## IMAGE EVALUATION TEST TARGET (MT-3)



Photographic Sciences Corporation


## CIHM/ICMH Microfiche Series.

# CIHM/ICMH Collection de microfiches. 

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproductlon, or which may significantly change the usuzi mathod of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagte
Covers restored and/or laminated/
Couverture restaurde et/ou pellicule
Cover titin missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en coulour
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations,
Planches et/ou illustrations en couleur
Bound with other material/
Relid avec d'autres documents

Tighz binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during rastoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans le texte. mais. lorsque cela d́tait possible, ces pages n'ont pas dete filmes.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a dé possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la móthode normale de filmage sont indiquás ci-dessous.


Celoured pages/
Pagys de couleur
Pages damaged/
Pages endommagesPages restored and/or laminated/
Pages restaureses et/ou pelliculées


Pages diacoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées


Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression


Includes supplementary material/ Comprand du matériel supplémentaire

Only edition available/
Seule edition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio cheched below/ Ce document est filmé au taux de réduction indiqué ci-dessous.


The copy filmed here has been roproduced thanks to the genarosity of:

Library of thie Public<br>Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeplng with the filming contract specifications.

Original coples in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impresslon, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or Illustrated impression, and ending on the last page with a printed or iliustrated impression.

The last recorded frame on each microfiche shall contain the symbol $\rightarrow$ (meaning "CONTINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filme fut reproduit grâce à la générosité de:

La bibliothéque des Aichives publiques du Canade

Les images suivantes ont 6té reproduites avec le plus grand soin, compte tenu de le condition et de la netteté de l'exemplaire filmb, et en conformith avec les conditions du contrat de filmag.

Les exemplaires originaux dont la couverture en papier est Imprimée sont filmés on commençant par le premier plat et en terminant solt par la derniäre page qui comporte une empreinte d'impression ou d'illustrction, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commencant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernidere image de chaque microfiche, selon le cas: le symbole $\rightarrow$ signifie "A SUIVRE", le symbole $\nabla$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant ie nombre d'images nécessaire. Les diagramrnes suivants illustrent la méthode.


| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | 5 | 6 |

ADVANCE PROOF-(Sulject to revision).
This proof io sent to you for discussion only, and is the express understanding that it is not to be used for any other purpose what. ever,-(seee Sec. 17 of the Constitution).

## entradian \$ociety of eivil engineers.

## INCORPORATED 1887.

## TRANSACTIONS.

N.b.-This Society, as a body, does not hold itself responsible for the thels and opinions stated in any of its rublications.

## MASONRY WORK OF THE CHEAT RIVER BRIDGF: <br> By Ceetr, B. Smeti, A.M.Can.Soc.C.E. <br> T's be read Thurshtry, Jan. 4th, 1994.

This hridye, built during 1892-93, by the Baltimore \& Ohin R.R.Co., at its erossing of this river, on the State Line R.R., between Uniontown, Pa., and Morgentown, W. Va., was, with other wo.k, put in charge of the nuthor of this paper in July, 1892.

Amougst the first duties were to establish, accurately, the highest known flood level, and also to make surveys and soundings of Cheat River for $2 \frac{1}{2}$ uiles nbove the proposed bridge site, this latter informstion being needed to demonstrate to the Federal Goverument that this river was unfit for navigation aml its improvenent impratricable, in order that the grade of our erossing might be placed, as near as safely might warrant, to the flood level.

The highest known water was in July, 1888, when the river rose exactly 30 feet, above pool level, at this puint.

It will be understood that the Clioat River empties into the Monon. galesa immedintely below the bridge, ani that this lather river is improved for navigatiou from Pitesburg, Pa., to Morgantown, W. Va., ty a series of dims and looks, which pool the water about every 10 miles, on an average.

