The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manque
\square Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de ia marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages niont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire quiil lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Titie page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN AGRICULTURAL JOURNAL.

Vor. I.
MONTREAL, JUNE 1, 1844.

The present spring has been the most favourable for agricultural work and for vegetation that we recollect while we have been in Canada, Several days in May we had rain which rendered some land rather wet for sowing or planting, but the spring altogether was favourable. The leaves and blossoms on trees are, we believe, a fortnight in advance of any other season for several years past. The spring commenced carly, and afforded farmers an opportunity to execute their work in good time, and with verylittle interruption. This is a great advantage. We hope the season will continue farourable to the end, and as much wheat has been sown, that the faruer's hopes will be crowned with success. If a good crop of wheat is raised in Canada this year, it will give a new stimulous to agricultural imprevement, and afforl the farmer the means to intrnduce an inproved system. Low priced grain will never give encouragement to improved husbandry, because it will not remunerate the farmer. The produce of agriculture must pay so as to remunerate the practical farmer, or we need not expect to see a system of gool husbandry general throughout the country. Individuals who have means may for amusement expend money, by following the most approved system of husbandry, whether it will pay or not; but to insure a general system of good husbandry remuneration must be certain to the farmer. All, thercfore, who desire to see the agriculture of Canada inproving, and the occupiers of the soil in a flourishing condition, should be anxious that a fair remuncration should be secured to the farmers. There is not much probability that they will make large fortunes, however industrious they may be. They never can accumulate great wealth, by appropriating a large share of the labour of others for themselves, as other classes do. Indeed, theyreceive less remuneration for their labour and capital than would satisfy any other class of the community-and men who make large profits, by buying at a low price, and without giving any additional value to the cemmodities, selling them at a high price, are the first to resist the farmers in any application they might make to the Govermment and Legislature for a reasonable share of protection from foreign competition, that might give them a chance of fair remuneration for their labour and capital. A farm cannot be draiued and cultivated in the most judicious manuer, without considerable outhay, and there must be valuable returns to repay this outlay; the inferior graius will not do it. We must raise wheat, beef, pork, butter, hemp and flax, or we cannot pay for a perfect aystem of improved agriculture. We may have all these articles of produce in perfection if we cultivate properly for them, and there is no doubt we shall cultivate
well if remuneration will be secured to us. We have frequently urged the necessity of erecting mills for dressing hemp, and flax, but nothing has been done in that way We are convinced that until there is sufficient public spirit in the country to construct machinery for this purpose, this species of agricultural produce will not be cultivated. The only way to encourage it would be for the owners of machinery to purchase from the farmers the hemp and flax in a green state in the fields; or the farmers might take off the sced, and dry and stack the hemp and flax, and make it lighter and more easy to carry away, to be steeped by the manufacturer or mill-owner. There are many ways to secure the improvement and prosperity of agriculture, if the wealthy and educated would only be induced to take an active part in the matter. It is greatly to be regretted that if we do not see a certainty of obtaining direct profit, we carcfully abstain from taking any trouble about matters of general interest. In no country ou carth we believe has this feeling more influence than in Canada-and the consequences are manifest in the neglected state of her agriculture. We hope to see a change for the better very soon-and then the country will prove what it is capable of. We have often stated our opinion of the country to be most favourable-and this opinion remains unchanged. We are firmly persuaded that both climate and soil are as well adapted for apriculture as any we know, and any objections offered against cither is a flimsy escuse for bad farming. Capital, skill, and labour, might make our agriculture, with reasonable protection, equal to any on earth, notwithstanding the long winters and sbort summers of Canada.

BONES, GUANO, AND ASIIES.

Mr. Shancy, of Walford Manor, near Shrewsbury, enmmunicated to the Council the results obtained by Mr. T. C. Eytun, a nuenber of the Society, residing atDonerville, in the county of Salop, in his experiments on artificial manures, especially on bones dissolved in sulpharic acid, embodied in a lecture delivered by that gentleman to the members of the Wellington Fariner's Club, and at their request printed and published, at a small nominal price, by Simpkin, Marshall \& Co., London. Mr. Eyton, having detailed various experiments made by other parties, proceeds to those instituted hy himself, and which are of a very interusting character. "The manures and mixtures of manures I tried," says Mr. Eyton, "are calculated per nere. The turnips, which were Skirving's Swedes, wero mildewed, or, probably, the crops would have been larger. The largest crop is that raised upon guano and wood-ashes, at an expense of about two pounds four shillings per acra, or at three half-pence for cach bushel of turnips; the cheapest, that nised uyon bone-dust dissolved in sulphuric acil, at an expense of cight shillings and five-pence halfpenny per acre. Bolh guano and muriate of ammonia were tried by thenselves, and also mixed with gypsum, at the rate of 220 lh . to the ace ; where the pypsum was applied
with murinte of ammonia, the crop was worse than where the murinte of ammonia was applied alone; where gypsum Was applied with guano, the crop was oilly better by six ewt. in the acre than where none was applied, which may have been cansed by the vicinity of a druin. We may, therefore, I think, fairly conclude, that gypsum is no manure for turnips, whatever it may be for clover and other crops. I confess, I am much puzaled by this result, as from an analysis of the subsoil of the field, by the Mesirs. Mlunt, ot shrewsbury, it appears that it contains merely a crace of sulphate of lime, or gypsum; from whi $\cdot \mathrm{h}$ I should, until these experiments were tried, have supposed that gypsum would have had a powerful effect. Muriate of ammonia does not appear to answer well in the quantity used, and if larger quantities were applied it would be tou expensive for the farmer.

"In the above calculation, fractional parts are not ineluded." The following is an amblysis of the subsoil. I was told by a former tenant of the field that it would not grow turnips; it was, however, drained shortly before the turnips were sown.
"One hundred parts of the soil were found to contain-
Water... 11 parts.

100
The proportion of Silica is that yielded by the scil after the largest sumes or pebbles had been removed from it. The seed was sown on the 17 th of May, 1843, and the turnips pulled and weighed on the 22nd of November. The pla nts all came up together; nor was there any perceptible difierence in their appearance on the 27 th of May. On the l-4th of June, No. II. appeared to take the lead ; I., VII., VIII., looking the worst, and being more backward than the others; on the eoth of June they were horse and hand-hoed, Nos. IX., X゙., VIII., IV., F., were equal in appearance to No. II; on the 21st of July No. V. looked best, and No. I worst of all." Mir. Slaney then proceeded to call the attention of the Council to the comparativecost of the different manares tried ley Mr. Dytom, and statedin the table just read to them ; from which it appeared that the bones and ulpharic acid cost only one farthing per hushel on the turnips grown, whilst the other manurescost from three to ten.times as much. The soil on which they were raised was a tolerably light loam, and, as Mr. Eyton
had stated, had been recently drained. The bones used were ground into powder, and were the fino siftings from collections of bones. This bone powder being put intoan emrthenwaro vessel, a small quantity of water was first poured over it, and the sulphuric acid then added: when the whole mixture was stirred with a stick until the bonepowder was entirely dissolved, and the solution being diluted with more water was rendy for use. It was applied to the land as liquid manure, cither by means of a common watering-pan, or the distributing-trough of a liquid manure cart, care being taken that the liquid should fall on the rows of turnips just sown. This process, Mr. Slaney understood, was ropeated after the plants came up ; and in submitting this brief statement of Mr. Eyton's experiments to the Council, he trusted that the interesting results obtained might stimulate other Members of the Suciety to extend the inquiry to other artificial manures with a view to the determination of their economical application and practical value. Mr. Daveuport, of Capesthorne, near Congleton, Cheshire, fully corroborated the statement made by Mr. Slaney, in reference to the mode in which the mixture of sulphuric acid and bone-dust should be conducted; and us some danger to the inexperienced operator was to be apprehended from a different mode of proceeding, it was desirable that great eare should be taken not only to effect the solution of the bones, but also to add the sulphuric acid in so cautious a manner as to prevent its accidental ejectment from the vessel in conseguence of the violence of chemical action. With regard to the abstract value of sulphuric acid and bones as a manure, he adduced the opinion of Mr. Burness, of Manchester, a pupil of Professor Liebig, and who had been delivering a lecture or two in Cheshire on agricultural chemistry, as unfsvourable to its exclusive use; for although it was nodoubt a powerfil and excellent restorer of land, it could not be considered as a permanent and efficient manure for rotation of crops, unless combined with other substances. Mr. Davenport preferred bone mamure in a dry, concrete form. to its being in the state of liguid sohation; and had found a mixture of half a ton of bone powder and two hundred weight of guano answer extremely well. The African guano just imported was offered at 31. per ton less in price than the Peruvian, but he understood that it contained a correspondingly greater amount of water in its composition. Mr. Townshend Mainwaring, M. P., of Marehiviel Hall, near Wrexhrm, Denbigshire, stated, that with him the application of the sulphuric acid and bones had been attended with decided injury rather than advantage to his crops : a result, he had since learned, occasioned probably by the bones employed being left in fragments of too large a sizc, and consequently not in a state to be at once subject to the chemical action of tho sulphuric acid as their. solvent; his land having thus not only lost the adrantageof the nutriment containedin the bones, but received on the contrary the injury of a strong, corrosive, and unneutralizod acid. Mr. Juhn Raymond Barker, of Fairford Park. Gluucestershire, communicated the results of two experiments he tried last year on the effects of ashes, both singly and mixed with guano, on the growth of Swedish turnips. The tirst experiment was made by applying a mixture of 40 bushels of coal ashes and 20 bushels of wood ashes, per acre, to a bad piece of heavy land, sown with Skirving's purple-top Swedes drilled. in rows 18 inches apart. The tumips on being cleared of their iops and tails were. weighed, and found to give an average of 39 tons 15 cwt. to the acre. The otherexperiment was made in a field of good jight land, manured with $2 \overline{5}$ bushels of coal-ashes and one cwt. of guano per acre, and sown with Skirring's purple-top, in rows 27 inches apart. In this experiment the turnips were much larger than in the former, and Mr. Barker expressed his regret that the result had not been weighed, as the crop was, without exception, the finest he had ever witnessed, the turnips being of excellent _nuality and of immense size.
"Sam," said Ω lady to a milk boy, "I guess from the looks of your milk, that your mothor put dirty water in it." "No she did n't nuther-I seed her draw it clean out of the well, 'fore she put it in."

SAIT AS A MANURE.

ro THE EDITOR Ob THE LIVERPOOL MAIT.

Shr,-I beg to call the attention of your agricultural readers, who are in the habit of using gumo and artificial matures, to the fact that most of the carbomate of ammonia contained in them, or generated during their decomposition in the soil, is quielily evaporated befure the plants derive any venefit from it. At least 20 or 30 per cent. of animal manures may bo saved by the use of salt, which will prevent the ammonia escaping into the atmosphere, and two substances highly necesoary to regetation will be formed. The merits of salt as ata arent in agricultural operations seon to have been nearly entirels, overlooked by our experimeutal farmers ; but I am satistied, from extensive experience of my on n, that when it is properly applied it will be found a most valuable addition to the various natural and artificial manures now oftered to the public.

