BULLETINS

Aprial Exprriment Asguriation

Bulletin No. XVI
Issued TONDAY, OCT. 26, 1908

MR. MCCURDY'S COPY.

Alexander Graham Bell......Editor. Gardiner H. Bell..... Asst. Bditor. Charles R. Cox......... Typevriter. Mabel B. McCurdy.... Stenographer.

Zabre or comrarts.

1. Reitorial Yoten and Corrents:-

> Hydroplanes Oct. 12. $1-2$
> Prent Centroi Oct. 23............................. $2-3$

> Flexible Hydroplanes 0ct. 17................. $8-10$
> Baldvin" 3 Suceess 0et. 20.................. 10-11
> The Aryy.0st.22.................................... $11-11$
> Aerodrane İe.5 00t. 23. 12-12
2. Harmondinoert York:-

Telerrans from Homber:
Aaronuutical Society to Be2l,0ct. 9..13-13 $3 e .1$ to Aeronautical Seciety, Oct.10..13-13 Curtisa to 3ell.06t.20.................13-13 Bell to Curtiss, Oct. 20.............. 3 -13 Bell to licCurdy Oct. 22................13-13

Letters from Moraborn
Curtism to A.B.A.Oet..6.................. $14-14$
yocurdy to Bel1,0ct.11.....................14-15
Curtiss to A.E.A. Oct.14.15-15
Mecturdy to Baldwin,0ct.15. 15-16
Curtiss to Be11,0ct.15.................. $16-16$
Curt13s to Mrs. Bel1,0ct.17...........17-17
Curtiss to Bel1,0ct.17.......... 17 -18
Regurae of A.t.A. werk at Hawteondaport, by C.li. Cur= t1.3s, Directer of Sxperiventa. 19 - 20 The 買ew Hoter by G. 1 . Curtiss. $21-22$
Thature Air 垵ravel by G.H. Curtiss. $23-24$
3. Boinn Bhreavh Vork:-

Baldwin' Bxperiments with Mydroplanea, Oct. $\mathbf{1 6}$, 17,20, by Gardiner 4. Bell. $25-33$

Rxjuer inents 0ct.16. 25-26
Experirionts 0ct.17........... 27~30
Zapurivents 0ct. 20 .
31-33
 Disoussion concerning Front and jear controla, Oct. 14: Hopert by Mabol i. Mocurdy, Stonegrapher of

3r. Baldwin'a Reiserks, PY . $36,38,35,40,42,43,44$
Gardinar Beli's Remarks, p1 $40,42,45,44$.
The Stabilising zefect of the Stationary Tuil by Gardiner H. Bell
(Table of Contenta contimued).

4. Hiscellaneous Comzunicationa:*

> Secretary Loeb to $B e 22 .46-46$ Aast. Becr tary of Wax to buil............. $46-16$
5. The Outlook on Ariation:- By Gurdiner is. BoLk.

The Kimbuli kislico ter...................... $88-48$

Moxible rydrom lanea 9
Curtias Za 比 Yatar 22
Arrangernent of Jalawin's Vydreplanes ab used 0et. 17 89The Dhonnss beang aubyorted out of the wateron her hydraplunas 0ct.17.................... 30The Dhonnas Beag atajorted out of the whteron har hydrojlanes Oct.17...................... 30Arrangenont of Buldwin' B hydronlunea nisused jet. 20.33
The Thonnas Beak auj orted out of tha intor on iner hudraplanas carrying vor. P. F. Bal- dinin Oct. 20 33
The body study of atrodroma 0.5 with avinging aeat Octo23 49
The body study of aerodroze 170.5 withsainging seat, Oct. 23, showing pesitionof man.49

HCDROPTANIES.

Beinn Bhreathe Oct. 12. 1908:- Ne have all been disappointed with the action of Baldvin*a hydroplanes and at the difficulty of knowing oxactiy what they do. At the speed of the Dhonnas Beag the hydroplanes have not given us very mariced lifting effecta. This, perhaps, is hardly to be wondered at whan we consider that the lead to be lifted ia about 400 lbs. including boat and man and ongino.

Wy zight it not be a good plan to tow the arrangement mich would allev us to reduce the load te be listed to a nere fleat sufficient to prevent the raetallie hydroplanea fron ainking. They would probably lift a light float without ongine or man at a lesa speed thtu would be posaible with a 400 lbs load; and $1 t$ might be possible that the Gauldrie, "unich goes about six miles an hour now", suys Mr. Baldwin, might be able to tow it at a aupporting apeed. It cortalnly would be gratifying to aee a boat, however light, lifted corm pletely out of water by the hydroplanes. If we could anly secure this reault te begtn with, we would probably be able to get a better idea of mat the hydroplanes are doing and by variationa in the arrangement brope our way orxirically to an arrangensent that would support a 400 Lb . lead.

We have in the Laboratory a number of old fleata that would de for the purpose. I neasured and weighed one of them the other day. It was 4 meters long and weighed 7 lba. I also weighed sone snall fleats that would do for outrigera.

The heavieat weighed 332 greas. Snall ailk rloata would average less then onewhalp a pound. It would be necessary to prom vide a stiff frane so which to ettuch the hudroplanes and a creas bar or tranaversal truss to wuppert the outrigger pleats. But the weight noed not exceed of few pounds.

$$
\begin{aligned}
& \text { Main Ploat.................. } 7 \text { lbs. } \\
& \text { Two side floats............ } 1 \text { b. } \\
& \text { Frane for hydroplunes... } 10 \text { 1bs. } \\
& \text { Cross bar.................. } 5 \text { lbs. } \\
& \text { Per luck.................. } 2 \text { Ibs. } \\
& \text { Total....................... } 25 \text { 1bs. }
\end{aligned}
$$

The hydroplanes would probably lift this load wen towed by the Gauldrie, much better than they now lift their preaent 400 1b. laad then propelled by an aerial propeller.

Mr. Baldain found, by means of a apring-balance, ihat one set of theae hydraplanes axerted a lift of about 75 2bse. Perhupa the three seta together may be able to lift a lead of 25 Ibs. corpletely out of watar at the areed of the Gauldric. The experiment is certainly worth making. A. .B.

yionz Corstion.

Beinn Bhroagh. Octe 23.2908 : Should not the front control be at the rear instead of in front?

Inagine a long pale baianced on a horizontal axis at its niddie, and carrying a horisontal surface at one ond. Under the action of wind the aurface will be carried to the rear like the vane of a woather-cock. If we hold the pole se that the surfaee is at the front end facing the wind the
whele arrangoment is in a state of unstable equilibriua reo quiring an effort te keep it in place. Is not this the case Wh the front contrel of an aerodrome, und would it not be better to uae a horigental tesil at the rear?

The natural action of the wind of advance upon the Prent contrel is to upaet the whele machine upwards or dowmordis so as to mike a complete wemersenit and bring the front cone trel *e tho rear as a tail. Thereas the natural action upon a horizental tail tit the rear iz to keop the longitudinal axia of the machine parallel to the ine of advance und prevent any deviation up or dem excopting by the will of the opero ater. A.Q.B.

