IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in tha reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
 Couverture de couleur

Covers damaged/
 Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en ceuleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleve ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other matgrial/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire $q u$ 'il lui a été possible da se procurer. Les détails de cet exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode norniale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endominagées
Pages restored and/or laminated/
Pages restaurées ot/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc.. have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un fevillet d'errata, une pelure etc., ent été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microflche shall contaln the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichevar applles.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely Included In one exposure are fllmed beginning In the upper left hand corner, ieft to right and top to bottom, as many frames as required. The following dlagrams illustrate the method:

The copy filmed here has been reproduced thanks to the generosity of:

> Llbrary of the Public Archives of Canada

The images appeering here are the best queity possible considering the condition and leglbility of the original copy and In keeping with the fliming contract specifications.

Original coples In printed peper covers are filmed beginning with the front cover and ending on the last page with a printed or lllustrated Impression, or the back zover when appropriete. All other original coples are filmed beglinning on the first page with a printed or illustrated Impression, and ending on the last page with a printed or Illustrated impression.

L'exempiaire fiimé fut reproduit grâce à la génórusité de:

La bibiotheque des Archives publiques du Canada

Les Images suivantes ont été reprodultes avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et an conformité avec les conditlons du contrat de fllmage.

Les exemplaires originaux dont la couverture en papler est Imprimée sont fllmés en commençant par le premlar plat et en terminant solt par la derniere pege qua comporte une emprelnte d'Impression ou d'lliustration, solt par le second plat, selon le cas. Tous les autres exemplalres originaux sont filmós en commençent par la premlère page qul comperte une emprelnte d'impression ou d'lllustration et en terminant par la derniare page qui comporte une telle emprelnte.

Un des symboles sulvants spparaîtra sur la dernière Image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différants. Lorsque le document est trop grand pour être reprodult en un seul cllché, il est filmé à partir de l'angle supérleur gauche, de gauche à drolte, et de haut en bas, en prenant le nombre d'Images nécessalre. Les diagrammes sulvents Illustrent la méthode.

ADVANCE PROOF-(Subject to revision).

This proof is sent to you fir uiscussion only, and ou the expres. understanding that it is not to be used for any other purpose what ever.-(See Sec. 47 of the Constitution).

INCORLORATED 188%.

TRANSACTIONS.
N.B.-This Society, as a boly, does not hold itself responsible for the facts and opinions stated in any of its publications.

THE CONSTRUC'ION OF A SMALI TUNNEL.

> By J. G. G. Kerry, A. M. Can.Soc.C.E.

To be read Thursday, 15th Mareh, 1894.
INTRODUCTION.
'The West Virginia \& Pittsburgh R.R., a feeder of the B. \& (). system, was built to open up, the sparsely settled and formerly iuaccessible eounties of Contral West Virginia. 'Lopographically, these eounties show series ol heavy uarow parallel ridges with deep dividing valleys; these ridges run roughly east and west, and are some of the uany ehains of momatains comprising the great Alleghany range; the valle y g are drained by tribataries of the Great Kanawhat liver, one of the main feeders of the Ohio. The slopes of these ridges are short and rough, and the line in its general comrse dhe southward ent direetly across them, neeessitating a diffient loention with heavy grades and expensive work. At the divide between the Little Kanawha and Elk River valleys, it was fiound impossible to locite over the smmmit while main-
 construction is deseribed in this paper was needed to pass this point.

The railroad was built by the West Virsini:a Improvement Co, of which Mr. J. A Fickinger was Chiel Engineer and Manager, and the contract for this work was let in January, 1891, to T.J. Steers \& Co. of Weston, W.Va.

LOCATION.

As finally loeated, the line passes throngh the worth approach cut and into the tumel on a $7030^{\prime \prime}$ curve, the I'.T. of which lies some 40 ft . beyond the portal ; the remainder of the smen and the sonth approach ent are on the tangent to this enrve. The tmmel is built on a 0.25 per 100 grade falling to the southrard, and is on the summit between two 1.50 per 100 grades. The portals were laid out so that the eut on eentre line at the head of the portal slope would be 50 feet, the distanee between them being 624 feet.

material.

