L. Caughell, A. E. Marlatt. Emma L. Marlatt and W. T. Williams, St. Thomas. Ont. have been incorporated as the Port Stanley Electric Railway: Co., to build an clectric railway irom St. Thomas to Port Stanley: capital. $\$ 40,000$.

Liverpool. N.S.. has taken up the municipal electric lighting Uusiness, and piaced an order with the Royal Electric Co. for a $75 \mathrm{k} . \mathrm{w}$. two-phase S K.C. generator, as well as the full complement of transformers, and other apparatus. The plant is to be in operation by November ist.

The Royal Electric Co.. Montreal, was awarded the contract for installing the new electric light plant to be added to the fiant oi the corporation of Picton, Ont. The new plant is to consist of one 120 k.w. S.K.C. iwo-phase generator, with the full complement of transiormers, lamps. cte.

An clectric railway between Port Stanley, St. Thomas and I.madon. Ont., the track to be laid along the gravel road conneciung those places. is now talked of. A company has heen incorporated to build the road, which if successiul is to be iollowed. it is said, by an clectric road to Aylmer. Ont.

The corporation oi the city of Winnipeg through its Water and Light Commissioners has awarded the contract for the incandescent clectric lighting plant to the Royal Electric Co.. Mentrcal. The plant is to consist of a $60 \mathrm{k}, \mathrm{w} . \mathrm{S}$ S.R.C. two-phase altornating generator, with the necessary transiormers. etc. The order for the are apparatus was placed with the Western Electric Co.. Chicago. III.

The enpital of the Citizens' Telephone and Electric Co.. I.tI.. Kat Poriage. Ont., is io ie increased from $\$ \$ 0.000$ to $\$ 00.003$.

The Mineral Springs Furniture Co., of Preston, Ont., has installed a dymano and electric lighting plant in its factory.
J. H. Jones has completed the phane and specifications for the S:rmia, Ont., Strect Railway Company's proposed new electric line.

The St. Hyacimbe filectric Rainay Co. is apmying for a Quebee charter to build an electric railway in the counties of St. Myacinthe and Bagot.

The Hamithon Electric 1.ight and Cataract Power Co. has inad cermin changes made in its charter emablug it to take neer be managemem of compamies of whose stock it has acquired at least two-therds.

The Robl Enkinecring Co., Amherst, N.S., is supplying the mon of Neppawa. Maniobla. with the steam plam for its sew electric lighting system; a $100 \mathrm{~h} . \mathrm{p}$. compound engine and two IS h.p. Mumiord ingroved boilers.

The Royal Electric Co.. Momreal, annomeed a cut oi 30 wer cent in electric light sates on Seph. 1ath. and the Lathine kapid: Land and Hydraulic Co. has followed with a reduction .n to per cent. taking effect October ist.
W. II. Pearson. W. II. Pearson. jr.. W. F. II. Mansey, J. W: Flavelle. Toronto. and R. Weddell. Trenton. Ont. have been incorporated as the Tremon Electric and Water Co.. I.td.. alapial. $\$+00.000$; head office. Toronto.

The Ounwa Electric Raihway Company has let a comrac: (1) Heney \& Smith, of Ottawa, for the constructuon of an elecaric radial line irom Ottasa to Britanna, on Lake Dechenc. seven miles. The road is to be completed by November 1 si.
J. Playfair, Geo. Chew, D. L. White, jr., and P. Potvin. Malland. Ont., W'. J. Sheppard. W. H. F. Russell, W. J. Lover ing. oi the towaship of Tay, coumy of Simeoc. Ont.; J. J. Drmmond. Radnor Forges. Que., have been incornorated as the Midland Power Co.; capital, $\$ 90,000$; to supply heat. lighe and nower.

At a meeting oi the sharchulders of the Ros.a Eleuric Cum pany, R. Forget. presideat, in the chair, the bylaw giting power to increase tilc capital stock of the company by $\$ 750,000$ was stibmitted and approved. The stock, it was decided. would be issued on a basis of one to two, so that present holders oi two shares would be entitled to one in the new stock.

Hon. S. IV: Parent has annomeed that the Englsh and Cinited States company, which has appled for certan water powers on the upper waiers of the Saguenay Rwer. Oue., for the purpose oi establishing calcium carbide works. will spend over a million dollars there if they obtain the privileges. His engineer is engaged in preparing a teport for him on the matter.

The Camadian Niagara Yower Company, which obanined a acw iranchise from the Oatario Government under which, according to the statement of Wallace Nesthit, the companys counsel. it is expected that fower will be awainble for transmission to Toromo. has given a contract ior boring test holes aiong the line of the tunnel it contemplates building on the Canndian side oi the Miagara River.