DIscusarows.

An ispertant innovation on our practice whas inauguturatad October 14, 1908, by having a stenographer preaent during our discuasion of the above note on wront co trol.".

Mus Mabel B. HeCurdy, having boen appointed ateneGrapher for the Association, was present October 24, and atterapted to catoh the points of the discuasion for preservat1on. Her repart, wich was aubaittod to the apeakors fer correction, appeara elsewtere in the present $3 u l l e t i n$.

It is believed that with Miss McCurdy ${ }^{6} a$ assistance we may be able to make such discussions a valuable reature of the Bulletins. A.G.B.

yoTORs.

Beinn Bhreagh, Oct. 16, 1903:- Tho Cygnet was Just able to carry a man in the air and could not have carried a notor in addition. In deaigning aeredrocze lo. 5 , it was nade large enough to curry a man, and an engine of the weight of at man, but the new moter now being corapleted in Harmondepart, Baldwin thinka, Will weigh about 350 1ba with the various accesaories requixod. That is, it will woigh more than two avorage men.

This leads me to zuspect that we are not advancing in the right direction in the conatruction of our rotors. Why this incressed weight Because we are trying water-cooling inatead of airmeebling and water is 773 tines aa heavy as air.

But why de ve try water-cooling? Because atr-cooling has not succeeded se far in preventing our notors rem becoring overheated in a very shert time.

Overheating is undoubtediy a defeet and we have to add on anether instruentality, airmcooling te remedy it. The omployment of a ceoling agent 773 timea heavier then the former afent expleyed sems to me alse to be a defect. We are corm recting one defect by onploying another.

Should our attention not be directed to the proventign of overheating rather thon to $1 t s$ corroction. If overheating is a neeesaary result of the type of ongine we emplay would it net be better to ehunge the type?

This brings me to the consideration of tho paper \mathbf{I} read at the meeting of the Association in May 1908 (see Bulletin Wo. 1, pp 27-29) concerning Moight Motors for ylying Jachines", in which a new type of ongine is sugfosted utilize

Ing atmospheric preasure as its metive power. Of course we ramt use in our present experimenta the tactora we have with all their Aefeets whatever they are, but this should not prevent us fron conaldering the quastion of type, and frocs moking asmperimonts in a tentative way that would net interrugt the ajo perlments already plannoe.

The paper referred te shows oleurly, I think, that the naterials cormeaing the working parta of a moter can be made of thinner and lighter materiad thore the operative povm er cones fren witheut than whon we uae the axpanaive power of a coxyresmed gas.

As the mater atands now in ny raind there aro threc ugoncies needed in the atanoupheric type or ongine. (1) A neans of rarkfying air. (2) A reans of atering it, and (S) the operative part of the angine. There can be ne question that the oporative part of the ongine can be made 11 ghter than if we used corm pression. It is also obvioun that the reaervair for containing our store of rarkiled air con salse be made 11 chter than a sirm ilar reserveir designed to atand the bursting prossure of a conrined gas. The question then remins; can wo exploy 11 ght means for affecting rartfoction.

If we have to pray aut air out of our resarveli by sechanical means we must enyloy a puap and an ongine of sons sert to work the purping mechanian. This invelves velght and muat be put olt of consideration.

We can erfoct the sance ond however, by the mere application of heat and heat has no welght. For example:- If we take a chomber of hemted air at atmoupheric pressure and then
seal up the chamber and allow the air to cool, then upon cooling a partial vacuua will be found within the chaaber and the rarffied air can be uaed in the operation of the engine.

The question then resolves itself inte the single point; oan we heat the air in a chanber witheut employing heavy means. The following experinents rase at Beinn Bhreagh Laberatory seem to indicate that we cen.

A glass jar 12 inches in hoight and having a cross section of about 36 square inches was taken. A plece of paper was then lighted and threwn into the gar which was lraediately turned upside down in a basin or whter. The flane wont out and the water rose so as to half fill tho jur. This shows that the simple burning of a plece of papar expelled half the air within the jar se that upon cooling an unbelanced pressure was produced, equal te $1 / 2$ un atmosphere wich caused the wates to riae in the jar. Suppese the intrusive water to be replaced by a platen moving in the jar as cylinder we can eakeulate the pressure exerted upon the piaton. A pressure of hall an atm mesphere is equivalent to $7 \mathrm{~L} / 2 \mathrm{lbs}$ upen every square inch of surface. The aurface of the piston was equivalent to 36 aq. in se that the presaure exarted would have boen $36 \times 71 / 2=270$ 1bs.

Thus the simple burning of a piees of paper within the jar produced a pressure of 270 1bs.

In another experinent a little dish containing about a teaspoonful of gusoline was gleated upon water. The jar was held mouth down over it for a mossent so as to get warns and was
then puahed down inte the wator leaving the burning gaweline Ploating inside the Jar. The flome apeodily went out and wnter rose within the jar until the jur was $6 / 10$ full of wator. The preanure that ralsed the mater was equivalont to about six tonths of an atmowphere or in this caso about 324 2bs.

These experiraents are augicstive and indicate that very 11 ght means can be erplayed to produee the necossary rarefaction of air to work in atmospheric ongine, and that it would pay to devote aerse attontion te the matter. A.C.B.

Boinn Bhreathe Oot. 27, 1908:- This afternoon Baldaln succeodod in lifting the Dhonnas Beag completely out of tha water on its hydreplanea, by reducing its welght by the omission of the engine and man and tewing it, by the skidas. I beliove this was done yosterday and his morning, but I did not mysels vitness these experivents. I aam the experinents this safterneon however, and they were certainly most strifing. There was a clear apace of about a foot between the boctom of the beat and the water. I neec not tescribe tho experinenta here as fiald notes wore taton by the Aasiatent Editor, Vr. Garde iner Boll and a pear elsewhore in the Bulletin. Tho skidoo makes apoed of botween 7 ane B miles an hour so it is evientiIy not necessary to ouploy hijh speadz to atudy tho effects of hydroplanes. If very 11 cht ilouts were angloyed I have no deubt the hydroplanes would rise whe: towed by at row-beat! At all eventa we now have the certainty of being able to atudy the effects of hydroplanes at low spoed and apply the results to hoavy loads at hich aveots. Txy the hay-rake idem. Why not uve the rubber floats we have for the aupport of hydroplanos. Low them and 3 tudy tho effocta of different arrangem nents of hydroplanez and the offonts of loading. A sirtie arm rangement would be a oatamurian structure; a sherle rooden frane for two of our rubber flowta riuncod cabinaran fialion (aec Pig. 1). The tooth of the haveriwe nichb bo mado cioxible instoud of rigid. Elasticity mav bo of advantige. Higid hydrom planea perhaps net necosaury. Ploxible hudroplanes of the haym rake pattern would alae serve as alastic slodgomrunners to glide over fice or land and aprinca to break the bhock of a

bad landing anywhore. Flexiblo reds or plat ribbona inereasing in length fron the bedy outwards might be of advantage (seo ig. 2) wn the hydroplane surpises would diminish aa the boat rises wile the surfaces ramaining in the water would be furthest ramoved fros the body of the beat and thus incroabe ita stability when elevated. As speed inereases the angle of attack would becone leas on account of the flexibility of the reds or flat ribbons, which would be advantageous for speed At the aase time, on nccount of the spring the angle of incidence would almays be positive and could nover becone zere or minus. Use large surfaces to begin with and reduce afterwards. I think flexible hydroplanes are worth thinking about. If the aprings are strong enough to suaport the boat on land they can never present a negative angle to the line of advanoc when in the water.

