IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

(C)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the imeges in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couvarture de couleur
Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurde et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relid avec d'autres documents
Tight binding may cause shadowe or distortion along interior margin/
Lare liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent ders le texte. mais. lorsque cela était possible, ces page. n'ont pas áté filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a dté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. uu qui pauvent exiger une modification dans la méthode normale de filmage sont indiquós ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, staines or foxed/
Pages décolorées, tachetées 0^{\prime} piquèes

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponitle
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellemen: obscurcies par un feuillet d'errata, une jelure. etc.. ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and anding on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original coples are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exempiaire filmé fut reproduit grâce ala générosité de:

Bibliothóque nationale du Canada

Les Images suivantes ont été ruproduites avec le plus grand soin, compte tenu de le condition et de la netteté de l'exemplaire filmó, it en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniAre page qui comporte une emprelnte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiére page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empiainte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivents illustrent la méthode.

1	2	3
4	5	6

CLIMATEs

N() RTHWEST;

BEING

CONDENSED NOTRES OP A LECCTVRE
OEGJVEREDBY
HON. S. GARFIELDE,

Delegate in congress from Hishiagton Tirritory.

'1 II ほ:

CLIDATES OF THE NORTIIWESTS.

 with mearly all the topermphial and rlimatia momitions of the comatry

 and indriry into the eanses of difleremen stin lattel.
 denarel in the form of a lecture briti motes of whirh are mow published

 Western hall' of the ('matinent. the abjeet of their pmblieation will have

 whervatims of the writer and the exprianero nt mast reliahle men long fimiliar with given distriots uf ematry. The reanmablemess of canses, when presented. and their sufliciemey turmber the results stated, must be detemined by the reater.

It will mot lan clamed that the comatry kown an the . Gieat West," taken as a whole will compare lasombly aror din ane with the region
 nificence of semery and varicty of resumeres. much of it far exeneds any l"rtion of the country lyinge eat of the "Fathere of Waters;" while the
 and stremgly contrasted seemery ponhee an exuberace of spirits. a buxury of existence, an intense enjoment of amimal life nowhere else experienced ul"u the Continent.

We cojuy by emontrast. Hence our strife to ont - dress; out-build and ontimprove our neighbors. I hrown-stone house and costly apparel would
atherd that little satistaction th the prosesore in a city where atl the dwellingy

 and much of the Sist.

But, as with the cmigrant the uerfinl sumpenks the merdy bemutiful; and as fered. rament, health and exment ane the mijeets ongelat by thise
 in its practical amd ecommical arpects. laving a diectowion of the efferets of varied and contrasted semery. pure water and highy oxygenized air
 the presibilities of a future meconsom.
 nomenal. But two of these call be ewen partially comsidered within the limits of a lecture, viz. : trmperalure and the precipitation of mosisture in the form of min and sonw, with the ceanes of their mengal and irrequtar distibution wer the rewion mader comsideratim.

The prpular mind has aroppted a suphestion that degrees of latitude indieate the relative tempurature of lemalitis. Whan, therefere, it is stated that an mknown locality. like J'une sumul or british Cohmbial lion in the same latitude as labrathe on (!umber, the interence is at ene drawn that it freserses a bleak and inhuritatble climate. In peint of fact this conclusion is very fire from the truth. Wire the earth a pertect yhtere, without petuberance to interfere with the circulation of the air, or con-
 in correpumbing lationdes hase the same dimate; hut ther exist so
 or infernae is whally impurticable.

 pasing horogh all pmint, having an equal average cmumel temperature.