If. Alabaster, Gatelouse \& Co.. 4 Ludgate IIIl, London, E.C., proprictors also of The Electrical Revew, announce that the 1900 clition oi the Liniversal Electrical Directory is in coursc oi preparation for its 29 th ammal issue in January next. This book is of great value. and those wishing to secure the inertion oi their ames in the fortheoming edition shoud not ose my time in communicating with the publishers.

In comection what the destruction of water mains by elec.rolysis the Eing meernig News, New Xork, recenty recommends the use of wood in oomeng water mams instend of lead. In St. John, Ni.B., it has been the practice for nearly hall a century to close the joims meny water mpes, not with melted lead. is in most other places, hut with pine plags. The experiment was tricd in 185y, and again in $15 \overline{5}$. On both oceasions it rorked so well that the same policy was parsacd two years ago. The obivect in view was coonomy.

The proposed byinw to raise $\$ 25,000$ to establish a municipal electric light pham in Amonte, Ont., was defeated, Sept. 2Ght, by 3 voles.

The first meeting of the new directors of the Radial Electric Railway since the Cataract Power Company syndeate secured control of the road, was held Sept. gth, and officers were elected as follows: President, John Patterson; vice-president. Hon. J. M. Gibson; treasurer, John Moodie; secretary, S. E. Malloch.

The Nowa Scotia Electric Co. has been organized to supply elsetricity for lighting and power purposes for the whole of the Armapolis Valley, Nowa Scotin. The following oflicers have been elected: Presiden, Hon, F. W. Borden; secretary-treasiurer, J. W. Beckwith, who with Captain II. II. Norwood, C. O. Foss. F. W. Clark, F. B. Wade and Allen Healy will constitute the beard of directors.

The St. Catharines Cold Storage and Forwarding Co., Letd, is replacing its direct current power service now in use in the warchouse, with a 15 h.p. two-phase S.K.C. induction motor. The curremt for this machine is supplied by the St. Catharines Electric Light \& Power Co., which has recently installed in its power house a $=00 \mathrm{k} . \mathrm{w}$. two-phase S.K.C. generator for both lighting and power purposes.

At a meeting of the ereditors of the Kay Electric Company, Jiamiton. Ont. it was decided to wind up the estate, and hir. Weyler, of the Packard Electric Co., St. Catharines, E. Brown and James Dickson. Hansilton, were appointed inspectors. The uominal assets are $\$ 2,312.24$, made up oi stock and book debts. :and the liabulities $\$ 1,721.03$, of which $\$ 637$ are preferred chaims. The unsecured creditors, it is believed, will get a very small dividend.

Brewder \& MicNaughton, contractors, have issued a writ in the Iligh Court oi Justice against the Metropolitan Electric Co., Othawa, claiming $\$ 50,000$ damages for alleged breach oi comract and for wrongful deprivation of plant, materials and other goods and chattels. The writ is also for an injunction restraining the company from further use of the said plant. This is the outcome of the dispute which has been going on between the contractors and company whoch ended in the company taking away the contract from Brewder \& McNaughton.

Guglielmo Marconi, the exponent of wireless telegraphy, who is now in New York, said to an interviewer: "The outlook for wireless telegraphy is bright, and the system is constantly being perfected. Messages have been flashed cighty miles, but I do not care to say what has been the greatest distance reached. The experiments have proved that the curvature of the earth is or creome, for in sending the message between stations 80 miles apart the earth curvature. which is over 1,000 feet, has been onercome. The station :rom which the message was sent was zo fect high."

A syndicate has bought the Chass Falls at Fize Roy Harbor, on the Ouava liver, on behalf of the Pontiac Mining Company. The ialls are about 35 miles from Otawa, and a minimum of 141,000 h.p. can be developed at low water and ($\mathbf{0 0 0 0 0 0}$ h.p. at high water. The parchase was carried through by T. C. Bate, N. A. Belcourt, M.P., W. J. Poupore. M.P., P. Clark, Outawa; Denis Ryan, St. Paul, Minn., and T. A. Darby, of North Carolina. These gentlemen hought the property as individuals, and are turning it over to the company. The falls, as mentioned some monthe ago in The Canadian Engineer, are in the middle of a highly mineralized country, and near two lines of railways.

At the amual general meeting of the shareholiters of the Great Northwestern Telegraph Company the old board of diretors and oficers were re-clected, viz: President, H. P. Dwight, Toronto: vice-president. Adam Brown. ITamiton; directors. H. N. Baird. James Hedley, A. S. Irwing, W. C. Mathews. Toronto; Richard Fuller, IIamiton; Hon. William MelDougall. Othawa: and Charles A. Tinker, New York; secretary and auditor, George D. Perry; treasurer, Arthur Cox. The financial statements presented showed a unarked improvement in the revenue of the company over the previous year, and it was stated that the outhook for the coming year was still more hopcini.

