The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans ia méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

\square| Pages damaged/ |
| :--- |
| Pages endommagées |Pages restored and/or laminated/

Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous payination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison
\square Additi nal comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol. I.-No. 4.
JULY, 1873.
Price in Canada $\$ 1.30$ per An. United States - $\$ 2.00$

peat ruel.

Thero is littlo doult but that tho manufacture of peat fucl in the Proviace of Quelve is destined, at no distant tine to assume proportions far exceedin; the prescent scale of opera. tions. The deposits ut, immense and in viow of the prebathy continuous increaso in the cost of conl, a ho ue fuel whll certainly attract grentur attention every year. Abuut the middle of last month n number of gentlemen were invited by the President and Directors of the Canada P. at Fuel Company to inspect the works of the Company at St. Hubert, abvut six miles from Longueuil. On the ariival of the party at the bog they were conveyed over a portion of th. ground and embarked on buard a large suow which had been covered in and decorated with evergreens It was slowly towed hrough a cut wade by the pr vious excavation of peat, which is about 0 miles in length and about σ to 6 fect in depth. The barge traversed the extent of the cul to the point where new excavations had been mad.. The works have nuw been in operation for about five years, during which time 25 miles of peat have been taket out. Thereare 250 men at present cermployed on the works at St. Hubert, with three escapators drven by powerful steam engines each cutting about 250 feet per day abouz 6 feet deep. A new and important feature in the drying process has been introductd which cannot fail to be of immense importance to the interests of the Coapany. Hows of lacks have been crected alung the canal in which the peat is placed, and it is thus dricd in one quart:r the time employed by the old process.
We hope, before long, to be able to give our readers an illustration of the machinery employed at St. Hubert. in our last number wo refer to the peat machinery designed and manufactured by Messrs. ©laytun, Son, and Huwlett, and to its working at therr establishment is the Woudfiehldroad, Harrowroad. Since the machiuery was described in our columns several alterations have been made in its details, improvements having suggented th mselves to Messrs. Clayton in the course of its workmg. We nuw, therefore, illustrate on page 97, from Engineering, the latest a. rangement, the engraving having been prepared from a photogr ph of the appatatus taken as it stands in Messrs. Claytons' yard. 'To follow the course of manufacture with this apparatus we must bugin wihh the squeeziag trucks, which we hive n.t thought it necessary to illustrate. These are simply closed wagous rumnirg upou a light milway, and fitted with covers which are securtd when the wayons are filled. The sides and bottom of each wagon are perforated with small holes, and on : end of the budy of the wagon is movable and is act ated by a screw. As soon as the wagon is losued this movable end is force. inwards byameans of the screw. and thus the peat is put under pressure so as to rid it of some of its surplus water on its way to the machine. These wagons are used when the peat contains much surplus witer, but in cases were the pent is not very wet, the oidinary tipping tru:ks only are required. The: wagons are hauled from the bog to the works by a birrcl hoisting gear which is erected over the machine and from which it is driven.
From the trucks the peat is tipped into the vertic. 1 hope p of the machine, in which are inclined blades fixed upon the vertical shatt. The blades break up the lumps of, cat and press the mass downwards into the h sizontal cylinder into which it is fed by a worm placed on the central shaft. The peat is thus brought within reach of th propelling arms
which are fixd spirally around the ccntral shaft in the horiwhich are axed spirally around the central shaft in the hooi-
zontal cylinder, and which pass between sharp steel knives. The knives are made with dove-tailed fect and are received into corresponding grooves in a removable bar-plate, which is secured in the side of the horizontal cyl nder by bolts. By means of the scissor-like action of this internal machinery the peat is cut up into small pieces and sque zed or kneaded together. The fibres of peat are, by this treatment, so divided that facality is given for setting free all uoisture and fixed air that may be reta ned inthe cells of the stalks, and the peat is deprived of clasicity, or resiliency, so that it 18 reduced to a suitable condition for mo. Idag. The spaces between the cutting hnives are gradually r duced from the fieding to the delaviry end of cyhuder, the propelling arms being correspondiugly placen. The mouldug ornfices are adjuted at the of these oriaces have hith rto been used and have been found conveni, nt in working.

Benerth the chamber upon which the monlding orifice is fixed, and which is seen to the left of the machine, is a roller table on which the trays for receiving the moulh d peat are placed in succession by a boy, so that they rum in a continuous series underneath tho moulding orifices and receive the peat issuing from them. As the front end of each tray comes up, the workman severs the streams of moulded peat by means of a sliding cutter, and pushes the londed tray forward until it a opposite the cutting frıme, in which several wires are strotch. ed. These wires being brought down on the peat severs each barinto pieces 5 in . long, which is a convenient size for use. The loaded trays are sent alogg the roller table until they are opposito the tmy racks. The trays are then lifted off on to the rackp, where they remain for abont three days, until the peat will bear handling, when they are placed upon the open shelving for final drying. The tray racks consist of uprights sith arms fixed upon them, between which iron rods are strained. The contingency of accident to the machinery fron stones or hard foreign substances p issing in with the peat, is provided against by means of a friction clutch seen to the right of the machine in front of the driving gear. This cluthe can le screwed up to give any desired pres, ure, or resistance, and when any substance having an objectional d.gree of solidity passes into the machine, the clutch slips, its resistance be ag overcome, and breakage is thus avoided. The cylinder has a movable cover so that the interior may be readily examined, foreign substances removed, knives replaced, or anything else necessary done.

Various kinds of peat have been tried by this machine, and it is interesting to notice the difference between the peat dried without having been previously treated, by the machine, and that which ha; been operated upon. Peat of very fibrous nature when dry has an upen spongy aphearance, suggestive of cocoa-nut fibre. The same peat treated by this machincry bec mes compact and hard and assumes a specific gravity of from 1.05 to 1.10 , whilst black decomposed bog zon ienses to about 1.20 . A set of nachinery to work 100 tons of crude peat e.nploys in all ten men and five boys including diggers, engine drivers, men in drying sheds, \&c, so that the cost, allowing a fair amount for wear and tear, is pleced by Messrs. Clayton at 3s. Gd. to 7s. per ton.
The calorific. alue of peat, which has been much questioned, varies considerably, some kinds of peat being very rich in heat-producing pover, whilst others aro very poor. In Canada prepared peat is said to do 5.06 the work of coal. With regard to the intensity of peat, it appears from the practical use of this fact in Canada and in Europe, t'at a large grate surface and slow draight are neces ary for ito most a 1 vantagcous combustion, and under such conditions its full intensity is realised. The form in which it is used is another consideration, that is whether applied in the form of condensed peat or wercly dried turf. In the latter case the fuel is too light to withstand any considerable draught, whilst that in the concentrated form has been successfully used under strong blasts. Experiuments now being carried out by burning in a locumotive the peat receritly made by Messrs. Claytons' machine, give promise of its successful application in this direction The value of peat charcoal too, has long been recognised, and as the pent produced by this appamatus appears to be in good form and condition for charcoal making there are grounds for anticipating its use in this resprect. This point is also being practically tested, and there is no apparent reason why this, as well as the other applications, should not succeed, in which case this condensed peat, being economically produced, will become a general matufacture.

ATMOSPHERIC TELEGRAPH AT PARIS.

We illustrate on page 101 the despatching room of what is somewhat erroneously called the Parisian Atmospheric Telegraph Company. By telegraphing we understand the transmission over wires of messages by means of electrical signals. The system we are about to describe briefly is exactly similar to that which has been in successful operation for some tine in London for the distribution of mails to and from the di. ferent post offices. It consists in the propulsion throuph tubes of small carriages containing within them messages, etc These tubes are of small dimensious as may bo seen by the illustration and are laid down beside the gas and water pipes. The system is composed of sixtcen tubes each of which is
about 1300 yards in length. These siateen tubes placed end to end, are separated by sixteen telegraph offices, the distance between each of which is traversed in rather less than a minute. The carriages might be sent more rapidly but the speed mentioned is found quite sufficient The oldest part of the work was constructed during the time of the Empire and consists of six tubes forming an almost regular hexagon. These tubes are traversed every fifteen minutes by trins of small carriages or boxes which move with the sun.

On this central system are grafted two branch systems and three single lines. Counting stoppages the trains travel at the rate of more than a mile in five minutes It is said that, when properly delivered, a message should not take longer than when sent in a cab by a special messenger. The t uins are propelled by atmospheric pressure which is obtained by means of an ordinary air-pump piston. The manner in which the carriages are placed in the tubes is shown clearly in the engraving. The despatch and reception of trains is communicated from station to station by electric telegraph signals. The simplicity of the operaticns is manifested by the fact that three men suffice for the work of the central station, one of whom is also employed occasionally as messenger. The principal work of the system, as may he gathered from its name is the distribution through Paris of telegrams from the provinces.

GOODS LOCOMOTIVE AT THE VIENNA EXHIBITHN.

We illustrate on page 112 ony of the anmorous locomotives exhibited at Vienna. This is an cight-coupled cugine constructed for mountain service on the Royal llungarian State Railways. The cylinders of this engine are outside, and are $20 \frac{1}{2}$ in. in diancter, with 2 ft . stroke, the siston rols hing carried through the frout covers. The wheels at roupled by outside crams, and are 3 ft . 68 in. in diameter, while the
 play to give increased flexibility to the engine. The diameter is 4 ft . 9i in. It contains a large number of tubes, namely, 223, these be $n g 2_{6} \frac{3}{7} \mathrm{in}$. in diameter by 15 ft . 32 in . in lengih betwe n tube plates. These tubers give an caternal heatian surface of 18239 square fe-t. The fire-grate area is 2152 square feet, and the steam pressure $8 \frac{1}{2}$ atmospheres effective, or 125 lbs. per quare inch. The weight of the engine of which we are now speaking is 41 tons empty. and to tons in working order, $10 \frac{3}{3}$ tons of this hat'or weight resting on the leading wheels, and II tons on each of the other pairs. The axle boxts of the second and third pairs of wheels are, we should state, conuceted by coropusating beams, a single spriag on each side, arrang betwern the plates of these benms serving for both axies.

Bronztiga and Valli-ming Plaster Figeres.-These should be sized first, and painted with color according to the colored bronzs required, as red, white, green, yellow, black, \&c. Before the colors are thoroughly dry, that is, when they feel "tacky," the prominent parts should be bronzed with bronse powder, applied by a piece of chamoisleather. Varmsh afterwarls with some quick drying varnish.

Sla allobunning porrable engine at the vienina EXHIBITION.

We illustrate, from Engineering on page 100 the portable strav-burning engine of Messrs. Ransomes, Lun-and Head of Ipswich, England. This engine hes been an object of special att action to the great grain growers of Western Europe. Au engine of this kind would be of small service in the densely peopled parts of this continent and of Europe, but there are vast grain producing areas in America where sticha machine would be invaluable. They are regions where straw is so abundant, and where the surroundin: cincumstances are such that it is rendered valuevers. In such regions steam has hitherto ben little employed for anricultural operations-not br cause its adsantage over animal power was dispute 1 , but on account of the impossibulty of obtaining coal or wond ns fucl for the engince, except at a cost which would render their use almost prohibitive.

The iden of burning the straw as fuci to raise stenm is not yute new, Some years have elapsed since it was trid d, and not wholly unsuccessfully, in Rusfin, and after avery primutive fashon. The wheels next to the fire-box of the lutomutive engue were taken of - the ash-pan and fire lars remuved; a luge pit was sumk in the ground lined ruaghly with brule or stone, if procurible : a sort of the fumel at unc side, just the area of the interior of the firc-box of the engine, which was then placed right over this. The pit was filled with stinw thist was set on fie, and continually fresh straw was thrown in. Th. are-box and thbes-in fact, the whole boiler and ent-gine-became thus onlv a the prolonged from verer thas stras furnace. Steam was gently kept up, but the waste of heat was great, the supply of straw immense, as was the labour of bringing that to the immovable point wher. the pit was once for all formed: and the exterior of the fire-bon, indeed the whole engiae, became so heated as often to be destruged, aud always mpldy injured.

So matters stood until Jessrs Ransomes and Co. turaed theirattention to the problem which they bave nuw so completely solved, namely, to adart to the ardinary locumotive agiae such arrangements as should mable it to be worked steadily and to its full power with straw fuel, these arrangements betng as smple as possible, as alone suited to the rude peuple who are to manage thew, involving the least possible amount of change on eddition to the ordinary engine-of such a character that the engine can be, with vely insignilicant amount of charge, rextore to its condition for burnieg coal, tinbber, or any other fucl. These couditions fulfilled, it is obvious that besides the abolition of the waste and technical dificulties of the pit-bithing method, the great alvantage would be secure that the lucomotive now could follow its find in place of the fued havelg to lie brought from a distance to supply it. Thes problem, it ail its conditions, has been mo-t perfectly selved by Messrs. hansomes and Co, and by means whicharestrikingly simple. We have examined an eighthorse (nominal) locemu tive fitted for straw burning, and ceen the engine for sume lime at work, appied to a dynamometer brake, which gave a revistance reguiring the steady application of twenty-horse actual power to overcome it.
The following constitutes the arrangements to adapt su urdinary engine of this class to work with sitraw fuel. The en gine is cunstructed with a tire-box larger than that needed fut coal fuel-m this case it is one simply 1 ft . longer thau that for cual The ture-hars are takru ont, and three u four light wrought iron cross burs abont 4 in . apart supply their place. To the fitc-tivor opemmg ef the fire-box r cast iron mouthpiect is attached, canging two or three smali door. fur iuspectiun os the fire, amd in and close to and br-ueath the e, a p.ir of gathering, or "tineres vollers,' placed with their axes parallei, huizontal, and tma-versan, are arrauged. Thene are peared together, and can be worked at the slow speed needed eitact by hand, by t winch hamlle, or by n strap and pull y, by the engine itsclf. A that shoot, or tray, much like that of a cona mon chaff-cutting machune, extends for 4 ft . or s ft . ontwad from the rollers, in width equal nearly to their hasth, and open on top. Bencath the wide prille of hars described d: takiug the phace of the fire-bars, is an ash-pan, open to the iront cad of the engine; across the open month of this, an: above the lezel of the grille, is a small tube perforated with: minute holes, which discharge in little vertical threads, a small amount of watir supplied from a pipe led from the ordiaars feed pump of the cugine. This is the entire apparatus. To start to work the five-box is moderately filled with straw, led into it from between the finger rollers. This is ignited, aud the supply of straw is kept up by continuing to turn these rollers uy hand, drawng in stiaw, fed into the shoot by the stoker, until steam is got uf. As soon as this occurs the strap pulley keeps the finger rollers going, and all that is needed is to heep up the supply of straw by the shool. Such is the catice apparatus. The blast pipe in the fumel supplies the draught in the usual way. Nothiog appear- to escape fr. m the funnel but a white cloud, chicily of watery vapour. The consu a ed strall does not, as might be expected, furm a dease glassy slag ot the silica and potass or soda contained in at naturally, but falls to the bottom of the axh-pan as a duoky flock or wig-the lis udomorpha, so to say, of the straws. This is littic concrent, and when it accumulaten the grill or ayhbox is leared of it ley a make or shee provided to be w. rked from the feeding end of the fitc-box. On the necasion of our infpretion, the boiler luing fall, the water at the temperature

STRAW-BUBNING PURTABLE ENGINE AT THE FIENNA EXHIBITION (See page 99.)
of the day -provally, rathei usdi 50 deg Fah.-the fire was kindled ad described. In less than fifteen minutes stcam began to be formed, and in about fuity minates was at 40 lbe. to 45 lbs pressure. The time of getting up steam is, in this case, comparatively unimportant, tut this rapidity is sufficient to prove that straw is a more (ffective fuel than commonly is supposed.
The dynamometer brake having been adjusted to the resistance due to 20 -horse power, and the engine being provided with a counter, was kept at work for some time, and the general
phenomena presented noticed. One man was readily able to feed in the supply of straw fuel. There was but little skill required in this operation, and a sufficient uniformity of sapply was easily maintained. The entire fire-box was kept full of a raddy glowing blaze, and the mass of flame was obsorved completely to fill the tubes and to reach the smoke-box.

One hundred weight (112 lbs .) of straw was then weighed out, sud, from the commencement of its being fed in, was consumed in about fourteen minutes. This may be considered as about 460 lbs. per hour, or $\frac{480}{20}=23 \mathrm{lbs}$. per hour per horse-

power Locomotive engincs of this size and inaku, not boing provided with an expansive gear, consume of conl probably from 5 lbs. to $5 \frac{1}{2}$ lbs. per hour per horse-power. It would follow, therefore, that straw fuel lurnt in this way is equal to from one-fifth to one-fourth its weight of conl lisis is not a large result, but it is one that proves t'raw to be a far less lespicable fuel than it ha-been reported or imagined. It is one, too, the use of which wo think will be improved upon yet. The engine as fitted for stmw burning can bo worked with brushwood, furze, dry leaves, heathor, bulrushes, reeds,etc : and to may flad its use in other regions dovoid of good fuel besides the grain plains of Europe or of America, and in the latter country may yet be destined to ennble culture to bo introduced into the trecless prairies of the North-Weat United States or of Britifh America.

BRADLEY'S NEW APPARATUS FOR ELECTRIC MEASUREMEN'T.

The ougraving on page 1u5, for which we are mdebted to the American Artuan ropresents an apparatus, the most recently and thoroughly improved of any known to science, for the absolute and dircet measurement of clectricity in its several departments.

The measureunent of electricity, by positive und well defined unitc, is a modern discovery. Within a fow years past severnl inventors have constructed instruments for the purpose, aud each fcr himbelf have udnpted certain quantities as units. Those employel in the 11 - of this aparatus are

First, the Oum,
which is the unit of the tesistance which a conductor offers or opposes to the free passage of a current of electricity through it, and is equal to the resistance which a prism of pure mercury, one square millimeter section, and 1.4480 meters long, opposes at $0^{\circ} \mathrm{C}$.

