Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.
 (be united to reach a common destination. To those who can remember a first visit to London, and the vexation of spirit which supervened upon the discovery of the interminable distance of any one terminus from any other, thé prospect will open up visions of a hardly to be hoped for Utopia. There can be no doubt that such a plan would have immense advantages, especially to traffic pasing through London, as a large proportion of the forrign traffic does, and vice versa, and the project has been discussed at some length in a paper read by Mr. Arthur Ellis before the Institute of Bankers on a colla. teral subject, the advantages of centrulization as applied
to the to the clearing system in trade. Meanwhile as is natural, men's minds are moved to consider the shortcomings of the existing railroad stations, more particularly in point of architecture, and a comparison is instituted with
the the termini of continental lines. There is nothing which makes us feel so small, or at least should do so, hearing anothor reproached for a fault which we ourselves exhibit in even a greater degree, and surely to a Mon-
trealer the trealer the mueh abused Victoria Station would seem a perfect gem of architectural beauty. There are rumors in the air that our diggrace is not to be long lived, and that the chief city of Canada is no longer to welcome its visitors in an ugly dilapidated barn to which courtesy allows the title of a Railroad Station. At all events we liv_{t} in hope.

[^0]bringing it into very general use for store sheds and lean-tos, where light is difficult to obtain, and its introduction through the roof of great value. In this country there has been a proposal to introduce glass into stove-lights in the place of mica, which will, if successful, introduce a revolution in the trade. But the last novelty in the use of glass is its substitution for wood in the manufacture of brewers' vats. The wooden vats have long been giving trouble by their absorption of liquor, and the consequent impossibility of keeping them properly clean, especially in summer. Slate has been tried, but is too perishable, and iron conducts heat too freely. The new material is said to be a pronounced success in Germany, where it has just been tried. The glass vats are a little more expensive, but they are correspondingly durable, and by saving of labour in the cleaning, soon make up the difference of first cost.

London is exercised, and not without reason, over the recently discovered dangers of gas baths. The introduc tion of these into the homes of the middle classes has been no doubt productive of great convenience, and where they are properly fitted under competent direction they may be a great addition to the comforts of a home. But builders are too apt to act in these matters without proper architects supervision, and where they do so should be warned of the consequences which may be incurred by neglect of proper precautions. Mr. Charles Frederick Deacon, a solicitor, living at Anerley, went into his bath room for the purpose of taking a warm bath, the water being heated by an atmospheric burner. After the lapse of an hour and a half, his wife, becoming alarmed, called a friend who forced the door, when Mr. Deacon was found learing against the wall quite dead. The surgeon, who made a post mortem examination, found all the organs of the body healthy ; but from the appearance of the intestines and the organs, he was led to the conclusion that death resulted from inhaling carbonic acid gas and carbonic oxide. He considered that the atmospheric burners used for heating the baths were extremely dangerous. They threw off a considerable quantity of poisonous fumes. There was, too, no ventrlation in the bath room where Mr. Deacon met his death. The most remarkable part of the case is the statement of Mr. Tur-
ner that during the previous fortnight he had attended six persons who had been similarly a'tacked after using the bath, and yet apparently had not thought it his duty to recommend the taking of any steps to remedy the evil. It should be remembered that ventilation is not all that is necessary in these cases, as carbonic acid gas and carbonic oxide are distinct poisons afferting the brain much as chloroform does, and not merely killing by suffocation. It is, however, quite possible to fit a gas bath so as to reduce the risk of the escape of the poisonous gas to a minimum, and no one should attempt to fit such a bath without a proper knowledge of the method.

APPRENTICESHIPS-II.

It is generally supposed that Trades Unions still have restrictive ules with regurd to aplrenticeships which operate to the disadvautage both of mploverN and the public; and that these rules are euffrced boih in the limitation of the number which an employer may take, aud as to the term for which hey shall serve. In a very lew tradee, some half a dozen perhaps, such restictions are nominally retained, but even in those the disadvantages are more felt by the worknen than by the eniployers,
except, in isolated cases.
We are, however, more immediately concerned with the build. ing trades. This se trades comprise six distinct branches, and enfploy probably 750,000 adult males. The operatives connected
with thuse trades are with thuse trades are located in every town and village of the
kingdom, proportionately to the size and kingdom, proportionately to the size and reqnirements of the several districts. In point of numbers and skill hey stand second
to noue in our national industries; and hence their rules and modes of action affect more or $1 \mathrm{l} \mathrm{s}_{3}$ the whole of the trades of the country; the importance attachiug thereto cannot consequently
be overrated.

1. The masons for a great number of years took the lead in all matters affecting wages and conditions of work, and they en.
dearoeed to deavoied to limit the number of apprentices to the smallest possible compass. From twenty-five to thiry years ago the they even went so far as to prohibit their own memhers fiom teaching
the trade to more than one of their the trade to more than one of their own childien; and even the one put to the trade was supposed to be regularly apprenticed. Of course the rule was evaded, nor was it possible to carry it out had it been right in principle. But it was not, and it failed in consequence. At the present time no actual apprenticeship is, or can be, enforced, the only conditions exacted for admission to the Mason's Society are : competency as a workman and the ability to command the current wages of the town or district where he is employed as a journeyman ; these qualifications acquired, no matter how obtained, he is, if duly proposed and seconded and is willing to comply with the Society's rules, admitted as a member, and recognized as a journeyman stonemason. In some towns efforts have been nade of late years to impose certain restrictions, more particularly in some parts of Yorkshire, but they have mostly if not altogether failed. These attempts have arisen out of local circumstances and customs, eacc branch being responsible for its own action in dealing with questions affecting the trade usages of the district. The Society as a whole does not, however, now at tempt to euforce limitations as to the number, or to define the period which apprentices shall serve. The Scottish Union has long abondoned all intrfference in these matters, so that throughout Scotland the trade is virtually open to all comers without let or hindrance of any kind, either as to
uumbers or term of service numbers or term of service.
2. The bricklayers have long since been compelled to abandon "anv pretence of limitation or restriction. What is known as the "Manchester Unity"-a society embracing most of the northern and midland towns-tried hard for many years to continue a restrictive policy but failed. Regulations were constantly inserted in their schedules, apportioning the number of apprentices
or boys to the or boys to the number of journeymen, and strikes in support of such schedules sometimes took place; but even then the num. ber and conditions varied according to local circumstances and
usa ges ; unifornity usages; unifornity being quite impossible, modifications were continually taking place, and it was at last apparent, to even the most obtuse, that the regulations conld not be maintained. In the London district, and throughout the southern, eastern, and western counties the trdde has for years been practically opell
without limitation or restriction mithout limitation or restriction. In the towns the trade
has been recruited from conntry has been recruited from country districta, the "wallers," as they
are called, becoming bricklayers when they migrated to districts where bricks were used insteail of stone.
3. The carpenters and joiners have three separate unionsthe Amalgamated Society, the Gpneral Union, and the Scottish Association, in neititer of which are there any rules or regulations as to the number of apprentices or as to the term of service. Singularly enough the societies in this branch of the building trades were the first to relax their rules in this respect, not with.
standing the tact that standing the tact that not on'y is preat fkill required of the workers, hut they have to find a considerable chest of expensive tools brfore they can take a position as a shop joiner. At the present time they not only do not attempt to int-riere but they discountenance all regul: tions as to limitation of number or as to period of service. In some places there may be a kind of mutual understanding between che employer and those employed as to the proportion between apprentices and j, jurneymen, but not as the result of coercire action. If a youth can "pick up" his trade, and he offers himself as a candidate for admission into the society, he has only to prove that he is alle to earn the
current wages and he is admitted current wages and he is admitted.
4. The Phasterer's Society makes no attempt to limit the number of approntices, nor does it set k to enforce a specific term of service. This branch of trade was at one time mutinly recruited from Irish "hawk hoys," but of late years these wondrous specimens of humanity have been to a great extent dispensed wilh And no one in the building trade will much regret it, for they were the most mischi-vous vulgar tongued set of young scaplegraces that one could meet with in a day s march. Now the plasterers serve themselves for the most part, the laborers furnishing them with the materiuls. These lahorers now, more than evrr. are Englishmen; some may in time become plasterers. But there is an increased tendency in this trade to take learners fur terms of from two to three years. The sous of plasterers seem to fill up the vacancies in this branch of the trde to a greater extent than in some other branches of the building trade.
5. The plumbers have been, and still are, more restrictive in their action than any other branch of the building trades. The reason for this has been that the master plumbers were anxious for their journeymen to keep plumbing as a close tride, and to a certain extent they have succeeded; but whether to the advantage or disadvantage of the public it is not for us to deteruine. Certain it is that a number of men call themselves plumbers who a:e not, in the best sense of the term, craltsmen ; but ti ese no douht, have first of all learned a smattering of the trade as "plumbers' laborers," then started as handy jobbing men, and then have set up in the plumbing line on their own account. In so far as rules and regulations are concerncd, the trade cannot be much influenced either way at the present time; and if we may trust to the complaints one often hears about the work done by plumbers, they have not improved in the quality or quantity
of their work. work
6. The last branch comprises painters, decorators, and glaziers, and to some extent upholsterers also; for the latier are called into requisition in connection with a portion of the builders' work in recent times. With regard to painters, paper-hangers, and glaziers, certainly little or no system of apprenticeship is in vogue ; in the better class of houses some degree of preliminary engagement is no duubt enforced in the shape of improvers, but apprenticeship proper is not general. It would be far better for the public if it were ; for the painter and decorator is, of all men, the most trusted, and every care should be tuken to make him worthy of that trust- He has oftentimes the entire run of a mansion filled u ith valuables, so that his moral character as well as his abilities as a workman, is of importance when so much is at stake. By all the higher class firms these qualities are, doubtless, taken into account ; but a sysiem of regular apprenticeship would be a far better guaraitee than any test as at
present applied.
How far this loose system, or want of system, is conducive to the development of skill in the several handicrafts named is a question of much importance, and one that cannot long remain without an answer based upon ascertained ficts. The continual complaints which one hears on every hand of bad workmanship in all departments of industrial life will torce the hands of employers and compel them to take some action in the matter. Shuld this emergency arise, it is to be hoped that both parties hemployers and employed-will co-nperate to bring about a healthier condition of things. There is a growing dispusition to seek and strive to obtain superior workmanship wherever possible; this feeling should be encouraged by masters and men, both of whクm should combine in promoting a mutual understanding up-
on this sulject.

Fuginexxing, Cinil \& gatinanicat.

ECONOMY IN STEAM BOILER PRACTICE.

Our attention was lately called to some simple and novel ap. pliances employed at the Brooklyn Oil Works, Hunter's Point, which are worthy of special notice from the convenience and the notable ecouomy which they realize in practice. We refer spe. cially to the tar burners ustd in connection with the Babcock \& Wilcen boilers for burning the refuse tar of the stills, of a hich an alundance is marle at the refinery in question, in place of coal. The attempt has frequently been made to devise a practical method of utilizing residual products of this kind at gas works, refineries of petroleum, and other industrial establishments ; but thus fur no remarkable success has attended these efforts. The method her reffrred to, however, gleaned from personnll inspec-
tion, tion, and from facts pertaining to the present cost of operating the looilers, appear to be convincing in establishing the practical
success of sucress of the method of tar-buruing there in mperation.
The appraratus is the invention of Mr. H. E. Parson, Superintendent, and Mr. Geo. V. Northey, Engineer, of the Watertown Stean Blower Co., of Watertown, N. Y., (whone oftcesis ale at ${ }^{42}$ Pine street, New York). This company mike a speciality of various devices for yutilizing waste producrs in all kinds of faclories. They have' a stean blower for buraing the differeut Farieties of slack coal, spent tan-hark, sawdust, scrennings, 位t, or any kind of tarry, matter. This blower is used for forcing a
hlast hlast under and throngh the grate bars, and as such has wonderful capacity. It is a pooer within itself, having no shafting, Rearing or machinery, giving a blast sufficient for hoilers vary:
ing frum
3 ing frum 3 to 200 horse-power, and being under peffect con-
tril.
The high heating power of some of the waste materials mentioned, and their low cost as compared with coal, makes the question of heir employment as a substitute for the littrr, one of special inportnnce on economical \&rounds where circumstances Hace the nateriml in quantity at dispovition. As we have already
staled, stated, our commenis in the present article will be coufined to the tar bun ners, at the Brooklyn refiuery, where they have heern in nise
for the for the past 18 months f.r firing a stt of four B.bcock \& Wilcox boilrrs, of 100 horse-power each, anil wiht the result of having given complete satisfartiou as to ease and rrliahility of operation, tuld of having demonstrated a notab'e economy. This make of hoiler is pecularly adapted to this fuel, by reason of the thin heating eurtace and absence of all joints in the fire, enalling it to withintund the very intense heat generated, under which ordinary shrll boilers are rapindly destroyed.
Lh.ferring to the arrangenient of the hurners, the tar, which is
 a piphe provided for the purpose, from an elevated reservoir. At atonizel print, the tur is met by a steam $\mathrm{j} \cdot \mathrm{t}$, by which it is atonized and carried with great energy into what corresponds 10 the ordinary fire space of the boilr. The energy of the in--
pulling steain volumg steann jet induces simultaneously the entran'te of sufficient Volumes of arr through openings provided for the purpose, to allow for the combustion of the tar anit the thorough intermix. Whie of the combustible with the oxygen of the entering air,
While the method secules a very While the method secuies a very perfect and intense combustion.
Grate bars Theate bars are, of course, unnecessary, and are displensed with. Ripeared to re as witnes.ed by us, was perfectly automatic, and appeared to require no special supervi. ion, the supply of steam tiuve, as flow of tar simply requiring rexulation from tiine to tuine as more or less steaul was ineedrid, which was effected by the the other or of a stop cock controlling the supply of the one or adjustmen. The action of the arrangement under the proper adjustmeut of parts is, therefor, perfictly regular and automa.
tit. The tar is burned vely intense heat. No without a particle of smoke and with a Vely intense heat. No dust is produced-in fact, it is a perfect
fres
In considering the question of the economy of this arrange-
nent, a notable element, aside from the prime question of the melint, a notable element, aside from the pirime question of the
relative cost of coal and tar consumed por poruted, cost of coal and tar consumed per pound of water eva-
with the material saviug of labor iu being aule to di-pense with the attend material saving of invor in being able to do dipense
thise, removal of ashes, and other itaus of this kind which ande firing fires, removal of ashes, and other itaus of
nutubul as min the case here bilers are in constant opelation day and night,
The best evire alluded to, is no incousiderable oue.
The best evidence of the economy of this method of firing, is
aforded by he performance of the boilers. Fortunately for the
coriect coriect extimate performance of the boilers. Fortunately for the
finector the superinteudent of Brooklyn refinery, Mr. Haldeb thand fy ctor hes he superinteudent of Brook iyn re-
of the arcurate register day by day of the amount of water evaporated and of the number of gallous
of tar consumed, from which we are able to make \boldsymbol{a} direct comparison with their performance with coal.
We give below the log of the attendant in charge of the boilers, for twenty four hours, which we are informed represents an average daily performance: Tar consumed in 24 hours, 75 bar$\mathrm{r}+\mathrm{ls}$, at $\$ 1$ per bbl. $=\$ 75$; water evaporated, 358,400 pounds. To estima'e the evaporative value per pound of combustible, we may take 75 barrels of tar of 40 gallons each, equal to 3,000 gallons, which, at 7 pounds per gallon, would give the number of pounds of tar consumed, 21,000 . The evaporation would there. fore be

$$
\left\{\frac{358400}{21000}\right\}=17 \text { pounds of water per pound of tar. }
$$

This evarorative effect greatly exceeds that obtainable with conl, in addition to the very perfect combination which the blower insures, as before explained, the healing power of the tar is considerably greater than that of coal. A comparison of the above results with these obtainable with the use of coal as fuel, will be highly instuctive, and is given in the followiug tabula.
tion tion

75 barrels tar, at $\$ 1$ per bbl
To do the same wofk, would require on an average
20 tons of coal, at $\$ 4.50$
90
20 tons of coal, at $2,240 \mathrm{lbs} .=44,800 \mathrm{lbs}$.) and the evaporation per pound of coal would be

$$
\left\{\frac{358400}{44800}\right\}=8 \text { pounds. }
$$

Evaporation per pound of $\mathrm{tar}=17$ poynds.
The effectiveness and economy of this method of firing seems, therefore to be fully demonstrated.
It may not be out of place to make an allusion to the boilers in connection with which the ahove described tar-burners have been so suceessfully applied. Many of our mechanical readers will recrgn ze the Babcook \& Wilcox boiler at once in the accomlanying engravings; and the ouly essential modification adopted in emplloying the tar burners, convists in dispencing with the grate hary, and in providing suitable openings for the free eatrance of air into the fire snace.
It will be unnecessary for us to dwell in this place upon the special peculiarities that have gained for this style of boiler a high reputation in resplect to great economy and practical immunity against the langer of destructive explosion, since we have repeatedly presented these facts in detail. We will ouly add, in orler to bring out in stronger contrast, the very high evaporative power developed by the use of tar in the Parson tar-burners at the Broiklyn refinerry, the following records of the perform-
ance of the Bubock ance of the Bibsock $\&$ Wilcox boiler, under strict test cond
tions. tions. The evaporative duty shown in the following table will
be at once recognized be at once recognized by steam users as being exceptionally good.
tests of babcock \& wilcox boilers.
-Water evaporated in lbs. from and at $212^{\circ} \mathrm{Fah}$. -

	Per lb. f coal.	Per lb. of com bnatible.
At Centennial Exhibition.10.75	12.131
"' Raritan Woolrn Mills..	.9.798	11.2:7
"' Harrison, Havemeyer \&	. 9.712	11.601
T. A. Edison	.9.4	11.365

The works for the proposed tunnel from Dover to Calais have made such satisfactory progress, that its promolors-Colonel Beaumont, R.E., and Captain English R.E. -a e now able to employ three shifts of men constantly throughout the twentrfour hours, and are sanguine of being able to bore about 30 ft . per day wheia all the machinery is perfected. At present two drills worke 3 by engines driven by compressed air are at work, and about thirty laborers are employed. The bore is 7 ft . in diameter, and the soil clalk. It is so firm that the engineers are of opini,n that no brick or cement work will be required to
shore it up. Hitherto the difficulty they hat shore it up. Hitherto the difficulty they have had to contend with has arisen from the qnantity of water which has found its way into the cutting, and which has been pumped up ly means of a powerful engine placed at the mouth of the shaft leading in to the tunnel. This shaft is abont 300 ft . long, and the boring ulready accomplished upwards of 500 ft . A new shaft is being driven through Shakesteare's Cliff, which, when completed, will be about 200 ft . in depth, and this will enable several additional hands to be euployed, and the work to progress much more
rapidly than at present. rapidly than at present.

