The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couyerture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

$\square$
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur


Bound with other materiai/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le tong de la marge intérieure

$\square$
Blank leaves added during restoration may appear within the text. Wheneyer possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.


Pages damaged/
Pages endommagées

$\square$
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées


Pages detached/
Pages détachées


Quality of print varies/
Qualité inégale de l'impression


Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-tête provient:


Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison


Masthead/
Générique (périodiques) de ia livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.


# CaNADIAN NATURALIST 

# (Quartaxy ifmum of sicinct 

## ABSTRAC' OF PROCERDINGS OF THE BRITISU ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,

At its Forty-Finst Mecting, at Elinburgh, Augnst, 1871.
The Presidency of the Association was resigned by Prof. Ifuxley, and assumed by Sir William Thompsom, who delivered the usual Presidential Address.
After dwelling on the origin of the Association, and the eminent scientific career of several of its early fomuders, the President gave a review of the present work of the Association, and suggested, in comection with it, the impurtance of establishing it British Year Book of Science. He also urged upon the Government the necessity for the fuudation of National Colleges of Research, on a scale commensurate with the impurtance of Scientific Education, and in some derpee correponding with similar institutions on the continent of Europe. He then proceeded to give a general sketch of the reeent progress of lhysical Science, from which we give the following extracts:-

> 1. spectrom avilusis.

The prismatic analysis of light discovered by Newton was estimated by himself as being "t the oddest, if not the most considerable detection, which hath hitherto been made in the operations of nature."

Had he not been deffected from the subject, he could not have failed to obtain a pure spectrum; but this, with the inevitably You. VI.
$\Delta$
No. 2,
conseçuent discovery of the dark lines, was reserved for the nineteenth century. Our fundamental knowledge of the dark lines is duc solely to Praunhofer. Wollaston saw them, but did not discover them. Brewster laboured long and well to perfeet the prismatic amalysis of sumlight; and his obserrations on the dark bands produced by the absorption of interposed gases and vapours laid impurtimt fumed.tions fur the grand superstructure which he scarcely lived to see. Piazzi Smyth, by spectroscopic observation performed on the Peak of Tenerife, added greatly to our knowdedge of the dark lines proluced in the solar spectrum by the absorption of vur own atmosphere. The prism became an instrument for chemical qualitative amalysis in the hands of Fox Talbot and Merschel, who first showed how through it the old " blowpipe test," or gencrally the extimation of substances from the colours which they give to flumes, cian be prosecuted with an accuracy and a discriminating power not to be attained when the colour is judged by the unaided cye. But the application of this test to solar and stellar chemistry had never, I believe, been sug. grested, either directly or indirectly, by any other naturalist, when stokes taught it to me in Cambridge, at some time prior to the summer of 1552. The observational and experimental foundatious on which he built were :-
(1) The discovery by Framhufer of a coincidence between his double dark line D of the solar spectrum and a double bright line which he observed in the spectria of ordinary artificial flames.
(2) A very rigorous experimental test of this coincidence by Prof. W. H. Miller, which showed it to be accurate to an astonishing degree of minuteness.
(3) The fact that the yellow light given out when salt is thrown on buming spirit consists almost solely of the two nearly identical qualitics which constitute that double bright line.
(4) Observations made by Stokes himself, which showed the bright line D to be absent in a candle-flame when the wick was snuffed clean, so as not to project into the luminous envelope, and from an alcohol flame when the spirit was burned in a watch-glass. And
(5) Foucault's admirable discovery (L'Institut, Feb. 7, 1849), that the voltaic are between chareoal points is "a medium which emits the rays $D$ on its own account, and at the same time absorbs them when they come from another quarter."

The conclusions, theoretical and practical, which Stokes taught me, and which I gave regularly afterwards in my public lectures in the University of Glasgow, were:-
(1) That the double line D , whether bright or dark, is due to vapour of sodium.
(2) That the ultimate atom of sodium is susceptible of regular clastic vibrations, like those of a tuning-fork or of stringed musical instruments; that like an instrument with two strings tuned to approximate unison, or an approximately circular elastic dise, it has two fundamental notes or vibrations of approximately ecrual pitch; and that the periods of these vibrations are precisely the periods of the two slightly different yellow lights constituting the double bright line D .
(3) That when vapour of sodium is at a high enough temperature to become itself a source of light, each atom executes these two fundamental vibrations simultaneously; and that therefore the light proceeding from it is of the two qualities constituting the double bright line D.
(4) That when vapour of sodium is present in space across which light from another suurce is propagated, its atoms, according to a well-known general principle of dynamics, are set to vibrate in either or both of those fundamental modes, if some of the incident light is of one or other of their periods, or some of one and some of the other; so that the energy of the waves of those particular qualities of light is converted into thermal vibrations of the medium, and dispersed in all directions, while light of all other qualities, even though very nearly agreeing with them, is transmitted with comparatively no loss.
(5) That Fraunhofer's double dark line D of solar and stellar spectra is due to the presence of vapour of sodium in atmospheres surrounding the sun and those stars in whose spectra it had been observed.
(6) That other vapours than sodium are to be found in the atmospheres of sun and stars by searching for substances producing in the spectra of artificial flames bright lines coinciding with other dark- lines of the solar and stellar spectra than the Fraunhofer line D.

The last of these propositions I felt to be confirmed (it was, perhaps, partly suggested) by a striking and beautiful experiment, admirably adapted for lecture illustrations, due to Foucault,
which had been shown to me by M. Dubosque Soleil, and the Abbe Moigno, in Paris, in the month of October, 1850. A prism and lenses were arranged to throw upon a sereen an approximately pure spectrum of a vertical electric are between charcoal poles of a powerful battery, the lower one of which was hollowed like a cup. When pieces of copper and pieces of zine were separately thrown into the cup, the spectrum exhibited, in perfectly definite positions, magnificent well-marked bands of different colours characteristic of the two metals. When a piece of brass, compounded of copper and zine, was put into the cup, the spectrom showed all the binds, cach precisely in the place in which it had been seen when one metal or the other had been used separately.

It is much to be regretted that this great gencralization was not published to the world twenty years ago. I say this, not because it is to be regretted that Angstrom should have the credit of having, in 1853, published independently the statement that " an incandescent gas cmits luminous rays of the same refrangibility as those which it can absorb"; or that Balfour Stewart should have been unassisted by it when, coming to the subject from a very different point of view, he made, in his exteusion of the ' 'Iheory of Exchinges,' (Edin. I'ransactions, 185̄-59,) the still wider generalization that the radiating power of every hind of substance is equal to its absorbing power for every kind of ray; or that Kirchoff also should have, in 1859, independently discovered the same proposition, aud shown its application to solar and stellar chemistry; but because we might now be in possession of the inconceivable riches of astronomical results which we expect from the next ten years investigation by spectrum analysis, had Stokes given his theory to the world when it first occurred to him.

## 2. solar and steldar chemistry.

To Kirchhoff belongs, I believe, solely the great eredit of having first actually sought for and found other metals than sodium in the sum by the method of spectrum analysis. His publication of October, 18509, inaugurated the practice of solar and stellar chemistry, and gare spectrum analysis an impulse to which in a great measure is due its splendidly successful cultivation by the labours of many able investigators within the last ten years.

To prodigious and wearing toil of Kirchhoff himself, and of Angström, we owe large-scale maps of the solar spectrum, incom-
parably superior in minuteness and accuracy of delincation to anything ever attempted previously. These maps now constitute the standards of reference for all workers in the field. Plücker and Hittorf opened ground in adrancing the physics of spectrum amalysis, and made the important discovery of changes in the spectra of ignited gases produced by changes in the physical condition of the gas. The seientific value of the meetings of the British Association is well illustrated by the fact that it was through conversation with Plücker at the Neweastle mecting that Lockyer was first led into the investigation of the effects of raried pressure on the quality of the light emitted by glowing gas which he and Frankland have prosecuted with such admirable success. Scientific wealth tends to accumulation according to the law of compound interest. Every addition to knowledge of properties of matter supplies the naturalist with new instrumental means for discovering and interpreting phenomena of nature, which in their turn afford foundations for fresh generalizations, bringing gains of permanent valuc into the great storehouse of philosophy. Thus Trankland, led, from observing the want of brightness of a candle burning in a tent on the summit of Mont Blanc to scrutinize Davy's theory of flame, discovered that brightness without incandescent solid particles is given to a purely gaseous flame by augmented pressure, and that a dense ignited gas gires a spectrum comparable with that of the light from an incandescent solid or liquid. Lockyer joined him; and the two found that every incandescent substance gives a continuous spec-trum-that an inc..ndescent gas under varied pressure gives bright bars across the continuous spectrum, some of which, from the sharp, hard and fast lines observed where the gas is in a state of extreme attenuation, broaden out on each side into nebulous bands as the density is increased, aad are ultimately lost in the continuous spectrum when the condensation is pushed on till the gas becomes a fluid no longer to be called gascous. More recently they have examined the influcuce of temperature, and have obtained resuits which seem to show that a highly attenuated gas, which at a high temperature gives several bright lines, gives a smaller and smaller number of lines, of sufficient brightness to be visible, when the temperature is lowered, the density being kept unchanged. I cannot refrain here from remarking how admirably this beautiful investigation harmonizes with $\Lambda$ ndrew's great discovery of continuity between the gascous and liquid states. Such things make
the life-blood of science. In contemplating them we feel as if led out from narrow waters of scholastic degma to a refreshing excursion on the broad and deep ocean of truth, where we learn from the wonders we see that there are endlessly more and more glorious wonders still unsecn.

Stokes's dynamical theory supplies the key to the philosophy of Frankland and Lockyer's discovery. Any atom of gas, when struck and left to itself, vibrates with perfect purity its fundamental note or notes. In a highly attenuated gas each atom is very rarely in collision with other atoms, and therefore is nearly at all times in a state of true vibration. Hence the spectrum of a highly attenuated gas consists of one or more perfectly sharp bright lines, with a scarcely perecptible continuous gradation of prismatic colour. In denser gas each atom is frequently in collision, but still is for much more time free, in intervals between collisions, than engaged in collision; 'so that not only is the atom itself thrown sensibly out of tune during a-sensible proportion of its whole time, but the confused jangle of vibrations in every variety of period during the actual collision becomes more considerable in its influence. Hence bright lines in the spectrum broaden out somewhat, and the coutinuous spectrum becomes less. faint. In still denser gas each atom may be almost as much time in collision as free, and the spectrum then consists of broad nebulous bands crossing a continuous spectrum of considerable brightness. When the medium is so dense that each atom is always in collision, that is to say, never free from influence of its neighbours, the spectrum will generally be continuous, and may present little or no appearance of bands, or even of maxina of brightness. In this condition the fluid can be no longer regarded as a gas, and we must judge of its relation to the vaporous or liquid states according to the critical conditions discovered by Audrews.

While these great, investigations of properties of matter were going on, uaturalists were not idle with the newly-recognized power of the spectroscope at their service. Chemists soon followed the example of Bunsen in discovering new metals in terrestrial matter by the old blow-pipe and prism test of Fox Talbot and Herschel. Biologists applied spectrum analysis to amimal and regetable chemistry, and to sanitary investigations. But it is in astrouomy that spectroscopie research has been carried on with the greatest activity, and been most richly rewarded with results.

The chemist and the astronomsr have joined their forces. An astronomical observatory has now appended to it a stock of reagents such as hitherto was only to be found in the chemical laboratory. A devoted corps of volunteers of all nations, whose motto might well be Ubique, have directed their artillery to every region of the universe. The sum, the spots on his surface, the corona and the red and yellow prominences seen round him during total eclipses, the moon, the plancts, comets, auroras, nebule. white stars, yellow stars, red stars, variable and temporary stars, each, tested by the prism, was compelled to show its distinguishing prismatic colours. Rarely before in the history of science has enthusiastic perseverance directed by penetrative genius produced within ten years so brilliant a succession of discoveries. It is not merely the chemistry of sun and stars, as first suggested, that is subjected to analysis by the spectroscope. Their whole laws of being are now subjects of direct investigation; and already we have glimpses of their evolutional history through the stupendous power of this most subtle and delicate test. We had only solar and stellar chemistry ; we now have solar and stellar physiology.

## 3. MOTION OF TIIE STARS.

It is an old idea that the colour of a star may be influenced by its motion relatively to the cye of the spectator, so as to be tinged with red if it moves from the earth, or blue if it moves towards the earth. William Allen Miller, Huggins, and Maxwell showed how, by aid of the spectroseope, this idea may be made the foundation of a method of measuring the relative velocity with which a star approaches to or recedes from the earth. : The principle is, first to identify, if possible, one or more of the lines in the spectrum of the star, with a line or lines in the spectrum of sodium, or some other terrestrial substance, and then (by observing the star and the artificial light simultancously by the same spectroscope) to find the difference, if any, between their refrangibilities. From this difference of refrangibility the ratio of the periods of the two lights is caiculated, according to data determined by Fraunhofer from comparisons between the positions of the dark lines in the prismatic spectrum and in his own "interference spectrum" (produced by substituting for the prism a fine grating). A first comparatively rough application of the test by Niller and Huggins to a large number of the principal stars of our skies, including Aldebaran, a Orionis, b Pcgasi, Sirius, a Lyrec, Capella,

Arcturus, Pollux, Castor (which they had observed rather for the chemical purpose tham for this), proved that not one of them had so great a velocity as 315 kilometres per second to or from the earth, which is a most momentous result in respect to cosmical dynumics. Ifterwards Iruggins made spectal observations of the velocity test, and succeeded in making the measurement in one case, that of Sirius, which he then fomed to be receding from the earth at the rate of 66 kilometres per second. This, corrected for the velocity of the earth at the time of the observation, gave a velocity of Sirius, relatively to the sun, amounting to 47 kilomètres per second. The minuteness of the difference to be measured. and the smalness of the amount of light, eren when the brightest star is observed, renders the observation extremely difficult. Still. with such great skill as Mr. Huggins has brought to bear on the investigation, it can scarcely be doubted that veloeities of many other stars may be measured. What is now wanted is, certainly not greater skill. perhaps not even more powerful instruments, but more instruments and more observess. Lockyers applic:ations of the relocity test to the relative motions of different grases in the Sun's photosphere, spots, chromosphere, and chromospheric prominences, and his observations of the varying spectrap presented by the same substance as it moves from one position to another in the Sun's atmosphere, and his interpretations of these observations, according to the laboratory results of Frankland and himself, go far towards confirming the convicion that in a few years all the marvels of the sun will be dynamically explained according to known properties of matter.

## 4. sorime of the scis meat.

During six or cight precious minutes of time, spectroscopes have been applied to the solar atmosphere and to the corona seen round the dark dise of the Moon eclipsing the Sum. Some of the wonderful results of such observations, made in India on the occasion of the eclipse in August, 186S, were described by Prof. Stokes in a previous address. Valuable results have. through the liberal assistance given by the British and American Govermments, been obtained also from the total eclipse of last December, notwithstamding a generally unfarourable condition of weather. It secms to have been proved that at least some sensible part of the light of the "corona" is a terrestrial atmospheric halo or dispersive reflexion of the light of the glowing hydrogen and "helium"
round the sun. (Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from $D$, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium.) I believe I masy say, on the present oceasion, when preparation must again be made to utilize a total eclipse of the sum, that the British Association confilently trusts to our Govermment exercising the same wise liberality as herctofore in the interests of science.

The old nebular hypothesis supposes the solar system and other similar systems through the universe which we see at a distance as stars, to have originated in the condensation of fiery nebulous matter. This hypothesis was invented before the discovery of thermo-dynamics, or the nebulia would not have been supposed to be fiery; and the idea seems never to have occurred to any of its inventors or early supporters that the matter, the condensation of which they supposed to constitute the Sun and stars, could have been other than fiery in the becriming. Mayer first suggested that the heat of the Sun may be due to gravitation ; but he supposed meteors falling in to keep always generating the heat which is radiated year by year from the Sun. Helmholtz, on the other hand, adopting the nebular hypothesis, showed in 185.1 that it was not necessary to suppose the nebulous matter to have been originally fiery, but that mutual gravitation between its parts may have generated the heat to which the present high temperature of the Sum is due. Further, he made the important observations that the potential encrgy of gravitation in the Sun is even now far from exhausted; but that with further and further shrinking more and more heat is to be generated, and that thus we can conceive the Sun even now to possess a sufficient store of energy to produce heat and light, almost at present, for several million years of time future. It ought, howerer, to be added that this condensation can only follow from cooling, and therefore that Helmholtz's gravitational cxplamation of future Sun-heat amounts really to showing that the Sun's thermal capacity is enormously.greater, in virtue of the mutual gravitation between the parts of so enormous a mass, than the sum of the thermal capacities of separate and smaller bodics of the same material and same total mass. Reasons for adopting this theory, and the consecquences which follow from it, are discussed in an article 'On the Age of the Sun's Heat,' published in Macmillan's Magazine for March, 1862.

For a few ye:rs Mayers theory of solar heat had seemed to me probable; but $I$ had been led to regard it:as no longer tenable, because $I$ head been in the first place driven, by consideration of the very aproximate constancy of the Jarths period of revolution roum the sun for the last ? 0000 years. to conchade that " the principal smare: perinps the sole apreciably effective sume of Sum-heat, is in lorlies circulating romed the Sun at present inside the Earth": orbit ": and becatiee lee Verriers researches on the motion of the phat Mereury thourh giving evidence of a seasible influence attributable to mater circulatias as a sreat number of small phanets within his orbit round the Sun, showed that the amount of matter that could posibly be assumed to circialate at any comsiderable distance from the Sun must be very small; and therefore - if ine meteoric influx taking phace at present is cnoush to produce any apreetable protion of the heat matazed anay, it must be supposed to be from matter circulating round the Sum, within rery short distanees of his surface. The density of this meteoric cloud would hate to be supposed so great that comets could searely have examod :semets actually have exaped, showing no discorerable effects of resistance after pasing his surface within a distance copal to sue-eighth of his radius. All things comsitered. there sems lithe probability in the lypothesis that solar radiation is compensated to any apreciable desree by heat frenerated by metcors falliur in, at present ; mind as it can be shown that un -hmien theory is temable. it must be concluded as most probable that the Sun is at preent merely an incandeseent liguid mass combung."
 abadon as rere immonab the hepothere that the sums heat is supplied dymmically from year to year by the influx of meicors. But now sprom :mathois sives prom hinally condusive agranst it.
 groulual spiral path. and b. fore rezehing the Sun must have been
 rediation when very arar. :med must thes have bere driven inan rapur before actally fallige into the sun. Thus, if lizeres
 and the Suas atmeyhere miot be the immediate cause of solar heat; and the velneity with which these rapmurs circulate round

second. Thespectrum test of velocity applicd by Liockyer showed but a twentieth part of this :umount as the greatest observed relative velocity between different vapours in the Sun's atmosphere.

> 5. Mebrife, comets, and methons.

At the first Liverpool Mecting of the British Association (1S:) 4 ), in adrancing a seratitational theory to accome for all the heat, light. and motions of the universe, I urged that the immediaicly antecedent condition of the matter of which the Sum and Plamets were formed. not being fiery, conld not have been gascous; but that it probably was solid, and may have been like the meteoric stones which we still so frequently meet with through space. The discovery of Inurgins, that the light of the Nebula, so far as hitherto sensible to us, proceeds from incendescent hydrogen and nitroyen gases, and that the heads of comets also give us light of incandesent gas, seems at first sight literally to falfil that part of the Nebular hypothesis to which I hate obigected. But a solution, which seems to me in the highest degree probable, has been susegosted by Itait. Ife supposes that it may be by ignited gascous cxhalations proceding from the collision of metcoric stones that nebiala and the heads of enmets show themselves to us: and he surgester, at a former neethar of the Assaciation, that experiments should be made for the purpose of applyiner spectrum :nalysis to the light which has been observed in sumery trials; such as those at Shoblburyess, when iron strikes against iron at. as scat velocity. but variod by subsituting for the iron various sulid materials, metailie or stomy. Hitherto this sugsestion has mot been :ected upos: but surely it is one the carrying out of which ought io be promoted by the British Associntion.