> SECOND, THE VOLT,
which is the unit of clectro-motive force, resulting from the chemical affinities of the clements of a galvauic battery, and is abunt that of a cell of zinc and sulphate of copper battery.

Thimd, the Veber.

which is the unit of strength or quantity, or electro-chemical equivalence of a current, as it is variousiy called, and represeuts that quantity of electricity which flows through a circuit having an electro-motive force of on' volt and a resistance of one ohm in one second.

One Veber of electricity decomposes:
.00142 grains of water, or duvelups
.000158 grains hydrogen, or
.1721 cubic eintimeters mined gas,
at a temperature of $0^{\circ} \mathrm{C}$, and barometric pressure of 760 mil limeters.

The apparatus is employcd with great facility in accurately determining the electro-motive force, the resisiance and the strength of batteries, indirectly insasuring the resistance of all conductors of lectricity, telegraph wires, etc, from the hundredth of an olnas to 10,000 olims, in determining the insulation resistauce of telegraph lines up to millions of ohms, in locating breaks, faults, crosses on telegraph lines, cables, etc. , in fetermining the quantity of metal of any kind, deposited in a given time in the process of clectro-plating, gilding, etc., in determining the specific conductivity of netals, especially of copper, a is atter of importance to tho e manufacturing or using wire for telegraphic or other tlectical purposes.

The capacities of all other instruments for oimilar purposes combined, are embraced in this one in a substantial and compact form, convenient for transportation and comparatively, safe from injury.

It consists of a tangent galvanometer an 1 a rheostat.
The gal anometer is entirely new, and is constructed with a circular needle, in the form of a thin dizh of steel, balanced upon a fine pivut, and having lightaluminum puinters traversiug a graduated circle five inches in diameter (more or less). Underneath the neente are four (or less) distinct wils so placed that the current flows parallel with the meridian of the needle.

They are somewhat wider than the dinmeter of the disk. By this means all parts of the steel composing the needle are subjected to the same inductivo influence in all its deflections.

It is n condition indispensable in the construction of n true tangent galvanometer, that the rurrent through the coil should act tas uniformly upon the needle in all lis deflections as the earth's magnetism docs A narrow coil under a long needle does not fulfil this condition; for, as the extremities of the necdle in its deflections pars more and moro avay from the cuil, the inductive is less and less, as compared with the earth's influence.

On tho contrary, if we place a very broad coil under a long needle, the same difficulty occurs, but in the opposite direction. While the needle is on the meridian it is undur the influonce of but fer convolutions in the middle of the coil, but as it deflects it comes under the influence of an increasing number of convolutions, and, therefore, the influence is more and more increased.

It being evident that the truth lay botween these extremes, the expedient of a needle, in the forms above described, was resorted to, and with entire success, for in this the condition sought is accurately fulfilled.

Coil No. 1 is composed of very fine copper wire, wound evenly bayk and forth over the whole width of the coil, and of a sufficient number of layers to give a resistance of 150 or more ohms.

No. 2 is of No. 30 wire wound in the same manner, and to twenty-five or thirty ohms resistance. No. 3 is of two 'ayers of No. 23 wire, giving one or two ohms resistance. And No. 4 is a strip of shect copprr of tho widith of the coils, and wound three and a half times around, so that the current passes four times under the needle; the resistance of this may be considered as aull, or not sufficient to be noticed or taken into account.

The outer ends of all the coils are connected with a commou screw-cup B, while the inner ones are connected tach with the cup bearing its proper number.

One, two, or oven three of the coils may bo dispensed with in galvanometers for special purposes, according to the function to be performed.

Coil No. 1 is for cu. rents of high intensity, No. 4, for those of great quentity, and Nos. 2 and 3 for nixed or intermediatc currents.

The true tangential proportionality of these galvanometers has been amply tested, and fully proven.

The close proximity of the coils to the needle, the wide range of their capacities, and the facility with which all resistances, from the highest to the lowest, may be correctly measured, give them decided advantuge over all others hitherto in use.

The rheostat is constructed in the usual manner, having coils of German silver wire accurately adjusted and so arranged that any required resistance from if of an ohm to 10,000 ohms can be obtained by withdrawing the proper plug or plugs. There is switch A, and four screw-cups respectively marlsed I, II, III, IV, an arrangement which constitutes an importait novelty of the invention.
The process of measurement is that hown among electricians as the method of substitutivu. It consists in connectung une electrode of a suitalle battery with the galvanometer screv cup B, and the other to the rheostit cup \mathcal{I}. A wire connucts cup II, with that coil of the galvanometer ($1,2,3$ or 4) which is found to give the uost convenient degree of deflection. The unku wn resiotance intended to be measured (as, for instance, the coil (), is connected between III and IV. The switch and connections are now so arranged, that when the sp^{2} wh is turned to the left, the current goes through the rheostat, and when to the light, it goes through the conductor to be measured.

The switch being to the right, the degree of deflection is noted; then, on turning the switch to the left, pluge are withdrawn =o as to bring the needle to the same degree of deflec. tion. The sum of the resistance of the several coils thus substituted is the true resistance of the conductor measared. Nuthing can be more sinple; the principle is as obvious as that of several pairs of scales, one for weighing grains, another fur pounds, ant a third for weighing tons, and the results are equally reliable.

ROCK DRILL AT VIENNA EXHIBIT:ON.

Mr. Herman Ostcrkamp, of Alx-la-Chapello, exhibits at Vienne the rock drilling machine which we illustrate on pages 104 and 105. This rurky drilling machino consists ousentially of a cylinder and piston, the piston filling the cylinder partially and being rendered air-tight by a packing made of five or more rings or recesses turned out on the surface of the piston. In tho same manner the piston rod is kept air-tight in the cover of stufling box through which it works. The urill is axed to tho outor ond of the piston by a wedga. The other end of the piston rod is formed gquare, and embraces a rod which passes through the cover of the cylinder, and has a bevel wheel fixed there, n for imparting rotary motion to piston. Tho pistonat the bame time works up and down the cylinder with the piston rod. Tho rotary motion of the aforesaid bevel wheel and piston and drill is effected by a second bevel wheel fastened on an axis which has a toothed wheel. The reciprocating movement of the piston is efiected by tho distribution of the parts and their construction which essentially differs from drilling machines or engines as heretofore constructed. At the side of the aforesaid cylinder and in connection with it, is at tached a smaller cylinder fitted with a piston the rod of which bas two ports or passages formed therein, forming a slide vplve for admitting and cutting off the compressed air as desired.

In our engravings. Fig. 1 shews a section of the cylinder and piston, a; and Figs, 2 and 3 shew the outside of the cylinder X. The piston a flls the cylinder partly and works tight therein by an air-tigist packing produced by five rings, B, turned out on the surface of the piston. In the same manner the part C, of the piston is tightened in the cover, c, as in a stuffing box, and the drill is fixed at the end of the piston by a wedge at 1, the other end of the piston rod being formed with a square aperture to rective and embrace a rod d, of the same shape. This rod passes through the cover of the cylinder and terminates in a bevel wheel, e, by which it can be turned round in the cover of the cylinder, turning at the same time the piston which also moves up and down with the piston rod.

The rotary motion of the bevel wheel and piston, and the urill 2 fixed thereto, is effected by a second bevel wheel, g, fastened on the axis, f, which has a ratchet wheel, t, fixed on it. At the side of the cylinder X, and in connexion with it, is attached a smaller cylinder, h, fitted also with a piston, the rod, 2 , of which has at the back end two different apertures, k and l. When the pistons of the cylinders are in the positions shown at Fig. 1, the compressed air, which is the motive power to be employed, streams out of the tube through the aperture, k, of the small piston into the working cylinder, X, pressing the pistonand with it the drill forwards until the upper end reaches the aperture, n, then the air enters into the distributing cylinder, h, pressing likewise the piston 0 , forwards. The aperture, k, in the distributing rod then goes benesth the entrance A, of tho cylinder, and when the working piston continues its course to the fore and of the cylinder, the opening l, of the distributing rod cumes aganst the entrance A, thus effecting the communication of the compressed air in the cylinder with the atmosphere.

At this moment the working piston goes backwards, driven by the compressed air of ths common reservoir, which com municates without interruption with the lower na.t of tr piston by the channel r. Immediately aiter the fore part of the piston has rearhed the lateral opening p, the air goes also into the distributing eylinder, driving its piston backwards into the piston shown at Fig. 1, and also the piston in the cylinder X. This movesnent then begins again when the working piston goes formard, the compressed air which was before it returns to the reservoir, whilst the small volume of air which was working in the smaller cylinder passes through the small opening g, into the open air.

On the back end of the distributing rod is fastened o pawl, 3, for moving the toothed wheel, t, forwards at each stroke of the piston, and with it the axis, f, and the working piston, a; a catch, u, prevents the wheel going backwards. The drilling machine is fastened to a support b, by a wedge, and this support can be moved to and fro on a frame, e, ty the screw, H and the crank, c. Two rods, f, fastened to the frame in combination with a third rod g, which can bo ghortened and
lengthened form a stand, which in most cases is sufficient an the uso of the machine without any need of fixing it otherwiso. The moving forward of the drill is by the workman by means of the crank, c, on the screw, d. The man who works the machine is niways ablo without any diffirulty and without the least loss of timo to effect tho moving forwards of the drill and to accommodato this precisely to tho degree of harduess of the rock. Figs. 4 and 5 give two vlews of ono of these machines mounted on its support,-Enginesring.

ON MORTAR AND CONURETE.
Read before the Edinburgh and Leith Engineurs' Socioty, by Mr. R. C. Resp, C.E , March 5th, 1873.
The importance of mortar and concrete as bullding materials is so great, that a few notes on the subject may not be uninteresting to members of this Society, and ought to be the means of raising a discussion by which som" valuable prac. tical information may be elicited. I do not intend to go into the chemistry of limer and cements, becsuso my knowledgo of chemistry is not sufficient to throw anv additional light upon them than what has alresdy been written. It will be sufficient for my purpose to classify the cementing materials as follows: $18 t$, rich limes; $2 n d$, hydraulic limes; 3rd, cements.

Hich limes consist of almost pure lime, such as may bo obtained by calcining marble, which is nearly a puro carbonate of lime; the heat having the effect of purging the limestone of all water and carbonic acid, and of producing the material called quick lime. When rich quick lime has had water applied, a rapid disruption of the particles and effervescence takes place, and the solid shell falls into powder. This is called the slaking process, during which time a great amount of heat is given out. The mortar made from rich lime mixed with sand will never set in water, and oven in tho air it only hardens by alsorption of carbonic acid from the atmosphere, thereby bringing it back to its original condition of carbonato of lime, with the addition of sand. This, however, is a slow process, and where the mortar is in thick masonry it will take centuries before carbonato of lime is formed all through, and by that time, if the masonry has stood, the hardening will not do it much more good.

The second class, viz, hydraulic limes, are 80 called owing to their property of setting in water. They consist chiefly of a mixture of lime, silica, and alumina-that is, lime and clay. There are sometimes other foreign matters, such as iron, magnesia, \&c.; but they form a small portion of the whole. When burnt into quiek lime, it may be slacked with water like the rich lime; but the disruption of the par. ticles and the beat given off is not nearly so violent as in the case of rich lime slaking, and, indeen, some limes will hardly slake atiall without being previously ground into fino powder; the Elgin or Charleston lime and the Arden lime are instances of this, and they are the best hydraulic lime in Scotland.

The third class, viz., cements, may he called " very eminently hydraulic limes"-that is, with a great proportion of silica and alumina. They set rapidly either under water or in the air, and have to be ground and finely sifted before being used, as they would not otherwise slake Rich limes
ay be made to set under water-that is, made artificially nto hydraulic limes by the addition of calcined clay; and, iadeed, Portland cement is nothing more than the chalk and plastic clays found in tho London basin, mixed up together, burned, and ground to a fine powder.

The ingredients chiefly used for making mortar in this country are, of course, lime, sand, and ground smithy ashes, mine dust, burnt brichs, and tiles. In foreign volcanic countrics, such as ltaly, they use what is called puzzuolana, which is a biad of clay that has been subjected to great subterranear heat. The quality of sand used is of great importance. It ought to be clean and sharp, or angular, 80 that the lime or cementing material may get thoroughly into every pore. If it be a loamy sand, for instance, the particles will be often sticking together in clods, and are thereby kept from being cemented together. Tho sand, then, ought to be perfectly clean, so that each grain may get completely sur. rounded with the matrix of lime or cement. Yet how often du we see builders in this city deliberately making thear

ROCK DRILL AT VIENAS EXIIBITION (See page 103.)

BRADLEY'S A PARATUS FOR ELECTRICAL MEASUREMEN'S (See page 102.)
mortar with the alluvial soil they had dug out of the foundations, just because it was ready to hand. Ground bricks and ashes have a tendency to make lime more hydraulic in its properties, and mine dust, whin is the refube from iron ure at the calcining ovens, has a most excellent effect, provided that it be thoroughly ground and mixed with the lime in the grinding pans, so that the particles may be small enough to effect the desired chemical union. It may be here remarked that all those materials which, when mixed with lime, render it bydraulic, must have becn subjected either to subterranean or artificial heat previous to slaking.

There are many ways of slaking mortar. The common plan is to throw water on the heap of shells ; another is by inmersion, that is, dropping the shells in a basket amongst water, and quickly drawing it out again ; another is to allow it to slake spontancously by exposure to the air, as is oflen done by farmers when used for the land. In slaking mortar care must be taken that no more water is used than what will cause the lime to fall to a dry powder, that is, not roure than the limo will absorb, but still sufficient to cause sufficient disintegration. if more water be added, then setting tmmediately commences, which is more or less rapid according as the lime is more or less hydraulic. After slaking the shells the resultant powder ought to be kept for some time under cover, in order that the particles may have time to get completely disintegrated. A week is probably sufticient for this purpose. When the slaking process is accomplished, the resultant powder may be mixed with the sand and other ingrediente, with sufficient water to r inder the mass plastic.

Another plan is to grind the lime before slaking along with the mino dust or puzzuolana, and in that case the mortar may be used immodiately after slaking, indeed the slaking and mortar making form one operation The grinding dry is a more expensive, but perhaps it is the best plar, as I believe a good deal more benefit will be got out of the puzzuolana if mixed with the lime before it is slaked. Then in the method of slaking, first, it is necessary to grind the mortar after water is applied, in order that the mine dust may be reduced, and the grinding action has the effect of destroying the angularity or sharpness of the sand, thereby reducing the tensile strength of the mortar by depriving the sand of the dovetailing effect which is due to its angularity. Again, a great amount of heat is caused by the motion of the heavy grinding wheels moving at a considerable velocity, and that heat may have some deteriorating effect upon the setting properties of the mortar. In the case of a quick-setting cement grinding is positively the worst thing possible, for it disturbs the setting when it is actually going on; and if a cement be continually mixed up for as long time as it would take to set, aud get hard if left alone, it would be found that it would be completely destroyed. A case in point occurred last year on a new graving dock: नork, where the cill had to be taken out because it was leaking and thercfore likely to give way when the pressure of the rater was brought to bear upon it. The contractor pleaded that the fault in the work was in the cement, which had been specified to be ground for fifteen minutes after water was applied, thereby destroying the setting propertics of the cement, which would have set within the stated time of fifteen minutes had it been let alono. The case came to arbitration, aud the arbiter decided that the specification of the cement mortar was impracticable, and relieved the contractor of all responsibility. This shows how careful engineers require to le in drawing out their spectications, and that a complete knowledge of the materials to be used is indispensable.

The safest plan is to grind the cementing materials dry, and then slake and mia up the mortar by one operation in a pug mill. By this means we have the lime and puzzuolana or mine dust thoroughly mixed and reduced to powaer, which sdmits of the water getting at every particle wheneverspplied and then the sand, which is added with the water when in the pug mill, is preserved in all its angularity and sharpness. If, however, this latter plan be adopted, the mortar must be used soon after being mixed up, not longer than twenty-four hours for lime or half an hour for cement; but then, again, there is a risk in using it too soon, because, if the particles of lime are not properly slaked before being placed in the masonry, "blowing" may occur, that is, those unslaked particles will draw in water, and swell up, causing the stones to be shifted out, of their positions.

It is also interesting and useful to know what quantity of mortar or concreto is to be expected from a given quantity of materials measured separately-in other words, the contraction 10 murtar makiag-siace it is only by maturmation on this contraction that we can deduce a theory wy which the quantity and cost of mortar can be calculated.
The cost of mortar plays a very consides able part in the expense of masonry, and if engineers or architects do not define the proportions in their specifications, I do not think it can be expected that bualders can make relable estimates; and it is impossible to expect first-class mortar when the offerer is not told it is required to be so, for in a competing estimaso ho will make it up as if a cheap mortarwere to be used. The perfectiou of mortar must be when every particlo of sand is imbedded ir a matrix of cementing material and no more, in the same way as obtains in a piece oi sandstone. If, therefore, we can get at the amount of voids that exist in a given quantity of eand, that ought to be the quantity of lime required to thoroughly incurporate the given quantity of cand A cubic foot of sandstone weighs from 130 lb . to 170 lb ., and as much of dry loose sand weighs 88 lb .; so that assuming the cementing material of the sandstone to be of the same specific gravity as the particles of sand in it, the amount of space in loose sand ought to bo from 40 to 50 per cent. of the whole bulk. In corroboration of this I may give a note of some experiments taken out of Vicat's work on cements which were carried out by ascertaining the amount of space by measuring the quantity of water the saud licked up, without increasing the bulk, the results were that gravel of tin. diameter (beans) had 50 per cent. of void, gravel or coarse and, $1^{\prime}{ }^{\prime}$ in. to ${ }_{1}^{2} \sigma$ in., had 42 per cent. of void, sand of $\pi_{0}^{2} \mathrm{in}$. diameter had 40 per cent. of void, sand of 100 in had 33 per cent. of void, powder or very fine sand 30 per cent. of void.
Thus it will be seen that the spaces vary from 30 per cent. to 50 per cent. of the bulk of the sand. To be safe, therefore, no mortar ought to have less lime in it than 50 per cent. of the bulk of sand, that is two of sand to one of lime. Now if a mixture of two of eand to one of lime be tried the resultant mortar is nearly equal to the sand, just what we ought to expect from the theory already stated. The water seems all to be absorbed by the lime, and does not bulk provided there is not an overlose of it.