Fig. 2.--SECTIONAL PERSPECTIVE VIEW OF A BABCOCK \& WILCOX BOILER.

Fig. 2.
Air-Jet Tube-Cleaner and Steam Blower Attachment.

Fig. 1.-Parson's Air-Jet Tube-Cleaner.

PARSOINE ADRJET TUBE CLEAKER.

We give here an illustration of Parson's air-jet tube-cleaner, manufactured by the Watertown Steam Blower Co., of 42 Pine street, New York, whose admirable arrangements for utilizing waste products as fuel we have described in a previous article. All users of steam boilers are aware of the difficulty of properly and speedily cleaning the tubes of boilers of soot, ashes, scale, etc., and many devices have been brought forward for the purpose. The Parsons air-jet tube cleaner is affirmed to be very effective for this and similar purposes. The apparatus is shown in Fig. 1, and the method of using it in Fig 2. The inventor, in this device, claims that its efficiency largely depends apon the manner in which he has succeeded in utilizing the expansive power of sir, which is carried into and through the tubes. To this end he delivers from the orifice of the apparatus a thin ring of steam, in such a manner that the angles of delivery form a wedge or cone shaped surface, inducing and bolding a strong central air current, which, being forced through the heated tubes, expands as it travels, and carries with it all the accumulations of soot, ashes, etc., that have found lodgment therein. In using the apparatus, it is recommended that the steam should be taken from as near the top of the dome as possible. A piece of strong flexible tubing, connecting the steam delivery pipe with the apparatus, is necessary, as shown in the cut, to enable the operator to move from tube to tube. With this apparatus, it is claimed, that ten tubes per minute cau be cleaned, while the boiler is running.

This device, we are informed, has been extensively introduced into a number of large industrial works throughout the country, and in all cases has demonstrated its ntility.

GAS EHGMTEs.

A paper on this sabject was read by Mr. Charles Gandon at the meeting of the Society of Engineers. The author pointed out that the use of gas as a motive power was still in its infancy, which was not a mattor for surprise, seeing that its introduction for lighting purposes dated only, from the commencement of the present century. So early as the year 1794 a patent was taken out in England for producing an inflammable vapour force by exploding the spirits of tar or turpentine in closed vessels.

Between that date and the year 1860 various other inventions were patented for obtaining motive power hy the explosion of various mixtures, gaseous and solid; but all the descriptions appeared to be somewhat obscure as to the nature of the explosive compounds to be used, and the aneans for obtaining them. Carburetted hydrogen, a constituent of coal gas, was mentioned by some ; but it appeared that the idea of using coal gas, as manufactured for liyhting purposes, for working engines, was first practically applied in the Lenoir gas engine. pitented in 1860, and first introduced into this country at the Exhibition of $\mathbf{1 8 6 2}$, where it attracted much attention. The general mrinciples of the Lenoir engine were described, and it was pointed out that, among other defects of this engine, was the damage done to the working parts by the sudden and violent nature of the explosions, and also the necessity of the use of electricity for the explosion of the charges of gas and air with which it was worked. The latter objection had, however, now been overcome in more modern engines by the employment of gas jets for the same purpose. The author descibed the Otto and Langen gas engine, the chief improvement in which is, however, due to the compression hefore ignition of the charges of mixed'gas and air, by means of which it is found that a much larger proportion of air can be employed than would form an explosive mixture at ordinary atmospheric pressures, and the force thus obtained is gradual and continuous, instead of sudden, resulting in an economy of gas and more regu. lar working. Advantage has been taken of this discovery in several of the more rectutly designed g is ongines. The general principles of the Otto were described, and its consumption of gas staterl to be at the rate of about 21 cubic feot per horse-power per hour, as compared with from 40 to 70 cubic feet with engines of previous make. On account of the heat generated by the explotions in gas engines, it was found necessary to surromml the cylinders with water, and that advantage had been taken of this in a gas engine called the Eclipse, in which the water, instead of be iug allowed to escape when heated, was stored in a separate
chamber, where it generated steam, which was used togecher with chamber, where it generated steam, which was used togecher with the gaz, to assist in working the engine. Attention was also drawn to the Bisschop gas engine, whirh is meritorious chiefly on account of the small sizes in which it is made, and which range from one half man or one-eighth horse-power upwards. This engine, although not comparatively economical ir, its consumption of gas, was recommended on account of its simplicity and small size, as available for purposes to which it would otherwise be impossible to apply mechanical power. As regards comparisons which have been made between the cost of working steam and gas engines, the author observed that the practice had generally been to take the total cost of working in each case, including labonr, and that, when this was done, the comparisons were in. variably in favour of gas engines; but he pointed out that such estimates were liable to be misleading. As a gas engine requires little or no attention, the results of the comparisons depend mainly upon the amount estimatel for labour for the steanm en. gine with which the comparison is made. With a small steam engine it would in most cases be unfair to estimate the whole time of one attendant, while, as the size increased, the proportionate cost of attendance would dimiush. Instances were given where estimates had been made showing steam engitues to befrom twice to seven times more expensive in working than gas engines; lut although such estimates had doubtless been made with every care, they only served to show that it was impossible to frame such comparisons so as to be generally true. By comparing the costs of the gaseous and solid fuels it was shown that gas must necessarily, both theoretically and practically, be more expensive than solid fuel When, however, the labour, wrar and tear, and first cost were also considered, the conclusion anived at by the author was, that for engines of small sizes, gis would always be the most economicul. Even with larger engines, if the same economy could not always be maintained, circumstances would in many cases render gas engines the most advantageous and convenient, particularly when only the intermittent use of an engine was required.

THE MEKARSKI AIR ENGINE.

For about three months during the autumn of last year the traffic of the Wantage tramway was conducted temporarily by means of locomotives driven by compressed air, on the Mekarski principle. One of these engines is now in London. These locomotive weigh about $7 \frac{1}{2}$ tons each, and consist of cylindrical steel air reservoirs, a special regulating apparatus, and ordinary cylinders
and driving gear. The locomotives are supulied before starting and driving gear. The locomotives are supplied before starting on a journey with air at a pressure of 450 lb . per square inch, the air being compressed by means of a stationary engine and plant.

On starting the engines the air passes through a reservoir of hot water and steam to the regulator and thence to the working cylinders. The hot water raises the temperature of the air, and thus increases its volume, and economizes the store, while it has the further important effect of preveuting the furmation of ice in the exhaust paisiges of the cylinders, which would otherwise take place as the spent air escaped. The moisture with which the air becomes charged, moreover, assists the lubrication of the working parts of the engine. By meana of the regulator the pressure of the air when passing to the cylindurs can be reduced to any desired extent. In practice the working pressure is constantly maintained at 90 lb . per square inch. The exhaust air escapes quietly from the cylind ${ }^{\text {rs, }}$, thus rendering the locomotive nniseless in this respect, while thera is, of course, a total absence of sinoke or other products of combustion. Ample brake power is provided, and the general mechanical arrang ments are such as to place the engine well under the control of the driver. The system is carried out in two diffrrnt ways; in one-the engine is separated from the tramear, while in the other the engine and car are combined. The principle, however, is the same in both, and is one which commends itself to notice for tramway work. The system has been employed for vearly two years past with every success on the Nantes Tramways, which are atonut four miles in leng'h, and it is now being introduced into England, the offices of the company being at 3, Westminster Chambers, Victoria Street, London.

BUIIDING IN JAPAN.

It is now pretty well known that the ancient empire of Japan has recently divested herself of her old social and political vestm^nts, and cominenced to array herself in those of a more modern type. She has, in fact, decided to institute and organize Western technical procerses and industries throughout the various islands which make up the empire, and to invite experts to assist in the work from Europe and America. There is certainly a vast field thus oprning up for the operations of those who choose to venture so far in quest of active employment, and who can carry with them talent, energy and enterprise. This holds good of representatives of every art, science, an I m inufacture at present in existence in Great Britain, and of architects and builders in particular. Tie general construction of hou ses in Japan has hitherto been of so primitive a character as to resemble very much that style which prevailed at home some hundreds of years ago. Purely Japanese buildings are generally, and almost without exception indeed, built of wood. Even the chequered tile and plaster constructions with which artists have made us familiar are formed of timber as a base ; and this, therefore, serves as a support nierely to the ornamental tiles. The utterly unscientific disposition of materials observabie in almost all native structures, and the total absence of braced and trussed fiaming, prove that their builders were utterly ignorant of the first principles necessary to ensure the maximum of strengih with the minimuin of material. They have also ignored the use of diagonal members in their framing, and preferred the rectangular to the triangular division into bays. Some have, it is trup, attributed this latter peculiarity to considerations respecting the contingency of earthquakes; but it need hardly be mentioned to our readers that the rectangular is far inferior to the triangular division for ensuring rigi lity and solidity.

The truth is, in respect of all Japanese edifices as they stand at present, thit their designers were innocent of any knowledge of the scientific rules which should govern design and construction, and hence, like some of our own earlier mechanical engineers, they placed too much material in the wrong form.

Then, again, the almost universal employment of wood in the construction of luildings is a mistake, and one which would not long exist if British counsels prevailed in Jyan. It is unnecessary to say that the most important conditions influencing the durability of wood in such cases is, its position in regard to atmospheric surroundings. If, for example, it is subjected to alternate moisture and dryness it will soon fall into decay, and no chmate is more fickle in respect to rain and sunshine than that of Japan. The Japanese strangely enough appear to have paid no attention to processes intended for the preservation of timber, such as injecting into its pores antiseptic salts. Red stucco, or plaster is the only preservation employed, and as this is sometimes spread over wood perfeclly unseasonrd, and perhaps full of sap, the consequences may readily be imagiaed.

In brief, architecture and building in Japan are not only in their in ancy, but scarcely out of their swaddling clothes, and yet the country is rich in every variety of material for adaptation and development in those decorations.

THE NEW TAY BRIDGE.

The report by the directors of the North British Railway Company just issued has the following in reference to the new Tay Bidge:-The question of the reconstruction of the Tay Bridge has continued to engage the anxious attention of our
director directors and they believe that the bridge finally decided upon is the best possible under all the circumstances. It provides for the navigation of the river with spans of a width of 245 feet, the greatest height bering, from high water to the under side of the girders, 62 feet as against 88 leet in the old bridge. The linno of the bril g ' will he a uniform gradient, varied considerably, being in one grart as severe as one in 74 north of the four navigable spans. There were in the old bridge nine other large spans. In the new bridge these will le replaced by eighteen spans of hall the old dimensions, the girdess being placed below in.
stead stead of atove the rails as before. Exch of the piers will be of
brick brickwork and concrete up to eight and a half feet above high water, and of plated wrought irou from that level to the under sithe of the girilers. The termination of the bridge at each end
will will be by brick arching, and a substantial parapet will be erected throughout its entire length. Many suggestions have been made for the utilising of the old foundations which in themselves are quite capable of sustaining the weight of the superstucture ; but the insuperable oljections to their use lies in the fact that
they they were liable to scourt, and this, in the new bridge, would be prevented by making the foundations, except those in rock, 20
feet below teet below the bottom of the river, where they will be beyond the reach of any possibility to scour. The report adds - It will will
be the be satisfactory to the shareholders to know that all the claims
for for complensation arising out of the deplorable loss of life in connection with the accident have been disposed of, and that without litigation.

THE MONOLITHIC SYSTEM OF BREAKWATER.

Mr. Kiniple, harbour engineer, of Westminster and Greenock, has palented his monolithic system of forming sea breakwaters and harbour whlls. Thonilithic system of forming sea breakwaters
contion, enables harbour works to be constructed in jointless masses of concrete in situ without the aid of divers, stagings, or overhead travellers ; in fact, without the u.e of the ordiuary costly plant. The system has been experi-
mentall mentally tried with success at New York, Quebec, and Greenock,
 Wi it in the reconstruction of the south pier head upon its old,
or rubble foundations. The Government Loan Conmissioners or rubble foundations. The Government Loan Conimissioners granted a sum of from $£ 10,000$ to $£ 12,000$ tor these repairs, and
for the for the extension of the head this year for forty feet, so as to ren. 'ler last verr's repairs safe against any seas which may enter the bay of Wick. The extension will be of the same monolithic
consturs. construction, and tounded deep into the hard clay of which the bottouction, and the bay is compod deed. into the hard clay of which the
is not ony breakwater which is not of monolithic construction from foundation to parapet
caunot he relied upon as safe against all contingencies of sudden caunot he relied upon as safe against all contingencies of surdden and trevere storns. There are numerous places, it is believed,
nithere hat Where, had this system been used iustead of the ordinary blocks or hage, the hreakwaters would have been in existence at the present time, and at 40 per cent. less cost. One of its chief
luerits luerits is its simplicity and reliability, for any breakwater in the
 about one-half the usual cost, and certainly within one-third of
the time the time formerly occupied in executing these works, for there is nothing wormerly occupieil in execuing these works, for there is
its head, watever top revent a break water being commenced at
end to to end to end. No skilled workmen beyond ordinary labourers or
fiohermen are fishermen are required, and, indeed, a present of a patch of Port${ }^{\text {land }}$ cemeut to some of the poorer fiflermen is all that is neces. sary to enable them to repair or construct small breakwaters
along the along the coast. The system is well adapted for founding on rocky or irregular bootoms, but in many cases trenches woulid have to be dredged by dipper or other dredges for the reception
of the concrete. blocks concrete. The concrete is mixed either in bulk or in blocks, and allowed to set or harden out of water, so chat when thrown overboard into the foundations or works it is hard enough while enent the cement from separating from the sand and shingle While passing through the water, nnd soft enough when in the
work to fall together and to become one compact mass. aqual in Work to fall together and to become one compact mass. pqual in
strength after a short time to the natural rocks. Where the strength after a short time to the natural rocks. Where the
walls are required to be vertical or hattered, a few iron rods are
used ased are required to be vertical or hattered, a few iron rods are
daed sididing planks to retain the concrete in form for a few doed with sliding planks to retain the concrete in forin for a few
days until it is set. At Wiek recently mases of concrete cast
in this manner resisted in this manner resisted a heavy storn within twenty-four hours aftrr they were put in, wheare stones of several tons weight were
harled in every direction by the same gale. - Eingineer e Building. hurled in every direction by the same gale.-Eningineer \& Building.

解eckantes

BURSTING OF FLY-WHELS.

BY GEO. M. HOPKINS.
The thenry of the bursting of fly-wheels, which has been accepted in the maj rity of cases, is that the centrifugal force due to a high velocity overcomes the cohesive force of the particles of the material of which the wheel is composed.

Of course this explanation is entirely inadequate when applied to a wheel whose strength is sufficient to resist any tendency to fly to pieces from purely centrifugal action under the conditions of its use ; but of the fact that such wheels burst no evidence is needed, and some cause other than centrifugal force must be assigned for the bursting.

Supposing the fly-wheel to be perfectly halanced and without defects in material or design, it may be driven without danger at any velucity usually considered within the limit of safety, so long as it continues to rotate in a plane at right angles to its geometrical axis. And it may be moved in the plane of its rotation or at right angles to it, that is, in the direction of the length of the shaft, without creating any mure internal disturbance than would result from moving it in the same way while at rest. But when a force tending to produce rotation at right angles to the plane of the wheel's rotation is applied, the effect will be vastly different, and the result will be a tendency to rotate about a new axis between the other two, and the centrifugal strain upon the wheel is supplemented by a twisting strain, which is an important and generally unnoticed factor in the destructive action.

To bring this idea to a practical application, the shaft and flywheel of a high speed engine may be taken as an example. Let the wherl be correctly designed, well made, and well bulanced, and if its shaft is properly lined and supported in rigid jo irnal boxes, the wheel will porform its office withnut dange: of bursting; but support the same wheel and shaft upon weak plummer blocks, and allow one or both of its journals to move laterally at every stroke of the engine, or even less frequently, and a disturbing elenent will have been introduced which will strain the wheel laterally, and which, together with centrifugal force, will effect molecular changes in the structure of the iron, and the result will be that if the wheel is not immediately broken it finally becomes weakened, so that it will yield to the forces that tend to destroy it.
Any wheel whose axis is swung in a plane at right angles to its plane of rotation, either occasionally and irregularly or frequently and regularly, tends to turn laterally on an axis between that of the normal rotation and that of the extraneous disturb. ing force. This tendency exists in ordinary wheels, although not visible. The engraving shows a flexible whetl, which clearly exhibits the effects of the disturbing forces. The rim is of rubber, the spokes of spring wire, and when the wherl is revolved very rapidly and moved in a plane parallel with it \& plane of rotation, ne disturbance results, and no effect is produced by moving it at right angles to its plane of rotation; but when the wherl is turn d even slightly on an axis at right augles to its geometrical axis by swinging the shaft laterally, the rim, while preserving its circular form, inclines to the plane of the rotation of its shaft, bending the spokes into a concave form on one side of the hub and convex on the other, showing the effects of the disturbing force on the figure of the wheel, as in Fig. 2.

When the disturbing force is rhythmical the wheel sets up lateral vibrations and wave motions in the rim, which are out of all proportion to the extraneous force applied.

From the experiment it is evident that the lateral swinging of the shaft of a fly-wheel (for instance when its journal boxes are loose; or when the frame of the machine of which the flywheel forms a part is yielding) tends to weaken the wheel even when the lateral movement is slight; and where it is great, as when the shaft is broken, the twisting effect is correspondingly great, and the wheel or its support inust yield.

No rotating machines are more subject to bursting than grindstones, and generally no rotating bodies of equal weight are mounted upon such small shafts or on such weak supports. The suspended ones are especially liable to the destructive action above described, as their frames are generally far too weak.

Fig. 3 illu-trates the effect of a lateral blow on the rim of a fly-wheel. Of course the effect is much exaggerated in the flexible wheel, but it shows the form taken by the rim under a blow, the blow producing a much greater effoct on the wheel while in motion than when at rest.

IMPROVED EMERY GRINDER FOR STOVE PLATES, \&c.

FLEXIBLE FLY.WHEEL.

harringtons portable double chain screw-hoisting machines.

DRILLING APPARATUS.

SCREW-HOISTLING MACBLIES.