Pool No. 4, of Mouongahela, backs 2 miles up Chent River, at low water, and hass raised the water level at the bridge site sf feet, or fiom an original depith of' 5 tiert to a present one of 13 feet at low water.
'The grade line was put :3' $6^{\prime \prime}$ ahove pool, and bridge seats 32 ' above pmol, or mily : !eet above the highest known thood level.
t'his sume very little margin, but when it is consilevell that only exerptionai flouls vice over 15 or 20 feed, and that any higher water
 the willure of Point Marion, and the - - to the Monongahela by ano her Atancl, it will appear quite sutticient, especially as the drainage area for 160 mites and iweluding all its branches is in : montainous region whre the ermations are not likeiy to be cever elanged, by elearing the land, to any great extem, fur cultivation.
'The Bridge consists of 4 through spans 185' eentres, sual 2 half through plate giriers ot s5' and 65 over all, ur a total length of 600 feer, and is now heing put in ly the Pencuyd liridge Works.

It will ise noticerl, by the general plam, that 200 feret of the bridue in on a 10 4. 5 ' curve. This is arranged for loy lenghtening Piers I and II (Plate XIII) sufficimaly to spate the manin trusses of these spuns rrough wider than those on tangent to allow for curvature.

This is not as bad a featurre ats it otherwise would be, owing to the proximity of a deput and $10: \% \mathrm{n}$, therelly eansing trains to slow down at tile liriuge.
The triangulations were carried ont in duplicate and cheeked to $\frac{1}{10}$ fiot; the average was taken, and foum afterwarl, ly actual meavurement, to be within $\frac{1}{213}$ foot ar being correct.
'Tles matu hase line was laid not "xately paralled to the axiss of the piess, and both base lines wore hubbed and levellad every 50) fient. The
levelling was found necessary, even on fairly lovel ground, as a 400 ft . baso line shews $\frac{1}{90}$ boot error when tape was levelled by the eye only, over fairly levol ground.
The anglos were repeated 12 times with a young transit graduated to minutes only, and ehecked to within $\ddagger$ minute on averages.

This error of elosure was found to be always on the small side. One writer ascribes this faet to the instrument being out of level by ropeated tarnings, but the author believes it to be due to a slight dragging of tho axis in the dircetion turned.

Tho soundings wero taken by a very simple metliod: The positions on the base line exactly at right angles to each sounding uceded were fixed on the ground, as also on a similar base line on the other sido of the river also pratlel to the axes of the piers. This gave oue range, operated eatircly by rodmen or axemen. The other range was by transit angles from the distant end of a base line.

In fixing the drelge flygs, afterwards, the same method was adopted and found to work very well. This, in case one transitman only is available, and for rivers not over $\mathbf{5 0 0}$ or $\mathbf{6 0 0} \mathrm{ft}$. wide, will be found a ready method albeit probably familiar to most of my readers.
The soundings for phr foundations diselosed a thin layer of closely cemented grivel, overlying soft elay shale at Piers II, III and IV,

13 feet of mud and gravel overlying rock at I ier V.
And apparently solid rock within 7 feet of water surfaco at Pier 1.
This list information was nfterwards proven eutirely incorrect, and came near euusing great trouble.
The secming solid rock, obtuined in about 15 different readings, which all made the rod ring, was merely a solid mass of huge boulders forming the toe of au ancien stip, from the mountain side adjacent, and which extended fiom about 2001 feet above the water to the botton of the river, und varied from 3 to 20 feet in thiekness.

When the eofferdan, made by in artificially mode filling, above water level, into which shect piles were hand driven, encountered these boulders, driving had to be discontinued, and another row of' sheeting and rigg of timbers put in. This was, with much difficulty, carried down completely past the slipped material to a firm elay foundation, nearly level with the river piers foundations.

The masonry base was well spread out, ind the pier las not settled by the slighest noticeable amount, when tested by levels.

The foundation for the north abutmout was commenced befure that of Pier I, the material being wheeled to form the artificial dann mentioned; and as it was supposed that solid roek was within 7 feet of water level, or 16 feet of ground surface, or even less, no great diffieulties were looked for. It was ateordingly thought ample to lay out foundation pit 4 feet all around laryer than the proposed pilaster, which was to be $122^{\prime} \mathrm{t}^{\prime \prime}$ at its greatest width.
Here would seem a good opportunity to warn beginners in foundation work of any great possible depth: " Be sure to liny them out "amply large for supposed needs, and then add 1 or 2 feet all around " for exigencies."

