THE DOMINION Sanitary Journal DEVOTED TO THE

 Public Health

 Public Health
 AND KINDRED SCIENCES.
 PDWARD PLAYTER, M. D., EDitor.
 GEORGE WRIGHT, Mi.A., M.B., \&ssoc. Lecr. Mat. Med., Toronto School nf Med.,
 - J. W. MACDONALD, M.D., L.R.C.S.T., Londonderry, Nova Scotia,
 A. B. LAROCQOE, M.D., Medical Health Officer of Montreal.
 ALAN MACDOUGALL, Mem. Inst C.E., and Consulting Sanitary Eny., Toronto, J. A. U. BEAUDRY, Civil Engineer, Montreal,
 ASSOOIATE RDITORB.
 BEAUTIFUL, HEALTIY HOMES.
 PURE AIR, PURE WATER, GOUD FOOD.
 HEALTHY, HAPPY, CONITENTED PAMILIES.

SALUS POPULI SUPREMA LEX.

CONTENTS.

The Germ theory of diserse 129	acco and Cancer-Damp houses...... 143
Consumption-its contagiousness--the bacillus 130	Leading articles-The Mortuary statistics -Cillars_Honse building144-147
Physiology in physical culture 132	Rccer. and Current-Our Volunteers-.
Cholera prevention-Ozone....... 133	Toronto Vater Supply-Tonghened
Mental over work and premature disease amongst publie aud professionml men. 136	Glass for drains-Heaps Patent Clozet -Nert Temperance Society-Pan clo-
Notes on Cholern in St. Louis 137	gets-Sanitary League - and wther
Life eaving from drowning. 139	items 148 15151
The Patent Medicine evil. 14n	A good example from Orillia.... 151
Causes of Insanity-Disinfectants........ 141	Current Literature-items. 102-154
Influence of Tobacico-New Germicide Cholera. ${ }^{m}$	
IonthlV, \$1.50 per Year, in	Vance: \$2.00 if not so paid.
Single Cop	13 Cents. Addrebr Samirary Jounalig Otrafa.

THE

SANITARY JOURNAL.

VOL. VII.
APRIL, 1885.
No.

THE GERM THEORY OF DISEASE.

At the annual meeting (Jun. 27, '85) of the Yorkshire Association of Medical Officers of Health Dr. Hime rend a paper on "The Germ Theory of Discase." He said (Sanitary Rec.) that his paper was intended to show the basis of belief for what is known as the germ theory of disease, to trace out the leading events in the history of the theory, and to show the position in which it stands at the present time as a scientific theory fully verified by facts. - It was about two hundred years since Robert Boyle first referred tfermentation as being the process strictly analogous to fever ; and the same belief had become permanent amongst us, as indicated by the use of the wordzymotic as applied to fevers, which really meant fermentative diseases. In more modern times Felene had, entirely on theoretical grounds, established the theory of germ disease before anything was known of the actual existence of germs ; but it was to Pasteur and Koch that the theory was indebted for its preaent scientifis aspect. It was not a little remarkable that Pasteur's early work had nothing whatever to do with disease. It was entirely concerned with fermentation proper; and it was he who first proved that what we know as ordinary fermentation was a process which was distinctly the outcome of the vitality and energy of the yeast plant, and not (as was taught by Liebig) a result of the development of the yeast plant. One remarkable characteristic of ferments was the great disproportion between the results which it was capabie of producing when plared in a suitable medium and the exceedingly small quantity of material which could produce those results. It might be compared to the multiplication of infectious material, such as vaccine, when innoculated on the body. I: further studies

Pasteur ascertained that while some ferments required air to enable them to live and Hourish, others were killed by its action. Hence he divided all ferments into two great classes-those which did not require air, or ancerobes, and those which did require air, llerobes. Subsequent investigations info another process-the idea of which even was disgusting, viz., putrefaction - convinced Pasterr that it, like ordinary fermentations, was due to a specific fermens, which did not require air for its development, and which. alone produced the phenomena of putrefaction ; a process strictly analogous to ferment.aion, the two differing ouly in one circum-stance-that in putrefaction offensive smelling gases were given off. The important bearing of putrefuction upon the organicmatter of the world was illimitable, the ultimate fate of all animal and vegetable. matter being the same-viz., its restoration to the air, effected by the three omnipotent processes of fermentation, putrefaction and slow combustion. The first great work which Pasteur was engaged in was the state of the wine disease, the renedy of which he discovered as well as the cause. He was next engaged in the investigation of the silk worm. disease. Next Pasteur was engaged on the state of the disease affectirg vinegar and beer, and this also he proved to be dite to a specific minute fungus. When this was excluded the liquor remained unaffected. The ceitral point of investigation-the application of the germ theory to "the higher-animals-was then mentioned, and the strict. analogy bewween the process of fermentation and certain kinds of disease (such as fevers) was described. It was, however, in suryical practice that the truth of the gevern theory first bore its fruits, and to England, in the person of Sir Joseph Lister, was due the glory of having establishen a method of surgical practice which had not only rendered familiar operations free from danger, but hid
rendered possible operations which, a few years ago, it would have been considered criminal to atte -pt. What was known as the antiseptic sysiem of surgery wos practised by the leading surgeons in every country in the world, and Sir Joseph Lister was it ognized throughout the civilized world as on of the greatest benefactors of bumanity. The first actual disease of animals to which Pasteur devoted his attention was anthrax, or malignant pustule. In 1850 it was dis. covered that the blood of animals affected with disease contained a number of little hair-like bodies, but it was not un:.il some thirteen years later Dr. Devine, in the light of Pasteur's researches, bethought him that possibly these little bodies might be ferments which caused disease. He discovered by numerous experiments that these little germs were inseparably connected with the disease, and the following remark b ble sequence of facts established the necessary connection between the germ and the disease. In the first place, these minnte bodies were found in the blood of infected animals, but never in healthy blood. In the next place, the innoculation of healthy animals with these minute bodies caused the unafiected animals to become affected with the same disease, and the blood to swarm with identically minute germs. Thirdly, blood taken from the infected animals after infection, but before the appearance of these minute bodies, and innoculated on healthy animals, failed to produce disease. Fourthly, healthy biood innoculated on healthy animals never produced disease. Fifthly, blood might be disinfected or even filtered and thus freed from the germs, and then when innoculated would be quite harmless. The method which Pasteur devised, and experimentally tested, was simply beautiful and conclusive. The essayist then described the "flask experiment." Pasteur also discovered that it was nossible by proper methods of culture to deprive infectious germs of a portion of their virulerice, and that in their debilitated condition they may be propagated from generation to generation and reproduce themselves. He further learnt that these attenuated or weakened bacilli might be innoculated upon an animal, giving it a mild form of disease, which, however, would prevent it from contracting disease in its most severe form. The protective inoculation against anthrax was not, unfortunately, permanent. Pastour's researohes into chicken cholera and various
otbar disenses were referred to, and the remarkable induction by which Pasteur obtained an attenuated protective virus by which this disease could be avoided, was also alluded to. The greatest experiment which Pastem ever performed was that to test the efficacy of his mrotective virus on anthrax, and this experiment was lucidly detailed. In conclusion, Dr. Hime said that the bearing of that important theory upon public health was of very wide extent, and opened up to theas an horizon, the extent of which exceeded anything ever dreamt of. If they really had ascertained the specific cause of consumption, anthrax, pneumonia, diptheria, typhoid fever, and a number of other of the greatest plagues of hamenity, morn than the first step had been taken towards successfully combatting those diseasis. But they could not hope for rapid progress in thes country while they were hampered by measures which entirely preven+ed the nossibility of scientific research, and which, while it rendered perfectly legal the killing of rats and other vermin with the wanton intention of merely getting rid of them, rendered it a penal crime to inoculato a rat or a mouse with the object of saving luman life.

CONSUMPTION - ITS CONTAGIOUSNESS THE TUBERCULAR BACILLUS.
Three recent meetings of the Royal Medical ard Chirurgical Society of London, England. have been occupied in discussing a paper by Dr. Kidd relating to the relative preponderance of tubercle bacilli at the various stages of the progress of phthisis. The discussion took a wide range. There appears to be no longer any doribt as to the direct relation, as cause and effect, of the bacilli to consumption. This appears to have been the general opinion of those at the meetings. In commenting on the mretings, the Lancel says, " we may take it, then, as established that in the lesions of the phthisical there are to be found, in varying quantity, the bacilli discovered by K.och in tubercular products. Here, then, we have valuable aid on a diagnostic point, hy seeking for these microorganisms in the expectcration.
The doctrine harmonises well with the facts, spoken to on all sides, as to the relative prognostic significance of an abundance or paucity of bacilli in the sputa. How, then, does the acceptance of this doctrine affect the ∇ duve question of the nature of phichisis? It
implies that it is an affection which cannot be initiated spontaneously, but it by no means disregards the idea that for its origin, and even more for its extension, other factors than the introduction of a poison from without are essential. There must be a vulnerability of the organism, a disposition to undergo the phthisical changes; and not only a general vulnerability such as may be supposed to be derived from inheritance, but often a local vulnerability determining the appearance of the tubercular lesion in this or that legion. We fully concur with Dr. Green that the discovery of the bacillus in no respect alters the opinion which pathologists had arrived at regarding the infective character of iuberculosis. Onght we nowwith Koch—to admit this mormid condition into the category of contagious disease? On this question the data are strikingly insuf-

- ficient; for although logically there seems to be no escape from the view that tubercle may be transmitted by inhalation and by food, we are surrounded by a host of other considerations which must first be explained away before that view cun be finally accepted. Here, again, the subject of predisposition comes to the front; and if measures of prophylalaxis are to be taken at all, it must be in respect to such individuals in whom the predisposition exists. We deprecate as emphatically as does Dr. Wilson Fox even the suggestion of treating the unhappy victins of consumption as it they were dangerous to the health of cine community. It would be lamentable indeed if science should thus come to override sympathy."

The diseasa is evidently contagious, but in a mild degree. That is, the bacilli for their development and multiplication require a special condition of the soil in which to take root. As a medical journal referring to the meetings says, the recent discussing on Dr. Kidd's paper, if it has achieved nothing else, has served to bring outaremavkableunanimity among physicians as to the presence of this organism in the products of phthisis, including the sputum, while on the other hand but little doubt as to its cetiologia ? signifucance was expressed. The ground is therefore cleared of all uncertainity on these points, and the direction in which future workers must proceed in respect to treatment is pretty clearly indicated.
the successful treatarent of disease is the end and object of the physician's work, and can only be obtained when the materies morbi and its mode of action are thoroughly
understood. The curative treatment of phthisis has long been regarded as hopeless by all save a few ardent therapeutists and by the ignorant quacks who trade on human credulity. Those who are acquainted with the nature and extent of the lesions will realize that safety is alone likely to be found in prevention ; it is hardly to be doubted that very much mose stringent preventive measures will have to be insisted on, for one of the first outcomes of the bacillar theory of plithisis wili be the establishment of the infectivity of the disease. Fiven then, if we would utilize this knowledge, it would be necessary to know how it is infective, and in what sunner the infection spreads, whether the bacillus itself is conveyed, or only the spores. When we think of the minuteness of the organism, and bear in mind that the spores cannot be recognised at all at present, it will be seen how difficult a problem lies before us. That the sputum contains the prasite, and probably its spores too, in vast numbers is established; and hence one of the first and most obvious precautions to take will be the total and absolute destruction of this poison-laded material. It should no longer suffice to threw the sputum down the drains; it should be destroyed by fire, and everything with which the sputum has come in contact should be rigorously disinfected. The mud of the gutter to-day becomes the dust of the air tomorrow, with all is many potertialities for harm.

Let us, then, begin the campaign against the common enemy by destroying this means of its propagation. The encouragement of free expectoration, the cautioning against swallowing phlegn, crre in not polluting the floors of public baildings and the highways by the careless scattering of the vehicle of disease, are matters of importance, which we must do our best to promote. The so-called "antisentic treatment" of phthisis is a delusion not without danger. Experiment, has shown how tenacious of life the bacillus really is, even when treated in a test tube. What, then, can we expect from such inhalation as the living lung would tolerate, and how can inhalation affect the interior of lymphatic glands, the meiallary cavity of the long bones, or the closed lymphatic spaces of the central nervous system! In short, in this case as in so many athers, provention is not ouly better than cure, it constitutes the only effective, means of attacking the disease.