THE SAINT GOTHARD TUNNEL.

The accounts of the progress of this great woik to the end of Jarch aro satisfactory. According to the accounts of the Swiss Federal Council the driftway had becn driven on March 31 to the extent of 252 metres, enlarged to its full size along 210 metres, and the masonry finished over a distance of 103 metres. The average number of men engaged in the work during the month was 617, and the maximum number 813. On the Gaischenen side the tumnelling is through granite, or a hard gneiss, more or less faulty, and full of fissures. On the last day of March the first experiment in mechauical perforation was made with the machines of MIM. Dubois et François. The operation touk place on the Airolo side, through a schist in beds of unequal thickness. At the distance of 148 metres from the moath the temperature of the air was $13^{\circ} \mathrm{c}$. and of the water $70^{\circ} \mathrm{c}$., the air outside the mouth of the tunne? showing a temperature of 7°; at 162 metres the air rose to $17^{\circ} \mathrm{c}$., when the outer air showed 9°.

The infiltration, which was triting at first, grew in proportion as the increase of the mica and the diminution of quartz, and the frequency of argillaceous beds between the mica schist, all oi which circumstances, of coursc, diminish the consistency of the soil excavated. The quantity of water augmented considerably at the point of 104 metres; a stream broke in at the rate of more than sixteen + allons per second, and disintegrated the rock $t c$ such an extent that several shos occurred, and the work was stiziended in consequence for some days. At the end of March the out-fall of water at the mouth of the tunuel was found to be equal to about nine gallons per second.

RAILWAY MATYERS.

The rals are being rapidly laid un the Galt \& Doon Ralluat.
Tus permanent way of the Toronto, Grey and Bruce Railway will bo completed between Wroxeterand Teeswater in about a month, vetween Hariston and Wroxeter the work is not progressing so rapidly.
The St Gotiand IRalwat.-According to the latest official returns it appears that the progress made, up to the 30 th of April, at the St Gothard tunnel, was as follows:-At north end, Goscheman, 117 metres; suuth, Aisolo, 177 meters. T'otal leugth of gallery driven up to the 30 th of April, 294 metres; to the 31st of March, 252 metres. Length driven during the month of April, 42 metres.

Progress of tee Hoosac Tusvel nyming the Monta ob June, 1873.-Headings advanced westward, 131 feet; castward, 126 feet. Total adrance during month, 257 feet. Length opened from east end, westward, i4,084 feet. Length opened from west end, eastward, 9,540 feet. Aggregate of lengths opened to July 1st, 23,624 feet. Length remaining to be opened July $18 i$, 1,407 feet, being 87 feet more than one fuarter of a mile.

A New car, intended fur railway construction and ballasting purposes, has been introduced into the United States. The floor is composed of a series of trap dours, which, when open, make a kiud of grating, and when closed form a level surface. Being loaded with ballast, and removed to any required spot, the contents, by simply loosing a bolt, drop through upon the trach, and an arrangement beneath secures their distribution between and outside the rails, which are kept clear. 'Theinvention is claimed to cost but little above an ordinary platform car, and it evidently saves much time in shovelling.
In every car on the Connecticut River Railroad there is a box overhead, at one end in which is contained the name of the next station, which it is the duty of the brakesman to change as they leave the stations. And it goes further; it states where they connect with other roads. As the change is made, a bell strikes twice, which attracts the attention of the passengers, so that the box always exhibits the name of the next station, and so on. Thus passengers alpays know the name of the stopping place, and also if it connects with any other railread.

Machine fon Testing tere Condition of Rails.-A Russian engineer named Sakhovsliy, has invented an apparatus, a kind of differential gauge, of very simple construction, which is said to have been found to rork admirably at the Moscow Terminus of the Nijni Railway, and on several other lines. The apparatus consists of a wooden beam, alrout five feet long, provided at one end with an articulatod lever, on the shorter arm of which is a stud that presses, by means of a spring, arainst the inner face of one of the rails, and at the other with a fixed stud, the beam is drawn along the rails by a man by means of shafts, or it may be attached to a truck. As the gauge proceeds along the line, the deviations from the normal width between the rails is ehown by the louger arm of the lever, Fhich moves against a dial-plate. The apparatus costs only eight roubles, aud its superiority over the common gauge is striking, especially as regards the rapidity and continuity of its action. The directors of the Nijai and other lines have adopted the invention, which we believe is patented. Such a gauge run along a line every morning might save many an accident.
Singelarly enough, the Iron Age argues that paper is to become the genernl, if not the universal substitute for wood, leather, and indian rubber, as also, to some extent. fis sopper, tin, and zinc, and that cven iron is not adapted to uses so widely various-it being practicable, indecd, to bring paper pulp to such a state of toughness and solidity, by pressure as to be almost as fire proof and indestructible as iron, and thus our railroad cars may be made of paper, iustead of iron, thereby preventing the dangers now incurred in casc of accidents It isclaimed that, in proportion to its weiglat, paper is, probably, the strongest material of construction known, combining more perfectly than any other substance the qualities of strength, lightncss, flexibility, dumbility, and
cheapuess. So many and various, too, are the articles which can he made, that it can bo manufactured in quantities nractically unlimitel in every civilized comntry, and, so long as plants continue to grow, paper manufacture can be suntanued. It is, also, under all circumstances, an easy material to work and handle. The fact is probably well known that the paper wheels which have been used with success on some of the palace-cars are formed of compressed paper fitted into a stcel tire; iron plates are then adaited to each dide of the paper, and bolted together to prevent any displacement of the filling.

DOMINION.

A joint stock company has been formod at Teeswater for the purpose of sinking a well to ascertain if sait can be found in that locality.

Tre Hamilton city bell tower is now 35 feet high, and 26 feet more are to be added. Its appearance is at once substa' tial and ornameatal.

Tue shipments of oil from the Petrolia stat. f for the week nding July 10 th, were 5,060 brls. crude, ϵ refined, and 2,940 distilled.

Tus Eegashiks Magnetic Iron Ore Company, with a capital of $\$ 84,000$ in $\$ 50$ shares, intends applying for incorporation to carry on operations in the county of Saguenay with the head office in the city of Quebec.

Tus total shipments of oil from Petrolia station from the 1st of July, 1872, to the lst of July, 1873 , were 495,423 barrels. The totals for the three kinds shipped:-crude, 386,286 bbls.; refined, 13,195 bbls.; distillate, 95,942 bbls.

The Belleville Ontario says:-Mr. Vennor, of the Geological Survoy, is at present making some explorations in Hull and Templeton. He reports favorably on one or two deposits of Baryta. The iron will require some further investigation; as will also the A patite or Phosphate of Lime. Dr. Harrington will visit both the Hul. and Haycock Mines during the coming week.

Vkry favourable accounts are given at San Francisco of the Douglass coal sent from Newcastle Island by the Vancouver (cosl Co. It is reported that the Pacific Mail Steamship Company will become customers for a large yuantity of Naneimo's Black Diamonds, which aro the best produced on this cosst.

The Lower Fraser Guardian says coal of superior quality has been discovered at Chiliwhack by an Indian, who has made known its locality, and a company has been formed to work it. The seam is half a mile from Chiliwhack River, and eight miles from the Frazer. Caverns-in one of which Mir. Shannon, one of the frospecting party, walked 300 feet, are seen there.

Gonemich-An English and Cansdian Salt Company, with a capital of $\$ 130,000$, have purchased, to-day, the large farm to the south of the town known as the Wilsun farm, for the sum of $\$ 9,000$, where they intend to commence at once the manufacture of salt on a large scale. The demend for Goderich salt has now become very great in the Western States, and the wells at present in operation, to the number of thirteen, cannot half satisfy it. There are half a dozen buyers in town now from C'hicago, Milwaukee and other places in the West, and we may expect to sec any number of wells put down during the season. 'roperty has increased in value fifty per cent., and buildings are going up in every direction and Goderich promises to become a very important place.-Glohe of the 8th July.

Abtipicial Isdian Ine.- r^{\prime}. Kochlin, of Mulbaused, finds that by mixing lamplack with ten times it weight of sul phuric scid (8p. gi 66° licaumé), allowing the same to stand for some hours, and then washing out all the acid, the material has acquired the power of mixing readily with mater, and possesses all the properties of genvine Indian ink.

higher cataract of admbode.

SOUDAN RAILWAX EXPEDITION (Sce page H11.)

GPiriso - PLAN

FInsst-FLOOR-plast

Mechanics' Magazine.

MONTILEAL, JUISY, 1873.

Indi'sthations :

Patent Peat Mitchine...... 07
Straw-buraing portable
englne....................... 100 Atmospheric telegraph... 101
Rock drill at Vienna ex-
\qquad
Apparatus for electrical mersurement............
Soudan rallway expedition..
Desten of 108
Destgn of worien house.. 109
Goorls incomotive at
Vtemar exhibltion...... 1
Vienna exbibiton, front
of transegt.
113
Westminster signallight 116
Asheroft's pop satety
valve.
117
Bee protector.................. 117
Elenry's Spindle step...... 120
Anti-frletion barn-door
\qquad
West's Tyre setter......... 121
Fire-proor floor................ 121
Tlce's dynamometer put-
\qquad
Carro's electrieal machine........................

125
New Lost once al To-
monto
Contents:
Peat fuel.

Atmospheric Telegraph os
Gooxls locomative in Vienna Exhbition......
Straw burning portable englne..
engine
Bradley's apparatus for electric measurement. 102
Rock drill at Vleana Exhibitlon..... 10

On mortar and concrete. 103 The Saint-Gothard tunnel 106
Rallway matters........... 107
Dominion news. 107
Exltorial, ete.
leviews. 110

Solutinn rallvay
tion...........................
Quicksilver at the Vien-
us Exhlbltion............
perfumes. \qquad
Frult In the cans 11
Westminster sigunl Itght 116 Asheroft's pois safety
vilve........................
Beo protector..................... 118
Preserving grindstones... 118 Qualitatlve amalysis for
mmateurs....................
Heary'simprovedspindie
step................. 119
Anti-frtction barn-door
hninger 1
West's tyre-settling ma-
chine...................... 120
Fire-proof floor.............. $1: 21$
Gunpowder plle ©lriver... 122 Resistance of frood to
\qquad
Oxjhydrle gas company 122 The Graphic balloon...... 123 The new Athatic cable. 1:3; Tice's dynamometer pul-
les 121 Carre's electrical matchine.........................
On taste In colour......... 12t The mathology of pearls.. 126 Artilitial Indian ink...... 107 Sclentitic news............... 12: Miscellanca..................... 127
be done in this age. The Daily Graphic of the same city now comes formard as the chief supporter of an attempt to cross the Atlantic Ocean in n ballon. The subject has frequently been talked of befure, but now it has assumed definite proportions. 'Were is no doubt but that the attempt will be made. As to the probabilities of success they are of such a nature as few if any men can talk about with any authority. There may very probably bo an upper current of air constantly setting towards the old continent at a rate of from forty to one hundred and fifty miles an hour. It is stated that proofs of the existence of such a current have been established. If this current really exist the passage would certainly be deprived of most of its terrors. The most powerful auguries of success, however, are that the equipment will be of the most perfect and thorough charactes and that the enterpise is entered upon in no spirit of bravado but of quiet determination. As the Graphic says, "The balloon will not be exbibited to make a sensation, but as soon as it is finished will take its flight." As we said before, it is hard to say now a days what it is possible and what is ant. It only remains to hope that the success which has so steadily borne the Crrshec along hitherto may also be attendant upon this new enterprise.

According to latest accounts the interior of the Exhibition b ilding at Vienna was at length in a completely finished state but some few arrangements semained to be made outside. The amount of work to be done there may be estimated from the fact that some people in Vienna said that the Exhibition wonld never be quite linished. We shall illustrate and describe as far as possible such exhibits tas may be of interest to our readers. Ihe Machinery Hall, one of the most interesting fentures to mechanics is probably the largest building of the kind in the world, being 2615 feet long by 164 feet wide. It consists of a central nave flanked by an aisle on either side. According to Engineering the shafting is armoged otherwise than is usually the case. There are two liucs of main shafting carried by as many rows of cast-iron culumas crected parallel to the axis of the building, each row being 3 metres distant from that axis, the columns are consequently 6 metres apart tannsversely, whale longitudirally they are set at distances of 3.57 metres. Wheir heads in each row are connected together by massive plate girders, while transversely also every column is connected to the correspondiug one of the opposite row. As a rule cach column is a cast-iron tube 0.24 metre in diameter in the shaft, and swelling out at the base; but wherever a stationary engine is situated the arrangement is s'ightly different, for here, for the sake of greater sccurity, four ordinary columns are grouped together and bolted into one. The shafting is 0.09 metre (3.6 in.) in diameter, and is carried on A, crican adjustable bearings which can lie raised or lowered vertically through a considerable distance by means of screws working in lugs which are cast on to the tubuiar columns. The boilers are all located outside the main building in separate sheds, cach country exhibiting machinery in motion haviog its own boiles house. These consist merely of rectangular pits sunk in the carth to such a depth, that the tops of the boilers come up to about the level of the ground; the pits are of course bricked in, and accebs is gained to then by a tlight of steps on cither side, so that the public can view their contents as objects of whibition; they are, woreo.er, each surrounded by brick parapets, and are covered over by phain shed roofs supported on open timber framing. Each house has its own chimney, consisting of a long tube of wrought-iron plate, stamding on a bick pedestal
and stayed with chains after the manner of the funnel of a steamer.

These tabes are much admired by some English engineers from an economical point of view, the price of a largu brick stack being far greater than that of a plain wrought-iron tube lined for a short distance up with fire-bricks. They say that if such slacks are good enough for use at the Vienna Exhibition they ought to be good enough for almost universal use. The show of boilers is not very good except in the locomotive department and none of the makers shew anything in regard to the making, staying and putting up of boilers, which is regarded as a serious omission. The shew of locomotives by Continental makers is very good, but there are but few exhibitors in this department from England and none from America, in spite of the fact that American wood-burning locomotives are being extensively imported for use in Russia. Those exhibited are of all classes from the finely finished express fagine built at Antwerp with four coupled drivers 7 ft .4 in . in diameter and the numerous heavy locomotives for very heary traffic, to the little narrow gauge engines with drisers from $2 \frac{1}{2}$ to $3 \frac{1}{2} \mathrm{ft}$. in diameter. Taken altogether the locomotives exhibited constitute the largest and finest collection of the kind ever exhibited.

The workmanship and finish in this classas in others is said to be of very high merit.

REVIEWS.

Analitical Report on the Water Supply. By Dr. Baker Edwards, Bishop's Colle,ge, Montreal.
The Montreal water supply has been a subject of discussion tor sume time past in this city, and the question as to the best menns of obtaining a sufficient quantity of pure potable water is still an open one. The part of the question taken up by Dr. Edwards has reference chiefly, if not entirely, to the qualities of the different waters accessible. Twenly-two samples of water from different localities were examined. 'These waters are grouped as follows:
Group A.-Waters from the North divided into two classes: 1st. Lake waters, pure and free from alkali; 3nd. River waters characterized by organic carbon and alkaline silicateb.
Group B.-Mingled waters of Group A. and Gro ip C., taken at different seasons of the year.
Group C.-River waters of the great chain of lakes wostward to Niagara liver.

Group A.-These waters are very pure, but are objectionable from three causes.

1st. Alkaline silicates cause diarrhœa.
2nd. Shallow and slugnish streams collect during the summer season an cnormous volume of organic geroms and spores, both animal and vegetable, which are unwholesome and should therefore be removed by filtration.
3rd. All these waters act as solvents on lead, and where the supply is intermittent, the contamination of lead is injurious to all consumers and poisonous to certain individual constitutions.
Group B., is the present town supply which varies greatly at different seasons of the gear, the solid contents ranging from 7 or 8 to $14-1$ grains per gallon.
Group C., seems to be by far the best if a constant supply of it could be obtained. The city does sometimes, from causes connected with the formation of jce in the river bed, obtain this water, but the general supply is represented by Group B. The waters of Group C. are represented as renark ible for their
purity, brilliancy and excellent kecping propertics. They coutain but little orgnaic matter, are free from alkalies, and do not dissolve lead. The mincral iugredients also are of the most wholesome character.

This exc llent report concludes with a full table of analysis setting forth the locality, date of collection, mineral contents, hardness, appenmace, sce, of all the different samples collected.

Wood's Houschold Magazine for July is a very excellent number. It is housohold, not only in name but in character, and its table of content 3 shows a woaderful adaptation of articles to the individual members of the family circle. "Sim's Little Girl," a temperance story by Mary Hartwell, "Weathertough Block," by Karl Kase, "How The Vow was Kept," by H. V. Osiorae, "Lunaties at Large," by lev. F. W. Holland, and "The Declaration of Indeperdence," by J. B. Wakeley, D.D., are among the more noticeable articles. The Children's Department is cxtremely full, and contans a poem, in babytalk, which without doubr, will be very acceptable to the little ones. The price of the magazine is one dollar a year.

THE SOUDAN RAILYAY EXPEDITION.

(Continued from page 77.)

After these few observations upon Egyptian native irrigation, we may return to the surveying party, which we left at the head of the First Cataract. making the necessary preliminary studies for the ship incline, that forms the finst part of Mr. John Fowler's project. These studies having been completed, and the stores reshipped on board the Dahabeahs, the journey southward was resmmed under sail. As many of the sailors belonged to the region of the Finst Cataract, and as their voyages seldom extend beyond the trip between Cairo and Assouan, a large party of friends and colatives assembled on the western bank to witness their depature to the - to themunknown regions of the Fifth Cataract, and to testify their sympathy by howling in many leys. The Nile, between the first and second cataracts, presents but slight difficulties to navigation, but as the norti wind had not set in, the progress of the boats was slow and tedions, becanse it was necessary to resort to towing, fifteen to twenty miles a day being the maximum result produced by the Arab sailors, and the populations of the various villages on the runte, who were called in to assist in the operation.