Most important step: have been receatly made forsards the diencery of the nature of comets: entablishing with nothing short of ecrtainty the iruth of a hypothesis which had lous : ippenred to me probable- - ihat they consist of aroups of meteoric stones: acenumting satisfietorily for the light of the melcus, and wiving a simple and rational exphanation of phomomena presuted by the iails of comeds which had heren recerded by the weatest astronnmers as almost preternaturally marvellous. The metcoric inypothasis io which I have refirsed remaned a more hypothesis. (I do nut know that it wis ever cren published. until. in 1sibt; Schiapreveli calculated, from observations on the August meteors, an orhit for these brelies which he frume in :yree almonst perfectly
with the orbit of the great conet of 1862，as calculated by Oppolzer；and so discosered and demonstrated that a comet con－ sists of a group of meteoric stones．Prof．Newton．of Yale Col－ leare，linted states．by examining ancient records，aseertained that in prioms of about thirty－thee years，since the year 902 ， there have been caceptionally bribiant dipplays of the sosember metems．It had loug been believed that these interesting visi－ tamss c：me from a train of small detached phamets circulating roum the sum，all in menly the same orbit，and constituting a belt amalogous to sitituns ring；and that the reasun for the com－ paratively lare number of meteors which we observe amually about the 1 thin of November is，that at that time the carth s orbit， cuts through the suppoed meteoric belt．Pref．Newton concluded from his investigation that there is a denser part of the gronp of meleors which extends over a portion of the orbit so great as to occupy ：bout one－tenth or onc－filteenth of the periodic time in passius my particular point，and gave a choice of five dificrent promeds for the revolution of this meteoric stram round the sum， ：ny one of which would sutisfy his statistical result．He further concluded t．．th the line of nodes，that is to say，the line in which the plame of the meterie belt cuts the plane of the earths orbit，
 Here，then．was a sphendid problem for the physical astronomer： and．hapipily；one well gualified for the task took it up．Adims， le the application of a beatiful method insented by ganss， frumd that of the five periods allowed by Sewton．jusi one per－ mitted the motion of the line of nodes to be explained by the disturbing influener oi Jupiter．Saturn．and other phanets．The perind chosin on these grounds is $303+\frac{1}{1}$ years．The invectigation showed further that the form of the orbit is a hang ellipse，siving for simutest distance from the sun 145 million kiimmètres，and for longere distmee 2 Sg million kilometres．Aldms also workè att the innoutitude of the perihelion and the inclination of the urbit：plame to the phane of the elliztic．The orbit which he thus fund aresed so closely with that of＇lemples Comer I． 1sibit，that he was able to identify the cmuct and the meteoric belt．：The same conclusion had been printed out a few weels

[^0]carlier by Schiaparelli, from calculations by himself, on datia supplied by direct observations on the meteors, and independently by Peters, from calculations by Leverrier on the same foundation. It is, therefore, thoroughly established that 'Lemples Comet I. 1866, consists of an elliptic train of minute plancts, of which a few thousands or millions fall to the earth amnually about the 1tth of November, when we cross their track. We have probably not yet passed through the very nueleus or densest part; but thirteen times, in Octobers and Norembers, from October 13, .1.v. 902, to November 1t, 1866 , inclusive (this last time having been correctly predicted by Prof. Newton), we have passed through a part of the belt greatly denser than the average. The densest part of the train, when near enough to us, is visible as the head of the comet. This astounding result, taken along with Muggins's spectroscopic observations on the light of the heals and tails of comets, confirm most strikingly 'lait's theory of comets, to which I hare already referred; according to which the comet, at group of meteoric stones, is self-luminous in its nucleus, on account of collisions amons its constituents, while its " tail" is merely a portion of the less dense part of the train illuminated by sumlight, and risible or invisible to us accordiug to circumstances, not only of

[^1]density; dogree of illumination, and nearness, but also of tactic arrangement, as of a flock of biads or the edge of a cloud of tobacco smoke! What prodigious difficulties are to be explained, gou may judge from two or three sentences which I shall read from Herschels Astronomy, and from the fact that even Schiaparelli seems still to believe in the repulsion : "There is, beyond question, some profuund secret and mystery of nature concerned in the phenomena of their tails. Perhaps it is not too much to hope that future observation, borrowing every aid from rational speculation, grounded on the progress of physical science generally (especially those branches of it which relate to the ethereal or imponderable clements), may enable us ere long to penetrate this mystery, and to declare whether it is really matecr in the ordinary acceptation of the term which is projected from their heads with such extraordinary velocity, and if not impelled, at least directech, in its course, by reference to tha Sum, as its point of aroidance." "In no respect is the duestion as to the materiality of the tail more forcibly presed on us for consideration than in that of the enormous sweep which it makes round the Sun in perilectio in the manner of a straight and rigid rod, in arfiunce of the leno of gravitation, may, eren, of the reccired laws of motion." "The projection of this ray. . . . to so enormons a length, in a single day, conveys an impression of the intensity of the forees acting to produce such a velocity of material transfer through space, such as no other natural phenomenon is capable of exciting. It is clear that if aee huve to deal here rith mutter; such as we conccive it, viz., possessing inertit-at ull, it must be under the dominion of forces incomparably more energetic than gravitation, and quite of a different nature."

Think now of the aduirable simplicity with which Tait's beautiful "sea-bird amaloery," as it has beeu called, can explain all these phenomena.

## 6. mological meseaincif.

The esscuce of science, as is well illustrated by astronomy and cosmical physics, consists in inferring antecedent couditions, and anticipating future crolutions, from phenomena which have actually come under observation. In biology the difficulties of successfitlly acting up to this ideal are prodigious. The carnest naturalists of the present day are, however, not appalled or paralyzed by them, and are struggling boldly and laboriously to pass
out of the mere ": Natural Wistory stage" of their study, and bring zoology within the ramge of Natural Philosophy. A very ancient speculation, still clung to by many maturalists (so much so that I have a choice of modern terms to (quote in expressing it) supposes that, under meteorological conditions very different from the present, dead matter may hare run together or crystallized or fermented into "s germs of life," or "organic cells;" or "protoplasm." But science brings a vast mass of inductive eridence against this hypothesis of spontaneous generation, as you have heard from my predecessor in the Presidential chair. Careful enough scrutiny has, in every case up to the present day, discovered life as antecedent to life. Dead matter camot become living without coming under the influence of matter previously alive. This seems to me as sure a teaching of science as the law of gravitation. I utterly repudiate, as opposed to all philosophical uniformitarianism, the assumption of "different metcorological conditions"-that is to say, somewhat different vicissitudes of temperature, pressure, moisture, graseous atmosphere-to produce or to permit that to take place by force or motion of dead matter alone, which is a direct contravention of what seems to us biological haw. I am prepared for the answer, "our code of biological law is an expression of our ignorance as well as of our knowledge." And I siy, yes; search for spontancous generation out of inorgamic materials; let any one not satisfied with the purely negative testimony of which we have now so much against it, throw himself into the inguiry. Such investigations as those of Pasteur, Pouchet, and Bastian are among the most interesting and momentous in the whole ratige of Natural History, and their results, whether positive or negative, must richly reward the most careful and laborious experimenting. I confess to being decply impressed by the evidence put before us by Prof. Husley, and I am ready to adopt, as an article of scientific faith, truc through all space and through all time, that life proceeds from life, and from nothing but life.

## 7. omign of hife.

How, then, did life originate on the earth? Tracing the physical history of the carth backwards, on strict dynamical principles, we are brought to a red-hot melted globe, on which no life could exist. Hence when the carth was first fit for life, there was no living thing on it. There were rocks solid and disinte-
grated, water, air all round, wamed and illuminated by a brilliant sun, ready to become a garden. Did grass and trees and flowers spring into existence, in all the fulness of ripe beanty, by a fiat of Creative Power? or did vegetation, growing up from seed sown, spread and multiply over the whole earth? Science is bound, by the everlasting law of honour, to face fearlessly crery problem which can fairly be presented to it. If a probable solution, consistent with the ordinary course of nature, can be found, we must not invoke an abnormal act of Creative Power. When a lava stre:m flows down the sides of Vesurius or Etna it quickly cools and becomes solid; and after a few weeks or years it teems with regctable and auimal life, which for it originated by the tramsport of seed and ova amd by the migration of individual living creatures. When a volcanic island springs up from the sea, and after a few years is found clothed with regetation, we do not hesitate to assume that seed has been wafted to it through the air, or floated to it on ralts. Is it not possible, and if possible, is it not probable, that the begiming of vegetable life on the carth is to be similarly explained? Every year thousunds, probably millions, of fragments of solid matter fall upon the carth -whence came these fragments? What is the previous history of any oue of them? Was it created in the beriming of time an amorphous mass? This idea is so mateceptable that, tacitly or explicitly, all men discard it. It is often assumed that all, and it is certain that some, meteoric stones are fraguents which had been broken off from greater masses and launched free into space. It is as sure that collisions mast occur between great masses moring through space as it is that ships, stecred without intelligence directed to prevent collision, could not cross and recross the Atlantic for thousinds of years with immunity from collisions. When two great masses come into collision in space it is certain that a large part of each is melted ; but it seems also quite certain that in many calses a large quantity of debris must be shot forth in all directions, much of which may have experienced no greater violence tham individual pieces of rock experience in a lamd-slip or in blasting by guupowder. Should the time when this earth comes into collision with any other body, comparable in dimensions to itself, be when it is still clothed as at present with vegetation, many great and small fragments carrying seed and living plants and amimals would undoubtedly be scattered through space. Hence and because we all confidently believe that
there are at present, and have been from time immemorial, many worlds of life besides our own, we must regard it as probable in the highest degree that there are countless seed-bearing meteoric stones moving about through space. If at the present instant no life existed upon this carth, one such stone falling upon it might, by what we blindly call uatural causes, lead to its becoming covered with vegctation. I am fully conscious of the many scientific objections which may be urged agrainst this hypothesis, but I believe them to be all answerable. I have already taxed your patience too severely to allow me to think of discussing any of them on the present occasion. The hypothesis that life originated on this carth through moss-grown fragments from the ruins of another world may secm wid and visionary; all I maintain is that this is not unscicutific.

## 8. the darminhan theory.

From the Earth stocked with such vegetation as it could receive meteorically, to the Farth teeming with all the endless varicty of plants and animals which now inhabit it, the step is prodigious; yet, according to the doctrine of continuity, most ably laid before the Association by a predecessor in this chair (Mr. Grove), all creatures now living on earth have proceeded by orderly evolution from some such origin. Darwin concludes his great work on 'The Origin of Species' with the following words:-"It is interesting to contemplate an entangled bank clothed with many plants of many kinds, with birds singing on the bushes, with vari-. ous insects flitting about, and with worms crawling through the damp earth, and to reffect that these elaborately constructed forms, so different from each other, and dependent on cach other in so complex a manner, have all been produced by laws acting around us." . . . "There is grandeur in this view of life with its sereral porers, having been originally breathed by the Creator into a few forms or into one; aud that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning, cudless forms, most beautiful and most wouderful, have been and are being evolved." With the feeling expressed in these two sentences I most cordially sympathize. I have omitted two sentences which come between them, describing briefly the hypothesis of "the origin of species by natural selection," because I have always felt that this hypothesis does not contain the true theory of evolution, if evolution there has been, Vol. VI.

No. 2.
in biology. Sir John Herschel, in expressing a favourable judgment on the hypothesis of roological crolution, with, howerer, some reservation in respect to the origin of man, objected to the doctrine of $\cdots$.tural selection, that it was too like the Laputan method of making books, and that it did not sufficiently take into account a continually gruiding and controlling intelligence. This seems to me a most vahable and instructive criticism. I feel profoundly convineed that the argument of design has been greatly too much lost sight of in recent roological speculations. Reaction against the firivolities of teleology, such as are to be found, not rarely, in the notes of the learned commentators on Paley's 'Natural 'Thendory;' has, I believe, had a temporary effect in turning attention from the solid and irrefragable argument so well put forward in that excellent old book. But overpoweringly strong prools of intelligent and benevolent design lic all round us, and if ever perphexities, whether metaphysical or scientific, turn us away from them for a time, they come back upon us with irresistible force, showing to us through nature the influence of a free will, and teaching us that all living beings depend on one ever-acting Creator and Ruler.

The Biological Section was presided over by Prof. Allan Thompson, who delivered the following address:-

I must content myself with endearouring to express to you some of the ideas which arise in my mind in looking back from the present upon the state of Biological science at the time, forty years since, when the meetings of the British Association com-menced-a period which I am tempted to particularise from its happening to comede very nearly with the time at which I began my carcer as a public teacher in one of the departments of biology in this city. In the few remarks which $I$ shall make, it will be my object to show the prodigious adrance which has taken place not only in the knowledge of our subject as a whole, but also in the ascertained relation of its parts to each other, and in the place which this kind of knowledge has gained in the estimation of the educated part of the community, aud the consequent increase in the freedom with which the search after truth is now asserted in this as in other departments of science. And first, in connection with the distribution of the various subjects which are included under this section, I may remark that the general title under which the whole section $D$ has met since 1866, viz, Biolosy,
seems to be advantageous both from its convenience, and as tending to promote the great consolidation of our science, and a juster appreciation of the relation of its several parts. It may be that looking merely to the derivation of the term, it is strictly more nearly synonymous with physiology in the sense in which that word has been for a long time employed, and therefore designating the science of life, rather tham the deseription of the living beings in which it is manifested. But until a better or more comprehensive term be found we may accept that of biology under the general definition of "the science of life and of living beings," or as comprehending the listory of the whole range of organic nature-vecretable as well as amimal. The propriety of the adoption of such a general term is further shown by a glance at the changes which the title and distribution of the subordinate denartments of this section have undergone during the period of the existence of the $A$ ssociation.

## HISTORY OF THE SECTION.

During the first four years of this period the Section met under the combined designation of Zoology and Botany, Physiology and Auatomy-words sufficiently clearly indicating the scope of its subjects of investigation. In the uext ten years a comection with Medicine was recognised by the establishment of a subsection or department of Medical Science, iu which, however, scientific anatomy and physiology formed the most prominent topics, though not to the exclusion of more strictly medical and surgical or professional subjects. During the next decade, or from the ycar 1845, we find along with Zoolony and Botany a sub-section of physiolory, and in several years of the same time along with the latter a separate department of Ethnology. But in the eleven years which extcuded from 1855 to 1865, the branch of Ethnology was associated with Geography in Scetion F. And more recently, or since the arrangement which was commenced in 1866, the section Biology has included, with some slight variation, the whole of its subjects in three departments. Under one of these are brought all investigations in Anatomy and Physiology of a gencral kind, thus erubracing the whole range of these sciences when without special application. A second of these sub-sections has been occupied with the extensive subjects of Botany and Zoology; while the third has been devoted to the subject of Anthropology, in which all rescarches having a special reference
to the structure and functions or life history of man have been received and discussed. Such I understand to be the arrangement under which we shall meet on this occasion. At the conclusion of my remarks, therefore, the sub-section for Anatomy and Physiology will remain with me in this room; while the sub-section of Zoology and Botany, on the one hamd, and of Anthropology on the other, will adjourn to the apartments which have been provided for them respectively.

## ANTHROPOLOGY.

With regard to the position of Anthropology. as including Ethnology, and comprehending the whole natural history of man, there may be still some difierences of opinion, according to the point of view from which its phenomena are regarded: as by some they may be viewed chiefly in relation to the bodily stucture and function of individuals or numbers of hen; or as by others they may be considered more directly with reference to their national character and history, and the affinitics of languages and customs; or by a third set of inguirers, who are inclined to devote their principal attention to the facts and views bearing upon the origin of man and his relation to animals. As the first and third of these sets of topics entirely belong to Biology, and as those parts of the second set which do not properly fall under that branch may with propriety find a place under Geography or Statistics, I feel inclined to adhere to the distinct recognition of a sub-section-Anthropology, in its present form; and I think that the suitableness of this arrangement is apparent, from the nature and number of the communications properly falling under such a sub-section which have been receired under the last distribution of the subjects.

## CONDITION OF BIOLOGICAL RESEARCIF

The bencficial influence of the British Association in promoting biological research is made apparent by the number and importance of the reports on various subjects, as well as of the communications to the sectious. Of the latter, the number received aunually has been nearly doubled in the course of the last twenty years. Nor can it be doubted that this influence has been materially assisted by the contributions in money made by the Association in aid of various biological investigations; for it appears that out of the whole sum of nearly $£ 34,500$ contributed by the Association to the promotion of scientific research, about
£2800 has been devoted to biological purposes, to which it would be fair to add a part at least of the grants for Palcontological researches, many of which must be acknowledged to stand in close relation to Biology. The enormous extent of knowledge and research in the various departments of Biology has become a serious impediment to its more complete study, and leads to the dauger of confined views on the part of those whose attention, from necessity or taste, is too exclusively directed to the details of one department, or even, as often happens, to a subdivision of it. It would seem, indeed, as if our predecessors in the last generations, possessed this superior advantage in the then existing marrower boundaries of knowledge, that they were able more easily to overtake the contemplation of a wider field, and to follow out researches in more than one of the sciences. To such combination of varied knowledge, united with their transeendent powers of sound generalization and accurate observation, must be ascribed the wide-spread and enduring influence of the works of such men as Faller, Limneus, and Cuvier, Von Baer and Joannes Müller. There are doubtless brilliant instances in our orn time of men endowed with similar powers; but the difficulty of bringing these powers into effectual operation in a wide range is now so great, that while the amount of research in special biological subjects is enormous, it must be reserved for comparatively few to be the authors of great systems, or of enduring broad and general views which embrace the whole range of biological scicnce. It is incumbent on all those, therefore, who are desirous of promoting the advance of biological knowledge to combat the confined riews which are apt to be engendered by the too great restriction of study to one department. Howerer much subdivision of labour may now be necessary in the origin, investigation, and claboration of new facts in our science (and the necessity for such subdivision will necessarily increase as knowledge extends), there must be secured at first, by a wider study of the general principles and some of the details of collateral branches of knowledge, that power of justly comparing and correlating facts which will mature the judgment and exclude partial views. To refer only to one bright example, I may say that it can seareely be doubted that it is the unequalled variety and extent of knowledge, combined with the faculty of bringing the most varied facts torether in new combination, which has enabled Dr. Darwin (whatever may be thought otherwise of his system) to give the greatest impulse which has
been felt in our own times to the progress of biological views and thought; and it is most satisfactory to observe the effect which this influenee is already producing on the scientific mind of this country, in opposing the tendency pereeptible in recent times to the too restricted study of special depertments of natural history. I need scareely remind you that for the proper investigation and jndement of problens in physioluey a full knowledge of anatomy in generat, and mach of comparatioc anatomy, of histulory and embryology, of organic chemistry, and of physics, is indispensable as a preliminary to all suceesesful physiological observation and experiment. The anatomist again, who would profess to deseribe rationally and correctly the structure of the humam body, must have acquired a knowledge of the principles of morpholury derived from the study of comparative amatomy and development, and he must have mastered the intricacies of histological researeh. The comparative anatomist must be an accomplished embryologist in the whole range of the animal kingdom, or in any single divisiou of it which he professes to cultivate. The zoologist and the botanist must equally found their descriptions and systematic distinctions on morphological, histological, and embryolonical data. And thas the whole of these departments of biological scicuce are so interwoven and united that the scientific investigration of no one cam now be regarded as altogether separate from that of the others. It has been the work of the last forty years to bring that intimate connection of the biological sciences more and more fully into prominent view, and to infuse its spirit into all scientific iurestigation. But while in all the departments of biology prodigious adrances have been made, there are two more especially which merit particular attention as having almost taken their origin within the period $L$ now reler to, and as having made the most rapid progress in themselves, and have influcneed most powerfully and widely the progress of discovery, and the views of biologists in other departments-I mean histology and embryology.