I m, \&ic.,
A. Famber.
finthact from a fardmer's diahy.
"During the process of fermentation which takes place when large quantities of stable and farm-yard manure are theown together, a considerable portion of the most valuable part is lost in the slape of carbonate of ammonia, which flies off. 'To prevent this great waste common salt may be used. It is a principle in chemistry that substancescombine more freely at the moment of their generation or disengagement than at any other time. The chloride of sodium or comanou salt immediately unites with the carbonate of ammonia as it is formed, and a donble decomposition takes place, producing muriate of ammonia and carbonate of solia.
" A recent discovery in chemistry has elicited this fact, and goes far to prove the utility of salt as applicable to manure. That the ancients were acquainted with the several propertics of salt and its uses, in suffeientiy shown! by the following passage from Scripture :--Salt is good; ; but if the salt have lost its savour, wherewith shall it be seasoned? It is neither good for the land nor yet for the dunghill : men cast it out.'
"To render this quotation perfectly intelligible, it is necessary to observe that in parts of Syria a speeries of rocksalt exists, which, if exposed for any length oi time to the atmosphere, loses its saline properties, but retains its untward appearance. 'It has lost its savour ;' 'men cast it out;' 'it is neither good for the land nor yet fur the dunghill.' Here are two distinet uses, besides domestic purposes, to which salt was applied, and in both cases it was good. Upon the land it produces various effects aceording to the quantity used, and most agriculturists are acquainted with its nature; but the great source of its atility is upon the dunghill. There, in nature's laboratory, a chemical change takes place, and carbenate of suda and muriate of ammonia are formed.
"Sir IV. Davy, in his ' Agriculturel Chemistry,' remarks that farm-yard dung, in its decomposition, luses from half totwo-thirds its weight ; besides a saving of this immense loss, all noxious weeds and seeds are destroyed by the salt, as also the larve of insects, and the insects themselves, which consume great portions of the dung. To all farmers who are desirous of increasing the value of their farm-yard manure, I would strongly recommend the use of salt on the dunghill. It may be used in a liquid state, sprinkled amongst the manure at the time of throwing it into a heap, or spread afterwards in Ω dry state as a co. vering to the whole."

GEASS MKLKK-PANS.

Captain Strnley Carr, of Tuschenbeck, near Lubeck, transmitted to the Society, through Sir John W. Lubboek, 3 art., and at the request of MIr. Handley, a specimen of the glass milk-pans employed so successtilly in his Germar dairy, and referred to in his paper on the lural Ecnnomy of Schleswig, Holstein, and Lauenburg, in the first volume of the Society's Journal (page 380). "The milk," says Captain Carr, "when brought to the dairy,
the vessels, whether of wood, carthenware, copper tinned, zinc, cast-iron (lined with o china-like composition), or glass, placed in rows on the floor. All these difterent kinds of utensils have been tried with various suceess, in the hope of discovering how, in hot weather, more especially when Ω thunder storm is gathering, the mike can be gmarded agranst at to early acidity ; for, as it is a li:ed and ina ariable rule that the crean must be remosed from the mili befure the hatter wets at all sour, and an equally atabli, hed late that all the only patideses c:annot the obtained in a shoter perived than 30 hours, vesech in which, during sultry, and especially damp weather, the milk could be kept ho due time, are a geeat Jesideratum. As yet, howes er, there reigns mach diversity of opinion on the subjeet, and shalluw wooden vessels, as nearly as posible cyually vide at top and bottom, contaimang, when full, about eight quarts, but in which, cturing summer, sedom more than six quarts are poured, are in mose general use. They have, however, some disadvantages, of which the chief is the great difficulty and the consepuent labour and cose attention resuisite to remove all acidity (which in ome states of the atmosphere, is almost unaroidable), and which, penetrating the pores of the wood, sometimes resists all the patienc scrubbing; first, with hot water and small birch serabblers, and secoudly, with boiliner water and a hard round brush made of piss' bristhes (with which every hair's breadh is carefully polished over,) so that the despairing dairymaid is compelled to resurt to washing in a ley of wood-ashes, or boiling, or even scovching over lighted chips, followed by comutless rinsings in pure spring water. To dimmish, in some measure, this labour, the plan of painting the milk pails and dishes with a preparation of emmabar, finseed-(il), and litharge has been adopted by the milk venders in some conatry dairies : not only, however, is the expense comsiderable, as the ressels mist be finished off with peculiar cure, and require to get three conts of the composition at first, and one yearly afterwards, but the mills, for some day's nfter they are brought into use, has a perceptible taste of paint. The timed copper milk pans are very costly, and must be carefully watched lest theoshould require re-timing. The eine are, as yet, little known, and the assertion of their effect in better severing the ervan from the milk not sufficiently proved. The cast-iron lined with enamel, though assuredly durable and very cleaz, seem tow expensive ; and the glass have many opponents on acculant of ther brittleness, and the vague notions respecting mhass and electricity inducing the idea that if the electrie fluid get into the millk it camot get ontaram: whereas, as it is ascertaned that it ahways atrachesitself to a comductor, and, in the absence of anything more attractiv, rans along the surface, it is more likely that the milk shouht be protected in glass, wi.ich is a non-condintor, than in any other substance. In my dairy, which eontain. upwards of 180 cons, the ghass vessels have been used for more than four years; and I grive them a decidel preference over all others. Their form is grood, being sixteen inches broad at the top, and twelve at ine botion; the giass is dark buttle-green, tramsparent, and perfectly smooth, about one-eighth of an inch thick, and proviled with a rounded rim at the upper edge, which makes it casy to retain a safe hold of them, even full. They contain eight guarts, but never receive more than six. They cost sd. a piece, and their durability may be estiunated by the fact, that to encomage carefulness, each dairymaid is ahowed one dollar per amum extra, as pen-momey, beine bound at the same tine to pay 10d. for each one she breaks: yet hitherto, no girl has broken to the extent of her dollar: It is self-evident that acidity. cannot be communicated to glass, and the ease and rapidity with which they are clean-id. requiring merely to be first washed with lukewarm water. then rinsed in cold water and placed in a rack to iny, eifect such a saving in fuel and habour (diminishiner the number of our dairymaids by at least two), that the less guantity of butter obtained. supposing (which Iby no moans concede) that the milk, during a fow weoks in ummer, does sour sooner, and consequent throws up less cream in glass than in wood, is more than cumpensated by the lessenedexpense of the establishment, noi to mestion the great adrantage of attaining the
indispensable cleanliness and purity of the vessels with more cortainty, because at a less expenditure of time and trouble. Although it is an ascertained and undeniable fact that the quality of the butter depends much upon the nature of the pasture andlocality of the dairy, the universally provniling cleandiness of tho wholo management, and very essentially on the purity of the water employed, still ascribe much of the reputation which our butter has of late years enjoyed (and which is verified by our obtaining at all seasons one panny per pound above market-price in our neighbourhood) to the beneficial introduction of glass milk-disines." $-\Lambda$ t the suggestion of Mr. Hayter, M. P., it has been ascertained from Mr. Apsley lelatt, of the Falcon Glass Works, Blackfriars, that in consequence of heavy daty and restrictions of the Excise on mamafactured glass articles in this country, glass milk-pans of a size and shape similar to those of Captain Carr, but of white flint glass and stronger mould, could not be made for sale in England for less than $\overline{\mathrm{s}} .6 \mathrm{6d}$. ench; but should that price, under the rostrictive circumstances of the case, obtain purchasers, there would be no difficulty in manufacturing a superior and serviceable article of the kind to any extent that might be required. The milk-pan presented by Captain Carr to the Society is of the common dark green bottle-glass, and weighs 6 ? l lbs. It is round in shape, and nearly 4 inches deep, measuring 17 inches across the outside of the top, and 11 inches across that of the bottom.

CCLTIVATION OF THE POTATO.

To tike Editor of the Marh-Lane Express.

Sir,--Various have been the conjectures respecting the failure in the potato crups so prevalent within the last 12 or 15 years; and as the potato is the most valuable of all the vegetable tribe, producing in their cultivation an abundance of labor, and is also a favorite verctable with the prince and the peasant, not only with the latter as a substitute for bread, but also at the table of the wealthy, they are used to a considecable exient. Viewing then collectively under such favourable advantages, may we not conclude that a failure to any extent might justly be considrred a national loss in tood and labour ? With such impressions, and with a sincere desire to impart to others similar bencfits to those I have received, I am desirous to offer a fewpractical observations. Having been a potato grower upwards of 30 years, although seldom planting more than 50 acres in a season, still I have paid some attention to their cultivation.

Respecting the failure of the crops, I consider it may arise from varions causes. A serious injury, no doubt, is often produced by the potatoes heating in the hills when first put together, and also in allowing them to vegetate in the spring before they are removed, by which their germinative qualities become so greatly weakened; although the set makes an efinert, it is often seen that the plant has not sufficient power to throw up a shoot through the surfacehence we perceive them producing small battons, or, what has been termed, Bobbin Joans. A similar effect is often produced by the potatios heating in consqquence of being a long time retained in a vessel by contrary winds, \&ec.

A discase called the dry rot hus, within a perion of 15 years, proved the most fatal ; frequently half a ship's cargo damaged. Potatoes planted soinfected mustalso prove a failurc.
Experience has nften proved that the plants are frequently seriuusly injured by the land being in too wet a state, the most effectual reinedy on such land would be a thorough drainage.

Although, singular as it may appear, I am of opinion that there are more failures in the potato crop in e spason, such as the present, whein the weather is both hot and droughty, than even in $\%$ wet season, and that such failures ariso from the dry state of the land, combined with the effect the atmospheric infuence has on the plant, impading its germinative powers, by which the set becomes in a stagnant state, vegetation ccasing, consequently it is destroyed by centipedes and various insects, after throwing out small puny shoots, few of them rising through the surface,

Before I state the system I have found so bereficial in seasons such as the present, I will just hint for the benefit of the young practitioner that it is advisable in droughty seasons to keep the land well harrowed and rolled in order to retain the moisture, and to put on the manure also in a moist state, ploughing it in as quick as possible, and, as potatoes are an exhausting crop, not to spare the manure, that the next crop may mot suffer.
There are so many systems of planting potatoes; most persons consider their own the best; my plan is to draw the drills 23 inches apurt, lay in the manure well washed, and the sets on it, ploughing them in.
We lastly come to the system of preparing the sets, which I consider of the utmost importance in seasons when the land is in a dry'state; it has been my invariable practice for the last eight years. Mr. Cowan, to whom I am indebted for the discovery, found the following the only elfectual renedy, after trying various experiments:-Take fresir slacked lime, into wheh dip the cut part whilst moist, which ahsorbs the watery part on the outside, forming a crust. I have no doubt that such acts as a shield against the atmospheric influence hence penetrating the cut part, and is also a substitute for the rind; hence it is that many prefer planting whole potatoes, to which I have two objections-first, that it frequently occurs that in consequence of such a number of eyes, small tubers are produced, and in a season when potatoes are at a high price it is more expensive; late years they hare not been found a very profitable crop.
I'o return to the appication of the lime: I have adopted the system of setting a strong lad to about 7 vomen cutting, who spreads three bushels at a time on a foor, and with a fine sieve shakes some lime over them, giving one turn, which answers the purpose of dipping, and is more expeditious.
I must apologise for entering into such a lengthened statement-the importance of the subject must be my plea. As the season for planting is now advancing, I trust you will do me the favour to publish in your next journal, in order that your correspondents may have the upportunity of trying the experiment, which I offer them with the fullest confidence.

TIME VERSUS LIFE.

BY B. R. T. CRUCIFIX, M. D.

Sherwood, Gilbert, and Piper, Paternoster-row.