The material throngh whieh the tumel was driven was a soft blue elay shate, nearly dry, and showing little stratitieation. This shale rapidly disintegrated on exposure to the air, and tumeling through it without timbering would hate been dangerons if not impossible. 'The company not being prepared to line the tunnel throughont with masomry at tho time of construction, it was necessary to use a system of timbering amply strong for several yeas' service and large enongh to contain the masonry when it shonld be built. The unnsually large exeavation section shown in Fig 1 (18.77 euh. yds, per lin. ft.) was rendered neeessary by this double lining. 'The shale was overlaid with beds of heavy and strong sandstone dippiner slightly toward the north and so low that near the north portal some of the sandstono had to be blown down to make room for the timbering.

MEJHUD OF EXCAVATION.

When the eontraetors had full forees, the excavaion was earried on by day and niyht shifis, working ten hours each from both ends of the tunncl. It was but rarely, however, that full forces were employed, as the adjeeent grading was more baekward than the funmel and the men were drawn off $t o i t$. The rxeavation was all hone by hind work, no speeial tunnel maehinery being employed, and it was conducted on the general prineiple that nothing is so expensive in tunneling as a eave-in

heading.

The shifts were divided into heading and bench gangs, the fureman of the beneh gang being, however, subjeet to directions from the foreman of the heading. The heading gang consisted of a foreman, 8 miners, 6 muckers and a " nipper; " and its work was to exeavate the material from the bottom of the wall-piates np ($\mathbf{7 . 7 0}$ cub. yd . per lin. ft .) to place the wall-plates in position, to ereet the arehes upon them, and to lag and paek the same.

Coming back into the heading after a blast, the miners first pulled down all dangerous material from the roof, then eleared away enough of the debris of the blast to give themselves working toom, and proeceded with the drilling. 'Ihree sets of holes (two wet and one dry) were usually drilled in the faee of the heading ; eaell set eonsisting of four holes about 4 ft . deep, the exaet placing of each hole depending on the suceess of the last shot ; uwenty-fuur lin. ft. of hole was eousidered a day's work for two miners. The holes were loaded with from 4 to 6 stieks ($\frac{1}{3} \mathrm{lb}$.) of lynamite apiece, and fired by batery or fuse, as might be desired; as far as practicable, all blasts were fired at the end of the five hour spells, so that the dynawite fumes might dissipate duriug the ide hour; the average fall from a beading blast was $2 \frac{1}{2} \mathrm{ft}$.

While the drilling was progressing, the muekers chensed up the healing, the seaffold ear, Figs. 4, 5 and 6, leing neeessary for this purpose. This was a mounted platform, with height a little lower than the heading floor', and with its frame so arranged that dump cars could run right under it and bo loaded through shoots from the phattorm above. It ran on a special track, and was provided with long detached planks whieh were laid from tho platform on to the heading floor, the muck being wheeled down them and dumped through the shoots. The car was provided Fith a small derrick for handling timber, lagging and packing.

BENCH.
The bench gange comsisted of' a forman, 8 drillers, 10 muekers and a "uiper" ; aud its work was to exeavate the material remaiuing in the section (11.07 culd, yds. per lin. ft.), to phace the plumb posts, and to lag and pack behind them.
After a beneh blast, the whole gang was put at work eleming off the rails of the seatfohl car track, and pmsinge this up as way was made for it, it being always run back for safety before a blast. When the scalfold catr was brought far enough aliead to communieate with the headiug, the drillers cleared off places for their new set of holes, and went to work on them. The bench was shot down in four foat holds, two half-lepth blasts being made for each hold; each blast consisted of four holes, two being eentre holes and two drilled as uearly vertieally under the iuside edge of the wall-plate as possible; the charges were 10
sticks of dynamite to an ontside hole and 15 to a centre one. The drilling aud basting of the beneh though simple required skillful managenent, thes points to be guarded against being: damage to plamb posts and arch timbers, danger ol' nneovering too great a lengeth of the wall-plate at a single shot, and complete avoidnnce ol any interferenee with the progress of the heading.

The muck was taken out to the dnup in sido-dumprers of abont oue yd. practieal eapacity ruu in trains of !wo, the heading muekers loading one through the scaffold ear shoots, while the beneh men loaded tho other, the bench meu liaving to clean up to the faee of the bench before the next blast was ready. Where the roek shot down in large masses, progress was much aided by tho use of stone flats mounted, so that the platforms were tinsh with the tops of their whecls, on to which heavy roek could be barred without bloekholing or extra handling. The bench was kept about twg wall-plate lengths behind the heading, and made the same average progress. 'Lhis progress was about $2 \frac{1}{2} \mathrm{ff}$. per shift ; the aclual exeavation was made at a rate of 5 ft . per shift, but the time consmued in pointing down odd projections, timbering, layging and packing being equal to that spent on rough exeavation, the progress rate was only $2 \frac{1}{2} \mathrm{ft}$. per shift.

phogress of excavation.