PHYSIULOGY IN I'AS MORE PUBLIC RELATIONS—PHYSICAL CULTURE.
Nathan Allen, D.M., M.D., LL.D., of Lowell, Mass., U.S., is an active sanitarian. At the last meeting of the American Academy of Medicine in Baltimore, Md., he read an instructive paper on the above subjects from which the following selections are made :-

Physical culture, in one sense, is sanitary science applied directly and specifically for improving the different parts of the body. This is composed of tissues, which by the law of exercise and nutrition can be materially changed, especially in early life. No human being was ever be:n into the world with a perfect body. Generally there are some parts too weak and others toe strong, or, in other words, there is a want of harmony and balance.

There is such a thing as a normal standard of physiology throughout every organ in the body but this perfect standard is never found, only approximates towards it, and the nearer it is approached the more valaable the organism. There is no question but one form or Eind of organization is better than another: and if so, there is a form or standard better than al others. What is that form or standard, then, so desirable? We mainta:n that it is tinis normal standard where all the organs are perfect in structure and each perforns its own legitimate functions. In ail our dizcussions ox this subject it is highly important that this normal standard should be kept constantly before the inind.

In the making up of all parts of the body there is a point of very great importance which is not taken into account as it vught to be-that is harmony, or lalance. If all the organs are evenly balanced and each performs its own functions without disturbing the ohlers it will be seen at once that such an individual will have better health, greater power of endumace, and longer life will follow. In some respects the human body may be compared to a complicater machine, made up of many parts. Now, ti.e more thoroighly constructed is such a machine, and the greater the harmony in all its operations, where the "wear and tear" will come propels upon all the pars, the less likely will that machine ve te set. out of order or need repairs, and it will be easily kept in good working order. It is so with the human body. Keeping in mind
what constitutes a normal standard of physiology, and the importance of harmony or balance in organization, the weak or defective parts in every individual's constitution can be found out. I'hus, by means of this knowledge, tha weak parts can be strengthened so as to improve health and prolong life.

As the most favorable time for improving physical organization is in early life, it is important to direct attention to that period. With the increase of wealth sun the powerful influence of fushion, together with the pressing claims of ellucation, there is great danger that the vital interests of the body will be sacrificed. In this state of things it becomes the duty of physicians to point out the aanger and urge more than ever tina nevessity of physical culture.

Throughout our whole educational system, as now conducted, from the primary school to the univ arsity, the leading tendency is to develop the braiu and nerve tissue at the expense of the muscles and other parts of the bedy. The fact that all mental acquisitions are very dependent upou streugth and health, the physical system is too much overlooked. Another fact should be better understoodthat no one thing contributes so much to sticcess in any bind of husiuess, or in professional pursuits, as a sound, healthy loody. All experience of the past and knowledge of the present state of society confirms the truths of these slatements. Notwithstanding this, most educators, in their zeal for mental acquisitions, pay little or no attention to physical development.

In a school system where children, from five to fifteen years of age, are confined to study most of the time, great pains should be taken that the body is not injured, nor in any way sturted, but that every possible facility be afiorded for its bealthy grovith and uevelopencat. This caution is more necessary in cities, where the leading tendencies among the young are to a state of physical degeneracy.

It is almost twenty-five years since Amherst College introduced a regular system of gymnastics, coupelling all the students in classes to practise these exercises half an hour or more every day. A thoroughly educated physician-Dr. Edward Hitchoock-mas phaced in charge of this department, who gives also lectures upon physiclogy and hygienc. These paysical exercises are considered as important as lessons in the classics
or mathematics, and inprovement or deport. ment here are reckoned in the rank and merit-roll of every student. Since the introdisction of these exercises there has been a marked change in the health and the physique of the students. President Seelye recently stated that the health and constitution of the students improved every year-that there was less sickness and leaving of college on account of ill health than formerly, and what affords still stronger evidence, the Sophomores have better health than the Freshmen, the Juniors better than the Sophomores, and the Seniors better than the Juniors.

From careful measurements of every part of the body taken of students upon entering college and again, after four years, upon their leaving, decided changes are found to have taken place for the better in the growth and development of the body.

The physical training at Harvard is different frow that at Amherst. It is not compulsory, but voluntary; it is not carried on by alasses, nor: at set hours. While a large number of students exercise in the gymnasim, they do it at their own convenience and engage in such exervise as they think will do thom the most good. A highiy oducated physician--Dr. D. A. Sargent has charge of the gymnasium, and miakes a specialty of advising what particular kind of exercise is best adapted to improve the health and strength of individual cases. Th:is, if among the students entering the Cuiversity some are found suffering from certain physical weaknesses or defects, they are placed under his training, and in process of time are greatly benefitted. Within a few years there has been a great increase of interest as well as improvement at Harvard in sanitary matters to which the new gymnasium and its superintendent have very much contributed. In a recent ardress before the Alumni, President Elliott stated that the more he saw of the men graduating from the University who had goined distinction in life or eminence in the learned professions, the morej he was conrinced that the basis of their success dependel much upon the vigor of the body and a sound constitution.
A. Exanse. said to be the smallest in tin? world has bece made by a watchmaker. It is of the upriglit pattern and is made of steel and gold. It rests on a twenty-five cent gold piece and can be worked cither by steam. or compressed air. The cglinder is a little less thun a sixicenth of an it in in diameter.

CHOLERA PREVENTION-OZZNE - BIRDS

 FLEE FROM THE EPIDEMIO.FRON THE NEW YORK YEDIOAL TIMES.
Animials seem to bis strangely provided with a remarkably keen sense of intuition of approaching danger of ali kinds. A singular display of this characteristic is reported to us from Honduras. About 1, v̂0 yards from the house where our informant lived was a numerous growth of very sappy pincs, among which trees of various other growths were occasionally found. Among theso pines, but never on any other variety of tree, an immense flock of parrots came in every evening to roost, flying away aguin in the morning to their feeding grounds, some four or five miles distant. During the day there was almost invariably a north.-east wind blowing, which usually died out at sunset. The feeding place of these pacrots was in and about a paish of swampy marsh, such as, under favorable circumstances, would give off immense volumes of zymotic matter. During the urevalence of the north-east wind, loaded down as it was with ozone, these products of decumposition were probably oxidized before beconing a source of atmospheric poilution. Bus nit night, when this source of destriction did not exist, the same locality was, beyond question, freighted witi fatal miasmata, while the pines, which had absorbed amounts of ozone through the day, were prepared to give it off at night. This is in accord with the known habits of birds to flee from pestilence. In his report on the chotera epidemic at Marseilles last summer, United States Consul Mason states that "the sudden disappearance of certain birds and insects from the entire district of Southern France, and their failure to return during the present decining stage of the epidemic, are among the cther evilences which indicate some amormal condition of the air." In his report on cholera, read before the Sociéte National de Médicine, of Marseilles, Prof. Ch. Lifon states, as the result of experiments and researches, as follows: ${ }^{*} *$ The experiments of the conmittee were of two classes, the first leing made with the drjections, vomit and beá linen of choleraic patients in all stages of the disease, the second having reference solely to the blood. The resultis have, therefore, a direct bearias on the fundamental question, whether cholers is a disease cf the digestive organs, and is transmitted in substances swallowed, or, on the contrary, a disease of the blood, the contagion
of which is inhaled by the lunigs. In the first group of experiments, the rice-water dejections and matter from the stomach and intestines of cholera patients, as well as concentrated wash water in which freshly soiled linen from their beds had been cleansed, were injected into the stomach and intestines, the diaphragos and femoral artery, of various rabbits, dogs and guinea-pigs. No fatal or injurious effects were produced in any case except one, in which a rabbit, into whose stomach intestinal matter, filled with these comma shaped bacilii, had been injected, died seven lays after the operation, without, however, evincing any symptoms characteristic of cholera. Upon dissection, the intestines of the animal were found filled with the micrubes, showing that they had found there favorable conditions for development. It was thus proven that the so-called choleraic microbe can be propagated in animals without producing any disease analogous to cholera. The hydrant water of Marseilles and the purest spring water in the neigborhood wero both found to contain the "bacille virgule," in the proportion of 250,000 per litre, and this large number was not sensibly reduced by passing the water through three layers of filter paper. It is therefore concluced that the so-calld cholera microbe is simply a harmless animalcule, common to most river and spring water, and equally abundant in loonlities where cholera is unknown.

The second class of experiments was with the blood of cholera patients, taken at various stages of the disease, and injected into the veins of animals or examined under the microscope. Of twenty-eight injrctions made with. blood taken, first, from a cholera patient at the beginning of the "algid" period; second, from the corpse of a person who had died in the same stage; and, third, from a living patient in the later or reaction stage of the disease, the second only had a positive result. These were the cases of two rabbits, into whose veins had been injected blood taken from a cadaver which had died in the "algid" stage. Roth animals died, one after twelve, the other afte cioghteen hours, and tho blood of both showed the same lesions and changes as lad been established as having occurred i_{1} the blood of human cholera victime The ret results of the entire series of experivnents are summed. up and the conclusions sta ced as follows:
"Firet. That the chclera can he trans-
mitted to animals. This fact is fully confirmed ly experiments and observations made at Pondicherry and Chandernagore (East Indies) during the past forty years.
"Second. That the rice-water dejections and contents of the stomach and intestives of cholera patients are absolutely innocuous.
"Third. That it is only the blood of a cholera patient, taken during the 'algid' stage, that is infectious, and this toxical property is greatest in the early part of this 'algid' or coilapse period. This is simply a confirmation of the theory of Robin, first announced in 1865.
"Fourth. That this infectious property in the blood disappears within a period not exureding twenty-four hours after the close of the 'algid ' period."

Messrs. Roux and Strauss, two eminent French surgeons, now practising in the hospitals at Toulon, ain who studied cholera thoroughly last year in Egypt, have made an official report. declaring that "they find the microbe to be the result, rather than the germ, of cholera. That similar microbes are generated in the intestines in typhoid fever and other zymotic diseases, and that they are found by myriads in water, which, being drunk, does not create cholera."

All this seems to point to one prominent possibility, viz: That it is not what we eat or what we drink, or what we weal that causes cbolera or ans other infectious disease, but what we inhale, or rather a something that finds its way into the blood, presumably through the lungs. That it is not the soakage from vaults, sewers, etc., polluting the water we drink, that indaces contagion, but the volatile zynoiic matter, wbich, under the influence of putrefaction and decay, is given off into the atmosphere. Where these elements of pollution are most abundant (in uncleanliness of person or property) there do we find the primeval sourc: of contagion. 3 rany are the means of transmission. On the average-sized person there are aboat fifteeu square feet of exposed surface. Further, this person takes into his lungs about 400 cubic inches of arr per minute. If in that air, which bathes his body and lungs there exist germs of disease and if in his clothing or his lnngs they find conditions favorable to their development that person becomes an agent of infection wherever he goes. Fery often as stated by Dr. Jacobi, diphiheria is brought into a family by some transient visitor, as a seamstress, or may be
imparted to a room full of scholars by one of their number, who may have been only superficially exposed to infection, and whose personal constitution may be stroag enough to throw it off. Being thus dispossessed of their temporary habitation, the first congenial throats they find yery naturally become a place of abode and development for these vicious serms. Prof. Ehrenberg has found that the intectious germs in the atmosphere exist in swarms or clouds. Thus, in a room containing infection onc part of the room may be nearly free while another part may be swarming with infection, which probably accounts for singular cases of escape from zymotic influences.

Now, if we hope to arrest these contagions we must look for some atmospheric germicide -something with which we can impregnate the atmosphere and which shall prove sure death to the germ but at the same time equally sure life to the patient. Many of the present -methods of disinfection liave recently been shown by Major Sternberg and cthers to be a mere mockery. In fact, they mrobably do harm, for they prive a source of disturbance to the germs yatbir than destruction. Being again, in this case, dispossessed by an unfriendly influence, they would rather very naturally start off to "seek whom they might devcur." Better for them to stay in the sewers, vaults and other deposits of fecal filth than to be driven into our houses by the agency of these so-called disinfectaints. If you were to put cayenne pepper in sufticient quantities in the grain you give your chickens they would be apt to let it, alone and attack your fower beds in search of nourishment in place of that which you had made repulsive to them.