This work might not have been inappropriately named Prudence versus Time, as showing how much the ravages of time are accelerated or retarded by a, prudent course of living. The following extracts will exhibit the character of the work more strikingly than we can describe it ; -
"After much consideration it is here endeavoured to place the subject in question in a form, tangible alike to the profession and the public. The plan and scope of the argument will develop themselves more clearly as the particulars are opened; at present it may be sufficient to premise that the following pages may be considered as an attenipt to trace the causes which accelerate the destructive influence of time on the human species, and to point out the measures (medicinal, dietetic, and.moral) by which that influence can be so far modified, that, in many cases, life may he preserved to the ordinarg period, or even, in some instan ces, extended beyond it."
"What liquid diet is nost favourable to lungevity? This question can no more be replied to from appropriate: and authentic records of experience than in the.case with respect to solid food. Yet, if we take that which appears a fiur rule, viz. that whatever has a manifest tendency to produce disease tends to shorten life most rapidly, we shall estublish very readily what liquids favour the operation of time in the greatest.degree, namely, all vinous, and spirituous drinks, however disguised, diluted, or modified ; and, on the other hand, we may infer with equal certainty, from the opposite series of facts, that water, of the ordinary purity $\$ 6$ found-in; the earth, is that which supports life the longest.
"But in what degree the artificial driulss that aretaken by all nations injure or nourish, is a problem mach more
difficult of solution, and yet well worthy of consideration; biecause intoxicating and inebriating potations of various kinds will continue to be taken, whether injurious or not, and partly because, such is the force of habit, that their omission by those persons habituated to their use, would be attended, in many instances, with evil consequences.
"Of strong potations, wine or beer, talen in moderation, appears to do less mischicf than any others. Indeed, in civilized life, where many circumstances tend to depress the nervous system and weaken its tone, wine is truly a medicine. It enables the stomach to digest, and the heart to circulate the blood through the fountains of life, when their unaided powers would be inadequate to the due performance of their necessary offices. When taken to that dogree which stimulates the system sensibly, it appears to do little mischief, if the habits of life are reynlar, and exercise is used ; but beyond this point, or in slothful habits, wine commences effects of a serious kind : the body is enlargen, the face bloated, and the brain oppressed. Wine is, on this account, injurious to the aged, since it appears proportionably to stimulate the vessels of the brain in a greater degree than even spirituous liquors.
"The drinking of raw spirits, as it is the lowest and most invincible custom in which men indulge, so it is that which most certainly shortens life : the wine-bibber and the grog-drinker are necasionally found advanced in life, the dram-krinker never. The first is often distinguished by ruddiness and fulness, which, though by no means indicative of the most lasting health, still points out its present existence ; and of the second class many consume several tumblers of spirits and water daily, without evineing material disorder. But the last is always pale and emaciated, with a nervous system so shattered that its ordinary functions can only be kept up by a constantrepetition of the same balcful stimulus."

Whoso readeth the above let him ponder it well.
Destrection of Insects.-Mr. Read, of Regent Circus, Piccadilly, had leave given him to submit to the inspection of the Council his garden syringes for throwing currents of aqueous vapour or narcotic fumes over thesurfaces of trees and plants infested with noxious insects, without the slightest injury to their bloom or foliage. By an ingenious arrangement of the nozzles of the syringes, the currents could be directed to any given point, without inconventence to the operator; and water being introduced into the syringe in its liquid state, passed out through the nozzle as vapour or mist, settling on the plants as the gentlest dew. Mr. Read had the thanks of the Council for the favour of this inspection.

On Feeding Form Horses.-In' Roxburgshire the following plan of keeping farm horses is generally adop-ted:-As soon as there is a sufficient bite (which is not usually the case till the middle or end of May), the horses are turned out to grass at nights, and receive their usual allowance of corn-three feeds, of algallon each, and perhaps a little hay during the day. This management continues till the clover is ready for cutting, a bunch of which is substituted for the mid-day feed of corn. When the turnips are all sown, and the hard work consequently over, most farmers reduce the allowance of oats, and give clover instead ; and in the carly part of harvest, when horsps are generally quito ialle; they often getno corn. When tl; lead-ing-in of thecrop commences they are again put up - corn; and as the clover-is then generally all consumed, they receive.tares instead as their mid-day meal; and when these are finished; corn:or hay. During all this time, the horses have:been constantly turned out at nights; but about the middle of October, or whenever the weather becomes chillyor unsettled, they are kept in the house, and they now receive full.feeding-i, e, three feeds of corn per diem, and hay ab libitum. This management is coninued throughout the winter.; but most farmers, during the short days, give.oat or wheat straw instead of hay for two or three months, generally those of November, December, aud January. Throughout the winter, too; most farmers give boiled or ste: sed barley at nights, twice or thrices week; of this, each horse gets about two gallons. To such horses as
will eat them, one or two Swedish turnips are also given once a day which tends greatly to keep them in condition. When Whitsundny again comes round, the horses are put out to grass, as I began by describing. Although there are many little differences in practice, yet the above is the general management of farm horses in this country, and, indeed, throughout all the sonthern counties of Scotland. The working hours are, in spring, summer, and autumn, from 6 o'clock till 11, and from 1 till 5. In the winter months they are from daylight zill dark, with an interval generally of an hour, or an hour and a half, as the days lengthen.

Who is the best customer ? or, "Look on this picture and on that :"-

Extraondisart Ewe.-Mr. George Underwood, of Shenley Dens Farm, has, for the last ten years, had in his possession an ewe which has, during that period, yerned the imnense number of forty-futur lambs ! The animal died this year. The lambs were yeaned as follows:1835, five lambs;'1836, five ditto; 1837, five ditto ; 1838, four ditto ; 1839, three ditto ; 1840, five ditto ; 1841, four ditto ; 1842, four ditto ; 1843, four ditto ; 1844, five ditio -total, forty-four.

Hidromiobia Cured by Vinegal.-At Udina, in Frinle, a poor man suffering under the agonising tortures of hydrophobia, was cured with draughts of vinegar given him by mistake, instead of another potion. A pliysician, at Padua, got intelligence of this event, and tried the same remedy upon a patient at the hospital, administering a pound of vinegar in the morming, another at noon, and a third at sun-set, and the man was speedily and perfectly cured.

Cure for Buras.-After opening the vesicles, if they are formed, the part is dipped in cold water, and then plunged, still wet, into flour, keeping it there for a minute or two; by this means a certain quantity adheres to the part, and prevents the access of the air. It is remarkable that the flour falls in seales from the surrounding parts the next day, whilst on the burn it remains adherent.Medical Times.

Effects of Drinage on Hemin Life.-The Ret. Proffessor Buckland, at a public meeting held in Oxford last week, said that in the parish of St. Margaret. Leicester, containing 22,000 inhabitants, it appeared that one portion of it was effectually drained, some parts but partially so, and others not at all. In the latter, the average duration of life is 13 years and a half, while in the same parish, where the drainare is only purtial, the average is $2 \mathcal{2}$ years and a half, thereby showing the frightful effects of a bad atmosphere.

In youth we are, anless some very peculiar circumstances control us, friendly, affable, and magnanimous, an indubitable evidence that the man-is good. The inner man, like the negro, is born white, and it is only in courge of life that it is coloured black.

Of all the qualities of the mind, prudence is the most useful.

Woman.-The morning star of our youth, the dayy star of our manhood, the erenity star of our ago:

Hhrmeonns and Short-Honns.- Λ gentleman in Tocicestershire, who keeps a large dairy of short-horn cows, wishing to make a comparison between them and the Herefords, bought acow at the Rev. J. I3. Suythie's sale in 1839. He soon fouid that the Hereford gave less milk than any of his short-horns; but as she was a fine looking cow, and grond breeder, he contimed? to use her in his dairy: In the ebirig of $184:$, hedetermined on making a more exact tom - ason as to the quanity of the milk given by the reperive breeds. For this purpose, a shoti-hom cow was selected of the same arge, and which calved within two day's of the same time as the Hereford. The milk of ench was carctully measured; the short-horn was found to give nine, and the Hereford six quarts at a menl. The milk was set up and chumed seprantely; that from the Mereford proiluced nine pomins, and the short-horn not quite five pounds of butter per week. They stood in the same stall, were fed on the same description of food, and had been kept alike previous to calving. It has also been proved that two quarts of mill from a Ilereford will produce as much as three from a short-horn cow. The gentleman is nuw crossing his short-horn cows with a Hereford bull, with a view of improring the quality of his mill.-Here: ford Tincs.

Wiltshime Cueese.-We are avare that many of our readers, following the amiable example of royalty, are becoming partial to a pecp into the dairy ; and by such the followilig extract will be read with interest:-"In making Wiltsh:re cheese, the milk is used as soon as it is brought from the cow; or if it is of too high a temperature, it is lowered by the addition of a little skimmed milk. The curd is, in the first place, broken with the hand to various degrees of fineness, according to the sorts of cheese intended to be made. For thin cheese, it is not reduced so fine as in the connty of Gloucester; for the thick kind, it is broken still finer ; and for loaves, it is almost erushed to atoms. In the first breaking of the curd, cave is taken to Iet the rhey run gradually off, lest it should carry with it what is' there called the 'fat of the cowl.' As the whey rises, it is poured off, and the curd pressed down; after this it is pared or cut down three or four times, in slices about an inch thick, in order that all the whey may be extracted. It is then scalded in the same manner as Gloncester cheese. In some dairies it is the practice, after the whey is separated, to rebreak the curd, and salt it in the liquar; but in others it is taken, while warm, out of the liquor, and salted in the vat. The thin sorts are disposed, with a small handful of salt, in two layers; thick cheeses, with two handsful of salt, two layers; and loaves, with the same quantity in three or four layers-ihe salt being sprend, aup uniformly rubbed amonry the curd. In general, Wiltsinire cheese is twice salted in the press, beneath which it continues according to its thickness; the thin sorts three or four 'meals;' the thicker ones four or five, and loaves five or six.-Complete Grazier.

Ciharthr of the Baff of England.-This is of vast consequence. Governuent evidently intend to bring forsard some measitre conected with the Charter of the Bank of Eugland. It is of inmence importance to the agricultural tistricts that they should be plentifully supplied with a sound surren y, and have banking establishments which will assist in those onthays of cupital which improved husbandry may require.
" Money," says Lord Bacon, " is like manure, good for nothing unless it loe sprcad." A natioual bank and one p:ontid hites would fecd the top of the soil and drain the fattom; £. s. d. would lo :anco than theorists ever dreamt about to raise corn and feed cathl.

Waste. Tand in Imeland.-The Ordnance Survey represersts the waste land in Treland to consist, at peesent, of six millions aud a guarter acres; of this two-thirds-rather zapre than four milhon acres-are seclaizoable.

A beautiful woman pleases the cye, a food woman satisfies the hearm-the one is a jewel, the other a iteasure.-

The following article we copy from the Mark-Lane Express, and though it may be more properly addressed to the agriculturists of England-the farmers of Canada may find it well deserving their attention. There cannot be any separate interest botween the manutacturing, mercantile, and agricultural classesthey must stand or fall-decline or prosper, together.

OHSERVATIONS ON AGRICULTURAL MMPROVEMENT.