The north heading started under on April 17 th, tho south heading being delayed by a heary approach ent matil June 3rd. No record was kept of the monthly progress, the irregnarities of the forees and delays occasioned by laek of timber rendered all such records valueless. 'the headines were holed on Sept. 171h, and the beneh was finished ly Oct, 15th, the work having been in progress for just sis months. The heading was driven with great eare, and no exeeptional record was made untit the night helore the holing, when twe gangs drove 00 ft , of heading of rapidly diminishing cross-section in a desperate effort to pieree the $2 f$ feet remaining in the :annes. 'I'he driving ol' the beneh was of course limited by the heading, but after its eompletion the piek of the forces were placed on the hench, and with gangs inerensed to one foreman, \because dhillers, $1:$ muckers and nipere, the rate of progress rose to $3 \frac{1}{2}$ teet 1 eve shift, the bench being hown in 6 ft . holds.

HP'EICULTIES IN EXCAVATION

No trouble was experienced with the bench anyspere, but the heading was trequeutl; in bat ground. At the worth portal the top of the heading passed into a shatered bed of sandstone rock, which eould not be shot down without disturbing a comsiderable amonnt of material on the portal slups. Here a $6^{\prime} \times S^{\prime}$ drift was made under the sandstone, and the headiug espanded to its hall section and timbered at the seeond wall-plate, aud the first wall plate hoghth was driven outwards, the shatered rock beingro caught up liy tiubris as quickly as the excavation was completed.

As the thmel grade foll and the sandstone row to the solathward, the heading was som cle:tr of the simdstone, which mate an admirable roof for a seasom. Whe shate had very little adhesion to the samdstoue, and when the sandstone bed and the thumel section separatel, it soon proved itselt not sufficiently strong to hold up acrose the span by eoming down in heavy falls, which left the bottom of the sindstome exposed. 'T'he material betwe the bottou of the sandstone and the top of the section was aecordingly exeatvated, until its thickness grew such that the eost of its removal beame an item of considerable expense when it was determined to hold it in place. This material where removed was elassificd as "fallen material."
U_{p} to this puint the system had been to drive a foll hearling for a wall plate length, and then timber it up. 'Jhis was now changed, and the heading was driven with an arched longitudinal section having full height at the end of the preecding wall-plate, and being barely high enough at the cnd of the new wall-phate to admit of its being oasily
placed. The new wall-plato being in position, the excavation necessary for cach of its innposed arehes was mades separately, each being erceted, blocked and partially packed hefire the exeavation for the sureeeding one was commenced, The last areh being up, the heading was aguin driven forward for a new wall-plate. Side drifting to place the wallphates, on which the arehes were then built as in the method jnst deserilnod, was tried, hat was aluost immediately abandoned as more costly than that methoul.
It is only just to remark that, owing to the great care tlus taken by the contractors in ill dombtfinl pheces, neither fitality nor accidental interruption oceurred during the progress of tho work.

The system of timbering is shown in Figs. 2 and 3 . All timber was of white onk, and was earefully inspected; all sticks had to be in a thoroughly sound condition, and arch segnents were rejeentad if they showed any sign of lomgitudimal cracking or splitting. Tho system of crection was as follows:-

heading timber.

Tho heading being ready, a ${ }_{1}$ air of wall platcs were brought in, and tho engincers were sont for, to superintend tho placing of thems. This operation is deseribed further ou. The wall-plates wero $12^{\prime \prime} \times 14^{\prime \prime}$ $\times 16^{\prime}-0^{\prime \prime}$, and as the theoretical springing of the arch was at the lower side of the wall.plate, radial beds wereadzed on its upper side, to make bearings for the areh timbers; the wall-phates were jointed by halving for a foot at each end, and were made in pairs, right and left, so that the forward end when in position might always show the lower section of the half-joint, that being a material udvantage in the placing of the plates. The wall-phates being in position and securely blocked ugainst outward and downward movement, the joints were sccured by tightening up the clamps. The detail of these clamps is shown in Fig 3. Stiffening planks $2^{\prime \prime} \times 14^{\prime \prime} \times 2^{\prime}-0^{\prime \prime}$ were placed above and below the jointed plates, and drawu against them by tightening up bolts working through pairs of transverse straps. These bolts and straps are entirely outside the timber, and comprise all the permanent iron in the tunnel.