Let us look into the laboratory of nature and see if we cannot there find a germicide that not only disturbs but actually burns up miasmatic matter and reduces it to ashes as surely as the coal is burned up and reduced to ashes in our furnaces. Certain it is that an all-wise Creator has furnished us with such an agent in nature, else epidemics wouldnever die out. What is this agent? From whence does it come, and how does it operate?

Dr, William A. Hammond, in his "Treatise on Hygiene," states that during his service at Fort Riley, in Kansas, "cholera prevailel on two occasions to an alarming extent. That during the epidemic the atmosphere was noted for its-dryness
nad the total absence of ozone. That the occurrence of a violent thunder storn put an end to the epidemic in both cases, and ozone reappeated in the atmosphere." In other words the display of electical energy duriug the thunder storm condensed or energized encugh of the oxygen of the air to oxidize or burn up the elements of contagion and reduce them to a harmless asin, while, at the sume time, the same agent would act as a stimulant and blood disinfectant to those afficted with disease. Again, Consul Mason states in his report, before referred to: "It is fairly within the province of this report to note that there has prevailed during the present season some mysterious taint or unwholesomeinfluence in the atmosphere of this entive region, which has affected many persons, even in localities not attacked by cholera.
That in general opinion it is now the wellestablished fact that the presence or absence of ozone in the atmosphere has a marked effect upon choleraic conditions. It was noted early in the present epidemic that there was a marked deficiency of ozone in the atmosphere of Marseilles, and means were adopted to supply this deficiency at the Pharo Hospital in this city, by means of an elecurical spparatus." In conclusion, Consul Mason states the following facts :
"IFirst. That the whole period of the cholera epidemic has been marked by a notable ciefliciency of ozone in the atmosphere of Marseilles.
"Second. That the wards of the Pbaro Hospital, where artificial ozone was provided, the death rate was considerably diminished.
"Ihird. That the days of greatest fatality, in respect to both the number of new cases and deaths, were those during which the proportion of natural owone in the air was the smallest.
"s, varith. That the setting in of a southwe. i wind, which, although warm, brought an increase of ozone to the local atmosphere, was, in every instance, followed by an immediate and marked clecrease in the death rate, and the number of new cases reported."

These same rclations between atmosphenic conditions and epidemics have been noted in the Mississippi valley during a protracted siege of yellow fever. Let our boards of health, bureaus of disinfection and samitary committees devise some means of giving us an increased supply of ozone, artitically pro! duced, as the Department of Public Wrorks
increasos our supply of water with on increased demand, and then, and only then, will epidemics be a thing of the past.

MENTAL OVERWORK AND PREMATURE disease among public and PROFESSIONAL MEN.

The "Toner Lecturcs" were instituted at Washington, I.C., by Joseph M. Toner, M.D., who placed in charge of a board of trustees a fund, the interest of which is to be upplied to at least two annual essays relative to sone branch of medical seience, and containing some new truth fully establinked by experiment or observation. As theso lectures aro intonded to increase and diffuse knowledge, thoy have been accepted for publication by the Snithsonian Institution in its "Miscellaneous Collections," Since the establishment of this fund, nine lectures in all have been dolivered. The first was delivered Marel 2Sth, 1873, by the Jute Dr. J. J. Woodward. ©ther lectures havo been deliverad successively, at irregular intervals, by Dr. O. B. Brown-Séquard, of Franco, Dr. J. M. WaCosta, Dr. H. C. Wood, Dr. W. W. Keen, Dr: Win. Adams, of London, Dr: Dilward, O. Shakespeare and Mr. Georgo E. Waring, Jr: The ninth lecture was delivered by Dr. Chades K. Mills. His suhject, suggested by Dr. Toner, was "Moutal Tverwork and Premature Disease among Public and Professiomal Alen." This lecture, in the form of a pmophlet of thirty four pages, has just been published by the Smithsonian Institution, a.d the following synopsis of it is given in I'he Polyg-Tinic:-

Tho longevily of intellectual workers in general is first considered, and is found to he above that of most other chasses. The inferences and conchasions of tho paper are largely based upon a sturly of sixty cases, esprecially collucted by the anthor, cases in which loss of health or lifo had heen manaly attrihutahle to excessivo brain work and brain stain.

These enses are arranged into two chasses: (1) Men in political und ollicial life, ineluding enbinot ollicers, spators, xepresentatives, department ollicials, governors and cundidates for oflice ; (2) Professional men, including physicians, la.vyers, elergymen, journatists, scientists and teachors.

Tho actual occupations wera: cabinct ollicer, 1; senntars, 8 ; represontatives in Gongress, 10 ; dopartment ollicials, 6 ; governors, 2 ; candidates for important oflices, 2 ;
physicianis, 6; lawyers, 7; clergymen, 2; journalists, 4 ; sciontists, 6 ; teachetrs, 7.

Twenty-eight of the sixty, thetefore, were men in political and official life, and eighteen of these were members of Congress.

The averago longevity of menin tho higher walks of political lifo.in this country is regarded us considerably below the avorago of those who occupy similat positions in England. Comparing, so far as information was available, the ages at death of United States Congressmen and members of the Eaglish Parianent, who have died since 1830, the following results wero obtained:-Tifty-nino Tnited States Scmators gava an average of Cl years; ono hundred and forty-six United States Ropresentatives an average of 55 years; the average of both being, therefore, 58 years. One hundred and twenty-one members of Padiament gave tho remarkablo average age at death of (i8 years.

Taking twenty-five of those that might be regarded as tho most eminent American statesmen of the last ono hundred yenes, and compaing their ages at death with those of the samo nuriber of tho most distinguished Eughish statesmen, tho United States gavo an average of 69 years, and inveat britain of 70-no partical difference. It was noticeable, however, that much of the best work of the great English statesmen-of Palmerston, Deriy and Reaconsfieli, for instanco -had been dono at an adranced age, when most American public men have ceased to do anything important.

Tho special emnditions which lead to overwork and its-consequeners among physicians, lawyors, journalists, scientists and trachers aro presented at some longth, with illustrative cases. Tho evil effects of competitive examiartions and cramming, upon both teachers and sebolars, in our public schools, aro also described.
The symplom-groups and disonses reprosented by the keries of sixty cases are summarized as follows:- incute nouristhomin, 18; insmity, 10 ; phthisis, 9 ; diabetes, 4 ; cerebal hamordage, 4 ; luight's disease, 3 ; posterior spimal selerssis, 3 ; pneunonin, 3; bulbar paralysis, 1 ; angima juetovis, 1 ; erysipelas, 1 ; hepratitis, 1 ; enteritis, 1 ; glossitis, 1.

The most important conclusions are summarised ns follows :-

1. Intellectunl work does not of itself injure halth or shouten life, but mental overwork, particulary whon associnted with
emotional strain, is a frequent cause of nurvous brenk-down and premature disease.
2. The averago longlevity of mon in the highorwalks of public life islessin thiscountry than in England. Politics here is not, as there, in the best sonso a vocation; and our peiblic men, in many cases, sucoumb to ill health, or fail to attuin long life because thay go into careors unprepared, by inheritanco, oducation and training, for the sovere demands to be matio apon sheir powers.
3. Health and lifo aro sometimes lest through forgotfulness of the fact that mental strain and overwork aro proticularly dangerous to thoso in middle lifo or advanced ia years who attompt brain work and responsibilities to which thoy have not been aceustomed. Tho effects of suddenly-imposed meatal strain upon these clusses are especially disastrous.
4. If not subjected to unusual mental or physical strain, public and professiomal men, as weil as those in other walks of life, although allicted with organic disenses, may livo ia comparativo comfort, and able to do a moderate amount of work for many years.
5. Among specin causes of promature disease in pubhe life are onerous and perplexing duties on Congressional committoes, tho uncortainties and disappointmonts attendant upon public positions, the great strain to which candidates are subjocted during political campaigns, herk of recreation, and social excesses and ahuses at the National Capital.
6. Among physie:ins, haw yors and journalists the berformane of brain work under pressuro for time, and under had hygicuic conditions, is a common canso of illhealth. Defective education and peomiary hasassments are also sperial causes of mervous break-down and prematimo diseaso among physiciuns and lawyers.
7. Compantively few ciergymen succumb completely to mental overwork, although many sutfer from a mild hit anooying form of nemasthenia.
8. The danger to the scientifio worker usually aleses from too intenso and too prolonged activity of the mind in one ditection.
9. The system of severo competitive examimations in voguo in many enmmmities saps the health of both teachers and pupils. In our sehoois generally educational mothods aro bud, rocreation is too much noglected, and unhenlily emulation too much encouraged. Education is not properly individunlized.
10. Chronic newasthanis is not common
among men prominont in public affars and in the professions. Such men are, howevor, sometimes the victims of a severe acute norvoirs prostration, which mas result in sorious organio disenso.
11. Nervous strain is one of the canses of lithemin, which is of not infrepuent occurrence among public and prefessional mon, but lithrmia and nemasthenia are not interchangeable terms.
12. The warnings of mental ovorwork and overstrain vary with individuals and ciroumstunces, but cortain physical symptoms, and such physical symptoms as immobility of comienance, diminished resisting power, heart failere, sleoplessness, cervico-ocoipital pain or distress and dyspepsia aro of most frequent occurronce.
13. Insanity, particularly in the forms of mohncholia and paretic demontia, is sometimes doveloped by brain strain and overwork. A family hiseory of insanity is often presenti in such cases.
14. Phthisis, diabotes nud Bright's disense are thong other diseases most likely to be develonod by mental overwork. Men in whose fimilies phthisis is hereditary should carefully guard ngainst such overwork.
15. Overtaxing the mind and nervous system may be the exciting cause of almost any sorious disorder to which chance, necident, imprudence or infection exposes the individunl.
16. Many dispases, not nexvous in their sent or manifestation, ne doveloped directly \mathfrak{x} indirectly as tho result of mental and nervons ettrain, through exhanstion, in:pairment, or lesions of the centres of the orgnic functions.

NOTES UPON THE HETOR OF CHOLERA IN SIS. LoUis.

The tirst appenance of cholera in St. Lonis was in 1832 (R. Moore, C.E., (te., in Thos Smitariahe for Mareh). Aconrding to Dr. Poters it was first brought, to Jofforson burracks, a fow miles below this city, by soldions from the United States military post at Roc): Island, to which point it had travelled from Quabe by way of the great lakes. The mortalit, was very geont, rising to 20 per day in a population of about 8,000, which is equivalent to 975 in tha city of today. Bat as no reeod of deaths was thon kept the total number camot bo given.

Cholera also appoased there during tho next year, being this time imported from

Now Orleans. The mortality was less than the previous year; but the nbsence of records mokes it impossible to give any exact statements.

The severest visitation of cholera in St. Louis was that of 1849, by which time the population within the city limits had increased to 63,471 , as shown by a census taken in February of that year.

The disease had been brought to New Orleans on emigrant ships early in December, 1848, ard in a few weeks was carried to all the principal cities on the Ohio and Mississippi rivers.

During the next four years, including the years 1849, 1850, 1851 and 1852, it was never wholly absent from the city, except for three shert intervals of about four weeks each. It did not, however, at once become epidemic. The deaths from cholera in January were 36. In February they were but 21. During the next month, however, the deaths from this cause were 78 , or over double the number of January, and in April there was a still further increase to 126.

The total mortality from this cause for the year 1849 is given by Dr. Engelmann at 4,317 , or nearly 67 per thousand of the population as given by the census of February. Other accounts give the total cholera deaths for the year as 4,555 . The mortality from all causes for this year is given by Dr. Engelmann as 8,495 , or nearly 134 per thousand.

During the next year: 1850, cholera was also a cause of death in every one of the twelve months. The total for the year is S83, of which 458 occurred in July, figures which seem small unly when compared with the frightful record of the previons year.

In 1851 the deaths from cholera reached 845. Of these 505 occurred in June. In three months of this year-February, October and December-there were no deaths from this cause ; but in the next year, 1852, every month claimed its victims, and the total for the year was 802. During these four years, 1849, 1850, 1851 and 1852, cholera was a permanent resident, and by the most conservative report caused the death of 6,847 persons.