$\sqrt{ } \sqrt{\text { arine }} \sqrt{\text { ews. }}$

Smith Bros., Quoddy, N.S., are building a steam boat os feet long for Wim. Buter, Yarmotih. N.S., to be completed November ist.

Sheet piling is to be driven on both sides of the Burlington Beach canal, Hamilton, Cnt., to such a depth that it may be dredged to a depth of 20 feet.

Isaac Radiord. Buffalu, is arranging, with J. Gaskin, Kingston, Ont., for br ats from the latter for transferring a large quantity of iron ore from Three Rivers, Que., to Buffalo.

The Qucbec, Hamilton \& Furt William Navigation Co., which was incorporated a s!:ort time ago, has uent A. B. McKay to Great Britain to buy two 3,000:ist steel freight steamers for the lake trade.

The Richelien \& Ontario Navigation Co. will make a very interesting exhibit at the coming Paris Exhibition. Photographs of the fleet and the various hotels of the company, together with views of the seenery of the route will form part of the exhibit.

The record from Liverpool to Qucbec was made by the "Canada" of the Dominion Line. which sailed from Liveryool 5 p.m., Tharsday, October 29th, IS96, arrived Quebec 11.20 a.m., Thursday, November sth. This still remains by almost 20 hours the fastest trip of any steamer to St. Iawrence ports.

The steamer "Delta." employed in earrying coal between Louisburg, C.B., and St. John's, Nfld., was reported wrecked at St. Mary's Bay, Nifl., Sept. 14th. She formerly belonged to the Cunard Steamship Cempany, and was 550 tons register. She was the second steamer to cross the Atlantic between England and Halifiax.

The returns of the traffic through the Sault Ste. Maric canal from the opening of uavigation on April 26 th until Sept. 2th, show a considerable inlling off. For the present year the number of vessels which lave passed through the locks is 2.725 , with a tonnage of $2.092 . j 0$. and a freight tomage of 2.114 .264 . For the corresponding period of last jear the number of vessels was 3,048, tonnage $2,211,8$ gon. and a ireght tomage of $2.4(0,3.05 \mathrm{~S}$.

A new tug. "Robert Mackay:" has been built ior the Harbor Commissioners, oi Montreal, by Carrier. Lame \& Co., Point levis, Que. The new vessel is a powerial looking crait. and has a speed of over cleven miles an hour. Her dimensions are as follows: Length between perpendiculars. 71 feet; lengeth over all, Si feet 9 inches; breadih, moulded, it feet 6 inches: depth, moulded. amidships, it icct 5 inches; draught forward S fect, drait ait 9 iect 6 inches. The tug is huilt of steel. The cost was about $\$ 8,000$.
"Success has attended every service this season," said C. S. Gildersiecte, manager of the Richelicu \& Ontario Navigation Company, in a recent interview published in a contemporary. "and the earnings are over $\$ 100,000$ net, in exeess of those oi last year." life stated further that so cucouraged was the company that other new steamers would be added to the western service, and to that between Quebee and Montreal. At present the boat-buiders were congested, and it wonld take a year to set one new boat reads. During the coming winter the steamer 'Longuenil.' would be rebuill, and the ferry service periected as far as possible. The new steamer 'Toronto' had helped to swell the carnings. and only proved that the public appreciated first-class accommodation. The hotel department of the company promised to expand, as it. too, had proved hixhly successful. The new hotel at Mrurray Bay was 'under way; and would. he expected, be ready by June 15 . 1500. ."

Objection has been made by Uuited States vesselmen in paying fecs for the inspection of United States vessels rumming to Canadian ports, though the Canadian officials have been carrying out the law of Canada, whereby Canadian vessels wer: charged inspection fecs. American vessels were treated in exactly the same way. For the past ten or more years the Ameriean Government has been in the habit of inspecting Canadian vessels running to American ports. The Canadian Government hins repeatedly requested the American Government to aceept the Canadian inepection in American waters in lien oi the United States inspection being accepted in Canadian waters. but
this reciprocity had not met with favor. The margin of safety under the Canadian law is said to be much greater than that under the United States law. In the first place the steam boilers of Canadian vessels are not allowed to use within 25 per cent. so high a steam pressure as is permited under the American mspection.

$\cdot] \sqrt{\text { ining }}] \sqrt{\text { atters. }}$

Geo. McIlraith's iron pyrites mine in Darling township. Lanark county, Ont., is now being worked.

Work at the Ostram nickel mine on the Calumet Island, Que., has been resumed by the English-Canadian Mining Co.