Although we may justly pride ourselves on the circumstance of our manufactures being conveyed to every part of the globe, and of an amount of capital being invested in this department of industry in Great Britain of whieh no other nation can boast ; yet, if the number of hands employed, or amount of capital so invested, great as it confessedly is, be regarded as the criterion of value in either respect, we believe the manufactures of the country will fall very far short of its agriculture in importance. It is impolitic, however, to seck an undueexaltation of the one or deyradation of the other, as it is not by such means that the general improvement of the country can be promoted. The manufacturer should consider his fellowcountrymen, cugaged in agricultural pursuits, as his best customers ; and that, if through any class legislation, as it is now termed, the phrase being alike applicable to every party in the stateseeking privileges peculiar to themselves, either class is depressed with a view of securing some advantage to the other, any such advantage must be extremely temporary in its duration, and ultimately injurious to the entire community. Into the comparative merits or disadrantages of free trade principles, as they are termed, it is not our present purpose to enter ; but so long as a certain degree of protection, in the shape of duty on imported articles, is afforded to almost every branch of our manufactures, it seems nothing more than reasonable that the arriculturist should not be the only exception to the rule-that, in fact, onr farmers should not be exposed to universill competition whilst every other class of producers was protected by import duties on the articles of other countries.

The produce of the country is increased either by the reclamation of waste lands, by which a greater extent of surface is brought under cultivation, or by subjecting those lands already under tillage to an improved system of husbandry. In reference to the former of these objects much has already been said and written, and abstruse calculations entered into, showing the extent of reclaimable bog and monntain, as well as the returns which would be obtained by their being brought into cultivation, many of which, it is to be feared, are mere fanciful speculations, and calculated only to mislead. There is, no doubt, 2 considerable extent of surface now in an unproductive state, which, by a judicious course of operations, could be improved. and, at the same time, yield a suitable return for the outlay required for that purpose ; still, we believe, that both the extent of those lands as well as the profits to be dexived from them, have been greatly overrated, as some of our most sanguine improvers have found to their cost. The further improvement of the land already under cultivation is certainly, in the first place, the most important consideration ; and after the maximum of produce has been obtained from it, then the reclamation of waste land may legitimately be considered.

The produce of the cultivated lands of the country has been greatly increased since the beginning of the present century, by the improvements which have gradnally taken place; and the success attending the half measures already anopted should inspire the cultivator with additional conence to persevere in the same course. Draining, weeding, and manuring are the chief requisites in good hus: bandry, combined with a proper systern of caltivation; but there is a certain extent beyond which manuring cannot be safely carried, especially in the case of grain crops; an: orer supply of that, indispensable article being productive of an increased quantity of straw, with a corresponding: diminution of grain. From five to six qrs. of whent the aere, nocording to the nature of the soil, are nisually
regarded as the maximum produce, even with an unlimited supply of maure; and in most cases, the produce is rather under than over that anvoumt. Still, hovever, in gardens of cottareers, und other parees where the soil is riele without the immediate application of manures, the produce lins fur exceeded this estimation, indeed in some cases nlmost doubled it. The powers of manure being therefiure linited in pruducing this effect, it is a most inportant encuiry on the part of the cultivator to ascertain hov it is produced, and whether lant which has taken place in particular cases could not bo more generally obtained.
It is admitted on all hanis that the perfection of field culture is to assimilate it to that of the garden. The distinguishing characteristics of garden culture aro the deep, intimate, and contimued pulverization of the soil, of which the most perfect freedom from weeds is a natural consequence. Even between the growing crops the soil is seldom so long allowed to remain undeaned as to allow a single weed to appear; and this continued stirring of the soil is also found to contribute powerfully to the rrowth of the growing crops. The importance of extending this intimate degree of pulverization to the fields has been more and more felt as improvements in agricuture have advanced. Its importance was first neknowledred and acted on by the celebrated Jethro Tull, who maintained that pulverization only was necessary to maintain the soil in the most productive state, and that the application of manures was only beneficial from their serving to maintain a greater degree of porosity in the soil. It is well known that, by perseverance in this system. Tull raised excellent crops for many years; but, in overlooking the important consideration that the growth of any crop deprives the soil of a certain portion of its ingredients, he, of course, fell into error, and by not applying the substpances so abstracted ngain to the soil, it would soon be rendered unfit for cropping altogether. No doubt much of the value of manures, especially that of the farm yard, arises from their mechanical action upon the soil, in preserving it ina state fayourable for vegetable development, by the admission of air to the roots of the plants ; still the important consideration of restoring the matters to the soil exhunsted by cropping, must not be overlooked, as the neglect of this circumstance overthrew Tull's otherwise admirable theory.
Belore the soil can be brought into the state here described, unless in the most favoured situations, many obstucles are to be encountered. The most formidable of these is excess of moisture, which, when present, interfereswith the proper performance of every operation, rendering it more difificult of execution, and always done out of season. When to these inconveniences is added the inferior produce which is, under any circumstances, obtained from wet lands, the importance of removing escess of moisture by draingre will be acknowledged. . This is the great obstacle to tillage over a large proportion of some of the most, in other respects, fertile soils; and on its being thoroughly removed, pulverization afterwards becomes easy; but the details of these operations must be reserved for subsequent paners.
Before concluding these desultory hints on agrieultural improvement, another important consideration may be mentioned; namely, the necessity of not only alternating the plants grown, with a view to preserve the fertility of the soil, but also of growing those which will afford the most profitable return, so often as they can be introduced without unduly deteriozating the fercility of the sail or the value of the crops themselvas, as few of our cultivated plants will bear to be frequently repeated. The judicious cultivator wiil of course guardagainst the crror of attempting to cultivate two crops of the same kind in immediate succession. The greater the variation in the nature of the crops grown, indeed, the more valuable will each crop individually be. This, clovers, when grown too frequently on the same soil, fall off more and more every repetition; and the same remark is applicable, though perhaps in a Tesser degree, to our other cultivated crops. The introduction of plants into more general cultivation, which are now only partially grown in particular districts, is also often attended with the best results. The flax and hemp
plants, for example, have been grown from the earliest period in particuiar districts of the United Kingdom, often with the most ubumdant success, still, strange to saty, there are other districts in which they are entirely uknown. The flax, in particular, has lately attracted much attention, and is likely to gain ground ceen anong the English farmers. Though long cultivated in Ireland, it has been elearly demonstrated by the Belfust Fhax Improvemont Society, that the system of maumgement so long followed there was extremely defective, notwithstanding the existence of a public Board in that country more than n century, with an anmual gran:t of upwarts of $£ 20,000$ from tho public purse, and having for its object the encouragement of the linen manufactures. The revival of the cultivation of the flax crop in Ireland has also attracted some attention in this country, and having had mure than ordinary opportunities of forming an opinion as to the valuy of that crop, we have no hesitation in recommending it to the farmers of Great Britain, feeling assured that itsoccasional cultivation will arơrd much larger returus thanany other crop.
J. s.

March 17th, 1844.
Surenior Detcir Cuerse.--Take sour loppered mills. skim of the cream, then set it over the fire in an iron pot -brass is poisonous. Let it remain until the curd rises, which will be when the whey is scalding hot at the botoon of the pot ; there is a difference in the heat of the whey at top and bottom. Skim the curd into a basket which is best ; let it remain six or eight hours to drain, then break the curd, (on a table, as line as possible; after which put the curd lighlty in a stone jar, salting it to taste. Let it remnin in the jar, stirring it twice a day with a wooden or round stick, keep it loose and light until it becomes palatable to the taste of the maker. The checse acquires a disagreeable flavour if kept too long in the jar. Mrike the cheeses into small balls, and set them in a cellar. It should not be eaten the first few days, and is best flavoured firon oue week to two weeks old.

Pholific Emion of tie Leicestrin Bnied.-Mr. Thomas Bell, farmer, of Randle Holme Hall, has at thistime a ewe, seven years of age, that has had 19 lambs, which are all living and doing well. She brought then forth ns follows: - At one year old she had 2 lambs; at two, she had 2 ; at three, 3 ; at four, 3 ; at five, 4 ; at six, 2 ; at seven, 3 .

Guano and Turatrs.-On reeding in your last paper the statement made by John Heary Vivin, Esfi, MI. P., president of the Swansen Farmer's Club, respectiagt the failure of his turnip crop that had becn manured with guano, it remindell me of a similar occurrence, which happened to a friend of mine in this neighborhood, and of which I was an eye witness. Mearing su much about the wonderful effects of guano as a manure, induced him to make a trial of it for part of his turnip crop; and not knowing any thing of its natnre, or of the mode of using it, he thought the best plan he could adupt was to sow the guano and turnipseed together, as when bones are used. Ho accordingly did soo; and after waiting for some time, he wondered why no turnips made their appearance, as they did in other parts of the field. Oia cxaming tho drills, he was surprised' to find that some of the seeds had chipped, and made an effort to. grow, but lad afterwards shriveled up. Others again, looked as if they had been kiln-died, and lost their veyetntive power. As amater of conrse, the guano was blamed as the cause of the failure, and most heartily was it and every other new kind of manure aljused. Nuthing in his opinion would ever surpass good old farm-yard manure, and any body might have his' share of guano, for what he cared about it. Happeniig to ride past at the time my friend had made this unfortunate discovery, I reconmendeal him to have the part of tho the freld harrowed afresh and sown again, by way of es-periment-for Iought to observe, he had applied the guane at the rate of rather more than 3 cwt . per. acre. He adop-t ted my suggestion, and singular enough, in the crurse of some days, the turnips which had been sown broadeast, maile theirapparance fiom one end of the field to the other,
marking as distinctly as possible, the lines where the drill lad deposited the gunno in the first sowing. In due time, the intermediate spaces were horse-hoed, and the turniprows properly thinned. Nothing could exceed their luxuriance: Although sown three weeks later than the main crop, they soon overtook them, and became far superior in every respect- so much so, indeed as to be the subject of general remark in the parish. IEnce I think it may be sufely laid down as an axiom in the use of guano, and which has already been mentioned in the Gardener's Chronicle, that it should never be applied in contact with secds, as it kills the embryo in germination.-London Gardiner's Chronicle.

MONTREAL, JUNE 1, 1844.