During 1853 the disease was wholly absent for the first time since 1848. But in 1854 it again appeared with renewed vigor, and swept away no less than 1,534 lives, or about 12 per thousand of the population. After this it wholly died out, and gave us no
further trouble until again imported in 1865.
.The precise route by which cholera reached the city in 1866 is not altogether certain, but it probably came by rail from New York, and not as heretofore, by way of the Mississippi river. Its first appearance was in the week ending August 3rid, during which there were 5 deaths from this cause. There had been good reason to expect it for many months. The council, thougn action was urged upon them, steadily refused to doanything. The cholera was not here, and it was argued that any measures of preparation for it would frighten strangers and injure business. So that when it finally appeared the city was wholly unprepared tofight it. There was a socalled board of health, which, as in 1849 , consisted of a committee of the council end a lealth officer, hut they had neither the authority nor the money, even if they had the knowledge necessary to stamp out a pestilence. The disease, therefore, spread with great rapidity. During tho second week of its pestilence it caused 120 deaths. For the third week the number rose 754 , and in the fourth week, ending August 24, it reach ad 991, or an average of 142 per day.

By this time the reed of some vigorous. and concerted measure' to fight the enemy had become so great that volunteers had once more come to the rescue. This time, however, the organization took the form of a conmittee of citizens in each ward, who, acting in consort with the mayor, visited from house to house, furnishing nurses and medicines to those who needed them. During the next week after the work hegan the mortality fell to about one half that of the previous week, and steaclily declined thereafter until, for the week ending October 30 th, the number of deaths was only 30 , and a month later the disease had wholly disap. peared.

The total number of deaths clue to the epidemic this year was $3, \boxed{2} 27$.

CHOLERA AND FILTE.

The lozation of the deaths in this year, as given by the assessors' reports, with the approximate mortality per thousand, for each block, is shown on a map which accompanied this paper:. It shows, ir a very striking. manner, the close relation between cholera and filth. Those parts of the city where the people and their habitations were clean and where no wells were used for drinking-
water, escaped almost entirely, and the whole force of the opidemic was spent upon those parts where the houses and the people were unclean and well-water was in most frequent use. While "Korry Patch" and "Frenchtown" show on the map in deep black, Stodard's addition is almost blank.

The man whose food and drink was free from filth would seem to have been as safe in st . Louis in the midst of the epidemic as if he had been a thousand miles away.

In June of the next year, 1867, cholera appeared once more, and threatened again to sweep the city. But this time a real board of health, with adequate powers, and with Dr. John T. Hodgen at its head, had been organized. It is therefore no surpriss that, in spite of its carlier start, the cholera in 1866 caused but 684 deaths, or less than one-fifth of the number of the previous year.

In 1873, when cholera appeared again, it was hardly recognized as such, and the victims, as counted by Dr. McClellan, from reports of local physicians, number only 392.

LIFE-SATING FROM DROWNING BY SELEINFLATION.

Dr. Henry Silvestei, widely known as the author of the best method of resuscitating the apparently drowned, publishes in the Lancel, Jan., '85, a method which he claims will prevent persons from drowning. The drowning season is near at hand, and in order that any who may go out to sea, and who desire to become familiar with the method may do so, the Sanitary Journal gives it, as follows :-

The method (Therapeut. Gaz.) is to distend the skin of the neck and upper part of the chest sufficiently with air to support the weight of the body when immersed, the inflation being effected by the person himself by means of his lungs withou t the intervention of appliances. The necessary operation consists in making a small puncture, not larger than necessary to allow of the passage of a small blow-pipe, in the mucous membrane of the mouth, the objeci being to open a cummunication for the passage of air from the cavity of the pouth into the subcutaneous space of the neck. The siturtion chosen for the puncture is in the angle formed between the gum of the lower jaim and the side of the under lip or cheek, about opposite the tirst molar tooth of the lower jaw. The point of the instrument perforating should be passed down
a short distance bstween the skin of the side of the face and the superficial fascia of the neck, its poirt being guided by the finger placed on the outside of the face and neck, taking care not to puncture either the skin or the superficial fascia. This having been done and the instrument removed, in order to inflate the skin of the neck and the chest, the person shculd close the mouth and the nose, and make a succession of forcible expiratory efforts, when the air contained in the savity of the month will pass freely into the subcutaneous tissue of the neck. These expiratory efforts, inspiration being effected through the nostrils, should be continued until the skin is fully distended with air, which will pass readily to both sides of the neck and down the chest as far as the nipples; and this is all that is required to render the body buoyant in water. Should it so happen that the superficial fascia has been punctured and the air prass beneath it, the only difference in effect would be that the extent of air would be limited by the attachments of that membrane to the cavicle below and the border of the jaw above. The amount of air which the skin of the average neck is capable of holding without undue distension has been measured, and found to be enough to support ten pounds, ind is amply sufficient to support the body immersed in water. The time required for inflation is found to be less than three minutes. The necl may be kept in an inflated condition by closing the puncture by pressure on the outside of the cheek by the finger, or by keeping the mouth distended with air; and when required the air may be immediately discharged from the neck by allowing the puncture to remain open, or by suction.

The advantages which Dr. Silvester claims for this method may be summed up as follows :-

1. The proceeding is perfectly harmless and almost painless, quickly done aud almost immediately recovered from.
2. It may be learaed in a few minules, no technical knowledge being required, and may be accomplished by the person himself without assistance.
3. No special apparatus is required. In an emergency the point of a pen-knife, or even a sharp-pointed splinter of wood, is all that would be required. The inflating apparatus is the person's cwn lungs.
4. The air could be repeatedly re-inilated and even during prolonged immersion.

THE "PATENT MEDIOINE EVIL."

That the present almost universul use of the inumerable and various nostrums for the cure of all real and imaginary diseases and disoriders to which the human body is subject has become a serious nvil in almost every civilized country, but few, excepting those engaged in traficing in the poisons, will deny. At a meeting of the Indiana State Sanitary associetion, Dr. Harvey, of Indianapolis, made the following observations on this subject : Allow me, Mr President, to ask the medical profession to call to mind the number of cases that demund their attention which grew ont of the deplorable halit of swallowing, with reckless avidity, the numerous patent and proprictary medicines that are thrown upon the market; among which are measureless quantitios of drastic pills, found in every house, and which are thrown into the stomach with sinful indiscrimination until a labit is formed of taking them every few nights to run off an enormous dinner, or hastily smallowed supper, or it may be to relieve the stomach in the morning from the effects of a magnificent spree of the night before, in which it has been made a laboratory for the analysis of drugged whiskey and beer, as well as a storehouse for a countless list of yotten, halfcooked, incligestible restaurant supplies.

In the concatenation of villainous nostrums found everywhere advertised by the gratuitous distribution of almanacs are stimulating, nauseating, intoxicating, narcotic, stupefying bitters, syrups, and other poisonous fluids, the influence of which tends to pervert nature's normal relations, and by their influence on the nerves of the stomach produce an appatite for strons drink and other intoxicants, and in the end to fill the country with drunkards and opimm-caters.

The adult may, in many instances, resist the effects of these poisons, but when little children and babes are dosed with them, a humane and intelligent community should close their eyes to their helpless appeals and blush with shame while the panorama of innocent suffe ors pass before them. A baba is fed food it 2 as no ability to digest, which acts as a foreign substance in the stomach and bowels, and irritates the sensitive surfaces, when the little sufferer becomes so restless and fretful that the rurse can get no sleep. It must then in some way be quieted, and a soothing syrup is brought into requisition, whish checks nature's effort
to pass off the offending substance from the stomach or bowels; this determines the blood to the head, spasms or 'ieningeals irritation is the result, and a dear babe closes its eyes upon a world of sin.

I can take you, Mr. President, to two little graves around which the spring birds have not yet carrolled their sweet songs to the spirits of the sleepers. These are, however, but two of the many little graves found in every city of the dead in our State.

Without extorting illegitimate conclusions from groundless inferences, or straining facts to swell statistics to create undue alarm, it is safe to say that firm this cause alone five hundred homes are desolated each year in the State of Indiana.

Homgopathic management of the insane. -The fourteenth amual roport of the Honcopatic Asylum for the Insane, Middletown, New York, (N. Y. Med. Times,) through its Medical Superintendent, Dr. Selden H. Talcott, has more than ordinary interest, as it reviews to a certain extent the ten years' work. of the institution since its organization.

The asylum has sheltered 1,532 sufferers from mental maladies, of whom $1, \because 50$ have been discharged. Of the wholo number discharged 566 were fully recovered, 183 were improved, and 330 were discharged as unimproved, most of them haviug passed into the chronic or "opeless stage. In other words, 45.78 per cent. of those discharged were cured, and 14.64 per cent. were improved, while 26.40 per cent. had not been benefited by treatment. When it is remembered that this asylum receives chronic as well as acute cases these figures make a showing that no similar asylum can surpass, and are eloquent in the testimony that they bear as to the skill of the physicians in charge and the efficacy of the gentle and rational treatment which has always characterized the Homœopathic Asylum. The methods employed there for the restoration of the insane are: 1. Kindness and gentle discipline. 2. Rest as a means of physical and mental recuiperation. 3. Enforced protection (the restraining of riolent patients.) 4. Exercise, amusement and occupation as stimulants in the renewal of health. 5. Diet and artifeial feeding. 6. Mental and moral hygiene. 7. Sanitary surroundings. 8. Medicines. 9. Furloughs-. giving leaves of absence to convalescent patients before final discharge.

Causes of insantry.-The causes of insanity are briefly discussed by Dr. Talcott, of the Middletown Asylum, (N. Y. Med. Times), and the public will note with sutisfaction that he asserts that hereditary insanity, which many alarmists have declared was increasing with startling rapidity, is in reulity decreasing, a great reluctance being roanifested to marrying into families the members of which are insane, while in nearly every instance those inheriting an insane taint develop it early in lifo and die young. Inherent predispositions to insanity are assigned to pre-natal influences-hysteria on the part of the mother, drunkenuess on the part of the father, and others similar thereto, while among the acquired predispositions are mentioned imperfect nuteition ; injury to the brain in childhood; fear; overtaxing undeveloped physical powers; unwiso forciug of the mind; umatural sexual excitement. Worry and overwork are mentioned as the most common and exciting cruses of insunity, and the means of preventing insanity are, therefore, evident.
Incubation of infectious diseases.Vacher divides the various periods which elapse between the reception of infection into the body and the first manifest symptoms of the disease into five sections, as follows:-1. Shortest-one to four days-cholera (malig. nant), charbon, plague, catarrb, and dissecting fever. 2. Short-two to six daysscarlet fever, diphtheria, dengue, idiopathic erysipelas, yellow fever, pyemia, influenza, pertussis, glanders, farcy, srease, croup, puerperal fever. 3. Medium-five to eight days-relapsing tever, gonorrhea, vaccinia, inoculated small.pox. 4. Long-ten to fifteen days-natural small-pox, varicella, measles, rotheln, typhus fever, typhoid fever, miumps, walarial fever. 5. Longest-forty days or more-syphilis, and hydrophobia. Small-pox ceases to be infections in 56 days after the appearance of the eruption: modified small-pox in 35 days; chicken-pox in 17 days; measels in 27 days; rotheln in 14 days ; scarlet, fever in 49 days; diphtheria in 28 days ; erysipelas in 35 days; typlus in 21 days; sphoid in 38 days, and mumps in 21 dass.
Dislinectants-three kinds.-All the at present known agents of disinfestion (Deut. Aled. Zcil.) can be classed in three categories according to the nature of their action, viz: the physical, physiological and chemical disinfectants. As purely physical
disinfectants rank dry heat and hot vapors. Both are powerful agents, but labor under the disudvantage of having but a limited applienbility as to the area involved. The physiologicul method is based on the supposition that the majority of infecting agencies aro living organisms, and intonds their destruction by drugs which prove poisonous. to them without, in the quantity exhibited, injuring the human organism. The chief representatives of this group are the corrosive sublimate and the products of dry distillation, as carbolic acid. The sublimate is unfit for any extensive use on account of its powerfully poisonous action even in small gantities on man and animals, whilst the carbolic products are not sufficiently energetic in their action. The third group is formed by chlorine, bromine and sulphurous acid and owes its effects to a chemica! tecomposition of complox compounds. Bromine, especially in its vaporous form, has proved the most efficient of the three, especially for the disinfection of rooms and houses. It can be employod as a pure vapor, or mixed with air or steam. As a simple purifier of air in crowded apartments, ships, hospitals and barracks, bromine is the most eligible agen .
atmospheric purificafaja by enectar-city.-In the last issue vi "is joumal reference was made to an apparatus used in some of the N.Y. City hospitals for accomplishing the static electrization and disinfection of an atmosphere. In reply to numerous inquiries Henry A. Mott, Jr., Plı. D., etc., makes the following statement: "There are many features about this machine which are novel and highly commendable. What is most interesting is the amount of static electrization or ozone the machine is capable of producing in a given time. By quantitative test, the amount of ozone generated by the machine was found to be 2.4 per cent. of the oxygen in the air admitted, which is equal to 83 cubic inches of ozone per minute, (one cubic fost in about twenty minutes). As the room contained 2,147 cubic feet of air, this air would contain in the fifteen minutes F_{1}^{1} or of its rolume of ozone. To determine the amount of albuminod ammonia in the air some of the water in the air was condensed by suitable refrigerating apparatus, to show the per ceut. of this undesirable element. The electrical apparatus was next set in operation for fifteen minutes, when some more of the water contained in the air was condensed. Analysis showed that $33 \frac{1}{2}$ per
cent. of the albuminoid ammonia was decomposed in this slont space of time. It must be remarked here, that during the test there were six persons in the room, some of them smoking, as also a mass of decomposed animal matter, the cbject being to show the efficioncy of ozone under the most reying circumstances. The fact that the room was not provided with any 1 tificial system of ventilation is also worthy of remark."