We illustrate herewith a patent portable double chain screw hoisting works, now being introduced for the first time on this coast by Parke \& Lacy. The larger cut is a perspective view, and the smaller ones show sections from which the working parts will be understood. With this machine one man can lift from 250 to 15,000 lbs., according to size of machine. The peculiarity of this appliance is that the chains work at any angle with less friction and more speed, and with very much lass power than is usually required. With the medium sizes, 35 lbs. will raise 1,000 ; and 15 lbs . will lower 1,000 .
The load being received on two chains instead of one, it is doubly secure, and the possibility of slipping is prevented. All the pulleys being at the top of the machine, there is no danger of accident to the workmen, and the load can be raised high. The chains are never under the feet, and as the hoisting chain can be readily removed from the pulleys, the machine is more easily pat in place. It works with perfect smoothness under all circumstances. The load cannot rise or fall a hair-breath, except at the will of the workman; and an exact adjustment of the load is secured.
The working chain is independent of the hoisting chain, and the atretching of the chain does not prevent the proper working of the machine. These hoists are so arranged that they can be run at a rapid rate, either in hoisting or lowering any distance required. They are supplied with an efficient brake, for ease and safety in lowering the load. While the load is being raised with one end of the chain, the other end is descending for a fresh load. With the 1,500 hoist, one man can lift 600 lbs . 10 ft a minute ; with the $1,000 \mathrm{lbs}$. hoist, 300 lbs .20 ft . in a minute.

DRILLING APPARATUS

A handy little drilling-machine, to screw to bench, is shown in sketch. It consists of a small cast-iron standard, of the shape shown at A and A; at the back is a gronved wheel B ; carried on a pivot C is one of two smaller grooved wheels, over which the strap runs to D, which is fast on a sleeve H, which revolves in bearings at E and E, the lower one being of extra length to give steadiness. In this is the drill-spindle 1 , which pasis n narly to the top of H , but turns with it, i.eing held by a small ste pin (not showu) taken into a groove L. The spindle, therefore, can rise or fall fieely, but must turn with H. At the upper end it is connected to the spindle K ; this does not turn round, but is connected to I, only to lift and depress it. At G is a small collar held hy a set-screw, from which depend two links to the lever F, which is forged or cast with an oval slot, to allow K to pass through. A small rubber or leather round strap passes under B, over the two guide pulleys at C, and round the smaller pulley D. On placing a drill in the spindle at I, the spindle is adjusted to the necessary height by the set screw G; on turning B the drill rapidly revolves, and the feed is given by depressing the lever F. For very small work it is best to ferd with the knol at K , as giving a more sensitive action. All the wheels may be of box, or any hard wood, no expensive bevel. wherls leing needed. By the spring under the lever F, the drill is withdraun trom the hole the moment the lever is let go.English Mcchanic.

COOKING WITH sTEAM HEAT.

Steam has never hern looked upon with special favor in the kitchen, and its nee for cooking purposes has heretofore been rather limited. The projudice against its use has doubtless been dire in a great measure to the bungling devices employed in applying it, which generally resulted in producing sodd n fond, devoid of flavor. A new contrivance, the work of Mr. John Ashcraf., was successfully tested recently in the restanrant of Messrs. Nash \& Crook in this city, when an entive dinner cooked with steam was served to a select company of the patrons of the establishment and a number of newspaper men. Soups, fish, roasts of beef and mutton and canvas-hack duck, puddings, and other edibles were all cooked by the new process, and those who partook of the viands pronounced them excellently well cooked. The new process does away entirely with the use of stoves and ranges except lor brolling purposes, and even broiling, it is believtd, w ll be done much better by the steam oven than by an open fire. A device for so employing it has been put to some sevtre tests, and thus far has worked well, although it has unt yet been put in general use. The steam ovens consist of vessels with double shells, one inside the other. The steam coming from a boiler is introduded by pipes into the space between the two shell. Radiation of the heat to the outside is prevented bv a jacket of asbertos. The article to be baked is put in the vessel, where it is acted on hy the heat derived from the steam, though the vapor nowhere touches the food. The quantity of the steam and the pressure are regulated by means of little wiheels. There is no buining liy the process, meats are not charred, their flavor does not p iss off; the juices are preserved, and the kitciten is free from the usual disagreable odors. Milk can be boiled without burning, and s ups of delicate flavor can be prepared and kept better than with a stove or range. A great advantage of the new process is that no fires have to be kept lit as in a range, there is no dust or ashes flying about the kitchen, and the heat can be applied more speedily, and with less trouble than is the case with a range. The steam can be shut off or turned on at will, and after serving its purpose may be conveyed away for use in heating apartments. Wherever a steam boiler is used the ovens can be made available at a small expense. If the numerous steam heating companies, which have obtained permission to rip up the streets, ever get at work and supply steam heat to houses, the Ashcrott oveus will very likely come into general use in private houses, as they deservedly should, in view of the many advantages they possess over the cooking appliances in ordinary use. -Manufacturer and Builder.

A detonating compound, invented by M. Petry, and termed dynamage, was lately tried by the Austrian military authorities. The initial velocity obtained with it in rifles was 323 to 356 m ., as against 295 to 302 m . with powder. The firing proved, somewhat less eract than with powder (thought to be partly due to vibration of the rifle, partly to want of confidence). On the other hand, there was no deformation of cariridges, much less heating than with powder, and less need of cleaning afterwards.

Scieutific.

SIMPLIFIED HOLTZ ELECTRICAL MACHINE.

BY GEO. M. HOPKINS.
In the domain of physical science there is nothing capable of heing illustrated by more brilliant and pleasing experiments than frictional electricity ; the means of studying it experimentally are in every one's hand, and if it were hetter known, doubtless many who are now comparatively uninformed on this subject would begin to make it a matter of study and experiment.
Many will recall the time in school days when the professor, with great exertion, trundled the ponderous frictional machine from hehind the glass doors of the laboratory calinet, and alter no end of wipinge, adjustments, and applications of amalgam, and after exerting an enormous amount of muveular force, succeeded in discovering that the atmopheric conditions were vnfavorable to the generation of electrivity, and the stulents, after being shocked by a quarter inch spask, were further shocked, and in another way, when informed that the philosiphical machine must be reconsigned to its glass housings until a more propitious day.

Such was the general experirnce of the student of science a few years since, and such it is to day in some of our ellu-ational institutions; but many of of our schools - to their credit it may be said-have kept pace with the times and bave provided modern apparatus capable of being used successfully under all conditions. The more recent forms of Holtz electrical machine are vastly better than the earlier ones, and the earlier ones were far supurior to any of the torms of frictional machines. The makers of the improved Holtz machine in New York, Boston, and Philadelphia furnish them at reasonable prices, but there are numbers of our experimenters and stidents who would hadly feel warranted in purchasing one of them, who would construct one but for a few difficulties which at first sight seem alnost insurmountable to the tyro. The questions that heset the inquirer are: (1) What kind of glass shall be used? (2) How shall the glasses be apertured? (3) How shall the parts be adjinsted and manipulated to secure the wonderful results attained by this machine?

It is the ohject of this article to fully answer these queries and to give such details of construction as to enable anyone having even a moderate merhanical ability to make, in a very simule manner, a machine fully as eff ient as the best in market; and that, too, without any cousiderable outlay for materials. Without descrihing in detail the principle upon which the ma. chine operates-these matters being fully treated in all works on physics-I will describe a machine which was made in odd moments as a matter of recreation, and which is as efficient as could be desired, yielding a spark fully six inch + in length, e, fuivalent to one half of the diameter of the rotating dink. This machine is shown in perspective in Fig. 1, and in planin Fig. 2. Differnt forms of apertured disk are shown in Figs. 3, 4, and 5 . The glass for the disks is selected from common window glass. It should be as thin as possible, of uniform thickness, and flat. It is not e-sential that the glass be absolutely aree from imperfections, although this is desirable. The rotating disk is twelve inches in diameter, the fixed disk is fourteen inches in diameter. I begin witn the glass disks, as it is here thit most of the difficulty in making the machine is supposed to lie; the especial trouble being in making the aperture in the revolving glass for receiving its hollow shaft, and in making the three large apertures in the fixed glass. I dispense with the hole in the revolving disk and secure it to a vulcanite collar by means of a cement composed of pitch, gutta percha, and shellac equal parts, melted together. The method of applving the cement for this purpose is to warm the vulcanite collar, then cover it with a thin layer of the cement; then, after making the glass lather warm, lay it on a paper on which are described two concentric circles, one the size of the glass disk, the other the size of the crllar, and while the glass is still hot press the collar down upon it, The vulcanite collar is screwed on the end of a wooden sleeve, C (Fig. 2), having at one end a shoulder to receive the collar, and at the other end a sinall pulley to receive the driving beit. The sleeve, C, turns upon a piece of three-eighths inch brass tubing which extends through the vertical post, D, ten inches high and two inches in diameter. The end of the sleeve, C, next the glass disk, B, is countersunk to receive a screw which enters the end of the bruss tube holding the sleeve in place. This screw is covered by the glass when the revolving disk is in its place in the machine. The glass for the stationary or apertured plate, A, is first cut in circular form and then divided diametrically, and the apertures
are formed hy cutting half from each plate, a very simple matter as compared with cutcing the three holes from an entire disk. The lateral holes are t.o and three-quarter inches long, and one and three quarter inches wide at the larger end, and their sides are nearly on radial lines extending from the cent-r of the disk. The central opening thronsh which the slepve, C, extends is approximately circular, but is slightly elongated at $e e$, to facilitate the removal of the portion cut out. Of course the simplest Way to get the glass in'o the desired shape is to have a glazier cut it with his diamond, but any one may do it with one of the twenty-five cent steel roller glass cutters sold everywhere. The disks of the machine represented were cut in this way, and the notches in the semicircles of the fix ${ }^{\circ}$ disk were cut with one of these iuexprusive yet useful tools. The only preraution necessary in cutting the not ches is to make them rather flaring to permit of the removal of the piece after it is cut.

The two halves of the fixed disk are fastened together by two elliptiral pieces of glass cemented to the two halves, between the central and lateral openings. The cement used is the same as that above described, and it is applied in a sinilar manner. The cement known as "stratena" answers very well for this purpose, but it must have several days to dry before the machine cau be u, ed.

The efges of the glass around the apertures and along the seams should be varuinhed with the best quality of alcoholic shellac varnish to prevent the accumulation of moistare.
Paper inluctors, c, are attached to opposite sides of the apartured glass by means of starch praste made by cooking stiarch W_{i} itil it begins to thicken, and conling it befire it becomes clear, i.e., while it is still of milky whiteness. These inductors are made of filter paper or of siugle thick drawing paper, and φ es tend from the lateral openings or windows ahout one third the distance b. tween the two windows in a circular direction. The outer edges of the inductors are arranged on a ciicle a little snaller than the revolving disk. At the pud of each inductor and upout the 0 posite sides of the glass are pasted pieces, d, of gilt paper, which project into the window, and when dry are serrated, the points of hie treth leing on the center line of the windows.
In front of the revolving plate, \mathbf{B}, two combs or collectors, \mathbf{E}, are supported upon glass columus h tving wooden bases and tops. These combs are made of three-eighths inch brass tubing, the two pieces being fitted together and fastened with sott solder. The points, which are simply bank pins, are driven into holes in the frass tubes three-eighths inch apart. The inner ends of the tubes forming the combs are soldered to brass ball battons; the outer ends are inserted in wooden balls, from which wooden screws extend backward to receive the deeply grooved wooden nuts, F, Which hold the edges of the apertured disk, A. The points of the comlis each cover a s ${ }^{1}$ pece $2 \frac{1}{2}$ inches long, or about equal to the width of the paper inductors. Care should be taken to avoid bringing the inner ends of the combs nearer together than is ahsolutely necessary, and the outer point should be at least oneeighth inch from the 1 eriphery of the revolving plate. The points should be as near the face of the revolving glass as possible without touching. The combs are clamped in place by wooden screws in the woolen tops of the glass standards.
The outer ends of the tubes supporting the combs are fitted to tubes soldered in the large hollow balls. Through these balls the discharging rods slide with a gentle friction. The inner ends of the discharging rods are provided with spherical knobs, and their outer ends are fitted with wooden handles well varnished.
The cross arm, G, instead of being supported from the center, ay usual with the apertured revolving plate, is elongated and bent ${ }^{80}$ as to enter the rear end of the tube which forms the bearing for the sleeve, C. It is split to create friction in the tubrs to retaiu it in position, and in addition to this the screw which holds the tube in the post, D, passes through a bole in the tube and bears against the exteusion of the cross arm.

The free end of the cross arm is carefully rounded, and the pins correspond in number and position to those of the comb-, E : The cross arm when the machine is in use, is placed opposite the euds of the paper inductors, as shown in the illustration.

The lower edge of the apertured plate, A, rests in an adjustalle support on the table.
The base of the machine is 13 inches wide by 14 inches long, with an extension 9 inches long for receiving the standard of the driving pulley, which is made adjustable ou the table to tighten the belt, the table being slitted to receive the surew projecting from the standard, and the foot of the table answering as a nut to clamp the standard in any desired position. The pulley on the sleera is $1 \frac{1}{2}$ inch in diameter, and the driving pulley is 6 inches in diameter. Almost any kiud of belting will answer, but a gut string is preferable.

To complete the machine two condensers or small Leyden jurs are requirnd. These may vary in siza; in the :nachine shown they are 21 inches in diameter and 6 inches high, and are covered on the inner and outer side with tin foil to within 3 inches of the top, the starch paste before mentioned bring used to fasten the foil. The uncovered portion of the jar is varnished with shellac. If jars of the desired form and proportion are not obtainable, bottles may be readily cut hy means ol a hot curved rod of rron about une q:arter inch in diameter.
The condensers are placed outside the glass coloumns under the tubes that support the combe, and a small chain hanging on each tube touches the tin fivil lining of the j ir.
The outer coatings of the j res are connected hy a small hrass chain lying on the table. The plate, A, should be plited abont three-sixteenths of an inch from the plate, B, and it must be turned so that the eilge of the windows to which the gilt paper is attached is rxactly opposite the terth of the combs, E.
To charge the machine the ends of the discharge rods are lirnught into actual contact, and a piece of vulcanite, a quarter of an inch thick, 4 inches wide, and 10 or 12 inches long, is rublud with a catskin, a piece of flannel, or a piece of silk, and applied to one of the paper inductors. At the same moment the machine is turned toward the gilt paper points. A stron 2 smpll of ozone and an increased resistance to turuing are the first indications of the successful charging of the machine. Now, by slowly separating the discharge rods the spark will pass over an increased distance until it is fully 6 inchis long. To produce the silent discharge all that is reguired is to remove the chain on the table from one of the jars. No special directions are reg "ired as to the managenent of the machine. A dry itmo phere is favorable to its action, and it must be kept free from dust. Air currents interfere with its operation ; therefure it should be used in a room with the doors and windows shut.
1 have so far described onlv one form of apertured plate. In Fig. 3 is showu a form in which the disk has a central portion, 15 inches wide, removed and the two parts are connected by - Whass strips a a and $b b$, cemented in the manuer already described When this form of plate is used the combs must be inclined to correspond to the direction of the edg s to which the gilt paper is attached. Fig. 5 shows the usuat iorm of plate which requires the aid of he glass cutter, as the holes cannot be readily made by one unused to operations of this kind.

THE EFFECT OF FREEZING ON PLANTS.

When frost attacks plants to such an extent that ice is formed in their tissues, says the Gardiner's Chronicle, it has been observed that the ice does not occur within the bags or cells of which the plant is made up, but outside or between them. The rason of this is probably because the contents of the cells are thicker and denarr, and do not freeze so readily as do the thinner and more watery juices in the spaces between the cells. In this manner the essential part of the cell-so far as its lite actions are concerned-the thick protoplasm, is less liable to iujary. Moreover, as a consequence of the low temperature, the watery part of the cell-contents exudes from the interior through the cell-walls and there freezes. The expansion which takes place when water freexes, therefore, does not, at least in slight cases, take place within the cell, where it would do mischief by bursting the cell-walls, but outside them, where there is more ro m to expand and less risk of tearing the tissurs. When the frost is more severe the tissues do become torn, cracks and fissuers occur, the protoplasm is killed, branches fall, leaves wither or rot, and dea h ensues. But where the it jary is less, and esprecially where the protoplasm is uninjured, when the thaw comes the ice outcide the cells becomes melted, and the water, by the power of diffusion, passes once more through the cell-wall into its ctvity, there to mix again with the more drnse protoplasm. It is clear, then, that the danger to plants from frost is proportionate to the water they contain. If they are in an unripe, sappe condition the danger is far greater than if they are comparatively dyy and at rest. Tubers and seeds, for instance, are specially adapted to resist cold ; and how well they do so has been shown in the case of wheat which germinated at home after hiving remained thronghout the winter in the Arctic regions.-1lining and Scientific Press.

The correspondence between the distinguished astronomers, Bersel and Giuss, has betn issued under the auxpices of the Prussian Academy of Sciences. All but a few of the letters on scientific suljects which passed between the two astronomers during a period of forty years are included.

Fig. 1.-SImplified holtz electrical machine.

Fig. 2.-Partial Plan of simplified holitz machine.

Fig. 3.-APERTUKEN DISKS.

NOVEL LIME LIGHT.

NEW LIME LIGET.

The lime light illustrated herewith possesses a few novel features of considerable value, yot the least among which are that it will take a block of common lime of any shape and of any reasonable size, instead of the expensive cylinder usually em. ployed, and the light being once regulated, it may be turned up and down from a distance without the necessity of approaching the light for focusing and adjustment.
The particular form of apparatus illustrated is intended chiefly for theatres and other large inclosed areas. The chamber in which the combination of the gases takes place contains a sories of perforated metal tubes, one within another, the function of which is to insure the complete admixture of the two gases before they arrive at and issue from the burners, which are fixed upon the upper part of the cylindrical chamber.

This feature of the invention is an important one, as it in. sures the perfect union of the gas without introducing an element of resistance to its tlow as occurs when gauze, coils of wire, shot, and other obstructions are employed with the idea of deflecting the currents and so of securing combination.

For the purpose of regulating the light two levers are provided, one on each side of the apparatus. These levers have engraved upon them the names of the gases (oxygen and hydrogen) which ther respectively control by means of stop taps. These taps being once adjusted require no further attention, and the light may be turned up and down and regulated at will by means of the tap shown at the bottom of the apraratus, and which controls the supply of both oxygen and hydrogen. This tap may occupy any convenient position when the light is situated where it is not readily or conveniently accessible.
The pipe shown in the centre of the apparatus is connected with the ordinary gas service, and supplies gas for the purpose of warming the block of lime, igniting the mixed gases, and preventing explosions. It is stated that the apparatus is so simple that any one may work it with perfect safity, ard that it gives ten to twelve times more light than an ordinary burner using the same amount and quality of gas.

The apparatus is being made and introduced by the inventors, Messrs. Allen \& Co., of Cardiff, England.