 is echimenal lines, which. on the emtern l"winn of' our 'matinent, finlow
welliness it cellont h．川！川
 her lake －1111：－： 11 －小rime mhly $\%$ in a \therefore in the i valliy alutiful； y these asilered cefliects i\％el air ＂pls，to
of phe－ hin the sture iu cresular

latitude

 is ritted lico in －Mriwn Ict this －phere， （1）（0）ll－ phaces xist so allallugy ts draw ch lino r：at ure． therel， ral and dillow Wrat after latinge the rexion wh the ereat laken．While in many phan on

 and in urder turader the statemont of fact ervelble，a shert innury into

 mases：
lat．＇The antion of the smos mys upon the surfate of the earth．
2d．＇The mesements of the carth in its anhe amd npon itw axis．
 the grition and eonflemation of eontinental masees．
 rotary motion of the eath to be su－probled and its cutire surface covered

 luenmes ervatly heated，while the regions moth and south are hes heated

 thata flow in from the worth and wotht theply the vacomm．Thas is extabli－hed a surfine entrent from the emoter to the warmer regions，cans－
 wind math of the aphator．Withont cmanter enments，this proces wond

 momatain rallow matil it reateles regions of greater cohl near the poles， Whare，condensing．it eradually reathe the surface of the carth and returus

 -pare in a gexm time than the smather-in nther whs in peripher

 fer al the rotathere mase at the cympern

 produre as sumbers wind. bint his hatter wind will met be filt in the

 probably seath the surface beluw lat. 15:30 in 70°, exerpt when pertime are foreed down by the convergene of the meridians of longitude; hat,

 winl．

 the ！hemanma thembent therema．

 imbleats：with the han diaturbane the dement the distrbution of sular

From the equatur to lat. 12° ar 15° north, being a part of the region of equatorial calme. there is but little wimb and that variable. From
 upper southerly current begins to reach the surface in winter amb. moving in a direction oplusite to the N. E. trakes. brakes them up and proluees
 this limit northward, the S. W. winter winds. which have mow reached the surface in full foree, sweep forward with :hanst minterrupted recularity wherever mobstructed ly surface devations. There S. W. winds, together with the neemic emrents, which will be treated of presently, fully account for the mildnes of the winter almer the l'acifice cuse from sim

 from four to filtern dars daring the entibe winter. Whin iee fin dometic uses is the exeeption rather then the rula. But lithe smew falls. mot
 winter is ?? 0^{2}.

 adrances; while in antume. they first arike the carth fint to the werth and
 lat. 32° again.
 as upper enrents, muthwarl to the fular cortex. where. musing mplly

[^0]hut it may be suggerstel in passing. that the northern explaratinns so vig. ormesty prosecnted in the present age, may eotiohish the existme of this atmospherie vortes north of lat. 70 , and an intimate commection between the atmospheric syrations there surfensed to exist mul the phemmena of the aurora borealis. It is a well-kimwn ficet that electrisal phenomena usually aceompany rotary movement- of the air.

During the heated term. from Jume to Oetaner, these N. W. winds prerail along the enast. Coming from high latitules and sweepinuser a cold ocean, they are eonl and dry, molifying the heats of summer and reducing the average temperature to about $6 t^{\circ}$. The night: are pacially moticeahle, being clear and deliemoly com, tha mabling nature to resture the energies exhansted during the day.

 of Norfolk. Via. the summers ot Nova sentia, and the same mean ammal temprature as Pekin. Landm. Now Low amb 'hicag. The beation of thase great eapital: on this isuthrmal wion mot the rewh of awident. nom
 in determining the belt of the ewthe sulfare luet alapod to his phasical

 tominal city on Puget sumb an low worthy of it. phace as a link in the celpital chain which eneireles the worth.

An application of the princepal calls whinh protues this montration of
 Going statemente more credible. From have domblese wherom that the contimanme of sontherly wimk for a few dats in winter always brings a

 farmer would forget to provide hay for his matte and th. "arth wombly bear

 mesements in the withern hemiphere-the "Ginif strean" amd the "Jipman Current." In the Ereat camben of the turtil zome the water is

couder regions-its phace lwing anplied byer ender and heavier water from the north. This. therether with the ereat amment of equatorial precipitation, is lecliesed to probluee the wean currents of our hemisphere, which
 of the carth. mutil they rearlh lat. two tore where he their motion being

 Stream is well mederamp. Lawiag the Caribean Fea and Gulf of Mexien,

 where it is deflected th the catwari mal mesing atheg the somthern de-

 the northern const of Ireland and western eoast of Scothand.