When a duck leaves the rater do hia legs trail behind him; and do his feet serve as hydroplanes to assiat him in riaing A.G.B.

BAWMIN'S. auccuss.
Boinn Breaphe Oct. 20, 1906:- At last noter muny diacouraghig experiences Mr. Baldain's peranverance and pluck have met with thekt reward and on Oct. 20 his hydroplanes onrried the Dhonof the water ras Beag elear 1 nith wr. Baldiain on board (socphotographs in this Bulietin). The boat did not rise under ita own motive power or with the engine on board. It was towed by the notor beat skidee. The enco raging feature is that the apeed require od to cause the hydraplanes to manifest their lifting power
was not high. The Sicidoe ratces on tho average about 7.6 milea an hour and the hydroplanes lifted at a lesa velecity than this It is alse encouraging to know that the thrust of the prom peller to be used on the phonnas Beag tas race than twice as great as the atrain on the towing line during the experiments Oot. 20. The pull was 50 1bs. and the thrust of the propeller V1: 1 undaubtedly exeeed 100 lbs . There can now be no doubt that Mr. Balewin will succeed in oenverting his hyarocrane into a hydremerodrome wich will rise from the water inte the air and becense the pioneer forerunner of a new type of flying machine. A. 6. B.

TIf man

Reinn Bhreafth. Oct. 22, 2900:-In remponee so ny letter to the President of the United statea (Builetin XIII Pp 32-35) I havo received a coanunication from the Asst. Secrestary of War te the erfect that the War Department will defeil sn officer fran the signal corps to be present in Hewnendsport wen the expariments with the new eeredrene are te be tried. I would auggoat that beth the June Bug and the SIIver-Jart should be placed in concition for flight and that every inforvaion ahould be fivan te the officer whe will suoeeed Lieut. Solfridge as the observer of our experinents in the intereats of the United states Arny. A. A.B.

AERODNOIS 80.5 .

Bainn Bhrearti Doto 23, 2gos.wThe beading of the cellular part of aerodrone Wo. S has now been completed and the body gection is being atudied. A roport upon the progress of Ho. 5 must be dolayed on sccount of absonce of room in this Bulletin. Ar. Baldwinta remaricable maceesa with hydrop anea renw ders it adviabble to make this a hydroplane nubber, and lot othor subjacts tace second place. I shall siryly aay, thoreo fore, that awinging aeat has boen placed vithin the bodystudy of aerodrone Ho. 5 (see Photograph aypended) and that we are studying the queatien of the feasibility of working the front contral by its means. A.G.B.

Agrenautica Bociety so BoLz.

So A.G. Bell, Baddack, II.S.

Yew Yorke K. Yo, Oeh. 9, 1900:mucceas of our oxhibition Hovonbor three deponds won your asaistance. Cun we rely on aereplane. Plaase answor.
(signed) Aeronautical society.
Benl to Aeronagtionl Society.
To Aaronautical Society,

Haddeok, I. S. Oct. 10, 1903; miluve no large kite. To asmomble one fipossible. June zug hi constant use. Regret inablity to help.

Gruhan Bell.

Gurtisa to Beny.
To A.G. Bell. Baddeck, :

Hormendeport, 1K.Y. Oct. 20, 1908:- Dynauite charge effective. Hesule by mili. Hanloy wived as iollowat- If Coznittee anm nounces contest for exp Novamber three, will Association conpete\# He wante answer; advise us.
(3igned) Golt. Curtias.

Bell to Curtisg.

Baddeok, 2fas. Ont. 20, 290s:-1ir. Balawin agrees with me that BIociation कhoud not again try for the trophy until we have suceaeded in rlying the required distance in private, wad we cannot interrupt our oxperiments to atteupt this at the present time. Go whead with the 3ilver-Dart and cone down here as soon as possibie. Hurrah for the dynanite.
(Signed) Grahan Bell.
BeL2 to ycCuxdy.
Baddeck, HoSor Oct. 27, 2903: Wetify Secretary of war when you are renay bo try the silvor-part. Dapt. Will detall an : orfle cer to oberve the experimenta. Yeatardny Casey'a hydroplane boat iffted mere than a roet out of water with Camey on board but ne engine. Towed seven niles an heur. Puil 50 Lbs. Lift $300 \mathbf{1 b s}$, and inere. Scoses oncouraging.
(31gned) Grahan Bel2.

Curtiss to Aerial Joneriment Association.

Hav mondmert, H.X.e Oct. Ge 1908:- Xour measage received. We are getting out aketch of the now b cylinctor ongine, tem gether with description, as raquested for the next Bulletin. We should be able to mall somight.

Fnclesed find is print of is croup if fowous saronatis and motor-cycisats etc., and one our teating Erione for the double propellers. Aa you alll notlec these prepollera ure driven by ${ }^{(v i}$ belts, beth in the savee direction. At the same ongine spece theae two propellers axortod a thrust of So peund more than with the inglo propelaar. The belts travelled nicely and caused no trouble.

In conaideration howevor, of the dungar of two prom pellers on soparate axlee, as brought hare so forcibly rem centiy, we have discontinued further experisente afth this conatruction. a. H. Curtisa.

MoCurgy to Boh.
Hewnendzport. N.Yo. Oct. 11, 1900:- I hevo just beon readng over the Aoronautical Annual with apecial reference to ur. Chanute's article and in the 2897 number ofposite page 156 is a diagran of the left wing of an Albatross. Ais I leoked at it the shape atruck me as boing about the asme in plan as the wright's propeller. It has that curious sawed-aff outting edge after all. Alse as Casay polnted out the little gliders we used up in the kite house at Beinn mhreach aomed to Elide better with the peint to the front. Would we be infringing
on the Wrights to try auch a prepeller.
J.A.D. HeCurdy.

Curtias to Aerial mandient Asbochation.

Manendsport, R.Y.e Oot. 14e 1903:- Wo enclose prints of the ifrat two aeroplanea photograyhed sogather in Ancrica. The "June Bug" has beon brought down and amang in the roof of the shed to make roan for the "Silver-Dart" in the sent. for had soms distinguished viaitora yezterday, $k x$. Schmidt of Vashinco ton, and a Mr. Saegmiler of the Besch-Lomb Optical Co. of Hechester. Mr. Schniat is ene of the nost wide-wake devobems to aviation we have met in a lont biane; he is alse a ood mathematicinn.
**The new engine is taking mure time than we have ever required to buisd a now motor. As many men as can mork are on it night and day. Evorything is now here wnd it has carmenced to assuma form. Awserbling will be finis)ed thiz wesk.
G. H. Curtiss.