After this foundation way earried down 12 feet, the old slip, before mentioned, consisting of elay and boulders, was encountered, and it became evident that the pit must be earried down past this layer to a firm olay at least.
A second row of shecting was neeessary, and the question at once arose :-

Whether the abutment, as origimally designed, was heavy enough to witlistaud the pressure of a mountain side belind, liable to move at any moment, and with only a narrow support (See Plate X for erossseetion) between the abutment and the river:

It was resolved to earry down as harge a foundation pit as possible and till it with masonry. Soft roek was obtained 23 feet below ground and neat lives, or aloon 49 feet below grade, und a width of 14 leet there given to the masonry and conerete. This width was earried up to
the neat work, and all spacos betwoen the masoury nad shectirg oarcfuliy rammed with conoreto or earth ; the romainder of the ubutment was huilt acoording to plan.

Dusing the oxcavation of this fonndation tho pressure on the timbering was onormous. The $12^{\prime \prime} \times 12^{\prime \prime}$ struts were spaoed 6 feet apart long. itudinally, and the rings were about the same distance apart vortioally; but theso wero found, in places, to be crushing the timber rings to such an extent as to requiro many extra ones. There is no doubt but that the building of a spur from the main lino at this point, along with the embankmont for the main live itself, had put the mountain side out of balance, and the whole mass was pressing on the buek of the exeavation timbering.

This point is made elrar by two facts, whioh were diseoverod during the progress of the work: 1st, a bench mark on a very large sound stump 200 feet up the river from tho abutuent had settled 22-100 foot be.'ore being diseovered (luekily eansing littlo or no errors); and 2nul, that a deep well about 500 feet down the river from the abutment was 2 or 3 feet out of plumb, although only dug for 2 or 3 years.

The whole country, along the banks of this river and the Monougahela, is in a state of urrest, and needa hardly nny provocation oo make it move slowly but surely toward the river's edge.

On bringing the embankment furward after the abutment was eompleted, a slight crack appeared in the flared back wing, but on ceasing to add nev material when nlmost completed, the crack ceased to enlarge, and the abutment is since stinding all right. By adding a few ears of coke einders the load will not be appreciably increased and the embankinent completed.
'This abutment was thoroughly well bailt of the vory best deseriptiou of tirst elass masonry fueing, with heavy well bonded coursed rubble backing, the average size of stones being about $2 \frac{1}{2}^{\prime} \times 5^{\prime} \times 2^{\prime}$.
Thre work was done uuder the elosest inspection, very few spalls were used, and an ahundanee of mortar where needed.
ly the eross seetion on Plate $\mathbf{X}$, it will be seen that it was designed fir $\mathbf{4}-10$ height plus front batter, to the ground line, and a pilaster telow. On the same plate are cross-sections of a few other abutments. built at the same time under supervision of the writer, of good second cliss masenry throughont (which by B and 0 specitication is almost as grood as first class masonry in this region of large sized stones) in which the same rule bas been substantially followed.

All of these abutments were snbjected to unusually severe conditions ; all were loaded with wet, heavy material hehind, and thad weak supports for their pilaters in front, most of them were partly built in the winter season, and all were loaded soon after completion with a running grade, dump, and entirely unt:auped. Yet thoy have stood to their work with slight cracks, which ceased in a few days after the severest strains were over.

Theory has wrestled more or less suceessfully with the devigin of earthwork retainiug walls, and as it has mot positivoly determined any one of the three 'conditions neeessary to a successful solution of' the question, uamely, the amount of thrist, its direction, and point of applieation, it is most interesting to know, not so meeh, that an abntment has stood the test of time, but that it is, as nearly as possible. the most ceonomical structure for fulfilling a given duty.
Someone has said that: "Those are poosly designed enlverts on a "line of railway in which not even an oceasional one at widely separated "intervals has failed to carry the rainfall." And in the same way, although not arguing to the point of tailure, those are poorly designed hutments that are so needlessly strong th to be tar above their requirements at the moment of greatest strain, which moment is when the cement is not fully hardenet and the embankment settling rapidly and full of moisture.
Never again will such a structure be called upon lor so great a loail, as in the first tew days or weeks after the embankment has men built.