IIere we have a mignifieent river of wam water carrying the heat of the tropics to more frimid reginns. This heat is retained intact to a great degree notil the enrrent breaks upon the shares, where it is set free, and being earried inland ly the prevaline westerly winds renders all of Central and Northern Eurne habitable. Were the finlf Stream arrested in its flow, the Germa, would beeme a frozen ucean, the British islands would become another Labrador-would eease to grow wheat and barley, and the people would be obliged to emigrate or perish in a frozen wilderness.

While the Athatic has its Gulf stream, the Pactitic has one as much grander as the ocean throug whieh it flows. This is called the "Japma Current." It takes ite rise in the Indian vecm, moves morthward along the eastern shore of Asia, as the Athantie Gulf Strem hups the American shore, until it strikes upen the Aleutian Iflands and Alakkan P'eninsula. Here it is divided. Ghe portion moves northward through Behriug sea and straits, eastward throngh th: Aretie oecan, southward through Baflin's
 us cold northerly and ear"rly winds and mod fish. This accounts for the abundance of icebergs in the Athatic while none are ever seen in the Pacific. The Japan current, flawing from the Paeifie into the Aretic ocean and from thence int, the Atlantie. carries all icebergs with it.

The other and much larger pertion of the Japan earrent is bent southward by the elevated bed of Behring sea and the Alaskou peninsula. and flows along the western mast of America as an offshore current, until it strikes umen C'ape Mendecin, in California, where a portion turns agin northward as an immense in shere edy, while the rmatuder moves on
iter from precipitire, which e motion ion bring phatemus the " $l^{\prime \prime}$ ". the (iulf - Mexice, ming an undland, hern dehay to Winteru Exhy
heat of a great ce, and of Censted in islands barles, lerness. much - Japan along tericau insuli.
ung sea 3affin's giving for the a the Aretic ;uuth1. and till it again es on
southward, until, by its greater zpecifie gravity, it sinks beneath the surface, and is lost. These currents are evidenced by the experience of navigators. Vessels loaded with lumber on Puget suund, and bound for San Francisco and other parts of the world, sometimes encounter squalls aud have to be relieved of their deck-loads. If this oceur within fifty or sisty miles of shore, the lumber floats northwardly, towards. Alaska; if at a distance of one hundred and fifty m:les, it floats southwardly, towards Mendueino. This Japan current does not part with all its ealoric during its entire cirenit of many thousand miles. The volume of water in motion is so wide and deep, that, after haring parted with several degrees of its heat along its move northerly course, it searcely varies two degrees from Gneen Charlote's Islaud to San Francisco-a distance of more than a thousand miles. Nor does the summer elevate uor the winter lower its temperature to a greater extent. Observations show that 50° in winter and 520 in summer are about its average temperature.

Perhaps no other portion of the Pacific cuast is influenced to the same extent in its elimatic conditions by the Japan current as the districts bordering the waters of l'uget sound. This interior boty of tide-water, extending nearly two hundred miles inland having sisteen hundred miles of shore line, covering at least two thousand spare miles of surface, of Great depth and ramified by bays, channels and inlets in every direction, has an average tidal rise and fall of about twelve feet-the extremes being eight and twenty-four. Calculating the area of the sound, it will be fond that lifty thousand million cubic yards of water are poured into sud out of it by the tide every day. In mid summer, when the other conditions would produce a temperature of 90°, this vast body of water at 52^{2} is poured in daity, and, being 35° colder than the surrounding atmosphere, at onee absorbs a portion of the surplus heat, and thes aids the eool northwest breezes in keepiag the smmmer averaye down to $6 t^{\circ}$. In winter the same volmme of water at 50° parts with its surplus caloric whenever the atmopheric temperature is below that figure and thus aids the warm southerly winds in keeping the winter average up to 39°. Hence, it will be perecived that Puget sound acts as an inmense heater (1) moderate the rigors of winter and as a refrigerutor to cool the air duriner the heated term. This body of water is changed at each ebb and flow of the tide. The in-shore current, which sweeps past the mouth of the straits of Puea, carries the outlow off to the northward, and each thodtide brings into the sound a fresh supply of water of uniform temperature with the Japan eurrent.