Gold has been found on the iarm of Robert Grier, the line. Ramsay, Lanark county, Ont. An assay is said to show gold amounting to $\$ 8$ per ton.

The mica mine discovered on the property of Kovert Schaider, fth concession, Sydenham township, Frontenac county, Ont., has been bought by G. Moriel, Kingston, Ont.. who will work it.

The richest mica mine so far discovered in the Gatineau district, that of Father Guay at Gracefield, Que., has been sold to W. H. Sills, Chicago. A complete equipment of the newest machinery will be installed.

The Sailor mine, Cobp McKinney, B.C., is sinking a vertical shaft by contract for 100 feet, and when that depth is reached a hoisting plant, which was recently ordered in this city from the Jenckes Machine Company, will be installed.

The first discovery of coal in the Boundary district oi British Columbia, it is chamed, has been made by Robert Clark. The seam is said to average 25 iect in widh, and is on the north iork of Kettle river. Jay P. Graves has bought a hali interest, and will develop the property at once.

On the Minnchaina mine, Camp McKinney, B.C., a five-drill lagersoll Sergeant compressor and an So-h.p. boilcr have just been installed. The plant is to be used to extract ore in sufficient quantitics to run a 10 -stamp mill which the company has ordered. There is considerable high grade ore in sight in the mine.

The Dummille, Ont., Natural Gas Co. has been incorporated with a capital of $\$ 20.000$. The provisional directors of the company to be J Taylor. F. J. Ramsey. W. W. Krick. J. Norris. IV. Shirton. W. D. Swayze, J. Parry. C. Shiston, T. Rice, L. Massccar. W. Bullock. J. E. Griffin and R. Bradiord, of Dunnville. Ont.
J. Johnston. manager of the C:ow's Nest Coal Co.. Fernic. B.C. stated recently that 500 men were now engaged in the companes mines, that the mines were lighted by electricite. and the coal was hauled to the pit's head by clectric motors. The company can produce r. 000 tons oi coal every 24 hours, and when the coke ovens now being constructed are completed at will supply 300 toms per day.

Telephone connections have been made from Mine Centre. Ont. to all the mines of the Bad Vermilion Lake group. including the Golden Star. Decca. Manhatan. Olive. Lateky Coon. Aria. Alice A.. and many others. The Manhatan Gold Mining Company is installing a compressor plant, and fifteen additional stamps are being installed at the Olive mine.

The Iron Mask Gold Mining Co., Rossland, B.C.. is enlarging its electric hoist and air compressor, and has placed an order with the Royal Electric Co. for a tzo k.w. S.K.C. synchronous motor. The first order received by the above cumpany irom the Iron Mask was for a 75 k.w. S.K.C. motor. Thas was found not large enough, ior the requirements.
W. R. Arnold, oi the Valley Worsted Mills. Providence. R.I.. and David Sherwoon. Rhoric Islani, were recentiy in St. Iohn. N.B. They are interested in the Intercolonial Copper Mining Co.. whose property is situated near Derelester. N.R. The mine has beea idle for ra years. but the company intends it resume operations next summer. Ahour $\$ 125.000$ will. it is said. be invested in new machincry and buidlings.

It is said the Dominion Coal Company will mine 400,000 tons this winter.
J. L. Bell, advocate, Quebec, has accepted the position of assistant gold commissioner in Yukon at a salary of $\$ 4,000$.
G. W. Mitelell has just returned from the Peel River. He has made a good map of the river courses in the hitherto unexplored country lying between the Mackenzie and the Yukon rivers.
D. 11. Beaton, Fort William, Ont., reports that the Johnson Nickel Mining Co., St. Panl, U.S., are doing exiensise prospecting for iron with a diamond drill on the Camadian border near Gun Flint Lake.

George C. Hinton \& Co., Vancouter, B.C., have phaced an order with the Royal Electric Co. for a tokiv. multipolar gencrator, and the necessary wiring of hamps ior one oi their mining camps on Vancouver Island.

A tine strike of nickel ore is said to hase been mate an the Font Stecte district of East Kootenay. The clatm is iour miles irom Fort Stecle on Wild Horse creck. A wagon road runs irom loort Steele directly to the pronerty.

An immense copper belt is said to cxtend irom White Horse Rapids, on the Yukon River, to a point on the Dalton trail, iorty miles from the Lym Canal. It is over fifty miles in extent, and lies in british territory. In places vast masses oi ore yield. ing 5 ino in copper to the ton are exposed.
W. II. and J. W. Wylic, Almonte, Ont., hate a gang of men takitig out hematite aron ore between White Lake and Calabogie, Renirew county, Ont. Several car-loads will be shipped to the smelting works at Descronto for test, and ii found desirable the mine will be extensively worked.