Mocurdy to Butduin.
Havendaport. F. Foe Oct. 15, 1905:- Hand with interest your artiele in the latest Bulletin (XIV) on Cutting Bides. It is a pretty thing, but in was thinkine over the save subject and noticed that the Wright's prope: ler wich has that peculiar cutting edge is whaped like an cldatrose' wing in plan. Would it not be a good acheme to utilize fhis principle on your hydroplane boat and rake the planes a little art so presenting
an angular cutting edge ingtead of a plane at right anglea to the lin* of advanee.

This might reduce the head resistance and not seriously arfeet the lift.
eetinc now ongine wil2 be ready to be assorabled tow night and limbered up in the atand. It will then probnbly take a fev days te resit the parts and remssamble for tuning up. It certainly looks nice and if it developea the power we hope Por, It will be a creait te the Curtiss Manufacturing Corpany, and Glenin can be proud of tit.
eet received the pronised articioa from k. Chanuta and tu having a couple of copies nade for our records as he wants ne to return the ariginnl. I vill formard you one tomitht J.A.D. MeCurdy.

Curtiss to Bell.

Hamandaports YoYoa Octo 15, 1906: The Yew York Vorld recently printed an article headed "Air Travel and credited it to me, or I might better any "charged" to me. I onclose copy of what I really aaid, but it was hashed over and added to suit the Batar. The dictation may be worth using in the Bulletin. Q.15. Curtias.
(See article on "ruture Air Travel" in this Bulletin).

Curtisa to 異的. Bel2.

 net have come to Hannondsport from Washington, and at least seen the "Dart". We did not think it advisable to atternpt Plights until the nev ongine man ready; it could have been triad out with the old mJune Buge engine, but as so much wis oxpected and so many newapayer men and others would be on hand for trials, we thought it would be better to whit until we were sure of aceumilahing more than had been done with the June Bug.

The noving pioturea of the June Bug 2liphts are here, and will be show for bie insst tine tomicht. I wiah you could be here to toe thon. Parhape we can got oopien Pron the filua whioh can be whown as lantern slidea. Wila this would not be as good as the real moying pictures, it would give a suocegsion of viaw which would show the notion of the machine in the air. I would like so know if you have a lantern at Hoinn Hhreagh. I renomber of hearin: of picturea being chown there last year.
G.H. Curtias.

Curtias to Boll.

Hanciendanart. Y. Ye. Oct. $17,1903:-$ The enthusiann for the flying machines in Hamondsport wall grankly revived last ovem ning by the exhibition of the noving pictures taken July 3 m 4 and 5. They wore very geod indeed, and I only widh there was sone way we could aend then to Buirm hareagh to be reproduced.

Two flights were shown, togethor with pietures of the machine taken out on the track, tosting the engine ete. Und fortunstely the Aerial Joperinent Aasoeiation was not mentioned nor wad Hrumondaport. One soetion, however, was described as shoaing the "Curtias 40 H.P. notor", Hile Cuptain Belduin and myaelf were announced to apear in anothor part.

A very touching incident was the lifemilke appearaned of Ton and Mis dog Jack. Mr. INen of Hochestar and Mr. Post are plainly seen, wile Douglaa in hia knickerbeckers is never out of Pocus. The beys whe worted on the machine all appear true to life thile the village urehins grinning faces show up in the fore-ground greatly te the dolight of the audience.

The firat announcarnent on the sheet was as follows:The great Anerican Aeroplane, "June Bug" winning the Anerican Trophy July 4, 1908. This announcoment mas printed around an outhine draving of an aeroplane in wich the arched surfaces were most conapicuous.

I de net know if the pictures would be so interestm ing to a stanger whe did net knov the parties ahow, althouch I hear that it has met with grest anceesa in New York.

I expeet Menday to hear from the Aeronautieal Becietw in reply to y letter of wich I sent you copy yeatarday. I will wire you thet Chey Bay.

Q. H . Curtiss.

 AT Hanromstorit Ieport by G. H. Curtiss, Director of Bxperinents.

Before the Association Headquarters were transforred to Hownondaport, word was received to build a glider, the objeet being to gain some experience before building a powerdriven machine.

This glider was built of boanbee and sheeting, and practieed with at various times for the pirat 60 daym, many successful glides being made, gone by each of the members. In the meantine, the power-driven machine was started, it being the majerity of opinion that greater pregress cauld be made by geing at onee to the pewarmarive and practice on the ice. This proved true, although considerable knowledge was gained with the glidors, wich were tried with many difforent forms of tail and contral.

The first power maohine was Selfridge's "Red Fing". In its firat trial tr. Baldain made a flight of 320 reet. This mas the Pirat public flicht of a hoavier-than-air mach Ine in Anerica, and the longest first trial ever made by any heavier-than-aix mschine.

At the secend trial of this machine, again ridden by Ltr. Baldwin, the strong wind proved too much for the 2 imited contralling aurfaces, and the machine was wreeked. By this time the ioe had gone, and a machine to run on meela was built and colled Baldwin's "Thite wing'. This was fitted with adjugtable wing tips and aeveral typen of ruining goar were tried. Several suecearful whort Elights were nade by meme bers of the Associatien.

This machine was finally smashed, and a third one called Curtiss" "June Bug" was built to try for the Seientific Aneriean Trophy This machine embedied features of the "Red Wing" ${ }^{n}$ with improvements, and contained many original ideas, including bowed surfaces, adjustable wing tips and shouldor control, combination steering wheel and the three wheel running gear with auxiliary skids.

On July 4th the Scientific American Cup was won by Mr. Curtiss, eovering a kilometer and as much more as the boundaries of the field weuld permit, 当mething over a mile al tege ther.

The nachine was then experimented with, and further improvements made and embodied in MeCurdy's No.4, "Gilver-Dart" which is completed and ready for the engine. The new type of engine is of great power and endurance and has been designed for this machine, wich should be a "world beater".

This, tegether with the propeller experimente, and some kite flying in the early spring, covers roughly, the work of Hamondsport. Besides what has been given the world, and recorded by the Association for future reference, the members have gained a knowledge of aeronautics which, if applied, ahould be of great benefit to the Art. G.H.C.

The attached letter from Mr. Dienstbach describes the A.R.A's aerodrome as seen by an outsider. C.H.C. (this appeared in Bulletin XIII pp 33-36).

> THE NIEN HOROR:
> By 6. H. Gurtisa.

Rewandaport, HoYe, Oot. 7, 1903:- The new eight cylinder $50 \mathrm{H} . \mathrm{P}$. watermoooled netor being built for the A. B.A. differ from any motors previoualy built by this company in as much at it is water-cooled, and is of larger cylinder dimonsions; the bore is $33 / 4 \%$ and the stroke 4°.

The cylinders are placed in the form of a "V" four on a side as ahem in the sketch, fich alae gives other dimensions.