The arches were erected on the segment centres shown in Fig. 7. The arches are of 12 "x 12 " timber, in seven seqments, the semments being cut to template, and were erected by simply laying caeh segment in place on the centres. The centres were erected by jointing the two segments by the bolts shown in Fig. 7, and then blocking up their leet to proper position; the long hook shown in the same Fig, was driven into the preceding arch, and served to hold the frame in position at its proper spacing ; the second system of segment joint there shown proved the better in practice, being more readily handed. The arch segments being up, they were blocked solitly from the roof against nll upward and outward movement, and $4^{\prime \prime} \times \mathrm{I}^{\prime 2} \mathbf{2}^{\prime}$ joggho-blocks with $8^{\prime \prime}$ shouhlers were placed between consecutive arches at each joint. 'The centres were then withdrawn and the lagging commenced. The lagging was close-laid in lengths equal to the areh spicing and the bottom piege bore on the projecting back of the wall-plate. All voids back of the lagging were filled with broken nandstone brousht into the tumal for the purpose, aud hand-laid. The use of sandstone was insisted upon because it was feared that the shate would cheterionate in time and yield under pressure if used as packing, thus giving the masses above a chance to start moving. The lagging and packing were arried up simultancously, the packing of the erown seyment being eompleted from between the next arches; and the timbering was completed by nailing up the two lines of $1^{\prime \prime} x 6^{\prime \prime}$ lacing plank at each joint. These lacing planks were to protect the corners of the segments from blasts, and were torn down after the tunnel was completed. Jhey had the demerit of hiding the condition of the joint, and were accordingly omitted in bad ground.

BENCH TIMBER.
As the bench was romoved, the wall-plates werecanght upon the plumb posts, due watch being kept that no length of the wall-plates was at any time left without ample support. The posts were underlaid by 4 " $\mathrm{x} 12^{\prime \prime}$
plank in 6 feet lengths, and wedges benring upon these planks were driven until the post took a full hemring against the wall-plate above. 'The posts were spaed loy 2 "x $12^{\prime \prime}$ phatin at fiot and hend. The lagging and paeking wero curried up simultanuonsly from the floor level, hat it was not considered uceessinty to keep this wisk right up ax in the case of the arch logging, nud it often fell emsiderably lehind, the shale on sule oceasions proving itself amply strmeg to stand withont surpont during the short perioul of expmsine, the rate of dixintegration beine very slow in the nuchanging athondhere of the tmuncl. No provision was mado in this system for side long pressure, and no need of such provision was developed.

DHFFIUULTIEA AND AITEBATIONS OF TIMBERING.

The detiils of the system were varied to suit ciremmstances. Tho heaviest pressure (immediate and future) was miticipated at the portal, and the end wall-phates were acoordingly cariod well out, and all the rauged voids betwen the lagging and the portal slope filled with timber bloeks ; aud for che first 45 lt . at the entrance f lasging was used over the areh, and $3^{\prime \prime}$ behind the phumbosts, these being reduced to $3^{\prime \prime}$ and $2^{\prime \prime}$ respectively for the remainder of the tumel. The arch and plum. post spacing was 3 ft . centre to eentre: " proposition to maintain the hickness of the lagying at the end of the lirst 45 ft , and to increase tho bib spaciog being considered and rejected.
As deseribed hereafter, the wall-plates were set marrow, high and oanted slightly inwarts, the effeet being to leare the sesment joints open at the back and tight on the front, so that the joints womld tike a fult bearing when the pressure eane on and the edges yielded moler it. Near the centre of the tumel it was notieed that the joints on the arehes on three wall-plates had opened at their hawer edges indieating heavy downward pressure. The wall-phatew were immediately dapped to reecive extra arches; these were similar to the existing arehes in every respeet, exeept that one of the end segments was ent off short and wedges were placed between it and the wall-plate, by driving which the areh was foreed to a full bearing agginst the lagging. For two wall-plates atter this oceurrence, seven arehes were phaced on a wall-plate instend of five ; but as the indieations of pressure then eeased, the five wero agaid adopted.