Lord Ernest Hamitoon is said to have bought the Forman duartz claims at Atin for a quarter oi a milhon dollars. The asrecment binds the company which Lord Hamilton will organize, to put un a stamp mill oi large size. The group is called the Anaconda group and embraces four ledge claims, aggregating alb acres.
J. J. Durage, Duluth, Minm., has surseyed the water jowwer of the Scinc river, Ont, from Sturgeon Falls to Mc.Manus Falls, a distance of cight miles. There is a total fall in this distance of nearly 100 fect, of which $7+$ feet are in cight falls. It is ieasible to construct power plants ior the generation of nearly 3,000 h.p. Power might be furnished for the operation of the Nlice A., Gold Bug, Emma Abbot and a number of wher mines near by:

The iron mine at lronsides, Que, on the Gatincau River, iour miles from the centre of Ottawa city, and known as the Haycock mine, has been sold to J. O. Hibbert, until lately of the New lork and Ottawa railway. The mine has an area of 300 aeres, and the ore is of the best hematite. It was operated twenty-five years ago when smelting on a small scale was carried on, and extensive shipments were made. but the price having fallen operations were suspended.

The uncovering of a solid mountain of native ferro-nickel mangancse at Durango iron mountain, Mexico, has created great excitement throughout the Republic, according to tine statement of Harvey Kline. Tradition has it that this enormous mass of native metal is an acrolite that fell from the sky centurics ago. It is more than 300 feet high, half a mile wide and more than a mile in length, and is estimated to contain more than $500,000,000$ tons above ground. It is worth $\$ 85$ a ion. A rolling mill with two large blast furnaces is now nearly completed to work on this mass of native metal, and already five cars of ierso-nickel maugancse have been shipped daily irom Durango to the United States and Europe.

The announcement has been made that the Dominion Coal Company has made voluntary provision for sufferers through the late disaster at Calcdonia as follows: For cach widow a monki's pay for the first year, and after that during her life, or while she remains a widow, $\$ 12$ a month. Two dollars a month ior children until they are each 13 years, and after that $\$ 4$ a month for the boys until they attain if years, and $\$ \$$ a month for the girls until they attain 16 years. In cases of single nien who were supporting aged or infirm parents the later are 10 reccive $\$ 8$ per month during life. Parents who were partially dependent upon their son for support will receive §f each per $^{\text {ent }}$ month. The payments are to date from July I last and continue as above.

The statement of iaboratory work done at the Ontario Govermment Assay Office, located at Belleville, which is couducted by the Bureau of Mines as an aid to the discovery and the development of the mineral resources of Ontario, shows that 277 determinations or assays were made during the month of August. These consisted of 232 gold assays, 14 for gold and silver, 19 for copper, 7 for nickel and 2 iron ores for partial analysis. Of these 168 determinations were done for the Burean of Mines on which no fees were collected, while 109 were for the public on which fees aggregating $\$ 130.65$ were collected. As the fees are about one-half the regular rates this statement shows that the prospectors and mining men engaged in development of properties are now aware of the advantages which the office affords. The office also reported on 30 samples sent in for identification, which consists of a description of the samples with the probable metallic contents and commercial value. The samples came from all parts of the province, the gold ores from the Seine River and North Hastings districts, while the copper and nickel ores were sent from the Sudbury and Parry Sound districts.

Dr. A. P. Coleman describes a specimen of hematite iron ore, which was taken from a deposit on the claim of E.V. Clergue of Sault Ste. Maric, which is about ten miles north of Michipicoten Post. It contains bo per cent. of iron. The deposit, according to Dr. Coleman, has an areit oi 350 iect by 450 icet. although late exploration shows the length to be not less than 550 fect. The deposit rises to a height of 90 fect above the level of Lake Boya, into the waters of which it dips. So far as can be seen, Dr. Coleman says, most of the deposit is high grade ore. It possesses all the characteristics of hard brown hematite, many oi the specimens obtained in it showing botryoidac forms. and a variety of beautiiul colors. While the percentage of iron is high, there are only traces of sulphur and phosphorus. If the hill in which it appears is solid ore, which is almost certain, the yuantity in sight above the ground line would be about $1,680,000$ short tons, and if it goes to any distance below the ground line the quantity would be much more. The ore in siglt alone, howcver, should produce $1,000,000$ tons of pig iron, worth, at the present United States price, $\$ 15,000,000$. Dr. Coleman says none of the adjoining locations have any important ore bodies in sight, but the same formation runs through them as in the Clergue mine, to a greater or lesser extent. Mr. Healy, of Duluth, who recently acquired these propertics adjoining the Clergue mine, thinks the prospects are very good. To give an idea of the importance of the Ciergue mine, it is sufficient to say that a blast furnace capable of smelting 200 tons per day, and working 300 days in the year, would occupy 28 years in smelting the ore in sight. As far as Director Bluc of the Bureau of Mines is aware, it is the only important deposit of hard brown hematite in the country, and it very elosely resembles the rich hematite ores supplied by Malta and Cuba. The deposit is so situated that the ore can be mined very cheaply-in fact it can be mined as an open quarry, and very easily and cheaply handled. The distance from the mine to the water's edge at Michipicoten harbor is only twelve miles, and docks are to be constructed at the latter point, where it can be put on board and delisered to the furnaces at Midland, Hamilton or Deseronto. A railway is now in course of construction from Michipicoten harbor to the mines, which is expected to be completed in time to ship cut a quantity of ore this scason. A quantity of ore will be sent to the new blast furnace at Midiand, and Mr. Clergue is preparing plans for a new blast furnace at Sault Sic. Marie.