This motor has mechanieal intake valvea and is built for durability and conatant hard running. The engine alone widl weigh abeut 275 pounds. G.ll.C.
(A blue print of the moter is appended).

PUT 造 AIR TRAVIL: By 0. H. Curtisa.

The theory upen mich many aviators are working is that the long nurrow zurfaces are zoot eeploiont, but with this form of surfage the weight increases in ereatar proportion thun the lifting power and the structure beconos veaker us ita size is incressed. It is thia difeiculty imich is overcoze by mounu of Dr. Bell's tetrahadral construction. This canatruction with its many small dihedral surfaces, hlae bids ficit to solve tho roblan of stab111ty.

The areoplane of the future may purl and reef its urfacea mach the save ax 3 ohipts boily are djuctod to the conditions of the westher. "uch his roed will bo ando in the aerial plyera of to future than is now accomiluhod on 2 nd, becume it 7121 be necemanyy or thome, 21. ing crafta to ainm tain a high apeed in arder to ficht tho wind. A ifeht rotor and a propeller of grent efficiency will do ruch toard whe fractieal develomont of the preaent serodrone. This improvamont Df the surfaces is Iready being rayidzy accomplished.

One of the diffteulties now expstienced, and wich Tras illustrated at Port Moyer, is the losa of equilibilua. It Is poasible that the gyrescere vill be broutht invo play te ovorcone this, but it is hardiy probable that sutaratic equie Librium will ever be entirely isttuined.

Belloens and eiristibles havo boen of vast aervice in Learning the peculiarities of the air, but within five yeara the heavier-than-air machine will have nearly ropiaced the ligt-er-than-aix craft. The future aerial eraft will be simply a devel.
oprent of wat we know already. It ia safe to say that there Will be for several yeers greab lxprovemonts in the moter balloon and the aeroplane, but there will be no combination of the two as has been predictec.

The airahip mich, oithin ten yeurs, fill carry roen and freight fron place to place, will be s natural evolution of the aorodroves of to-day and not the semiacacidontal discovery of a genius. It will be the work of it an the is tho rouchly familier alt the lave of fluid ovenent; ath the
 orous difficulties wich are oncountered in the air. It is in the practical arrifeation of tho aciantilic knowlede at hand that the solution of the prosiema of aorial \$1foht will be found. G.H.C.

BATDVIE'S NCPTRIMENTS WITH MYDROPLANRAS OCR. 16, 1903: By Gardiner H. Bell.

Beinn Bhresth, Octe 16, 1908: In the experiments made to-day the Bhomass Beag was atripped of the engine and toved without a man on bosud by the moter boat mkideo, being steored fron attached the sleidee by cherds to the extremities of the outriggers. Total weight about 100 lba. The skidoe made an average apeed of 600 m in 174 see, or 7.6 miles per hour.

3xp. 1 (Morning) She lifted practically cloar out of the water ruming on her planea. Two setw of hydroplanes fore, and one aft. Pull 2b lba.

Bec. 2 (Atternoon) The beat war tried with the saze outfit as in the merning but an axtra set of hydroplanes of only twe blades whas used aft. Reaul about the sarae as in Zxp. 1. Pull 20 te 30 Lbs.

Thy. 3 Boat was then taken out of the water and the new aet of hydroplanes were attached. (Photograph not show in this Bulletin). The boat with new hydroplanes weighed 140 1ba. In this experiment the orficiency of the new hydroplanes was shown by the boat lifting high out of the wster in the rear. The new hydroplames buckied on the port side.

Fop. 4. Bont was again haul od out of whter and two fish-ahaped struts were used onc on each aide of boat, te strengthen the hydroplanes. Alse the roar hydroplanes of twe blades whes taken off. Again ahc lifted out of the woter in the rear. She alat hod a decided lurch to atarboard. Pull 50 2bas

Bxp. 5. Mr. Baldain then got, on board the Dhonnas Beag to try and steadyhor, raking the total weicht exceed 300 lbs. The did not lift fron the water and the starbourd strut pulled out ond the port hydroplane again buckled netwithatanding the strength given by the extra strut. A note by Mr. 7. F. Buldwin dated Oct. 17, 1908, מus:

Yesterday (Friday Oet. 16) tried Dhonnas Boag towing her behind skidoe. Threc tete of hydroplanes Pirst twe forvard and one aft; no engine and no mans. The total waicht was about 130 lbs. She 1 ifted forward but atern drabged in the water so whluchod whether net of hydroplanes well aft. This time boat lipted practically out of witer; speed 100 neters 30 sec; pull 25 2ba. A alicht pull on the line sould lift boit clear out of water, so thut you could see richt under fore to aft.

Then we put on new hudropianes leaving on the other four. eighed about 140 lbs aith the hydroplanes. The lifted way up by the atern, port aide of new. hydroplane. Put a sish-shaped atrap on each alde to itrengthen the hydroplanes and took aff planes aft of the new ones to try and mus boat balance. Boat atill lifted by the stern. 100 meteris in 30 see; pull 50 1bs. Then I get on hydroplanes on the bout to try and trim her. 100 meters in 29 aec down. 200 meters in 30 sec up. Pull 70 1bs. Bact lifted, but not clear of the water. starbourd atrap puiled out, and on taking bout out of water, found port alde of planes buckled again.

I appand thase notes sis thay aro ingartiant as coming from Lur. Baldivin hinselp.

BALDUIN'S EXPPRRIMKJTS UXTH HYDROPLAMZS OCT. 17, 1908: By Gardiner H. Bell

Beinn Bhreagh, Oct. 17, 1908:- There is a noted difference in the experiments made yesterday and tomday fron those of the past, in that the Dhonnas Beag was atripped of all her welcht, engine and man, and was towed by the launch "Skidoo"; Whereas heretofore she was driven by her own notive power and did not succeed in rising on her hydroplanes. 'The Skidoo made an average speed of 1000 meters in 307 seconda.

Bxp. 1. Besides making the boat as light as assible the lifting surfaces of the formard hydroplanes were greatly increased by the use of a rooden hydroplane, about three inches. wide inclined at an angle of 5°, which was lashed on belov the two forward hydroplanes. (See photograph in this Bulletin). In tho atern was a four-bladed hydroplane, and about three feet forward of this was another hydroplane of three blades.

Reault: Bost lifted corpletely out of the water and ran along on her hydroplanea steadily, keeping the hull at least a foot clear of the weter. She was inclined to be a bit heavy to ntarboard se a piece of load was put on the port outriggers to counterbalance the effect. This had the desired erfect. During the experinent the pull registered 50 lbs.

सwe. 2. As she was inciined to lift too high in the bow she was leaded down with 46 lbz. of lead well forvard a. out three feet behind the forward planes.

Result: she took on a diving action, resombling that of a porpoiae. Pull 50 2bs.

Bocp. 3. The lend way shifted at lover and of courise wout three feet rasther forward, bringing it inevadate y above forward plane. Tith this bulance the piunged vore aeverem $1 y$ than before.