Procediug inland from the coast regions of the lacitie, the elimate rapilly becomes moditiced. Many isolated loeaities have climates peculiar
to themselves, so that it is impossible to state many general facts of equal applieability to the whole country. As a rule it may be stated that the extremes of heat and cold increase inland, but in no regular ratio, nor upon given lines of latitude. Two great disturhing causes produce these irregularities-the lofty mountain chains which traverse the country, with their spurs and angles, and the differenee of altitude of the interior platcaus.

A hundred miles inland from the coast, and parallel with it, stands a lofty ehain of mountains, known as the Sierra Nevada in California, and as the Cascade range through Oregon, Washington and British Columbia. The southwest winds of winter, striking this range at an obtuse angle, are bent in their course and ultimately deflected to the west of uorth, giving them on land the direction of southeast winds. The upper stratum only of this current eseapes orer the summit of the range to modify the chimate of the interior. The Rocky mountain range-the vertebral column of the Continent-has a general course east of sonth and west of north. It is broken into more than a hundred ridees, which. with the subordinate ranges, lic in every possible position, and at all points of the compass. These give direction to the prevalingr winds and modify the local temperature.

The interior of the Contiuent, west of the longitude of Omaha, is a vast inclined plane, deelining to the north. The elevation at the northern end, in the latitude of the river Saskatchewan, is not much over 1,000 feet above the sea. Southward the surfice steadily rises-the Great Salt Lake region and 1,100 miles of the Fuion and Contral Pacific Railroad being nearly $\mathbf{5}, 000$ feet high-2,000 feet higher than the tops of the Allegheny Mountains, while the two summit levels on that route are over 7,000 and 8,000 feet respectively. Further south the table lands increase in height until, upon the plains of Mexico, the altitude is about 8,000 feet. It is weil known that temperature diminishes about three degrees for each 1,000 feet vertical. It will thus be perecived that from this cause alone, the region of the Saskatehewan, in British America. is $1 \because^{\circ}$ warmer than it would be had it the eleration of the I'nion Pacific Railmad anl $\mathbf{S}^{1}{ }^{\circ}$ warmer than if it had the altitude of the platems of Mexico. The Northern l'acife Railroad has an average elevation 3,010 feet less than the Thion lacific, while its summit levels re-pectively are 3.000 and 4.0100 feet lower. This difference of altitude alone eompensates for the difference of latitude.

But there are other canses which operate to render the winters in the rieinity and to the northward of the 4 ! th parallel lesu rigorous, in proportion to their latitude, than those in the distriet. further south, one of which may be stated here. The two principal chains of mountains before
ets of equal ed that the r ratio, nor oduce these untry, with he interior
it. stands a fornia, and Columbia. tuse angle, t of north, per stratum modify the e vertebral nd west of h. with the ints of the modify the maha. is a e northern ver 1,090 Great Salt : Railroad the Alle. ver 7,000 erease in 000 feet. : for each ase alone, er than it ${ }^{\circ}$ warmer a Pacific Pacific, r. 'This tude. sin the in pro, whe of is before
referred to attain their greatest elevation between the thirty-seeond and forty-fourth parallels of latitude. Further north they are less elerated and present many low and broad passes. In their loftier sections, these mountains operate to shut off the warm S. W. winter winds from the interior and to deflect them to the N . W. along the coast. As they sweep on to the northward, the monntain ridges beeoming lower and the gaps wider, they eseape over the summits and through the passes, and thus distribute a portion of their heat over the more northerly interior districts.