We have constantly arvocated the necessity and expediency of reasonable protection for Canadian agriculture, situated as we are on the frontier of a foreign nation, whose agricultural productions have scarcely any limits, and who could supply without difficulty, Canada with food for all her pupulation, though they should not cultivate an acre of land. The question, however, is -should Canadians rather be encouraged to cultivate these necessaries for themselves, when they possess the most ample means to do so, and means that would be neglected and wasted if not applied to this purpose? There is another important question, how would the people provide the necessary cash to purchase foreign agricultural produce, if they produced nothing of their own? If the people of the United States were to remore all restrictions, allow a free interchange of commoditics between that country and this, the farmers wonld never offer any objections; but until they do this, Canadian farmers will not cease to demand reasonable protection for their intercsts, and they will expect these interests shall not be sacrificed to aggrandize a ferw individuals who might profit by a partial trade with foreigners, to the ruin of the vast mass of the Canadian population. Undoubtedly there is danger of smuggling, and a breach of the law, and by farmers along the fronticr, for whose benefit the law was passed; but this abuse might be prevented; and it ought to be checked, and the law enforced. The loss Canada has sustained in not having one American team pass through Chatham, this year, though 350 passed through the same place in 1843, is not so great as might be supposed. Not one of these teams come to Canada for any other purpose than to advance their own interests, or for their conyenicnce or pleasure. They most probabbly come to sell produce in Canada, and take back cash for it, as their tariff is so excessively high that it would not admit of their taking any of our produce or British manafacture, unless they took them as smugglers. If production was encouraged in Canada, we should be able to produce wore than double what we do at present, and that would more than equal all that has ever been imported fiom the United States in a year. If Canada is rexdered productive in corn and
cattle, as she is capable of, her people will not feel their neighbours' visits any loss should they discontinue to cross the lines at all points,as in Chatham this year. We are not opposed to commercial intercourse, established on a fair and equitable principle of reciprocity, but we are opposed to it on any other principle. Canadn will never become rich by any other productions than her own. No other country, however favourably disposed towards her, will give her any gift without paying for it, and she must have wherewith to pay or she cannot purchase. We cannot by any tariff that will be established here, raise agricultural produce to exorbitant prices, but a properly proportioned tariff will have the effect of giving some degree of steady demand and prices in our markets-what the farmers so much required hitherto. The protection farmers have by the present tariff is very trifing, but it is something, and will assure a more steady market for our cattle in particular, and this was very necessary. Cattle when prepared for market, if not sold at once, are a great loss to the owner; and under former circumstances, when cattle from a foreign country might be imported to any extent, it frequently happened that the market became so glutted it was impossible to sell at a fair value. This state of things was not favourable to any class of the community. A reasonable price and steady demand is whot will encourage the farmer, and will not injure any other interest. Extremely low prices for provisions are not by any means a proof of the prosperity of a country or of the comfort and happiness of the labouring class. Proxisions are dearer in England than in any other country on earth, and in no country do the employed labourcrs receive so high wages, and are better clothed, lodged, and fed. The following table will show the miserable wages paid in other countries to labourers, where provisions are very low:-

	Wages.	Hours.
England.	18. Od.	69
France..	5s. 8d.	72 to 84
Switzerland	4s. 5d.	78 to 84
Tyrol......	4s.	72 to 80
Saxony.	3s. 6d.	72
Prussia.	2s. 6 d.	94

From this it appears that in Prussia, where provisions are the cheapest, the hire of a man for a whole week, working fourteen hours in each day, is not more than the hire of one man for twelve hours in Canada, and often not even this, as men get over that wages here. In Prussia provisions are not low in proportion to wages.
In conclusion, we would observe, that all who are acquainted with this country admit that agriculture must form the basis of her wealth and prosperity, and it must be equally manifest that her agriculture is now in a most languishing state, requiring a better system of management to be introduced. The soil and clinaate are most favourable, and notwithstanding all these facts before us, objection is constantly made to granting the smallest degrec of protectionand encouragement
to agriculture, though it is the only means by which it can be rendered prosperous and improving. The farmers of Canads cannot compete with foreigners of the United States, who bring produce here toprocure cash, which they cannot sell it for it in their own country. Such a competition would be unequal, unjust anc ruinous to our agriculture, and must check all improvement.
It would, we conccive, be a very equitable law if a regulation could be established that would allow any Canadian merchant who woil.' export from Canada to the United States the produce of Cauada or of British manufactures and disfose of them there, ibist such merchant should be allowent to import from the \mathbb{C} nited States into this country an equal amount of value of the produce of the United Stytes whatever it might be. This would be some apprcach to trade on an equitable principle of reciprocity. We shall advert to this subject again.

We have seen a notice of a report respecting banking in Ireland by which it appears that the banks established in that country are totally inadequate to afford legitimate banking accommodation to the peopie. The whole amount of paid-up capital, or moncy engaged in banking purposes in Ireland is only about $£ 1$.18s. 6d. a head, on the entire population, while in Scotland the banking accommodation amounts toabout £16 per.head for the population of that country. This is a vast difference indeed, and the consequences are perfectly apparent in the prosperity of the latter country compared with Ireland. Perhaps the paid-up capital, or money engaged in banking in this province, would afford a greater amount a head on the entire population than in Ireland, but though it may exceed that of Ireland, we are convinced it is very inadequate for the purposes of the Canadian people to give them any favourable chance of advancing in prosperity as they might do had they the means to improve the advantages which this fine country offers them. England and Scotland has the largest amount of banking accommodation of actual paid-up capital of any country on earth, and the improvement and prosperity of both countries is proportionably greater than that of any other country. The great principle necessary for insuring the general prosperity of Canada is, command of capital and its skilful application and employment in permanent improvements that will reproduce the money employed. This, we take upon us to say, can in no way be so certainly effectual as in the judicious improvement of our lands and agriculture. The improvement of our cities and towns will not reproduce capital, as the cultivation of our lands would do. It may be a profitable investment of capital to those who expend it in building houses, but it is not so for the general interests of such a country as this. The profits that pay rent in the city must be derived from the productions of the country or chiefy so-and therefore capital that is employed.in augmenting the valu-
able productions of the country is much the most useful application of it for the general benefit of this community. This is a proposition that is not likely to be admitted by those who have power over the capitai that is in the country-but it is true nevertheless. In no way can capital be employed so beneficially as when it creates a new produce that was not previously in existence. It thus gives means of subsirtence to persons who are occupied in producing, and is advantageous in many ways. In Canada, above all countries, the capital that is applied to the employment of habour on land is the most certain to $: 2$ productive of general good, when we have a constant supply of labourers brought here annually who have no other means of support except the wages for their services-and connected as we are with England, that would require all the spare produce we could raise from our lands and labour, and pay us back our capital by o higher price for this produce than we could obtain for it in any other market on carth.

In Canada it is in the farmer's power to make as good butter as in any part of the world, and as gooi cheese as in any part of North America. We say this advisedly, and from experience. Of course our cattle anust be selected judiciously, our pastures good, our dairies of proper temperature, and furnistied with suitable utensils, that will be kept perfectly and constantly clean-and the management of the milk, the cheese, and butter making, must be corducted with skill by persons who have practical experience in such matters. All these circumstances are necessary to the making good butter aid cheese, and the most essential requisites are a good dairy and suitable utensils-without these we cannot have a good article. We belicre that in Canada, there are very few farmers that have good dairies and suitable utensils, and this is a chief cause that we have not a larger quantity of first rate butter and cheese. The climate is not so hot here as in the United States, where they make good cheese-but our climate is so hot as to require that our dainies should be so constructed that a regular temperature might be constantly kept up in them, and in the room where the cheese is dried and stored. In all dairies there should be two sets of dishes or pans for miik, in order that one set might be prepared by boiling or scalding while the ather would be filled with milk. This would give time for the vessels to cool and be aired before using.
We shall in our next number give a list of all the utensils that are generally to be seen in a well furnished English dairy. This furnishing would cost something in the commencement, but they would continue good for a long time, provided they were kept clean and as they should be. It is discreditable, and unprofitable to our farmers that we should not be able to export from this country as good cheese and butter as any exported from the United States. We can also have abundance of beef and pork to export if weemploy the means in our power. 'The country may be
rich in pruductions if we put it to the uses for which it is adapted. Agriculture is left to shifl for itself, and while it is so we need not expect it will be in the most improving and prosperous state of productivencss. It is matter of astonishment to us that the improvement of agriculture should not be more interesting to all who aught to understand its vast importance to this country. We have constantly urged the true friends of this province to intcrest themselies in promoting the improvement of agriculture amongst those who are most ignorant of the art. It is not the farmers of the old country who settle here that require much instruction, but the French Canadian farmers who had not the same opportunities to learn the art of agriculture that cmigrants from the British Isles have had. We again recommend this subject to the consideration of the friends of Canada.

Great efforts are being made in Britain to improve roots and grain by a choiec of the best descriptions of seeds of every species. This is a matter of great importance in agriculture and very much neglected in Canada. Grain and other speds ars frequently mixed with seeds of weeds, and also different varieties ofthe same species are mixed. We have seen as much as five or six rarieties of wheat growith mised in the same field. It must deteriorate the sample, and lessen the value of the crop to the farmer to have it thus mined. The "Murh Lane Express" of the Sth April has the following observations on the subject; they are very much to the purpose: :
Numerous recorded experiments prove, not only that some particular kinds of crops, both grain and roots, are better adapted to one description of soil than another, but also that a very great differince exists in the prolific qualaties of grain, and root sceds, in which there is not a sutiicient distinction between olhers of the sane kind as to warrant their beine styled different varieties. In fact, if guality and quantity be considered, there will be fumad to be a vast difference between the produce of two different sanples of seed or grain, in which there is no percencible difference to the eye. This admitted, and it will not.be denied by practical farmers, how vastly important, not only to the inexperienced, but to the experienced agricultarist, to be enabled to rely with confidence on the parties from whom he purchases his seeds! We beliere there is no departanent connected with agriculture in which so meth charlatanism is practised as in the puffing off and sale of every description; not even in horse-jackeying.

It is in vain to clear the land in preparing it for a crop, if we sow the eceds of weeds with the grain we wish to cuitivate. There is nothing more unprofitable, and discreditable to Candian agriculture, than the weeds that are allowed to prevail to so great an extent, in crops, in pastures, and in waste places. Weeds may, no doubt, be converted into manure, but so might other plants that would grow instead of weeds. If what the earth produces was returned to it again, after it has served for food to man and other animals, the lands might be kept in a state of constant fertility. The Creator has so ordered things as to have it in the power of man to kecp up the fertility of the land from its own productions, if judiciously managed. Land
will not of course bear to be robjed of all its produce year after year, without making adequate returns to it in the shape of manure, summer fallow, or rest. The carth is bountiful of her gifts, but she camot be always giving without receiving. We believe a farm under good management-a due proportion in tillage, meadow, pasture, and a proper rotation of crops established upon it, might be maintaincd in sufficient, fertility and be constantly improving, provided a duc proportion of stock was kept upon it. A great help of manure may be obtained by forming compost heaps for top.dressing grain and meadow. Top-drcsising grain, or harrowing in short manure with the seed, is a good plarr, but it is not always possible to cart manure upon the soil at the particular time it is required in spring. We believe a load of short manure, or compost, will produce more good applied as top-dressing, to a young crop of grain, or meadow than it would in any other way. It is put near the roots of the plants, and is washed into the surface of the soil, where it appears it is most suitably placed to supply nutriment to the plants. It is by practical experience that we can ascertain the best mode of applying manure. For the permanent improvement of land it is best to plough in manure, but for a crop of grain and the succeeding crop of hay, top-dressing will produce the greatest amount of effect.

The following letter is one of a series which is now being published in the Mark Lane Express, and we shail occusionally copy those which we conceive would be interesting to the Canadian farmer. Communications of this nature are very useful to the agriculturist, as they are sure to dispose them to think of matters comnected with their business, which they might othcrwise give very little attention to, though it might be of much consequence to them and have a great influence upon their success, and amount of their profits.

OUSERVATIONS ON TIIE MANAGEMENT AND AMPI.Ication of manures.

BY A PRACtICAL FARMER.