The progress was rendered more difficult by the fact that where the banks were rocky the foothold for the men towing was very bad, whilst, on the other hand, in traversing irrigated and cultivated districts the tow-ropes had to be passed over the Zakiehs, which were numerous on the river-banks, and great care had to be exercised to preserve the standing cropls from damage.

After proceeding about 80 miles from Assouan, the course being a little west of south, Korosko, or rather Jebel Korosko, a mountain near that place, rises in view on the western bank of the river. The town of Korosko is one of the most important stations on the Egyptian cimel routes, being upon the direct caravan course to khartoum. The houses in the town are flat-roofed, and are built of mud and sun-dried bicks. It contains a bazaar, and holds a market twice a week, at which sandals, made by the Bishareen Arabs, form one of the great staples of commerce.
The traffic coming up the Nile to Korosko leaves the river at this place, and, striking across the Bishareen Desert, a distance of 200 miles, with but one well midway. meets the Nile again at Abou Hammed, after a journ"y of eight days. By river the distance between the sanue points is 500 mules. A large amount of gum, ivory, se., is brought from the interior across the desert to Korosko, where it is shipped to Cairo.
At Korosko, the Nile makes a lend to the north-west for a distance of about 12 miles, then, passing the rock temples of Ahou Simbel, it returns to its former direction. Which it follows until Wady Halfa, the northern terminus of the Soudan

goods locomotive for the royal hungarlaw state railways, at the vienna exhibition.

Railway, is reached. When the Daliabeahs arived at the Second Cataract, a short distance above Wady Halfa, it was necessary to take careful soundings through the navigable chauncls, in order to ascertain if there was sufticient depth of water for the Dahabeahs to procecd. Investigation puved that such a course would be unsafe, and cven if it corld be done, the Reis of the Cataract estimated that two weeks would be occupied in the operation, if the whole avathale furee of the Arabs were cmployed in the work. The ditticulty of the operation may be estimated when it is consideted that che length of the cataract is about 14 miles, while, in the state in which the Nile was at this tune, the water rushed through the navigable channels with fearful voleme. It having then been detemmed to abandon the Dahabenhes, amd to tahe in their place the Noggurs, or cargo boots peculiar to the Nile above the Second Cataract, the whole of the storesaud effects were transferred to camels, and taken by them over the 14 miles which separate the toot from the head of the cataract, to be reshipped into the smaller vessels, twelve Noggurs being required to carry the whole stati, sewants, buatmen, and stores. For some distance sunth of the secund Cataract the river runs through sterile abil uninviting countiy; the east side is covered with masses of black rock, the west with mountains of gellow drift sand, which has duabtless travelled from the Great sahara Desurt. The navigation for a lun: distance is difficult and dangerous, constant eddies and bubbles matking the presence of scarcely-hidden rocks, until after 30 miles of tedious sailing, the fall of Sumch is reached. The channel usually taken by the Noggurs is almost in the centre of the river, auy is nut more than 200 yards wide. This channel is closed in on either side by precipitous granite rocks; rising to a height ut 50 feet or 60 ft . above high Nile, while on the cast and west banks of the river the clifts rise to a height of 400 feet or 500 ft . On the highest rock upon the eastern bank stand the ruins of a temple, of which, however, little but the bases of the columms remain in position On the western side is a small temple, of which the doorway and a chamber still exist In this barren tract the minosa occasionally relieves the aspect of the sterile rock, and now and then the presence of a small patch of alluvial deposit is indicated by a cluster of date and dome palms, which have escaped the heavy storms and samd-unifts of the desert.
Twelve miles south of sumeh are the falls of Tangour, in oue part of which occurs a fall ot 3 feet. As it tavorable wind was blowing hard at the time that the Noggurs arrived at these falls, they were enabled, atter st ecral ineflectual attempts, to get through the greater part of the fall under canvas alone, but it was found prudent that eacle buat should pass through seymatuly. At a short distance abuve langoot is the Cataract of Ambigote, the navigation between the tmo falls being of a vely difficult character. The Catarant of Ambigole, a shotch ot which is given on page lor, is divided into two principal falls or passes, one on the east, known as the Virgin's Pass, and the other on the west side called the Father's Pass. l'hu formation here is also granitic, and the river has cut its hoken way thruugh the hand tucks with singularly wild effect. At the fuot ot the Virgin's Pass the river is divided by an island into two chanmels, and this barricr, combined with the abrupt ending of the island on the northward, creates a very puwerful cross current, which takes a direction almost at right angles to the current on the cast.

In navigating this part of the river under canvas, the Arab and Nubian sallor: showed wonderful skill in handling the Noggurs, which under their management developed unlookedfor sailing pualities. Lying under shelter of a rock until the Find freshens sufticiently, the licis awaits his opportunity, and when it arrives he makes a dash, keeping the head of his boat across the stream, the course on the port side beang studded with rocks that would be fatal to the vessel in case of failure, then sailing her about a quarter of a mile to westward he clears the cross current of 9 miles an hour. About a mile further, but on the west side of the river is the second or higher fall of the Cataract of Ambigole. This rapid, which has a fall of 4 ft ., requires the and both of canvas and tuwage to surmount it, as shown in the sketch. The channel in its narrowest part is about 200 yards wide, aud has cuts through the granite rocks some 200 ft in height. Here, again, as at Sumeh, are scattered mimo as, which have rooted thems lves in sume of the narrow crevices of the rock, and live upon the scanty amount of Nile deposit accumulated therein. At the head of
the Catatact of Λ mbigole, aro seen broken conical mountains, the hollows in which are filled with yellow dift sand, varied with occasional tufts of course desert grass. On the eastern side of the river at this place occurs an island of granite beulders grotesquely grouped, and relieved with trees, which grow frecly in the alluvial soil deposited u_{1} on the island by the Nile. Such islands are, indeed, about this district, by no meatus uhcommon, and combine 10 m ane the scenery in this purtion of the river, and of which the above sk theh cunveys a good ilfer, almost beautifial. Fual of h.e miler higher up the picture again changes, the granite rucks becuming bolder and mure rugesed, and rising perpendiculary for some hundreds of feet. The river her - takes a suiden turn to the cast, and for suver I miles the se nery is remarkably picturesque, the rochs nuw risiur vertically, aud now sloping gently upwards from the river, slight sigus of vegetation occasionally apperariag, latil almost suddeny this is exchanged for a brond expanse of water, and the Cataract of Dal. Detached blucks oi granite of enormwas size here lie singly or piled together in the stream, which rushing through narrow water-worn channels, or boiling over hidden rocks, rush to the calmer water at the foot of the falls

In passing through this catgract, the wind lulled, and left suveral of the Noggurs, which had before been well able to hold their own against the rapids, fast upon the rucks, and it was found necessary to relieve somu of them of part uf therr cargo before they could be floated again.

Ever since passing the Second Cataract a strong north wind had tavoured the party, but at Dal the boats lay becalmed for three days, and subsecquently two days more were lost frum the same cause, whilst towing, at this part of the river. was quite impossible.

After a total delay of six days a strong north wind set in, and the remainder of the cataract was traversed under sail. The river here is broken with islands, some a mile in length, with cliffs 200 or 300 ft . in height; in many cases crowned with rude fortitncations of a very anciont date; on one bank of the river, too, the granite hilis rise abruptly, and the date and domu palms grow treely. Camels had awaited the party at the Cataract of Dal, but they were of course useless while the boats were lying b.calmed in the middle of the river, and as, after a fresh start was made, the wind continued steady, it was decided not to employ the camels, as the transit overland wolld have been slower. It the village of Zergamatto, an infantry sergeant of the $\mathrm{Ku} u$ divu's army was placed on each buat; these officers being intended to overcomeany transient hesitation on the part of the local residents to assist in tow. ing. The wind continuing fair, the distance between Zergamatto and Kohó (about 60 miles) was easily traversed, 50 miles having been made under sail, and against a strong current. one day.

We may now briefly indicate the direction propust d for the luilway from Wady Halfa as far as Kohe, where the bidge crossing the Nile is to be elected. A level alluvial plain on the castern bank, which forms a good landing-place from boats at all stages of the Nile, and is in all respects thoruughly adapted for aterminal station has been chosen, the tuwn of Wady Halfa beiog the point of cummencement, whence the lane runs by casy gradients on carthworks to the fout of the Second Cataract, 6 miles above Wady Halfa, and thence, for a distance of 12 males, it follows cluse to tho bank of the iiver, avoiding as far as possible the locks which break up the surface. In this first length occur the maximum gradients and ruling curves adopted on the line for although the works are not very heavy, the highest bank being less than $1 i$ feet, the irreyular nature of the gruund rendered the levels adopted, neceseary. Near the twelth mile, the line leases the river to cut across a small bend, but touches it again at the fifteenth mile, from which point, for 8 miles further, a cotres is selected among the granitic rocks, which are here in some places covered with saud and alluvial doposits. At the twenty-fifth mile the line again leaves the Nile, ${ }^{n}$ r 2 sing be hind some hills, but soon returns to the rives, which it follows, with but few exceptions, to the village of Sarrus, near which a water station would be erected. It was intended to continue the river side route as far as the cataract of Ambigole, and a detailed survey was made with this object, as it would have involved the formation of at least six tunucls through the granite, besides other very heavy and costly works. It was, therefore, necessary to make a detour and carry the railway bhind the hilis ou the side of the river, through the Mohrat
desert, the Nile being again reached at a distance of about 70 miles from the commencement at Wady Halfa. Agnin the line leaves the river for a few miles, owing to the natural ob tacles of the goound, but touches it agnin at S ugle, near the foot of a lofty mountain, which forms a conspicuous ferture in the lands ape. The 4 or 5 miles south of Songle constitute probably the most difficult section of the wholn line. Aloug the rive huge irregular masses of granite and porpleyry opphse almost insurmonatahle obstacles, whilst the ground about a mile and a half to the east is broken up by deep ratines and the winding channels of the numerous Wadys cut out by the waters in fiding an entrance to the river from the desert plateau. To follow the river bank would involve considerable tunnelling through the rocky spurs, so that the irregular ground between the tiver and the mountain ranges beyond was selected. In this length there will be about halfa mile of cutting, not exceeding 17 fuet deep as a maximum, and most of it through a hard rock. This is probably the heaviest cutting on the whole line. After this section of 5 miles the line again reaches the river, and runs for 17 or 18 miles over good ground with casy gradiunts and good curves. At the end of this distance, however, the ground be-ide the river is ag in t o difficult t) follow, and twe line, therefore, turns inland for 25 mil s, returning to the Nile at the vallage of Ferket This last 25 miles pases through the Akasha desert, covered with gianitic and white quartz rocks. At Ferket, however, the formation changes, trap and metamorphe rocks taking the place of the g 'anite which is rarely met with unless covered with gneiss or schist.

Regaining the river at a point about 115 miles from the commencement of the liue, easy ground aloug the bank is found for 10 to 11 miles, then a bend in the river is avoided and the village of A mara is reached. A station to accommodate this district, which is extensively cuitivated, will be provided; and beyond the line winils in and out between volcanic rocks and irregular cliffe, containing traces of sandstone in m.ny places, for about 20 miles. Beyond here to Kohe a low stretch of land, varying in width from $1+$ to 6 milcs, lies between the river and the hills, and across this the line will be taken in a straight line, and with works of the lightest description.
The nature of the ground between Wady Halfa and Kohe being as we have described it, the direction of the line is necessarily irregular and involves the adoption of steep gradients, combined with sharp curves. Consequently the works upon the line will be comparatively heavy. The embankment contanns altogether some $2,300,000$ cubic yards, and the cuttings, which have been avoided as far as possible, about one-thrtieth of this quantity; the material to be dealt with being bard, soft, and medium quartz rick, and light material, in about equal proportion. The culverts are numerous but not large; the total yuantity of masonry being about 30,000 cubic yards, the largest work concisting of thirteen openiags of 22 feet each in an mbankment about 35 feet high.

Qucesphear at tbe Vienha Exm:bition -In the pavilion of the Ministry of Agriculture, rected on the Exhilition Place, which contains highly interesting collections, a flonting cannon ball may be seen. Although weighing 50 livs. it lies like a down feather on a splendid silvery mass, consisting of pure quich silver from the culebrated mines of Idria. 150 cwt . of this metal is exhibited in a large iron caldron, offering a sight seldom to be mist with, and on it rests the solid iron ball. It was interesting to observe the emptying of the quicksilver into its receptacle. The matal is very cleverly stowed away in bage of white sheep leather, specially prepared for the purpose, each containing 50 lbs . of the mass, the bage being tightly bound round the top, and then put into small wooden barrels, carcfully bunged up. Formerly, this liquid metal, which penetrates easily all porous sub. stances, was transmitted in wrought-iron bottles of very expensive make. A gentioman, in testing the resistance of the metal, had to use some force in inserting the hand into the mass: but how great was his surprise when, withdrawing his hand, he found that two gold rings he wore had been changed to silver.

Acconding to T. Griessmayer one part of a solution of bisulphite of lime, sp. gr. 1.06, to 1000 parts of beer prevents the beer from turning sour.

PERFUMES.

From tho Middlo Ages un to the last century, musk, civit, ambergras, and lavender sum uy the best known and most popular perfumes. It is only of comparativcly quate late years that the art has made so much progress, and been enruched by so many new ingredients as wo find at present. Nevertheless, and in syite of all additions, the base of European tlower seents is contained in six flowers only, armely, orange flowers, roses, jasmines, violets, acacia, and tuberoses. Others that havo been tried aro found of small use, and their special odour is best given by imitative compounds : as heliotrope is imitated by vanilla dashed with almoids, and so on. And to these six bases add geranium, lavender, rosemary, thyme, and some other aromatic herbs-the last three growing chactly on the mountains round Grasse, Nice, and Cannes, which are the principal European centers for the manufacture of perfumes-add also the peel of bitter oranges, of which the fruit goes to make curacoa; the peel of citrons and bergamots, of which the fruit goes to feed the cows of the district, and is good for the milk; add musk, sandal-wood, ambergris, and gum benjamin; of later days add the leaves of the patchouli (pogostemon patchouli, one of the labiates) from Inda; winter-green (gualtheris procumbens) from the United statts; varrous of the andropagons, which we call goat's-bcard in our own wild flowers, from (ceylon ; ihlangihlang (unona odoratissima), one of the anonacea from the Philippine Istauds; vanda (acrides suaveo-lens, an orchid) chichy from Java, but from other places too in the Indian Archipelago; frangipanni (plumerifs alba, one of the apocyanacta) from both the Enst and West Indies-and we have some of the principal sources whence our scent bottles are filled, and the delicate soaps and pomades perfumed. But still, wheresoever the material is to be found, the French always remain the greatest producers; and, save ar: regards a few exceptional perfunes-as attar-gul for one, sad eau-de-cologue for another-are the best mannfacturers of the sweet scents which pervade the world.
'They do an immonse trade in perfumery, and England is their best customer, as Russia is their warst. England took, in 1867, when this table was drawn up, 424,500 kilogrammes of perfumery, valued at 2,546,000 francs; Russia only 13,300 kilogrammes, at the value of 79,800 francs. After England comes, Brazal, then Belgium, and then Spanish America; but even Bracil does very little more than half the English trade, and Spanish 1 merica less than half. The United States took 57,400 kilogrammes, valued at 344,400 francs; and Austria only 14,000 kalogrammes, paying for them 87,600 francs. Germany, in spite of her own especial industry at Cologne, took 107,800 kilogrammes, spending 646,800 france on her purchase; but it would be interesting to know what amount of her own perfume she exports, and which of her numberless Jean Marie Farinas has the largest clientele. England does a good trado in her own indigenous lavender water; but by far the greatest proportion is exported; perfumes, like prophets, nut having much honour in their own country-all that is foreign beng instiactively preferred to what is homebred, and the question of comparative excellence counting for nothing in the choice.-All the Year Round.

Froir in Tin Cans.-The Boston Journal of Chemestry gays: The impression prevails among those who use freely fruits which are put up in tin cans, that they are injured thereby, and this impression is, in many cases, correct. We havelong contended that all preserved fruits and vegetables should bo stored in glass, and that no metal of any kind should be brought in contact with them. All fruits contain more or less of vegetablo acids, and others that are highly corrosive, are often formed by fermentation, and the metallic vessels are considerably acted upon. Tin cans are held together by solder, an alloy into which lead enters largely. This metal is easily corroded by vegetable acids, and poisonous salts are formed. Undoubtedly, many persons are greatly injured by eating tomatoes, peaches, etc, which have been placed in tin cans, and we advise all ourfricnds who contemplate putting up fruits the coming summer, to use only glass jars for the purpose.

THE WESTMINSTER SIGNAL LIGHT.