RED SNOW

On the 25th of last April there fell in the French departments, Basses-Alps and Isere, an abundant snow strongly tinged with red dust. The red matter was so abundant that from Barcelonette all the mountains looked ochery up to 2,800 to 3,000 meters. Above this the snow remained quite white. A notary of the place had a quantity of the snow collected, and, after fusion and filtration, sent some of the dust to M: Daubree, who found in it a large proportion of carbonate of lime, also mica and two felspars, one of them being orthoclase. The powder, then, had probably a terrestrial and not a cosmic origin ; but it appears not to be volcanic, like the ash which has sometimes fallen in Scandinavia after Icelandic eruptions. It also differs from the sand of the Sahara, often carried great distances by winds. The point whence it came is still uncertain, but it is interesting to note that the same kind of substance hid fallen in 1846, precisely in the same departments, and in 1863 in the Eastern Pyrenees. Showers of similar dust seem to have fallen in Saone-et-Loire on the 15 th of April, and in certain parte of Algeria on the 24th.

TEE FUTURE OF ELECTRICIIY.

At the weekly meeting of the Society of Arts, Professor John Perly read a paper, which was illustrated hy many experiments, on "The Future development of Electrical Appliances." He said : electrical energy can be tıansmitted to a distance, and even to many thousands of miles, but can it be transformed at the distant place into mechanical or any other required form of energy nearly equal in amount to what was supplied ? Unfortunately, hitherto the practical answer made by existing machines is "No." But, fortunately, Joule's experiments and othrer facts tell us that in electric machines of the future, and in their connecting wires, there will be little heating, and there. fore little loss. We shall, at no distant date, have great central stations, possibly situated at he bottom of coal-pits, where enornoous steam engines will drive enornous electric machines. We shall have wires laid along every streat, lapped into every house, as gas-pipes are at present; we shall have the quantity of electricity used in each house registered, as gas is at prosent; and it will be passed through little electric machines to drive machinery, to produce ventilation, to replace stoves and fires, to work arple-parers and mangles, and barbers' brushes, among other thing;, as well av to give everybody an elertric light. It had heen supposed that to transmit the power of Niagara F.tlls to New York a copprr cable of enormous thickuess would be needed. Profussor Ayrton showed that the whole power might be transmitted hy a fine copper wire, if it could only be sufficiently well insulated. He also showed that the one thing preventing our receiving the whole of our power was the mechanical friction whit h occurs in the machires. He showed, in fact, how to get rid of electrical friction. Piofessor Ayrton and himself liad c me to the conclusion that very large continuous current machins, иith separate exciters, or perhaps even magneto-electric machines, dricen very last by steam engines, will have an important place in the future transmission of energy by electrical metholls. With such machines it would be possible to heat, light, and ventilate all the louses in New York, and to give to lange and small workshops the power rqquired to dive their machinery by means of an ordinary telegrap, h wire (but with some exceptionally gooll method of insulation), transuitting enrrgy
frim as great a distance as the Falls of Niagara. The fre m as great a distonce as the Falls of Niagara. The expriments
of Dr. Siemens shuwed that there of Dr. Sirmens shined that there could be no doubt that the innoduction of ele ctrie railways everywhere was mertly a question of capital and the sacrifice of much existing plant. This kind of pool' was very much nerded liy capiralists. But the electrician saw nuch lurther; he saw better insulation for the cenductor,
and al plication of the alouve piiuciules to bundreds of and atplication of the aluve pinciples to hundreds of miles of rail instead of a housand yarils; he saw, in fict, that the larger the +xpriment the greater must be its success. He looked forwaid to the al sence of a vitiated atmesphere in our undergrould railwas. He saw that the weight of rails (for there would be no hinavy loconotive in the future, each carriage would have its oun driving and breaking machinely) and the cost of hidges and wear and trar of permanent way mintst become less that one quater of what they are at present; be sam, in fact, all the advaniuges that would arise, when instead of making a heary
stcam \curvearrowleft ngine travel back wards and for whrds with stram +nginte travel back wards and fol wards with carriaces, the caringes alune travel, and the steam engine is not near the railway at all. After a number of interrsting exprriments bearing on the sulject of the storage of entigy, the lecturtr concluded by exhibiting models to illustrate his brlief that it will become possille by electricity to eluble a man iu London to see an occurrence going on ill a distaut town.

A Novel Invention.-We have examined a new and certainly valualle improvement in the way of an electric wire fence, patented liy Dr. J. H. Connelly, of Pittsburgh. It is claimed that it will not tear or lucerate stork, as it does away with the batb or spur, and that it will repel the stock or other intruders promptly, as it gives a sharp stinging tremor or shock when touclid. It is aloo more easily spen than other wire frnces fom the fact that the plain g.lvanizt d wires are not iwisted together, but placed about one inch aprart upon suitalle insula toget wooden posts, with as many such courses of wire as may be desired. It can be $I^{\text {ut }}$ up very chenply, asd there is nothi' g to get ont of order. It is worthy of the attention of the public. It has been
examined by a number of pructical examined by a number of prectical nen aud pronounced a success.

Cracks in Boilers.-A new method of repairing cracks in boiltre, invented in Geimany, consists in the use of a sort of wedge link-a pair of tapered pins connected with each other in oue solid body by a flat wedge.

(waturt Thatituy.

STRAW LUMBER.

We have on several occasions referred to the straw lumher manufactured by S. H. Hatnilton, of Lawrence, Kansas. The Northwestern Lumberman reports that the factory was recently destroyed by fire but that it will be immediately rebuilt. The same authority speaks of a specimen of this prolluct shown in Chicago, twelve in ches square and seven-eighths of an inch thick, one side of which is varnished, presenting a rich and highly finished appearance, and heing presented under the designation of "Kansas walnut," puzzled some well-informed lumbermen to disrover its true character.
There can be no question that the straw lumber is admirably adap'ed to many kuds of finishing work, barrels, table and counter tops, fine donrs and ornamental work, and we are assured that it ca! be produced and sold in competition with the finer grades of pine, or in competition with wide walnut, at abo: t cne half the price of the latter. The standard manufacture is in widths of 32 inches, a length of 12 feet and a thickness corresponding to that of surfaced boards. These dimensions may be varied to suit such orders as may be given, and embrace any width, length or thickness. Unlike lomber, however, narrower widths are the most costly. The straw lumber may be ripped vith the hand-saw or upon the buzz \times aw ; may be run through the sticker for the manufacture of moldings, and takes a nail or screw about as well as oak. It may be finished with varnish or with paint, and is susceptible to a high pulish. It is water and irractically fire pronf, heing manufartured under 500 dryrees of heat, and we are assured has been boiled for some hours withont any apparent change of structure. Its tensile strength is greater than that of walnut or oak, and its weight about one-fifth gruater than the former whon dry. It is made from any kind of st raw including hemp and flix fiber-in fact, from any material that will make pulp-and a ton of $s^{2} r+w$ will produce 1,000 leet of boards. The pulp is rolled into thin sheets, a number of which, corresponding with the thackness of the lumber desinell, are placed togethrr with a peculiar cement which is claimed to be waterpoof, and are then rolled under a pressure sufficient to amalgamate them into a solid mass, which may be worked with the
plane if desired. flane if desired.

When it is rempmbered that it takes 100 years to grow a tree to maturity suiting tor commercial purposes, and a tree producing 32 inch lumher will reyuire fally twice that time, 4 hile $20,000 \mathrm{ft}$. per acre is a large yield umder the most favarable circumstances, it will at once he realized that where 2,000 can lie taken from an acre of ground, fur an indefinite number of years, the process which enables such a re-ult to he arcomplish deand which will yield a really valualle lumber, is one of vast importancs. We look for valuable results in the future in the mannfacture of lumber from what is pratically a waste material, but which wiil be produced in eudless quantities so long as the United States maintains its character as a ar in producing country. The factory at the time of its destruction ly fire was turning out 20,000 leet per div, and had orders on hand for
$10,000,000$ feet.-American Cabiuet 10,000,000 fett.-American Cabinet Makır.

CEMENTS AND GLUES.

At a recent meeting of the Polytechnic Club of the American Institute, Dr. John Phin read an interesting paper on cements and glues which we condense as follows:

Cements are to be divided into four classes, according as they dry, congeal hy oxidation, harden by cooling, or "s set" hy other chemical changes. First ave those which harden by evaporation. Und. r this head may he classed paste, mucillage and their varieties. Giues to a certain extent dry.

The second class includes the oils. These are said to dry, but it is not by evaporation. They lose nothing, but absorb oxy . gen from the air. The cement weighs more after harilening than when first applied. Cements which congeal by oxidation cannot be treated in the same way as those of the first class. They require a longur time to handle. The hardening goes on from the outside inward. For example, mend a piece of porcelin with one of these cements. Test it in a few drys, and aithough the outside will be hard the inside will not a!pear to have dried in the least, and will have no tenacity. Leave it for six monthe, al dit will be very strong.
Thirdly, wo have those cements, which harden hy cooling. These, instead of gaining their strength slowly, like thnse of
class two, become hard at once. Shellac is a good example of a
cement of this kind. China put together with melted shellac is extremely strong.
A fourth class of cements may be represented by plaster-ofParis, This is the type of an extensive clase, including the
whole line whole line of mortars and hydraulic cements, on which depend our great engineering works and even the houses in which we live. It forms a chemical connpund conthination with water first, and
then more slowly hardens then more slowly hardens by drying, a part of the water evap-
orating orating.
In order to use a cement successfully we must know to what clas; it belongs and treat it accordingly. Next, we must know how to nut it on. In no case should it be nsed in a large quantity. The less the better is a good rule to follow.
In
mortar we mingle sand, which makes the actual thickness of the lime hetween the stony surfaces in all cases very slight, however nuch miotar we may employ. In the use of glue this is not pr cticed or necessary. The joints made by carpenters are grod examples of the minute quantity of a cement which is necessary. Place a well-made glu-d joint on the pdge, and it is almost imnossible to fiud the lines of glue. Its position is mainly discovered liy the l lirection of the grain of the wood.
Intimate coutact between the cement and the ellyes is upees. sary. This is not easy, on account of the layer of air which
adhares to all lodies. This layer of air is what causes neefles to float when lordies. This layer of air is what causes neeifles to float when carefully pliced upon the surface of water. When
an orfject is warued the film of air is easily mover. The hot an orject is warmed the film or air is easily movel.t. The hot
noedle sinke, and to the lot body the cement will adhere easily Ineonle sinke, and the the liot body the cement will adhere easily.
it is parily for this rasor, that in gluing it is needful to have
the the work warmeri. The rubbing of the surfaces together gets rid of the air, and then not only with glue, but with all cements, the surfares must be pressed closely together.
Common glue las eliormous strength and adhe-ive powers if it is good. But to be good it must not have been injured in the Inaking by deccompusition; not only is the glue itself liable to be injured in this way during the process of manufacture, but the animal matters such as skin, off.l.l from the slaught-r houses, hoots, \&c.., are peculiarly liable to decomirosition. When this happ ns the qualiy of the glue suffers in proportion. In the process of matufacture itself, which is a kind of j -lly making on
a large scale, there are numurous aceidents which are liable to ingire scale, there are numprons aceidents which are liable to injure the quility. All of them seem to be forms of decomposi-
tion ; in fact, glue is not free from danger in this respect until it
is is entinely fry. glue ihe not free from danger in this respect until it
itue will lie pleasant to b.th taste and Ss eniurely dry. The hest gloe will le, pleasant to b.th taste and
smell, onit if it is not so its strength has been impaired. If in no way offensive either to taste or smell, it may be trusted to hold uo.d noore firmly than its own fibers adhere to each other.
The strongest known glue is that made from the skins and sounds off fishes ; this is known under the name isinglass or fish glue, and the strongest glue of this kind is made by the Laplan. ders fiom the skin of a kind of perch. The Laplanders use it in making their bows, which are both stroug and durable. In haking it their cold climate is greatly in thrir favor; here e fish
skin will begin to undergo decounposition before it can be dried. In making it the undergo decounposition before it can be dried. fn making it the ekins are put into a bladder, which ansivers This gatue is, as may be imagined, very elastic. Isinglass is very liable to be spoiled in making by overheating.
The pastes are all made from starch in some of its forms. Gluten is also used for a paste, but stareh in the best. All additions of rosin, \&e., coinmonly recommended are a damage to paste. Dextriue, or "'British gum" is of immense value in the arts as a cement. It is derived from starch by roasting or by the
action of nitric acid. It was discovered by action of nitric acid. It was discovered by accidental overheat. ing of starch, a aud its srocess of manufacture was for a long time
kept secret. Its chief use for some sept secret. Its chief use for some time was in the cotton
mainufucture it is said the. It is the standard gum for postage stamps, though this country gum arabic and cheaper substitites are used in Which we have fertrine is one of the most valuable substances getherally we have for making pastes, \&c., and deverves to be more is mucherally known. Its usefulness as a material for sticking paper s. much qreater than gum arabic, being free from many of the
objectionable featues of No jectionable features of the latter.]
since crment can be fire-proof which contains organic matter, lead, or, $600^{\circ} \mathrm{F}$. Cements a temperature about that of melting
silicicate $600^{\circ} \mathrm{F}$. Cements contaiuing oils will not be fire-proot.
mixed with asbestos is the nearest to a fire.
 Wate a bright rod.
oil arer.proof glues are male in two ways. Glue and linseed mixture recommended, but I have had little success with the exptare. The chromates may be used with glue. These, when
tunosed to the light, reader the compound tyosed to the light, render the compound insoluble. Unfor.
tunately, although water will not dissolve a glue thus treated,
it still has an action upon it. The glue has in fact been, as it were, tanned by the combined action of the hichromate and the light. It will, like leather, swell up and soften when long ex-
posed to water. posed to water.
Aquarium cement is the best water-proof cement I know. The f. rmula is :

Litharge
White sand 3

Rosin 3

Build lin -eed oil
 As it sets rapilly, the set must not be added until it is wanted tor use. It is better for being put into a mortar and pounded. It hardens in three days. It will hold glass firmly, and with it glass tanks may be marle withnut frames, if the angles are well frick. with cement. It is a kind of mastic, and could be uied on brick.
What is technically known as marine glue stands almost hy itself. Where it can be put on hot it is admirable. It is composed of india rubber and shellac, dissolved in naptha. Some kinds are hard, some almost liquid. I have sepu this glue a.there to glass so firmly as to tear the glase when plates were separated.
In answer to a question the spenker said that strateua, whose wonderful powers are so fr quently exhibited upon the streets, is probably only the old Armenian cement. This is so strong that it will hold jewe's in plare, and is used for this purpose by the Armenian jewellers, who merely flatten the settings of their preciousstones and then stick them in place upon the metal with this cement. It is made hy dissolving ininglass in alcohol along with gum ammoniac. When well made it is perfectly trausparent.

To Polish a Card-Case.-Instead of varnish, white polish should be applied, with a broad camel hair brush, passing it over once only in the same place, letting it remain a few minutes to dry. Then pass it over another part, and so repented until all the painting is covered-taking care not to touch it with the hrush while wet, or the colors will work up. By this m-thod there will be no cloudiness, and after four coats so applied it will be fit to polish. Make a rubber of cotton wool very small; the surlace should not be larger than the tip of a fingre; slightly damp it with the white polish, place over it a fiue piece of cotton rag, and apply just a touch of linseed oil to its surface, with th a commence polishing one side at a time, holding it in the hand. Becarcful not to have the rubber ton wet, or it will work up the color:, and continue in this manner, rubber alter rubber, until satisfactory. When a hard body of polish is worked upon it, if any unevenness appears on the surface it may he removed with No. 0 saud-paper, used cautiously, after which repeat the polishing as hefore. When one side is done, let it remain a day or two to harden before operuting on the other.

Walnut Coloring for Wood.-Dissolve equal parts of magnate of soda and crystallized ep-omsalts in twenty or thirty times the amount of water, at about 144°, and the planed wood is then brushed with the solution ; the less the water employed the darker the stain, and th- hotter the solution the deeper it will penetrate. When thoroughly dry, and after the operation has been repeated, if necessary, the furniture is smoothed with oil and finally polished, the appearance being then really beautiful. Before smoothing, however, a carelnl washing with hot water will have the effect of preventing the effloresence of the sul. phate of soda formel. In the treatment of Hoors the solution may be employed boiling hot, and if the shade produced is not dark enough a second application of a less concentrated solulion is made; after it is quite dry, it is varnished with a velfectly colurless oil-varnish. On account of the depth to which the coloring solution penetrates, a fresh application is not, soon required.
Black Surface for Box.-The peculiar glosey surface on the so called Japan trays can only be given by practice, but a near imitation may be effected as follows: Mix ivory black with melted size ; apply the wixture quite hot to the box; when dry, sand paper the box, then give another coat of black; when dry, piper smooth, at same time insing care not to remove the stain, so the lipht wood under ihe stain is exposed. Now proure 1 th. black J.pan and oue gill of turpentuue ; mix enough black Japan for present use witt: curpentine; only sufficient turpentine should be used to make the Japan fluid enough to run from the brush, and a fine-haired paint brush should be employed ; if properly done one coat will be sufficient. The box nill look nearly equal to the Japan goods. Dry the varnished box in a
warm room free from dust.

CARR'S WATER-CLOSET-SECTIONAL VIEW.

Clayton's Vacuum Brare.

CLAYTON'S VACUUM BRAKE ON THE MTDLAND RAILWAY.

The great difficulty in the way of automatic vacuum brake inventers has been that, to obtain "automaticity," there must be a reservoir under each carriage. Now this is just the difficulty, because Westinghouse invented and patented auxiliary reservoirs in 1871

The carriage superinte ident of the Midland Railway, Mr. Clayton has, however, succeeded in obtaining all the advantages of a reservoir, without infringing any other patent of right, by placing the brake-cylinder inside the reservoir.
The following reference letters explain the diagram :-
A. Reservoir hung on trunnions 4 .
B. Brake-cylinder placed inside.
C. Brake-piston.
D. Small hole through piston.
E. Packing ring.
F. Lever.
G. Rods to brake gear.

The driver creates a vacuam with Du Tremblay's ejector in the main pipe ard the lower side of the piston; the piston comes down to the bottom and makes a tight joint on the packing ring E, and the brake is off.

Then through the small hole, D (Clarton's patent), a vacuum is created in the upper side of the cylinder and in the reservoir. Now, to put on the brake, air is admitted to the main pipe and lower side of the cylinder, which, acting against a vacuum, forces the piston up, and, by means of lever and any arrangement of gear, applies the blocks to the wheels. To put the brake on quickly, as soon as the piston lifts off the ring, E, air passes into the cylinder round the rod.

In three or four minutes the brake leaks " off." This prevents any long delays to trains if it gets out of order. The brake is good, cheap, and simple, and much credit is due to the inven. tor Mr. T. G. Clayton.-English Mechanic.

Fantary maxaters.

CARR'S IMPROVED WATER-CLOSET.