## IISSOLOGX.

I need scarecly remind those present that it was only within a few years before the foundation of the British Association that the suggestions of Lister in regard to the construction of achromatic lenses brought the compound microseope into such a state of improvement as caused it to be restored, as I might say, to the , phace which the more imperfect instrument had lost in the pre-
vious century. The result of this restoration became apparent in the foundation of a new cra in the knowledge of the minute chamacters of textureal structure, under the joint guidance of $R$. Brown and lhhenberg, so as at last to have entitled this branch of inguiry, to its designation, by Mr. Huxley, of the exhaustive investigation of structural elements. All who hear me are fully aware of the influence which, from 1838 onwards, the researches of Schwam and Schleiden exerted on the progress of IIistology and the riews of amatomists and physiolorists as to the structure and development of the textures, and the prodigious increase which followed in raried microscopic observations. It is not for me here even to allude to the steps of that rapid progress by waich a new branch of anatomical science has been created; nor can I venture to enter upon any of the interesting cuestions presented by this department of the microscopic anatomy; nor attempt to discuss any of those possessing so much interest at the present moment, such as the nature of the organised cell or the properties of protoplasm. I would only remark that it is now very generally admitted that the cell wall (as Schwam indeed himself pointed out) is not a source of new proluction, though still capable of considerable structural change after the time of its first formation. The nucleus has also lost some of the importance attached to it by Schwann and his earlier fullowers, as an essential constituent of the cell, while the protoplasu of the cell remains in undisputed possession of the field as the more immediate seat of the phenomena of growth and organisation, and of the contractile property which forms so remarkable a feature of their substance. I cordially agree with much of what Mr. Muxley has written on this subject in 1853 and 1869 . The term physicall basis of life may perlaps be in some triffing respect objectionable, but $I$ look upon the recoguition of protoplasm, as a gencral term indicating that part of the tissue of plants and animals which is the constant scat of the growing and moving powers as a most important step in the recent progress of histology. To Maechel the fuller history of this in lowest forms is due. To Dr. Beale we owe the fullest investigation of these properties by the use of magnifying powers beyond any that had previously been known, and the successful employment of re-agents which appear to mark out distinction from the other elements of the textures. I may remark, however, in passing, that I am inclined to regard contractile protoplasm, whether vegetable or animal, as in no iustance entircly amorphous
or homogeneous, but rather as always presenting some minute molecular structure which distinguishes it from parts of glassy clearness. Admitting that the form it assumes is not necessarily that of a regular cell, and may be various and irregular in a fer execptional instances, I am not on that account disposed to give up definite structure as one of the universal characteristics of orgamisation in living bodies. I would also sugerest that the term formative and nonformative, or some others, should be substituted for those of living and dead. employed by Dr. Beale to distingrish the protoplasm from the cell-wall or its deriration, as those terms are liable to introduce confusion.

EMBRYOLOGS. .
To the discoveries in embryology and development I might have been tempted to refer more at liarge, as being those which have had, of all modern research, the greatest effect in extending and modifying biological views, but I am marned from entering upon a subject in which I might trespass too much on your patience. The merits of Wolff as the great first pioneer in the accurate observation of the phenomena of development were clearly pointed out by Mr. Huxley in his presidential address of last year. Iinder the influence of Dollinger's teaching, Pander, and aftervards Yon Baer and Rathke established the foundations of the modern history of embryolorey. It was only in the jear IS27 that the orum of mammals was discovered by Von Bacr; the segmentation of the yolk, first observed by Prevost and Dumas in the frog's orum in 182t, was ascertained to be general in succecding years; so that the whole of the interesting and imporiant additions which have followed, and have made embryological derelopment a complete science, have been included within the eventful period of the life of this Association. I need not say how distinguished the Germams have beeu by their contributions to the history of animal development. The names of Bischoff, Reichart. Kolliker, and Renak are sufficient to indicate the most important of the steps in recent progress, without attempting to cmumerate a host of others who have assisted in the great work thus founded. I an aware that the mere name of development suggests to some ideas of painful mature as associated with the theory of evolution recently promulgated. To one accustomed during the whole of his eareer to trace the steps by which every living being, including man himself, pases from the condition of
an almost imperceptible germ, through a long series of changes of form and structure into their perfect state, the name of development is rather suggestive of that which seems to be the common history of all living beings; and it is not wonderful therefore that such a one should regard with approval the more extended view which supposes a process of development to belong to the whole of nature. How far that principle maty be carried, to what point the origin of man or any animal can by history, facts or reasoning le traced in the long unchronicled history of the world, and whether living beings may arise independently of parents or germs of previously existing organisms, or may spring from the direct combination of the elements of dead matter, are questions upon which we may expect this section may endeavour to guide the hesitating opinion of the time. I cannot better express the state of opinion in which I find myself than by cuoting the words of Professor Huxley from his address of last year, p. lexxiii. :"But though I cannot express this conciction of mine too strongly (viz., the occurrence of abingenesis), I must carefully guard myself against the supposition that $I$ intend to suggest that no such thing as abiogenesis ever has taken place in the past; or erer will take place in the future. With organic chemistry, molecular physics, and physiology yet in their infancy, and crery day making prodigious strides, I think it would be the height of presumption for any man to say that the conditions under which matter assumes the properties we call 'vital,' may not some day be artificially brought together. And again, if it were given me to look beyond the abyss of geologically recorded time, to the still more remote period when the earth was passing through physical and chemical conditions, which it can no more see again than a man can recall his infancy; I should expect to be a mitness of the evolution of living protoplasm from livins matter:" I will quote further a fer wise words from the discourse to which many of you must hare listened last erening with admiration. Sir Wm. Thomson said-"The essence of science, as is well illustrated by astronomy and cosmical physics, consists in inferring antecedent conditions, and anticipating future crolutions, from phenomena which have actually come under observation. In biolory: the difficulty of successfully acting up to this ideal are prodigious. Our code of biological lar is an cxpression of our ignorance as as well as of our knowledge. Search for spontancous generation out of inorganic materials; let any one not satisfied with the
purely negative testimony, of which we have now so much against it. throw himedf into the inquiry. Such investigations as those of Pasteur, Pouchet and Bastian are among the most interesting and momentous in the whole range of natural history; mat their results, whether positive or negative, must richly reward the most carcful and laborions experimenting." The consideration of the finest discorerable structures of the orgamised parts of living bodies is intimately bound up with that of their chemieal composition and properties. The progess which has been made in orgmic chemisiry helongs not only to the knowledge of the composition of the constituents of orgmised boties, but also in the manner in which that compusition is chemic:lly viewed. Its peculiar feaiure, copecially as related to biological investigation, consists in the results of the introduction of the synthetic method of resureh, which has enahled the chemist to imitate or to form artifi eially a wreater and wrater number of the organic compounds. In $1 \leqslant 2$ es the first of these substances was formed by Wohler, loy at syntheide proces; as cyamate of ammmia; and still, though some wo dombt entertainel juster views, the opinion prevailed amour chemists and physimhegists that there was some great and fiundamental dificence in the chemieal phenomena and haws of orsmic and inngramic mature- But mon this supped barrier has been in a sreat measure broken dom and removed, and chemists, with ahmost one acwerd, regrard the laws of combination of the clements as esentially the same in both clases of bedies. whatever differenes may exist in actual compraition, or in the reaction of organic bodis in the more complex and often obscure conditions ritality as emmpared with the simpler am, on the whole, better known jhemmena of a chemieal nature observed in the mineral kingden. Thus. by the synthetie method. there have hen formed anmar the simpler orsomic compuads a areat number of alemble. hydrecarmas, mind fity acids. lut the most remarkable exampe of the synthetic firmation of an organic compound is that of the alkaloid conia, as recently obtained by Mugo Selining certain renctims from houyrie aldelyde, itself an artificial product. This substance: so firmen, and its compounds. posecs all the pownerite of the natural comia-chamienl, physical, and
 matter of madler, or adizarine, is amother orgmic compound which has been formed by artifieal procests. It is true that the orgamised or comtaning sald, cither of veretable or mimal bodies. has
not as yet yielded to the ingenuity of chemical artifice; nor, indeed, is the actual composition of one of the most important of these, albumen and its alliee, fully known. But as chemists have only recently learan to discover the track by which they may be led to the synthesis of organic compounds, it is warrantable to hope that ere long cellulose and lignine may be found; and, great as the diffeuties with resarel to the allumenoid compounds may at present appear, the syuthetic formation oi these is by no means to be deepaired of. but, on the contrary, may with confidence be expeeted to crown their cfforts. From all recent researeh, it appears to result that the gencral nature of the properties belonging to the prometas of amimal and revetable life. can no longer be rearded as different from those of minerals, in so fir at least as they are the subject of chemical investigation. The union of celements and their separation, whether eceurring in an amimal, a verceiable or a mincral body, must be looked upon as dependent on imate jowers or properties belomgiag to the elements themselves; and the phenomena of change of composition of orgmic bodies oceurring in the living state are not the less chemical because they are different from those ohservel in organic uature. All chemical aciions ate liable to vary according to the conditions in which they oceur, and many instances might be adduced of most remarkable variations of this kind, obeerved in the chemistry of dead bodies irom very slight changes oir clecirical, caloritic, mechanical, and other conditions. But because these conditionsare infinitely more complex and far less known in living bodies, it is not necessary to look upon the actions as essentially of a different kind, to have recourse to the hypothesis of vital affinitics, and still less to shelter murseltes under the slim curtain of ignormee implied in the exphanation of the most varied chemical phenomena by the iufluenee of a vital principle.

## 

On the subjects of zoological and botanicai classification and anthropology; it woth be out of phace for me now to make any oibervations at length. I will only remark, in regard to the first, that the period now under review has withessed a very great modifieation in the aspeet which the sfinities of the bodies belonging to these two great kingloms of nature bear to tach other, and the principles on which in each groups of bodies are associated together in classifieation; for, in the first place, the older
view has been abandoned that the complication of structure rises in a contiuually increasing and continuous gradation from one kingdom to the other, or extends in one line from one group to another in either of the kingdoms separately. Evolution into a gradually increasing complexity of structure and function no doubt exists in both, so that types of formation must be acknowledged to pervade, accompanied by typical resemblance of the plan of formation of a most interesting nature; but it has become more and more apparent in the progress of morphological research that the different groups form rather circles, which touch one another at certain points of greatest resemblance, rather than one continuous line, or even a number of lines, which partially pass cach other. Certain simpler bodies of the two kingdoms, of nature thus exhibit the increasing resemblance to each other, until at last the differences between them wholly disappear, and we reach a point of contact at which the properties become almost indistinguishable, as in the remark:able Protista of Haeckel and others. I fully agree, however, with the riew stated by Professor Wyville Thomson in his introductory lecture, that it is not necessary on this account to recognize with Hacekel a third intermediate kingdom of nature. Each kingdom presents, as it were, a radiating expansion iuto groups for itself, so that the relations of the two kingdoms might be represented by the divergence of lines spreading in two different directions from a common point. Recent observations on the chorda dorsalis of some Ascidians (or supposed notochord) tend to revive the discussion at one time prevalent, but loug in abeyance, as to the possibility of tracing a homology between the vertebrate and invertebrate animals; and, should this correspondence be confirmed and extended, it may be expected to modify greatly our present viers of zoological affinities and classification, and be an additional proof of the importance of minute and cmbryologicol research in such determinations. The recognition of homological resemblance of amimals, to which in this country the researches of Oren and Huxley have contributed so largely, form one of the most interesting subjects of contemplation in the study of comparative anatomy and zoology in our time; but I must refrain from touching on so seductive and difficult a subject.

## Nateral science in scifools.

There is another topic to which I can refer with pleasure as , connected with the cultivation of biological knowledge in this
country, and that is the introduction of instruction in natural science into the system of education of our schools. As to the feasibility of this in the primary schools, I believe most of those who are intimately acquainted with the management of these schools have expressed their decidedly favourable opinion-it being found that a portion of the time now allotted to the three great requisites of a primary education might with advantage be set apart, for the purpose of instructing the pupils in subjects of common interest, calculated to awaken in their minds a desire for knowledge of the various objects presented by the field of nature around them. As to the benefit which may result from this measure to the persons so instructed, it is scarcely necessary for me to say anything in this place. It is so obvious that whatever knowledge, though easily acquired, and even of the most elementary kind, tends to enlarge the range of observation and thought, must have some effect in removing its recipients from grosser influences, and may even give information which may prove useful in social cconomy and in the occupations of labour. Nor need I point out how much more extended the advantages of such instruction may prove if introduced into the system of our secondary schools, and more frcely combined than herctofore with the two exclusively literary and philosophical study which has so long prevailed in the approved British education. Without disparagement to those modes of study as in themselves necessary and useful, and excellent means of disciplining the mind to learning, I cannot but hold it as certain that the mind which is entircly without scientific cultivation is but haif prepared for the common purposes of modern life, and is entirely unqualified for forming a judgment on some of the most difficult and yet most common and important questions of the day, affecting the interests of the whole community. I refer with great pleasure to the coyent arguments addressed yesterday by Dr. Bennet to the medical graduates of the University, in favour of the establishment of physiology as a subject of general education in this country with reference to sanitary conditions.- It is gratifying, therefore, to perceive that the suggestions made some time ago in regard to this subject by the British Association, through its committee, have already borne good fruit, and that the attention of those who preside over education in this country, as well as of the public themselves, is more earnestly directed to the object of securing for the lowest as well as the highest classes of the community that wholesome combination
of knowledge derived from education, which will duly cultivate all the faculties of the mind, and thus fit a greater and greater number for applying themselves with increased ability and knowledge to the purposes of their living and its improved condition. If the law of the survival of the fittest be applicable to the mental as well as to the physical improvement of our race (and who can doubt that it must be so), we are bound by motives of interest and duty to sccure for all classes of the people that kind of education which will lead to the development of the highest and most varied mental power. Aud no one who has been observant of the receut progress of the useful arts and its influence upon the moral, social, and political condition of our population, can doubt that that education must include instruction in the phenomena of external nature. including, more especially, the laws and conditions of life; and be, at the same time, such as will adapt the mind to the ready reception of varied knowledge. It is obvious too, that while this more immediately useful or bencficial effect on the common mind may be produced by the diffusion of natural knowledge among the people, biological science will share in the gain aceruing to all branches of natural science, by the greater farour which will be accorded to its cultivators, and the increased freedom from prejudice with which their statements are received and considered by learned as well as by unseientific persons.

## SPIRITUALISM.

I cannot conclude these observations without adverting to one aspect in which it might be thought that biological science has taken a retrograde rather than an advanced position. In this, I do not mean to refer to the special cultivators of biology in its true sense, but to the fact that there appears to have taken place of late a considerable increase in the number of persons who beliere, or who imagine that they believe, in the class of phenomena which are now called spiritual, but which have been longknown -since the exhibitions of Mesmer, and indeed, long before his time-under the most varied forms, as liable to occur in persons of an imaginative turn of mind and peculiar nervous susceptibility. It is still more to be deplored that many persons devote a large share of their time to the practice-for it does not deserve the name of study or investigation-of the alleged phenomena, and that a few men of acknowledged reputation in some departments

- of science have lent their names, and surrendered their judgment,
to the countenance and attempted authentication of the foolish dreams of the practitioners of spiritualism, and similar chimerical hypotheses. The natural tendency to a belief in the marvellous is sufficient to explain the ready acceptance of such views by the ignorant; and it is not improbable that a higher species of similar credulity may frequently act with persons of greater cultivation, if their scieutific information has been of a partial kind. It must be admitted, further, that extremely curious and rare, and to those who are not acquainted with nervous phenomena, apparently marvellous phenomena, present themselves in peculiar states of the nervous system-some of which states may be induced through the mind and may be made more and more liable to recur, and greatly exaggerated by frequent repetition. But making the fullest allowance for all these conditions, it is surprising that persons otherwise appearing to be within the bounds of sanity, should entertain a confirmed beliefin the possibility of phenomena, which, while they are at variance with the best established physicallaws, have never been brought under proof by the evidences of the senses, and are opposed to the dictates of sound judgment. It is so far satisfactory in the interests of true biological science that no man of note can be named from the long list of thoroughly well-informed anatomists and physiologists, who has not treated the belief in the separate existence of powers of animal magnetism and spiritualism as wild speculations, devoid of all foundation in the carefully tested observation of facts. It has been the habit of the votaries of the systems to which I have referred to assert that scientific men have neglected or decliued to investigate the phenomena with attention and candour; but nothing can be farther from the truth than this statement. Not to mention the admirable reports of the early French academicians, giving the account of the negative resuit of an examination of the earlicr mesmeric phenomena by men in every way qualified to pronounce judgment on their nature, I am aware that from time to time men of eminence, aud fully competent, by their knowledge of biological phenomena, and their skill and accuracy in conducting scientific investigation, have made the most patient and careful examination of the evideuce placed before them by the professed believers and practitioners of so-called magnetic, phreno-magnetic, electrobiological, and spiritualistic phenomena; and the result has been uniformly the same in all cascs when they were permitted to secure conditions by which the reality of the phenomena, or the justice
of their interpretation, could be tested-viz., either that the experiments signally failed to educe the results professed, or that the experimenters were detected in the most shameless and determined impostures. I have myself been fully convinced of this by repeated examinations. But were any guarantee required for the care, sounduess, and efficiency of the judgment of men of science on these phenomeua and views, I have only to mention, in the first place the revered name of Faraday, and in the next that of my life.long friend Dr. Sharpley, whose ability and candour none will dispute, and who I am happy to think, is here among us, ready from his past experience of such exhibitions, to bear his weighty testimony against all cases of levitation, or the like, which may be the last wonder of the day among the mesmeric or spiritual pseudo-physiologists. The phenomena to which I have at present referred, be they false or real, are in great part dependent upon a natural principle of the human mind, placed, as it would appear, in dangerous alliance with certain tendencies of the nervous system. They ought not to be worked upon without the greatest caution, and they can only be fully understood by the accomplished physiologist who is also conversant with psychology. The experience of the last hundred years tends to show that there will always exist a certain number of minds prone to adopt a belief in the marvellous and striking in preference to that which is easily understood and patent to the senses; but it may be confidently expected that the diffusion of a fuller and more accurate knowledge of vital phenomena among the non-scientific classes of the community may lead to a juster appreciation of the phenomena in question, and a reduction of the number among them who are believers in the impossible. As for men of science who persist in submitting to such strange perversion of judgment, we can only hope that the example of their less instructed fellow-countrymen may lead them to allow them themselves to be guided more directly by the principles of common sense than by the erratic tendencies of a too fervid imagination.