In our last issue wo gave a description of the Gramme Magneto-Electric Machine which is being manufactured in England by Messrs. Wheldon and Cooke. Mr. Cooke has now devised a contrivance which we illustrate above for the exhibition of the electric hight from the cluck tower of the House of Commons in London. In our illustration, for which we are indebted to Engineering, t and t^{\prime} (Fig. 2) are two large binding screws, which receive the terminals. Two metallic strips condact the positive and the negative current respectively to d and c. From c the negative is led through the pivot of the revolving table to the right-hand hinge, h; the positive at d is in connexion with a circular strip of copper, which leads it to the left-kand hinge. Finally the hinges communicate with two studs, $i, 2$, sunk into the upper surface of p, p^{\prime}. Two regulators, l and l (Fig. 1) are fixed to a rectangular mabogany board, r, r, frec to slide on rollers from p^{\prime} to p. Each lamp carries two cupper strips, so bent that the pcrtion to the right rubs aganst the studs, and thus insur s good contact when the flat part reaches them. Fig. 2 shows the metallic picces of lamp l, pressing upon thesc discs, and thus admitting the current. When it becomes necessary to
change the carbons, the table, r, r, is pushed from p^{\prime} to p. The second lamp, l, comes into position; its copper strips are in contact with the underlying stads, and the current passes through its carbons. The time required to effect this change is scarcely appreciablo. The light can be directed to any object by means of the screw, f, and the worm and wormwheel e. The former, f, enables to the operator to project the beam at any angle of depression lying between convenient limits; the latter, e, gives him an azimuthal motion of any amplitude required.
One might think the use of two regulators altogether a superfluity, inasmuch as the carbon points may be lengthened to burn for any desired number of hours. But it must bo remenbered that carbon is an imperfect conductor, and, therefore, to increase its length is equivalent to an increase of resistance. To obtain a continuous light for eight hours, would, at the present rate of consamption, require carbons about 16 in. long. Now it is difficult and expensive to get carbons of that dimension, and even if such pieces could.be easily procured their britticnese and want of homogenousness would constitate very serious inconveniences. If long
carbons were rcally useful, we cannot doubt but they would have been introduced before this into our lighthouses.

Fig. 2 also shows a vertical section of the holophotal apparatus used. The central piece is a polyzonal lens which refracts iuto parallelism the rays that impinge upon it at different degrees of obliquity. The upper and lower prismatic portions pertorm a very important ceonomic office in intercepting and totally reflectiog the rays which make large acute angles with the principal axis. The other iays are lost, as it has not been deemed necessary, for the present, to adopt the ingenious prismatic mirror system of Mr. Stevenson, by which those rays, after undergoing two reflections, are concentrated in the radiant point, again to be transmitted. Thenon-adoption of this appliance is owing, no doubt, to the temporary character of the arrangement on the clock tower, as such an optical aid must considerably increase the effect of the electric light.

ASHCROFT'S "POP" SAFETY VALVE.

This valve was designed by Mr. Ashcroft with the view of equalising the pressure on the vaive to that of the boiler, so that the exact degree of pressure on the interior surface of the boiler is really indicated. In ordirary valves the pressure decreases as soon as the valve begins to open, the egcaping steam rendering the pressure on the valve sartace less than that exerted at the same moment on the plates of the boiler. In the "pop" valve this is not the case, the pressures being equalised. The above engraving is a section of the valve, in which it will be seen that the pressure is regulated by a spring, the valve spindle working in a bush screwed into the framing above. The valve seat and that part of the valve bearing apon it are of nickel broaze, which cunbines the hardness of steel with the freodom from oxidstion which distingtishes gold, 80 that duraiuiity is insured and corrosion prevented. The valve sest ìs so formed asthat whenthe steam has left the ground joint it enters the annular recess in the valve and is deflected into another annular recess

ASHCROFT" "POP" SAFETY VALVE.

BEE PROTECTOR (See page 118.)
which surrounds the valve seat. The result of this action is that the steam oltaing a leverage, and the valve acts with thorough efficiency. The valve may be moved while under pressure to test its condition, the hanile shown being used for testing its blowing of power and for ascertaining that it does not stick. The " pop" valve lifts higher from its seat than any ether valve, and its discharge is stated to be equal to that of five valves of the ordinary construction ; the 7 -in. valve lifting $\frac{s}{8}$ in. from its seat. The two circles in the engraving form a comparative diagram, showing the area of the common valve when open and of the "pop" valve; the size of the valve being 3 in . The valve is shown without a dome and it can be locked up without or with that addition, so that it cannot be tampered with. 'The apparatus is very simple in construction, and its efliciency is proved by the fact that it is in use on more than 4000 locomotives in America, and that the Government of that country have recently adopted it. It is equally applicable to locomotive, marine, and land boilers, and gives promise of very general adoption.

BEE PROTECTOR.

The ingenious inventor of this device, before putting his ideas into practical shape, doubtless became convine of the immutable truth of these facts: First, the busy bee improves only "shining hours," and gathers honey from opening dowers only by day; Second, the bee m th hav a pre lil ction for stealing honey und r cover of the night; and third, chickens retire to their 100 ts at twilight, and are aronsed by the "shrill clarions" of the masculine portion of their population at an excessively early matutinal hour. 'I'o utilize these fropositions to compass the desired end, was the problem: how it has been solved, we proceed to show. 'he bees are expected to enter their domiciles a little before dati. After they are all in, the period for the roosting of the chiskens arrives. The latter, alighting on their perches, operate machinery which closes the live gates and shuts the bees in. The bee moth, on attompting his burgla ious uerati,n, finds hamself barred out, and as the mechamism of the levice is beyond his comprehension, it is to be inferred thet he letires in di-gust Meanwhile the chickens repose until the early village cock proclaims the morn, when they abandon their perches to resume their geological investigations into the surfice of the adjacent soil and thus teturn the bees, their honey all safe, to the airs of heaven and flowers of earth. For the benefit of all who may be interested in this staikingly novel application of the fotec of gravity through the medium of chickens, we append the following detailed description of the mechanism.

A is a horizon'al rock slaft, sicured in suitable bearings and provided with thee arms, L, C, ard D. 'The arm, B, within the house supports a vertical sliding post which is held ingu'des, and berrithe perches. The arm, C, carries an adjuitable weight, sufticiently heavy to overbalance the post and keep it elevated when the roosts are unoccupied. The upright arm, D, is comnected as shown by the dotted line with the rods, E E, attached to the gates of the hives. Suitable weights, F, are arranged in connestion with the rods, E, so as to hold the gates open.

As the fowls mount upon the roost their weight depresses thr post, and it, in turn, presses down the arm, B, and thereby rocks shaft. B, and its arm, D. The latter, operating the rods, E , closes all the hives. λ s soon as the roost is vacated, the weighrs mring the parts to the original positions. The advantages claime i are the regularity and certainty with which the hives will be closed and opened, and the fact that any number of hives may be connected with the device and simultancously operated.-Scientific American.

Prese ving Grinds roxis.-A grindstone should not be expos e^{\prime} to the weather, as it not only injures the wood work, but the sun's rays harden the stone so much as, in time, to render it useless. Neither should it stand in the water in whichit runs, as the pait remaining in water softens 80 much that it wears unequally, and this is a common cause of grindstones becoming " out of truc."

Wh give on page 109 illustrations from the Builder of a housu designed by an English architect for a Norwegian gentleman, the owner of several timber farms. The hotise was to be erected on one of these farms for his own use. 'The drawings were made under his personal superintendence as to detals; and the arrangements of plan are therefore similar to what would be necessary ordinarily in a similar situation. But the architect is chiefly responsible for tho double haight of verandah and the top room, or belvedere, and other architectural features. The construction was to be of local materials, -that is, the timber of the estate and the chimneys of brack; but as it was to be carried out by local workmen entirely, the cost is not known.

The oonditions of climate and of timber supriy being somewhat similar, the plan may supply a useful nint or two to prosperous Canadian farmers and othors.

As our illustrations do not includu a scale, we add tho dimensions of some of the rooms:- Drawing-room (Dagligstue), about 18 ft .6 in . by 16 ft . in clear; sitting-room (Daglickumer), about 16 ft. by $1: \mathrm{ft} . ;$ dining-room (Spisekamer) about 16 ft . by 14 ft .; kitchen (Kiokken), about 16 ft . by 14 ft .; hall (!gallorv over), about 25 ft . by 20 ft .

QUALITATIVE ANALYSIS FCR AMATEURS-II.
By E. J. Matlocn, A. M., in the Boston Journal of Chemistry.

SRCOND GROUP.

This includes those metals which are precipitated by hydrosulphuric acid from acid solutions; namely, mercury. luad, bismuth, copper, cadmium, gold, n!atinum, tin, arseaic, and antimony. Ifydrosulphuric acid (hydric, sulphide, or sulphuretted hydrogen, If S) is a poisonous gas with a very disagrecable odour which resembles rotten eggs ; breathed in small quantities it produces headache; is very soluble in water, so that its solution is often employed instead of the gas itsclf; is combustible, snd, when mixed with air explovive. The usunl method of preparing it is from s.lphide of iron and sulphuric acid. The sulphide of iron for this purpose can be purchased of the dealers in chemicals in large cities, or prepared by carefully fusing together iron-filings and sulphur. The sulphide of iron is broken upin small pieces and put in a bottle fitted with a good cork (soaked in paraftine) through which passes a tilue twice the length of the bottle, the lower end reaching almost to the bottom of the bottle, a funnel being attached by a rubber tube to the upper end. Another tube tin. long, bent at right angles, also passes through the cork. ' To the end of this is attached a glass tube long enough to reach to the bottom of the test-tube or other vessel in which the precipitation is to take place. The bottle being tightly corked, dulute acid is poured into the longer tube, when gas at once begins to issue from the shorter tube. So heat is required. Another method that I have often found more convenient on a small scale, is by melting tosether paraffine and sulphur. Some sulphur is first placed in a testtube, then several pieces of paraffine thrown in, and the testtube closed with a cork through which passes a single tubs bent twice at rightangles. After applying heat for some time, hydrosulphuric acid gas is given off; as soon as the heat is removed the gas ceases to be generated, but begins again whenever heat is applied. The gas should always be generated under a flue or in the open ait. If prepared in or near a building painted with white lead, it blackens the paint, from the formation of sulphide of lead.

Group second is divided into two divisions: the first including mercury, lead, bismuth, copper, and cadmium, whose sulphides are insoluble in ammonic sulphide; the second including arsenic, antimony, tin, gold, and platinum, whose sulphides are soluble in ammonic sulphide.
heaction of metals of grodp second, first division.
Dissolve a little corrosive sublimate, called by modern chemists mercuric chloride (HgCl_{2}) in a little water in a testtube. Pour a few drops of this into a second test-tube and dilute, then pass hydrosulphuric acid gas ($\mathrm{H}_{2} \mathrm{~S}$) into it; a white precipitate forms, which immediately passes through gellow and red to black. Filter and $t ;$ to dissolve the precipitate in ammonic sulphide, also in nitric acid; it will be tound insoluble in both. Dissolve it in aqua regia, a mixture
of 4 parts hydrochloric acid and 1 part nitric acid; this solution is precipitated by chloride of tin, but this confirm. atory teat is motalways necessary To another portion of the aqueous solution of corrosive sublimate add a drop of putassic iodide (KI) ; a be autiful r d precipitate of julide of mercury is formed. 'This reaction is uey charachastic of mercury.

A solution of plumbic nitrate (nitrate of lead) also gives a blatk precipitate with hyarosulphuric acid, but unlake the mercuric sulphide, it dissalves in boiling nitric acid, ..nd from this solution is again thrown down by sulphuric acid as a white precipitate of plumbic sulphate. With potassic jodide it gives a beautiful yellow precipitate, thus Jistinguishing it from mercury. Very small quantities of lead in drinkir.o water are detected by hydrosulphurin acid.

The subnitrate of hisme ${ }^{+1}$, being sometimes used in medicine, and also in cosmetics, can be procured fromany druggist. :'t is insoluble in water, but disaolves readily in bycirochloric neid. Pour a few drops of the concentrated acid solution into a test-tube half full of water; a white precipitate is formed. I'his is quite characteristic of bismuth, as verv few other salts are precipitated by water. For this reasou. avoid diluting the acid solution when about to make a test. Into the acid solution, pass a current of hydrosulphuric acid gas; a black precipitate is formed, which, like the lead sulphide, is soluble in nitric acid, but unlike lead, the vitric acid solution is not precipitated by sulphuric acid, but by ammonia These reactions suffice to distintrisish it from the other metals of the group.

Sulphate of copper can be prepared by dissolviog an old coin in sulphuric acid with the application of heat. A great dea' of sulphurous acid is set free. l'he blue-colored filtrate seoraining after the silver chloride is precipitated from the coin solntion, mentioned in p 82, is pincipally nitrate of copper. Either this or the sulphate can be used in studying the reactions of copper. With hydrosulphuric acid, copper solutions give a brownish black precipitate, soluble in nitric acid and in potassic cyanide, a substance much used in photography, and vary poikonous. In very dilate coppes solutions ammonia productor a dark blat culour, but no precipitate is formed. Potansic ferrocyanide gibes a reddish brown preciprate insoluble in hydrochloride atid, and this disti.hruishes it from other metals of this group

Cadmium is one of the rarer metals, and is used priacipally in photogiaphy. In the analysis of common alloys and minemals it is seldom necessay to test for colmium. The precipitate with hydrosulphuric acid is a beantiful canary yיHlow, soluble in nitric acid, but insoluble in potassic cyande. 'This onables us to distinguish it from coppr, which it closely ruscmbl's in some of its renctions.

As the student progresse: he should tabulate the results of each series of r actions to coovenient reference in future. Sometimes an impurity in h's chemicals prevents the reaction from taking the precise fram here given. When hydrosulphuric acid is pasecd into vary acid solutions, more or less of it is decomposed, and a white precipitate of sulphur insoluble in ritric acid is formed. This is easily distinguished from a metallic sulphide by its specific pravity and combustibilaty.

serarating metals of grocp gecond, fimst divislon.

Supposing you have in solution the five metals of this division of group second, the solution is to be acidified with brdioniloric acid, when most of the lead will be pecipitated as a chloride and filtered out, but traces of lead may stall remain and must be sousht for in this place. The hydrosulphuric acid gas, or a strong solution of it precijitates all these metals The black precipitate is filtered ont, then boiled in nitric acid, and the residue shown to be mercury by dissolving it in aqua regia and adding stannous chloride, or protochloride of $\operatorname{tin}\left(S n(l 2)\right.$; ${ }^{\text {a }}$ grey precipitate is formed Fror the filtrate, the lead, if any is present, is thrown down by a drop of sulphuric acid as a white plumbic sulphate. Ammonia is next added cautionsly to the last filtrate, when bismuth will he precipitated rhis is recognised, after dissolving in aqua regia, by giving a white precipitate with water, if the solution is strong enough. The filtiate from the bisinuth precipitate will be blue, if copper is present. A solution of potassic cyanid. (KCy) is added, caro bring taken to avoid breathing the poisonous fumes given oft, next pass more hydroselphuric acid into it, when a bright yellow prect-
pitate detects thי cadmium. To confirm the presence of copper in this last filtrate, a littl, uitric acid and potassic ferrocyanide are added; the red precipitate is cupric ferroeyanide, or ferrocyanide of copper.

The reparation of those metais precipitated by hydrosul. plurir arid, and inanlyble in ammonic sulphide, uay be tab. ulated as follows.

Precipitated $1 \mathrm{y} \mathrm{H}_{2} \mathrm{~S}$

The principal difficulties to be encountered here are the separation of lead from bismuth, if both are presen's and of copper from cadmium. The -tudent of analysis must repeat the reactions of these metalsuntil he is able to separste them with certainty Mercury, it must be remembered. forms two series of salts, only one of which is precipiaied by bydrochloric acid, honce we see why mercury occurs both in the first and in the second group.

HENRY'S IMPROVED SPINDLE STEP.

The object of this invention is an improved construction of the steps of mill spindles or other vertical shafts, whereby they are mule adjustable to comp nsate for the wear of the bearing surfaces.

The illustrations show, Fig. 1, a perspective view with a portion broken away, and Fig. 2, a vertical cross section. In the base, A, of iron, is formed a recess, the walls of which are screw-threaded to receive a correspondingly formed guide or bearing B. The latter is constructed with an inverted conical opening to inclose the toe of the spindle C, the end of which extcnds through and rests upon the upper of two or more hardened steel discs n, placed in a suitable cavity at the bottom of the recess. r'he top of the guide forms a collar E , which is bevelled off around the interior to re 1 ive oil for lubricating the spindle. The passages ', in tho base also serve to conduct lubricating material to the spindle toe. (i, is a lock nut screwed upon the guide between the collar and the base. In the engravings, Fig. I shows the guide let into the base to the full extent and locked in position by the nui G, screwed down to bear upon the upper surface of the latter. As the guide becomes worn by the rotation of the spindle, \vdots t is unscrewed and moved up, $\mathrm{Fi} g$. 2, to the requisite height to fit the toe snugly and prevent the spindle from vibrating or ruaning out of true, thus, in short, compensatiug for the wear. The nut G, is then again scruwed down to lock the parts in place.

By using a number of discs, D, one, two, or more can be removed as the spindle drops down, thus adjusting the step regularly to supply the deficiency caused by wear. The invention appears durable and simple.

Fig. 1.

HENRY'S SPINDLE STEI (See page 119.)

BIDER'S ANTI-FRICTION BARN-DOOR BANGER.

We give on this page, an illustration of a new barn-door hanger which is claimed to surpass anything of the kind heretofore known to the public. It is described as follows by the American Artisan:

The distinguishing peculiarity of the banger is as follows: The weight of the door is supported by an elliptic stud, A, between which and the rail B, is a series of chilled-iron rollers C, completely incased, and which, passing the atud, roll round and return over it in succession. This stud being thick and strong, it is impossible to conceive under what circumstances any breakage could take place. It is remarkable how easily the banger moves along the rails. It is certain that this principle secrres a remarkable decrease in friction. The manufacturers inform us that direct experiment has proved that a weight suspended by these hangers will be moved by onefourth of the power required by any other hanger they have been able to obtain and experiment with. Nearly all the friction in the working of this hanger is rolling friction, there being no axle to turn in a socket and wear away; no sheave to bcar against the side of the hanger; no grooves to grind and break; and, as the rollers are made of chilled-iron, and are harder than steel, it is evident that a remarkable degree of durability is secured for the device.
The rolls are, as shown, completely enclosed by the plate D and cap E, which is held to its place by a pin inserted on the outside, through the end of the stud A. In this way all the bearing surfaces are completely incased and protected from the action of storms. There is, therefore, no neccssity of a housing over the hanger, and this effects considerable saving in the expense of hanging doors. The csp E descends somewhat lower than the upper odge of the rail along which the rollers ron, and as the rollers will not mount the track like wheels, there is no danger of the hanger running off the track. The case, in its adrance, pushes away any obstructions that may arise from ice or snow, so that the hanger is not liable to become clogged. As water will not penetrate the interior, the sarface will not be injured by rust, and no lubrication is needed.
Besides theso practical advantages, the hanger is very tasteful and neat in appearance and will fit any rail.