The constant flow to the eastrard, during the winter season, of a great "river" of warm air through the more northerly passes of the Rocky Momentains, was observed and disensed sereral years since. Licut. Mullam, of the United States Army, who spent some time in that country, detected its existence, noted its width in some phete and sought to aceount for it. IIe attributed the elevatcd temperature of this current to the number of marm springs near the sources of the Missour:, Yellowstone and Columbia rivers. This explanation of comree was wholly unsatisfactory. As well might we expect to find a similar curcent of warm air to the castward of the city of New lork as the result of the heat escaping from the chimney tops of that city. This atmospherie "Guld Stream" is evidently a portion of the great southwesterly eurrent which sweeps around the world in the temperate zone-as as surface wind wherever unabotructed. but priacipally as: mupper current wherever matructed by monitain chains and eontinental masses. These currents, detlected upward by momatain ranges, often return to the surface and produce very marked effeets. Ypon the great phateau of the Columbia, during periods of severe frost, the S. W. wind, which has escaped over the summit of the Caseade range, sometimes dips to the surface. At once the snow melts, the frost disappears and the temperature becomes mild and genial. As soon as the carrent aseends, the frost returns and winter resumes its sway. These occasional currents are known as "Chinook winds" and have beeu the subjeet of much fpeculation.

The warm sonthwesterly winter winds, escaping over the lower portions of the Rocky Monutains, "drawing" thromgh their northerly passes and fpreading, like a fan, over Sustern Montama, Dakota and the extensive regins of the Saskatelewan and Assinibnine. together with the lower devation of the more northerly distriets, give thom a milduess of climate both incomprehensible and incredible to those who have given the subject nu particular attention. But theory and olservations buth unite in attesting the fact that, from the Pacific eonst eastward to the Mississippi, the winters increase in severity upon any given parallel where disturbing causes, like mountain chains or general surfice elevation, do not inter-
vene. Thus St. Paul is the coldest point of equal elevation between the Mississippi and l'uret onnd on that parallel. Inteed, Deer Lodre pas, the hiphest summit wo the line of the Northern L'acific Railroad, affords no lower thermmetric range than St. l'aml.

To compare the unfamiliar with the familiar, and thas eonvey a better practical itea of the temperature of the northern bett across the Continent. it may be statel that the maritime districts of Wrashanton Territory and Oregno have the winters of Norfolk, Virginia, and the summers of Nova Sentia. Pastern Wahington, northeastern Oregon and northern Itaho about the summer and winter temperatures of central and nurthern P'enserlvania. Montana and western Dakota assimitate in atro-

 much like Xinnesta in temperature, although somewhat milder than the cantern portion of that state.

Having rapidl: waticed stme of the more prominent conditions of temperature in the region mater emsideration, with their causes, it remans

 mone interent th the w!o enotemplate settlement in a new conntry. lleat and mature sive fertility the siof. It matters little how sterile a district mat he in its early formation if these elements exist in due proportion. ultimate fertilisy must be the rewilt.

The intri-montane and western protions of whe Contincut derive their mosture from the vat iner tropica! reninn of the Pacific oecan. There, where the temprature is hioh and the water surfaee extensive, an inenceivable amount of maisure is taken up by sular evaporation. In the northern hemishere his is carrid northward by the upper somtherly current of air. bersins to descend with that current in abont lat. 30^{2}. and is then carried inhand by the sumbest winter winds, and deposited by condensation. It follow, that ane the comet the amone of ammal precipitation will depend largely upon the duration of the wimes. For the reasons alrendy given they erntinue lumest in the hish northern latitules, while in the vicinity of lat, :30 they last but a few weeks. Aeenertingly we find that ins sumat imd Lower California the perind of precipitation is very short, ath the min-fall does mot exoed four or five inehes. This steadily inereaves northward, beine ten inches at san biern. Califorma, twenty-two inches at sim Franciaen, suenty-cight inches at Asturia, Oregom, and nearly ninety inches at Sitka, in Ansa. The loeal sur-
n betwees eer Lootlye Railroid, ey a beter : the Conashington - and the regou and cherral and te inl aservallior of inter foctcare very than the
of of temit remains on of the a of 1 ma cometry. ow sterile st in due

ive their

There, a inern-
In the :ontherly 30°. and asiled by mal preFor the atinutes, midusly ipitiation 'This liforuia, Antiria, cal sur-
romblings of the last two phaces give them a rain-fall some twenty inches in excess of that exclusively due to the prevailing winds.