Extracts from the President's (T. Andrews, F.R.S.) Address in the Chemical Section on the

## PROGRESS OF CHEMICAL RESEARCH.

Proceeding to touch on questions of general chemistry at pre, sent attracting attention, the learned Professor spoke first of the
relations which subsist between the chemical composition and refractive power of bodies for light. He then proceeded-A happy modification of the ice calorimeter has been made by Bunsen. The principle of the method-to use as a measure of heat the change of volume which ice undergoes in melting-had already, occurred to Herschei, and, as it now appears, still earlicr to Hermann; but their observations had been entirely overlooked by physicists, and had led to no practical results. Bunsen has, indeed, clearly pointed out that the success of the method depends upon an important condition, which is entirely his own. The ice to be melted must be prepared with water free from air, and must surround the source of heat in the form of a solid cylinder frozen. artificially in situ. Those who have worked on the subject of heat know how difficult it is to measure absolute yuantities with certainty, even where relative results of great accuracy may be obtained. The ice calorimeter of Bunsen will therefore be welcomed as an important addition to our means of research. Roscoe has prosecuted the photo-chemical investigations which Bunsen and he began some years ago. For altitudes above 10 degrees, the relation between the sun's altitude and the chemical intensity of light is represented by a straight line. Till the sum has reached an altitude of about 20 degrees, the chemical action produced by diffused daylight exceeds that of the direct sunlight; the two actions are then balanced: and at higher elevations the direct sunlight is superior to the diffused light. The supposed inferiority of the chemical action of light under a tropical sun to its action in higher latitudes proves to be a mistake. According to Rosece and Thorpe, the chemical intensity of light at Para, under the equator, in the month of $A$ pril, is more tham three times greater than at Kew in the month of August. Hunter has given a great exteusion to the earlier experiments of Saussure on the absorptive power of charcoal for gases. Cocomut charcoal, according to Hunter's experiments, exceeds all other varieties of wool charcoal in absorptive power, taking up at ordinary pressures 170 volumes of ammonia and 69 of carbonic acid. Methylic alcohol is more largely absorbed than any other vapour at temperatures from $90^{\circ}$ to $127^{\circ}$, but at $159^{\circ}$ the absorption of ordinary alcohol exceeds it. Cocoanut charcoal absorbs 44 times its volume of the vapour of water at $127^{\circ}$. The absorptive power is increased by pressure. Last year two new processes for improving the manufacture of chlorine attracted the attention of the section; one of them has already proved Vol. VI.

No. 2.
to be a success, and I am glad to be able to state that Mr. Deacon has receutly overcome certain difficulties in his method, and has obtained a complete absorption of the chlorine. May we hope to see oxygen prepared by a cheap and continuous process from atmospheric air? With baryta the problem can be solved very perfectly, if not economically. Another process is that of Tessier de Mothay, in which the manganate of potassium is decomposed by a current of superheated steam, and afterwards revived by being heated in a current of air. A company has lately been formed in New York to apply this process to the production of a brilliant house light. A compound Argand burner is used, having a double row of apertures-the inner row is supplied with oxygen, the other with coal gas or other combustible. The applications of pure oxygen, if it could be procured cheaply, would be very numerous, and few discoveries would more amply reward the inventor. Among other uses, it might be applied to the production of ozone, free from nitric acid by the action of the electrical discharge, and to the introduction of that singular body in an efficient form into the arts as a bleaching and oxidising agent. Tessier de Mothay has also proposed to prepare hydrogen gas on the large scale by heating hydrate of lime with anthracite. We learn from the history of metallurgy that the valuable alloy which copper forms with zinc was known and applied long before zinc itself was discovered. Nearly the same remark may be made at present with regard to manganese and its alloys. The metal is difficult to obtain, and has not in the pure state been applied to any useful purpose; but its alloys with copper and other metals have been prepared, and some of them are likely to be of great value. The alloy with zinc and copper is used as a substitute for German silver, and possesses some advantages over it. Not less important is the alloy of irou and manganese prepared according to the process of Fienderson, by reducing in a Siemens' furnace a mixture of carbonate of manganese and oxide of iron. It contains from 20 to 30 per cent. of manganese, and will doubtless replace to a large extent the spiegeleism now used in the manufacture of Bessemer steel. The classical researches of Roscoe have made us acquainted for the first time with metallic vanadium. Berzelius obtained brilliant scales which he supposed to be the metal, by heating oxychloride in ammonia, but they have proved to be a nitride. Roscoe prepared the metal by reducing its chloride in a current of hydrogen, as a light gray powder, with a metallic lustre under the microscope. It has a remarkable affinity both for nitrogen and silicon. Like phos-
phorus, it is a pentad, and the vanadates correspond in composition to the phosphates, but differ in the order of stability at ordinary temperatures, the soluble tribasic salts being less stable than the tetrabasic compounds. Sainte Claire Deville, in continuation of his researches on dissociation, has cxamined the conditions under which vapour of water is decomposed by metallic iron. The iron, maintained at a constant temperature, but varying in different experiments, from $150^{\circ} \mathrm{C}$. to $1600^{\circ} \mathrm{C}$., was exposed to the action of the vapour of water of known tension. It was found that for a given temperature the iron continued to oxidise till the tension of the hydrogen formed reached an invariable value. In these experiments, as Deville remarks, the iron behaves as if it emitted a vapour (hydrogen), obeying the laws of hygometry. An interesting set of experiments has been made by Lothian Bell on the power possessed by spongy metallic iron of splitting up carbonic oxide into carbon and carbonic acid, the former being deposited in the iron. A minute quantity of oxide of iron is always formed in this reaction. In organic chemistry, the labours of chemists have been of late largely directed to a group of hydrocarbons, which were first discovered among the products of the destructive distillation of coal or oil. The central body round which these researches have chiefly turned is benzol, whose discovery will always be associated with the name of Faraday. Baeyer has prepared artificially picoline, a base isomeric with aniline, and discovered by Anderson in his very able researches on the Pyridine series. Of the two methods described by Baeyer, one is founded on an experiment of Simpson, in which a new base was obtained by heating tribromallyl with an alcoholic solution of ammonia. By pushing further the action of the heat, Baeyer succeeded in expelling the whole of the bromine from Simpson's base, in the form of hydrobromic acid, and in obtaining picoline. The same chemist has also prepared artificially collidine, another base of the Pyridine series. In this list of remarkable synthetical discoveries, another of the highest interest has lately been added by Schiff-the preparation of artificial coniine. He obtained it by the action of ammonia on butyric aldehyde. The artificial base has the sime composition as coniine prepared from hemlock. It is a liquid of an amber-yellow colour, having the characteristic odour and nearly all the usual reactions of ordinary coniine. Its physiological properties, so far as they have been examined, agree with those of coniine from hemlock, but the artificial base has not yet been obtained in large quantity, nor perfectly pure.

Valuable papers on alizarine have beeu published by Perkin and Schunk. The latter has described a new acid-the anthraflaric -which is formed in the artificial preparation of alizarine. Madder contains another colouring principle, purpurine, which, like alizarine, yields anthracene when acted on by reducing agents, and has also been prepared artificially. These colouring principles may be distinguished from one another, as Stokes has shown, by their absorption bands; and Perkin has lately confirmed by this optical test the interesting observation of Schunk that finished madder prints contain nothing but pure alizarine in combination with the mordaunt employed. Hofmann has achieved another triumph in a department of chemistry which he has made peculiarly his own. In 1857, he showed that alcohol bases, analogous to those derived from ammonia, could be obtained by replacement from phosphurettedi hydrogen, but he failed in his attempts to prepare the two lower derivatives. These missing links he has now supplied, and has thus established a complete parallelism between the derivatives of ammonia and of phosphuretted hydrogen. The same able chemist has lately described the aromatic cyanates, of which one only-the phenylic cyanatewas previously known, having been discovered about twenty years ago by Hofmann himself. He now prepares this compound by the action of phosphoric anhydride on phenylurethane, and by a similar method he has obtained the tolylic, xylylie, and napthylic cyanates. Stenhouse had observed many years ago that, when aniline is added to furfurol, the mixture becomes rose-red, and communicates a fugitive red stain to the skin, and also to linen and silk. He has lately resumed the investigation of this subject, and has obtained two new bases-furfuraniline and furfur-tolnidine-which like rosaniline, form beautifully coloured salts, although the bases themselves are nearly colourless, or of a pale brown colour. The interesting work of Dewar on the oxidation of picoline must not be passed over without notice. By the action of the permanganate of potassium on that body, he has obtained a now acid, which bears the same relation to pyridine that phthalic acid does to benzol. Thorpe and Young have published a preliminary notice of some results of great promise which they have obtained by exposing paraffin to a high temperature in closed vessels. By this treatment it is almost completely resolved iuto liquid hydrocarbons whose boiling points range from $18^{\circ} \mathrm{C}$. to $300^{\circ} \mathrm{C}$. Those boiling under $100^{\circ}$ have been examined, and consist chiefly of olefines. In connection with this
subject, it may be interesting to recal the experiments of Pelouze and Cahours on the Pennsylvanian oils, which proved to be a mixture of carbolizdrogers belonging to the marsh gas serics. An elaborate exposition of Berthelot's method of transforming an organic compound into a hydrocarbon containing a maximum of hydrogen, has appeared in a connected form. The organic body is heated, in a scaled tube with a large excess of a strong solution of hydriodic acid, to the temperature of $275^{\circ}$. The pressure in these experiments Berthelot estimates at 100 atmospheres, but apparently without having made any direct measurements. He has thus prepared ethyl hydride from alcohol, aldehyde, ©c., hexyl hydride from benzol. Berthelot has submitted both wood charcoal and coal to the reducing action of hydriodic acid, and among other interesting results, he claims to have obtained in this way oil of petroleum. By the action of chloride of zinc upon codeia, Matthicssen and Burnside have obtained apocodeia, which stands to codeia in the same relation as apomorphia to morphia, an atom of water being abstracted in its formation. Apocodeia is more stable than apomorphia; but the action of reagents upon the two bases is very similar. As regards their physiological action, the hydrochlorate of apocodeia is a mild emetic, while that of apomorphia is an emetic of great activity. Other bases have been obtained by Wright by the action of hydrobromic acid on codeia. In two of these bases, bromotetracodeia and chlorotetra-codeia, four molecules of codeia are welded together, so that they contain no less than seventy-two atoms of carbon. They have a bitter taste, but little physiological action. The authors of these valuable researches were indebted to Messrs. Macfarlane for the precious material upon which they operated. We are indebted to Crum Brown and Fraser for an important work on a subject of great practical, as well as theoretical, inte-rest-the relation between chemical constitution and physiological actiou. It has long been known that the ferrocyanide of potassium does not act as a poison on the animal system; and Bunsen has shown that the kakodylic acid, an arsenical compound, is also inert. Crum Brown and Fraser found that the methyl compounds of strychuia-brucia und thebaia are much less active poisons then the aleoloids themselves; and the character of their physiolugical action is also diff,rent. The hypnotic action of the sulphate of methyl-morphiurs is less than that of morphia. But a reverse result occles in the case of atropia, whose methyl and ethyl derivatives are much more poisonous than the salts of atropia itself.

# THE POSTPLIOCENE GEOLOGY OF CANADA, 

By J. W. DAWSON, LL.D., F.R.S., F.G.S.

## PARTII.MOCAY DETAIMS.

Before entering into the special consideration of this Second Part of the subject, I desire to call attention to some additional facts bearing on tro of the most remarkable properties of the Post-pliocene deposits of the Northern Hemisphere, numely their general similarity of arrangement, and their local diversities.

In the first part of this memoir, takiug the Post-pliocene of the Lower St. Lawrence as a type, I showed that it has its parallel, with but slight gencral differevee, in the wide-spread superficial deposits of the interior of North America surrounding the great lakes, and that the Post-pliocene deposits of Scotland and Scandinavia almost precisely resemble those of Canada in the geueral sequence of deposits. Since that part was published, additional illustrations have been afforded by papers in the Geological Magazine by Mr. Hull, and Mr. Mackintosh, by papers and diseussions on the Eskers of Ireland, at the meeting of the British Association, and by an able monograph on the Estuary of the Forth, by Mr. David Milne Home. Mr. Hull, who is a "Land Glacialist," arranges the deposits of the Drift Period in the British area in the following threegroups, in descending order, in accordance with Prof. Ramsay's obserrations in England: and his own in Ircland.

1. Upper Boulder-clay, which he regards as "gencrally marine." In Canada, this is represented by the loose boulders and partial boulder deposits of the Upper Saxicara Sand.
2. Shelly marine sands and gravels belonging to the greatest depression of the land, and representing our Saxicava Sand and Lueda Clay.
3. Lower Boulder-clay, which represents the true or principal Boulder-clay of Canada. This Mr. Hull attributes "chiefly to land ice."

In Ircland, it would thus seem that the principal sub-divisions of the Post-pliocene can be recognized, and Mr. Kinahan has described the remarkable ridges of gravel called eskers which run
across the country in a North-east and South-west direction. Like our Camadian eskers or "Boar's backs," they are now admitted to be of marine origin, and are attributed to current action and to the waves, though floating ice has no doubt, as in Canada, contributed in some cases to their formation.

Mr. Milne Home gives a graphic description of the Post-pliocene deposits in the neighbourhood of the Frith of Forth, and many of his numerous sections might have just as well been taken from Canadian deposits. He thus sums up the causes of the phenomena, assuming that at the beginning of the period the land was submerged.
"The occan over and around Scotland was full of icebergs and shore ice, which spread fragments of rocks over the sea bottom and often stranded, ploughing through beds of mud, samd, gravel, and blocks of stone, and mingling them together in such a way as to form the 'Boulder-clay:' The land thereafter gradually emerged, during which time the long ridges or embankments of gravel called 'k:ames' were formed."

Mr. Mackintosh's observations go mainly to show that in England, as in Camada, cren the lower drift and rock striation are due to a great extent to floating ice and not to glaciers, and he extends this conclusion even into the lake district of Eugland:

It is also worthy of remark that the long-received doctrine that glaciers are powerful croding agents, which the author showed in a paper in this journal, in 1S66, to be without foundation, is only now bergiming to be discredited in England. I shall refer to this in the sequel, and in the meantime mary direct attention to an interesting paper on the subject hy Mr. Bonney; F.G.S., in the Journal of the Geological Society for August, 1571.

It would further appear that. after the glacial period, in the Post-ghacial, the British land rose to a level higher than that which it at present exhibits, then sumk again, and re-emerged in the modern period. Evidences of this later submergence have not been recognized in Canadia, but in the inlaud arca they have been detected by Hilgard and by Andrews.

Since the publication of the first part of this memoir, Prof. Hilgard has discussed the subject of the southern drifts of the Miscissippi valley at the meeting of the American Association at Indianapolis; and $I$ am indebted to that gentleman and to Prof. Andrews; of Chicigo, for much information on these deposits and their relation to those of more northern resions.
-It appears that the oldest Post-pliocene deposit in the south is that called by Prof. Hilgard the "Orange Sand." This deposit is spread over the States of Mississippi, Alabama, Tennessee, and parts of Louisiana, Kentucky, and Arkansas, and in some places attains an elevation of 700 feet. It contains water-worn fragments of northern rocks, and is supposed by Prof. Hilgard to have been deposited by rapid currents of water, possibly fresh, as the deposit contaius no marine fossils.

Above this, according to Prof. Hilgard, is found in places a swamp, lagoon or estuary formation designated the "Port Hudson group." Succeeding this is the "Bluff or Loess" group, a deposit of tine silt, limited almost or entirely to the Falley of the Missisippi. Its maximum thickness is seventy-five feet.

On this rests a very widely distributed bed, the "Yellow Loam," not more than trenty feet thick, but much more exiensively distributed laterally than the former, and reaching an elevation of 700 fect.

Under the names of "Sccond Bottoms or Hummocks," and "First Bottoms," are known terraced deposits of clay belonging to the present river ralleys, but indicatiag in the case of the Second Bottoms a greater amount of water thim at present.

It is obvious that all of the above are aqueous deposits, and there seems to be no evidence whatever in the region referred to, of the action of land ice, though the stones and fer boulders in the Orange sand are very probably due to floating ice. There seems reason to believe that the Orange sand is continuous with the Boulder-drift of the north-west; and if this is, as stated by Nemberry and others, a later deposit than the Eric clay, then it is probable that no representative of the latter exists to the southwest, or that the Orange saud represents the whole of the northern deposits. In any case it represents northern currents of water, though whether salt water admitted by the depression of the land: or fresh water resulting from the melting of glaciers, it is not casy to decide, as very great difficultics attend cither vien in the present state of our knowledge of the deposit. Whatever the conditions of deposit of the Orange simd, it would secm to have been succeeded by at laud surfice, and this by a depression to the extent of 700 feet or more, before the modern eleration of the land. If this last cleration corresponds with that of the terraces of the St. Lawrence, then the former one must have occurred in the St. Lawrence villey in the interval
between the deposit of the Leda clay and the close of the Postpliocene. This question we shall have occasion to consider in the sequel, in connection with the second depression of the European land above referred to.

Since the publication of the first of these papers, Dr. Newberry has kindly sent me a paper of his published as early as 1862, in which he states the remarkable fact, quoted above from his more recent Report on Ohio, that the drainage of the great lake basins, open in the early Post-plioceue period, was obstructed by the glacial deposits, and has been only partially restored. He also desires me to state that he refers the old drainage not exclusively to the action of glaciers, but to the "ice period, or an carlier epoch." I am happy to make these corrections; the latter more especially, as it brings our theoretical viers more into harmony. Dr. Newberry, howerer, for whose conclusions on such subjects I have the highest respect, still, in his latest expressions of opinion, adheres to the action of land ice in producing the glacial striation, which from his descriptions is, I should suppose, quite as definite and strongly marked as that in the St. Lawrence valley.

The grand series of Post-pliocene changes was thus uniform in Europe and America, pointing to great general causes of subsidence and re-clevation; but locally there is the most extreme irregularity in these deposits, giving great uncertainty to their arrangement. Some of these differences we shall have occasion to notice under the following geographical subdivisions.

## 1. Nonfoundlend and Itabrudor.

In the Journal of the Geological Society of Iondon, for February, $1 S 71$, is a communication from Staff-commander Kerr, R. N., of the Coast Survey, in which he gives the directions of twentyeight examples of grooved and scratehed surfaces observed in the southern part of Nerfoundiand. The course of the majority of these is N.E. and S.W., ranging from N.S ${ }^{\circ}$ E. io N. $6 t^{\circ} \mathrm{E}$. The remainder are N.W. and S.E., most of them with a predominating Easterly direction. Boulders are mentioned, but no marine beds. The author refers the glaciation to land ice, supposing certain submerged banks across the mouths of the bays to be terminal moraines.

The latest information on the Post-pliocene of Labrador is that giren in a paper by Dr. Packard in the memoirs of the Boston Society
of Natural History for 1867. The deposits are said to consist of boulders, Leda clay and sund, and raised beaches, which, on the authority of Prof. Hind, are stated to reach an elevation of 1200 feet above the sea. The hills to a height of 2500 feet are rounded as if by ice action. Some higher hills present a frost-shattered surface at their summits. No directions of strix are given, and they appear to be rare. Mr. Campbell, author of "Frost and Fire," mentions examples with course N. $45^{\circ}$ E. in the Strait of Belle Isle. It is remarkable that true Boulder-clay is rare in Labrador, though loose boulders are abundant in the valleys and on the inland table land. Dr. Packard attributes the absence of Boulder-clay to denudation. This may be the cause, but it is to be observed that, on that view of the origin of Boulder-clay which attributes it to ice-laden arctic currents, there must always have been in the course of sueh currentp areas of denudation as well as areas of deposition, and an elevated table-land like that of Labrador, in a high northern latitude, may well have been of the former character.

The Leda clay occurs in several phaces. In 1860, I published a list of species collected by Capt. Orlebar; and Packard has greatly added to the number, giving a list which will be referred to farther on. Dr. Packard rery truly remarks that the faun. of the Ialbrador clays is very similar to that now found on the coast, and called by him the Syrtensian fauna. In the latter we have a few southern forms, absent in the clay; but this is all. Further, the Labrador Post-pliocene fauna is identical or nearly so with that of similir deposits in South Greculand, described by Moller ind Rink. Thus the climatal conditions of the arctic current on the coast of Labrador seem to have in no respect differed in the Post-pliocene from those which obtain at present. The leda clay with its characteristic fossils is found as high as 500 feet above the level of the sea.
haised beaches and terraces, whether cut into sand and ciay or the hard metamorphic rocks of the coast, are as common in Labrador as along the shores of the River St. Lawrence. Their precise altitudes are not given, but they appear to be very numerous and to rise to a great height above the sea. One feature of some interest is their consisting in some places of large stones and boulders, evidencing very powerful action of coast ice and currents. Packard speaks of many of these beaches as moraines modified
' by the sea, but he gives no reason for this except the general
belief that exteusive glaciers existed in Labrador in the Post-pliocene, of which, however, there seems little direct evidence. From the descriptions of Prof. Hind,* however, it would seem that trates of local glaciers in the river valleys, similar to those referred to above in the case of the Saguenay and the Murray River, exist, and these might now be restored by a slight increase of cold and a moderate elevation of the land.