Once it has stood this ordeal we may consider it safe from nil lamage exeept by wenthering enal frost.

The anther has also placed on Plate $\mathbf{X}$ the nection of an abutaont built in Canada, in 188s, under his supervision, which is of much heavier design, und as it luad very good opportunity to get fully set Hefore tue embankment wos made in layers by train, it would se en very heavy for its duties, unless the greater severity of olimato of Ontario over thut of Pcunsylvania, which is very suall in amount, be counted against it.
"-he muthor would very much dexire opinions from members of the Society, enguged in such work, on this much vexed questiou.

Plate XI shows souc details in constructing the river piers.
The dredginm liues were maried by 4 flage for each exanvation, 2 in the line of eneh side of' a pit, one being 20 feet distant from the up stream end of the pit to measure from, the other some 200 fiet further up stroma to give line.

These flage were very latre quarry tones, with is 20_foot soanting dowelled on to one side in :in mright position, a rope attached to thr Ntone: mid slipped orer the top of the flag served to raise the stone fint removal or setting. The dredges were worked back Ward down etream, and did not interfere with the flags.

The pits were dredged is feet all uronnd larger than the timber eribs, to allow lor variation in sinkiug the later, this being suffieient, ats the dredging was only about 1 to 2 foct deep, and ehicfly cousisted of gravel and soit shale. After dredging a pit to a fairly even surface, the dredge was drawn up alouynide und anchored (with spads).
'The side way then praduated every 3 feet, and a small coal barg', phaced at right angles, done in the same way.
Soundings were than taken every 3 feet each way, and alter being recorded on a diagram (See Plate Xl.) the high opots were found by iuspection. A diver was then sent down th these spots, which he levelled off by hund or with a har; liy this means a good surlace lor the foundation of the cribs was ohtained, but further uniformity was secured by a thin layer of broken stone cardully slavelled from a barge into the low places, by. aid of somnding poles, with harge iron shoes, to.prevent their entrance into the smallent interstiees.
The ftimber sribs, with calissons properiy atiached and camikei, were then, floated iuto plase, wind after bering roughly theated were anchored by gay lines attached to shore or to sunken boxes of stome, which were used because ordinary anchors were not on hand, and would probably have dragged on the rowk buttou if they had been.

Masonry was then built into them nutil botom was nearly reiched, when they were carefuly heented by transit ind wires from the shaw, and simk.
The wire used was No. 15 German Piano wire, streteled to ahmut 30 lbs , teusiou, tayged erery 5 fiet, where neded, with piecer of wire, attached by solder. 'To make the seider tirm it was finund neeessary to remove the exterior conating of the wire by muriatic acid.

During the sinking of one of the cribs, the foreman, with it within 2 or 3 feet of bottom, foumbl one corner high, and, before getting oarefully beated, thought it better to get the erib hevelind up, after whieh the practice wisc"o put the crib iy exact positiom, about 1 foot above bottom, and then by piling on large stones at one end that end wis lodged and the position tixed. But alas! for him, in this ease, being out of position, it had lodgred on a high undredged corner; and aftry putting 16 or 15 of the largess stoues he coull find on this nbiumate comer, it was still high, and the theory of hydraulies put to conlusiun. Un discovering the truce state of atfairs, he, painfully but wrathifulify, removed the stones in order ty tuove his crib at all, all of which has a moral atached.