South of lat. 30°, where the N. E. trade, prevail and the atmospheric movements are from the land to the sea. districts are fuund which are almost rainless. It is doubtful whether artificial processes can ever materially ehange this eondition. Treephanting may increase precipitation where moisture beariug winds prevail, whieh only reguire to be parthally arrested and slighaty cooled in order to deposit their moisture. But in districts such as those muder consideration, the atmospheric currents being undercharged with moisture. all artificial aids to precipitation must prose futile, or at least but partially suecessful. The V'iceroys of Egypt, during the first half of the present century planted a large area with trees in the delta of the Nile and quadrupled the rain fall of that district. But the prevailing wind of Egypt is from the Dediterrancan sca, up the Nile, and the moisture intereepted is a part of that which was on its way to be precipitated on the mountains of Abyssimia.

Along the maritime districts, from San Franciseo to Sitka, but little snow falls, except upon the coast ramges of mometian, the southerly wiuds and ocean currents keeping the temperature too high to permit its formation.

In the spring, when the southwest winds are suceceded by breezes from the west and northwest, the weather clears up and the dry scason sets in and continues, interrupted by oceasional showers, until early autumn. These summer showers are more freguent to the northward, and tutally disappear south of lat. 42°. The dry season of the coast, and, inded, also of the interior, is the result of two causes acting together. It has been stated that the summer wind are from the worthwest. Coung from a small and cold ocean, where the process of exaporation is slow, these wimbls are coo? and compratively dry. As they muve suthwardly and inland, they receive a eonstint increase of temperature. It is a wellknown fact that the eapaceity of atmospherie air to retain moisture increates with elesation of temperature. White, therefore, these breczes may distill uecasional showers in more nurthern and eomler districts, as they move somh and inland they lecome gradually heated their eapacity for moisture increased, and, instead of parting with any, they actually Iap, up what little surface monture is foumd in their eurse.

A parallel intanee is found in the constant northerly wiad of the valhey of Expyt, which, coming laden with moisture from the Mediterranean, fails to deposit it in the valley of the Nile, owine to the constant increase of temperature sonthward to Abysimia, upon whose mountains it is eventually precipitated.

These N. W. winds deposit suffeient moisture along the maritime districts of Briti-h Columbin, W'ashington and Oregon to mature crops of all kinds-the late spring and early autumn showers rendering artificial irrigration unnecessary. In most parts of California, artificial proeesses have to be resorted to for the production of bulbons and tuberous roots, and indeed all chases of vegetation save the cereals, which mature before the dry season cuts them off.

East of the great Sierra Nevada a.d Caseale range, the N. W. winds of smmer are partially exelnded. and no moisture-bearing eurrents take their phace for a period of from five to nine monthes, ammally, according to the latitude. North of litt. $1 . i^{2}$, the spring showers mature most of the erops and artificial irrigation is resorted to only for the gardens. South of that line irrigation becomes necessary for the production of any sort of regctation, except along the low margin of streams which take their rise in the loftier mountain ranges and whose flow is made perennial by the melting snows.

It is prob able that trec-planting may increase the amount of summer precipitation along the northerly portion of this vast interior region as far south as lat. 45°, but further south the heat is so great and the atmospheric currents so dry that it is duabtful whether forests, unless upon a scale of great maguitude, would reduce the temperature and improve the other conditions sutficient to cause precipitation. Indeed, it is equally doubtful whether trec-culture itself ebuld be made suceessful exeept along the margins of the few feeble streams whose constantly diminishing waters are finally lost in the sands of the desert. To the eandid mind, therefore, it appears almost certain that southeatern Orequn, southern Idaho, all of Nevada and Utah and a large portion of Colurado and Wyoming must remain as now, hot, arid and treeless wastes, covered with sand or inerusted with saline and alkaline matters, with oceasional tracts of bunch grass and suge brush (artemisia), except in the isolated localities where irrigation is possible.