On the island of Anticosti, Messrs. Hyatt, Verrill and Shaler found Suxicava arctica in clay at an elevation of fifteen feet above the level of the sca.

Before proceeding up the St. Lawrence Valley into Canada proper, I may cross to the south side of the Gulf of St. Lawrence. and notice the drift deposits of Prince Edward Island, Nova Scotia and New Brunswick, and their councetion with those of the State of Maine.

## 2. Prince Edward Islund.

The Triassic and Upper Carboniferous rocks of this island consist almost entirely of red sandstones, and the country is low and undulating, its highest eminences not exceeding 400 feet. The prevalent Post-pliocene deposit is a Boulder-clay, or in some places boulder loam, composed of red sand and clay derived from the waste of the red sandstones. This is filled with bouldens of red sandstone derived from the harder beds. They are more or less rounded, often glaciated, with strix in the direction of their longer axis, and sometimes polished in a remarkable momer, when the softuess and coarse character of the rock are considerea. This polishing must have been effected by rubbing with the samd and loam in which they are embedded. These boulders are not usually large, though some were seen as much as five feet in length. The boulders in this deposit are almost universally of the native rock, and must have been produced by the grinding of ice on the outcrops of the harder beds. In the castern and middle portion of the Island, only these native rocks were seen in the clay, with the exception of pebbles of quartzite which may have been derived from the Triassic conglomerates. At Campbelton, in the western part of the Island, I observed a bed of Boulder-cliy filled with boulders of metamorphic rocks similar to those of the manamd of New Brunswick.

Strix were seen only in one place on the North-eastern coast and at another on the South-western. In the former case their direction was nearly S.W. and N.E. In the latter it was S. $70^{\circ} \mathrm{E}$.

No marine remains were observed in the Boulder-clay; but at Campbellton, above the Boulder-clay already montioned, there is a limited area occupied with beds of stratificu sand and gravel, at an elevation of about fifty feet above the sea, and in one of the beds there are shells of Tellina Granlandica.

On the surface of the country, more especially in the western part of the island, there are numerous travelled boulders, sometimes of considerable size. As these do not appear in situ in the Boul-der-clay, they may be supposed to belong to a second or newer boulder drift similar to that which we shall find to be connected with the Saxicava sand in Canada. These boulders being of rocks foreign to Prince Edrard Island, the question of their source becomes an interesting one. With reference to this, it may be stated in general terms, that the majority are Granite, Syenite, Diorite, Felsite. Porphyry, Quartzite and coarse slates, all identical in mineral character with those which occur in the metamorphic districts of Nova Scotia and New Brunswick, at distances of from 50 to 200 miles to the South and South-west; though some of them may have been derived from Cape Breton on the Fast. It is further to be observed that these boulders are most abundant and the evidences of denudation of the Trias greatest in that part of the Islind which is opposite the deep break between the hills of Nova Scotia and New Brunswick, occupied by the Bay of Fundy, Chiegnecto Bay and the low country extending thence to Northumberland Strait, an evidence that this boulder drift was comected with currents of water passing up this depression from the South or South-west.

Besides these boulders, however, there are others of a different character; such as Gneiss, Hornblende schist, Anorthosite and Labradorite rock, which must have been derived from the Laurentian rocks of Labrador and Camada, distant 250 miles or more, to the Northward. These Laurentian rocks are chicfly found on the North side of the island, as if at the time of their arrival the ishand formed a shoal, at the North side of which the ice carrying the boulders grounded and melted aray. With reference to these boulders, it is to be observed that a depression of four or five hundred feet would open a clear passage for the arctic curreat entering the Straits of Belle Isle, to-
the Bay of Fundy; and that heavy ice carried by this current would then ground on Prince Edward Island, or be carried across it to the Southward. If the Laurentian boulders came in this way, their source is probably 400 miles distant in the Strait of Belle Isle. On the North shore of Prince Edward Island, except where occupied by sand dunes, the beach shows great numbers of pebbles and small boulders of Laurentian rocks. These are said by the inhabitants to be cast up by the sea or pushed up by the ice in spring. Whether they are now being drifted by ice direct from the Labrador coast, or are old drift being washed up from the bottom of the gulf, which north of the island is very shallow, does not appear. They are all much rounded by the waves, differing in this respect from the majority of the boulders found inland.

The older Boulder-clay of Prince Edward Island, with native boulders, must have been produced under circumstances of powerful ice-action, in which comparatively little transport of material from a distance occurred. If we attribute this to a glacier, then as Prince Edward Island is merely a slightly raised portion of the bottom of the Gulf of St. Lawrence, this can have been no other than a gigantic mass of ice filling the whole basin of the gulf, and without any slope to give it movement except ioward the centre of this great though shallow depression. On the other hand, if we attribute the Boulder-clay to floating ice, it must have been produced at a time when numerous heavy bergs were disengaged from what of Labrador was above water, anu when this was too thoroughly enveloped in snow and ice to afford many travelled stones. Farther, that this Boulder-clay is a submarine and not a subacrial deposit, scems to be rendered probable by the circumstance that many of the boulders of sandstone are so soft that they crumble immediately when exposed to the weather and frost.

The travelled boulders lying on the surfice of the Boulder-clay evidently belong to a later period, when the hills of Labrador and Nova Scotia were above water, though lower than at present, and were sufficiently bare to furnish large supplies of stones to coast ice carried by the tidal currents sweeping up the coast, or by the Aretic current from the North, and deposited on the surface of Prince Edward Island, then a shallow sand-bank. The sauds with sea-shells prob.ibly belonged to this period, or perhaps to the later part of it, when the land was gradually rising. Prince

Edward Island thus appears to have received boulders from both sides of the gulf of St . Lawrence during the later Post-pliocene period; but the greater number from the South side, perhaps because nearer to it. It thus furnishes a remarkable illustration of the trausport of travelled stones at this period in different directions, and in the comparative absence of travelled stones in the lower Boulder-clay, it furnishes a similar illustration of the homogencous and untravelled character of that deposit, in circumstances where the theory of floating ice serves to account for it, at least as well as that of land-ice, and in my judgment greatly better.

## 3. Nove Scotia and New Brunswick.

Ln these Proviuces the circumstances are entirely different from those in Prince Edward Island, the country consisting of Carboniferous and Triassic plains, with ranges of older hills, often metamorphic, and attaining elevations of 1200 feet or more. It may, perhaps, be best in the first instance to present a summary of the phenomena, as I have given them in my Acadian Geology, and to add such additional facts and inferences as the present state of the subject may require.

The beds observed may be arranged as follows, in deseending order.

1. Gravel and sand beds, and ancient gravel ridges and beaches, indicating the action of shallow water, and strong currents and waves. Travelled boulders occur in comnection with these beds.
2. Stratified clay with shells, showing quiet deposition in deeper water.
3. Unstratified Boulder-clay, indicating, probably, the united action of ice and water.
4. Peaty deposits, belonging to a land surface preceding the deposit of the Boulder-elay.

As the third of these formations is the most important and generally diffused in Nova Scotia and New Brunswick, we shall attend to it first, and notice the relation of the others to it.

The Unstratified Drift or Boulder clay varies from a stiff clay to loose sand, and its composition and colour generally depend upon those of the underlying and neighbouring rocks. Thus, over sandstone it is arenaceous, over shales argillaceous, and over conglomerates and hard slates pebbly or shingly. The greater
number of the stones contained in the drift are usually, like the paste containing them, derived from the neighbouring rock formations. These untravelled fragments are often of large size, and are usually angular, except when they are of very soft material, or of rocks whose corners readily weather away. It is easy to observe, that on passing from a granite district to one composed of slate, or from slate to sandstone, the character of the loose stones changes accordingly. It is also a matter of familiar observation, that in proportion to the hardness or softness of the prevailing rocks, the quantity of these loose stones increases or dimi. nishes. In some of the quartzite and granite districts of the Atlantic coast, the surface seems to be heaped with boulders with only a little soil in their interstices, and every little field, cleared with immense labour, is still half-filled with huge white masses popularly known as "elephants." On the other hand, in the districts of soft sandstone and shale, one may travel some distance without seeing a boulder of considerable size. The boulders are as usual often glaciated or marked with ice-striæ.

Though the more abundant fragments are untravelled, it by no means follows that they are undisturbed. They have been lifted from their original beds, heaped upon each other in every variety of position, and intermised with sand and clay, in a manner which shows convincingly that the sorting action of running water had nothing to do with the matter; and this applies not only to stones of moderate size, but to masses of ten feet or more in diameter. In some of the carboniferous districts where the Boulder-clay is thick, as for example, near Pictou Harbour, it is as if a gigantic harrow had been dragged over the surface, tearing up the outcrops of the beds, and mingling their fragments in a rude and unsorted mass.

Besides the untravelled fragments, the drift always contains boulders derived from distant localities, to which in many cases we can trace them; and I may mention a few instances of this to show how extensive has been this transport of detritus. In the low country of Cumberland there are few boulders, but of the few that appear some belong to the hard rocks of the Cobequid hills to the Southward; others may have been derived from the somewhat similar hills of New Brunswick. On the summits of the Cobequid hills and their Northern slopes, we find angular fragments of the samdstones of the plain below, not only drifted from their original sites, but elevated several hundreds of fee
above them. To the Southward and Eastward of the Cobequids, throughout Colchester, Northern Hants, and Pictou, fragments from these hills, usually much rounded, are the most abundant travelled boulders, showing that there has been great driftage from this elevated tract. Near the town of Pictou, where a thick bed of a sandy boulder deposit occurs, this is filled with large masses of sandstone derived from the outcrops of the beds on higher ground to the north; but with these are groups of travelled stones often in the lower part of the mass. Near the steam ferry wharf, in the town of Pictou, I observed one such group, consisting of the following, all large boulders and lying close to-gether-two of red syenite, six of gray granite, one of compact grey felsite, one of hard conglomerate, two of hard grit. The two last were probably Lower Carboniferous, the others derived from the altered Silurian deposits. All may have been drifted by one ierg or ice-floe from the flanks of the Cobequid range of hills. In like mamner, the long ridge of trap rocks, extending from Cape Blomidon to Briar Island, has sent off great quantities of boulders across the sandstone valley which bounds it on the South and up the slopes of the slate and granite hills to the Southward of this valley. Well characterized fragments of trap from Blomidon may be seen near the town of Windsor; and I have seen unmistake:ible fragments of similar rock from Digby neck, on the Tusket River, thirty miles from their original position. On the other hand. numerous boulders of granite have been carried to the Northward from the hills of Anmapolis, and deposited on the slopes of the opposite trappean ridge; and some of them have been carried round its Eastern end, and now lie on the shores of Londonderry and Onslow. Se also, while immense numbers of boulders have been scattered over the South coast from the granite and quartz rock ridges immediately inland, many have drifted in the opposite direction, and may be found scattered over the counties of Antigonish, Pictou, and Colchester. These facts show that the transport of travelled blocks, though it may here as in other parts of America, have been principally from the Northward, has by no means been exclusively so; boulders having been carried in various directions, and more especially from the more elevated and rocky districts to the lower grounds in their vicinity. Professor Hind has shown the existence of a similar relation between the boulders of New Brunswick and the hilly ranges of that country.

The following are the directions of the diluvial scratches in a number of localities in different parts of Nova Scotia:-
Point Pleasant and other places near
Halifiax, exposure south, very dis-
tinct strie, . . . S. $20^{\circ}$ E. to S. $30^{\circ}$ E.
Head of the Basin, exposure south, but in a valley,
E. \& W. nearly.

La Have River, exposure S.E., . S. $20^{\circ} \mathrm{W}$.
Petite River, exposure S.
S. $20^{\circ} \mathrm{E}$.

Bear River, exposure N., . S. $30^{\circ} \mathrm{E}$.
Rawdon, exposure N. , . . S. $25^{\circ} \mathrm{E}$.
The Gore Mountain, exposure N.,
two sets of strix, respectively . S. $65^{\circ}$ R. \& S. $20^{\circ} \mathrm{E}$.
Windsor Road, exposure not neced, S.S.E.
Gay's River, exposure N., . Nearly S. \& N.
Musquodoboit Harbour, exposure S., Nearly S. \& N.
NearPictou, exposure E., in a valley, Nearly E. \& W.
Polson's Lake, summit of a ridge, . Nearly N. \& S.
Near Guysboro', exposure not noted, Nearly S. \& N.
Syducy Mines, Cape Breton, expo-

## sure S <br> S. $30^{\circ}$ W.*

The above instances show a tendency to a Southerly and Southeasterly direction, which accords with the prevailing course in most parts of North-eastern America. Local circumstances have, however, modified this prevailing direction; and it is interesting to observe that, while S.E. is the prevailing direction in Acadia and New Eugland, it is exceptional in the St. Lawrence valley, where the prevailing direction is S.W. Professor Hind has given a table of similar striation in New Brunswick, showing that the direction ranges from N. $10^{\circ} \mathrm{W}$. to N. $30^{\circ} \mathrm{E}$., in all except a very few cases. On Blue Mountains, 1650 feet above the sea, it is stated to be N. and S. As in Nova Scotia, N. W. and S. E. seems to be the prevailing course. In a paper published in the Canadian Naturalist, Vol. VI., No. 1, Mr. Matthew gives a table of striation in the southern part of New Brunswick, in which the South-east direction is decidedly predominant, though there are also some in the South west direction. In this paper will also be found many interesting facts as to the Boulder-clay of New Bruns-

[^2]wick, though the agency of a continental glacier is invoked to explain some facts which in the sequel we shall find to admit of a different interpretation.

The travelled and untravelled boulders are usually intermixed in the drift. In some instances, however, the former appear to be most numerous near the surface of the mass, and their horizontal distribution is also very irregular. The examining coast sections of the drift, we may find for some distance a great abundance of angular blocks, with few travelled boulders, or both varieties are equally intermixed, or travelled boulders prevail; and we may often observe particular kinds of these last grouped together, as, for instance, a number of blocks of granite, greenstoue, syenite, cte., all lying together, as if they had been removed from their original beds and all deposited together at one operation. On the surface of the country where the woods have been removed, this arraugement is sometimes equally evident; thus hundredo of granite boulders may be seen to cumber one limited spot, while in its neighbourhood they are comparatively rare. It is also well known to the farmers in the more rocky districts, that many spots which appear to be covered with boulders have, when these are removed, a layer of soil comparatively free from stones beneath. These appearances may in some instances result from the action of currents of water, which have in spots carried off the sand or clay, leaviug the boulders behind; but in many cases this is manifestly the original arrangement of the material, the superficial layer of boulders belonging to a more recent driftage than that of the underlying mass in which boulders are often much less abundant.

Boulders or travelled stones are often found in places where there is no other drift. For example, on bare granite hills, about 500 feet in height, near St. Mary's River, there are large angular blocks of quartzite, derived from the ridges of that material which abound in the district, but which are separated from the hills on which the fragments lie by deep valleys.

In Nova Seotia I have observed no beds with marine shells, though the Boulder-clay is often covered with beds of stratified sand and gravel ; and the only evidence of organic life, during the boulder period; or immediately before it, that I have noticed, is a hardened peaty bed which appears under the Boulder-clay on the North-west arm of the River of Inhabitants in Cape Breton. It rests upon gray clay similar to that which underlies peat bogs,
and is overlaid by nearly twenty feet of Boulder-clay. Pressure has rendered it nearly as hard as coal, though it is somewhat tougher and more carthy than good coal. It has a shining streak, burns with considerable flame, and approaches in its characters to the brown coals or more imperfect varieties of bituminous coal. It contains many swall roots and branches, apparently of coniferous trees allied to the spruces. The vegetable matter composing this bed must have flourished before the drift was spread over the surface.

In New Brunswick, stratified clays holding marine shells have been found overlying the Boulder clay, or in connexion with it, especially in the Southern part of the Province, where deposits of this kind occur similar to those found in Canada and in Maine, though apparently on a smatler scale. These deposits, as they occur ncar St. John, consist of gray and reddish clays, holding fossils which indicate moderately deep water, and are, as to species, identical with those occurring in similar deposits in Canada and in Maine. They would iudicate a somewhat lower temperature than that of the waters of the Bay of Fundy at present, or about that of the Northern part of the Gulf of St. Lawrence.

In Bailey's Report on the Geology of Suuthern New Brunswick, Professor Hartt has given a list of the fossils of these beds, as seen at Lawlor's Lake, Duck Cove, and St. John, which I re. published with some additions in Acadian Geology.

These New Brunswick beds are strictly continuous with, and equivalent to those which extend along the coast of New England, and thence ascend into the Valley of Lake Champlain, while on the other side they may be considered as perfectly representing in character and fossils the Leda clay of Eastern Canada. They are remarkably like both in mineral character and fossils to the Clyde beds of Scotland, which are probably their equivalents. The points of resemblance of the Leda clay of the coast of Maine, and that of the St. Lawrence, and Labrador, were noticed by me in my paper of 1860 , already referred to, and have been more fully brought out by Dr. Packard, who describes the Leda clay as it occurs at several localities from Eastport to Cape Cod. Along this whole coast it retains its Labradoric or Gulf of St. Lawrence aspect, though with the introduction of some more Southern species, and the gradual failure of some more arctic forms. South of Cape Cod, as in the modern sea, the Post-plio. cene beds assume a much more Southern aspect in their fossils,
the boreal forms altogether disappearing. For a very full exhibition of these facts, I may refer to Dr. Packard's paper.

The stratified sand and gravel of Nova Scotia rests upon and is newer than the Boulder-clay, and is also newer than the stratified marine clays above referred to. Its age is probably that of the Saxicava Sand of the St. Lawrence valley. The former relation may often be seen in coast sections or river banks, and occasionally in road cuttings. I observed some years ago an instructive illustration of this fact, in a bank on the shore a little to the Eastward of Merigomish harbour. At this place the lower part of the bank cousists of clay and sand with angular stones, principally sandstones. Upon this rests a.bed of fine sand and small rounded gravel with layers of coarser pebbles. The gravel is separated from the drift below by a layer of the same sort of angular stones that appear in the drift, showing that the currents which deposited the upper bed have washed away some of the finer portions of the drift before the sand and gravel were thrown down. In this section, as well as in most others that I have examined, the lower part of the stratified gravel is finer than the upper part, and contains more sand.

In some cases we can trace the pebbles of the gravels to ancient conglomerate rocks which have furnished them by their decay; but in other instances the pebbles may have been rounded by the waters that deposited them in their present place. In places, however, where old pebble rocks do not occur, we sometimes find, instead of gravel, beds of fine laminated sand. A very remarkable instance of the connexion of supericial gravels with ancient pebble rocks occurs in the county of Pictou. In the coal formation of this county there occurs a very thick bed of conglomerate, the outcrop of which, owing to its comparative hardness and great mass, forms a high ridge extending from the hill behind New Glasgow across the East and Middle Rivers, and along the South of the West River, and then, crossing the West River, re-appears in Rogers' Hill. The valleys of these three rivers have been cut through this bed, and the material thus removed has been heaped up in hillocks and beds of gravel, along the banks of the streams, on the side toward which the water now flows, which happens to be the North and Northecast. Accordingly, along the course of the Albion Mines Railway and the lower parts of the Middle and West Rivers, these gravel beds are everywhere exposed in the road-cuttings, and may in some places be seen to rest on
the Boulder-clay, showing that the cutting of these valleys was completed after the drift was produced. Similar instances of the comnexion of gravel with conglomerate occur near Antigonish, and on the sides of the Cobequid mountains, where some of the valleys have at their Southern entrances immense tongues of gravel extending out into the plain, as if currents of enormons volume had swept through them from North to South.