RIDER'S ANI'I-I RICTION BARN-DOOR HANGER.

WEST'S TYRE-SETTING MACHINE.

Among the exhibits at Vienna is the annexed American invention which is just now coming into extensive ase not only in America but also in England. The machine is simple in its construction and operation and is vely expeditious and effective. It consists, as will be seen on reference to the engravinge, mainly of a laminated wrought iron hoop, formed of four bands of wroaght iron, about 6 inches in depth, and which is expansible and contractile, being associated with a stout irame, carrying a long and powerful screw, which works in a fixed collar at one end, and also through a head-stock to which the hoops are firmly attached. Thereby, when the screw is tightened up (which is effected by hand-wheel, long lever handle, or the larger sizes are fitted with duplicate, fast-and-loose pullies for power) the hoops ase drawn up so as to contract the diameter of the circle formed by the fixed end; similarly by the reverse operation the diameter of the circle may be enlarged.

The whole apparatus is carried on suitable stands, and attached to the circle of the hoop are supports which carry the wheel to be tyred. The tyring is effectod cold, the tyre itself being made of such a size as to it loosely on the rim of the wheel. Being thus laid on the bearers within the hoop, the screw is operated, evenly and uniformly contracting the dismeter of the hoop, and excrting a regular and uniform compression opon the tyre, grad_ally incicasing in power antil the tyre is thereby unset and fixed firmly and solidly upon the wheel.

It is obvious that by the employment of this machino the cost and delay of having to beat the tyre, so as to make it fit on by expansion in tho ordinary way, is entírely avoided ; and, especially in the case of repairs,

West's tyre-setting machine.
for the ro-seting of a loose tyre, it is very advantageous, as the wheel can be removed from the vehicle, set by the compression of the machine, and again fixed on iis asle, within a very brief period. As regards the quality of the work, it is clear that the increased density and toughness of tyres so set by powerful compression canstitates an important advantage in point of wear and durability.

This tyre-setting machine is, therefore, one of those simple effective, and economical appliaices that no carriage builder's or wheelwright's shop should be witbout. It is made in sarious suitable sizes, for wheels of different dimensions, and adapted for operation by hand or power, as shown. The smallest sizo (No. 1) is fitted for whecls varying from 3 feet to 4 feet 2 inches in diameter, with iron tyres of an inch thick by $1 \frac{1}{5}$ inch wide, stecl tyres 1 inch by $\frac{1}{2}$ inch. The larger sizes are adapted for diamelers of wheels from 3 feet 5 inches to 4 feet 7 inches, iron tyres up to $2 \frac{1}{2}$ by $3 \frac{1}{2}$ inches, and stecl tyres on to $2!$ by 1 iach. Each machine is capable of operating on whecls that do nut vary more than 14 inches in diameter, and they may he constructed aud adapted for whecls of any dimensions
In addition tu a saving of over one-third on setting nem, and considerably more on old, tyres the following adrantages are obtained for the work effected by this machine : durability and diminished wear and tear, because the evils of the old method are avoided, namely, the blackening and staining of the felloe; the stcaming, swelling, and subsequent shrinking of the wood; and the carly loosening of the tyre, consonuent thereon, aided by the wearing away, under concussion, of the particles of wood which have lost their natore and cohercnco by cbarring ; also the weakness resulting from taking out old bolts and making netr holes is avoided, becanse, in upsetting an old tyro thereby, the bolts are not taken out nor the tyre removed from the wheel.

Teupre or Tools.-A correspone ent of the Detroit Tribune 6ays:-If an edge tool is 50 hard as to crumble, grind it on a dry stone until the cige turns blue: it will then cease to break, and the temper will gencrai. ${ }^{5}$ prove to be about right. Scythes and ares are sometimes too hard at the edge, but if treated in this way will give no furthur trouble

Fig.2.

- Trancinel ac

FIREPROOF FLOOR.

In this invention, Mr. Nathaniel Cheney, of the Architectural Iron Works, New York city, the inventor, proposes to do away with lath and other combustrble building matcrial, and apply the plaster, for cciling ronms, dircetly to iron wire, which is interworen with the tie rods of floor or roof arches.

In our cograving the arch A, is formed of metal plates bolted together at the edges by angle bars, and resting at tho ends on metal sker back beams 13 , which are tied together by
wire rods C, to prevent end pressure on stiain on the walls, and hold the arch up stiff and firm. On the lower floor the arsh
 of concrete above.

The connecting or tie wires r ', are ananged clone torether, as shown in the section, Fig. 2, nad small wire is woven in at suitable distances. The fabric is suspended by the bhurt rods D, from above, and upon it the plaster is applied in the ordinary manner 'The device is necessarily tireproof, and is eaid to form firm floors, incapable of tranmitting sound to any considurable extent.

A GCNPOWDER PILEMRIVER.

At a mecting of the American Socjety of aivil Enginerre, in New York, on March 5th, a paper "On Shaw's Gunpouder Pile-driver," by Samuel R. Probasco, C.E., of Bıoolilyn, N.Y., was read.

This pile-driver was set at work in Octoler, 18i2, on a line of sheet piles for a reservoirdam in the valley of Parsonage Creek, Long Island. The material to be penetrated was sumd and fine gravel, cemented together in places, so as to be hard and diffecult to move with a pick, and like " hard pan." Clay was found brlow the water-level of the basin,-_some borings showing it at 15 ft lulow the surface ibe lower stratum was tough and tenacious, and the whole material was under water. The machine in form resemblis an ordinary piledriver • a cast iron block, called a " mun," resting on the head of the pile, is lored out, and receives, without windage, a wrought-iron piston attached to another ast-iron block, called the "ram." whieh is lifted by explosion of powder in the bore. When the piston leaves the fun, a cartridge is thrown in, which, exploded by the hat iced by the piston in its descent, throws the ram upwatd amain, and forces the pile downward. The area of the piston is adjusted to the weight of the ram, which also is rdjusted to the work to be done. Soda powdar cartridges, in chlinders of 11 oz. to 12 oz , coated with iback lead and paraftine, at: used The crating is cxperted to k erep the powder dry, lubricate the gun, b.eserve the requisite tightness, prevent escape of gas, and cans: the entire force to be exerted on the base of the piston. The piston is made a little smaller than the bore of the gun, and has on its lower end a stiel ring which fits the bore closely. The performance was as follows :-At first sereral explosions were necessary to lubricate the gud, which leaked gas so that the ram woukd not go to the requisite height to move the pile. After a few shots the piston morcd up regularly, and in its descent, fired thecharge forging the pile down and itself upward.

When the resistance is slight, this machine may be economical, but when, as in this case, it renuired 300 blows from cartridges, costing $2 \underline{2}$ cents ench, to force a pile down 15 ft . or 16 ft ., it cannot be called so 'lhe gas from the explosions cut passages in the ring at the end of the piston. and thereby much lessened the power of the machine The gun became hot from the rapid discharges, and the bore enlaged, whereby more gas escaped.

Seven piles were diven with it, each ensting more for powder than the contractor got for piles in place, -when the machine refused to work. On examination, the steel nug was found furrowed by the powder, and the piston (diameter 5 in.) so bent ly striking the bottom of the g:an as to to useless The nir-cushion relied njon to prevent this was lo t by the furrowing of the ri g.

The incentor, on being consulted, dreined that the excessive consumption of powder was due to the prston being too small for the ram, weighing over 1.700 lh .
The bore of the gun was then enlaged to rerivic a piston of 7 in. in dismeter, and ten piles more ware drive n, when the machine was again laid aside
'The result of this trial was similas to the first. eserpt that the piston was not heat 'The gun got so hot as to finc the powder before the ran reached its plan e. Altogether, seve 1 teen piles were driven to a depth of from 1.4 ft . to 19 ft ., riquiring from 200 to $30 n$ hows uf $1 \frac{1}{2}$ oz. cartridges. An odiniry pidedriver was then cmplosed, with a hammet weighing $\mathbf{l , 9 0 0} 16 .$, aml falling 8 ft to 10 ft In this was - leven piles were put down, $1.5 \frac{1}{2}$ ft. in tan houre, cosing in $^{\prime}$ pilc no more than 100 blows from the powder-machine Thes. 100 hows at best wouiri put the pile down but 10 ft .

The piling was spruce, from 10 in , ly 10 m , to 10 in . by lat in , 20 ft . long, with 2 in. spatare tongue and groove.

The piles were burded at the print on three males, leayng the growsed side wint whed 'lhe iroose was driven on the the tumerve of the grecolang ple the heads were potected with a light hathed. Siven piles werd diven without shoeiug, the ughth sphit, and showed the necessity of protection at the point A cast-iron cup-nhot, wenghing about an 11, with a grouve in it, and made with three bevels and one blain side, was found to stand the work.

The tendencs of the tomere of the pile to wonk up was obwated hy twi-ting a chain tirhtly aboat the pile and tongue, al ves, with rope att.a hed, was used for this purpose, the force being ajplied as the bluw was delisered. Seventy-tive piles were drisen in thi way to a mean depth of aja ft lis experience, is in more difth has been attaned, which is about the maximum penetration in this lind of material, and this can only lie done with the best of sound, dy sifrace.

RE:CISTANCE OF WOUDS TO STRAIN

Piofessor IS. H. Thurston, of the Sturans lantitute of Technology (I. .), commminates to the Iournal of the Franklan Instrfute a desciption if an ap aratus devisal by him for deten ining the torsiomal resintance of materials, and also the result obtained by submitting specimens of different woods to experiment. By mechanism th. force ; roducing torsion is transmitted through the test-piece, and moves a perncil which traces upon paper a curve the ordinatos of which are protor. tional to the torsion'l moment, while its abseissus represen's the amount of torvion to which the apecimen has been subjected. thus indicating the relative stithess. strength. and ienilience of the material expr mented upon very perfectlv. The test-piecos ware soverneiththe of an inch in thickness at tive middle or smatlect part. some of the conclusions drawn from the wesults ate as follows :-White pin yiclds quite rapidly as the to siomal moment intcretan: The maximum strength of the tevt-piere was 1.5 ? foot-pomads, and it was Iwisted comple tely of at a total ampie of torsion of 130°. The substance is thas shown to have little a lienere. Vedlow pine
 wood is equally stiff with the lacart-wood. but sooner passies it. limit of elasticity. Simace is lias stiff than white pine evon.

 total ample of tormon of 200 ${ }^{\circ}$. An' secms to be weaker and less tongh than is cicnerally supponed Its most staking pernliarity is its wery tapid loss of strength after passing its lamit of dasticity Spani-h mahosany is vory stifi and strons. It
 rebistance very ramally after panime the limst of dastwhy White oask las lean tursional sthength than tithet good mahergany. locust, ol hiokors but is momarkable for its wonder-
 its lesivtugy pobst very slowly. The lafter mana mampantad
 atre eviduntly correct in holding thin wood m high esterem for
 - train .

Thr: following details of the process followed by the Uxyhydrogen G.as Company, of Bunhs!o, N. I', in the production of oxyten on a commercial sale, ming be of interest, though it is in general the same as the process of M. 'lessle du Mothay. The Journal of the Iranklin lustatute Nays, the material cmployed is called momannate of soida. Whetber thos definition of its constitution is accurate. from a rhembeal point of vicw, we are nnable to assert The treatment of the material is thus describel by the .Imerican Artasan: - "The pulverised mauginate of soda is introduced int , non retorts $i^{\text {ft }}$ loug, 1 ft, wide and 2 ft deap (at cross section buing an ell:pise). It is here heatedina curnent of superbeaterd sterant The stcam passes through tha mass and carracs with it part of the oxbere. In ten minutes the curent of steam is shint cof and atmospherse nir is blown in, the suda salt now reabsuths or re-unites with the oxgyen. sind the nitrogen cia afts. dir is passod in for teh hinntres, and then steam as if fure. From the werts the gas gasses to the condensers. whilhare lite the usual upright east oron pipes tist in all
gasworks. Here the steam is condensed, and it washes the gas; from these the gas passes to the scrubber, where all further impurities are washed out; it then passes to the holder." It seems that the process followed is not identical with the published description of the pat nt. Several modifications in details have beca found necessary in practice The manganate also appears not to work to perfection, since it has been found to lose its porosity and asglomerate after being for some time in use. It is found necessary, therefore. to re-charge the retorts after a time with fresh material. Experience indicates that, could the steam be supplied perfectly dry, this difficulty might be obvinted. What may be the ultimate success of the company must be left for time to decide. It is at present supplying consumers with hydrogen gas at the rate of 250 dols. per M., and oxygen gas at the rate of 500 dols. per M.

THE "GRAPHIC" B:ILLOON.

In answer to numerous enquiries on the subject we give the following details as to the dimensions, material, oulfit, ete, of the balloon to be used in the great transatlantic voyage 'They are from specificaticus made by Mr. Dunaldson.

There will be two balloons, the largest of which will be 318 feet in circumference, 100 fect in diameter, and 110 fect in height. When inflated and ready to start, the extreme height of the balloon, from the crown of the balloon to the keel of the life-boat, wiil be 160 fect.

The great balloon will require 4,316 yards of cloth. The materials is unbleached sheeting, of a thick, close quality of the brand known as "Indiaa Orchard." The crown of the balloon will be doubled for a distance of fifty feet from the top, with 150 yards of the same material and a thind thickness will be added of "Manchester Mills" bleached, of which 2 "0 yards are required.

There will be 14,080 yards, or cight miles of sewing, in which $10,137,600$ stitches will be made. The stitci:ing is now being performed at the show-rooms of the Domestic Suwing Bachine Company, by a force of twelve seamstresses. The thread used is silli and cotton, the top spool being silk.

The valve of the balloon will be three fect iu diameter, and made of Spanish cciar, with a rubber-coated clapper closing on a brass plate. The talve fixtures and top of the balloon are the essential parts of the apparatus, and are being constructed with anecial care to guard against accident or derangement.

The net-work will be composed of three-strand tarred rope, known as " m :rlin." The width of the net will be 212 meshes, and its breaking strength will be 58,300 rounts. Five hum ired pounds of "marlin" will be used. From the netting 53 rops inch in dameter, of Manilla, will connect with the concentrating rings. These ropes will each be 90 fect in length, or 4,470 feet in the aggregate. The concentrating sings will be three in number, to guard against bre daces, and be eroch fourteen inches in diameter, cach ring being of wood, iron bound. These rings will sustain the car, life boat, and trailing roper, aud will bear the strain when the anchor is thrown out in landing. From the concentrating rings twenty-four Manilla one inch ropes cach 22 fect long, or riquiring 528 fert in all, will depend and form the frames for an octagonal-shaped car They will be kept in place by light hoops, made of ash. The lower ropes will be connected with network, and over the netFork at the bottom of the car, of light pine foor will be litit lonsely, so thit it can be thrown ont if reguired. The car will be covere f with duck, of which fifty yards will be needed Attached to the side of the car will be a light iron windlase, from which the boat and trail rope can be raised and lowered as may be desired. From a pulley attached to the concentrating rings a heavy Manilla rope will fall down through the car, and thence to a sling, attached to which will be the lifeboat. This boat will be of the most approved and careful construction.

It will have water-tight compartraents, sliding kecl, and will be 50 made th.t it will be relf-righting. The boat will he provided with a complete outfit of oars nod sails, and to it will be lashed instruments, guns, lines, etc., and provisions for thirty days, all in water-tight cascs.

The trail rope, by which the acronaut can maintain any desired altitude without resorting to ballast, will be of Manilla rope, if inch thick, and 1,000 fict long.
'I'lue car will be proviled with in-truments, provisions, \&c. independently of the boat. It will be so construt ted that it can lie takan apart piecemand and Ifsposed of as ballast. It will carry about $5,00 n$ pounds of ballast, which whll onsist of bage of sand, ench careftilly wished and marked Among the inctruments to be carrid in the cal there will be a galvanic battury with an nlarm, two barometers, two chrunometer Watches, a compound thecmoneter, a wet and dry bulb thermometer, a hegrometer, componer, yuadrant, chart, parachutes with lire balle attached, and so arranged as to explode when striking the water, so as to indicate the direction teaversed; marine glacere, two vacmum tubse a lime stove, fte. A number of carricr pigcons will be taken along, and despatched at intervals on the route. With intelligence of the progress of the eapedition.

The smaller balloon will be 40 feet in height and 34 feet in dinmeter, and will be made from 408 yards of " Manchester Mills." Its network will consume 2'l pounds of 45 thrend cotton cord, and 6 pound of Italian bemp. It will be attach. d to the concentrating rings of the large balloon, and will be used as may be required to test the upper currents or assist in feeding the large billoon.

The balloons will he coated with a varnish made of boiled linsed oil, beesuax, anl benaine, and of theso ingredents 1,010 gallons will be used.

The capacity of the great ba'loon will be rou,000 cubic feet of gas, but it will be inflated with but 400,000 cubic feet, which, at the height of one mile and three-guarters, will expand suffirient to fiel the balloon. The lifting power of illuminating gas is about 3.5 liss to the 1,000 feet, so that the balloon will have a lif iner cap city of $11,600 \mathrm{lb}$. 'The pressure will be one and a half lles. to the sguare moth.

The weight mas be summed up as follows

	Lbs.
Balloon,	4,000
N'•t and ropes,	800
(${ }^{\text {a }}$,	100
Brat,	1,100
Drac rope,	600
Anchor and grapples,	300
Sundrics,	300

Then 4,0 on the will be allowed for passengets an l ballayt.