Exp. 4. Load shifted avay aft, with tho reault that the bout lifted away out in the bow.

Rq. 5. Again the weight whe shilted formard about a loot and a hale bringing it nourly ayidaly.

Result:- ho dove u_{2} and down with ubova adjustrant.
Thep. 6. The weight was then ranoved and itr. MuIdiohn got abourd the Dhonnas Beag. If in his woicht the joat dily not lift out of tho water. Pull registered 85 los.

Exp. 7. Vr. Baldvin thon got oif and the 46 lbs waight was placed ap Par Pormard as poadiblo. 3ith this udjustonont she fuaped ix und dovm, the Thole bout kooping parallel with the Fater.

Dxp. 8. Again weight was ihleted back thout is foot. The abili continued to divo badiz.

Zxe. 9. Shiftoe weitht thre fuet formard of conter of gravity. Jumping wetion parallel with waier.

Hup. 10. 3hifged weight thrac feet back of center of gravity. Hold her nose steadily high aut of wister. Pull 70 1bs.

INa. 11. Khifted weint to contor of ifruvity. Plung ed up and dom in the bow. Pull varying frow 40 to 60 ibas

Jxp. 12. Weight wha thon takan off. The rose out of the water a foot fore and uft and atayod there.

 20, 1903: By Gardiner צ. Boll.

Boinn 渞reaph. Oot. 20, 1903:- In experiments touday two woodon hydroplanes were used, instead of one as in the last exporinents reported, one fore and one aft. Bach plane wes lashsd on to the bottom of two sets of the regular iron hydroplanes.

Fap. 1. The Dhonnas Beag inwediately upon gaining there headway, went up on her hydroplanes and stayed as long as hoadway was maintained. Sone difficulty was found in keeping her one an oven keel and she drifted budly frori alde to alde.

Tap. 2. Two strips of wood, one on either and af the outrigeera were tried as a means of ateadying her. (Bee phetograyh). 66 lbs of lead was put anidship. She lifted high out of the wnter, but it was very hard to steady hor in this. poaition.

Kog. S. Mr. Baldvin then got on board the Dhomnas Beag. As aoon as sufficient hoadway had been grined by the launch the Dhonnes Beag care out of the water on hor hydrom planea holding the boat a foot cloar of the water until apeed was alackened.

In above axperinent:-
Pull 52 lbs. Speed 100 m in 35 sec down Pull 42-50 1bs. Speed 100 m in 32 see up.

```
200 m In 67 sec.
```

This was a red-letter day at Beinn mroagh. Preaent as witnesses:- Mra. A.G. Be21, Hiss Mubel B. MoCurdy, Dr. A. G. Bell, ikr F. W. Beldwin, Mr. Gardinar H. Bell, Mr. Bedwin
and nembers of the Taboratery staff ineluding Messrs. Valcolm WacFarlane, John MacTean, Filaon Fuddorham, and Jillian Haco Donald. G.H.B.

A 3Tap IH AbVance: By F. W. Baldwin.

Tuesday Oct. 20, 1908, rariced a new phane in our hydroplane experiments. Previoun to this our hydroplenes have not yielded resulta depinite enough to make deductions fron, or rellable enough to base caleulations upon.

The retarding effeet of the hydroplanes upon the boat was the only action we were perfectly sure of. The lift being a very uncertain quantuly fille any part of the hull remained in the water.

On Tuesday Oct. 20, hovever, we succeeded for the first tine in ilfting the hull and a man well out of the water, so that at last we have a pure hydroplene action, and a means of meavuring acourately all the factors involved.

With the planes aet at 5° (Angle of incicence) and an average pull of 50 lbz . the lift was 300 lbs. This result While in no way remarkable is nevertheleas pronising. Faking the $\frac{i_{1 f t}}{\frac{\text { rift }}{}}$ as the measure of efficiency we $g^{\text {et }} \frac{300}{50}=6$, which means that oven with the crude planea explayed in this experinont, we can lift a boat clear of the water with a propeller thrust equal to $1 / 6$ of her diaplacement. Once a hydreplane boat under her evm power can lift clear of the water i.e. (aubstitute the vertical pressure of the planes for diaplacenent) we have every reason to expect, both from theory and practice, that the high speed we have been looking for is obtainable. of course a ereat nany inprovenents over the planes used at once suggest thonselves. Fer exarple:- The outting edges of these were at right angles to the line of advance;
their head reaistance unneceasarily large, and their curveture too flat for efficioney. In all these partieulara we expect our new metal planes te be an improvement. They present only slanting outting edges, and are much finer in section.

Hewever, this may be, we have now something satiaractory to mork from, and it is encouraging to note that even with our preaent inefficient planes, we have at aur eorsnand the necessery propeller thrust to lift the Dhonnas Beag out of the water, and oonvert her fron a boat to a hydrodrome.

It might be well for us te now give sone thought to the atability of auch ar machine. The boat, at present of courste is very unatable when the hull is well above the water. Wile 1t travels amoothly men balanced it has no autacuatic atability and it requires a lot of attention on the part of the operator to keep her on an even keel. Probably a dihedral angle on song of the planes might be used to remedy this defees, or Dr. Be2L's auggeation of uaing planea on the haymrake principle. In any ease lack of atability with the hydrodrone is not attended by the saxae danger or difficulty as with the aerodrome. Lot us get out of the water firist, and seck atability afteruards.
F. W.B.

DIScusgion cowcyanine wiont amb rana comynots 0c9. 14, 1900: Report by Habel B. MoCurdy, Stenographer of the Assecietion.
(Report of the stenegrapher revised for this Bulletin).

Beinn Bhreaph. Oct. 14, 1909:- Dr. Bell read to Mr. P.W. Beldwin and itr. Gardiner H. Bell his note upon opront Control" given elaewhere in thia Bulletin; weroupon the following discusaion teok place:-

基. Balduint- In the Pirat place I think the aerodrone with ite frent contrel ia not coraparable to a pole with one surfaee on it. There are twe surfaces on the pole that would ropresent the nachine. Tho stain aurface is bohind the center of gravity, or whatever point you want to take as a pivet.

I think one of the greatest thinge about a bow control is that you can see what you are doing, that makes up for a great nany dericiencies, having the whole control in full view and seeing exactiy wht it is eoing. In fact, I think, all ateering or working parts ahould, if possible, be in full viow. If your bow contral brenks, why you would know where you are! then the Red Fing tall broke I dic not know it had broken at all. You want to get your inoveable parte in front where you can see them. You can make your truse strong, you cal make your rigid parte atrong; the thinge that go wrong are your working parta. Hov the Red Fing certainly broke her tall on one aide. JVerybedy excepting ryaelf know it, but I didn't until I awne dom on the lee. How I ahould have seen it had it been in the bow. It is perfectiy possible for a tail te braak and operater net to know onough to ahut off when te
shut off might suve his Life. An aceident to the stern night cause you to lose control of the whele machine and you night not icnow whet was wreng.