Sersonal

T. H. Wiggins, C.E., has endered his resignation as town enginecr of Cornwall. Ont.
H. Townsend, contractor for the Coast Railway construcsion. died of cancer at his home in New Glasgow, N.S., Scpt. 8.
P. S. Gibson, Willowdale, enginecr for York township, has been appointed to a similar position by King township council, York county, Ont.

Mirs. Margaret Gartshore, widow of the late John Gartshore, the pionecr manufacturer of Dundas. Ont.. died at her residence in IAmmilton. Ont. Sept. and. Mrs. Gartshore was 90 ycars of nge.

Capt. Lesslic, assistant instructor of engrincering in the Royal Military College, Kingston, has gone to India to rejoin his regiment. He is a graduate of the Royal Military College, Kingston, Ont.

Matthew Neilson, C.E., manager of the clectric railway system oi St. John, N.B., visited his Almonte, Ont., relatives when taking part in the Dominion Riffe Association matches, where he showed himself an able marksman.

Fred. T. Greene, Butte, Montana, has been appointed mining engineer of the War Eagle Gold Miang and Development Co. Rosiland, B.C. Mr. Greene is a Canadian, being the son of 11. . A. Greenc, of the W.G. \& R. Co., Berlin, Ont.

Thomas R. Secord died at his residence, Port Colborne, Ont., Sept. Gth. Mr. Secord was inspector on the Welland Railway during its construction, but in April, 186 r , he was appointed deputy superintendent of the Welland canal, which position lie held until abo't tivo years ago.
E. Andrews. M.E., a graduate of the School of Practical Science, Toronto, who has been on the assay staff of the War Eagle Mining Co. at Rossland, B.C., for the past year, has gone to McGill University for post-graduate work in mineralogy. the facilities offered for study there under Prois. Harrington and Adams being unegualled elsewhere in Canada.

Canada can claim a share in the praise that is being given the steamship "Oceanic," as its designer, the Right Hon. W. J. Pirrice is a native of Camada, having been born in the city of Quebec in 18 tr. Aiter completing his education at the Royal Delfast Acaciemical Institution, he devoted himself to engineering and shipbuilding. He is now chairman and principal of Harland \& Wolfe, Lid., and has designed and built some of the largest and fastest steamers anfoat, including the "Majestic," " Teutonic." "Canada," "Cymric" and "Pemusylvania."

John W. Bell, B.A.Sc., lecturer on mining and metallurgy in the Faculty of Applied Science, McGill Uimversty, has resigned, and aceepted a position with a large minng concern in Britisi Columbia. His resignation is a loss to McGill, from which university he graduated in 1897. and with which he has since been connected in the capacity of demonstrator and lecturer.

Jas. Poole, chici accoumtant of the Goold Bicycle Co., Mrantiord, Ont., has reccived a similar position with the Canada Cycle and Motor Co., and a short time aiter the appointment received by express a very handsome and costly silver service without any intimation as to who the donors were, although it is presumed it came from the employecs of the Goold Bicsele Company:

The Fairbanks Co.. Montreal, has made a contract with the Foster Enginecring Co., Newark, N.J., for control for the Canadian market of their product, consisting of pressure regulating or reducing valves and pump governors. Howard C. Foster. a son of tie manufacturer of time goods, inas taken a position as salesman with the Fairbanks Co., and will give his time to these goods in connection with the Fairbanks stcam specialties, which are already so widely known.