The accompanying cut gives a sectional view of a water-closet, possessing a number of excellent features which have gained for it a wide reputation and a very general introduction. The manufacturer has spared nothing to enhance the serviceability and durability of this apparatus. The closets are made almost entirely of china, the use of putty and cement being entirely discarded. The distingui hing feat Mres of these closets are, the large quantity of water retiined in the bowl, the perfect sealing of the overfluw, and the une of an effective seal in the bottom of the hasin, in place of the usual pan. These closets are somewhat larger than those in general use, on which account the surface of water retained in the bowl is larger than the opening in the seat, a feature that has obvious alvantages on the score of cleanliness. The seal at the bottom of the lowl fits up tightly and solidly ayuinst a hearing, as seen in the cut, thus offring an effictive barrier against the entrance of fual and unwhole. some gasers from the sewer end of the apparal us--a feature which is decidd dly to be preferred, on the score of safety, to the loosely fitting raus commonly used, which, even with a water-seal, affird inadeyuate protection from this snurce of danger.

The ofrration of the apparatus will be readily comprehended from the fillowing statements, reference heing made to the engraving: The raising of th, pilll opens the seal at the bottom if the bowl and discliarges its contents, and, at the same tiwe, the water fupply is tunned on liy the pressure of the lever. shown in dotted lines against the lieal of the water facet. The water enters the overflow, and form this is dis. harged into the wasint, copiously flushing it with clean water When the pull is lowered, the seal at the bottom of the bavin is brough' to its seat, and the overflow pipe is effectually sesled with the w ter in the bain. By this sinple arrangement of parts, without unnecessary complications in construction, a water-closet is provided that is at once convenient, durable in service, and sate against the insidious dangers of sewtr gases. Should repairs become necessary at any time, a duplicate of any part of the apparatus may be obtainel of the manufacturer. He iry Huher (successor to Wm. S. Carr \& Co.), 106, 108 and 110 Center strett, this city.
In addition to the above described apparatus, the merits of which we have briefly pointed out, Mr. Huber, who has succeeded to the extensive business in general plunibers' supplies and sanitary appliances built up by the late firm of Wm . S. Carr \& Cu, manufactures a number of other special appliances, of which we may select sume fur description in future issues. Of these we may enumerate the patent "Monitor" closets, hopper closets for factories, prisons and asylums, patent swinging urinals, Carr's self-closing faucets, Curr's patent reversiblo
pumps, and patent basin aud bath supplies and overflows.

Preparations for the Paris Electrical Exhibition are being made with energy. The general Commissioner proposes to have 600 electric light-centres for the Palace itself, and he calculates that a force of about 800 horse-pwer would be required. This matter has been much discussed, and a circular has been addreosed to possessors of systems of electric lighting, and makers of steam-engines, with a view to securing the best distribution. No system will have monopoly, as the ol.ject is comparison. The exhibition is to have a department of electric toys. The various telephone systems will,farther, be renresented, and one interesting project is that of placing in the acoustic centre of the opera a transmitter, sending the music to the Palais de l'In. dustrie. It is also intended to have a very long telephone circuit, with powerful transmitter and the condenser for reception ; the latter gives the speech a force and distinctness hitherto unknown. International Exhibitions have often given birth to permanent institutions in the cities where they have been held; witness our Crystal Palace and the Pulais de Trocadéro in Paris. L, Electricite, while not looking for a new edifice as a result of the electric exhibition, desires that the event might bear fruit in three ways, viz, the formation of a society, a library, and a museum of electricity.

Preserfation of the Colors of Dried Plants.-According to M. Stortizl, the slow inmmersion of the fresh plant in a boiling solution of one part of salicylic acid in 600 parts of alcohol, and then shaking off superfluous moisture, previous to plessiug in the cusual way between blotting praper, will more
nearly preserve the uatural color then nearly preserve the natural color than any other method.

ㅋxilliug, xtr.

TAE ELECTBIC MIDDLINGS PURIFIER.

However simple in outward appearance, a grain of wheat exhibits, when looked into, a curious complexity of structure, organically as well as chemically; and the processes now emploved in converting grain into flour are scareely less complex and curious. Indeed, unless one has made a special study of modern milling he can have no idea of the many processes of reduction and purification a grain of wheat now undergoes between the bin and the flour barrel.
It is doubtful whether any other great industry has during the past ten years experienced so conplete a revolution as flour making. For the pievious half century or more, from the day when Oliver Evans stt up the first automatic milling mechinery in his mill on the Brandywine, the industry grew in volume and importance, but underwent no signal or radical improvement in machinery or processes. The non-progressive period came to an end about 1870 ; and since then change, and rapid radical change has been the order of the day, at least in the great mar chant mills, which turn out by far the larger and better portion of American flur.
The causes which led to the era of change were several, chiff among them the conditions and exigencirs of wheat growing in the new Nortliwest, the development of fheap railway communi cation with the seaboard, and the resulting possihility of competing with Austria and Hungary in supplying the flour markets of Wrstern Europe. The problem was to make good white flour out of the spring wheat of Minnesota, and the pr cesses of milling were revolutionized for its solution. Tu describe in detail even the more characteristic changes in the means and methods of willing thus brought about does not fall within the scope of this paper. It is necessary, however, to indicate roughly the more important of then to enable those of our readers who are not millers to appr, ciate the improvement in milling pro cesses to be described and illustrated b.low.
Structurally the wheat kernel is composed of the following parts: (1) The light, straw-like, valueless hull, comprising the three parts called epidermis, cpicarp and endocarp, togethrr making about 3 per ceut of the weight of the grain. (2.) The test, or epispern,, which forms, with an underlying nembrane, the inner skin of the berry. This part carries the coloring matter, and constitutes about 2 per cent of the weight. (3) The germ and its membranons expansion, say 5 per cent ; untritions but not desirable in the flour, since it carries an oil likely to become rancid and injure the swi etness of the flour. (4.) The central or floury portion, 90 per cent, composed of starch und gluten varionsly combined. The heart is the sofiest and contains the least gluten. In the successive layers around the centre the proportinn of gluten increases outward, the eutire amount varying with the kind of grain, the quality of the crop, etc., etc
The old process of milling involved but two di,tinct operations after the wheat had been cleaned-the griuding and the bolting, or separation of flour from liran. Three products were obtained: fine flour, more or less discolored by particles of 1 and 2; a coarser and more granular part, rich in gluten and dark in color, called middlings, and bran, more or less mixed with the other two.
To obtain the largest possible yield of flour the stones were set close together, or the upper stone "low." With sof, starchy, winter wheat, having a tough husk, low grinding gave excellent flour. With the hard aud brittle hulled spring wheat the flour was mixed with so much fine bran, which could not be bolted out, that it was unpopular and unprofitable.
The new process was designed to remove these oljections to the flour made from Minnesota wheat. The aim now became, not to make the most fine flour and the least middlings at a grinding, but the reverse; it being found that, when properly paritied or freed from branny particles, the middlings yielded a flour as white as that from winter wheat and much stronger, owing to its larger percentage of gluten. The new method was characterized as hiph grinding, the stones bring set so far apart at first as to granulate rather than crush the kernel. The stages of this process were four: (1) the granulation of ihe berry : (2) the separation of the protuct ("chop" or meal) by boling into tine flour from the starchy center of the grain, the middlings or haril glutinous portions, and the coarser bran: (3) the purfication of the middlings by an air blast, which winnowed away the bran mixed with them: (4) the regrinding and rebolting of the middlings, thus getting a strong, white, "faucy," or "patent" flour.

Under the stress of competition and the necessity of obtaining larger and larger yields of high quality flour, through the in ar-ase of middlings and the more perfect separation of discoloring elements, the still more complicated processes of gradual reduction were developed. By this method the aim is to remove the hull as completely as possible with the least breaking, to separate the weak flour of the heart of the grain from the rest, and to convert the more glatiuous parts of the berry into high grades of flour by slow and gradnal reductions, each time subjecting the several grades of middlings to successive purifications and subsequent reductions by means ot high grinding, or by cra-hing between rollers. It thus came to pass that the work of purifying nuddlings became the most inportant part of the millug epration, and the purifiers and their appurtenances the most conspicuuns and characteristic portion of the machinery of the flour mill.

The higher quality of the flour produced justified the greater cost and trouble, but the system was not all gain. The fiue fluurdant blown about the mill, particularly through the systems of purifiprs and into the settling rooms or dust houses, was soon found to be as explosive as gun-powder; and several mills were wrecked by the careless hand.ing of lights or by chance spurks from the rolls or stones firing the dust in the atmosplisere of the mill or in the purifiers. The inapplicability of the purifying system to the sualler custom mills, which constitute namerically the larger part of the milling interest, was another though minor ohjrection, the clief oljections being the extra life and fire risk involved; the cost ald cumbersomeness of the purifying syster:s; the power required to operate them; the space re. yuired for dust houses; the wastefulness of the system, some of the finer fi ur being blown away with the bran; and the largely increased complication of the work of flonr making.

Impiessed by the prevailing discontent of millers, both at home and abroad, with respect to the means of puritving mid"lings iug n'ry use, a young American niller, Mr. Kingsland Smiih, naturally gave much thought to the problems involved. While muking a practicul study of the European systems of mil. ling in $18 i 6$ and 1877 , Mr. Suith conceived the idea of using frictumal bectrici:y to remove the bran, and experimented enongh with an electrically excit-d hard rubb+r roller to conVince himself that the matter was worthy of investigation. On his ruturn home, he referred the problem to bis friend and former clawnmate, Mr. Thomas B. Osborne, of New Haven, Whose inventive taleut he hid a high respect for. Young Os: birme, hen a stuitent at \mathbf{Y} le College, undertonk the task, an i in a short thme devised the plan of the denired machine. It con. sinted of a series of hatd rubler rolls (-lectrified by the frictiou of hair, nilk, wool, or ot ..re suitable material), un ler which rolis the mid ling were to pass slowly along a shallow recpiver, the latter being lapilly shak-n so as to bring the bran to the top. The +xpretation was that the paricies of hight bran would beatreacted to the recolving rolls, where they wond cling until catried over a bran reveiver into which they ould he bruahel.

His prinuipal doubts wor whel her the electrified rolls would not also a tract the floury partich s, and whether the miterial attrictell wight not be repelled so puin-kly as to drfeat the denitied oljoct. Buth these doubts were di-sipatid hy teaction of the first working model of the machine. Tue principle of his device being happly established, Mr. Osborne added the nei essary attychments, and had tuade a working machine with twelve rolls. This machine was tested in New Haven aliout a year ugo, and from its successful working attracted much attention. It remici, ed to be proved, however, whether the machine Hould be erpually efficient in practical nse in all sorts of Wrailar. Tu setile this plupstion a machine was ply ed in the Allanuc Mills, Brooklyn, N.Y., where since May, 1880, it has The run almost continuously as a part of the uill machinery. hre countruetiun and appeaiauce of the elpctric purifier will be hade clear by the engraving on page 148 . The material to binatified-rinddisisg bran, and flourdust in whatever comthe roll-is received at the further end, and passes slowly uncier the rolls about iwo inches below. The agitation of the sieves causes the brun to rise to the suifice, whence the light particles leap to the rolls and cling thereto until brushed into a shallow gutter placed in front of each roll. Meantime the heavy and olectrically n jocted middlings descend by gravity and pass through the bolts in the order of their fineness Traveling braslies constantly sweep the bran from the gutters into the brin receiver on the left side of the purfier, in which is seen the ${ }^{8}$ pirill conveyor. By the tim the last line of rolls is reached the miterial has been successively dimiuished by the abstraction of the bran ard the screening out of the several grades of mid.
dlings, until only a trifling quantity of heavy refuse (if there be
any) is left to pass over the tail of the purifier into the spoat provided for it.
The power required to operate the purifier and generate the electricity employed is so slight that a man can work the entire machine with one hand. The trial machine in the Atlantic Mills purifies over fifty barrels of middlin s a day, and its eff. ciency appears to be entirely unaffected by lapse of time or at mospheric changes. The machine occupies a space nine feet long, five and a half feet high, and three feet wide. The proprietors of the mill say that it works equally well on spring aud winter wheat, and on all grades of middlings, and absolutely without dust. Dust-house material, wheu passed through the electric pur fier, yields fully half its weight of fine flour and middlings suitable for flour
This aloue would effect great economy in the working of large mills employing air purifiers. Compıred with the best air purifiers in use, by weighing materials and products, the difference in favor of electric purifying is found to be from six to eight per cent. The saving of apace and power is even more remarkable, the extra room required for air purifying and the power needed to drive the machinery and supply the blast being equivalent to onetenth the capacity of a mill; in other words, without any addition to the power employed, the output of a mill may be increased ten per cent. by the introduction of electric purifiers. For ex mple, the Atlantic Mills have a maximum capacity of 700 barrels a day, and average 600 barrels. The space saved by displucing the air purifirrs is 2,500 square feet. At the same time the engine is relieved of work requiring 22 horse power, now Pmployed in driving the fans and other purifying apparatus. The power saved by electric purifying will easily grind 60 barruls a dar, and the space saved will amply accommodate the stones and other machinery required to increase the average output to 660 barrels a day.
In dispenving with the use of air blasts, there is no possibility of filling the air of the mill or any part of it with explosive starch du-t, and the serious problem of insurance is thus matesially simplified. With the source of hazard removed the excessive rates charged for insuring flour mills would be unecessary.
Taking into account, therefore, the great saving in cost of machinery, in power required, and in space ; the more rapid action of the bolts since the material meets with no resistance in nassing ihrough the meslies ; the more perfect suparation of the bran from the flour products ; the diminished waste ; the fewer processeq riquited to achiive a wiven result; the diminished fire risk from the absence of duat; the great simplification of the wook of millung promised by elretric paritication and the prossible increase in the capracity of mills, the new system can srarceiy fail to meet with immediate attention if not favor at the hands of propressive millers. To those operating custom mills, it seems to offer especial advantages, since it makes possible the converston of grain in small distinct lots into new procese fluur, giving earh cantomer his own.
Thr intimate importance of the now system, if wider application su tains the pomise of its performance hitherto, must he enormuns. Our aunnal wheat crop is equivalent to sonething like $100,000000 \mathrm{birr}$ ls of fiur. The proprietors of the Athngtic Mills say that, "alter making all allownuces and reductions, we extimate the savi"g in material alone efferted by the electric puritier to he at least 10 cents on a harrel of $f l$, ur, wheat being at ! resent $\$ 1.20$ per bushel. By this estimate, the saviny of material in milling a yrar's crop of wheat would be $\$ 10,000,000$, and this is but oup of several savings made possible by electic parifying over purification by air blasts and the machinery now in use.
Little needs to be said in explanation of the detail illustrations, which tell their own story. Fig. 2 shows very clearly the appenrance of che bran as it leaps frem the sieves and clings to the rolls. The adhering bran is brushed off when it reaches the sheepskin cushion, which lightly tonches the top of the roll to electrify the haril rubber. The bran trongh in front of the roll has been omitted, to show the behavior of the bran more clearly. Fig. 3 shows the tail of the purifier lroken, to expose the shoot for the tailings and the spiral conveyor further in, by which the several grades of middlings are conveyed to their respective de livery spouts.

The Smith Osborne patents for this process of parifying middling are owued by The Electric Purifier Company, of New Haven, Mr. John Rire, General Manager. New York office, 17 Moore street.-Scientific Americxn.

A telephone line has heen set up between the Exchange and the Market of Minet el Barseal, at Alexandria, in Egypt.

Action of Electrified Roll on Bran. ELECTRIC MIDDLINGS PURIFIER.

end of purifier broken away to show middlings conveyor and tailings spout. ELECTRIC MIDDLINGS PURIFER.

Hatl สaldork and ciaxpentxu.

THE CORROSION OF BUILDING STONES.

By W. Matthisu Williams, F.R.A.S., F.C.S.

About fifty years ago two eminent French chemists visited London, and rather "astonished the natives" by a curious fashion which they adopted. They wore on their hits la ge patches of coloured paper. Coming as ther did from Paris, many supposed that this was one of the latest Paris fashions, and the dandies of the period narrowly escaped the compulsion to follow it. They probably would have done so had the Frenchmen shown any attempt at d-corative shaping of the prper. T'he reas on why they neglectrd this was thit it was litmus paper, and their ohject in attaching it to their hats was to test the impurities of the London atmosphere.
Blue hitmus piper, as every hody knows now-a-days, turns red when exposed to an acid. The Freuch chemixts found that their hat decorationy cleanged colour, and indicated the presence of acid in the air of London; hut when they left the intropolis and wandered in the open fields their blue litmus papur retained its original color. By using alkaline paper they conırivel to collect euough of the acid to test its comprsition. Tuey found it to be the acid which is formed by the burning of sulphur, and attriluted its existence to the su'phur of nur coal. At this tinue the domestic use of coal was scarcely known in Paris.

Subsequent experiments have proved that they were right; that the air of London contains a very practical quantity of sulphurous and sulphuric anids, and that tney are due to the combusti, n of that yeliow shining material, more or lees visible in most kinds of coal, and which has been occasionally supposed to be g ild. It is iron pyrite, a compound of irun and sulphur, When heated the sulphur is separated and burns, producing sulphurous acid, which exposed to moist air gradually takes up more oxygen and becomes sulphuric acid, which in concentratel solution is oil of vitriol. In the air it is very much ailuted by diffusion, but is atill strong enough to do mischief to somekinds of building materials.

In manufacturing towns, such as Birmingham and Sheffield, the quantity of this acid in the air is much greater than in London, and there its mischief is consequently more distinctly visible. The church of St. Phillip, which stands nearly in the middle of Birmingham, and is surrounded by an old church-yard, was so corroded by this acid that the stone peeled away on all sides, and its condition was most deplorable. The tombstones were similarly disintegrated on their surfaces, and inscriptions quite obliterated. It became so bad that a few years ago restoration was quite necessary, and it was newly faced accordingly. Some of the old tombstoues that are preserved may still be seell, and their peculiar structure is well worthy of study. They display a lamination or peeling away due to unequal corrosiou, cartain lay rs of the material of the stone having been evileutly eaten away more rapidly than others. Anyborly visiting Birmingham may easily examine these, as St. Phillip's churchyard is situated between the two railway stations of New Street and Snow Hill, and is but two minutes walk trom either.

Other stone buildings in the town have sulfierel, but in very different degrees, and some have quite escaped, proving the necessity of careful selection of material wherever coal fires abound. In Birmingham the action of coal fires is assisted by other sources of acid vapour. The process of "pickling" brass castings, i e., brightening ticeir su:face by dipping first in coinmon nitric acid ("pickle acky") and then in water is attended with considerable evolution of acid fumes. Besides this very widespread use of acid, there are several chemical $m+$ nufactories that turow still more acid into the air immediately surrounding them.

As an example of the action of the atmospheric acids of London upon building stones, I have but to name the Houses of Parliament, which have only been rescued from superficial ruin by the restoration of certain blocks of stone, and various devices of siliceous aud other washings that have been carried out at great cost to the nation. That such an unsuitable naterial should have been used is disgraceful to all concerned. The ruin commenced before the hailding was finished. At the time when its erection commenced there were abundant evidences of the ruinous action of London atmosphere on some kinds of stone and the capability of others to resist it, for some of the oldest buillings in the midst of the city sthow scarcely any signs of corrosion.