GRADE AND AIIGNMENT,

By reason of the general.plan of construction neeessirily adopted, the company had to exearate a large and expensive section; but this seetion was redused wherever practicable, and thus the elarance between the systems of lining was redncel to a minimm, neenssitating very careful placing of the timbering. The wall- plates were the determining meabers of the timber kystem, and they were, therefore, placed by the enginearing staff. The plam of operations was as follows:

Taking advautage of the fiet that the wain tangent in the tunnel passed out of the portal at the eurved end well within tho section, this line was establiehed by five hubs, one over eaoh portal, to serve as backsitghts, one on the summit and one well away from each portal, in such position as to conmmand a full riew of it. These later served as instrument stations, and from then the line could be run right into the heading when uceessary. No permanent puints were established in the tumel, the line being always brought up from the oatside points when required; the I.'I'. was estallished temporarily and the curve run in from the tunuel tangent. The signal used in the tumnel was a small miner's lamp with a plumb bob humg below the centre of the flame. When the tunuel was smoky, reeorrse wat had to the gensoliue lamps used to light the tumel. These were known as "eleetric torelies," and had a long pendant arm of gas pipe terminating in a bend and a small circular nest of burners, the plamb bob being attuehed to the eenatre of this mest. On very bad days for seeing, the speediest method was to establish points on the tingemts as tir as could be reatily seen, and then to move the instrument up into tho heading and get it into range
with the points. When needed, the line was marked by a temporary point opposite the forward ends of the new wall-phates, the position of the last wall-plate beting miways tried as a cheek The level was then set inf in the heading, bench morks boing estul)hiwad in the tumel, and the wall plate was alternately shifted in grade and alignment nutil moth were satistichory. A mincr's lann, beld close th, the face of the rod, proved sutlicient to ilhminate buth it and the "rows-hairs of the
 and eantel slightry inwards, these ollownnees leing made to provide for the unavoidable settlage under empressinn. When the healing wus loded, the ine and levels met within f inch.

Measukement of excavation.

At every set of timbers a reyular series of offsets was takin by tho hiespector from the ontaide of the frame th the faee of the rowh, fionr mensurements being made from each fhmh pust, on fron. avery arelo juint and one from the centre of each arch sergent ; the measmements of the suts on cach wall-pliate were arporagel, amb these averagos worm retorlad an the meanarementwif that wall-phat lewth and the wrea and contents calculated theretrom; the reeorded meanirements read as if taken from the weh centre. 'The system of masmement proved wery convenient; the stop by step inthot of exeavating and timberins would have seriously bampered any wher syatem, hut with this the insuretor conld always make his men werm whe whenere the excavation was complete and the timher fram:e in phace, und the liggring and packing might inmediately proverol. Any "row in the relative phacing of tien timbers woald, however, be reprohna 4 in the measmenemts. These seetions were taken as a precanionary wensure. it boing specified that the work would be paid fur by theoretical dimensions.

cost.

The prices and costs were as fellows:
11706 Cy Kxewation ar

742	Packingr	1.75.	$1,298.50$
256	Falleu Material	1.25.
320.00			

303,000 Fit. B.M. $30.00 . .$. $9,090.00$
bie4 lin. ft. of tur:nel.............. §44,127.50
these figures being contract prices, the artual con being probubly in the neighbourhoul of 835,000 . In the approiches the prices were solid roek, 80 ets. per cat, yil. ; louse rock, 40 cts, ; and earth. 20 ets. Whate uak timber was delivered on the gromend for $\$ 15.00 \mathrm{p}^{\mathrm{mer}}$ M., ani cost $\$ 3.00$ for framing. Common latomer was worth $\$ 1.45$ an day in the tumnel, and the miners wore paid sl.75.