The stratified gravels do not, like the older drift, form a continuous sheet spreadinge over the surfice. They oceur in mounds and longr ridges, or eskers, sometimes extending for miles over the country. One of the most remarkable of these ridges is the "Boar's Back," which runs along the Westside of the IIebert River in Cumberland. It is a narrow ridge, perhaps from ten to twenty feet in height, and cut across in several places by the chamels of small brooks. The ground on either side :uppears low and fat. For eight miles it forms a natural road, rough indeed, but practicabie with care to a carriage, the remer, direction beine nearly North and sunth. What its extent or course may be beyond the points where the road enters un and leaves it. I do not. know; but it appeas to extend from the base of the Cobequid montains to a ridere of smadstone that crosses the lower part of the Ulebert. river. It consists of gravel and samd, whether stratified or not I could not ascertain, with a few larse boulders. Another sery singular ridge of this kind is that ruminge alons the West side of Clyde river in Shelburac coment. This ridge is higher than that on Hebert. riter, but, like it, extends parallel to the river, and forms a natural road, improved by art in such a maner as to be a very tolerable hishway. Along a great part. of its course it is separated from the river by a low alluvial flat, and on the land side a sw.mp intervenes between it and the higher ground. Shorter and more interrupted ridges of this kind may also be seen in the country Northward and Eastward of the town of Pictou. In sections they are seen to be stratified. and they generally occur on low or ievel tracts, and in places where if the conatry were submerged, the surf or marine currents and tides might be expeeted to throw up ridges. The presenee of boulders shows that ice sromeded on these ridges, and it, probably by its prosure in some instances. mollified their forms. These eskers, or " harse-b.eks." must not, howeter, be comfondel with glacier murance: tu which in structure they bear an resemblane whatcerer.

It is probably to this more modern part of the Post-pliocene, if not to a more recent period following the elevation of the land, that the bones of the mastodon found in Cape Breton, and described in "Acalian Geology;" belong.

For many malditional facts relating to the Post-plineene of New Brunswick. I may refer to the valuable paper by Mr. Matthew, already mentioned.

## 4. Jimer St. Jenrencr-Minth Side.

Duscriptions of the Post-pliocene deposits of this region are contained in several of my papers above cited, but I shall here sive a summary of these. with the corrections and additional facts whamed within the past few years.

Sitymury Recer-I have already, in part first, referred to the of:acial striation of this reginn, and perhaps no better example conuld be found of thase lateral valleys aloner which ice seems to hawe been poured into the St. Isawrence from the North. The forye of the saruenay is a narrow and deep cont, ruminge nearly N.W. amd SE. or at right :ugrles to the course of the St. Lawrence. and of the fanemtian ridges. It extends inland more than forty-five miles, and then divides into two braches, one of which is occuped by the contmuation of the river to Iake St. John, the other by Ha-Ha Bay and a valley at its head. In the lower part of its course, as far as Hi-H: Bay, this gorge is from 00 to 140 fathoms deep. below the level of the tide in the st. Latwrenee, and in some plates the cliffs on its bauks rise abrupty to 1500 feet above the water level, so that is: extreme depth is nearly $\geq 400$ feet. while its widh varies from :bont a mile to a mile and ahalf. The striated surfiees and the roches montomées seen in this grome amb on the hills on its sides to a height of at least 300 feet. sher that in the eracial period a powerfil strem of iee must have flowed down this gorge into the sit. Asawrence. though whether it was necupied by a slacier or constituted a fiord leading from one like many in Greenland, or was a strait traversed by bergs, does unt : ippuar. Possibly, with different levels of the land, these conditions may have alternated. I c:mont imagine angthing more like what the saguenay may have been at this time, than the view of Frimz Joseph Fiord in East Greenland, brought home by the scoond German cxpedition to that comatry: in the present year,* and which, with other discoveries of that
expedition soon to be published by Dr. Petermam, will go far to remove the prevailing error as to Greenland being covered with a miversal erlacier; whereas it seems to be a rocky and mostly snow-clad country, with very large elaciers in its valleys.

The strikes of the greiss on the opposite sides of the Suguenay indicate that it occupies a line of transwerse fracture, constituting a weak portion of the Laturentian ridges. and this has evidently been smoothed and deepened by water and ice under conditions different from the present, in which it is probable that the chamnel is being gradually filled with mad. Its excaration must have taken place before the deposition of the thick beds of marine clay (Jeda clay) which apperr near its mouth and in its tributaries. sometimes passing into Bouider-clay below. and capped by sand and gravel. It is indeed not improbable that in the later Post-pliocene it was in :rreat part filled up with such deposits, which have beonswept anay in the course of the re-eleation of the l:and.

At Tadoussace at the mouth of the Sauenay. where the moderlyine formation is the haurentian enciss, the Post-pliocene beds attain to great thickncs, but are of simple structure and slightly fosiliferous. The principal part is a stratified sandy clay with few boulders. cexept in phaces neer the ridges of hamentian rocks, when it becomes filled with numerons rounded blocks mad pebbles of ganis. This forms high b.aks cast ward of Tadousac. It
 and al little inland, at Bergeron River, it aloo emtains Curdium
 resembles some of the beds seen on the south side of the river St. Jawreace. and has also mach of the anpere of the Jeda clay, as developed in the valley of the ()tawa. On this clay there rest in phaces thick beds of yellow sand and aravel.

It Tadoussac these deposits have been eut into a suceession of tervees which are well seen nem the hotel and old church. The lewest. we.n the shore, is :bout ten feet high; the second, on which the hotel stands, is forty feet; the third is $1 \geq 0$ to 150 feet. in height, and is uneven at top. The highest, which consists of sumh and grivel, is :bbout $2 \overline{50} 0$ feet in height. Above this the comutry inland consists of bare hamrentian rocks. These terraces have been cut out of deposits, once more extensive. in the process of eleration of the land; and the present fitats off the month of the S:unemay, would form a similar terrace as wide as any of the others. if the comutry were to experience mother elevatory move-
ment. On the third terrace I observed a few large Jaurentian boulders, and some pieces of red and gray shale of the Quebec group, indicatiag the action of coast-ice when this terrace was cut. On the highest terrace there were also a few boulders; and both terraces are capped with pebbly sand and well rounded gravel, indienting the long-entimed action of the waves at the levels which they represent.

Murray Buy, de-At Murray Bay, Petit Mal Bay, and Les Eboulements, as noticed above, the system of Post-pliocene terrace: is well developed. (on the West side of Murray Bay, the Silurian rocks of White Point, immediately within the pier, form a stecp cliff, in the middle of which is a terraced step marking an ancient sea level. At the end nearest the pier the sea has again cut batck to the old cliff, leaving merely a narow shelf; but toward the inner side this shelf rapidly expands into the sandy flat along which the main road runs. and which is continuous with the lower phain cxtending all the way th the head of the bay. In this flat. the upper portion of the Post-plineene deposit seems to consist. principally of sand and gravel, resting on stony clay. In the former, which corresponds to the Saxicara sand of Montreal, I found only a few valves of Tedlice Ciramlandica, which is still the most abundant sheli me the modern beach. In the latter; corresponding to the Leda cl:y. which is best seen in some parts of the shore at low tide. I found a mumber of deep water shells of the following species, all of which, execpt. Spirortis spirilhm, and Aplerodite Gremlambiorn have been found in these deposits at Qubbec and Montreal.
$F_{\text {usisu; }}$ tornutus.
Trophon Scularifirne.
Menguritu. helicina.
(!ylichum neculter.
Pecton Istandicns.
T'cllime culcurer.
Lecher truncalte.
Sitrimatar rugsen.
Aphrontite Gromlematian.
Mytilus, colulis.
Myre arenaria.
Bulanus Ihmeri.
Spirorlis spirillum.
S. aitrer.
Serpuln vermicularis.

4. I. D. A. 1

These shells imply a higher beach than that of this lower flat,. which is not more than 30 feet above the present sea level. Accordingly above this are several higher terraces, the heights of which on the west side of bay are given in Section I. The second principal terrace, which forms a steep bank of clay some distance behind the main road, is 116 feet in height, and is of considerable breadth, amd has on its front in some places an imperfect terrace at the height of 81 feet. It corresponds nearly in height with the shoulder over which the roid from the pier passes. Upon it, in the rear of the property of Mr. Du Berger, is a little stream which disappears under ground, probably in a fissure of the underlying limestone, and returns to the surfice only on the shore of the baty. Above this is a smaller and less distinct terrace 139 feet high. Beyond this the ground rises in a steep slope, which in mamy places consists of calcareous beds, worn and abraded by the waves, but showing no distinct terrace; and the highest distinct shore mark which I observed, is a marrow beach of rounded pebbles at the heisht of more than 300 feet; but above this there is a flat at the height of 448 feet. This beach appears to become a wide terrace further to the North, and also on the opposite side of the bay. It probably corresponds with the highest termace observed by Sir W. T. Logam, at Bay St. Paul, and estimated by him at the height of 360 feet.

As already stated, three of the principal terraces at Murray Bay correspond nearly with three of the principal shore levels at Montreal ; and in various parts of Camadi, two principal lines of old sea beaches occur at about 100 to 150 feet, and 300 to 350 feet above the sea, though there are others at different levels.

In the Post-pliocene period the valley of the Murray Bay river has been filled, :lmost or quite to the level of the highest terrace, with an enormonsly thick mass of mad and boulders, washed from the land and deposited in the sea bed during the long period of Post-pliocene submergence. Through this mass the deep valley of the river has been cut, and the cliy, deprived of support and resting on inclined surfaces, has slipped downward, forming stransely shaped slopes, and outlying masses, that have in some instances been moulded by the receding waves, or by the subsequent action of the weather, into conical mounds, so regular that it is difficult to convince many of the visitors to the bay that they are not artificial. Sir W. E. Logam in his report on the district has in my view given the true explanation of these mounds, which.
may be seen in all stages of formation on the neighbouring hill sides. Their effect to a geological eye is to give to this beautiful valley an muninished aspect, as if the time elapsed since its elevation had not been sufficient to allow its slopees to attain to their fully rounded contour. This appearanee is no doubt due to the enomous thickness of the deposit of Post-juiocene mud, to the uneren surfaces of the underlying rock, and possibly also in part to the earthquake shocks which hare visited this region.

At the mouth of the Murray Bay River, the Boukler-clay; which rests directly on the striated rock surfaces. and which is a true till, filled with the Laturentian stones and boulders of the intand hills, though resting on Silurim limestone, is evidently marine, since it contains shells of Leedr trouccatu; and many of the stones are coated with Bryozoa and Spirorbes. It is also observable that on the N.E. sides of the limestone riders the boulders are more momeroms and larger. Above the Boulder-clay may in some phaces be seen a stratified sandy clay, which further up the river attains to a ereat thickness. It contains Saxicate
 trancath. The most recent deposit is a sand or gravei. often of considerable thickness. and in some of the beds of wravel the pebbles are more completely rounded than those of the modern beach.

I have already, in Section I, stated my reasons for believing that the upper part of the valley of the Muray Bay River may have been the bed of a gliacier flowing down from the inland hills toward the St. Lawrence. N.W. and S.E. striae attributable to this whacer were seen at an clevation of 800 fect. and the maniue beds were traced up to ahmost the same height, above which, to a height of about 1200 feet. loose boulders were observed and grlaciated rock surfices. but no marine deposits. It is probable, therefore, that at a time when the sea extended up to an elevation of SOO feet, the higher part of the walley may have been filled with land ice. Whether the berys from this. drifting down toward the St. Lawrence. produced the N.W. striation observed at a lower level. or whether at a previous period. when the land was higher, the ice extended farther down, may admit of doubt. Certainly no land ice has extended to a lower level than about. Soof feet, since the deposition of the marine boulder and Leda cliy:

Very large boulders necur in this vicinity. One observed on the beach on the cast side of the Bay, is an oral mass of lime felspar. thirty feet in circumference, lying like most other large boulders in this region, with its longer axis to the N.E.

Les Eboulements.-At this place the Laurentian hills rise to a great height near the shore, and the Post-pliocene beds present the exceptional feature of resting on soft decomposed Silurian shale (Utica shale). This rock might indeed be mistaken for drift, but for its stratification, and it must have been decomposed to a great depth by subiterial action and subsequently submerged and covered by the Post-pliocene beds. Its preservation is the more remarkable that the clay overlying it contains very large Laurentian boulders, which must have been quietly deposited by flouting ice. Only a few shells of Tellinu Greanlandica were observed in these elays.

The remarkable series of territices sten' at this place, and noticed in part first, rising to 900 feet in height, are all cut out of the Post-pliocene beds and decomposed shale, and even the highest presents large boulders. In examining such terraces it is always necessary to distinguish between the clays out of which the terraces have been cut and the more modern deposits resting on the terraces. Both miyyountain fossils, but those of the original clay are in this region mostly of deeper water species than those in the overlying superticiail beds.

I attribute the preservation of the thick beds of Boulder-elay and the decomposed shale at Les Eboulements, to the fact that no tramsverse valley exists here, and that a point of high Laurentian lamd projects to the North-E:ast, so as to shelter this place from forces acting in that direction. I have observed this appearance on the lee or South-west side of other projecting masses of hard rock, and as the decomposed shale must be a monument remainiug from the Pliocene elevation of the land, it shews that no powerful eroding foree had acted between that time and the period of the N. E. arctic ice-laden currents.

It is perhaps deserving of notice that the thick beds of soft material at lues Eboulements have been cut into many irregular forms by modern subarial caluses of denudation, and also by landslips, which last have been in part comnected with the earthquake shocks with which this part of the coast has been visited more than any other district of Camada.

Above Les Eboulements, Bay St. Paul presents featares similar to those of Murray Bay, and then the Laurentian land of Cape Tourment comes boldly forward to the shore of the River. Above this the conditions are similar to those observed in the neighbourhood of Quebec.
(To be contimued.)

## ON THE "COLONLES " OF M. BARRANDE.

By Henmy Aidman Nicuolson: M.D., D.Sc., M.A., Ph.D., F.l.S E., F.d.S., Ne. Professor of Nalumal Mistory and Botamy in Liniversity C'olluse; 'Toronto.

The doctrine of "Colonies," propounded by M. Barrande, has been long before the palzontological world, and is known, at any rate by mame, to all students of geology. It is doubtful, howerer, if there is as clear a comprehension of this subject as its importance would render desirable; and it may, therefore, be of interest to discuss briefly the leading facts upon which this theory is based. In so doing, I shall take the necessary details from M. Barrande's "Défense des Colonies," published in 1870, one of the most valuable of the many palaontological works of this distinguished observer, and I shall confine myself chicfly to a restimé of the faets therein recorded and the deductions dhawn therefrom.

## I. Sub-divisgons of the Smurian Rocks of Bomema.

The Silurian Rocks of Bohemia are deseribed by M. Barrande as occupying an elliptical basin, the long axis of which has a N.E., and S.W. direction, and a length of 148 kilometres. The breadth of the basin increases gradually in passing from the N.E. to the S.W., its minimum breadth being about 30 kilometres, and its maximum about 74 kilometres. The Silurians of this basin repose upon granitic and gneissic rocks, and dip inwards towards a central line. The fossiliferous beds of the entire basin occupy a far from considerable superficial area; and their extent -supposing them not to have been much denuded-would assign to the Silurian sea of Bohemia an are: not exceeding 1-60 of the superficies of the Adriatic.

The Silurian rocks of the entire basin admit of separation into two primary divisions, an Inferior and a Superior division, corresponding respectively to the Lower and Upper Silurian Rocks of Sir Roderick Murchison. The Inferior Division is composed principally of schists and quartzites; or, as we should saly, slates and grits or graywackes, and is wholly destitute of calcareous
matter, except occasional concretions of carbonate of lime. The Superior Division is composed almost entirely of calcarcous matter, with merely subordinate bands of schists and quartzites. Each division can be satisfactorily broken up into four sub-divisions (etages), grounded solely upon the characters of their contained fossils, and lettered in ascending order :-

The etages of the Inferior Division are A., B., C., D. The etages of the Superior Division are E., F., G., II. Each of the fossiliferous sub-divisions can be further broken up into minor groups or "bands," distinguished by the smaller letters of the alphabet, as shown in the amnexed table.

Etages A. \& B., the lowest of the Inferior Division, are composed of semi-crystalline rocks and conglomerates, and are unfossiliferous. They are termed by Barrande the "Azoic Etages," and are considered by him as forming the base of the Silurian Series. It is, however, more probable that they should be regarded as being truly of Lower Cambrian age.

Etages C. D. E. F. G. \& H. are fossiliferous. Etage C. is the well-known "Primordial Zone" of Bohemia, corresponding with the Menevian beds of Britain, and characterized by primordial trilobites of the genera Puradoxides, Olenus, Conocoryphe, Elliptocephalus, dc. It should probably be regarded as Upper Cambrian.

Etage D. contains Barrande's so-called "faune second" or second fauna, and must correspond with the Llandeilo and Caradoc beds of Britain. Etages E. F. G. \& H. are characterized by a single fauna termed by Barrande the "faune troisième" or third fauna; and they correspond collectively to the Upper Silurian Rocks of Britain.

The precursors ("avanteureurs") of this "third fauna" in the last portions of the period of the "second fauna" are termed by Barrande the "colonies." They are in the form of bands which are enclosed in the mass of etage $D$ towards its higher part, and which are thus stratigraphically Lower Silurian, but which, nevertheless, contain a predominance of fossils characteristic of the "third fauna,", and thus come paloontologically to belong to the Upper Silurian series. They abound especially in the band $d 5$, occurring also in $d 4$, and about twenty of them are known in all. The subjoined table shows in a summary form the gencral subdivisions and lithology of the rocks of the Bohemian basin, with the principal characteristic fossils:-

## the silurian rocks of bonemia. <br> table of tele subdivisions of

Probably Lower Cam-

and lamellibranchs; very few graptolites.
anden
19 trilobites, 1 cephalopod. 8 pteropods; other fossils very rare.
18 trilobites. 1 cephalopod, 10 pteropods.
8 trilubites and 9 brachiopods.
trilobites, 6 cephalopods. 18 pteropods; rare, gasteronods, brachiopods
and bralves; frequent, cystudeans.
4 trilobites. 36 cephalopods ; few brachiopods; many graptolites.
yalves; yraptolites very rare. gasteronods, brachiopods, and bi-
and bivalves : many graptolites.
and ; few gasteropods, brachiopods
and
81 trilobites, bi6a cephalopods, 11
tritobites, bed cephatopuds, 11 interopods; rery many gasteropods,
brachiopods. bivalves and corals; few graptoites.
11 trilobites, 31 cephalopods, 2 pteronods (first Tentuculites): few gas-
Fish crophis. brachiopods ama bivalves; jast graptolites.
15 pteropods ; very many gasteropods and brachiopods; few bivalves,
4 fishes. 56 trilobites. 55 cephalopods, in pteropods; few gasteropods,
ijvalves, and brachiopods.
6 trilobites, 12 cephalopods, 3


mon); Curdiola retrustriate, \&ice.
Without fussils.
Without fossils.
Compact argillareous schists, rarely metamorphic. Black, fissile, aryillaceous sehists, sometimes with
fossilfermus silireous nodules. Bods of "quartzite" ( $i$. $e$. greywacke), sometimes Biack, argillacemus. and micaceous sehists.
Impure, yery micaccous schists of different tints,
Colonicous connretions. complitio schists, with malcarcons spheroids associated with beds of trap. Fissile argillaceouss schists. gras, yellowish, or

 sопи!
Compact limestone, black or dark gray, not fetid.
Compact limestone. often white or red.
Nodular limestone. yery like $a 3$. but much thicker. Fissile argillaceons schists, enithmut culcaremus

Nodular limestone. very like g 1 , with cherty con-
Fissile, argillaceous schiste, withont quartzites or Fissile argillaceous schisti, alternating in thin beds

Fissile argillaceous schists, withcut calcareous concrotions. Etngo B.
EtadiC C
"Primordial Zone."
$\dot{-1} \stackrel{9}{=}$
 $\stackrel{a}{0}$

## II. Distribution of thie Colonies.

The colonial zone occupies a great part of the superficial area and vertical thickness of the band $d 5$, forming an elliptical zone or belt concentric with the calcareous rocks of the Upper Silurian basin. From this basin the colonial zone is generally separated by schists and quartzites, which form the summit of $d 5$, and which contain no fossils of an animal nature. On the surface of this zone the colonies are distributed in concentric but discon-tinuous lines, with irregular intervals between. Each colony is in the form of a lenticular mass, of which the length enormously exceeds the breadth and thickness; and the phenomena of their distribution and their relations to the surrounding rocks prove plainly that they camot be explained by invoking the agency of mechanical disturbance or faults.