Surg-Licut. Bertram, whose fine work at the Bisley ranges was cormented upon in the last issue of The Canadian Enginecr, was given a royal reception on his return to the town of Dundas. Ont., Sept. 6 th . There was a torch-light procession with sereral bands, and an open air mecting, at which addresses were read on behalf of the town council and of the officers of the 77 hh Batalion, who also presented a silver tea service, as did also the Victoria Rific Club, Hamilton. The citizens of Dundas. Ont., presented a purse containing $\$ 400$.
W. A. Carlyle, superintendent of the Le Roi mine. is said to have accepted the managership of the Rio Pinto mines in Spain, with a salary of $\$ 25.000$ yearly. which is very much greater than his former salary in Rossland, B.C. Mr. Carlyle is a Canadian. being a native of Oxiord county, and a nephew of the great Thos. Carlyle. At the time of his birth his father, Wm. Carlyle. now: public school inspector for Oxiord county, was principal of the Central school, Galt, Ont. Mr. Carlyle, who is a distinguished graduate of MicGill University, was formerly inspector of mines for the Government of British Columbia.

Railway J anters.

The G.T.R. is butilding a new double track bridge over the Magog at Sherbrooke, Que.

There is a strong agitation in the northern part of Quebec to secure the, extension of the Lake St. John Railway to James' Bay.

A charter is to be applied for for a new line of railway between Ottawa and Brockville as an independent direct connection with Brockville and with the Grand Trunk system.
R. A. Hazlewood, C.E., has surveyed the connection between the C.A. and O.A. \& P.S. Railway, and the C.P.R. at Parry Sound. The distance is almost five miles, and the link will form part of the James' Bay Railwas.

A bylaw to provide for the granting of a $\$ 20,000$ boms to the Lake Eric, Tilsonburg and Port Burwell Railroad for an extension for the road from Tilsonburg to Ingersoll, was carried by a large majority in Ingersoll, Ont., Sept. 20th.

After many months of surveying and the expenditure of much mones, the C.P.R. engineers have at last discovered a feasible route for a railway over the divide between the Ketle and Okanagan River valleys to the south of Camp McKinney.

The Midand Railway comractors in Nova Scotia are pushing their work, says The Truro News. The rails are now laid up to the Shubenacadic river, and ballasting is going on day and night. An ciectric light plant has been installed in the ballast pitat Stanley, so that night work can be pushed with redoubled vigor.

The Jenckes Machine Co., of Sherbrooke, Que., have built one of the George E. Smith power rail bending machincs ior Ross, Barry \& McCrea, contractors, for use on the construction of the Great Northern Railway. The machine will be driven by a to-h.p. Dake engine, the steam being taken direct from the locomotive.

The Algoma Central Railway has 500 men employed in the construction of a twelve-mile section of the line from Minhipicoten Harber to the iron mines owned by the company. The evecptional activity of the company, despite the scarcity of labor, is explained by the fact that a contract has been entered into with the Midand smelter for the supply of iron ore this fall. The rails will, it is said, be laid by November 1.

The Canadian Pacific Railway Company has received advices to the effect that the work of construction on the Columbiz and Western Railway is now almost completed, and it is expected that trains will be running into Midway before winter. This road, which has been constructed by the Canndian Pacific Railway Company, opens up the famous Boundary Creek mining country. It runs from Robson, on the Columbia River, to Midway, on the Kettle River, a distance of 100 miles. T. G. Shaughnessy, president of the Canadian Pacific Railway, said recently: "The grading of the road into Midway has been completed, and there remains only some twenty-five miles of iron to be laid before we shall have our trains running into the town of Midway. The work on the big tunnel, 30 miles west of Robson, where we have piereed for 3,000 fect the side of a mountain, is not quite completed, but the completion of the work there will not prevent the running of trains from Robson to Midway this autumn. In addition to the main line, we have constructed some thirty miles of sidings along the line into mining camps, where the development has been sufficient to warrant us in going to that expense. This road is, by all means, the most expensive the Canadian Pacific has ever constructed. The country throughont the entire distance is exceedingly diffeult, and the engineering difficultics very great. The entire line has cost the company in the neighborhood of $\$ 10,000$ a mile, or a total expenditure of nearly $\$ 4.000,000$ for 100 miles of line. The company received no subsidy. The Boundary Greek country pronises to be one of the richest mining countrics in British Columbia, and though the road has cost the Canadian Pacific a very large amount of moncy, there is no doubt that the business over the road, as soon as the mining properties along the line are opened up and developed, will be very large."