The Birmingham and Midlaud Iustitute was established and
in practical operation a $f \cdot \mathbf{w}$ years before the present nohle bnild. ing was erected. I was the tirst teacher there and conducted the Science classes in th: temporary uremines in Cannon street. Having observed with some interest the disintegration of st. Phillips' Church and other bu ldings, I was anxious for the saf ty of the new institute !uildings, an laccordingly made some experiments upun the material proposed to be used by the ar-hitect. The method of testing that I adupted was vory simple, and as the practical result has verified my anticipations I tuluk it might be adopited by others.

Firstly, I immersei some lumps of the stone in mnderately strong solutions of sulphuric and hydrocholoric acids respectively, and observed whether any visible action occurred after some days. There whs nune. I then roug ly tested the crinhing pressure of small samples in their natural state, and suljected similar sized pieces to the acils. I found that there were no rvidences of internal disintegration after several days immersion, and therefore inf-rred that the stone wnuld stand the acid vapours of the Biriningham atmisphere. This hay bren the rave with that portion of the budding thit was built of the material I tested As I know nothing of the material which is used for the extension of the buinling uuder the prosult architsct, I am unable to make any forecast of its probible durabilaty.

The experimenty I male at the time named with this and other bulding materials ju-tifed the comelusion that the worst of all miterial for exposure to acid atmospheres is a sadsion-, the particley of w'ich are held to fether biy lime to ie, or are otherwise surrounled by or intermingind with limestone; and that the best of ordinary material is a pure sun istone quite freje from lime. I do lot here cousider such luxurious mazerial as granites or porphories.

Compact li nestour, such aq good homogenous marble, stands fairly well, although it is slowly corroled. The corrosion, how. ever, in this case, is purely superficial and tolerably uniform. It is a very slow washing away of the surface, without any disiutegration such as occurs where a small ylu in ity of limestone acts as binding material to hold together a large quantity of siliceous or sandy material, an I where the agglomeration is porous, and the stone so laid that a downward infiltrati in of water catu take place; for it must be remembered that althuugh the acid oriyinally exists as vapour in the air, it is taken up by the fa!ling rain und the mischnef is directly done to the stone by this acidifi d water. This, of course, is very weak acid indeed. That which I used for testiny the stone was many thousanil times stronger, but then I exposed the stone for only a few days.

As a aove stated my experiments were but rude, but 1 think it would be quite worth while to construct crushing ap aratus capabie of registering accura ely the pressure used, aud to operate with standard solutions of acid upon carefully squared biocks of standard size, and thus to make comparative tests of various samples of stone when competitors for building materials are offered. In the case of the Birm ngham and Midland I:astitute building there was no such counpetition, the choice wis left entirely to the architect and my examination was conducted upon simply the material already chosen with the intent of protesting if it failed. As it stood the test I mer:ly reported the action in. formally, no action being demanded.

WOODEN BOILERS.

The almost incredible feat of m king steam boilers of wood was accomplished 76 years ago in Paludelphit, where they were used to furnish steam to the pumps.for pumping up the river water for the use of the city water works. They however lasted noly two years, when it became so diffisult to keep them steamtight that they wre abandoued for iron boilers. How was it possible to heat water in wooden boilers? It was accomplished by having an iron fire-box 12 feet long, 6 feet wille and 2 feet deep, placed inside a rectangular wooden chest, it fret loug and 9 feet square, made of plank nearly half a foot thick, securely boltel together by iron roils passing through the planks. The iron fire box had 8 vertical flues of one font in diameter, through which the water circulated, and around which the fire acted, and passed upward and through an oval flue, first above the fire box, carried from the hack of the boiler to near the front and back again, when it passed out into the chiunney. It was expected that these boilers would be very economical, on account of the non-conducting property of wood; and so they were to a certain extent, as the boilers did not need aiiy protecting covering The leakiness, hoxerer, entir $l^{\prime} y$ counteracted the o. her advant
ages, and the system had to be abandoned.

Fine Axts.

GOBELIN TAPESTRY.

Hand-made tapestry may be said to have died out about the commencement of the seventeenth century, but tapestry made upon the loom is still in existence at the Gobelin manufactory in Paris, and at Windsor, in England. Since attention has bern so much directed towards ancirnt needle work, the old handmade tapestries have been thought worthy of revival, and the work has been so arranged as to come within the compass of ladies' ornamental needlework. Without, therefore, emulating the vast dimensions of the anrient tapestries, or rendering the work tedious by the time required for its execution, full directions are given for reprolucing the Gobulin tapestry, it being felt that the novelty and quaintness of the work will be fully apireciated.

Like the true Gobelin, the work is execnted from the back, and can be made eithir of purse silk, filoselle, or single Berlin wonl. The latter with bold patterns, shoulit be selected by all beginners until the minutiæ of the work is understood. A strong wooden embroidery frame, with webbing up the sides, is required for the wool work, while small ones also with welibing at the sides are sufficient fur the silk. The irames used for Guipure d'Art, and cuv red with silk, are large enough for many pieces of tapestiy. The patterns chosen are the same as are used for cross stitch on lin n or Berlin detached flowers sprays, or landscape patterns ; the first named being the easiest, should be chosen to commence with. The frames are set up and the work is sim lar, whether done with silk or wool, the differunce being in the coarstness of the execution. The frame being rady, cords are carried backwards and forwards from one piere of webbing to the other. These cords should be of fine, wellnıade a hipcord, and should be laced in closely together and perfectly parallel. They take the place of canvas in ordinary woolwork and be ar the stitches, therefore it is of vital importance to the work that they should be put in at +ven distances, close to gether, and tightlv stretched. Their number must be the same as the number of lines reyuired in the pattern, therffore they must be counted and caretully arranged. Whipcord is used for the wool ; very fine twine for the silk tapestry.

Conimence to work from the bottom of the frame at the left hand side. Thread a wool needle with a shade of grounding color, and tie it on to tefirst cord, bring the wool ap over the cord. Put the needle in over and under the second cord, and bring it out forming a loop on that cord with the wool, and so that the returuing wool crosses over the wool coming from the buttom cord; then make allother stitch on the right of the one just formed, aud on same cord. These two loops count as one stitch; they must be always drawn up evenly and close together. The next stich is made on the third line in the same way, and so on until every line of corl has a stitch upon it, and the top of the frame is reachert. The wool is then fastened off, and another liue commenced from the bottom, and close to the first made one. The appearance on the right side (the work being exeruted on the wrong) is like the tight loops seen in carpets. For groundings, one shade of color is carried straight up the Work, but designs of various colors have to be more carefully treated. It is necessary then to thread a number of needles with the shades of color, to secure them, and work them in in their places, carryi,g the wool along the work where not required, putting it in and making a stitch, and then carryiug it oll again until the top of the frame is reached. It will be easily understoo 1 that each shade of color will increase the difficulty of the work, ald therefore, it is advisable to commence with hut few. When silk Gubelin is worked, the silk need not be threarled, but sufficient for one line should be wound upon a thin fine caril, and that passed through the cords and the loops so mule, as th; silk on the card will kerp fresher than when threaded. Silk work in Gubelin is very beautiful, the variety of shades and the number of stitches used cuntributing to give it a soft and pleasing appearance; but the work will be fuore useful when executed With wools, as it will form a change to cross stitch, will be as durable, and, as it is executed from counted patterns, it will be within the compass of everyone. Gobelia will form excellent cushions, fender-stonls, mantle and table borders in wools, but will need juining where long lengths art undertaken. The silk Gubelin is useful for hand screrus, bags, pincushions, and for equares in chair backs alternately with heavy laco.

Another plan for imitatiug Gobelin tapentry with silk is only practicable for small articles, such as necktie ends, baga, hand screens. It is doue on the right side aud the stitches taken over
fine knitting needles. The patterns are the same as before
deacribed, the pins taking the place of cords. A silk or satin foundation stretched on a frame is necessary, and the pins tacked on to this close together with strong tacking threads. The embroidery silk is brought from the back of the material, passed over the kuitting needle and returnel to the back, and passed over the needle again close to the first place to complete the stitch. Two or three stitches of the same color close together on the same line may be done at once, but the tendency of the work should always be upward from the bottom line to the top, and but litule deviation from this rule allowed. The material being the ground, only the pattern is worked. The needles should not be large, as they are withdrawn, and, if big, leave lonps too long for beanty. When the pattern is finished, paste the back of the work with embroidery paste, and leave the needles in position until this is thorougnly dry, then pull them out. The work may then be further enriched with a line of gold thread couched round everv portion of the outline, should the design be an arahesque. If both sides are shown, as in a necktie, a piece of silk should be laid over the back jart, but this is not otherwise necessary. - Ainerican Cubinet Maker.

AN ARTIST'S IDEA OF A HEATING STOVE.

We show in the accompanying cut a perspective vipw of a stove designed by the late Alfred Stevens, one of the most eminent of English sculptors. His work can be better valued now than it was in his troubled life-time. The genius of a sculptor, some of whose work has been not unreasonably compared with that of the great Michael Angeln, was but half understood by his countrymen, who ailowed him to sacrifice his hard-earned savings and indeed his life in the artempt to complete a public monnment for the execution of which P rrliam nt had voted an insufficient appropriation. We speak of his great work, the memorial to the Duke of Wellington, desigued tor St. Pual's Chnrch-yard, London.

Alfred Stevens was born in humble circumstances in Blantford, Dorsershire, in 1817, his father buing a painter of signs. As a child he showed remarkable talent for painting, and at the age of sixteen, through the liberality of a friend of the family, was sent to Florence to stuily the works of the old misters, and of Salvator R is', especially. Liter he entered the scudio of Thorwaldsen in Rome, turning his attention to plastic art, and remaining with that master several years. At the age of twentyfive, so well hal he improved his opportunities that he returned to his native village with the feelinge, talent and expression of thought, as well as the practical methods, of an Italian of the Middle Ages_a Pisano or a Ghib rti. He settled iu London, hul tausht at the art school of Somerset House. He removed to Sheffield in 1850, executing decorative work in iron and silver for manufacturiuy firms of that city. For many years he did valuable service to domestic art by designing innumerable decorative ohj cts of daily use, nearly all of which were distinguishel by the finest taste - decorations prop-r in metal, stone and marble, to say nothin! of works of higher pretentions, with which the names of manufacturers rather than of the real designer were associated. Thus his best years were consumed in making the reputation of others. While working for Hoole \& Rubson, in London, he produced for them stoves, fireplaces und fenilers of admirable design, which nade the fortune of the firm at the great exhibition of 1851 . Thousands of Londoners pass examples of his work almost daily, without knowing to wnom they are indebted for them. It was he who desig ied the admirable bronze doors and the portal of the School of Mines, in Jermyn struet, and the little srjant lions on the iron posts before the grille of the British Museum, as well as the very hand. some grille itself.

Stevens received from the government the conmission for his Wellington Memorial in 1857. F, urteen thousan I pounils was the sum voted for ts execution. But it was inadeputte, and was exhansted loug before the completion of the work, which, indeed, was never finished, althongh it is understond that it remains in such a condition that it could be easily completed. Eighteen years after Stevens began his Wellington Meinorial, during which time he was censured fur his delays and suffored much disappointment, his career was su ldenly closed by an attack of apoplexy, brought on by worry and overwork. Thus, what was to have been the crowning glory of his life proved to be his funncial ruin, and indirectly the canse of his death.

The stove which we show is one which challenges attention as fulı of most pleasing suggestions. It is shapely, substantial, and in every way richly ornamental. The front is m istly open, holding an ample grate inclosed by a border of ornament in

DESIGN FOR A STOVE, BY THE LATE ALFRED STEVENS.
keeping with the character of the sides. We do not say that it perfectly conforms to our ideal, for the human figures seems to us ont of place in essociation with the idea of high temperatures. To give such a disign as this its full value, it should be copper plated and bronzed, the oxide being buffed off from the projections to give a pleasing effect of high lights and emphasize the modeling. So treated, it would be beautiful, and if such stoves could be bought, even at high prices, we should find a new demand of which the trade never hears at present.

Is such a design as this practicable-supposing, of course, that it is acceptuble as to its art features ? In one sense, yes; in another sense, no. It is not a stove of the kind which could be pushed for a large sale among retailers, nor one in which the price could be made low to compete with some rival stove of the same class. It could not be weighed up and sold at so much a pound. If made, it would have to be bandled, valued and sold as a work of art. Such a trade is not open to everybody. Itrequires extra care and skill in production, and such a stove must be sold on a very different basis frcm the average open stove or base burner. It is a new line of business entirely, and those who are not prepared for something new would do well to
let this kind of thing severely alone. As a casting in iron, the stove shown in our illustration is practicable. It can be made, but it will cost probably twice or three times as much to make it as it would to cast an equal number of pounds of metal from average wood patterns. The patterns will cost vastly more, and the man who should try to make "a line" of such stoves and run them in competition with anything else in the market, or to change them from year to year, would be ruined. So he would be if, seeking art, he failed to reach it. There is no failure so absolute as a pretentious attempt at art which is spoiled by ignorance, by bad taste or by a sacrifice of beauty to the mechanics of construction. The sheet-iron figures of Justice which surmount so many of our court houses are not art work. They are simply abominations which make the jndicious grieve and wonder that Providence, in its inscrutable wisdom, permits such things to be. We warn the trade against this kind of art which is likely to originate in anything but an intelligent study of the principles of design. It will be neither fish, flesh nor fowl. Better a thousand times than this a continued adherence to styles which make no pretensions to art.-Mining and Scientific
Press.

SPECIMENS OF SILHOUETTES OBTAINED BY LAVATER.

LAVATER'S APPARATUS FOR TAKING SILHOUETTES.

We reproduce, as a historical curiosity, an apparatus which Was formerly much talked about, obtained a great success, and attracted the attention of savants and of physiologists, but which is entirely out of use at present.

Lavater, in his celebrated work on Physiognomy, describes it as an accurate and convenient machine for drawing silhouettes. The engraving represents the apparatus so well that it is not necessary to enter into a minute description of it.
"The shadow," says Lavater, "is projected upon a fine paper, Well oiled and dried, and placed behind a piece of plate glass, supported in a frame attached to the back of the chair. Behind this glass the artist is seated; he holds the frame with one hand and draws with the other."

The proportions of a silhouette, on the authority of Lavater, must be judged principally from the length and breadth of the face. "A correct and well proportioned profile should be equal in breadth and height. A horizontal line drawn from the point of the nose to the back of the head (provided the head be erect) should not exceed in length a perpendicular line which extends from the tep of the head to the junction of the chin and neck. All of the forms which deviate sensibly from this rule are so many anomalies."

In support of these observations Lavater gives a number of specimens of silhouettes, and insists unon the conclusions which he deduces from their study. We give five of these specimens. In No. 1 Lavater sees an upright soul, an even temper, taste and frankness ; in No. 2 the contour of the nose carries the infallible

Lavater's apparatus for taking silhouettes.-(From an ancient engraving of 1783.)
mark of a good temper ; in No. 3 we have clearness of judgment. This science of physioguony appears puerile to us. Ll may have a fforded an agreesble recreation, but nothing more in a scientific point of view. Lavater nevertheless obtained a great success in Europe. A croud of pernons flocked to Zurich to see the celebrated philosopher and demand of him the secrets of their character and even of their desting. Lavater with uncommon sagacity was seldom deceived in his judgments; it was thus t at he divined the characters of Neckpr, Mirabeau, and Mercier. The impartial historian must acknowledge that if the work of Lavater is vague, undecided, and sometmes errs in the domain of the imagination, Lavater himself was a man of lofty spirit, faithful to the grand prineiple of morality. With the idea of unuasking character, and opening the human soul, as one wonld a trook, to inyuire iuto its drpthy, he produced a great sensation amoug his coutemporaries.-La Aature.

Making Plaster Casts Impervious to Water.-S time ago the Prussian Minister of Commerce and Industry offered a prize for the brst inethod of treating plastre casts so as to render them inpervious to the action of water. It is well known that at present plaster casts, when exposed to the action of the atmosphere, spedily lose thi ir sharpness of outline by the sol. Vint action of rain water, besides in a short time beroming snil. ed by the lodgement of dust in the pores of the phaster. For these rensons, this material, otherwise +xcellently adupted for the multip'ication of the costliest and most finished artistic oljects, is quite unfitted for exposure to the atmosphere in the falks, gaidens and poblic places where it would be exposed to the action of the weather.

Th: olijuct of the off r of the Prussian Minister ahove alluded to, was to olitain a process that would do rway with these ob. jectiondele qualities that at present limit the utility of plaster, and to deveiop if possuble a procedure or method of treatiment which wruld render ohjects of plaster practically independent of atmorpheric influences of deterioration. This desiralle object, it alpars, has liren attained by Dr. R-issig, to whom the prize
offered hy the alove named official was lately awarded.

Dr. Rrissig's precedure ias for its ol ject the tw, told purpnse of providing a surface upon the plaster which should nut wash away, and which at the same time should prevent the entrance of dust, so that the ohjocts could be readily cleaned from time to time by washing. Hp proposed two methods hy which these ob. jects may be accomplished: First, ty cenverting the plaster surface into sulphate of balyta and carbona:e of lime by treat-
ment with baryta water ; or, second, by converting it into siliment with baryta water; or, stcond, by converting it into sili. cate of lime by treatment with silicate of soda or potassa. The first process is described as heing the simpler and cheapr r ole. It depends on the fact that plaster of Paris, a hydrous sulphate of lime, is converted by the action of Laryta water into the sul.
thate of baryta-a totally insoluble substance-and caustic Ihate of baryta-a totally insoluble substance-and caustic lime, which last is speedily changed, by contact with the air,
into carbonate of lime.
In carrying out the proress, the author recommends the immersion of the pla.ter ohjects, which should be quite clean, in a tolerably concentiated bath of baryta water, in which they should he prrmitted to remain for from one to ten days, accord. ing to the thickness of the water-proofed surface that it is desired to obtain. After removal, washing off with lime water, and wiping off with ahite cotton or linen rags, the oljects are to be left to dry. Ther are then thoroughly waier-prooted. They are still, however, porous, and therefore liahle to spieedy deterioration on exposure fiom the lodgement and absorption of dust, etc. To remedy this, Dr. Reissig coats the water-proofed articles with an alcoholic soap solution. This penetrates readily into the pores of the plaster, and the eraporation of the alcohol leaves behind a layer of soap which fills up the pores, and when washed, the soap is couverted to suds, with which the dust is readily washed off.
A public meeting of Dublin citizens has heen held at the Mansion House, to consider the question of the site of the projosed science and art museum. A resolution was passed requesting the Gov-rument to carry ont the proposal as speedily as possible. The suitability of the Merrion Square site, or a site hetween Kildare Street and Merrion Square, was drbated; but a resoluion in favor of the Kildare Stret t site was adopted, and it was resolved that the Government he requ-sted to open up a naw street from Kildare Place to the Green, so as to give the building a southern aspect. Such an institution has long heen an acknowledged necersity in the lish capital and we trust that the recommendation will be cariied out.