Whatever difference of opinion may exist among scientific men as to the exact proportion of each of the organic elements derived from the atmosphere, from the soil, and from water, the origin of the fixed or inorganic portion of plants does not admit of doubt. When, for instance, lime appears in combination with carbonic acid or sulphuric acid in the ash of plants, we are at no loss for its source. Plants are indebted to the soil for all the inorganic matters they contain; and an innportant point, on the pirt of the farmer, to be attended to, is to secure the presence of those ingredients which have already been seen to be essential in the vegetable cconomy. Attention to the absence or presence of the necessary ingredients for particular crops would prevent much disappointment and loss, and do away with the indiscriminatc application of substances as manures to our cultivated crops, without any consideration as to the precise substances really required to effect the object in view.
The inorganic matters of plants are composed chiefly of the following clementary substances in combination with acids:-Calcium, Magruesium, aluminum, sodiun, and polassium; which, coinbined with oxygen; form
lime，magnesia，alumina，soda，and potash，so well known in the arts；also chlorine，phosphorus，sulphur， silicon，and iron．Other elementary bodies occasion－ ally present themselves in swall quantity，but they do not appear to be essential constituents of plants． Nor are they，with perhaps the exception of sulphur， any where found in their elementary or uncombined state．The relative proportions in which the several compounds thus formed exist，is of more importance to be ascertained than that of the clements from which they are derived．＇The following table exhibits the proportion in which they are present in afew of the cul－ tivated crops， 1,000 parts of cach being taken．

$$		$\begin{gathered} \vec{~} \\ \underset{C}{+} \\ \hline \end{gathered}$
管		$\stackrel{\sim}{\sim}$
		－ $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 4\end{aligned}$
年	 	$\begin{aligned} & \text { ஜo } \\ & \text { ci } \\ & \infty \end{aligned}$
	ल్ 	$\frac{0}{0}$
	 	$\begin{aligned} & \text { 冗్․ } \\ & \end{aligned}$
		$$
		$\begin{gathered} \text { B } \\ \text { A } \\ \hline \end{gathered}$
㳫		
		$\begin{gathered} \underset{\sim}{\mathbf{O}} \\ \underset{\sim}{6} \\ \hline \end{gathered}$
䛼		$\stackrel{\infty}{7}$
		$\begin{aligned} & 0 \\ & \hline \end{aligned}$

The difference in constitution between the grain－ crops and root－crops is manifest by glancing over the foregoing table，and will in some degree account for the different effects produced by each of these classes of crops on the soil．Some idea of the constitution of plants has been also afforded，aud the inquiring farmer will not fail to see the necessity which exists to become likerrise acquainted with the composition of the soils on which they are to be produced．The ingredients
to be applied as manures then become apparent，and hence the foun＇ation of a rational and ceonomical sys－ tem of manuri．tg－rational，as supplying the particular matters required，and economical，inasmuch as those only are supplied．
The adiantages of such a system being generally acted upon must be evident to every thinking mind； and the rapid progress in the path of improvement in this department of agriculture which has lately taken place，encuurages the hope that the ads ent of such a system is more closely at hand than could have been anticipated some time aro．The physiology of vege－ tables is not now mere i：ttter of speculation，as in times past ；the componeri ingredients of the different classes of regetables with ．ee source fiem which each is derived have also been ascertained，at least so far as is necessary for practical purposes．＇The various kinds of manüres，too，which are applied for the purpose of increasing their growth have often formed the subject of analysis；but in regard to them the same degree of precision cannot beacyuired，the same substance being very different in quality，under different circumstan－ ces；and hence the inimpropriety of arriving at general conclusions with regird to the composition of manures from isolated cases of analysis．In the case of soils the variation in quality is still greater than in that of manures．In their analysis，morcover，the greatest accuracy is required，in order that any conclusions of practical value may be deduced from them．The quan－ tity of some of the inorganic ingredients of plants is so small，though their presence is not the less essen－ tial，that a due supply might be contained in the soil， and still not be found in any．appreciable quantity in a specimen submitted to investigation．While，there－ fore，chemical analysis is calculated to do so much for the farmer in this department，it must be recollected that before such analysis can be of any value，they must be strictly aceinate，otherwise the deductions from them will be calculated to mislead．It is，indeed， no difficult matter to perform an analysis，in the ordi－ nary acceptation of the term，which is morely directed to the discovery of the predominating ingredients；but it is frequently the absence or presence of those con－ tained in small quantity only which it is most impor－ tant to ascertain．The fertility of soils being depen－ dent on the facility with which they can supply certain constituents of plants，it is only the most refined ana－ lysis that，in many cases，is capable of determining whether they are present or not；much less of explain－ ing to what heir peculiar excellencies or defects may be owing，winht ought to be added to render them pro－ ductive，or why，in short，certain remarkable cffects are produced by the addition to them of organic or inor－ ganic matters．

This subject admits of illustration by a familiar es－ ample．Gypsum is well known to be essential for the production of red clover in íusuiance；but such a small quantity as 2 crit．to the acre is foumd to be amply sufficient for the purpose．Now supposing this quantity to be equally distriduted through every part of the soil to the depth of twelve inches，the pro－ portion found in a pound weight of soil would be about halfa grain；and in one hundred grains（a very common quantity of soil to submit to analysis）the quantity of gypsum present would not be more than one seven－ thousandth part of a grain－a proportion which only the most careful conducted analysis would be able to detect， and yet the detection of it would be of the utnost ins－ portance were it desired to know whether gypsum should be applied to that particular soil．While，there－ fore，chemistry is calculated to do much for agriculture， it is important that the farmer should knom in what way． it is likely to serve him．A very slight acquantance
with the first principles of that science will often enable him to obtain results of practical value; still it has been seen that such knowledge will not always avail him. The "chemistry for farmers," may emphatically be termed the chemistry of nature," a knowiedge of which may be acquired without much difficulty.

Before concluding these general remarks, and entering, on the consideration of the various manures whith are applicd to the soil, a few words of application will not be out of place. It has been seen that plants are in a great degrec dependant on water and the atmosphere for their support, and they should teach the farmer the necessity of securing a due supply of them to his crops. It is especially important that the individual plauts should stand at such a distance from each other as to admit the air freely to every part of the foliage. The soil too should be pulverized to as great a depth as possible, in order that the air may permeate it, and further to enable the fibres of the roots to extend themselves. The same arrangements secure a due supply of moisture, and also guard against its detention longer or in greater quantity than is required for the purpose, as minute pulverization is equally favourable to evaporation and absorption. The dependance of plants on the atmosphere for their support was well known upwards of a century ago to the celebrated Jethro Tull, the father of drill-husbandry; but that he did not entertain yery correct ideas on the subject is apparent from the fact of his coucciving that pulverization only was necessary in cultivation, to admit freely air and moisture. He persevercd in this practice for a length of time, and brought his system of drill-husbandry to great perfection; but, as in every case in which gencral conclusions are drawn from a limited observation of facts, Tull mas obliged to abandon his theory:* The husbandman at the present day; however, would do well to follow his example, in securing a due supply of air to his crops. On looking over the crops of the country, especially drill crons, which usually have a large system of leates they are generally found growing so close together, from a mistaken idea that an increased produce will, in this manner, be obtained, as to exclude the free admission of air from among them; and also effectually prevent the frec introduction of the implements of tillage, the action of which is essential to loosen the soil about their roots. Could farmers be indueed to pay so much attention to the subject as to compare the produce of equal portions of their crops, where a proper system of tillage and a due applicaion of manure had been given, the one standing, say in the case of turnips or potatoss, at intervals of ten or twelve iaches apart, and the other at the more common distance of six or seven inches, a marked change in the cultivation of their crops in this respect would soon. be apparent; while they are not warranted in going the whole length with rull, who considered the direct application of manures unnecessary, the preceding observations would tend to show that to secure a due supply of those elementary substances which form so large a portion of the vegetable structure, is no less important than the direct applica: tion of matters which are contaied in plants in so much smaller quantity.

Xiberty is not a paper that we see stuck up at the corner of a street. It is a living power which we feel within us and amond us, the protecting genius of the domestic hearth, the guarantee of social rights.-De la Mennais.

[^0]The following is a part of an article which appeared Satcly in the Mrorning Chronicle, in reference to the probable results to be expected from the completion of the improvements now being made on the line of the St. Lawrence, from Montreal upwards. That this grand water communication, when finished, will have employment to a great extent, there cannot exist a doubt, and if to the extent contemplated by the Morning Chronicle, it will yied an ample revenue for the expenditure. At all events, we would not be worthy of the country if the water communication now in progress was not completed. It will open upan immense extent of most fertile country to settlement and production, and it will encourage and extend an interchange of natire produce and British manufactures, that must be beneficial both to this country and to the British Isles. It must also bring a considerable portion of foreign commerce this way, as the cheapest and most easy to a sea-port, from the back States of the Union. Canada possesses within herself a boundless extent of fertile soil that would be able to produce a great amount of value for exportation. Easy means of communication to all parts of the country, by rivers, canals, rail-roads, and other roads, will greatly encourage a better system of agriculture, by diminishing the cost of transporting the produce to market, and affording the farmer what he may have to purchase at a cheaper rate :-
Mr. Ryan estimated the probable income of the canal at 394,937 dollars, and calculates the annual increase at 10 per cent. Messrs. Davis and Swift do not adopt his conclusions, but suppose the following estimate of the second jear after the completion of the canal not to be extravagant:-
items. TOLLs.
Lumber, in value 334,720 dollars, equal to dollars.
$33,472,000$.
33,472 00
Salt, 207,700 barrels............................ 37,386.00
Flour, 400,000 barrels........................... 60,000.00
Wheat, $2,237,000$ bushels..................... 100,650.00
Gugar, molasses, and tobacco, 8,625 bhds. $10,781 \cdot 25$
Merchandise, 38,298 tons...................... 76,57600
All other articles.................................. 45,000.00
$363,865 \cdot 25$
-Morning Chronicle.
There are ample means in the power of most farmers to increase vastly the quantity of madure, if they would only take advantage of the means at their disposal, and make composts, by mixing soils, ashes, \&c, which answer all the purposes of farm-yard manure in the production of crops, if judiciously applied. Of course the compost intended for one description of soil must be different from that which would be suitable for another. The sort fit to be applied to moss soil would not be the best for clay, or sand, but this the skilful farmer will understand. We give the following from "Dana's Prize Essay, on Manures," which we recommend to the attention of the farmers. No doubt the quantity of ashes mixed in the compost to be applica to ose acre rould, if, npplied alone
produce a great improvement in any soil, but mixed with any other substance, directed by Dr. Dana, it must be much better suited to produce improvesment. Moss soil made into compost will be suitable for all soils that are not moss, and sand or clay, will answer for compost intended for mass land :-
And so among your first attempts at inproving your worn-out lauds, always supposing you have not a barn-cellar, hogs, and swamp-muck, so aptly called by one of your own self-made practical men, the "farmiei's's locomotive," I presume you may like to know thic proportions in which you may mix swamp-muck and alkali. You can hardly go wrong here by using too much; the great danger is, you will use too little alkali. But calculating on the proportion of mould in fresh-dug swamp-muck, or peat, it may be stated as a rule, grounded on the quantity of quickening power in a cord or stable manure, that every cord of swampmuck requires eight bushels of common ashes, or thirty pounds of common potash, or twenty pounds of white or soda ash, to convert it into manure equal, cord for cord, to that from your stable. Dig up your peat in the fall, let it lay over winter to fall to powder, calculate your quantity when fresh dug, and allow nothing for shrinking in the spring; when your alkali is to be well mised in with the mould, and, after shovelling over for a few weeks, use it as you would stable manure.