Infloence of tobacco smoke on the hiumar and lower organisms.- From a large number of experiments upon men and lower animals, Zulinski (Prz. Lek. No. 1., U. FF., 1884, St. Peters. Med. Wochen.) arrives at the following conclusions: 1. Tobacco-smoke, even in very small quantity, acts as a strong poison upon lower animals. 2. Unless taken in very large quantity, its evil effects ipon the human system are scarcely to be com pared to its action upon animals. 3. The toxic action of tobacco-smoke does not depend solely upon the nicotine, for tine smoke freed from it is still poisonous, although in a less degree. 4. The other toxic principle of the smoke is collodina, a body having aikaloidal properties. 5. In addition to these, the smoke contains other ingredients which very speedily exhibit a poisonous action on the lower animal, e. g., carbonic oxide and prussic acid. The author has also made a quantitative estimate of the toxic powers of the different grades of tobacco, as well as of the evils pertaining to the different methods of swoking. The most injurious method is cigar-smoking; then come cigarrettes; next the pipe, and least of all, the water-pipe. The difference in the qualities of tobacco is not so great as would probably be theoretically supposed, although the quantity of nicotine in the different specimens varies to a great degree. Finally, the author comes to the conclusion that the pernicious effects of tobacco-smoking depend not upon the kind of tobacco consumed, but upon the method of its consumption.

New Germicide - M. Schnetzler has comannicated some observations to the Académie des Sciences which serve to illustrate the germicideal qualities of formic acid Bacterium subtile, one of the ruost difficult microparasites ta kill, dies when in the presence of formic acid, even when it has resisted the action of boiling water for one hour ; a urop of water containing a thousandth part of formic acid to a drop of water teeming with thousands of the bacteria, is sufficient to des-
troy it. The swarming fluid so treated may be introduced into the digestive tract with impunity. The trial of formic acid on the cholera bacillus is recommended and its action upon Bacillus anthracis is deserving of experiment. If it should be found capable of destroying the dried virus of charion, provided it does not injure imported wool, the N. Y. Medical Iimes suggests that all imported wool be washed in a weak solution of formic acid to prevent the occurence of malignant pustule and all allies.

Cholera prevention.-A recerit address on the Parasitic Doctrine of Epidemic Cholera, by Austin Flint, contains reminiscences just now to the point, as showing how an incipient epidemic may be ellectually strangled in its birth by the prompt and searching application of the principles of sanitation, where carlier precantions had not been taken to prevent uncleanliness and so prevent the birth of an epidemic. In 1866 New York was threatened with cholera. "In anticipation of its prevalence a system of immediate and thorougly disinfection analagous to that of a fire department, was adopted by the Metropolitan Board of Health, which had lately been reorgnised. Sanitary inspectors, of whom some were always on duty at the central office of the Board, were appointed to at once visit all cases as reported, and to decide upon the diagnosis. A " disinfecting corps," composed of soldiers who had recently been employed in the Civil War, was organised under the command of an officer of the army. Waggons loaded with materials for disinfection, and with, their horses ready harnessed, awaited only a moment's notice to proceed to any infected spot. All these arrangements were placed under the supervision and direciion of the sanitary superintendent, and their object was to disinfest the houses and the surroundings, wherever a case of cholera occured, just as it is the object. of a fire brigade to extinguish a conflagration as speedily as possible. 'Che results achieved by the thorough application of these measures afford the best proof of their efficiency. Daring the summer and autumn 1866, cases of cholera occured, in 362 houses more or less widely separated from tach other; and " in no case did the disease extend proximately beyond the house in which case or cases occurred." In the course of the sticceeding year twenty-seven decths from cholera took place in New York City, five in Brooklyn, and eighteen at the
military post in New York harbcar. The measures used for stamping out the malady were the same as those employed in 1866, and the disease did not prevail as an epidemic. D1. Flint maintains that in Marsoiiles, Toulon and Naples-cities which havo been lately scourged by the disease-its progress might have been arrested, and thousands of lives might have been saved by measures such as those which proved so suceessful in Now York in 1866-7." "I believe firmly he says, that shoald the disease be again introduced into this country, to decide whether or not it shall prevail as an epidemic lies within the power of preventive medicine." But it would be n uch better not to wait till the disease comes, but to organize and prevent it taking root at all.

Tobacco and Cancer. - Almost every plysician, says the N. Y. Medical Times, has met cases where the frequent pressure of the pipe or the cigar holder upon the lips, and the continual influence of the nicotine of the tobacce upon the macous tissue of the lips and mouth have been followed by cancer. If there is one thing more than another in which a person is apt to be intemperate it is in the use of tobacco. It seems to bind the mind to what may be a deadly influence, and hold the will-power under its control. Temperance is seen in the moderate use of the pleasures of life. Towacco may never be the direct callse of cancerous dugeneration, but that it paves the way to it by creating a mormid condition of parts we have every day illustrations, which are apt to pass unheeded unless the victim occupies so high a position in the community. Very recently a malignant case of epithelioma of the lip was brought to our notice waich was developed precisely at the point of its contact with the cigar. Prompt and vigorous treatment was used, but the cancerous poison had extended to the glands and mouth, and death speedily engued. The viner day we cut out a horny excrescence from the lip of an old smoker. The tobacco throat and the tobacco heart are familiar to all, but these conditions are generally relieved by a discontinuance of the habit. Not so with epithelioma after it is fully developed, for that may defy our sk:ill.

Damp Houses.-C. T. Davis, in the American Architect says, the common bricks produced by most of the dry-clay machines absorb much wore water than do those made by mathines which thoroughly temper the clay. There is too much ignorance displayed
in regard to the material produced by this line of inventions, and which enters so largely into the construction of buildings, and this lack of knowledge is ofter shown by those who ought to know better. In the desire to get up a showy house, "something that will take, you know," mistakes are often made, and which are usually paid for by the loss of health, and somerimes by the sacrifice of the lives of those who inhabit them. It is difficult to call to mind houses that people call "unlucky places," in which an unusizal number of persons die? These "uulucky places" are for the most part nothing more or less than damp houses, resulting usually from the employment of porous brichs in the construction of the walls.
Healiti and its Oauses in San Fran-crsco.-Annual report of J. L. Mears, M.D., health officer, for fiscal year ending June 30, 1880:-Mortality for the year, 5,000 , an increase of 12 over preceding year; of these 502 were Mongolians. On an estimated population of 270,000 the ratios were: of total, 18.47 ; of Mongolians, e :timated 22,000 , $22.8 ; 1.361$ were of children under five years of age, and 670 , or 13.4 per cent. of the whole, only, were caused by zymntic diseases. But of this companatively small number of deaths from jreventable diseases, 180 were caused by typhoid fever. The general good results and high degree of healthfulness is attributed measurably to improved and extended sewerage, and the execution of the drainage and plumhing law.

The mortality of children at Los Angeles is said to he (Det. Lancet) remarkably small. "The combined death rate from cholera infantum, scariet fever, and diphtheria for the last seven years has been less than one a month." It is given as reasons for this small mortality, "the diurnal breeze from the ocean, which constantly purifies the atmosphere ; the constant ripening of fruits all the year round; constant fresh vegotabie each month of the year; such constant clear weather that out door life is possible almost every day of the year." This last probably most important of all.

Drs. Reinsch and Cutier have been studying with the microsope the dirt in the indentations of old coins. They find innumerable bacteria, and unicellar alga. Theie are oscillating bacteria, vibrating, spherical and dancing bacteria. Dr. Cutter then examined the dirt under his finger nails and found bacteria and alge.

Leading Articles.

THE MORTUARY STATISTICS-INTERESTING FACTS.
The last report of the mortuary statistics of the cities from the department of Agriculture brings out some interesting features relating to the ratios of mortality according to nationalities and religious denominations. Being for only one year the statistics do not possess that value in illustrating peculiar conditions that a succession of years will give, but they are, nevertheless, of no little signiácance, and are worthy of attention.

In Montreal there was in 1883 an assumed population of 53,867 of French motionality. Amongst these they were $3,14 \dot{j}$ deaths, or over 37 deaths per 1,000 of population. There was an assumed population of 29,744 of Irish nationality, amongst whom there were 849 deaths, or over 28 per 1,000 of population. Also a population of 17,211 of English nationality, with 314 deaths, or 18 per 1,000 ; and 13,121 of Scotch nationality, with 212 deaths, or 16 per 1,000 of population. Thus the death rates, per 1,000 , of the four different nationalities were, French, 37 ; Irish 28; English, 18; Scotch, 16. In Ottawa the differences were less marked; being $33,25,23$ and 16 , respectively. In this city the death rate amongst the English population was rastly in excess of that amongst the English in Montreal. This was also the case in Toronto, and likewise in Hamilton and Halifax. In Toronto where there were only, it appeers, 1,430 persons of French nationality, there were amongst then less than 19 deathis per 1,000 -or 27 deaths in all. In that city there was an assumed population of 34,010 of Irish nationality, with 831 deaths, or over 24 per 1,000. Of English there were 38,079 of a population, assumed, with; 901 deaths, or over 23 per 1,000. There were 15,212 of Scotch with 246 deaths, of over 16 per 1,000 .

In the six cities-Montreal, Toronto, Hamilton, Halifax, Ottawa and St. John, there was a total assumed population of 97,108 of French nationality. Amongst these there were 3,532 deaths, or 36 per

1,000. In the same cities there was an assumed population of 111,155 of Trish nationality, giving 2,799 deaths, or 25 per 1,000. There were 95,865 of English nationality, with 2,044 deaths, or over 21 per 1,000, and 30,059 of Scotch nationality, withr 817 deaths, or 16 per 1,000 . The totals being for the six cities for each nationality, French, Irish, English and Scotch, respectively, 36, 25, 21 and 16 per 1,000 of popution.

The high mortality among the Fyench and Trish was doubtless largely due to the high infantile mortality among these people; while a larger proportion of them belong to the poorer classes who are not so well housed and provided with the necessaries and comforts of life, as the more well to do classes. The few French in Toronto and the comparatively few English in Montreal, in both of which the mortality was low, are, we are lead to believe, largely of the better class and enjoy the comferts and luxuries of life.

Among the Koman Catholics in the six cities above named the death rate was over 33 per 1,000. Among the Church of England people, the rate was 23 per 1,000. Among the Presbyterians it was less than 16, and among ihe Methodists, barely 19 per 1,000. Among the Roman Catholics in Moniseal the rate was over 35 per 1,000 , and in Ottawa 37. In Toronto the rate was 26 ; in Hamilton, 24 ; and in Halifax, 21.