Educationax.

TECHNICAL EDUCATION.

We have heretofore given, in connection with the sketch of Mr. Cooper's life, a particular account of the Cooner Union, in New York, an institution specially devoted to the "advancement of science and art in their practical uses in life."

This institution is one of those distinctively American institutions to which we wish to call the attention of all interested in education in the country. It affords an example of a technical school, the -pirit and general methods of which ought to be embodied in our common school systems.

A technical education, simply means a practi•al knowledge and training so aryuired as to enable the stu lent to enter up, n the immediate practice, while at school, of those method, and usual results which make up the varinus ocenp tions, professions and trades in which men engage " for a living." It develops and involves personal independence and self-suppoit in the young while still at chool. This may seem a d ficult probl. in to solve; and, at first, can be approac'ed approximately. But the pupils of the Cooprr Union, in the Frmale Art Sthonl alome, earned for themselves last year over $\$ 10,800$ out of the viry pro. cess of instruction. Most of these pupils are engage 1 in selfsuppurting occupations, in the various stores and workshops in the city, and come ouly in the evening for instruction; yet they learn atiout as murh as do "College students," who are wholly dependent upon others for support.
The diffrence is, that boys aie sent to college ; but they come to the Cooper Uuion.
The Amprican people need a system of common schoole, leading up from the simplest methods of truining the infant mind for usefulness, to the complete mental prepiration required for solving even the most complicated and difficult problems that can he set hefnre he human mind. But all these schools, except the "Infant Schools," can, in a grent measure, and shoul.', he made se!f-supporting through the products of the work of the pupils in their very process of study. Even translations of Greek and Latin, if proprrly made, can be turned to account in some "literary magazine," and the test of practicability can he constantly a ppied so that every kind of knowledge, study, or course of training, shall be made to do present service in society, and be " made to pay" - in the common phrase. What is the use of asking a pupil: "How many balleycorns will go around the earth?" wheu the store, right next to the school-house, furnishes a thousand useful problems for his arithmutic?

What an injury it is to the independence and eveu self-respect of a young person, that having spent five, six or eight years in "a course of study," and "having graluated," he must needs, as he stands trembling on the verge of actual lite obliged to earn his own living, but not knowing a single occupa ing or skilled employment, now seek to find somebody who will teach, employ and at the same time pay him to be useful in soci-ty.
Ought not this to be done at the vrry start, without waiting till the boy or girl is 14 or 16 years old?
To trach, to employ and to pay at the same time-this is the problem that must be solved by our system of American common schools. Let the Anerican people ponder over this great probl m .

Such a system of common schools, academies and colleges as we now have, is calculated to buill ap certain int-lligent and wealthy classes, and leave the mass of the people ignorant and dependant. The poor, below a certain lev.l which inclndes a large majority of the people, cin gaiu hut little or nothing that is practical out of these institutions of instruction wherein tho mind of the pupil is trained without employing his hunds, or his hands employed without producing any us. ful or paying' result. The "old apprentice system" was betrur than that.
Since that system has passed away by the introluction of machinery and a "new order of things," we must interweave its spirit and design into our system of common schools. Let this system be divided into three gradrs, schools of agriculture, schools of mechanica, and schools of the five professions, viz.: the teacher, the physician, the lawyer, the minister and the statesman.
The professional schools should receive their pupils as graduates from the schools either of agriculture or mechanics. In each of the schools the object must be to teach; but to teach so as to employ; and to employ so as to eain sourthing towards selfsupport. This is the fundamenial idea of a "Trehnical Education." The "Manual Labour Schools," so called, have aimed at this idea, but have carried it out imperfectly, and being in-

Vidiously contined to the poor, they have failed to stand against the riialry of the common system, where no such distinctions are made.
Our system of "Technical schonls" mnst draw their resources from the whole wralth of the commonwralth. They must draw Within their reach everv child of the land bv a compulsory ald yet a free education. They must have a "beginning, a midile and an end" -and the end must be the filt ng of hu nan heing. fur the practical conduut of a useful, a noble and a happy hif. Prtur Corpur, the venerable a founder of the Cooper Uniou, says, in his "open letter" addressed to President Hayes, "Let us bromote nnd instruct industry all over the land, hy founding, under national, state and municipal encouragement, indu-tial schools of \& very kind that cau advance skill in lator. "We need the industrial school of art and science, and it should be made the duty of the local governments to provide a practical education fur the mass of the prople, as the best method ol "gnuranteeng to every State, a Republican form of govern-
ment." mellt.
A writer on this sulject, well eays, "The increasing poverty of the masses, the dreay of public henlth, the decline of private and puldic virtu and simplicity of life, the waruings of the tiunt men und women of the nation-all aike proclaim the "'s crssity of educating the head and the hand tog thor, and that this is the great nred of the nation. It will not do," he adds, "to sav that children have nn time to study and work at a 'rith ; for the surcess of the "half time system" is alrealy too well estuhlishel. The Hon. Mr. Newell is right in maintaining that the time giv+n to the tricks of spelling, mental arith. metir, graumar and geography, could be applied to much better purpe es."

A, to the cost of In lustrial and Technical education, it ran be made the cheapest as well as the noblest investment of the nation. For a small outlay, not exceeding thirty dollars a year on ench stu.lent apprt ntice. we can put skill aud productiveness in bith or her for lite; raine lalior to intelligence and position, ${ }^{8}$ pread indusitry to every man, woman and child in the community, andstrike a destructive blow at the pauperism, drunkenhess, vice, crime, disease and insanity that are now undermin. ing the life of the nation. We ueed an entire revolution in the spirit, the methods and the aims of our common school system.
An eminent educator, near Boaton, told the writer a few days ag", that the "High School for Girls" in Boston was proved by tlatistics to have contributed to the prostitutes of that city to a degree that culled attention. Why I One would suppose that thif ir snperior education would lift them ont of that sphere of life. The answer was: "At their graduation the girls know nothing by which to earn their own living, except to teach in the nithods they have been taught. If they have no taste for this, or if they fi ind the market for teachers "overstocked," they must earn their living somehow else. Whoever employs them lias to teach them alro, and lose money at first in supporting them till they have become useful. The girls have learned to despise "unskilled and servile labor," and they cane practice none Other. How can they drop into that class after their education? Flatterel liy d-riguing men, solicited by bad examplea, in the midst of the refinements and innocent pleasures for which they long; pushed on by ahsolute want and "hungry fur life"-is it a Woudre that many of these "highly educat-d" but simple crea. tures yield to the seductions and delusions of vice?"
The chief element in this sad story is the want of any indus-; trial caphcity above the "unskilled and servile forms of labor" aud the "hunger for life."

Our common school system is fit only for those children whose parents ran support them till they can support themselves hy :ome skilled emplorment which they learn outside of the schools. These schoonls create a class whose minds are filled with
facts facts, princindes and "notions" called knowledge, which can be turned to little or no practical use in "getting a living," and Who tevolt ag inst any survile form of labor. It is equally true that most children have to leave school hefore the age of twelve or fifteen in ouder to earn their own living : the parents cannot
super 8upport them. These make the ready material fur the criminal
and pauper classes.
A few statistics will here illustrate the bearing of this re-
mark.
"The statistics of the House of Refuge or Society for the Re-
formation of Juvenile. Delinquents, in New York, (1878), show formation of Juvenile Delinquents, in New York, (1878), show
that during the past year, althongh the total uumber of children committed the past year, althongh the total number of children committed to the care of the Society was less than the preced-
ing, the percentage for actual crime was larger. Out of 699 commitments, 344 , or nearly one-half, was furger. Out of crime; while the re. mitwents, 344, or nearly one-half, was for crime; while the re-
mainder were vagrants, truants and disorderly characters. The
majority of the offenilers were between the ages of eleven and filteen years, the average of all the chillren committed being eleven years, ten months and twenty-seven davs
"The statistics also show that among the chiliren committed during the past year, were 78 between the ages of seven and ten ypars. Of the crimiuals, the maj rity were spent from the Polica, Courts and Courts of Sprecial and Genelal Sussiniss in the city."
"A carelul examination was made of the ante: druts of 523 out of 699 cases, and the following results were tound: Fi,ur hundred and seventeen resided in tenemeut houses and shantiox, 56 in private houses, and 55 had no recoznized homes. Of these it was ascertained that in 314 cases the homes were comfirtalily furnished, while in 146 other cases the homes were destitute of those ordinary comforts which would tend to make the haply ones for children. The social condition of the fami'ies is another inturesting point. In nearly four hundred cases the parents wrre living; in thirty cạses the parents had separated.
"Of the total cases mentioned, there were 44 whose parents had other property besiles that of housuhnlil furuiture, and 333 cases where the parents had ouly housthold furniture. The records of the hahits of the children hefore commit uent to the Hunse of R-luge show that rarlv influences have much- to do with making thieves and other crimiuals. Of the chil Iren in the House of Refuge at the making up of the last statistirs, ouly 82 attended school reunlarly-lorining a verysmall peic-utage of the large number who attend pulilic selools-while 405 never went to chool, or did so vety irregularly. Previous tis cummitmunt 129 were habitually employed, while 391 were habitual y Nul."
Thesa statistics show that "poverty and ignorance are the pareuls of crime." But it is not ixnorunce of "Grerk, Latın and mathematies," nor arithnetic, geography and gramur. It is industrial ignorance and want of skilled employments.

The last item in the statistic: yiven above tell+ the whens story : "Previons to commitment 130 were habitually employed and 391 were hatitually idle."
J. ©. Z.
-Industrial News.

PECULIAR INDOSTRIES.

Among the many peruliar indnstries ferreted out hy the special agents of the Censu* Bureau, one of the most curiuus is repirte I to have been discovered in B ston, where a firm is reported to be doing a large business in making an imitation honev in the comb. Singular as this statement appears, there seems to be no reason to doult it. According to the acconunt given by the special agent to whose knowleilge the case was brouyht, the comb is molded out of paraffin wax, in good imitation of the work of bees; the cells are then filled with simple glu 0 e syrup, flavored doubtless with some geruine honey, and sualed up br passing a hot iron over them. The product is sold for the bast clover honey, and much of it is saill to be shipped to Europe.

Other observations of interest which wre made, were that the confectioners, hesides using glucose very largely as a substitute for cane sugar, likewise employed immense quantities of white earth (terra alba). It is praciically harmless, aud being very cheap, is uved by the tradu to nake weight and bulk.

Great quantities of tomato caisup, it has been ascertained, are made without outlay for the raw material, the ingenions manufacturers gathering the skins and refuse of the great tomato canning estallishments.
Another industry, the magnitude of which would certainly not be sunpected, is the manufacture of paper patterns for dresses and wearing apparel. In New York alone, there are reported to be no less than ten such establishments, which consume many tons of paper and dispose of many thousauds of dullars' worth ol such goods all over the country.
The manufacture of artificial flowers and feathers is reported to he a rapidly growing ildustry.
The work of the Census Burea seems to have heen planned in a far more extensive and systematic manner this time than on previous occasions, and the results when published promise to be of the utmost value.

ONE THOUSAND HILES OF PAPER A WESK.

The readers of any of the metropolitan dailies may well be prepared for large statements as to the tous of paper used by those of great circulation, but a correct appreciation can protiab'y bet be had, as to the extent to which white paper is devoured reginlarly on daily new-papers, by the simple anuouncement that the Now York Herald uses over a thuasand niles of white paper, five feet and thiee inches wide, every week of the year.

A. CURIOUS INHABITANT OF THE SARGASSO SEA AND ITS NEST.

the ellectric hight at sir william armstrong's.

The distinguished Tynesider began to use the swan electric $\mathrm{C}_{\text {raps }}$ some six or seven weeks ago at his country residence, at markide, Rothbury, near Newcastle, and one of the most remarkable facts in bis experience with it is that he obtains the eletor or mechanical force, which is in due course converted into electricity and eventually into light of brilliant whiteness, with.
Out the out the use of a steam eugine, or gas engine, or anything of the ast. Of course, he must employ a dynamo-electric machine so by a generate the requisite electricity, but that is set in motion dispaix-horse power turbine used as the motor, and which is so that naturase by a neighbouring brook as to take advantage of hat natural source of power. The turbine and generator are the electric cout 1,500 yards from the mansion, and, therefore, as of electric circuit nas to be completed, a stretch of copper wire that twice that length, or 3,000 yards, has to be used. But after cireuit, the lidone, and all the lampa are in position and put in $N_{0 w}$, the light for the whole of the house is got for nothing. atrong has see what the light amounts to. Sir William Arm. cang has 45 lanips distributed through his house, but as he to switch off the current from room to room, he never requires lampave more than 37 in light at once, and for thit number of stapsing six-horse power proves to be amply sufficient, notwith. disaipation the great length of the conducting wire used, and the of 33 ft . by of energy consequent thereon. His library, a room of 33 ft . by 20 ft ., with a large recess on one side, is well lighted
by eight lamps, four of which are clustered in one globe of ground glass suspended from the ceiling in the recess, while the remainder are distributed singly and in globes in various parts of the room upon vases which were previously used as stands for duplex kerosene lamps. The lighting of the dining-room is also effected by the use of eight lamps, six of which are grouped together in one glass shade suspended over the centre of the table, the other two being used singly as bracket lamps, one at each side of the room. Twelve overhead lamps are employed to light a picture gallery, which is also used as a drawing-room; but when the eight lamps in the dining-room are no longer wanted, the current supplying them is switched off to the gallery for lighting eight additional lamps, making twenty in all. Sir William remarks that the gallery is agreeably lighted even with the twelve lamps, while with the full illumination the pictures are seen as distinctly as in daylight. In the passages and stairs the lamps are, for the most part, used without glass shiades, and present a very beautiful star like appearance, not so bright as to pain the eye in passing, and very efficient for lighting the way. The turbine and generator at Cragside are occasionally used in the daytime for the transmission of motive power to a second dynamo-electric machiue acting as a motor to drive a sewing machine. It does so with good effect, but Sir William Armstrong is not prepared to say how much of the original power is realised, or what should be the proportions between the generator and the motor to give the best effect.-Engineering and Building Times.

Tatural 縣istoxy.

A CUBIOUS INHABITANT OF THE SARGASSO SEA AND ITS HEST.

What is generally known as the Sargasso Sea is the vast area of 260,000 square miles, more or less, to the west and south. west of the Azore islands, reaching to the Bithamas westward, and finding its northeru and southern boundaries in the 361 th and 191h degrefs of latitude. O her areas, notably that in the Pacific, five hundred miles E. S. E. of New Zealand, and, again, one thousand miles west of San Francisco, possess the same charac-t-ristics, lut the former is the best known and defined. The great Atlantic currents form a gigantic eddy, thus collecting the alye that forms its component parts. The vegetable fanna is gelurally comprehended in the two genera, Fucus and Sargas. sum, of the lutter tro species, namely, vulgare and bacciferum.

The disennn' cted masses of werd that make up the "Sargasso Sta" are usumlly "Irom a cuuple of feet to two or three yards in diameter, sonu times much larger; we have seen, on one or two orca inns, fields several acres in extent, and such expanses are pobably more frequent nearer the centre of its area of distribution. They consistr fa single layer of feathery bunches of the weed (Suryassum liacc fcrum), not matted, but floating nearly fiee of out another, only ufficiently entangled for the mass to krep together. Each tuft has a central brown thread-like hranching ste m studded with round air vesicles on short stalks, mort of those urar the centre dead aud coated nith a beautiful netted uhite holyzoon.

After a t me vesicles so incrusted break off, and where there is murh gulf werd the sea is studded with these litile separate white lialls. A thot way from the center, toward the end of the branches, the serrated willow-like leaves of the plant begin; at first lirswill and risid, wiut becoming, further on in the branch, pultr, move doluratr, and more active in thrir vitality. The $y \cdot \mathrm{blg}$ irrsh I aves and air va sicl-s are usually ornamented wi h the stathed vass of a C'ampan"liric. The g"nemal color of the mass of ured is thas olive ill all its shades, but the golden-nlive of the young and gruwng hanches gratly predominates. This culor ir, houever, k rearly brohen py by the delicate branching of the wed, llothlind with the vivid white of the inenust ne polyzoon, and rid ded hy riflections from the bright bue water glatming throngh the kipares in the net work. The general
 and uet nost karmoninus contrast nith the lanes of intense indico which seprarates ith m , is very plea-ing.

The-animal life of this area is charactrifistic and lias certain peculiarities "ell worthy the attention of the sludent. It conssts of st elless nullus.s, as the Scillaca pclagica. a short-tailed cryb, the Nautilogr pt sminutus, quantits of memiranpora, and a bren iar, fish, the $=1 l^{\prime}$ ject it cur ilantration, known as the - 4 nteunarius ma, molatus. The writer was fortunate in wherving the latter on the outskirts of this vast area. It fomms one of the mast interesting exmples of the may creatures that find sufety in potective resemblances. As abive mentioned, the weed as it floats assumes all sh ules of olive, and the fis: in col.r is its exact prototype, flecked witb irreguar patches of dark-r and lifhter sliades. Nut only in cooor does it m mie the werd, but in general appinarance, the hrad and fins being dutted here and there with fal tastic bar'els of flenh that to the ordiusry ob. server seem bits of weed prowing yon it. Even the white polyzoon growing on the algæ is imitat. d, and a cureful examination is necesnaly to distingnish thit fi.h fromits surrouudings. It was ottener found lying in among the weed, hut where the patches we re small, was irequently sten lazily swimming around in clear water. I's nest, seen in the accompanying illussration iv, no less a curiosity. It is a round or oval bull of werd, intwined and wrund tugether in a most complicata a manner liy an invisible viscill secretion from the fish. The pieces of weed are first roughly cuupht together, and the eggs depositrd amolg the lirnuches; then the invisible bands are wound around, gradually drawirg them into the oval form, about as lige as'a base ball. The insilinet, and its peculitr enlowment hy hature, place this fish amoug the most intert sting of the fiuny tribe.

Stfam Packing.-Mr. Watson in his Mcchanical Neues, says that the best purking he ever u-ed for finced juints, either steam or water, is collmon drawing paper somked in oil. Aftur a short time the heat of steam converts it into a sulistunce like parih. neent, so that it is practically indestructilie. It has the advantage of stripping lead.ly from surfaces when it is disiled to break a joint.

guxutions.