The dangereus thing is loas of hoadway. In all our achines that is the only thing we have to fear very much. As long as you have good ateerage way you aon't have a very bad fall. If you lose headway, I think a bew contrel is a anfor propesition than a tail beoause your centar of preasure, then in flicht at shali anglea, is well porward. Your weicht has to ge forward when you apeod up. You mast oither have jourcenter of gravity well forwara of the oenter of surface or elae ahift the contrelling planes to meet it. You could have your conter of gravity secewhore near the center of aurface of the machine and control the travel of the eenter of prosaure by using yout front control at a nogative angle and then if you lose all headway your machine is nicely belaneed for a slow glide, the oenter of Gravity being very little in advance of the eenter of aurface. I think the aaroat poanible proponition would be a good big ber contrel on a good long ama and travel with it at a majghty nogative angle.

Pr. Bellt- Then I underatand that you mdrast the maln proposition, about the pole with a horisontal surface at one ond to be correct, but think that the nain murface of the aerodrone being back of the center of gravity, renders the two cases net oomparable, that in fact in the aerodrone case, you have two surfaces, ono in front and the other behind the axis of turning, and the one behind very suach larger than the one in front. But in thia case the main aurface wich is aupposodly
back of the axia of retation is inclined with ita rear edge dommards. In other words it is tilted up in front. Thus so Par as its action as a rudder is concerned it would tend to rake the rachine dive

Mre Waldaint- Mo, no it belancea all right. They ara not tending to thus turn the wechine over. If the center of gravity is right under the center of pressure there is no turning tendency.

Dra Banis Yea, but if the aurfaces wre back of the centar of gravity why is there not a turning tendency, why don't they set Like a rudder stearing the bow dow, under hoada way.

Hre Balduint- Because the part behind is not as effective.

Dra Bells- Well, anyway new you adnit the min propeo sition, but don't think that the twe cases are quite corparable, that there is net a aingie surface away out in front. As I gather your ides, the front eentrel would be, you think, a nore efficient afeguard in case of loss of headway than a rear tadi.

基, Baldain:- Yes.

Dre Bel2t- Now let us look at that. We lose headway and under these efrewatances neither a front control ner a rear tail will operate to direct a machine.

Dr. Bel28e Fo rudder will work without headwny. Hovt we lese headway and the rachine begins to drop under the setion of gravity. Then we havememnway", not meadway", and in the interesta of sarety is it not advissble that the machine shoule
tum head down rather than tail down How the effect of a sinch surface away out in front would, under the influence of downay tend to send the head up, and load to astern fall. Whereas the influence of a rear tall would be to elevate the stern and lead to a dive with aubsequent recovery of headuay won the machine would be again under contrel. I speak here of the tendencion of the front or rear controle. You introduce a new elenent and place the center of gravity in front of the center of surface so that, under the influence of gravity alone, the machine will dive wen headway is leat, and then clain that the front contrel is safer because its tendency to turn the head up, when dropping, neutralizes to a certain extent the tendency of gravm ity te turn the head down. Whereas the influence of the rear rudder tonds to nake the dive grester. Se that your proposition in that the front control, combined with an advance in the conter of gravity, is safer than a rear contral, combined with an adiance in the center of gravity.

Mr. Malavint- That is it in a nutshell. They are equally safe if you have a long enough distance to drop; but if you have only got a short distance it is ruch better to have a machine with which you could regain steerage way more quickly. How I think you can regain ateerage way more quick2y and witho out auch a ateop dive, when you have a bow control and preferably carry it at a alight negative angle. In all our machines the canter of gravity must be well forward of the center of aurface of the machine.
Dr, Benz: Why

Mr. Haldyin:- Well, because as a machine travels at an increasing syeed and a less angle of ineidenee, the contor of pressure does nove forward, we know that. Take any of our machines and balance thona up, put your eenter of gravity underneath the conter of surface of the machine. Ilew propel that at any mall angle af incidence, and it won* balance. The bow gees up. Fith the aurfacea we have used the center of pressure meves forward alnoat te the front ed of the nachine. About 8 inches back was a fairly good bulance for the center of gravm 1ty. Hew the planea are 6 peet deep so that we know that the center of gravity mast be wall forward on the machine te bal-
 way with that balanee, if you auapend the machine, and let it suddenly drop it will take a very bad dive, and then recover headway. Just like the little glidera it would ge along and dive, then ge along and dive again etc. etc. How you oan have the center of gravity furthor back in the machine if you have a front contral at a negative angle.

Buppese you have a tail and loae headway. Then under the influence of covmatay the action of the tail turns the stern up increaaing the tendeney to dive.

声r. Gardinor Behze- That tail 1 sn "t going to make your action any worse, on account of pressure on the upper aurface of the tail realating turning action.

Mr. Malduin: You don't get pressure on the upper aurPace until you have hoadway, and you don't get headway until you have @ownway.

How let that machine arap, it will tend to dive nore upeedily with this tall on. With a bow contrel it tends to check the dive.

Dr. Belis: You think the preasure is on the undor surface of the tail, Gardiner Boll thinks it is on the upper surface.

Gardiner Beli:- You tekce both ouses, one nachine with a tail, and the other without; you can turn the machine without the tail quicker than the one with the tail. The resisting pressure will be on the uppor aurface of the tadl the noment the rachine turns, that ia if the tail is fixed or stationary.睤, Balduint- According to Dr. Bell's propesition the thing with a tail let free to fall will tond to do the weather vanc act and drop with ita hoad vertically downwards.

Dr. Bell:- I think we are all agreed upon the pelnt that the principal danger to the aviator is in loas of headway. How in all machines se far made the center of gravity is in frent of the center of surface se that when we lose headvey the machine dives and the front contrel by its resise tance tends to check that dive. It is equaliy obvious that if the ecnter of gravity was behind the conter of aurface then the rear tail wruld check the stern dive wich would result? But the question censes in ny mind why do we have have eenter of gravity in front of the eenter of aurface, why would it net be safer, without headway, to have it direc ily under the conter of aurrace. Suppose the reason to be, and I trink it is right, that when hoadway is geined the conter of preasure moves forward and we have to have the center of gravity under the
conter of presaure in order to balance. Then the faster the achine moves and the slighter the angle of the main planes alth the line of advance the mors the center of preasure novers forwards, wieh rould mean that the center of gravity alao has to move forward to balance the machine.

Now are we not geing on the wrong principle altogether to balance an instability that results froa a changa in the center of pressure, by making a change in the oenter of gravity I think the Wright Brothers intreduced an onormous irmpovenent over the acrobatic method of Lilienthal when they propesed to countorbalance such changea by the action of mieveable surfacea Thy would it not be better in this case slise to have the center of gravity under the center of aurface, the seafest pesition without headway, and counterbalance the effect of the noversent of the eenter of pressure by neans of noveable surfaces.

We have hitherte been consleering the front control vercue the tail. Why not have beth tegetherp They can comoperate with one another in ateering under hoadway and would not both be safer than efthor alone in coning down without hoadway?