Of eourse a ceib cammet be handed perlectily exact in pusition, but all that is necessary is 10 get it so mearly so that the neat work,
whon laid ont, will have a good footing all aronnil, on the pilastor. For this purposo the latter was designed 14 all uround larger thau the neat work.
The noses of the pilusters were brought into shape gradually in the top 3 courses, so as to give good boud with the ueat work.
Rip rap was placed around the piers after completion, as shown on Plato XI, connisting of 1 and 2 man stones, taking a natural slope, and also of smallor stones placed carefully botweon the oaisson and masonry during the sinking of the crib. All this might have been done without possibly by a poorer corporation, as there is very little eurrent at low water, but under a 5 or $\mathbf{1 0}$ foot raise, the ourrent is very swift, and the preanution was considered worth the money ( $84,652.50$ ).
The cut waters were plain $45^{\circ}$ at one end only, add might possibly have been improved by being put at the downstream end also, to avoid eddy; but this is not uppreciable under ordinary water, which is slacked and the edily only oocurs during raises in the river. Theso noses are left' rook-faced, as it was thought, to look more massive, and to answer tho purpose fully as well, as their duties aro anly to split soft ice nod divide up jams of logs.
The masonry is all first elass, exeept the baeking of the abutments, which is of very heavy superior rubble, and was built under the following general specification of the Baltimore \& Ohio R.R. Co. :
"This class of masoury will be ranged rock work of the best de. "seription; tho face stones will be aceurately squared, jointed nad "bedded, aud haid in courses not less than 12 inehes in thickness, " drereasing from bottom to top of the walls; joints to be well broken, " no break less than 9 inches.
"'The stretehers to average at least three and a half feet in leogth, " and nowe to be less than three feet in length, to have at least sisteen " inches bed for all courses of from 12 in. to 16 in . rise, and for all " thicker courses, at loast an mueh bell as rise.
"Tho headers to have a wilth of' not less than eighteen inehes, and "to hold the size back into the heart of the wall that they shew in its "face. They shall oceupy at least one-fifth of the whole face of tho wall,
"and le, as nearly as practicable, evenly distributed over it, and so
"that the headers in eveh eomrse shall divide equally, or uearly so, the "spaces between the headers in the courso directly below. When the
"walls do not exceed $3 \frac{1}{3}$ frot in thickuess, the headers shall run entirely
"throngh, and whon thry exceed that thickness, there shall be as many
" headers of the same size in the rear as in the front of the wall.
"In walls over three and at half feat, and not over six feet in thick. " ness, the front and baek headres must alternate and interlock, at " least 12 inches with caeh other : and in walls over six fect thick, the
" headers shall be at least $3 \frac{1}{2}$ feet long. and alternate front and back,
"as allowe deseribed, their binding affect being carried through the
"wall by intermediate stones, not less in length aul size than the
"lraders of the same eomrse, laid erosswise in the interior of the
"work. The stretehers in the rear of the wall and the stones in the
"heart of the wall shall be of the same general dimensions and pro.
"portions as the faeestones, with eqnally good bed and bond, but
" with less attention to niee vertical joints, und wust be well fitted to
"their places, and carry the course evenly quite through the wall.
"Any smell interstices that maty remain in the heart of the wall will
" bee eurefully filled with small sumbd stones or chips. The faee-stones
"shall he left rough on the fiece, except a syuare or bevelled drait of
" one and a halff inehes around caeh stone may be required-no pro-
"jection of wome than three ineles from the draft beisen, however,
To this were added the finther repuirements that all vertical joints be dressed back true for 12 inches from thu fiece, and that no header whould beak wer a joint, the masonry was all haid in full mortar (exeept the eopings which were grouted), and has itrafts, at all vertical angles, 2 inehes wide, the only purtions of the fiee that have addi-
tional work are the tnps of enpings whol ure fine pointed (but not bush hammerel), mul the fices of the prapate walle which are rough pointed to fineilitite erection of iron work.
The eopringey were elampud, as shown in flat ol' abuements, with
 over with a lhick grouting.
'The mundstme used was from the coal tueasures of the carboniferons, and underlies the 9 -toot Comellsville erking win atoont 100 Jeet. It is very casily quarried and rifite masy wad trine to bed, and is so linll of yuarry sup as to make it very easy enting. But, on cxpusure, it hardene rapilly, and in that alimate at:mils weatheriug well.
 Roweminle, if used when fresh, but ineterimatiug rapilly with age. It is of a durk Nate cenlor, very unifirmly gromid, has no liee liane to natice, and will stand th to follis. in et holler, It was shipped in paper
 delivered in Mormantown, W. Ya., un man, Indinary morlar was mixed 1 commen, 2 samb, and kept emintimally and thoroughly temperid om the wall antil a box was need up, Swthis is a quick setting cement, this was very neensary, anl exproment hately made in Ohio show
 lowns, bit il tompurd fin a loug time, say cight homes, will rodure its
 emil of' seven weeks.
The eonerete in abutmonts was mixel 1 eement, a samb, filled with stome, broken for a $\boldsymbol{g}^{\prime \prime}$ ring. 'The mortar bring made as nstal, hy mixing cement and sand thormughly hefore alding water, and then being
 urutioned, because most cometractions (becens it is ehemper) and some enginerss even make conorete by puting down alternate lay yor of same pement and stome dry, and dhen :uld wather, aul mis by repented turnings over. This the writer thes not emsider will hlowl the same and coment oo thoroughly an in the fiast methoul. or aive at good resules. Tha cencrete was then put down in !" hayers, and ranmed with a 2 -uan rammer, until wather stoul on the surfare,
In pointing the manomy, all joint. were raked nu for ane jurh in
dijeth aut pointed thon.