North of this region of desolation, thronsh suthern British America, Bakota, Montama, nurtheru ldaho, Wahingtun and northeastern Oreron, the solar heat is less intense, the earth contains less satine and alkaline matter, the surface is more diversified, forests frequently appear and experience hats already demonstrated the existence of a climate adnpted to all classes of vegetable life necessary fir hman subsistenee. Still from the causes stated, large dintricts of country far to the morth are dry and unsuitable for culcivation. These tracts however are clothed with bunch grass (the most nutritions of' all erasses) atid will afford "range" fir innumerable herds of cattle and flocky of sheep. It is a common practice
ritime disrops of :all ificial irricesses have roots, and before the IV. wiuds rents tike according most of gardeas. on of any hich take de peren-
f summer regiou as he atmosss upon a orove the s equally ept aloug ung waters herefore, ho, a:l of must reinerusted ch grass e irrigaalkaline and ex. apted to ill from dry and 1 bunch , fir inpractice
with teamsters, engaged in transporting military and other stores to the interior, to turn ont their cunciated and exhansted eattle in autumn to seek their wister food as best they may upon these natural pastures. They invariably find these eattle in sprine thoroughly recuperated, in good condition and well prepared for another season's labor-thus demonstrating the 'quality of the pasturage, and the additional important faet that the amount of snow deposited does ne: materially interfere with stock graziag. Concurring testimony may be found in the eomentess herds of buffalo that winter in these northern regions, even as high as lat. 54°.

In winter, the Sierra Nevada and Cascade range of mountains artests the S. W. winds and, like an iee piteher, condenses their moisture whieh falls upon its summits and slopes in the form of snow. The greatest depth of suow will be found where this atmospheric current is first and must completely arrested, which is ahong the loftier portions of the Sierra Nevada between lat. $: 34^{?}$ and 42°. Hence, the name of these mountains"Deep Snow Range." After the moisture-bearing winds have been bent from their eourse and defleeted to the N. W., they deposit their moisture along the maritime distriets principally in the form of rain. This will aecont for the diminution of snow northward. The upper stratum of the moist S. W. wind which escapes over the summit of the range is drier than the lower, and barely earries moisture suflicient to spread a thin coat of snow ofer the interior plateaus and a thicker coat upon the lofty peaks of the lioeky Monutain ranges.

A similar action of highlands upon moist atmospherie currents may be cibserved in Australia, where the mountain range which encireles the Continent at some distance from the coast, intercepts the wind, precipitates its moisture and makes an arid desert of the interior plateaus.

It is a reuarkable fact that the snow, which never falls to any great depth upon the intra montane districts of our Continent, impereeptibly but steadily disappears, even during periods of severest frost. With the thermometer far below the freezing point, so that no melting can take place, the breezes seen to lap up the snow antil the surface becomes entirely bare. This is probably attributable to the extremely dry atmosphere, which, in the coldent weather, with the aid of the solar rays, is constantly taking 1 p moisture from the surface.

Bast of the hocky monntains, and well to the northward, a new element enters into the climatie combination. The N. W. summer winds, whieh eross the Continent from the north Pacifie and Behring sea, meet with but little obstruction $:=1$ passing over the bow and comparatively level distriets of the north, until they reach the region of Saskatchewan, Assinibuine, eastern Dakuta and Minneseta. Here they encounter, face to face,
a portion of the N. E. trades from the Atlantic, which, as it enters the Caribbean sea, is deflected north by the lofty chain of the Aodes, passes into the Gulf' of Mexieo, and thence northward up the Mississiph salley. Wherever these opposing atmowheric currents meet-the one eond and dry, the other warm and moist-copinns precipitation must ensue. This meeting of the winds, and consequent summer rain-fall, take place in the region referred to and account fir the anomalous fact that, in those distriets, the summer preeipitation exceeds that of winter.*

It will be pereeived from the foreroing statements, that the belt of country from the Mississippi to the Pacifie ocean, haviug the best climate, and consequent greatest fertility, lies between the 4 th and 5 thl parallels of latitude. Without being too cold to develop the highest activities, it is more generously supplied with moisture than any portion of the country south of it. This is the great eereal-producing belt of the West, and experience has long since demonstrated that haman beings gather in greatest numbers where food is most abundant ind cheapest. The future must, therefore, witness the rapid settlement of the region in fuestion, and its early occupancy by many millions of our race.

[^1]

[^0]:

[^1]:
 Co., Chleag', a most lateresiong book, and one which will repay a careful perusat.