THF: NEW CABLE

Tur Newfoundand correspondent of the Montreat Gazetle writing about the laying of the last cable by the Great Eatern, thus desctibes what lw ealls .. the Atantic Cable talking."
jir. Weedon, the able superintendent of the Anglo-American Department, was kind enough to explain to me the mode of telegraphing throngh the cable, and to permit me to witness its working. I found an opurator seated at a table in a room slightly darkened by heavy curtains. On his left hand stood a little instrument named the "Reflecting Galva-nometer"-the invention of Sir William Thomson-wanting which Atantic telegaphy would be a show procesc. nut a watly two on three nords per minute by the ordinary methenl, mstead of eightecn or twenty as at present. This dedicate inctrument consists of a tiny magnet athe a small mirmo swinging on a silk thread-the two tugether weigh. ming bint a few grains The electric current, passing aloug the cable from Valentia, deflects the maxuet to sad fro. The little mirror raflects a spot of light on to n scale, in a box placed on the operuturis risht hand, where, by its oscillations, the spot of light indicates the slight movements of the magnet which are ioo small to be directly seen. The litlle swingiug magnet follows every change, great or small, in the received current ; and every change produces a corres ponding oscillation of the spot of light on a scale. A code of simusts is arranged by which the movements of the spot of lipht are made to indicato the letters of the alphabet. Whenreceiving a mesisage from Valentia, the operator watches the movements of the little bright sneck which keeps dancing abont over the seale on his right. To his practisad eye each movement of the spot of lipht represents a letter of the alphabet; and its scemingly fantastic motious are spelling ont the intelligence which the pulsings of the clectric current
are transmitting between the two hemispheres. It is truly marvellous to note how rapidly the experienced operator disentangles these irregular osciliations of the litte speck of light into the letters and words which they represent.

The laying of this last cable has been a complete success, without a single accident, or even a stoppage. The Miberni", with the shore end on board, arrived a fuw hours after the Great Eastern. Three days after, the weathur buing favorable, sbe laid the shore end from Heart's Content to the buoy and effected a splice. The cable works most sntisfactorily ; and having a larger conductor than the old cables, is expected to have a greater transmittiug capacity. The next operations of the cable theet will be to lay a double cable from Placentia to Sydney, in Capo Breton; then to repair the cable of 1865 , which has been iujured 650 mites from Valentia.

TICE'S DYNAMOMETER PULLEX.

In large cities the letting of rooms with power is a very common practice. Considerable difficulty, hovever, has been experienced by proprietors in exactly apportioning the amount of power to tenants which their contracts call for. Much disagreement and consideratle litigation grows out of this dificulty. It is very desirable, therefore, that some cheap,

TICE'S DFSAMOMETER POZ, EY.-FIg. 1
reliable indicator of the amount of porer used by tenants, under such circumstances, should bi provided:

Our illustrations from the Amertean Artasan shew such a device. It is the invention of J. P. L'ice, Esq., of New York.

Dynamometer pulleys, heretofore used, have registered the total effect of puwer developed or transmittid, and although they may be sometimes applied to determine the amount of power distriluted from sume central motor, they are, for the most part, if not altogether, too expensive, cumbersome, and inconvenient in their application to reader their use general. In this device the unmber of revolutions of the driving shaft, in a given time, and the circumference of the pulley, are the

TICE'A DYAMOMXTER PULLXT.-FIS 2

TICE'S DYNAYOYETER PULLET - FHg. 3.
elements from which the power transmitted, redaced to work in foot pounds, is determined.

Fig. I is a side elevation of the pulley.
Fig. 2 is an elevation of the opposite side of the pulleg.
Fig 3 is a section through the centre of the pulley and shaft, and
fig. 4 is a diagiam showing a convenient mode for determining the amount of friction necessary to produce a given resistame of the pulley.

The general purpose subserved by the pulley, is to not only arcurately gauge the amount of power which a tenant may obtain from a line of shafting, but also to prevent his obtaining any more than this maximum, the pulley being set to deliver the exait amount of power called for by the contract, and ni) more. 'The means by which this end is accomplished will he seen upon reference to the engravings and the accom. pany iug description.

The parts of the de sice are as follows: A, is the belt pulley, C, the friction disk, B, the shaft, b, springs, and a, frictionblocks. Bolts r, pass through the springs b, and through the spider, D, as shown in Fig. 3. A hub, H, is firmly attached to the belt pulley, A, upon which is screwed a flanged nut, f. When this pulley is to be adjusted the main driving shaft B_{1}, is revolved at its reguler speed. The belt pulley is then adjusted to the predetermined resistance by turning the flanged screw nut f, the resistance being measured by a spring balance attached to a floor timber, as shown in Fig. 4, and connected by a link with the periphery of the pulley A. The nut f, bears aganst the inner side of the spider D, Fig. 3, through which the bolts c, pass, being also fastened to the springs δ. It will be sten that it is possible to adjust the pulley without stopping the main shaft-a very desirable provision. The pulley being adjusted as described, will, of course, only impart the amount of power indicated by its adjustment. If an attempt be made to secure boro than this by overloading the tenant's pulley, the friction disk, instead of imparting its motion to the belt pulley, slips. In other words, the rim and arms of the pulley proper are loose upon an extended hub, or sleeve, of the disk; the fric'ion surface and blocks of wood being arranged between the two, the blocks being carried by the disk in such a manner as to impart motion to that part of the pulley around which the belt passes. The nui f, and spider
aro so arranged that the friction surfaces may be brought together with a greater or less degree of force. This determines the amount of powor which may be transmitted without causing the pulley to slip. A reference to tables furnished for the purpose, will show when the proper adjustment is obtained. We append such a table, prepared for a pulley of twenty-iour inches diameter.
as a check, one pulley may be adjusted and usrd by the landlord, and one by the tenant. Thus, a cheap, reliable, and effective instrument for gauging and regulating the maximum amount of power which should bo consumed, is suostituted for dynamomoters that measure and record the total foot pounds transmitted, and which are too expensivo for general use.

It is not necessary to record the total pounds transmitted, when it is agreed botween landlord and teanat that a certain

tjar's nysamomr. TRRPLLLEY. Fig.4.
amount, say five horse-power, shall be furnished and paid for. It is only necessary to ascertain when that limit is excecdrd. The pulley here shown determines whenever an attempt is made to exceed this limit.
It is quite impossible to prove how much power is now consumed in any given case. The thickness of a belt of a given width, the condition of its aurface, its tension, the sizes of the pulleys around which it passer, and the speed at which it runs, are elements subject to such wide variations, that even a fair approximstion to the power transmitted by them cannot be determinod. If, with this pulley, the attempt be made to surreptitiously use more than is agreed upon, it will fail, while the maximum amount of power contracted for will be farnished, but consumed by the friction of the surfaces.

When the pülleys are ailjusted ir use, the y are enclosed by heads fastened by seals that cannot be changed without detection.

CARRES ELECTRICAL MACHINE.

For the benefit of such of our readers as may wish to con. struct for themselves a simple but puwerful clectriral machine we givo an illustration and description of Carre's electrical machine as constructed by a correspondent of the Englash Mechanic.
"This machine consists of an arrangement by which a perpetual current of electricity is derived from a combination similar to the electrophorus. The machine I have constructed is represented in the figure, the moving parts being marked with numbers, and the fixed parts with letters.
" A is the base of wood (or csst metal) -mine is of walnut-l $\frac{1}{2}$ in. thick and 16 in. square. B and C are two rouad pillars of wood (or ebonite), 13 being 10 in. and $C 17$ in. long; they are both 2 in . in diameter. These pillars pass through tho base, and have nuts below to fix them securely. E is a round cbonite (or glass) rod lizin. in diameter and 16 in. long plus the piece of it screwed into B. The rod D is of glass or ebonite, 8 in. long, an the same diameter as the other, with a piece 1 in. long at the lower end fitted with cement ints C, and piece $2 \frac{1}{2}$ in. long at the upper end going ap into the prime conductor F. The conductor is a cylinder of tin

Carres electrical machine.
plate lacquered black, with two brass spherical ends fitted into it, one of which has a pipe soldered into it, up which the end of the giass rod, D, goes and fits tight. The rod, E , has a hole, t ppped with a acrew-thread in the upper end, and a scrow is put down from inside the conductor into this, and secures the conductor to the rod.
" 1 and 2 are discs of cboniten 1 being 12 in. and 2 being 8 in in diameter. They are fixed to tho axes 4 and 3 respectively. 4 is turned by the pulley-wheel and hande 5 , and this pulltiy-wheel drives 2 at a rate six cimes as fast as 4 goes round. The rate of the upper disc may be more than this, but should not be less. The lower disc is $1-8$ in. thick, the upper one s full 1-16th. The axes are of wood, with brass fittingr at the ends.
"The band in the fixure is iepresented as crossed, but it is no matter which way 2 turns. At G is a collar of brass, with a pinching screw to hold it on the rod \mathbf{E}, and this collar carries the pin at the eud of the axis 3 , on which it turns. I is a brass pipe carried by a stmilar collar, and carrying the comb for collecting the ulectricity as nunr as possible to the surface of 2 ; at the other end is a beli, K, capable of rotating stimly on its axic, carryiug the brass wire, J, with a ball at the top, which can be thus made to touch the conductor or to be fixed at any distance from it. At I is a comb attached to the conductor; and on the other side at 0 a piece of ebonite sbout $2!$ in long and 1 in wide is attached to the conductor parallel with the dice 2, and having c, the side next the dise a piece or varnished paper cemented to it with four or five points cut on the edine of the yaper, whech is somewhat wider on one side than the ebonite plate, so that these points are projecing in the diatetion in which the tisc 2 is turning. I may siay that I have put this apparatus to my instrument as a matter of faith ; it seems to work as well without it, and I do not in the least understand what its office is. Lastly, at $L L_{\text {: }}$ is the rubber, consisting of two cushions, which clasp the disc 1 closely, and aro supported by two thin wooden springe, $L I$, fastened to a block of wood at the bottom, which slides on and off on a dovetail fired to the base, A. The cushions are covered with thin leather, stuffed with hursehair; and the amalgam is bisulphuret of tin, called aurum musivam, rubbed on the cushions. The discs overlap by 4 in., and run as clore together as possible. The discs shonld be carefully sclected, without winding of buckler in them. When the machine is in action the comb at H is connected with the grouud by a chain, and the ball at the top of J is brought apsy from the conductor till the striking distance is attaina. This machine gives from 3 to 5 in . sparks easily and in torrents, with a condernstr showing a square foot of surface. One or two of the sparks are enough for most people. There is a necessity for occasionally washing the discs, first with fluid magnesia and then with parafine, as the ozone appears
to turn the sulphur of the ebonite into a coating of sulphuric acid, which attracts moisture. This would be avoided by glass disce, but they produce much more friction. A piece of Bristol board well dried, and when dry well coated with shellac, might be tried for the disc 2 If glass rods are used for E and D, they should be coated with shellac, as the machino is much inclined to blow and leak everywhere."

ON TASTE IN COLOR.

Notes of an address by Mr. D. Winfirld, at the Architectural Association.
In rooms to be lived in, avoid simple white for color of walls and paint (as in too many drawing-rooms), avoid also any extremely dark treatment. The walls of rooms should be such backgrounds as will best suit the complexions and dresses of the larger number of people. Delicate white intensifies by contrast any unpleasantness or want of perfeetion; extreme dark would make people look white and ghastly. Neutral colors will be found the best,--generally some gray or cool color that will constrast with warmth of complexions. On no account let an absolutely pure color be used for general surfuces. Nature provides no such color in pigments. Her yellows are grecuish or reddish, and 50 on. Nor does sho use it to any extent in inanimate nature. So much so that you will find that if you have much difficulty in describing a color, you may be certain it is good: the more difficulty the more beauty. Nature truste mainly to gradations of tone, using vivid color in small quantities only, as in the touches on bright flowers and butterthes. This teaching of nature will be found seconded in the pictures of the greatest artists, and in the good old decorated interiors of, for example, Italy and Flanders. In fullowing such teaching, you will, however, need to consider the object to which (in domestic whrk, say) the roums are to be devoted. A drawing room, it is agreed, should be light, festive, and gay ; a dining-room at once more sober, and with more depth and warmth, as befits its uses. You mu.t also consider the light and shade ; openings, and the positious of them; for these may (or may not) effect for you contrast of tone, and may even touch the question of the good sense of your whole scheme of decoration.

Mr. Wynfield gave suggestions for treatment of,-

1. A Diawing-room -Wallo.-A light nutral gray, fawn color, or pale green (not dark, but not white). Dados ase suitable for all rooms, even drawing-rooms. They may be made of wood, painted as the room doots, or of stamped leather, or of the French paper imitations of stamped leather. A frieze doeg not interfere with the heads of sitters, and adds much interest if it has its seutiment or story. If flowers form part of your decorations, have no rellef, no imitation of Nature's light and shade. A wall must be a wall: if, neglecting this, you introduce illusions to the eye, the sense of solidity will not be subsested. The Japanese decorate on correct principles, with truth to the idea derived from nature, and truth in art, adaptation of rupresentation to materials and method. Woodivork.-Have no graining anywhere; its aspect, however well cxecuted, is tepulsive. Iheal woods are always beautiful. Plain painting may be darker or lighter than the general wall surfaces ; both will look well. The doors may have stencilled decorations in angles of pauclsbirds, or butterfies, or plants, or auy beautiful natural objects will supply motives (1 decoration used in rooms by Mr. HI. S. Marks, Mr. Leslic, \&c) Ceilings should rarely bs wholly white, except of halls or where the light is defective. Papered ceilings look well. The use of gold is generally satisfactory, it reflects a warm tone on everything below. Put a good amount of color on a ceiling,-not, however, making it so dark as to bring it too close to the eye. The carpet must be either lighter or darker than the walls. It is always lighier at a ball, where white dresses abound. This is following out the artist's rule, to make either background or foreground run into the figure. If this is not donc in painting, a woman in white satin, for instance, against a dark floor and dark walls will look like a cut-out figure stuck on, and the same sort of result would occur in rooms. As in ordinary life, dresses are dark ic color ; where a light wall tone has been recommended, the carpet, will have to be darker than the walls, Not too vivid in color, however, and, of course no flowers,
ferns, birds's nests, and such like fearful things. Furnitare and hangings should not be too much alike in color ; have, say, the carpet one tone, the coverings of the furniture another, and the curtains and other haugings a third. Have summer and winter hangings and furniture coverings: those for the former light and cheerful, the others with more warmth, and suggestive of comfort and home life. A tablecloth, occasional chair, ora rug, may supply a bit of effective contrast with provailing hues of hangings, \&c., and a spot of vivid color in a vase or some small hanging will complete the formal decoration of the room.
2. In a Dining-room,-used for its principal purpose mainly by gas or lamp light,-the lis ag figures are seen in more detail arounc the lights. And decorated walls and woodwork will thus be sunk into the background among halflights. More pronounced decoration will be allowable in consequence (and deeper, warmer tints are pleasanter here.)

THE PATHOLOGY OF PEARLS.
In a recent number of the Journal of the Linnzan Soclety are some interestiug remarks, says Setence Gossıp, by Mr. Garner, F.L.S, "On the Formation of British Pearls and their possible Improvement." Every one is aware than an oyster or a mussel, as the case nag be, when irritated by a foreigu body is reduced to the necessity of toning down the annoyance of the intruder lyy sheduing around it, through the agency of its " mantle," layer after layer of lovely "nacre," or mother-ofpearl. Such is the origin of those pearly concretions whici may be found adherent to the inside of the shells of the above-named molluscs. The rounder and more valued pearls are said to be formed in the soft parts only of the aniual, of which a good example may be seen in the educational series in the Museum of the Royal College of Surgeous, in the shapo of a round pearl imbedded in the foot of a unso, or a freshwater ןicarl-mussel Mr. Garner has found reason to abandon the generally received idea of the grain of aand which plays the part of the crumpled rose-leaf to the molluscous sybarite, and concludes, from ob-ervations made on the marine mussel (Mytilus), his conclusions being supported by the independent researches of Signor Antonio Villa, in Italy, that the exciting cause is no inorganic particle, but is actually a minute parasitical entozoon (a species of Dietoma) in the Mytilus; while in the anodon, or fresh-water mussel, it is a minute mite, or acarus (Atax)-in fact, an itch insect. The presence of such parasites as a nucleus he has prove i by trating the pearls with a dilute acid. Mr. Garner then hints at the possibility of s tting on foot a kind of pearl nursery, so to speak, where the cultivation of this precious ornament may b. carried on, citing the Chinese as an example, who, as is well known, not only introduce metallic figures of Buddha between the shell and mantle (there to bs pearl-washed by the molluse for the ulti mate benefit of the faithful), but even go so far as to bring about what may be termed a "margaritiferous" diathesis, by contaminating the wat \cdot inhabite 1 by the mussel. With regard to such diathesis, it may be interesting to mention a theory of a celebrated French zoologist. I. Lucaze-Duthiers put forward some years ago, in the Innales des Sctences Nuturelles, that a mollusc so affected is in the rondition of a calculous or gouty subject, its blood being highly charged with the material which goes towards the secretion of pearly substances; the excess of which over and above what is reyuired for the nacreous lining of th, shell is precipitated in the form of a pearl, much ws in the analogous cass of a man a calculus is formed in the kidncy or bladder or a concretion of urate of soda above the knuckles.

Tar number of stars visible to the naked eye in the entire circuit of the heavens has been usually estimated at about 6000. An ordinary opera glass will exhibit something like ten times that number. A comparatively small telescope easily shows 200,000 , while there are telescopes in existence with which, there is reason to believe, not less than $25,000,000$ stars are visible. And yet when all of these are seen and numbered, the cyo will have visited but a mere speck in the illimitable bounds of space.

SCIENTIFIC NEWS.

[We shonfld be olud to prefire srientitir mems, minable to this port of our japer, from any no our colresionilents.]

Cinchona. - A careful nnalysis by P. Carles of the ashes of cinchona bark, from which the well known medicine quinine is obtained, sloows that the bark contains the following subtances: Insolnbl- silica, soluble silica, alumina, iron, manganese, lime, magnesia, potash, soda, copper, carbonic acid, sulphuric acid, phosphoric acid, chlonine.