These quantities of ashes and alkali are the lowest which may be advised. Three four times this amount may be used with advantage, but both the quantity of alkali, and the number of loads per acre, must and will be determined by each for himself. It is a question of ways and means, rather than of practice. But supposing the smallest quantity of ashes or of alkali to be used which ive have advised, then atleast five cords of the compost should be used per acre. This may be applied to any soil, light or heavy. But there is another form of this same swamp-muck and alkali, which should be used only on light, loamy, sandy soils, to produce its greatest bencfit, though even on beavy soils, if not very wet, it may be used with great advantage. This is a compost of one cord of spent ashes to three cords of swamp-muck. This is decidedly the best misture which has yet been tried. We have in this all that mixture of various salts and mould which plants want, and both by the action of the mould and by that of the air, the alkali of the spent ashes, which no leaching would extract, is soon let loose, and produces all the effects of so much clear potash or soda.
I have thus, reader, given you a ferw of the ways by which you may convert your peat bogs and swamps into manure, when you have neither cattle nor hogs. I have not thought it worth while to gointo this subject further, and give you directions for lime and salt, or other matters which might be used. Thave given you the most common, and those well known and at hand. All you want, then, to apply these priaciples of forming composts, is to give them that little attention which will enable you to understand them. And the rest must be left to your practical cormon sense, without some share of which, farming, like every thing else, would be ranity and vexation of spirit.
I would heretake my deare of you, and in the hope that we may again meet to have another talk. There are a great many other points relating to manure, which can be understood only after we have made ourselses somewhat acquainted with the chemistry of soil. Then, having explaincdthat, before the full action of manure can be anderstood, we must procced a step further, and consider what changee take place in growing crops,
and the effects of these growing crops upon soil and nanure. The quantity and kind of sults they extract, and how soil is exhausted. This wonld lead to the consideration of the quantity and kind of manure to beapplied to difierent soils, and the value of different manures. But there is one other very important thing belonging to our subject. Crops exhaust land butfatten nuimals. Now this last properly belongs to that part of our subject relating to the changes occurring in vegetables and their power of exhausting the soil; It will be scen, therefore, that the whole corers the ground called Agricultural Chemistry. This essay is only its first part. If it meets your acceptance, I trust it may encourage its author to draw upits second part on soils, and its third part on the effect of crops on soil, and their value as food for animals.

ON FERTILIZERS.

Br Cuthbert W. Joussos, Esq., F.R.S., Editor of the "Farmer's Almamac and Calendar," the "Farmer's Encyclopædia," \&c.
London: J. Ridgway, Piccadidly. 1844. Second Edition.
Our object in calling the attention of our-readers to this admirable volume, will be at once perceived by all who are interested in the cultivation of land, particnlarly by those who are aware that a manual such as this before us, which treats of each fertilizer separately , and in a truly comprehensive manner, was much wanted in the present day. We do not wish to depreciate any of the works on chemistry, as applied to agriculture, or as applied to the manures for the carth; many are deserving the highest praise for industrial research, and their developement of new powers for the improvement of regetation; but many-very manywere too complicated, and required a knowledge of chemistry to be as requisite to understand them as it requires a knowledge of good farming to produce rentpaying crops.
The application of science to the useful arts, in the great departments of chemistry, has been as close and untiring as its results have been extraordinary; but its terns have been a sealed book to the farmer for any useful purpose, unless he received the education of, or studied chemistry, and in the following passage which we quote from the first chapter (the "History of 3 Ianures,") our view will be bome out, as to those mysteries of chemistry which every one conceives he has discovered, but which, as yet, no person has been able satisfactorily to explain.
"These difficulties with regard to vegetable chemistry and the phenomena with which it abounds, are, in fact, not few in number: they meet us in every invesgation, from the period when a seed first begins to germinate, through its growth, its ripeniug, its decay; and, finally, when the putrefactive fermentation, by reducing the whole mass of vegetable matter to its constituent earths and gases, puts an end to every trace of vegictable substance, we are still obliged often to content ourselves with examining and noting the phenomena we cannot chenically explain. These mysteries were observed at the very dawn of modern chemistry: that the same mass of earth, the same water, the same atmosphere, could, at the same time, produce the flour of the wheat, the opium of the poppy, the oxalic seid of the sorrel, the vegetable poisons of the hemlock and the nightshade the sugar of the bect root, and the timber of the forest, none of which are contained in either the soil, the water, or the atmosphere, were matters of serious and undivided attention; and although the ablest chemical philosophers have investigated these regetable mysteries, the barrest they bsro
reaped, though highly important, has hardly been worthy of the labourcrs."
In the present work of Mr. Jolnnson, the farmer is brought at once to the consideration and applicability of the manures necessary for the land: whether it be to the peat and peaty land and the wide fens in Liucolnshire, or the weelld or oalk clay of Sussex, Surrey, and Kent, each manure is treated of distinctly, and its best uses defince. Organic, carthy, and saline manures are explained in seporate sections; the permanent advantages, experiments, and analysis of each, are plainly brought to the simplest comprehension, and the entire wound up with the adaptation of manures for different soils; forming one of the most complete and valuable publications that has issued from the press for many years. We will take opportunities from time to time, of giving extracts irom this important work. At present we will close with the following interesting particulars as regards irrigation and water meadows:-
" l is casy to see why it is that the impurities of river water are so nourishing to the meadow grasses.
For instance, if the water contains sulphate of lime (gypsum,), which it certainly does if the water is hard, it must, under ordinary circumstances, on this account alone, be highly fertilizing to the land it irrigates, since many of the best grasses contain this salt in very sensible proportions. Calculating that one part of sulphate of lime is contained in every two thousand parts of river water, and that every square yard of meadow absorbs only cight gallons of water (and this is a very moderate allowance, for many soils will absorb three or four times that quantity) then it will be found that by every flooding more than one hundred weight and a hal! of gypsum per acre is diffused through the soil by the water; a quantity equal to that geucrally employed by those who sprcad gypsum over their clover, lucern, and sainfoin, as manure, either in the state of powder or as it exists in ashes. And if we apply the same calculation to the organic substances, ever more or less contained ia flood waters, and allow only twenty parts of aninal and vegetable remains to be present in a thousand parts of river water, then we shall find, taking the same data, that every soaking with such water will add to the meadow nearly two tons per acre of animal and vegetable matters, which, allowing in the case of wa-ter-meadons, five floodings per annum, is cqual to a ycarly application of ten tons of organic matter."

We give the following extract from the Mark Lane Express, on the management and application of manures. We shall continue to copy from the same article occasionally as it is a subject of some importance:
The nbject in the application of manures being to increase the cultiated pruduce of the suil, it is impurtant, befure pruceeding further, toascertain how this is efficted. Plants, during their gruwhth, are dependaut bution the suil and the atmosphere for their support, each furnishing a certain portion of the necessary ingredients for the purpuse; and further, when subject to the test of analysis, plants are found to consist of a certain number of substances commnin to every vegetable production, and of certain others, some of which are peculiar to particular plants. Thus, the clementary or simple substances, oxygen, hydrogen, carbon, and nitrogen, are present in every case in different forms and various proportions, constituting the great bulle of the regetablestructure, so as to be denominated the bases of all organic matter.* In the prozess of combustion, these mat-

[^1]ters entirely disappear, although they form from 88 to 99 per cent. of the whole weight of plants, even after being dried. The quantity of nshes, or residuary matter after burning, which constituto the inorgumic portion of plants, is therefure seen to be exceedingly small; in fate, so inconsiderable as to give rise to the opinion formerly entertained by physiologists that this inergamic or fixed portion was merely adventitous, and of triffing moment, but subsequent ine estigations have shown that the presence of this portion is quite as essential to the healliy derelopment of the vegetable structure as those other maters which enter moro largely into its composition.
A striking circumstance connected nith this part of our investigation is that of the constancy of the precise proportion of the elenentary substances Lefure enumerated in the sume species of plants. This propurtion is invariably maintained, however distant the localities from which different plants of the sunne species may be obtained, provided they are healthy and fully developed. What is more remarkable still, these, with one exception, nupnly carbon, are lnown to us only in the form of gas, the first and last of which, oxygen and nitrogen united, form the air we breathe ; and the first and second, oxygen and hydrogen combined in certain proportions, form the waters, which constitute so large a portion of the glube. At the ordinary temperature of the atmosphere, when separate, they form invisible kinds of air, cach possessing very peculiar properties and distinguishing characteristics ; but, as we have seen, in combination with each other, they form a very large proportion of the vegetable forms which surround us, from the oak of the forest which has braved the blasts of centuries, to the sensitive plant which recoils even from the slightest touch. In consequence of these substances not being appreciable to our senses, withou the aid of scientific investigation, little is known practically of their properties and effects in a separate state. This remark, however, does not apply to carbon, which. being a solid substance, and easily obtained in a tolerably pure state, many of its most important properties are faniliar to every one. The diamond is well known to be the purest specimen of carbon, but it may be obtained in a tolerably pure state, by burning wood in a close vessel, or in a lreap, covered so as to exclude the air. When the carbon or charcoal thus obtainell is again burned in the open air, it disappears, with the exception of the fixed portion of the vegetable structure, to whichallusion has been already made. It.then in combination with the oxgen of the atmosphere, assumes the gaseous form and bec:omes an acid, being hence known by the name, carbonic acid gas.
Such then, are the substances forming the organic portions of the apparently simple but really conplicated structure of vegetahles. It is not necessary that we should enter more at length into their preperties in this place, as we shall come to treat this subject more in detail in another series of papers on" "the Application of Chemistry to Agriculture," to appear in future numbers of the Express. An important circumstance conneted with this subject under consideration, mast not, however, now be overlooked; namely, that the elementary st.bstances just enumerated surm aloo the banis of animat as well as segetable matters, diffuring merely in the prupurtions in which they exist; nitrugen being much mure abundant in the amimal than in the vegetable structure. IIence the adaptation of each of these as fuod fur the othicr. The different classes of vegetables on the surface of the carth serve, in the first place, as food for the various races of animals inhabiting the globe; and these, in their turn, contribute to the support of vegetablelife, both by their excrement during their lives, and by the decomposition of their bodies after their death. What a wonderful provision of nature is here unfolded to our view ! In the great laboratory of nature nothing is useless or allowed to go to waste ; for no sooner nre my of the component parts of the numerous wonderful forms which surround us disengaged from the state in which they previously cxisted than they instantaneously enter into new comibinations, calculated in some manner to preserve thiat equilibrium so essential to to the existence of thealmost innimincrable classes of beings which people our globio. Thitis'the decomposing anings which people our gole ointris, which would olherwise an intolerable
nuisance, are, by an admirable arrangement, emplojed in contributing to the growth of our cultivated orops, and thereby, indirectly, again to the means of our sustenance. Ihis cycle of changes is therefore carried on in unceasing activity throughout the entire scale of living beings, ench, in its turn, supplying the matters from which the food of the others is derived.

The elementary substances, oxygen, hydrogen, carbon, and nitrogen, have now been seen to comprise the greates part of all veretable structures; but, as las beon already remarked, the inorgunic or fixed portion obtuined from the residum, after burning, is not less essential to healthy vegetation. Existing in such small quantities in plants, it was long supposed to be of no essential or vital importance, and was rather aceidentally present, being derived from the soil on which they grew ; but further experience showed that in all cases in which the vegetation was healthy, the quantity of inorganic matter was remarkubly constant in the same species of plants, even without regard to the constitution of the soil on which they were produced. If the required matters did not previuusly oxist in the soil, no duubt they could not at all have been present in the plamts grown'on it, but then such would not have been healthy or fully niatured plants. If adventitious, as had long been supposed, it might be considered that different plants ön the same soil would each contain equal quantities of the inorganic matters peculiar to that soil, having had similar opportunities for absorbing it ; but there is nothing now better ascertained within the whole range of physiological science than that different species.growing even upon the same soil, will absorb various quantities of earthy matters, the precise proportion being constant in ench; and differing most in the case of plants leeing most remote in their natural affinities; thus leaving it no longer doubtfil that such matters really furmed an esentiul part of the vegetable structure.