coment, which seens in practied to give belter reales that neat cemont thortar, as the latter eracks bailly if applise in hot weather.
'Ibe timiner work was emmeneal Aushst e!th; masonry work



"I' which all but the eonerefe wis laid hy whe gater or at ath arerage of 25 cubie yards per day ineludine all stopase from rain and other incidents.
 working rays cury 12 hours.
'The rost of the strustre is a - follows:-

| 小.3:3 © y ys. | Ma*onry, timber and mouerets al | 1.00 | 817,597.00 |
| :---: | :---: | :---: | :---: |
| 2,1185 | Rip-rap........................... at |  | 1.652.50 |
| 2, 12: 6 | liy Barth Lixe. .............. ....at | . $\mathrm{Bl}^{1}$ | 1,012.56 |
| 179 | Hry Rock Exe. ...... ..............it | 1.611 | 179.00 |
| 1,776 " | Writ lixe. . ........................at | 2.110 | 3,552.01 |
|  |  |  | 33,000.00 |

The contract priou given tor taamonry in the above tublo included all dredging, coffor dams, pumping, bailing, timbering, cement, sand, aml every of er uxpense connected with the conatruction of tho work, except uxcavation of fuundations, as noted in aame table, wet exoavation being consldered as all material belnw pool.
Theru were 1,930 barrels of cement used, out of which about 300 barrels wero used in ouncrete, leaving 1,630 barrely for masonry work proper, allowing 130 burrels as wastad or oondemnod, which is above the mark, leaves 1,500 barrels for $\mathbf{3 , 7 1 0}$ enbic yarls, or $4 \cdot 10$ barrel pur oubio yard.
As this work was watohe! continually by an inspeotor, so that no large spaces wore allowed, it may be considered a very generous use of cement, expecially as the writer has oreasion to know that in 5,000 enbic yurds of seeondelass rubblo areh and box oulvert misonry, built on nuother part of his work, whero the cemsut was furnished gratis by the eompang. anel also inspected, the averago was only $\frac{1}{3}$ harrel por cubic yard.

As the lormer was a muoh higher grade of musomry, in which, as hefore mentiened, very fiw spaces or interstices of any size were allowed, it reflects creditably on the integrity of the emutraetoris, who were The brake © Stritton Co. (Ltal.) of l'ittaburg.

> a heneliaf, phan of ifere.

Ilans of almements mul gemeral plan and protite of the britge are alon presenterl, which moy be of sheme interew as to detail.
They were preparad by Division Bimgineer, Mr. Amirrw Onderionk,
 of the State Line \& F', M. \& P. R. R.'s was under the chargo of the former gentlenan, and the writer camant but make montion here of the great amount of now ideus and carrlinh detail that ho las learnod while with him on theso roads and the Roanoke \&Enthern Railway, of whieh he was the Chicl' Engineer.

In ennclusion, the author dnes not elaim to have dono naything that would be of greas iuterest to older memhers of the profession engaged in such works, lint hopes that the little incilents and details whish eno To making up on accomptishel piece of work may afford rewding matter In those who are just beginuing to turu their minds towards such a class of construction.