fIG9 CENTAING LOA MINSNAT

On consedering the permanent stability of the tumel it was thonght that if any ground movement whond oecent such as would bring heasy pressure unon the liniug, it would be in the visinity of the portals, whike the timbering would decaly most rapidly at the same place. It was thereforo deternamed to put in pretels and to build the masoury lining for filty liet at each end. 'The masoury metion is shown in lix. 8. It was built of reet samdstonc, very coarse in stemeture and well alapted to resist the atetion of hated gases. 'The sillewalls were latid in contres, all stones being two liet or more thick, and the bottom combses we extendel into the timel, se that the couls of the eomsers might be racked off continmonsly from bass to k 'ystome, and the wall thas left ingoed condition for bonding on the resumptien of work on the liping. 'The spaces between the plamb posts wire tilled with spawh in mortar. These walls were built with a small derriek set. up withont stifl legrs or grys, the pin at the top of the pest beine plated in an angre hole bored in the crown segment of one ol the arehes; and althongh the segment was not fastened in any way, the joint and larging ficiction proved snfficient to overeome any stresses from the lerrick tending to move the segment. The centring for the arch is shown in lig. 3. The eentres rested on a $3^{\prime \prime} \times 12^{\prime \prime}$ wall ${ }^{\prime \prime}$ liace supported by rongh $6^{\prime \prime} \times 6^{\prime \prime}$ posts bearing on a $3^{\prime \prime} \times 12^{\prime \prime}$ finme sill. The frame sill was catried by wedges working against a $3^{\prime \prime} \times 12^{\prime \prime}$ mul-sill ; the range of these wedges was large, so that the entites would be cousiderably lowered when the wedges were stiuck, and the whole seetion of cent: might then be run ahead on small rollers phael on the mud-sill. With that parpose in view the posits were set far enough awoy from the side-walls to clear the quarry face projections of the stones, and the irst few pieces of lagging were omitted on eneh side of the centre. The section of centring used was about 25 ft long, the centres being spaced 3 ft . centre to centre; the centres wers buile of three thicknesses of $1^{\prime \prime}$ plank breaking joint, anl with a minimmm depth at joint of 10 inches; the lagging was $\underline{g}^{\prime \prime} \times 4^{\prime \prime}$ laid on the llat; the consecutive posts were fastened together by irregular diagonal bracing, The masonry areh was $18^{\prime \prime}$ deep, the voussoirs measulitg $1^{\prime}-0_{4}^{3 \prime \prime}$ on the intrados and the keystone $1^{\prime}-3^{\prime \prime}$; all jonts were $f^{\prime \prime}$, and the voids between the masonry and the timbering were paeked with dry sandstone, hand laid. By reason of the impracticability of the ortinary bethods of handling stone in the contined sace between the lageriug of the centres and the timbering of the tumel, special methods had to be resorted to. The method erployed was to lave an oprening in the crown lagging of
ample size to pass any of the arch stones, above this opening a piece or two of the tunnel lagring was removed, and an iron bar placed upon the timber arehes. A set of bloeks were attaehed to this bar, and with their aid the areh stones were run up till they passed through the lagging, when they were swung off on to it. The diffienlty was to get headway enongh for the blocks to work in. Gas pipe rollers were placed under the stone, and it was run along on its side until it came opposite its destination. It was: then canted upright, there being room to cant the stones at the joints of the timber areh ouly, and a single rope was passed romm it. Six men were needed to bring it to place, two holding back on the rope from the opposite side of tue eentring, two aiding the slipping of the stone and wumrliug its edges from spawling, and two masons being below to receive it, throw off the rope and set the stone aceurately, it reruiring decided skill to bring the stone to its right place with an even mortar bed under it. 'The keystone was run into plaee dry and gronicd. The head-wall of the portal was a rectan-

gular bloek of masonry $25^{\prime}-0^{\prime \prime} \times 26^{\prime}-0^{\prime \prime} \times 4^{\prime}-0^{\prime \prime}$. It was laid as first elass work, and the bond with areh was made by ereepers. It was held that it wasnecessary to support these head-walls by buttresses, it being known that unsupported head-walls in tunnels in the same seetion of the State had failed under a gradually increasing movement of the miterial on the portal slope, this movement sometimes only eommeneing years ifter the eompletion of the work. 'The buttresses built were 8 ' $-0^{\prime \prime} \times 3^{\prime}-0^{\prime \prime}$ in plan, and were stepped back towards the head-walls eommeneing at the springing level.

The priees on this work were $\$ 9.00$ a enb, y d. for portal masonry, $\$ 8.00$ for side-walls and $\$ 14.00$ for areh sheeting. This eost was not ineluded in the tunnel estimate before given, as the work was only partially dose, and because the detail of the lining would probably be altered by the employment of a cheaper material when transportation, faeilities were obtained. The eost of one portal complete was:

Lining per lin. ft.............................. 844.06
In the estimate before given the cost of exeavation, tinbering, ete., was $\$ 44,127.60$ for 624 ft ., so that the total cost per lin. ft. of eompleted tunnel would be (excluding portals, fallen material, ete.):

Exeavation	\$53.55
Paeking.	2.08
Timbering.	14.57
Side-walle.	20.56
Areh.	21.42
Packing.	2.08
	114.26

The whole work was earried through in a style that was entirely satisfactory to the ehicf engincer. Mr. Jos. N. Allston was resident eagineer in charge, and the management of the eonstruetion was in the hands of' M1'. John E. Dongher of 'I'. J. Steers \& Co., and most of the practical points in the system above deseribed sere an outeome of his great experieneo as a tunnel builder.