Several interbedded traps are found in the colonial zone, regularly interstratified with the colonies, and similar beds are found in bund $c 1$ at the base of Etage E. They all have the form of elongated lenticular masses thinning out at both extremities. As the Silurian rocks of Bohemia form a basin, the colonies are, as a mitter of course, found on both sides of the central group of calcareous rocks (Upper Silurian). With the exception of the "Colony Zippe," which is found in $d .4$, all the colonies are found in the lower portion of $d \mathbf{5}$; and, like the rocks amongst which they are situated, they dip inwards towards the axis of the basin.
III.-Lathology of the Colonies compared with that - of bands e $1, e 2, d 4$, $d$ :
A. Buncl, e 2.-This band is the second subdivision of Etage E., and is composed mainly of continuous beds of limestone, often fetid, almost black in colour, and chiefly composed of the debris of Crinoids. The beds of limestone are separated by thin courses of impure shales containing a few graptolites. Lithologically $e 2$ differs most markedly both from band $e 1$ and from the colonies; but nevertheless the palæontological relationships of the colonial zone are far stronger with $e 2$ than with $e 1$, though the mineral characters of $e 1$ are identical with those of the colonies.
B. Band e 1:-Band e 1 constitutes the stratigraphical base of Etage E. or of the Upper Silurian Series of Bohemia. It consists wholly of Graptolitic Schists, euclosing calcareous spher-
oids or "anthracolites" and having intercalated beds of trap. Its thickness is very variable, sometimes exceeding 600 metres, and it is aluays much thicker than band $c 2$.

Lithologically, therefore, as well as in possessing interbedded traps, $e 1$ differs greatly from $c \boldsymbol{c}$. In the same way, the palaontologieal differences between the two are sufficiently well marked, though they are united by many specific comexions. Eich, however, has its own fauma, and the richness of the two is very unergual. Thus, $c 1$ possesses but 15 Trilobites, whilst e 2 has 81 species; $c 1$ has yielded no more tham 149 Cephalopods, whilst $c$ ? has yielded the extraordinary number of 665 species; and similar differences are found in the Gasteropods, Bivalves; and Brachiopods. Still, the propriety of retaining $c l$ and $c \stackrel{y}{=}$ on the same stratigraphical horizon is shown by numerous palientological relationships, amongst which may be mentioned the fact that GS Cepha:lopods are common to the two divisions.
C. Bend $d 5$ :- Band $d 5$ underlies band $c 1$, and forms the summit of litase D., or the highest division of the Lower Silurian Series of Bohemia. Its upper portion has a thickness of 100 metres and is composed of alternating thin beds of sray schist and guartzite (raywacke). It is remarkable in being wholly destitute of fosils of :m animal nature, havins gielded nothing more than a few "Fucoide". This thick deposit, therefore, corresponds with a prolonged and total intermission of the Silurim fauma of the Bohemia area.

The thickness of this unfossiliferons formation might serve as an approximate measure of the time which elapsed between the last ippearance of the colonial fauma and the definitive apperarance of the "third fama" (Upper Siluriam fama). In certain localities, however, this unfossiliferous mass appents to lure undergone prertinl drandution: prior to the eleposition of $c$ l.

It may we remarked here that the abore observation of M. Barrande would seem to indicate a ueunt of conformity betreen Etage D. and Etage E., such as is found in many other countries between the Yower and Upper Silurian rocks. If this be so, the interval between the colonial fauma and the introduction of the third fauna may have been indefinitely lony, and camot even be approximately measured by the thickness of the upper part of d 5.

Below this unfossiliferous series, band $d 5$ is composed of massies of argillaccous schist of different tints, sometimes with subordi-
nate beds of guartzite. In all cases, with the execption of the colony Zippe, the colonies are intercalated in this portion of $d \overline{5}$; and there are also numerous beds ("coulces") of trap at various horizons. As will be seen immediately, this portion of $d 5$ is chiefly distinguished from the beds of the colonies by the fact that the schists are almost wholly destitute of graptolites.
D. The (Golonies.-The colonics, as just remarked, are situated in the schistose lower portion of $a 5$, and they are lithologicitily absolutely undistinguishable from band $c \mathrm{l}$, consisting of : sraptolitic schists with calcareous concretions and interbedded traps. The following distinctions, however, may be noted as compared with $e 1$ :-

1. The thickness of the colonies is always much les than that of band $e 1$; and there are fewer alternations of the graptolitic schists with the traps.
2. Certain colonies are composed entirely of schists without traps.
3. In some colonies (c. g. Colony H:idinyer and Colony Cotta) there are bands of gray schists and quartzites like those of $d 5$.
4. The calcareons concretions are generally rarer in the colonies than in the band $e$ 1, atad they even appear to be wanting in some colonies, especially in the deepest (e.g. in the Colony II:idinger.)
E. Bund d, 4 :-This band is composed of impure schists, which are always highly miciecous and decply coloured, brown, gray or black. Though fissile, they are much less homogeneous and papery ( ${ }^{\text {feuillétes") than those which constitute the supe- }}$ rior band $\boldsymbol{d} \mathbf{5}$. Sometimes there are intercalated beds of quartzite, and necesionally there are interbedded sincets of trap. There is only one colony in $d t_{\text {, }}$ namely the Colony Zippe, situated within the ramparts of Prague. This colong differs froun all the rest by its being entirely composed of a lenticular mass of limestone, about $\mathbf{2 5}$ centimetres thick, intercilated in the midst of resular alteruations of schist and quarizite.

## IV. Paheontolomigal Relations of the Cohonife.

From what has preeeded, it is evident that stratiaraphically the colonics belong to the liower Silurian serics, mad we hare now to enquire what relationships cim be shown to subsist betreen the colonial fauna and the second and third fauna respectively. The specific connexions of the colonial fauna, when examined in deVor. VI.

N゙o. 2.
tail, will then be found to be most close and intimate with the first phasts of the thired fame (Upper Sihurian), so that palmontologie:ally the colmies must be resarded as truly Upper Silurian. This result will be brought out by a comparisnn of the fauma of the colonies with that of the Lawer and Upper Silurim periods respectively :-
A. Specific remnexions between the Colmies and the Second Fuun"- As yet only two colonies are known in which there is any intermixture of the characteristic forms of the second fauna (Lower Silurian) with those of the colonial faum, i. e. with those of the third faman (lepper Silurian). Thus, out of serenteen species in the colony /hippe, there are four species representine the second fauna, with welve species belonging to the third fauna. On the other hand, in the colony didrehiac there are only two species of the third fiana: (viz. Cherdiole interrupter and (rreaptolites priodon ?). It is quite clear, therefore, that the celonial fiuna, as a whole. has very slight comexion with the second or Lower Silurian fama.
13. Specific conucsions betueren the Colonies and the Third Fauna.-In showing the specitic comexions between the colonics and the third or lepper silurian fama, it will be advisable to review briefly the different orders of fossils represented in the Silurian basin of Bohemia.
a. Fiskes.-No traces of fishes have been detected in the colonies or in the whole of the Lower Siluri:n series, and their only indubitable remains ocen in Etase F and G. which have hardly any comerion with the colonies. (Altogether five fishes have been discovered in the lipper Siluxians of Bohemia, viz. Corcosteus primus, C. . İgussizi. Asterolepis Bohemicus; Gompholepis Pomederi, and Ctenccomthis Bohemicus.)
b. Crustucerns.-These are principally trilobites. The trilobites of the colonies, not taking into account the four species of the second fiuma, ore referable to cieght species and seven senera. all belonging to the third fama. The trilobites are. therefore, very limited in namber, and their paucity asrees perfectly with the small number of these crusticeans in the first phase of the third fauna, i. e. in e 1 , in which only fifteen species are known. On the other hand $d 5$ and $d \pm$ have together furnished about cighty trilobites peculiar to the last phases of the second fruma. The remianing Crustaceans of the colonial fauna are Pterygotus Bohemicus, Geratiocaris incequalis, Entomis migrans, and Apty-
chopsis (Peltocuris) primus, all of which reappear in the third fauna. Ceratiocuris, however, occurs in d $\overline{5}$. Aptychopsis (or Peltocaris, Salter, as it more probably is) occurs in the Scotch Upper Llamdeilos, whereas in Bohemia it is confined to the base of the Upper Silurims ( $c 1$ and c 2) and to the colonies. A similar, if not identical form, however, has recently been discovered by Mr. Sapworth in the Scotch Silurians, high up in the serice, and I have found another closely similar form in the sandstoue of the Coniston series (Caradoc) of the north of Eugland.
c. Cephalopodu.-'Ihis class of fossils, as is well known, has been an object of M. Barrande's especial study, and his results are, therefore, of the hightest value and interest. The Cepplutopoda are represented in the colonial fiuma by thirty-six species, of which all except species of Cyr-focera are referable to the genus Orthoccras. The Cephalopods, thercfore, ibounded in the colonial fauma, and this agrain agrees with the state of things in the earlier portion of the third faum. On the other hand, bands d5 and $a 4$, though much thicker than the coloniss, have only yielded altogether cighteen species of Ceplutopoda, the paucity of these fossils thus contrasting strongly with the abmannee of trilobites. It should also be remarked that the small representation of the genus (yrtoceras in the colonies (only two species bein! knoms) contrasts very strongly with the total absence of the genus in the second fauna, and its gre:at abundance in the earlier phases of the third fanal, twenty-six species occurring in $c 1$, and no less than 201 species in e 2. Lastly; of the thirty-six species of Cephalo. pod:a in the colonies, not one is specifically identical with any form known in the second fama. On the contrary, thirty-one species reappear on different horizons in the third fiama, the remaining five species being peculiar to the colonics.
d. Pteropodur.-Only two species of IIyolithes occur in the colonies, and both reappear in the first phase of the third fiauna. Neither occur in $d 5$, though various other Pteropods occur in this band.
e. Gusteropodu.-Only ten species, belonging to eight genera, have hitherto been found in the colonics (almest all in the Colony d'Archise). No species is common to the colonies and the second fauna, but the senus Plemrotomaria occurs in both. All the colonial species, however, reappear in the third fauna; and their rarity in the colonies :grees fully with their comparative scarcity in $e 1$.
f. Brachiopoda.-Only fifteen species of Brachinpods are known in the colonial fauna, and these occur in three colonies only. The brachiopods are, therefore poorly represented; but the following conclusions may be drawn from such ats are present: Firstly, five genera and eight species suddenly occur in the Colony Zippe, in d 4. which b:md hardly coatains anything elee but Orthides. Secondly, the colonies contain the genas Spirifer, which is not known at all in the secomd fauna of Bohemia, and is equally very rare in the Lower Silurian of other commies. The genus, however, is abundantly represented in the first phases of the third fauna. Thirdly, we meet in the colonies with Atrype reticuleris, which is equally unknown in the second fauna of Bohemia, and is comparatively rare in the Lower Silurian series elsewhere. On the other hand, it is a characteristic species of the lipper silurian series from its base almost to itsisummit. Fourthy, of the total number of fifteen species, only one is exclusively enlonial, and that doubtfully so. Fourtem species, therefore, estiblish the comerion with the third fauma.
g. Lamellihrouchintu.-The most remarkable forms of this class in the colonies belour to the arems Corchiols, the most important species being C. fibross, Sow, C. interrupta, Sow, C. giblow, Barr, and (.. nigrons. Barr. Not one of these species is found in any formation belonging to the second fama, but all re:ppear at different horizons in the third fam:a.
h. Graptolites.-These are very :bund:ant in the colonies, and show ming points of :ffinity with those of the third fanma. whilst "they lawe only few affinities with those of the contemporary phases of the second fauma." Twenty-one species of Graptolites oceur altogether in the colonics, and they give rise to the following conclusions:-Firstly, not one species of the colonial fauma c:m be positively aserted to occur in the second famathower Silurian). Secondly: fourteen species of the twenty-one re:ppear in band e 1 , and of these six piss on into e 2 . There remains seven forms which are peculiar to the colonial zone. and these are found exclusively in the Colony Archise.

The Graptolites, thercfore, contribute largely to establish the connexion between the faune of the colonies and of the Upper Siluri:m rocks of Bohemia, no single form being certainly known to be identical in the colonies and the contemporary phases of the second fiuma. It is to be noted, however, that the Graptolites of the colonies, as well as those of $c 1$ and $e 2$, show upon the whole
most strongly marked affinities with those of the Lower Silurian ${ }^{\text { }}$ rocks of Britain and America. This is especially shown by the* occurrence of the genera Diplograpsus, Climacograpsus, and Rastrites, none of which is known to be represented in the Upper Silurian of any other country except Bohemia. Not only is this the case, but a large number of the species of Etage $\mathbf{E}$ are identical with those of the Caradoc beds (Coniston mudstunes) of the north of England, and of similar strata in the south of Scotland. I shall, however, elsewhere endeavour to show that the Graptolites of Bohemia were introduced by emigration from the British area.
i. Crinoids.-No certain remains of Crinoids have been hitherto detected in the colonial zone, exeept in one doubtful instance. It should be noticed, however, that Crinoids are very rare in the second fauma, whilst there are several species of Cystideans. On the other hand, crinoidal fragments are extremely abundaut in e 1, although the number of specific forms seems to be very small.
j. Corals.-Corals have hitherto been found in only one colony, and here there is only one indubitable species, viz., Calamopora (Favositics) alveoluris. As no corals of this group are kuown in the second fauna, and as they are common in the earlier phases of the third fauna, this establishes another link between the latter and the colonial fama.

## C. Relationships of the Colonial Fauna as a Whole.

Regarded as a whole, the following conclusions may be drawn from a study of the fossils occurring in the colonies:-

1. Altogether 110 species of fossils are known to occur in the eolonies, and although this number is still incomplete, it is to be remarked that the total is little smaller than that of band $d 5$, in which the colonies are situated, and in which 130 fossil species are known in all. It is a very singular fact, thercfore, that these 110 species should be "cantoned" so to speak, amongst 130 species belonging to the older second fauma.
2. The independence of the colonial fauma, in spite of its general connexion with the third fauna is shown by the existence of fourteen species exclusively confined to the colonies. This number indicates the amount of extinction which took place in the interval between the last colony and the definitive appearance of the third fauna in Bohemia. It is to be noticed, also, that it is the
numerically largest families, namely; the Cephatopods and Graptolites which have suffered most, in the way of extinetion.
3. The colonial fauna is related to the secomb fann: by no more than four species, all Irilobites, and all found in one culony.
4. On the contrary; the specific comections between the colon ial fauma and the third fanna are represented by ninety-two species. or eighty-three per cent. of the total of colonial species.
5. The same relationships are shown by the general facies of the fossils, irrespective of specific identities. Thus, the last phases of the second fana are chamacterised by a predominance of Trilobites and by the rarity of Cephalopods and Graptolites. On the other hand, the colonies and the first phases of the third fauma were characterised by the rarity of Trilobites and the abundmee of Cephalopods and Graptolites.
6. These results lead ineritably to the conception that the species of the colonies have been introduced into Bohemia by migration from a foreign area. This conception becomes more certain by a comparison of the colonial faum with the Silurian fauma of other countries, by which it appears that many colonial species existed in the Lower Silurim series of the British area, that is at a persod earlier than the date of their appearance in Britain.

## V. Paleontological Retations between the Colonial

Fauva and the Sifurian Fauna of Britan.
The comexions between the Silurian faum of Britain and Bohemia are two-fold, direct and indirect. The lirect connexions are shown by the fact that several of the colonial species of Bohemia are found existing in Britain in the "second fauns'," i. e. in the Lower Silurian period. The indirect connexions consist in the fact that some of the Jower Silurian species of Britain are found in Bohemia, not in the colonies, but in the third fauma, i.e. in the Upper Silurian period.

The following table shows the number of species which are common to the Lower Silurian of Britain, the colonies, and the Upper Silurian of Bohemia, but which are wholly wanting in the Lover Silurim (second fauna) of Bohemia:-

Chicrurus bimucronutus, Murch.
Spheerexochus mirus, Beyr.
Atrypa reticuleris, Linn.

Strophomena (Leptena) euglypha, Dalm.
Cardiolut interruptu, Sow.
Gruptolites lolligerus, McCoy. (=G. Becki, Barr.)
——— Nilssoni, Barr.
————mriodon, Barr.
——_Bohemicus, Barr.
—__ colonus, Barr.
Roemeri, Barr.
Rustrites peregrinus, Barr.
To these I may add, Climucograpsus teretiusculus, Mis., Graptolites turriculutus, Barr., G. Sedywichii, Portl., Diplograpsus folium, His., and Diplogrupsus palmeus, Barr.

Of the above eleven species enumerated by M. Barrande as common to the colonics and the Lower Silurians of Britain, six reappear in the Upper Silurian of Britain, and all are found in the third faunal (Upper Siluri:n) of Bohemia. M. Barrande, therefore. concludes that these species play the same part of precursors in the two countries compared; and he believes that a common centre of diffusion for these species must have existed somewhere between Britain and Bohemia. It should be remarked. however; that of the above eleven species, four of the Griptolites (vi\%. G. lobigerus, G Nilssoni: G. Bohemicus, and Rustrites prereyrinus) are not known, as errmeonsly believed by M. Barrande, to occur in the British Upper Silurian series; nor are :my of the five species added by myself to the above list. It should also be noticed that there is great doubt as to the propriety of the introluction of Cardiola interrupter into the above. list as occurring in the Lower Silurian in Britain. On the con: trary, it is becoming extremely probable that all the rocks in which this fossil occurs in Britain are truly of C.pper Silurian ase.

The followiur table shows the species of fossils which are found in the third fauna of Bohemia (Upper Silurian), but which existed at an earlier date in the Lower Silurian of Britain:-

Crustaccans.
Cellymene Blumenbachii, Brongn.
Strenrocephatus Murchisoni, Barr.
Cephalopods.
Orthoceres ramultatum, Sow.

Brachiopods.
Atrypa marginalis, Dalm.
Cyrtica trapezoidulis, Dalm.
Leptana sericea, Sow.
—__transversalis, Dalm.
Orthis eleguntula, Dalm.
-_hybrida, Sow.
Strophomena depressa, Sow.
———pecten, Linn.
Graptolites.
Graptolites convolutus, His.
——_turriculatus, Barr.
Diplograpsus palmeus, Barr.
Rastrites Linncei, Barr.
Retiolites Geinitzianus, Bärr.
Corals.
Favosites alveolaris, Blainv.
Halysitcs catemularius, Linn.
Heliolites interstinctus, Wahl.
-_ tubulatus, Lonsdale.
Of the above twenty species thus enumerated as common to the Upper Silurians of Bohemia and the Lower Silurians of Britain, four species are found in the Llandeilo, all (with the doubtful exception of Retiolites Geinitzianus) are found in the Caradoc, and fifteen species occur in the Llandovery rocks of the latter country. Not one of these species, on the other hand, is found in the corresponding rocks of Bohemia, namely in the second fauna. These species, therefore, go to show that "the elements of the third fauna of Bohemia, which are represented in the colonial fauna, existed in notable numbers in a foreign country, at a time when the second fauna still predominated in the Silurian basin of Bohemia. These species thus establish an indirect connexion between the second fauna of Britain and the colonies of Bohemia.