- The mode of preparing manure, for which, we believe, a patent has been granted in the United States, may afford some useful information to farmers. We know that the quantity of manure might be vastly increased by forming compost heaps, and saving the urine, and drainings for the compost heap, and mixing it with it.

COPY OF BAER AND GOUILART'S PATENT.

To all whom it may concern: Bo it known that we Charles Baer and Jolm Guuilart, of the city of Bultimore, in the State of Draryland, have invented certain new and useful improvements in the manner of making manure, which has been for many years practiced in France, and has been there secured. by letters patent, under the name of "La Methode Jauffret," and we do hereby declare that the following is. full and exact description thereof.

In the method of Mr. Jauffret, a pit or reservir is preparel of sufficient size to cuntain the quantity of prepared lye which may be required by the nature of the establishment. This reservoir is intended to be saturated with decomposed animal and vegetäble matters, and is further to receive the ingredients hereinafter named; such water is to be found un nearly every farm, and it may be augmented by the drainings of stables, by dish-ivater, sads; and othor substances of a like nature.

Mr. Jauffret, however, finally prepares hislye, by which the fermentation of the articles to be converted into manure is to be promoted, in the following manner, under various modifications.

For the conversion of from one to two thousand pounds, of vegetable matter inte manure, he takes about

200 lbs. of night soil,
200 " calcined plaster in powder,
30. wood soot,

20 "\% wood Zshes unleached,
60 " quick lime,

1 lb . common salt,
1 " rough saltpetre,
150 " lye or ferment drainings from a Jauffret manure heap.

These ingredients are in many cases to be replaced by others : this lye to be prepared 10 or 15 days before use. The quantity of materials above mumed, for the conversion of from 1 tu 2000 lbs . uf straw ur other dry vegetable stalks, will answer fur about duable that quantity of green vegetable matter.

In using this lye, the plan of Mr. Juuffect is to steep it in the vegetable fires, which are tu be acted upon by throwing them into the vat or resurs uir cuntaining it, and removing it thence at great labor, so as to form a high heap in the vicinity of the vat, into which the drainings are allowed to run.
We have thus given a brief outline of the methed of Mr. Jauffret, the same appearing necessary to the understanding of our improvements, which consist in our omitting altogether the excessive labor of steeping the materials to bo acted upon in the lye, and elevating them from thence to the heap; and also in the preparation of a lye which is equally effective with that of Jauffret, at much less cost, and which can be used immediately on its being made, thereby saving the delay of 10 or 15 days, which " La Methode Jauffret" requires.
We prepare a reservoir to contain the lye as usual, and in the immediate vicinity of this, we make our stacks or hoaps of vegetable matter, which is to be converted into manure.

We give to the ground where the heap or pile is to be made, an inclination towards the vat : if the ground is ab firm clay, it may be merely sloped, and have shallow trenches dug on its surface to conduct the drainings back into the vat; or it may have a flooring of timber, brick or stone, as may be preferred, which may be so trenched as to conduct the whole towards a central drain. When our platform or flooring is of clay, we cover the trenches and wholo surface of it with brushwood or rails, so as to form a tenporary grating that will support the weight of the heap, and thus insure a drainage and the admission of air to the heap from below.
The materials to be converted into manure, we pile up on this prepared platfurm immediately as they are delivered by the carts, and this we sometimes continue to do until the heap has attained the whole height to be given to it, when by the use of a pump. buckets, or other snitable mans, we mise the lye from the vat and pour it on to the heap, continuing so to do until the whole mass is saturated; we in general, however, raise the heap to a height of two, three, or four feet, more or less, and then pour on a portion of lye, repeating this as the lacight of the pile is increased : this procedure obvi:ates the necessity of lifting the whole of the lye to the full height of the heap.
The materials which we employ in making the lye, may be limited to following, namely: cell, honse or hogs' dung, or light suil, the urine drainins from stables, and quick liue. The ingredients u-ed to be intimately mixed with a sufficient quantity of saturated water.
Two of the kinds of animal dung we have foumd to answer as well as a large number. A perfectly good lyewill be made by taking one barrel each or two of the species of dung, two of the urinary draining, one of quick lime, and about 50 barrels of saturated water, which is then to be used as above explained.

What we claim as our improvement on Jauffret's method of farming manure by the rapid fermentation of vegetable fibres, is, first, the forming of the said vegetable matter into piles or heaps, without its being first immersed in the prepared lye, and then subsequentiy saturating the same by the poiring out the lyc in the manner set forth.

Dutca Burras.-The Dutch butter is celebrated for its excellence. The following is said to be the mode in which it is prepared.

After having milked their cows, the Dutch leave their milk to get quite cold before they put it into the pans. When placed thercin, they do not permit it to stand for the crean to riso more than about 4 hours. They then stir it together more intimately to combine the mills and cream and continue thus to do, two or three times a day. If it be agitated in this manner, as occasionally happens, till the whole be quite thick, the butter thus obtained is the more highly estecined. As soon as it acquires the usual consistency; it is chmened commonly about an hour, till the butterbegins to form ; cold water is then added, proportioned to the quantity of milk, for the purpose of facilitating the seperation of the buttermilk. The butter being properly come, it is taken from the churn, and repeatedly washed, and kneaded in fresh water, till the buttermilk is all expressed, and it no longer retains anything of white. By this simple mode, not only far more butter is obtained from the same quantity of milk, than in any other way; but the butter itself is firmer, sweeter, and continues longer fresh than the generality of butter ; while the buttermilk is infinitely more agreeable to the palate.-Boston. Mercantile Journal.

Jxdustar.-There is no art in science that is too difficult for industry to attain to; it is the gift of tongues, and makes a man understood and valued in all countries and to all nations; it is the phikesophers stome, that turns all metals and even stones, into gold, and suffers not want to breali into its dwelling ; it is the north-west passage. that brings the merchant ship as soon to him as he car desire. In a word, it conquers all enemies, and makes fortune itself pay contribution.

montreal market prices.

CORRECTED BE TIE CIERK OF TME MARKET. New Mfurket, May 31.

Wheat,......per mi	5/6@6/3
Oats,........ do	1/3@1/6
Barley,...... do	2/6 @ 2/9
Peas,......... do.	2/6@3/9
Buckwheat, do	2/0 @ 2/3
Rye,......... do	2/6@3/0
Flaxsced,... do	4/6@5/6
Potatoes,.... . do	1/0@ 1/6
Beans, American, per	4/0 @ 4/6
Do. Canada,.... do	6/0 @ $0 / 8$
Honey, per tb,	0/4 eopla
Beef,... do	0/2 ${ }^{\text {¢ }}$ @ 016
Mutton, per qr	2/6 @ 8/9
Lamb,... do	$2 / 0 @ 3 / 6$
Veal,..... do	210@10/
Pork,.........per ib,	0/3@0/5
Butter, Fresh, do	017 @ 019
Do. Salt, do	016 @ 0/7
Cheese,........ do	013 @ 0/42
Lard,.......... do	0/5 @ 0/6
Maple Sugar, do	0/4@015
Eggs, per dozen, fresh,	0/4@0/4.
Turkeys, (old), per couple	5/0@ 6/0
Do. (young) dc	$3 / 0$ @ 5i0
Geese,........... do	4/0 @ 6/0
Ducks,............ do	$2 / 6$ @ 2/9
Fowls,............ do	$2 j 0$ @ 3/0
Chickens,........ do	$1 / 0$ @ 1/8
Partridges,...... do	$2 / 6$ @ 3/0
Hares,............ do	1/0@1/3
Apples, American, per barre	1510 @ 20
Do. Cansda,... do	5/0@12/6
Flour, per quintal,	12/6 @ 13/4
Beef, per 100 lbs ,	20/0 @ 30
Pork, Fresh, do	22/6 @ 27/6
Hay, per 100 bundles,	20/0 @ 27/6
Straw, per 1200 lbs.	12/6 @ 17/6

Rooks.-If any one will carefully study the habits of the rook, he will cease to persecute him. Just watch him in a feld of autumn-sown whent, and he will be found digging at the root of the sickly plant, not for the seed, but the grub or the larvo of some earth caterpillar. See him again examining the grass and clover fields for insects. "The farmer's busy time", says an author, "is their (the rooks') busy time; they feel that he (the farmer) is as necessary to cheir present profit as they are to his future: 0^{-} they act as if they felt so, which, in effect, comes to the same thing. If he will not bring out his team, turn the soil, and expnse the worms and grubs, they caw over his fields, and make the same lamentation that a huggry man does when he knows that there is meat in the house, but the careless servant has lost the key of the larder. But if the teams are a field by times, slicing the sward or the stubble, and turning up the fresh fragrant earth to be mellowed by the action of the sun, there is not a complaining note anong all feldward rooks. Gallantly they strut, and incessantly they peck up the larve and the worms, so that the returning plough cannot bury, and so preserve in the soil, a destructive thing." We have repeatedly seen rooks shot, and on examimation, fouad their crops full of worms. During the period when the parents are feeding the young brood, the number of worms that a crow will carry to a nest at a time is almost incredible.

A Fammy Consenion.-A megro passing along the strect, was astonished at henring a voice call out- Whow dy'e do, Snowball ?' and on looking up observed it proceeded from a gilt cage.
' Aha ! massa Purrot,' snid blackee, 'you great man here; you live in gold house now, but me know your fadder very well, he lib in de bush.'

FRESH GARDEN, FIELD AND FLOWER SEEDS.

THE Subscribers have received and offer for sale:2500 lbs. Fine Fiesir Vemmont Cloven Seeds, 200 minots Supemion Sifted Timothy Seed, A few Bushels of Fine Seed Wheat, imported from livesia.

ENGLISH SEED BARLEY.

Together with a general assortment of Garden, Field, and Flower Seeds, all warranted fresh and of the growth of 1843.
S. J. LYMAN \& CO.
(Late J. Binks \& Co.)
Place d'Armes.
Montreal, April 1, 1844.
3m.

Tis Canavian Mgritultural foumal,

PUBLISEIED MONTHLY,

ATONE DOLIARPERANNUM,

 payable in advaice.Any Post Master or other individual who obtains six subscribers, to be entitled to one copy, gratis.

As the object of this Journal is to improve Canadian Husbandry, by thedissemination of the best and cheapest Apricultural information, the charge for it will be simply sufficient to cover the necessary expense. The subscription price will therefore be Five Shillings per annum, to single Subscribers. Societies or clubs will be furnished at che following rates :-

> 50 copies fur.
> $\$ 30$
> 20 copies for... 15
> 10 copies for..................................... 8

Payable always in advance.
WHLLAM EVANS EDITOK AND PROPRIETOR.
LOVELY AXD GIASOK, FUBLISHERS.

[^0]: * Thereaderis referred for furticerinformation on this subject to an Essay in the "Quartorly Journal of Agriculture."

[^1]: * It may be here necessary to apprise the less scientific portion of our readers that the term organic is applied to inl animal and regetable substances, these being composed of nores, vessels, and fibres, which are the organis of life. From this explanation the signification of the term inor anic will be casily understood.