The Ramy Raver Ralway woll open up a great extent of rich muneral commtry. Commencmg at Stanley, up to which point it has rummen powers over the l'ort Arthur, Duluth \& Western Ralway, the hace runs close to Kakabeta Falls, a vast water power, and proceeds through the east end of the Matawin iron range, wheh is twenty moles long, of which two-thirds is soft hematite, and the remamder, at the western end, magnetic, Skirting the Shebandowan and hashabowie lakes, the line then passes through a copper region, the most known mue in which is the "Tip Top," having a vein of a hundred feet wide; thence it runs close to Moss townshop, where there are several gold locations, not at present being developed. The line next passes close to Lac des Mille Lacs and Partridge Lake, twelve miles to the south of the Saw Bill mining region, ruming nearly parallel to the Ati-Kokan iron sunges, a distance of twenty miles. It is stated upon cacillent authurity that here is the largest iron depusit in the wurld, there bemg in une place 2,000,000 tuns of aron ore in sight on a plut of itw acres. The Seine Riser witers are next reached, wheh will gat ready access to the mines, and here there are many valuable water powers. Rumning along the Scine River valley, the line goes near to Bad Vermilion and I.ittle Turtle lakes, where it will eheapen supples for more than a hundred prospects and mines, the principal oi the latter at present being the Gulden Star and the Olise. It next rums along Rainy I.akc. crossing the western arm of the same on a succession of su islands. two mules west of Pither's Point. necessitating the bublhng oi five brodges. Between Pither's Point and Fort Frances is an excellent site and prospect for a large city: the Couchiching Falls being estimated to supply a water power of fully 50,000 . From Fort Frances the line runs along the Rany Ruce, where there is a large area of fine agricultural lands, and reaches Itungry Hall, at the river's motuth. Here the lue leaves Canadian territory umil it reaches Buffalu Bay, a distance oi 35 miles, and enters Manitoba at the latter point. The land is well wooded irom Inumalo Ibay to Winnipeg. and considerable revenue has been derived from this source to assist the 60 miles oi railway already constructed. Besides the subsidy proposed ior this Rainy River Railway, the Government has incladed a subsidy in the estimates for 40 miles oi the 160 miles of the proposed Central Algoma Railway, and ii these two lines should be built, as now seems almost certain, they will not only help to develop the interior oi New Ontario rapidly. hat may be expected to act as great iecders to the St. Lawrence routc.

THE STOKER CASE.

Our readers wall semember an acuon taken by the General Engincering Company, oi Toronto. against the American Stoker Company, of New York, and the Dominon Cotton Mills Company; oi Montreal. Which has been pending in the Canadian Courts ior more than a year past. This was a suit brought by the plaintiffs against the two defendant companics for damages for infringement of the Jones-Underfeed Stoker patents, and for an injunction to restrain the deiendants irom using these stokers in Camada. The case was regarded as a very important one to manufacturers, and both parties to the suit had retained emincut counsel. J. I. Ross, of Rowan $\&$ Ross. Toronto, and C. A. Duclos, of Ainater $\&$ Duclus. Montreal. appeared for the plaintiffs, while Doaald McMaster, Q.C., of Montreal, and Gifford and Bull, oi New York, represented the defendants. The trial lasted four days. The action was a test case, the object of which was to determine the validity of the Jones' patents, not only in Canada, but ior the whole contirent of America. The judgment of the Exclicquer Court. in which it was brought, was a very
strong unc. and Mr. Justice Burbridge upheld the validity of the Jones pattents, and granted the injunction asked for, with damages. These damages were not fixed at the time, but would depend on the number of the defendant's stokers set up in Canada. The total damages wald probably reach $\$ 10,000$, or over. The defendant's, howerer, are continuing the litigation in another form on a point raised by them since the previous action was decided, and have obtained a stay of procecdings in the main action by puting up a bond in the American Surety Company for $\$ 5.000$. The result oi the action will be of considerable interest to owners of Canadian patents in general. .Up to the present the General Engineering Company have succeeded at ricry stage of the legal contest.

- Onc of the uldest bridges in Europe is soon to disappear, under the demand for better nasigation of the river it spans. This is the stune bridge, with fifteen arehes and a total length of (M) fect, bult acruss the Danube at Regensburg (Ratisbon), in Bavaria, by Duhe Henry the Superb, in 1135-1146.

[^3]
FOR SALE

A rood Water Power, 500 horse, situated one-half mile from railway, every I. D. THEUNISSON, Cookshire. Que.

The Fairbanks Company,

749 CRAIG STREET,
M MOMTREAL

[^0]: -From a paper read before the C. A. S. E., No. 1s, Toronto.

[^1]: -From the Keport olibe Butcaw of mincg, Vol. vill., hrst part, ions.

[^2]: - Proni a paper tead before che Canadian Soclets of Civil Eaginects.

[^3]: WANTRD-Young man familiar with installing and repairing eleciric recordirg
 gineer, Alontreal.

 WANTED-A Fint-clase Mining Foreman, who has hidexperionce in Galenn, ziac and silver Minlag. Send references and iate of wazes expected to P. W. RI:SSEMAN, 3: Central Chamlices, Ottawa, Ont.