Mr. Balaünt- I think that is wil right. That is exactly what I mean by carrying the bow control at a negative angle to leave your center of gravity aenewhere near the center of aurfaee, although in advance of it as that if you de lese headway you are in a better position to contrel the dive.
pr. Bely:-There is a great deal in Gardiner Bell's 1dea. Under a vertical drop the presaure of the air acting on
tha under surface of the tail would of course send to puah the tail up. Huttie actual effect deponde very largely upon Where the center of etravity is. If the eonter of grimity is directly under the center of surface of the main planes the tail would undoubtediy act in that way. But if the center of eravity ia in advance of the center of surface of the mon planea then the reaistance of the ir on the upper surface of the tail would leasen that tendoncy to turn, and ao would the resistance on the lower aurfaces of the rront control, and both of them together, resist the turning tendency resulting Prom the ecentric position of the center of gravity. The axis of retation in this case being the center of surface, or conier of resiatanca.

Mr. Gardinar Bell: Why not use your tall por a sube もaining surface as well am a tail? The front contrel evikently is a good thing beeause it does things quickiy; but why not limit the bev contrel by uaing a rear tail and then too you can put your conter af erravity abay back. Theh you have our front control, and your reur tail helpe to austain as well as keep your equilibrium. There in a certain umount of suam taining aurface in the tall because you nove your center of gravity further back, and also, I think, the only place you can have your eontrel ia in front, but the tall linita the front contrel so it is not auch a dangerous thing in the handes of the operatar.

Mr. Baldanin:mighty good thing to check you up just the same. It givila you thel ability to recover quickly.

Hr. Gardiner Bell: And it really dees not matter how far back you put your tall does it?

Hx. Haldyin: You bet your life it does! Anything bhind the propellers ia a bad propesition. There ia a draft of air frow the propellera upon any rear aurpaces, and if they nre inclined so at to be supporting surfaces, then fon your propeilers stop the change in the balance of the nachine might be very great.

Mr. Gardiner Beht:- In that case it would be a good achome to put your rear tall further back.

Mr. Baldun: There is a drag to the tail though.
Dr. Bell:- This is shown in the llamendeport exferiments. The speed of the June Bug was prently increased by the ansaion of the tail. There is one consideration you can get both great longitudinal extension by using, the front control and the rear tail, and at the dase time get quick action by waing then simultaneously.

Mr. Gardiner Bon: Mr. Raldain's idea of having the front control at a negative angle so as to intenalfy the safoty seems to me to be wong in principle.

Dr. Be11:- Why
Mr. Gardiner Boh1: Because there is nothing that bringe about resistance so such as that.

Dr. Beli: - That is, intreduces an artificial reaide tance to advance.

Mr. Gardiner Bel2: Thut is what I nean.
M. B. McC.

GHE SRABIEIZTMG KATECE OV THE STATIOMAEY TAIL: By Gurdiner H. Bell.

Beinn Bhreagh. Oot. 14, 1008:- Onc of the great problens secme to be, were to put the horizontul control, or controls, and Whather or net to une a tail.

Undoubtedly the front contral is the nost effective, and for this roason, if not handied properly is the moat durgerouz. It can cause a foremownard plunge quicker than anyGhing. But it ean alse check a plungemore affectively than a ear contral. The action of the front centrel, however, is linited by the position and area of the tail, supposing there is one.

For example a horisontal tall ton feet in the rear of the machine will have a more stabiliaing effect than a tail Pive feet in the rear; the cause for this is leverage. Hence the pover of a front eontrol will be less in the pirat case than in the mecond.

In case I then, the Pore and uft stability will be increased and the power of the front control will be diminiahed. It is obvious that with a atationary tall the horizontal oontrol sust be in front. You don't want to increase your susm taining area fros fore to aft, but you do want to increase your atability. Hones why is not a atationary horizontal tail, say fifteen feet in the rear is good thing? G.H.B.

LO23 70 BKI.2.
Wite House, Whah1niton, D.C.e Oet. 8, 2905:- Your letter of the 5 th instant has boan received and by direction of the President has been esiled to the attontion of the gecretary of War.

```
W. Loeb, Jr.,
Bec. to the Presidont.
``` Roosevelt).

\section*{ASBISTANC SECRESNEY OR BNE 2O BELT}

Var pept.e Vakineton, D.C., Oct. 17e 1900:- I huve the honer to acicnowledge the receipt, by reference fron the wite \(\begin{aligned} & \text { House, }\end{aligned}\) of our letter addresaed to the Preaident under date of oth instant, regarding work of to Aerial Fxperiment Association, and to oxpress appreciation of your oourteous offer in placing the technical information of this Association the diaposal of the War Dopartment.

The different types of aerodroases wich the Association has avallable have been noted, and an officer will be detalled from the \(\mathrm{H}_{\mathrm{L}}\) S. Sigmal Corps to witness speeial flights of aerodrases at Hamondsport, H.Y., in accordance with your aucgestion, upon being inforyed of the datea upon which such flights are to take place.

The death of the younc officer referred to by you is deplored by all.

Bobert Shaw 011ver,
Asaiatant Sucretary of War.

THE PYITWIP
(See Aeronautical Journal July, 1908).

It is interesting to note the experiments of an ingliah inventor, whe has, for sore years been working on a machine of an entirely different type from those which are no: claiming our attontion.

Neperimenta were firat made with a nodel in 1893 by Mr. Phillips. The sustaining aurfaces consisted of a series of planes assembled in wuch a way as to resemble venctian blinds. There are over fifty of these zlats, each 22 peet long and \(11 / 2\) inches wide. They were slightly concave and tilted at about two degrees fith the herizontal.

In general dimensions the machine was 25 leet lonf, breadth; 22 feet, and 11 feet high. The total weight, including load was 420 lbs.

The machine was mounted on three wheels, the single wheel leading. The propeller which was 6 feet in diameter had an eight foot pitoh and developed a thruat of about 75 lbs. the metor power used was atewn, the angine developing about 8 K.P., and weighing 200 lbs. Conl was used for fuel; the machine was started on a circular track about four feet wide.

It was geverned by a wire running fron the machine to the center of the circular track. During one trial the machine supported itaelf in the air for about 2000 feet flym ing about four peet sbove the track.

Mr. Phillipe was so encouraged by those experimonts that in 1907 ha constructed a much larger model.

In this machine the principie invelved is the same but instead of having only one set of sustaining surfaces, arranged like venotian blinds, there are four af these sets on frames arranged one behind the oblior. The total weight of the rachine is 500 2ba. The motor develops about \(20 \mathrm{H.P}\). The propeller used is sevon feet dianeter. G.H.B.

\section*{}
(Bee Aeronautics for Sept).

Above the Chasais, which consiata of three wheela, a light framevert, and a four cylinder 50 H.P. water-ceoled ongine is a aystem of propelieri in a very light franework, inclined at an angle or about 20 degrees with the horizontal. There are swenty of these propellers, each propaller having Pour blades. Their dianeter is four feat and their pitoh is very 20 . They are to be run at 1000 revolutions per minute. G.H.B.
```