According to Dr. Bottger, an excellent marking ink can be obtained from the anacaritum nut (1. urten'ale). The juice, it appears, contins an tily matter which becomes black on exposure to the rir, and is proof against all known detergents and decolortsere, acids and alkalies, cyanide of potassium, and chlorinc. If linen be marked with this natural ink, and then moistened with a little ammonia, the black becomes very intense and is perfectly jermanent.

Potasi in Piavts - A corrispondent of the Countiy Gintlem ingives the following table, showing the amount of potash contaiued in $1,00 \mathrm{lb}$. of ashes male by burning different hinds of wood: pine, $\frac{1}{2} \mathrm{lb}$; poplar, 3 lb ; beech, $1 \frac{1}{2} \mathrm{lb}$.; maple, 41 b .; wheat-stiaw, 416 ; corn-stalks, 1 ilb.; oak-leaves, 241 lb ; stems of potatoes, 551 lb ; wormwood, 721 b ; sunflower stalks; 191 b ; oak, 2$\} \mathrm{lb}$; beach bark, clb The remainder portion of the ash, cousisting of carbonate and prosphate of lime, inon, manganese, alumina, and silica, is an excellent fertiliser.
For the purification of hydrochloric acid, Mr. Engel introduces, in 106 quarts of hydrochloric acid, siaty to seventyfive grains of hypophosphite of potash dissolved in a little watel. After an hour or two the liquid becomes yellow and then brown, and a precipitate is deposited more or less abundant according to the degree ofimpurity of the acid. At the end of about forty-eight hours the deposit ceases, and the clear liquid above is decanted off and distilled. The acid thus obtained is completely free from arsenic.
The employment of soluble glass in the chemical and andustral arts is constantly increasing, and its value is now fully established. Recently a cement of great hardocess an 1 various applicability his been produced by mixing different bases with this singular substance. It is found that, combined with fine chalk and thoroughly stirred, it will produce a hard cement in the course of six or cight hours. With fine sulphate of antimony, a black mass is poduced whech can be polished with agate, and possesses a superb metallic lustre. Fine iron dust gives a gray black ce uent. Zine dust produces a gray mass exceedingly hard, with a brillint metallic lustre, so that broken or defective zine castings can be mended and restored.
The normal heat of the body being taken at 98 deg., fover beat commences at 100 deg., and the extreme limit of fever heat may be taken at 112 deg. Dr. Thudicum has concluded from experiments on his own body at high temperatures, that at a heat of 140 deg., no work whatever could be carried on, and chat at a temperature of trom 130 deg. to 140 deg. ouly a very small amount of labour, aud that at short periods was practicable, and, further, that human labour, dally and during ordiaary periods, is limited by 100 deg. of temperature as a fixed point, and then the air must be dry, for in moist air he did not think men could endure ordinary labour at a temperature exceeding 90 deg. Dr. Sanderson has added useful testimony in detail leading to similar conclusions, observing that gymuastic exercises can be practised by men in high temperatures up to a certain point, but that immediately the temperature of the body rises to 102 deg . or 103 deg. Fah., thea all capacity for further exertion ceases. A case in Cornwall has been instanced of the excavation of mining galleries where the air was heated by a hot spring to a temperature said to amount to 117 deg. Dr. Sandersou visited the mine and fuund the temperaturv to be $114 \frac{1}{2}$ deg. Fab., and the total duration of each of the men's work who were then engaged was less than three hours in the twentyfour. Dr. Sanderson fixes the limit of temperature consistent with continuous healthy labour during five hours at a time at 90 deg . Fah., but that oven at this temperature the loss of working power would be very considerable.

MISCELLANEA.

A cement of great allsesive quality, particularly serviceable in attaching the briss monntings on glast lamps as it is unaffected by petroleum, may be prepared by boiling three parts of rosin with one part of caustic sola, and five parts of water, thus making a kind of roap, which is mixed with onehalf its weight of plaster of Paris. Zinc white, white lead, or precipitated chalk, may be used insterd of the plaster, but when they are used the cement will be longer in hardening.

A Woxdrarte Model.-An claboraty model of a harbor ordered by the Senate of Hamburg to be constructed for the Vienna Exhibition has been completed in due course. The model is 17 ft . by 6 ft . in dimensions, and it cxhibits the ships moored to the wharves, and the laborers employed in their difierent occupations. On the side of the dock is a railway with a freight train to receive goods from the ships. The vessels are of all sizes from the huge steamer down to the smallest yawl. The whole represents, with pleasing accuracy the busy life of a sea-port.

Varsisil for Labels.- Never varnish a label for acid bottles, but use paraffine instead 'The unly thing necessary is to brush the paratine on as hot as powsible, so as to get a thm, even coating. It looks as well as varnish, and stands a great deal better. It saves a good deal of trouble in olang and varnishing, and five minutes after the buttle has been brushed it is realy for use Instead of sealing the tups of bottles-mample bottles of blearhing powder, and tor other purposes-it is very convenient to have a small porcelun dish with pamffine always ready, which can he placed upon a hamp, and, as soon as warm, dip the top of the bottle in it, which gives as good a sealingwas, or better, and causes very much less trouble.

Sugara Test for Potable Water.-From an articlo on "The Discrimination of Good Water and Wholesome Food," in the Pharmaceutical Iournal and Trinsactions, we fiad the fullowing simple directions given for testang water, whether it is good and drinkable :-"Good water should be freo from colour, unpleasant odour, and taste, and should quickly afford a good lather with a small propurtion of soap. If half a pint of the water be placed in a perfectly clean, colourless, glass-stoppered bottle, a few grains of the best white lump sugar adited, and the bottle freely exposed to the daylight in the window of at warm room, the liquid should not become turbid, even after exposure for a week or ten days. If the water become turbid it is open to grave suspicion of sewage contamination; but if it remain clear, it is almost certainly safe. We owe to Heisch this simple, valuable, but hitberto strangely neglected test."

Solar Heat as a 'lool.-During the recent building of a bridge in Holland, one of the traverses, 465 feet long, was misplaced on the supports. It was an inch out of line, and the problem was how to move it. Experiment proved that the ironwork expanded a small fraction of an inch for every degree of heat it received. It was noticed that the night and day temperature di.cered by about 25 degrees, and it was thought this might be made to move the bridge. In the morning the end out of place was bolted down securely, and the other end left free. In the heat of the sun the iron expanded and towards night the free end was bolted down, and the opposite end was loosened. The contraction then dragged the whole thing the other way. Fof two days this experiment was repeated, till the desired place was reached. We find no record that the heat of the sun has over been employed in this way before, but the contraction and expansion uf irun bars by fire-huat has already been used to move heavy weights over short distances. Broben walls and strained roofs and arches have been brought into place by simply beating iron rods till they expanded, then taking up tho slack by screws and nuts, and allowing contraction by cold to pull the wall or roof into place.

How to Make Cheap Frayes.-Cut strips of stiff pasteboard about an iach wide the desised length, clip the ends to a point, and cover with any nice black cloth, like broadcloth or fine casimere; lap the cads at the corners of the frames and fasten with a white or gilt button. Bind your picture and glass together with strips of gummed paper and glue, on to the frame. Hang against a white wall. Bronzed paper, which can be bought for eight cents a shect, may be used instead of cloth, in which case a short strip across the corners of the framo is a great addition to its comeliness.

NEW POST OFFICE, TORONTO.

Wisdoy or art Knowledog-The man who keeps his thoughts and labours in one unvaried groove is like the mechanirian who never oils bis machine. But the man who has the happy facility of closing the door of his office or workroom on his toil, takes the surest method of keeping his own powers in the best working order. This is the great use of what we call a hobby. And there is a very special advantage in some knowledge of art. We do not speak now of any general art education. What we mean is rather the intelligent critivation of taste, by the stady of some particular detail or branch of art. One man may takea special interest in pottery. From the long range of fictile art he may select some one shelf, so to speak, which he may hare special facilitics for filling.

He may be an allmirer of Wedgwood ware; a collector of old Worcester or old Chelsea; a purchaser of eggshell porcelain, or of Japanese lacquered ware. He may carves little in wood. He may collect carvings in ivory. He may group together photographs illustrating a particular style of sculpture. What the study may be matters littlo. It will depend partly on taste, and partly on opportunity. But the great point is, to have a pursuit, agreeable to the mind, to which it will revert with pleasure as a relaxation from bread-winning anxieties. In fuct, new education is thus commenced. But it is the education of a faculty that wonld otherwise be dormant, and is parsued, not only, without undue labour, but with delight.Art Journal.

AIIKITEX \& I OOMKIS.
MELLLEIETKILTS, SIERBROOKE, P. Q.

Woollen, Cotton, Saw and Grist Mills built to order. Plansand Snecifications, ctc., furnished. All orders for Clapboard, Shinglo and WashAll orders for Caporarit, Shingle and ing Machnesi Board Milis, Futhing aing, wyo Tribs and
promptness.
Shon: Oror Saw Mill, Upper Town, Shorbrooko.
Canada patevt agenct.
HE.DD OFFICE :
86 YORK STREET, TORONTO.
Branch Offices, at Washington, London, Paris, Vionna and St. Poicrsburg. rROPuttitors :
DONALD C. RIDOUT \& Co., Mechanical Engincors and Solicitors of Patents.
Sond for The Ioventors Pockot Companinn. Price, 25 conts.

1-l-12 f.

geNERAL PATEIT AGENCY.

P.ITYANTS SECUREDD.

Working Dravings of everykind of Mill Work and Machnery furnished.
WHLKLAMEGLK,
Ontario Chambers, Toronto. . 1-3-6f.

JOHN MADDOX,

 chbap boot and shoe store, 97 MOUNTAIN STRERT, (Ophosite Mountain Market)MOINTERA工.
A call respectiully solicited.
SATISFACTION GUARANTEED.
POOLBINDERS' TOOKS,
perfokatine, baging and nim-
 cetring phesses; intterinc lallets, PTC.
JEWELLERS' TOOLS. Tire. Ring, and Flat kolling Mills Inoket ponches. Jing Cutters. ulc. It. lit , ilbL, a! Heary St., Montreal, U., P. U. Bux 744 .

CHIPMAN, HOSMER \& CO., ohtals

fres conditional uion steress. PAMPHLET FREE. Addross:
1-2-12 f.
Washington, D.C., U.S

CABADA TRUSS FACTURY.

 Established lsjo.F. GROSS, 690 Chalu Strybt. Montroal. St RGICAI, INSTRLisiEvT MAKLK. de, (By lioyal Letters Patent.)
giros' Patent Athacial Lumbs.
Gross' Patent 'Trusses.
Gross' Composite Trusses. patented March, 1873. $1-2-12 \mathrm{f}$.

[^0]BARLUW \& CO., © Southampton-buildings.

J.A. EGGINTON,

Glass Cutiter and Engratuer.
637 Craio Sthert,
Montreal,
Manufacturer of
ORNAMENTAL, GROUND CUT WINDOW GLASS fur
vestible and dramme-moo.I doons. 1-2-6 f .

U. S. PATENT AGENCY.

Tho subseriber, having had twenty years exp rience in obthinimg PatiIts, and fur ten years past momber of the firm of
BUENE, FIEASER \&OSGOOD, with orpices in
Roclester, Batalo, Rew York and Wast. fagton,
offors his services to Inventors in apulying for Patents 112 tho Unitod States and Cauria. Aduress:
1-2 tf.
R. F. os(oond

TIIE GITEAT
Canadian, American, \& European
patent agency offices
of
CHARLES LEGGE \& CO., Civil Enginemo \& Patent Soliottors, 48 Great St. James St., Montreal, HITH mRANCII OFELCES IN
WASHIMGTON, LONDON, PARIS, BRUSSELS, VIENNA, AND ST. PETERSBURG. C. LEGGE.
C. G. C. SIMPSUN.

CHARIES TEGGE \& CO have much pleaSure in drawing the attentom of Incenturs tu ins Letters latent in Canida andinothercountries, is woll ns to theonvortunity this offered
 Uf inventions being secured in the most periect manner and on the most favorable terms.
MANUAT giving full information on Patents,
I'rado Marks, Cony Rights and Industral Designs Sent Free on application. 1-1th

Patents for Inventions

EXPEDITIOUSLY ANO PROPERLY, SECURED in Canidda, the United States, and Europe. Patonts guaranted or no charge. Send for printed instructions. Agoney in operation ten yuars.

> SIIENRY GRIST, Ottawa. Canm

Mechanical Engincer, Solicitur of Patents and Draughtsman. 1-1-6 f.
 address EOSON BROS. Patent Lawyers and - soliciturs, 45 N Noth ST., Wasumaron, D. C., Ifor Advico and Circular.
lf. atter exmminntinh, re remart nu invention pintentulle. tre are reilling to proserute the ap. plication for " patent and cait jor ourjec until a juntent is allored.
Icter from IInn. D. P. Hoblounar, furmer Commastuner ot Patents. dited Wiashington, Commsen lisas:
1 cheerfully: commend to all persons who may have business in the Patent office the firm of Edsun bris. as acentlenot of grompt busine s habits, and an ofers respect worthy of contidence.
I concur in the above. T. C. Tumakem.Iato

"THENATIOALOLLJOURNAL,"
 Contains infurmation concorning tho PRODUCTION, MANUFACTURE AND USE Of all hinds of Oil.

Fvery one interested in ohs should take it. Enbscrigtiun, ONE DOLAAAR, Sumble cupics, Tenconts.

NaTIONALOHL JOURNAL CO.,

 PITTSBURGH, PA ${ }_{-3-3 \text {. }}$.JOHN J. HALSTED,

attorney at law and solicitor of patents. Over S yenry Eicaminer in (J. S. Paten Oince. Transact: l'atent business in all its branches.

Refers to any ruticers of United States Patent Once sin-0 isin.
 1-2-6f.
Founders' Supplics.

Fire Clay Goods.

 Gas Supplies. Moulders' Tools.for s.lle iby
COPLAND \& MicLAREN, (Grey Nun and Welliactun Sts.,)

MONTREAT. 1-3-12f.
MILLER BROS. \& MITCHELL, skACEINTYSTS,
PATTERN AND MODEL MAKERS,
Manufacture Hand and Steam power hoisting Machucs.
Dravings and Pattorns for all kinuls of Machinery.
PATENT UPPLE MOUKLS ANG EXPERIMESTAL MACHELAY, ETC.
 (Old St. Meorg Church,)

Yeztronl. T-4-12f.
VALLABLE CANADIAN PATENT FOR SALE.
A combination tathe Tool neeriad in every Machino Shop. livelusive Rixht for tho Provinces for Tun lears.
For information, zunty to
WHITLNG dOHNSON.
1-4-3f. Poughkcepsic, N. У. Box 181.
CROMWELL, ANNETT \& CO.
90 VVELLINGTON ST., Montreal. IRON FOUNDERS,
MANUFACTUREHS OF MARSMBA.Vh'S PATENT FOUNORY CUPOLA,
Superior to any other in use.

SAMES R. ANNETT,
 Pxateruir
fIRST-CLASS MACHINERY AND SUPPLIES.
 patrar youndne curota.

BOLLARD'S IMPROVED COOKER.

We illustrate on this page a new and improved apparatus for cooking Meat, Vegetables, \&c.
This system of cooking was first introduced by Captain Warren, of the English Nary and was intended for the pre-

paration of food for soldiers and sailors. The success which attended its introduction was so great that it was subsequently taken up by the trade in England, where it has given unbounded satisfaction.

The chief peculiarity of the apparatus consists of a tightly closed vessel containing the ment to be cooked. This vessel is surrounded by stean, except at the bottom, which remains in boiling water, and at a small portion of the sides which is exposed to the air. The meat rests on a false bottom, which prevents its coming in contact with that purtion of the vessel which is in contact with the water at 2122°. The exposure of sides that are not stean-jacketed canses a loss of heat that reducess the temperature of the clused vessel to about 210°, being two degrees less than boiling water. As Liebig has demonstrated, this is the best cooking heat, and thus, while the full heat of boiling water coagulates the albumen of the meat in such in waty as to render it hard, tough and stringy, this lower temperature cooks it completely, and so far fron making it tough, seems to make it more tender. The effect may be illustrated by saying that the whole mass, after it has remained long enough in the vessel, is in the tender and juicy condition of the interior of a joint of meat baked in the ordinary was, or of meat that has been cuvked by simmering at the back of the store.

The meat is cooked without the access of air, water, or steam, the juices and flavor being all preserved. So far as the Cooker is concerned it is not a steamer, but a steaming chamber is added for regetables, pudding, \&ce., \&ce. It is made of heavy tin plate, with copper bottom and cam be used on any cook stove, range, box stove or gas burner. Cooking by nost of the ordinary processes is very wasteful, the fibre of the meat and the mutritious juices are unmecessarily destroyed and the result of the process is often a tough indigrestible mass. It is claimed for the Cooker that the result must always be satisfactory as to quality, and that a poor cook camnot spoil the dimmer it she tries. On the other hand
 the economy of this system of cooking is very important Cooking meat in the ordinary way produces the following results:
hoastino mbat losen,
51.3 ounces to the pound.
boilino meat loses,
42.7 ounces to the pound.
bafing ment loins,
35.9 ounces to the [xund.

When rooked by this improved system, meat looses only $2 \underline{2}$ o\%. to the pound. In addition to this it has been proved by repeated trials that meat, fish and poultry, when cooked in "Bollard's Improved Cooker '" retain those nourishing juices, which, in couking by the ordinary method would have been thrown ofl in vapor, but by this mode become condensed and are retained in moisturn, at a temperature sufficient to cook in the most perfect namer. Thus none of the motritiou- properties are wasted, the whole is retaned in the most direstible and palatable form, and even the two ounces lost from each pound of meat, remain in the form of most delicious juices. The cooker is manufactured by the patentees Messers Bullared anl Smart of Brockville, Ontario. The patmones are prepared to sell patent rights for Counties, or to manufacture on royalty or otherwise.

[^0]: Freo by nost for 18 Einglish stamps. "HOW TOMAKEMONEYBYPATENTE" Br
 CHARLES BARLOW,