What are the causes of these great differences in the rate of mortality? While a number of causes operate, the one great cause is doubtless unsanitary conditions. It is dreadful to contemplate this great loss of life, which might be prevented were propermeans employed. In bringing out these facts is the great value of mortuary statistics. It is to be hoped that the lessons they teach will not be disregarded by those most interested.

Tae moroscope revenls that there ars raore than four thousand muscles in a catterpillar, and tbat the eye of a drone contains one thousand mirrors. There are spiders as small as a grain of sand, and they spin a thread so fine that it would require four hundred of them to equal the size of a single
hair.

ceLLARS.

We bave on former occasions referred to the probability of a time in the fature when man will entirely dispense with these relics of savage life or of pre-historic man-holes or caves in the ground, and instead, construct his halitation-his home-su above ground that the air may have the freest circulation under it, as free incieed as around it. But so far are we from that time that there is hardly a dweiling-house to be foum without a cellar. In a largo propertion of dwcllings the cellar is the receptacle of decomposing organic matter, when it ought t_{0} be about the last place about the premises in which such matter should be permitted to lie, for there is no other place whence the elements of decomposition can so readily pervade the entire dwelling above. We frequently find in our many exchanges a report of an cutbreak of diphtheria in a family in which the only canse that could be discovered was decayings vegetable matter-potatoes, calbages, do.-in the cellar of the dwalling. It would seem as if the contagions of the disease had in some way been conveged to this prolific soil and there developed and spread. We would therefore urge upon our readers the great importance at this season of the year of looking after the condition of the cellar. Have every trace of dacaying matter removed so that every part of the celluevery corner and crevice-shall be perfectly clean, as clean and sweet us any other part of the dwelling. If necessary, as it most likely will be after the winter's use of the apartment, have water, soap, disinfectanis and lime-wash freely used. A bove all, let in feesh air and sunlight freely. We have recently drawn attention to the importance of dryness in the cellar-to the necessity of good drainage of the soil dewn two or three feet beneath the floor of the cellar-as by a system of tile drains. This is indispensible to health. If health officers, inspectors or officers of some sort could be appointed to visit every cellar in the land and have them thoroughly cleaned it would doubtloss save muny lives during the next few roonths, especially of little ones, which we fear may otherwise be sacrificed to either ignorance, indifference or procrastination.

NOTES ON HOUSE BUILDING.

The home should of all places be most considered. Largely in accordance with its. construction, its keepings and ite surroundings will te the health and comfort of its occupants. Those const"uting a rew home should deejply consider its importance and study every point, and those onapying com old dvelling might orten with a little study and a comparatively trifing expense grearly improve it. The following notes are chiefly from a lecture before the Socieing of Arts, by Robert W. Elis, F.S.A.:

Good planning means not merely the arrangement of a certain number of rooms on a certuin number of floors, but careful and close attention to the general domestic ra quirements and arrangements of the ordinary householder, and to all smaller details which make up the comfort and convenience of thehonse. It means that every foot of space shall be properly laid out, that there skatl be no dark corners, and no inaccessible places, and that every room, closet and stairease shall have ample light and ventilacion, and that staircases shall be conveniently arranged, easy, with broad landings, and of sufficient width to allow of nassing conveniently.

Each room has to be considered, and its. relative proportion and position in the phan. The dining room, or general eating-room of 0 . house, should be so arranged that, although. above the kitchen-level, it shall not be at, any, unceasonable distance, wherely an extra amount of carriage of dishes and service is required.

In ordinaty houses nothing has struck me as so wanting in tiought as the general am rangement of the staircase. As a vule yous enter from the front door into the narrow passage-way, with perhaps an intermal screen. with folding-doors which are rare': shat, and immediately opposite is the main staircase of the house, so that any one, on entering, not only comarauds the alsolute thoroughfare of the house, but sees evergbody: who goes up cr comes down, by which privacy is materially interfered with, and the whole house is made sulject to sulden
deangits of cold air, which are driven up the we'l-hole, as it is called, by the opening of the street-door.

There is no reason why the ordinary narrow entrance shall not be increased two or three feet, so as to make a moderate-sized hall, in which you may have a fireplace, which will help to supply warm, fresh air all over the house, and, by a little care in moraning, the first flight of stairs at least way be screened from view.

The scullery should, as a rule, form part of the kitchen, where the kitchen is not used for servants' meals and sitting-room, and not, be shut off, or, if so, only by a low glass screen. It is merely a washing-up place, and should be under the immediate supervision of the cook, and not, as is so often the case, a smal:, dark, unpleasant, and illventilated hole, in which bad smells are supposed to be allowed. It should be as fresh and as sweet as any portion of the b:sement.

Line the whole of the scullery walls and, as far as possible, those of the titchen also, with glazea tiles, so that there be no absorption and retention of the smell which must necessarily accrue with the ordmary work of this portion of the house; bring in fresh air, provide means for extraction of foul, but do not muke a pestilential corner.

We can not too strongly advocate the finishang of all the walls in a basement, so far as the working porvion of it, and the passages, are concerned, with glazed tiles; they ate cleanly, absolutely non-absorbent, reflect and give light, are easily washed, and tend to twake the house sweet and healthy. The reantries and larders should be so arranged that they have continued ingress of fresh ain, and should in all cases be lined with glazel tiles or bricks, or some non-absorbent matecial, so that the emanations from the sonkents should not be absorbed in distempered walls. The walls may painted a Sight color and then covered with a coat or two of heavy varnish, which makes an slmirably cloan and good finish.

They can casily be made fresh by bringing ins outiside air, by means r^{r}. temal gratings!
and tubes, and everything should be done to provile a constant daught and sweeping out of the foul air which is naturally engendered by hanging game and unconked meat. The shelves should be of slate, or, bettor still, of polished marble, so as to be absoiutely ronabsorbent and easily cleaned.

In every basement a courfortable room for servants should be provided; some small sitting-room, fitted up with book-shelves and cubboards, and if possible facing the street, so that the workers of the house maty have some sort of spare room in which they may be at rest from their ordinary duties; for if you want good servants you must treat them as ordinary beings like yourselves, and it is rardily fair to leave them for all hours in the heated and not altogether pleasant amosphere of the working rooms.

I would insist says Mr. Edis, upon the necessity of making those about us as comfortable as possible; for I am quite sure that, if we provide comfort and health for them, they will be much more capabie of doing their daily work fairly and acting well by us.

The kitchen department should, as far as is consistent with proper and quick service, be shat off from the staircase of the basement, as this naturally acts as a funnel up which all smells ascerad, so that, when the roor at the top, which opers into the hall. is open, they escape and permeate the whole housc; 3 swing-door can generally be arranged at the bottom of these stairs, provided with one of those patent Americim valve springs which close the door at once without allowing it to bang.

All closets and bath-rooms should, too if possible, bo lined with some non-absorbent materia!, for, unless this be done, they soon become stuify aud unpleasant.

The drawing-roorns of the house should naturaliy be made as cheerful as possible, and doors arranged so as to allow for the proper circulation of your guests when the rooms are crowded.

The arrangement of windows and fireplaces should be carefully studied, so as to all ww of sufficient wall-spac: for furniture, and in these rooms bay and recessed windows
and cozy nooks will help to make them more liveable and comfortable, whether for the ordinary occupents, or on occasions when you receive your friends.

As a rule, two fireplaces are regarded as a mistake, unless the rooms be absolutely divided by doors or portiéres, as, when only one fire is alight, the $\because ?$ is a tendency for it to act as a pump, and to draw down smoke through the other.

If the room be very long, a small coil of pipes, taken off the hot-water service, may generally be arranyed under the back window, over which fresh air may enter for ventilation.

Street honses are, more or less, by the limited nature of the ground on whicn they stand, bound to be very similar in plan; but. they can all be materially improved by a careful study of the wants and requirements of the ordinary householder, and by a proper regard and attention to all the smailer conveniences which practically render the house comfortable or the reverse.

As a general rule, bedrooms are often rery badly arranged; eitber the wall-space is planned so that the bed must be placed immediately opposite the light, or in a thorough draught protably. The modern system of avrangement in rrench bedrooms might with advantage bo more frequently carried out in town-houses, and that the roonis might be made suitable for the double purnose of private sitting as well as bedrooms. In a house in which there are several grown-up sons and daughters, it will be evident that some such arrangement will cornmend itself, so that each may have a private workingroom, for writing or studying, apart from the general living-rooms of the house. The bedroom may often, therefore, be divided up so as to form at one end-thar farthest from the window-recesses tox bed and washing-closet, which can be screcned off in the daytime by a curtain, and the rest of the room fitted up as a sitting-room, wherein the occupant may receive his or her own more intimate friends if ueed he.

As Emerson says truly, in one of his essays: "Take off all the roofs from street
to street, and we shall seldom find the temple of any higher god than prudence. The progress of domestic living has been in cleanliness, in ventilation, in health, in decorum, in countless means and acts of comfort, in the concentration of all the utilities of every clime in each house. . . . The houses of the rich are confectioners' shojis, where we get sweetmeats and wine; the houses of the poor are imitations of these to the extent of their ability." Avoid all such imitations; let our houses be fitted for every-day wants, for every-day requirements; let them above all be clean, be comfortable, be healthy; let there be no unfound skeletons, no tangles that are not unraveled; open up the doors, let light and air in upon the skeletons, search them oat; make the houses you live in pure from end to end, and depend upon it you will have less disease of mind or body, less worry, less enervation, unless you agree with the Scriptural statement that "Ahithophel set his house in order and hanged himself." One would have expected him to hang himself because his house was not set in crder.

Remember always that the healthiness, the comfort, and the pleasant and artistic arrangement of your houses mean the healthiness, the education, and the bodily and mental soundness of your children.

Sewerage for Providesce, R.I.-The report of City Engineer Gray on the varibus systems of sewerage examined by him in European and American cities ('I'he Sanitarian), with reference to the adoption of a plan for Providence, virtually resolves itseli into a recommendatiou very similar, if not, indeed, identical with that now appronching completion at Atlantic City, known as the "Wesi System":-Intercepting sewers or tanks, conveyance of the sewage thence to a convenient place (mouth of the Providence river) for precipitation, claritication, and disposal by overflow of the eflluent into the river, and utilization of the precipitant. Mr. Gray is satisfied from experiments he has made in this direction that the whole of the sewage-about $34,000,000$ grillons dailyway in this mamer be effectually disjosed of without nuisance.

Recent and Current.

Our blate volunterers.-We learn that overything possible has been clone for preserving the health of the brave men who have gone to the North-West to suppress the rebellion. The chief medical otficer, Dr: Bergin, has given much attention to sanitury matters, as indicated by the provisions in his factory bill. He has been incessant, day and night, in his efforts to have every thing connected with this and the medical department in general as complete as possible. Hon. Senator Dr. Suliivan is purveyor of medical supplies, and is not one that will be likely to overlook anything that the men may require. The Surgeon General, Dr. Roddick, professor of Clinical Surgery in the medical department of McGill University, Montreal, is a most active, able and skilful surgeon. The Surgeon Major and assistant surgeons are men selected on account of their special fitness for the work. And one provision of much importance is that, the attendants for the sick and wounded, instead of having been or to be taken from the ranks, are advanced medical students, selected, we understand, by Dr. O'Rielly, of the Toronto General Hospital, and Dr. Fenwick, of Montreal. Furthermore, provision has been made for a special hospital car, fitted up with all necessary hospital appliances, for conveying the disabled to Winnipeg, whence they may be sent home when desirable by way of Chicago. So that all of us who have relatives and friends engaged in the service may rest assured that all their medical necessities will be well attencled to.

Tue mardships, not designed but unavoidable, which the brave volunteers were cailed upon to endure on their way to the West but tested their powers of endurance and the better itted them for the work of effectually quieting or exterminating the rebels. Taken directly from city comforts, and conveyed to Qu'Appelle in comfortable cars, abundantly supplied with good things eatable, they would be much less fitted for the trying combat before them. The value of "roughing it" in rapidly invigorating the entire
physical organization, is well known, and the extent to which man may go in this direction with absoluts benefit is to some people surprising. When one unnsed to hard work first starts out to it he feels very tired and used up for the first few days, and then he gets restel. The hardships encountored by tho brave fellows at the commericement inured them to the more serious work to which they are advancing. Then after the partial re t on and after reaching Winnipeg, they will he well prepared to march and meet the enemy. The few poorfellows who "fell out" by the way in theirtramps above Lake Superior form no exception. Their strength has been tested and they have been cared for and recruited in a way they probably could not have been had they so fallen out when near the enemy. We trust and believe the health of every one of the men will be well looked after. If among therr there are boys in age, there is not one in heart. All hail to every man of them.