SKETCEES OF INVENTORS AND DISCOVERERS.

Dr. Horace Wells, the Discoverer of Anesthesia. The names of the three claimants are Dr. Horace Wells of Hartford, Conn. ; Dr. Wm. T. G. Morton and Dr. Charles T. Jarkson, of Buston.

On the memorable evening of the 10th of Decemher, 1844. Dr. Horace Wells attended a lecture and an "Exhibition" of the a musing effects of nitrous oxide, or " langhing gas," given hy Dr. G. Q. Colton in Hartford. Among the persons who inhaled the gas was a young man by the name of Coolty. While undr its influence Cooley danced and jumped about the staze, and hruised his legs badly by ranning against some wooden benches. On sitting down he was surprised to find that his legs were hlooly and that he had soverely bruised himself. He told Dr; Wells, who sat next to him, that he was not aware that he had run against the benches, neither did he feel any pain so long as the effects of the xas lasted.
At the close of the entertainment Dr. Wells asked Dr. Colton whir a twoth might not be drawn without pain while uniler the influence of the gas; a:d r-lated the experinnce of Conley. Dr. Colton replied that he did not know, as he had nuver tri. d the +xperiment. Dr. Wells said he believed it could he done, and was willing to try the experinient on himself. He asked Dr; Colton to bring a hag of the gas to his office the next day, and he would have a tooth drawn while under its influence. Accordingly, on the 11th of Dereniber, 1844, Dr. Colton took a bag of the gas to the office of Dr. Wrlls. Dr. Rigge, a neighhoring dentist was calle, in to preform the opetation. Dr. Colton ad ministered the gar, and Dr. Riggs extracted a molar tonth 0^{11} recovering consciousness Dr. Wells exclaimeil: "It is the gre tost discncery ever made; I diul not feel it so much as the prick of a pin /

I his wons the first operation ever p-rfirmed with a true ances thetic. Dr. Culton then instructed Dr. Wells how to make the gis, and started off on his exlubition husiness. Dr. Wells got up the aplamas, made the gas, administerd to a number ol persons for teeth extraction, and then went to Buaton to wake the discovery kriown to the world. He called on a large number of hiv brother dentists, as ulso a number of leading surgenns, stating what he had done. They all treatel him with ridicule, and scouted his ןretended discovery. Among others who riticulod lis discovery whs his former popil in dentivtry, Dr Wm. T. G. Morton. Dr. Wells went to Cambridge Collage, and isked old Dr. Warren, the lecturer on surg ry, in introluce him to the cliss at the close of one of his lectures. Dr. Warren did thusin-trodu-e him waying: "Hre is a genileman who pretemis that he has diseorrsel somethug uhich will distr"y piin in a sulyical operation. He mants to address ;ou; if any of you rish to remain and hear him, you ein do so., Dr. Wells adid essed the clas.our ruch portuon as rermained-and at the close of hiv r-marks administered the gas to a boy and a ractel a torthi The lug was tuken away a little too soon, and the boy scleamed out, though aftrrward he said he felt no pimin. The student: hissed, and considerd the axperiment a failure.
Wells, after lahoring and meeting rebuifs on all siles for seve ral weeks in Boston, returned to Harifurd and resument his d ntal practice-using the g^{n} s successfully as an antethetic. Bishop Brownell, and some furty of the most respectable pitizens of H rtford have given thrir drpositions, that during the year 1845 Wells extracted teeth for them withont main, using the gis as the auæ-thetic. Anong these was Dr. P. W. Ellsworth, now living in Harlford, Cumn.

At the close of 1845 or the beginning of 1846, Wells went to Euinpe with the hope of regaining his impaired health. While in Paris he presented the sulject to the Acadrmy of Sciences, and the Academy conferred upo him the honur of an M.D.

We come now to Drs. Murtnil and Jarkson. Dr. Morton, hav. ing seen newspaper notices of Wells' operations with the gas, and remembiring the statements of Wel's, wrnt to Dr. Jackson, who was a chemist, to learn how to make the gas, as he wished to test the value of Wella' pretended discovery. This was duriug the month of September, 1846. Dr. Jackson said to him, tlist "gas exhilarates, and mak's people, laugh, dance, otc. If you wish to try anything, why dou't you try ether? That will is-hilarate"-evidently laving no faith in the success of eithrr gas or ether. Upon this hint ol suggestion, Morton purchassd sonem ${ }^{\text {e }}$ ether, and tried it on a bov, Ehen Frost, on the 30th oi Septemher, 1846. This was the first experiment made with ether. Morton reported the success of the exprriment to Dr. Jacksol',
and they then introduced a series of experiments to test the value of the new agent. On the 27 th day of Octoher, 1846 , they jnintly applied for a patent for the discovery of the anasthetic effects of ethor, which was called, in this connection, "Letheon." Dr. Jackson wrote a letter to the Academy of Science in Paris, claining that he had discovered the auæsthetic powers of ether, but his letter was sealed and inclosed in another, with the request that the inner letter hould not be opened till further instructions. He seems to have been in some doubt as to the value of the disenvery. At a later period, the date of Which we cannot give, Dr. Jackson pressed his claims before the Acadeny, and he was recognized as the discoverer of anæsthesia! Aud that record stands in the Academy to this day.
It should he here stated, in justice to Dr. Jackson, that having made several experiments with the nitrous oxide gas recomnended by Dr. Wells, and having failed therein to produce anæsthesia therewith, he had become strongly confirmed in the linliff that the gas had no anæsthetic property, and consequently frlt justified in claiming his use of ether as the first use of an ane-th-tic to prevent stnsibility to pain.
While the application fur the patent was pending in the Pitent Office, Dr. Jarkson, entertaining doubts of its value, assighed all his interest in it to Morton, taking an agreement finm Morton that he should jay him (Jacksou) ten per cent. of all he made out of it. Dr. Jackson then wrote to the Commissioner, stating the fact of the assigument, and reqursting that the patent should he issued to Morton, which was ione.

When Wells returned to the United States he was astonnded to learn that Morton had obtained a patent for the discovery of the anedthetic offects of ether, and claimed the honnr of the dis. covery יf "nocsthesia ! An excit'd discussion in t:Ie Boston Medi cal Journ"l l followed between Dr. Wells and Dr. Morton on the Wat.joct. This discussion so worked on the sensitive nature of Wells that he became deranged, and committed suicide in the citv of New York on the 24th of January, 1848.
U_{p} to this perind no one had used the nitrous axide gas as an anæ-1hetic save Wella and even he with indifferent success. After the lrath of Wells, Drs. Morton and Jacksou claimed that nitrous oxile was not an a:ær,thetic, and that insensibility to pain could not be procinced by it. In one of Dr. Jackson's medical books he says: "By oft-rppeated experiments, inhaling protoxide of nitrogen (nitrous oxidr) meself, and by administering it to others, in every po-sihle wisy, ty large and small orifices, 1 , sonon becsme fully satisfipl that it possessed no cost etic pruperties." This opinion was promnlyated, and prevailed thrughour the country from the time of the death of Wells, in 1843, till 1863, when Dr. Colton revived the use of the gas, and demonstrated not only that it was an ane-thetic, but altogether the hest anæsthetic for brief operatinns. This fact also accounts for much of the misunderstandings which arose as to the true discoverer of alasthesia.

During this interval of fifteen years, the gas passed nut of the public mind as an anæsthetic, and the houor of the discovery of anæsthesia was generally accorded to Morton. Morton admitted the priority of Wells's experiments, but said that "as uitrous oxide is not an anæsthetic, W+lls discovered nothing-I am the
discoverer of anæesthesia." Virtually admitting that if nitrous discoverer of ansesthesia." Virtually admitting that if nitrous
During this interval of fifteen years Dr. Colton was lecturing
and giving amusing exhibitions through the ecuntry of the curious effects of the gas, but not being either a dentist or a surgeon, he had no occasion to use it as an anæsthetic, although ..e often spoke of it as such.
Iu the month of June, 1863, Dr. Colton, in the course of a lecture given in New Haven. Conn., detailed his experience with Wells, stating that since the death of Wells he had never bern able to induce a dentist to try the gas as an aneesthetic. Dr.
J. H. Sinith J. H. Sinith, who was present, declared that he would try it, provided Dr. Colton would administer it. The result was a triumiphant success. Dr. Colton then determined to come to New York and estahli.h an Institution for the extraction of teeth with the gas ; and as his name had been so long identified With "laughing gas," le called the institution the "Colton Dental A‘suciation," with roons in the Cooper Union. This assocjation have, during the past seventeen years, given the gas to ${ }^{0}$ ver 121, con patients without a fatal result.
It is due to Dr . Colton 10 state that this reviral and demon. stration of the value of the gas is atti ibutable chiefly to his exertions, and that it led the medical and surgical journals throughout the country and in Europe to review the whole subject of ${ }^{\text {an }}$ thesthesia, the revult being that, ulmost without an -xception, they have awarded the honor of the discovery to Dr. Horace
Wells.

Dr. Morton deserves great credit for the persistence with which he pushed the use of ether in the Mrsachusetts G sneral Hospital, amid great difficulties and discouragements, till it was recognized and adopited by the profession. Dr. Jackson deserves credit for suggesting the use of ether in place of nitrous oxile, and for his part in the first experiments made with it. But the substitutiou of ether for the gas does not constitute a new diarovery. Dr. Willard Parker of this city, in a letter written on the sulject siys: "I further say, it being known that nitrous oxide would produce ancesthesia in surgical op-rations, it would sugyest to any one having any knowledge of the two phistances that sulpharic ether woulit produce the same effect, and the sab-titution of ether for gas dnes not. merit the name of discovery."

PREVENTION OF EXPLOSIONS IN COAL-MINES.

In the midst of the present drpressed state of the coal-trade, the question of the safety of mines (e-pecially with regard to those terrible explosion.) is rightly receiving the serious consideration of the mining profession. Various schemes have been devised and planned; hut either from their being not practicable or too costly, they have not heen adopted. The methol, however, which I am abnut to describe has neither of these ol.jertions : it is puite pricti:able, and does not invol e much cont. It is well known that in those coal seams, and adjurent beds of hla $\cdot \mathrm{k}$ shale, which give off rxplosive gas, the geaves become flled with it at once a magazine of gas, and it is to these goaves which ran be traced, directly or indirertly to nearly all the large explosions, sn that it is the clearing of these guaves to uhich we must dir.ct our attention in oriler to lessen the number of explosions. My plan c.nnsists of putting down bore-holes out of the return aircourses in the highe-t seam through the goaves and unworked zoal of the lower seams, so that explosive gas, which is specifically lighter than air, will ri-e up the bore-h.lpes into the ruturn air-courses of the top spam, and thence be carried awny by the return air-current to the upeast shaft. In the amompanying sketch, B represents horehol, s, U the upca-t shaft ; the arrows indicate the direction of air and gas currents. The bore holes will have to be surmonite l by a bent tuhe, one pand ins rted in the bor-hole, and the other standing ont in the direction of the air current, so as to prot ct the hole from the air curront and loose materials. It will he ohserved that a borr-hole is kepit im--mediately bark from the face of the coal. This is a precaution necessiry when besinnilig to work the long-wall, for after a portion of the coal has been taken out, the roof settles down np. on the pack walls and timber employed to krep the ro ds open ; this settling down extends upwards to whre the strata is more firm ; the resul: of this is that a horizontal fissure is formed hetween the solill rock and that a hich has settled down, in which a large quantity of gas may he accumulated. After a while, when more coal hay been taken out, the rock breaks away fiom a higher level, and over a more extensive area, and owing to its great weight, it suddenly crushes the liroken mass lying below it, and displaces with great violrnce the accumalation of gas contained therein, which is forced into the warking places among the workmen and their lights, thus fouling the air-current, so that hy having a bore-hile put down, as the gas accumulated, it would make yp the bore hole belore the seconil crush tonk pace. The same thing would tak. place in starting to work the broken under any sustem. It will be obsurved that bore-holes are put down into the goaves that have been fornied any length of time. It has been stated before that these gozres form natural gasometers, being atove the level of the wo kings of the mine, the gets in them bring elastic and less in volume, and occupirs less space when the density of the air is greatest, and with a diminction of atmospheric pressure, as when the barometer falls, the volume of the gas increases and issues out into the workings; this, how. ever, may be avoided hy using the bore-holes, as the gis would then rise up the bore holes and be discharged into the return aircurrent. The utility of the hore-hole put down through the fault will be ohvious when it is remembered that instances of faults giving off inflammable gas are very frequent. It sometimes happens that there are spaces of a few leet area in the leaders of these fuults, in which are stored up, at immense pressures, large quantities of explosive gas ready to apnear as hlowers as soon as talped. The same thing exists in unworked coal fissuris sometimes pirce the strata, and are filled withexplosire gas. In collieries using the return air furnace, care must be taken not to allow those return air currents into which the bore holes discharge to go over the furnace, but they must be conveyed by a separate drift into the upcast shaft. With the present boring facilities, holes can be put down with very little cost, ard when the circumstances of the upper seam admit, would amply repay the trouble and cost.
T. L. E.

CALTFORNIA MINES.

An impression seems to preyail to some extent that becanse other sections of countr are prosperous in mining matters, and people are leaving California for those section:. California mining matters must be at a standstill. This is by no means the case. California mining is now being cunducted on a more substantial basis than ever before. While there have been no great excite. ments, no special advertising and no great stir over the mines of this state, they have been, and are, doing well and generally paying their owners.

Uutil Bodie came to the front there were very few California mines called on the Stock Board, but at that time a number were put on the lists. On the decline of stock gambling it was generally supposed by those with only a superficial knowledge of the matter, that the California mines felt the result to their detriment. This is not so. The stock markct had very little effect on California mining, for the reason that our mines were not favorites to deal in, with the exception of a few of the bodies. The great mining counties of the State were, some of them, not represented on the Board by a single mine.

Up in the mountains where mining is carried, work is progressing steadily at the various mines. The owners attend to their business and work away without much reference to outside influences. The owners are seldom heard of. Nothing is telegraphed about properties unless stock is to be sold. As most of the mines of this State are not stock jobbing enterprises, we do not hear of their being heralded abroad as bonanzas.

As an illustration of how mining matters are going on in this State we may yuote the following paragraph from the Nevada Transcript, published in Nevada county, the most prominent county in the State.
" Every indication points to the fact that we are to have a lively mining season, and perhaps one which will excel all others in the past. There are more hydraulic mines in operation than there have been in a great many years, and their clean-ups thus

A, common flue to up and down-draught.
B, valve to shut off up-draught.
C, ap-draught.
D , iuel chamber
${ }_{\mathrm{E}}^{\mathrm{E}}$, mone-flue for down-draught.
F, ounter-balance weight to front bars.
THE "WONDERFUL" GRATE.
far have been larger than usual. The Hirchman claim is the onIy one not in operation. The quartz prospects bere were never better than they are now. There are more first-class claim in operation than ever before, and a large number of good claims whose prospects are exceedingly flattering, to say the least. Before many months there will be sixty new stamps added to the already large number in this district. This of itself will give work to two or three hundred more men, and should bring renewed prosperity. There will be, before the year closes, twenty new stamps erected at the Murchie, a new twenty stamp mill at the Mount Auburn, and twenty more stamps added to the Merrifield. making sixty in all, as far as heard from."

THE "WONDERFUL" GRATE.

The Building News, reporting a discussion at a recent meeting of the Royal Institute of British Architects, gives an illustration of a new grate, named the "Wonderful," which was described by the inventor, Mr. Samuel Russell, in the following terus:-

It burns throughout the day and night without attention; the quantity of fire is regulated at pleasure; the intensity is regulated at pleasure ; when set to any desired quantity and intensity it continues to burn with but slight variation; it consumes nearly all its smoke'; the fire is always bright and clear, no black coal being seen; it is. very clean when in use and requires no fire-irons; it gives a large supply of pure warm air ; it burns anthracite coal, coke, or cinders, or any combination of these; the chimney-flue does not require sweeping oftener than once in four or five years; the cost of fuel is one penny. for six hours : no cosl-box is required in the room. Mr. Russell continued as follows :-For the accomplishment of these purposes the grate is provided with two flues, one passing upwards in the ordinary way from above the fire, the other commencing below the fire and passing up behind it, the two communicating at any convenient point above the fire. At the junction of these two flues a valve is formed capable of being regulated so as to divert the draught in either direction. When the valve is open, leaving a free upper draught, the fire is very mild, and in proportion as it is closed the fire increases in intensity, and produces almost a white heat when quite closed. Thus any fire desired may be obtained by simply turning the knob which regulates the valve. Another portion of this invention consists of a vertical tube or chamber for containing the fuel, the lower end of which opens into the back of the grate. It is charged from the upper end, which is then elosed air-tight. The fuel by the action of its own gravity continues to supply the consumption of the fire. The double flue and valve, as already stated, regulate the intensity of the fire. To regulate the quantity the fiont bars are made to draw forward, a counter-balance weight always tending to draw them back, with a catch to fix them in any desired position. When the catch is removed, the backwarll pressure stops the fall of fuel, the fire becomes gradually less, and is finally extinguished. By this arrangement a small quantity of fire may be kept burning throughout the night, the bars in the morning being drann forward, and a scuttle of coal supplied starts it afresh for the next four-and-twenty hours. As the fuel enters at the back the smoke is evolved from it before reashing the fire, and whether the up or down-draught, or both, are in force, it is consumed, the only escape for it being through the fire The recess in which the grate stands forms a hot-air chamber through which the external air, or where this is not practicable, the air of the room, passes.

It appears to be doubted in some quarters whether nitric acid is capable of igniting vegetable stuffs. Herr Kraut has lately stated that the inflammability of sawdust, straw, hay, tow, cotton, or wood-shavings, by means of nitric acid, may be easily proved by experiments, thus: A rectangular wooden case, about 25 ctm . long and 40 ctm . high, is filled to a height of about 20ctm. With one of the materials named; on this is placed a glass vessel holding 25 to 100 cub . ctm. of nitric acid (of at least 15 sp . gr.), the rest of the case is then filled with hay, straw, or the like; the glass is smashed, so that the liquid may be well
distributed; then wooden lid is placed on the cese distributed; then wooden lid is placed on the case. In one or two minutes vapours are visible, a little later a thick white smoke appears (due to the decomposed nitric acid), then the smoke of the packed material. If the lid be opened in five to ten minutes from the beginning, the case is found filled with carbon in lively glow, and this, on entrance of air, is inflamed, and often sets the wood of the case on fire. The experiment should be made in the open air.

[^0]: THE usefulness of glase is becoming daily more fully rocognized. Already for some time glass roofs have boen gaining in popularity, and deservedly so. Now that it has been demonstrated that the expense of a glass and iron roof is little if at all greater than that of a mooden or wood and iron one, the imperishable nature
 of of the material, and the great boon of transparency are