A rather funy thing was brought up at the meeting a few days ago of the Toronto Sanitary Association. The Chicago Sanitary Niews, a plumber's organ, read almost solely by plumbers, and which, by the way, seems to enjoy the abusing of medical ment and the belittling of their efforts in public heulth work, had reported, as from the report of the Toronto Medical Health Officer, that the Toronto water was impure. Just about such old "news" as much that the News usually gives. And at the meeting in Toronto some one brought up a resolution protesting against such reports passing unrefuted. Is it not an established fact that the water supply pipes leading across the bay leak, and, we need not add, that the bay water is intensely foul-contains "things you can see with your nose;" gives off " loud smells that you can hear:" How then can the water supply be pure? Those who have the use of their physical senses do noc need Dr. Carpenter nor Dr. Ellis to enableythem to judge as to whether the water is or is not fit for use. We were under the impression
that everybody admitted it to be impure, and that the leading 'loronto papers proclaimed it abroadas the health officer repurted it, all hop ing thereby to induce the people to rouse up and remedy the dangerous, deadly avil. The meeting, the last one of the season, wisely decided, we understand, that the resolition to refute the report of the Chicago pariodical be laid over till the " next meeting."
l'oughenad glass for drains and soil pipes is among the possibilities, indeed, we should say, probabilitics of the future. The Hydraulic and Sanitary Engineer gives an account of the Siemens process for hardening glass, as brought before the Applied Chemistry and Physics Section of the Society of Arts, on the 26th ult. Toughened or hardened glass is no new thing, yet some of the uses to which it is proposed to be put are decidedly novel. It is said that one variety of glass produced by Siemens is hard enough to answer as material for a railroad -rails, cross-ties and all. He hopes too to add to the desirability of the new product the element of cheapness. So far as chemical action is concerned, glass is one of the most unalterable of substances. It is hardly at all affected by alkalies and resists the strongest acids; it is impervious to gases and effectually "bottles up" everything placed within it. It has needed only strength and cheapness to fit it as a substitute for all metals in drainage work. For durability and consequent safety it will entively eclipse all other substances.

Tife state bjard of healte, lunacy and charity of Massachusetts has just issued an extra circular to local boards of health, physicians, school officers, superintendents of public institutions, raihoads, proprictors of hotels and householders. It reads, "thorough measures should be taken to ensure as perfect sanitation as possible before the advent of the hot season, and it is recommended that the energies of local boards be directed, during the ensuing months between the present date and midsummer, to the sanitary inspection of cities and towns. It is a common practice for local boards to wait for com-
plaints of nuisances and sources of disease before taking definito action. It is therefore recommended that special officers or inspectors shall be appointed by local boards for the ensuing three months or more, whose duties shall be specified, viz.: the inspection of houses, stables, outbuildings, tenements, hotels, schools, public buildings, almshouses, railway stations and camp-ヶ;rounds. Measures of this sori should he taken in advance of an anticipated invasion of cholera and not in the midst of an epidemic."
"Heap's Patent" dry inodorous earth or ashes closets, which are so strongly recommended by the leading sanitarians, are in such demand that the company have been unable to make them fast enough at their Owon Sound factcry. They have now taken central premises at 57 Adelaide street, West, Toronto, where they propose raking their headquarters, and where they are fitting up a factory and storeroom. 'The "Heap's Patent" is generally admitted to be the only perfect dry earth closet made in Canada. There is a perfect distribution of the deodorant maierial, and the liquid is separated from the solid excreta. They have been awarded thirteen prize medals, and over 15,000 of them are in use. The company are daily receiving orders for them from various parts of the Dominion-from Cal. gary and Regina to the Maritime provinces, and also from the United States.

Cleveland civy engineer in his annual revort outlines a plan for improving the sunitary condition of the river by freeing it from sewage pollution. His schene is to build intercepting sewers and a conduit leading to the lake, and to produce a suff. cient current by pumping. The scheme can be extended as the city grows.

A Pimladelphia builder, referring to chemical obstructions in water pipes, says two methods of prevention are being succesfully practiced in this city. "One, coating the interior of pipes with coal tar answers well enough for large mains, keeping them practically clear for a quarter of a century. The other method consists in subjecting the
pipes at a high temperature to the action of steam or air, thus forming a film or costing of magnetic oxide acquired by the metal, which insures a smooth surface for a great while."

Jefferson, Illa, has granted to Nathan Skelton the exclusive pririlege for thirty years of supplying water to the town. The woter is to bo obtainet from Lake Michigau through Lake View, the machinery employed to be sufficient to force four million gallons every twenty-four hours, and this machinery to be increased in capacity as the necessities of the town of Jefferson demand. The works will cost about $\$ 450,000$.

Mayor O'Bmen, of Boston, has appointed a committee of nine physicians to act as advisers of the Board of Health in case of an invasion of cholera.

A new temperance society has been organized in Toronto for the purpose, it appears, of opposing the traffic in ardent spirits, as a beverage, but not opposing the use of wine and beer. We are in full sympathy with this movement, and have been watching with much interest, we may add, in this connection, the progress of a bill prorosed by Mr. James Beaty, M.P. in the House here, having for its object the suppression of the use of ardent spirits as a beverage. As The Week says:-" You cannot extirpate the taste for stimulants by force; you may turn it into other channels and perhaps in doing so deprave it; you do deprave it when from beer and wine you drive men to ardent spirits, or possibly to opium. The minister or the philanthropist sipping his tea or coffee feels that he has done a very good work in cutting off from the labourer on the Pacific Railway his cup of beer; but, as we saw the other day, the labourer in place of his cup of beor is supplied by the smuggler with spirits which may truly be said to be poison."

Tue ministers of Philadelphia, in view of the possible visit of cholera next summer; have been requested to preach a sermon on the duty of cleanliness and the general observance of samitary regulations. "What-
evor objections may be urged against political preaching," says the Orillia Packet, "there rertzinly can bo no objection to this sort of preaching. Nor will thero be any difficulty in finaing texts in the Bible approprote for such a service."
"Common Sense," in the Orillia Packet, says:-"The talk about forming a 'home guard' to take the place of our volunterers called to the North-West, is very absurd. Of course there is at all times more or less. danger of damage from Fenian dynamiters. aljug the frontier, but who has any apprehension of members of the brotherhood reaching Orillia? The only enemy that can possibly reach us here this summer is oholera, or some other contegious disense, and the best service the home guard could do would be to organize and give the town a throrough good spring cleaning."

Tife sanitary inspector for the Township of Nepean, has been sent out on an official tour of the township for the purpose of giving the residents warning to clean up their premises. Every municipality in the Dominion ought to follow the example of Nepean.

The meport of the toronto board of mealti for last year, which is in reali'y the report of the medical officer of the board, has but just been received. It deals chiefly with drainage and the water supply, and reports the number of inspections made and the condition of premises. We purpose referring again to the report in our next issue.

At the Sanitary Association meeting in Toronto this month, Mr. S. G. Curry introduced the subject of pan closets and spoke strongly against those in ordinary use. This provoked a warm discussion by the plumbers present. It was finally moved by Mr. G. Burke and seconded by Mr. D. B. Dick, architects, That section 15, clause 4, schedule A, of the public health act, of Ontario, providing for the use of closets, be anended as follows:-"That no pan closot or any other closet which will permit of the accumulation or retention of filth or deleterious gases be permitted to be used." This was. carried by a vote of fifteen to five.

Mir. W. E. Garfori, of Normanton, Englam, has invented a simp'o apparatus for detecting fire-damp in colliaries. It consists of a small India-rubber hand-ball fitted with a protected tube. By compressing the ball and then allowing it to expand in a suspected atmosphere, it becomes filled with the air. It can then be taken to a safe place, and the air can be tested in a lamp.

The subject of burning hitchen garbage in the kitchen range or cooking stove is being discussed. A writer in the Srientific American urges that the great bulk of kitchen waste might be burned and the work of the scavengers thereby greatly lessened. He writes: "get the help of your individual citizens by press appeals, and teaching, and let every family datily burn, cremate, destroy, as much of their garbage as will be found practicable."
A. Sanitary Protective Ieague has been organized in Now York, to render such aid as lies in its power-to advance the health of the city of New York and vicinity, and to ward off epidemics: 1. By sustaining and stimulating the health authorities in their nfticial work. 2. By inproving the sanitary condition of our own houses. 3. By looking out for the safety of our employes and dependants." The central office of the League is at 119 Pearl street, Chas. F. Wingate, Secretary

Interesting ounbreak of "ionse-pox:"At a recent mreting of the French Academie de Medécine (Gaz. Mebd. de Med. et de Chir.—N.Y. Med. Times) M. Blachez related the particulars of an outbrcak of casual "horse-pox" among the she asses used for giving suck to the inmates of a nursery where only syphilitic children, or children supposed to be syphilitic, are received. One of the children was found to have a lange ulcer on the lower lip, with considerable swelling of the part, and at the same time a deep, indurated, discharging excoriation was found on the tcat of an ass that had suckled the child. It was ascertained thui, a fortnight before, the same ass had suckled a child with a specific ulcer of the tongue. It
was hastily inferred that this child had infected the ass and (mediately) the first child with syphilis, but Professor Bouley, the veterinarian, was asked to investigate the case, and he decided that the disease wass really "horse-pox," originating from a vaccinated child. The disease spread among the asses of the establishment, and "compox" was produced in two cows hy inoculation from one of the asses.

For all Readers. - An Admirable Example to Follow.-Occasionally an interested sulscriber and friend of the Sanrtary Journal sords to the publisher the name and amount of a year's subscription of a new subscriber, which kindly act is always fully appreciated. Sometimes the publisher bas thought that a larger number might in this way assist in the good work. From letters being almost daily received it is phain that the readers of the Journal-feeling that it is a work that should be widely circulated-would bo glad to have its circulation extended. Nuw is there one, especially a physician, who could not, by a few timely words, secure a subscriber or two, and so help to defray the heavy costs of publication and at the same time promote thepublic health? Will not each and esery reader of the Jourval so help to double its circulation and confer a special favor both upon the public and the publisher?

the orillia medical health officer,

Dr. C. S. Elliot, sends on the Soh inst., the, names of six new subscribers-a clergyman, three barristers, a bank manager and a drug-gist-and nine dollars, and writes, as fol-lows.-"As I have said to many of my friends here, that among the many journals I receive there is not one I peruse with more pleasure and profit, and in making a littleeftort 3 extend its circulation I felt I was not only doing the proprictor a good turn, but was doing a better turn for the public. I am confident your journal only requires to be better known to be appreciated by the public." How many of our readers will do likewise this spring, when cholera is threatening to visit this country?

Healin and denstiy of population.Professor de Chaumont (Pop. Sci. Monthly) recently illustrated the influence of density of pollation on health, by compuring Lundon and Paris. In Raris every individual had an area of about forty square metres, while in London he had eighty. The result of the difference was clenly shown, not only in the lower death-rate in a larger population. but in the character of the diserses, while some diseases-scarlet fever, for instancewere more severe in London than on the Continent ; others, such as typhoid fever and diphtheria, were much more common and fatal in the large cities of tho Continent than they were in England. In London the streets were fillhy and the sewers abominable, int the houses were the perfection of cleanliness; whereas, in Paris, one might give a dinner-party in the sewers, and the streets were perfectly clean, but the houses were abominable filthy. In Paris, all the filth was kept in or under the houses, while in London it was all sent away. The result was shown in the differences in the health of the tro cities, particularly in diphtheria, which was des?ribed by French sanitarians as the scourge of their country, while in London it tori: a comparatively low position in tire class of zymotic diseases.

Bad Smells "To Let."-An altercation once arose between a laudlord and his tenant (the latter having given notice to quit) as to whether the tenant was lewfully bound to display in his window a paper intionating that the house was "To Let." Both parties were stubborn about it, and to make matters worse, they "went to law." The judgment was given for the plaintiff, and the defendant was ordered to display the paper within a certain time. The lamdlord was so delighted at his trimmph over his antagonist that at the expiration of the specified time he not only weut himself but took a friend with him to see the discomfiture of the tenant. When they came within sight of the window there was the veritable paper showing that the house was "to let" prominently displayed, and there was also a slip of paper undernenth it, with the following words written in a bold hand: "Leaviig on account of the bad smells arising from defective drainage."

Current Literature.

 Florentine Mosaic," Mr. Howell's second illustrated naper on Flurence, a reproduction of Mr. Pennell's (tching of the Ponte Vecehio being the frontispiecr. Admiral David D. Porter contributes to the War Suries a stiking paper on the opening of the Lower Mississippi. Accompanying the neticlo we portraits of Admial Farragut, Almiral Porter, Captain Theodurus Bailey, General Butler, who was in command of the land fotces, General Lenvell, the Confederate commander, and other leading participauts in the conflict. Theodore Roosevelt contributes a paper on "Phases of State Legislation," in whico lie reveals the dark side of the legislative picture, the methods of the lobly, aud the perils whin beset legis'ators. A reply to Mr. Cable's recent paper on "The Freclman's Case in Equity" is ecntributed by Henry W. Grady, of the Atalanta Constitution," who writes under the suggestive lille ' In Plain Blark and White." In "'lor.cs of tae 'limes," is an editorial on
"the atiesipt to sain niagala."
"A natural phenumenon of the proportions of Niagara constitutes a public trust. The people cannot escape responsibility for its care and preservation, even if they would. The experiment of private ownership and management of the lands about the Falls bas been fully tried, under circumstances more favorable than can ever exist in the future, and has failed completely. The existing state of things is cine which no intelligent person can defend. The demoralization is matural and inevitable; competition between the owners of rival "points of view" naturally develops a tendency to the employment of tawdry, sensational attractions. The increasing ugliness everywhere, the destruction of all vernal beauty and freshness; the crowding of unsightly structures for manufactures of various kinds around the very brink of the Falls; the incessant hounding of tavellers, and the erormous exactions of which they are the victims. . . Whe only practicable remedy is ownership by the state, and snitable permauent guardianship over these lands, with such provision for the safety, converience, and comfort of myriads of visitors as can be supplied only by a competent directory clothed with the authority of the State and acting in the interest of the general community. This is the object of the measures recommended by the Commissioners appointed by Guvernor (now President) Cleveland in the spring of 1883. Theso Commissioners have selected about one hundred and eighteen acres of land contiguous to the Falls, comprising Goat Island and all the other islands in the river, with a narrow strip of land on the "American shore," running from the upper sus-
pension bridge to Port Day, and including Prospect Park. The various separate portions constituting this tract have been appraised, and the Supreme Court has confirmed the appraisement, which fixes the value of the lands in question at $\$ 1,433,429.50$. The Conmissioners recommend the appropriation of this sum by the Legislature for the purchase of these lands, and the establishment of a state Reservation, as the only means of preserving the scenery of Niagara. ,

A ngw dax or issce for "Ter Centidy."-The editions of The Century Magazine are now so large that it has become necessary either to go to press at an earlier date or to postpone the day of 1834 . The latter, and surely more rational, alternative has been accepted. The April number, the edition of which was 225,100 , was delayed until the 26 th of March. The May number-edition 250,000will be issued on the lst day of Nay, thus insugarating with the first number of the thrtieth volume a change which has long been considered desirable by the publisbers, and which it is belheved will be heartily commended by the public. Future number of The Century Magazine will be issued on the 1st day of the month of which tach bears date.

Ter May numbze of Harpir's Monthly is very strong in its stories. Miss Woolson's story ot "East Angels" grows in the strength of its study of characters as well as in interest as it proceeds : and "At the Red Glove," the anonymous story, illustrated from shetches made at Berne, the scene of the story, Mr. Reinhart, draws to its close. There is an admiratle story, " Uonstance Royal," strongly dramatic, and tcld in three pages: and a hamorous love-story set forth in "Passages from the Diary of a Hong-Kong Merchant." There are "Through London by Canal" and "Espanola and its Enviren'," both profuselg illustrated. In the "Editors Drawer" is an amusing article on
"drealamd wives' sigters."
"The desire of the Englishman to marry his Deceased Wife's Sister in one of the mort marked phenomena of the times. The Deceased Wife's Sister Bill may be said to be his steady occapation. In all $h \theta$ breathing epells from emergencies be turns to that. When he is not being massacred by the Bouth African; or slaying Soudanese, or fighting Afghans, or pacifying the Irish, or being blown up in his Tower, he is attending to the Deceased Wife's Sister Bill. He comes back to it out of all victories and all defeats with unwavering pertioacity and courage. It appears to be the passion of his life to marry his- Deceased Wife's sister. We who live in a land where nobody opposes such an alliance cannot conceive the attraction it seems to heve to Englishmen. And seeing how universal and strong this denire is in

Eagland, we can not but inquire why the Englishman does no ${ }^{\circ}$ marry the wife's sister in the first place. Why does he go on marrying the wrung one, and then wait for death ard the law to help him out ?...... He is attracted by outward appearances Nine cases out of ten the man will take the girl of the family who knows the least about cookiag, or the management of a house, and is the least patient in trial, and has the least common-sense...... The man leves his wife-of course he does; even her faults, her little selfish demands upon him, are better in his eye than the virtues of other women. But, when real life begins, and the sister comes to live in tho house, as she pretty certainly will come, then he sees who it is that makes life go smoothly...... She bas a kind of pleasure in seeing her sister prefcrred and led away to the alter. She likes the man all the better for being such a goose as to choose the pretty and more incompetent one. And in the new household, whether she is permanently. a part of it or oaly has an occa ional suparintandence of it, she develops in ber subordination many of the lovely virtues...... It is probably useless to u ge the Englishman to marry his wife's sister in the first place. It would take away one of his greivances; and something of this kind to put into a Reform Bill he must always have.
"St. Nicholas" yor April-Opens with a frontis siece illustration by W: st. John Harper, of "The Gilded Boy," a true story of a Florentine pageant in 1492. Indeed, the romance of history: forms a prominent featare of this number. In the "Historic Girls" stries E. S. Brooks tells tho story of the girlbood of "Zenobia of Pulmyra," as based on intormation recently brought to light by: Eastern scholars, which is : timely, in so far az it shows a prototype of the events of to-day-a. mighty European power humbled and held at bay. by the Arabs of many centuries ago. There is a sketch of Bach, which forms the first of a seri s of brief biographies, by Agatha Tunis, of the great musicians "From Bach to Wugner." Lieut. Schwatka tells, in "Children of the Cul 4 ", of some of the popular cames of the Eekimo; while Cbatles Barnard, in "The Boys' Club," relates how some little New York savages, that have buen caught and tamed, amuse themselves in a fine club-house. "Among the Law-makers" contains an amusing chipter on the pranks of the Senate-pages, appropriate to the month ushered in by April Fool's Day; and J. T. Trowbridge's serial, "His One Fault," goes brightly on. There is a beautiful double-page p!cture called "Easter Morning;" the story of mining camp pussy, entitlod "The Conscientious Cat;" and "Who's Afraid in the Dark?" with a full-page picture. What will greatly intereat : many readers is the announcement of the names.
of the winaters in the prize-story eontest for gitls. The number is an excellent one.

The poblear Sceven Montuhy for May just to hand is full of artictes $r^{t} c h$ in thought, and infurmation un living questions of the day. The first paper, "Our R cent Debts to Vivisection," by William W. Keen, M.D., is a graphic aceount of tha benefits that have been conferred upon humanity during the last quarter of a centurs, by means of experiments on animals. There are no strained constructions in the argument, find the numprous examples given can not $b=$ easily explained away. The second article, by Prot. W. K. Brooks, is a highly significant answer to the very interesting question that intelligent people have long been asking, "Can man be modified by Selection ?" Dr. Mnx von Pettenkofers valuable and timely papers on "Cholera." The pesent installment cf "The Chemistry of voukery" is devoted to vegetaianism, which er. Willians commends on rather novel grounds. "The Nervous System and Consciousness," by Prof. W. R. Benedict. il:us trated, is a good papes. There is al o an ar icle by Prof. 'Tyncial', describing the patient labor, the ingenious min- ${ }^{-12}$ wed, and the grand results of "Pasteur': Researches in Germ-Life; "an 1 a very readable and instructive article, treating of the antiquity of man, under the title of "A Very Old Master," with twenty pages of "Literary Notices and Popular Miscellany" on a variety of subjects.

The index Medicus, we are pleased to learu, will be continuel by Mr. George S . Divis, of Detroit, and on tlee same gencral plan as hitherto. The firsta sue will contin the references, to the licerature of January, Febrtary and March, after which it will appear monthis, as formerly. It is to be hoped that the profe-sion will more fully sus ain the editors and publishers in this undertationg. The publication is a most valuable one.

Late nombers of Happer's Weekly contain some admirable ill strations. In one, a full-page illustration, we are given : Geneal Grant's Illness-2 consultation "-_the old General in a custhioned chair surrounded by the four pnysician', Drs. Douglap, Sands, Shrady and Barker-very lite like and suggestive. Another, full-page to ", "A Jolly Lot" - a copy of a painting by J. G. Brown, N.A., representing a group of nine s'rect boys, very life like aad natural indeed, and represeating a varis ty of faces worthy of siudy. The large number of portraits given of men of repute are highly interesting. A funny and very suggestive picture represents President Cleveland throwiug the Rome, N.Y., Postmaster out of the window. The President holding him up by the back of the collar and breeches. Both the Weckly an. Dazar provice a large fund of highly cat ritaining and instructive reading.

The thaek finst roluase, for this year, of Wood's ndmirable oteries of Monthly Medienl Works have just been receiv, d. Wo shall ende.vour to examine them before our next issuo of the journal.

Ranewal of Brain Chbls.-According to the novel computalian of a German lintologist, who has been caloulating the aggregate ca!! forces of the human brain, the curebral mass is composed of at lenst $300,600,000$ of nerve reils, ench an independent body, organism, and microscopic brain, so fur as concerns its vital relations, but su'ordinated to a higher purnose in r lation to the function of the organ; each living a separate life individually, though socinlly subject to a higher law of function. The life term of a nerve cell be estimates to be about sisty days; 80 that $5,000,000$ die every day, about 200,000 every hour, and nearly 3,500 every minute: t, be su ceeded by an equal number of progeny, while once in every sixty days a man bas a totally new brain.

Dr. Boyrasek, a dintinguished natural st, (Ottava Cetczen) has been itrestigating the origin of the masses of gum collecti g on the limbs of certain kiuds of trecs, no tab y the plum and apricot. He finds that the exudation is due to a diseace produced by the presence of parasitic fingi, and when healtby trees are inoculated with the gum thus produced they speedily contract the disorder, which is highly contrgeous. The disease is diseeminated by the drging of the gum by oxidation and its circulation by the wind.

The iangest of their kind - The larigest occan in the world is the Pacific: river, the Amazon; gulf, Mexico, cape, Hora; lake, Superior ; bay, Bengal; island, Australia; city, London; public building, St. Peter'r, Rome ; hotel, Palace, San Erencisco, steamship, "Grat Eastern;" desert, Sahara; theater, Grand Operil Houre, Paris; stats, Texns; highest mountain, Mt. Everest, Hindostan. Asia: sound, Long Islaud; railroad, Union Pacific and Central Pacific ; canal, Grand Canal, China; bridge, that over the Chy at Dunciee, Scotland ; railsoad depot, St. Pancras, London; largest roum in the world under single roof, military ons, St. Petersburg.

Thr sounces of petroleus, says the American Inventor, are frund in almost every part of the gl be, and the use of the article would seem well nigh coeval with civilization. There is a spri ng in one of the Ionian islands, which has yielded pe troleum more than 2,000 years. I'ue city of Genoa was formerly lighted by oil from the wells of Armenia, on the banks of the Zaro In Persia, also, near the Caspian Sea, at Daka, numerous springs of petroleum have been known from the earliest time; and those of Rangoon, on the Irawadly, are said to have yielded, before the genetal introduction of petroleum, some 400,000 hogsheads of oil a year.