## VI. General Conclusions.

As to the general conclusions which may be deduced from the whole of the above facts, it will be sufficient to give briefly the series of propositions laid down by M. Barrande, merely remark-- ing that these conclusions are in the main warranted by the facts, and that any subsequent modifications are not likely to affect their general tenor.

In the first place, it seems certain that during the existence of the last phases of the second fauna in Bohemia, the first phases of the third fauna had become more or less fully developed in some other country hitherto unknown.

Starting from this centre of diffusion, migrations must have taken place at different epochs into Bohemia, during the whole of the deposition of the thick band $d 5$.

On every occasion these migrations must have given rise to colonies, which are placed on the same horizon, and consist of graptolitic schists, almost always accompanied by flows of trap, and often containing calcareous concretions.

In consequence of inauspicious conditions, and from the cessation of these schistose and calcareous deposits, all the colonies must have enjoyed a relatively short existence during the period that the Bohemian area was occupied by the second fauna.

The appearance of the colonies coinciding constantly with the graptolitic deposits, we are compelled to attribute both equally to the influence of currents arising in the same quarter.

The introduction of intermittent currents into the isolated basin of Bohemia seems to have been caused by oscillations of the land, connected with the production of the traps which occur 80 frequently in bands $d 5$ and e 1.

In all cases, the colonial species appeared on different horizons without being able to establish themselves permanently in Bohemia during the last phase of the second fauna.

After the complete extinction of the second fauna, however, and after a prolonged intermission, during which the Bohemian basin appears to have been deserted, a new immigration, arising from the same foreign centre, must have invaded the Bohemian sea, and must have succeeded in permanently establishing itself there. (I may remark here that few palæontologists would admit that the presence of a considerable mass of unfossiliferous beds in the midst of a fossiliferous series, necessarily implies a period in which life did not exist, as above assumed by M. Barrande. More probably the local conditions were such as to cause a local migration of the existent fauna, or such as not to allow of their preservation in a fossil condition. There certainly do not seem to be sufficient grounds for the assumption that the whole of the second fauna of Bohemia died out during the deposition of the upper part of $d 5$, and the absence of fossils might be partially zocounted for by the lithological nature of the deposits in ques-
tion. which are stated by Barrande to consist chiefly of graywackes and grits ("quartzites"). Lastly, there are indications that $e 1$ is superimposed unconformably upon $d .6$, in which case the interval between the second and third faunas may have been an enormously long one, and some intermediate deposits may be missingr.)

The above definitive introduction, constituting the first phase of the third or Upper Silurian fiuma, must bave taken place during the deposition of the band $e 1$, the basement band of the surerior division, which agrees lithologically with the colonies in beinge composed of graptolitic sehists with calcareous concretions, alternating with sheets of trap.

It is elear that the interpretation of the facts rests chicfly on the hyputhesis of migrations. Most geologists. now admit the dactrine of migrations, and Bohemia more than any country presents us with proofs of its truth.

Thas, M. Buraude has shown that the Bohemian basim of Silurian times was separated by matur:l bariers from the contemporancous oce:n which covered the great northern zone of Europe and Americ.. This is shewn by the specific differenees between many of the forms such as the Cephuloperelan of these areas; but the occurreace of some species common to Bohemia and Northeru Europe has also shown that there must have existed temporary communications between these different regions. Further, M. Barramde has shown ampm. sur he Retopurition du genre Arethusint, 1S6S, that although the colonies are the most striking examples of the intermittent appearance of species iu Bohemia, there exists besides in the same badin a cousiderable number of species equally intermittent, ind belonging to different classes of fossils. This was particularly shown by the oceurrence of four Trilobites ind one Cephalopod, which existed in d 1 , at the commencement of the second fauma, completely disippeared during $d 2, d 3$, and $d x$, and reappeared in $d .5$ at the close of the second fauna, their reappearance coinciding precisely with the introduction of the colonies into the basin.

Both these circumstimess cian be explained by the same hypothesis, namely by supposing a temporary commanication to be formed between the Bohemian basin and other seas. This hypothesis would not only explain the reappearance of the above-mentioned species after the lapse of a vast period of time, but would also allow of the almost inevitable introduction of various other new forms into the same barin at the same time.

We have, then, on the one hand, the fact that the Silurian basin of Bohemia was isolated and separated from other rewions, over which successively existed the three general faunas characteristic of the Silurian period (with the Cpper Cambrimi. On the other hand, divers well established facts demonstrate the coexistence of a certain number of identical species on corresponding horizons in countries gengraphically widely removed from one another. This co-existence cim only be explained by the effect of migrations.

- We may suppose, therefore. that the repeated introduction into Bohemia of species which are equally characteristic of the colo nies and of the third fauna, may be explained by having recourse to the phenomenon of migrations. We may also suppose that the intermittent appearance of the colonies may be attributed tooscillations of the land during the last phases of the second fauna, the occurrence of such oscillations being testificd by the frequent intercalation of traps in the beds in question ( viz. in d 5 ).

Lastly; we may define the phenomena of "colonies" as consisting in "the co existence of two general faune, which. considered in their entirety, are nevertheless successive."

## THE WHALE OF THE ST. IAWRENCE.

By Dr. .f. W. Andmesos, President of the Litsmay and Historical Society of Quebec.

In the early history of Camadia, the whale and wairus fishery of the Gulf of St. Lawrence was of no inconsider:ble influence, giving cmployment to many of the Basque and Breton fishermen, and being one of the best nurseries for French seamen In later times when the walrus had become entirely extinct, the whale fishery was prosecuted with energy by the Canadians, especially of the District of Guspe; and Bouchette, writing in 1832, says: "The whale fishery is e:rried on with some success by a few active and enterprising imhabitants, who are almost exclusively employed in this kind of fishery. Four or five schooners, mamed each with from cight to twelve able and skilful persons, are occupied in whaling during the summer months. This business yields about 18,000 gallons of oil, which is principally sent to Quebec.

The number of hands employed in reducing the blubber to oil, preparing casks, and other incidental labour, may amount to. about 100 ."

Mr. Frank Austin, a few years ago, read a paper to the Literary avd Historical Society of Quebec, on "Some of the Fishes of the St. Lawrence." In this paper, published in the "Transactions" for 1866, it is stated that it gave profitable employment to a good many schooners of from seventy to eighty tons burthen, each manned by eight men. Each schooner carried two boats, twenty feet long, narrow and sharp, with a pink stern. There were two hundred and twenty fathoms of line to each boat, and the proper supply of harpoons and linces. The species caught was that commonly called the Ifumpback, and each on an average produced three tons of oil. The mode of capture was somewhat different from that practised by the whalers who resort to Davis' Straits and Greenland, and it is said that any active man, accustomed to the management of boats, could soon become proficient. When approaching the whale in the boats, the men used paddles instead of oars, finding that less noise was made, and that they were thus surer of their prey. It would appear that the whale of the St. Lawrence was even more easily captured than that of Greenland, being if anything more timid and stupid when once harpooned, for sometimes within fifteen minutes after they had been struck, their huge bodies rolled like helpless logs on the water. The oil yielded in $186 \frac{1}{\frac{1}{x}}$ by the Gaspe fishery was of the value of $\$ 17,000$. We have no means at hand to say what the returns have been since then, but we have reason to fear that like the porpoise fishery, the capture of the whale has not received that attention which it deserved, nod that unless new life be imparted, it will altogether cease to be prosecuted as a regular and remunerative branch of national industry. The valuable walrus fishery was lost by ignorance, which led to the complete extinction of the animal in the St. Lawrence. The whale fishery stands a chance of abandonment from apathy.

We were struck on reading Sir Richard Bonnycastle's book, published in 1845, by remarking the number of whales which he saw on his voyage up and down the St. Lawrence, between Gaspe and Kamouraska. Certainly they do not now frequent the St. Lawrence in such abundance.

In the Canadian Magazine, vol. 1, page 2S3, will be found as follows :-" About the middle of September (1823) a large whale
found its way up the St. Lawrence till nearly opposite the villaye of Montreal, where it continued to play itself for several days, not being able, from the shallowness of the water, to navigate its way down the river. Faving attracted the notice of the inhabitants, several enterprising individuals put off in boats with some whale-fishing materials in pursuit of it; and at last after nearly a week's exertion it was hatrooned by Captain Brush of the Tow steamboat. It was immediately dragged ashore, and exhibited in a booth fitted up for the purpose, for the gratification of the inhabitants. It was found to measure forty-two feet eight inches in length, six feet across the back, and seven feet deep. It has since been conveyed to Three Rivers and Quebee for the sume purpose."

Early in August of this year (1871) two whales were seen sporting on the shores of the Gulf, and a Mr. Chabot, and an Englishman, who claim to have invented a gun harpoon (on Capt. Mamby's principle), brought their gun to the shore and discharged the harpoon. As the whale instantly disappeared, and as the rope returned to the shore without the harpoon, they were under the impression that the whale had been struck. Some days afterwards, the govermment stemmer 'Druid' being down the North Chamel, saw something on the beach at St. Joachim, which they thought at first was a boat, but on uearer approach it was discovered to be a whale. Ropes were attached to the jaw and tail, and the huge amimal was towed to the Police Wharf at Quebee, where for a few days it was visited by thousinds, but becoming extremely offensive, and the weather being very hot, the Mayor very properly ordered it to be removed. It was sold by auction, and purchased by Mr. Gregory for $\$ 260$, and was then towed to 'Patrick's Hole,' close to the Church of St. Laurent, where Wolfe's army first landed, and there beached and preparations made for fleching it.

I had not an opportunity of seeing it at Quebec, but through the politeness of Mr. Gregory, who grave me a passage, I had the satisfiction of seeing it att ' Patrick'. Hole.' On approaching the beach we sitw a number of the inhabitants around it, and on our nearer approach, our nostrils informed us that it was not the Guurd's bouquet which made all the women have their handkerchiefs at their noses!
I was not prepared to find so huge an animal. It was supposed that the two whales had been a female and its calf, and I wasin-
formed that it was the calf that had been found. It turned out, to be an ased male, apparently of the species Bulano. Mysticetus. I measured it as carcfully as I could, and satisfied myself that it was sixty-five feet in length. The back was black, the belly furrowed, presenting exactly the appearance of a clinker-built boat, and each furrow alternately black and dingy white. The baleens of one side had been lost by being caught on the rocks while it was being hauled ashore, but the other though it had been removed from the jaw, was quite perfect, till the visitors bergim to appropriate its plates. With the permission of Mr. Gregory I secured a tiew plates. I never had an opportunity of secing so bance a whale before, thourh I saw the skeletom of the whale strauded on the beach of Portobello, near Edinburgh, in 1S29, and purchased by Dr. Knox. I concluded :after a careful examination that it answered fully the deseription griven by De Kily, as follows:
 cetus. Right or common whale. Characteristics, black, occasionally varied with white or yellov Gape of the mouth, arched, with about 600 lamine of whalebone. Learth, ivi iy to sixty itet.

Jescription: body thickest in the middle, : little behind the fore paws; somewhat furrowed, tequering towards the tail. Head large, somewhat triangular. Opening of the math large, with a few seattering hairs on the end of the jaws. Hyes very sumall, and phaced near the corners of the month. By am: ${ }^{1}$ jaw exceedingly minute. Spiraclos two, oblones, adjacent, slightly limgish in front. Palate and sides of upper jaw with two rows of whalebone from ten to thirteen feet loug, and wencrally curved longitudinally, and giving im ached form to the roof of the mouth. Fach scrics consists of three hundred or more laminac of whalebone, the interior edres of which are covered with at hair-like fringe. Swimming paws rounded, somewhat pointed, T-9 feet long with a width of $\pm$ - 5 feet, and situated about two fect behind the angle of the mouth. Tail very broad, notched in the centre, curved on the edges, and pointed at the tips. Colour: blackish throughout, occisionaily with a small space under the body, and a larger space on the lower jatw, whitish gres or flesh eolour. Very old individuals become varied with white, black, or piebald. Weight from 60 to 100 tons. It. is presumed to have a gestation of niae months, produces one at a birth, which it suckles for about a year. It exhibits great maternal fondness,
and although at other times remarkably timid. manifests great boldness and even ferocity in defending its joung. It is arexrarious, and was fo.merly found in every part of the ocean, but has been driven by the fishermen from the coasts of Europe and America. It was early followed by the Americ:ms to the South Pacilic. and its capture is now prosecuted in India and Africa.

From the structure of its jaws and the smalluess of its throat, it can only feed on the smaller ocemic :mimats. such as medusa or sea jellies, shrimps. crabs. and some minute mollusca. Hence it differs most materially from the genus cachelot or sperm whate, which has got : weide gullet, and is eapable of swallowing fishes of very considerable size. It feeds abundantly on the mackerel, and a portion of a shark haseven been found in its stom:ch. At first thought it appears very wonderful that so immense an animal as the common whale should have to depend for its subsistence on minute amimals, but the wonder ceases when we examine the waters to which they resort, sometimes in very large herds. De Kiy says that he has seen off the coast of Brazil hundreds of miles where the mollusea ane so mumerous as to discolour the water, civing the appearamee of wheat seatiered over a reddish samdb:nk; :and Seoresby has cetimated that in some parts of the Aretic seas twenty-bree quadrillions of such amimaterala are distributed over a surface of two spuare miles. 'lhere is very great difference in the ateoments given of the size of the iwo whales which I have mentioned. Some writers sive the length of the sperm whale at from 70 to sill feet. and of the common whale at from so to 100 feet. It is quite possible inat such maty have been accasionally found, but they are to be viewed as exceptional. for Cipht. Scoreshy, the very highest ituhority: and who had jersonally engaged in the cupture of 322 whales. sige that not one of them exceeded 60 fect.

I may mention how apt people are to be deceived :as to the size of objects. and that no reliance cam be placed on :umblhing but actual measurement. A sentleman of Quebec, voted for lis general intelligenee and the interest he takes in all these subjects, met me in the hibrary of tie Literary :and 'Tistorical Society; on his return from Cacouni. He silid: "So you have had a great visitor at Quebec during wy absence, but not so sreat as one that visited the St. hawrence nearly fifty years ayo, and was captured at Montreal. I have seen that the whale brought here last week was only 65 feet long: I should say that the other was at least a
third latrer." Me was both surprised and amused when I read to him the account from the Comadian Magazine which I have already siven. The obvious difference between the sperm whate and the common is, that the sperm has a dorsal fin, and when the water is smooth the projection or hump is seen two or three feet above the surface. Its thro:at is also large, so that it would have no difficulty in swallowing a mam. The Mysticetus or common whale, on the other hand, has neither dorsal fin or hmmp, and its sullet, as his been already said, is exeeedingly small, not more tham $1 \frac{1}{2}$ inches in diameter.

According to my almeasurement, corroborated by Mr. Grexrory, as the whale lay on the beach at ' Patrick's Hole,' he was sixtyfive feet lons, the fluke of his tail twelve feet, his jaw fifteen feet. From the condition he was in, I could not measure his breadth. When the skeleten wass subsequently brought to the Poliee Wharf I had an upportunity of verifying, at any rate to my own satisfiction, the correctness of my first measure. The jav bone, as it lay on the whart stripped of all covering, measured exactly fourech feet six inches. I filt justified from this fact in considering that my other me:surements had been equally correct. Triking his lengrth, then, at sixty-five feet, he was twenty-three feet lonerer than the one killed at Montreal in 18 ?3, ind five feet layger thim the extreme length given by De Kity to the IMysticetus. A whale of such a size maler ordinary circumstances should hate yielded about sixty barrels of oil : this one only gave six, which is endearoured to be accounted for be the supposition that he was ared, diseased, and worn ont. May it not have been pmsible that hanings strayed from his feeding srounds, and hating wandered up the St. lainwence, where I believe he would have to depend for his subsistence on shrimps mad medusae alone, he may have died from simple imanition. At any rate there was mo mark of violence on his body; and MIr. Chabots brother, who was sent to elaim the whale as killed by his harpoom, finled to trace amy wound or to find the harpoon, as he had expected. The skeleton has been wel! clemed, and is very aearly completes though the thin bones of the skull have been considerably fractured. It is still in the posiession of Mr. Greerory, who hass been more desirous of promotins science tham enriching himself by the preservation of this splendid skeicton. We trust that some of our scientific bodies maly make an effort to secure it, so that it niaij not be permitted to be seat out of the Province.

# NOTES ON THE PRIMORDIAY ROCKS IN THE VICINITY OF TROY, N. Y. 

By S. W. Fom.
(From the American fournal of Science and Airts, lol. II., July, 1871.)
In view of the prevailiug uncertainty respecting the age of the rocks of that portion of the Taconic series of Profess. Emmons lying cast of the Fudson river, I was led several ye:rs ago to undertake the investigation of some of these rocks in my own neighboumood, though I had but few hopes of learming :anything essentially new about them. It soon became ipparent that much valuable information might be obtained from them; and from certain facts which carly came under my olservation I was induced to continue their study. I propose here to notice briefly some of the more noteworthy results thas far obtaned.

The rocks immediately east of the Hudson at Troy are fine, black, grazed shales, with oceasion.l sudy layers, and have usually been regurded as belouging to the Hudson liver formation. They have been grently ermoded, but their weneral dip is eridently eastward, and at. a high :menle. They extend eastward about half : mile, and form a hiil of consider.ble manuitude within the city limits. Following the course of this hill northward, we find them frequently well exposed in reilhay cuttings, and before reaching Lamsugbureh, which is tiree miles distamt, in a bold elevation sereral humdred feet in height.

The only fossils which these shales have afferded, are the obscure form deseribeth under the name of Disernphythom. peltutum
 of rriptolites, the latter hating been but recently oitamed. The graptolites resemble closely certian well-known Hudson river forms, but whether certainly identical $I$ am it present umable to state. If truly Hudson river shates, then the absence of any other fossils in these rocks, execpt those abowe mentioned, appears not a little remarkable.

Upon the east, after in interval of concealment varying somewhat in different localities, these shales are followed by the widely different rocks of the "d'aconie " series, likewise dipping vor. vi.
eastuard, and apparently at about the same angle. The best exposures of these rocks in this vicinity oceur opposite the central portion of the city: where they are brought to view in a number of abrapt, quickly concealed ridges. These ridges trend northerly and southerly, and appear to be all constructed upon the same pattern, having on the west a steep, on the east a more gradual siope. Only the western faces are maturally exposed. Whis uniformity of sirueture is very striking, and there are reasons for believing that it has resulted largely from successive short, sharp folds in the strata, of which we have a fine example in the rocks east of Iamsingburgh; but as nearly the whole district is covered with a thick sheet of drift, and the rocks bear cuidence of extensise faulting. much further study will be necessary before it will be fully understond.

These ridges generally consist for the most part of eourse red and yellow we:thering slates and shales, with occasional thin-bedded samdstones; but the most of them are supposed, and four of them are known, to hold subordinate limestone deposits. Of these deposits the two westermost individually consist of a few courses of thick-bedded limestone, and of irresular, sometimes lenticular, sparry and thequently pebbly mases, varying from one to several hundred pounds in weight, imbedded in a coarse, dirity-looking aremaceons matrix: while the others form tolembly compact, even-bedded limestones, with an abundance of scattered black nodules, from twenty-five to thirty feet in thickness.

So far as investiguted, these limestones have been found to ine highly fossiliferous, though the fossils are usually in a very fragmentary condition. From two of them-one of the conglomerates and one of the even-bedded mases-the writer has made frepuent collections during the last three years. With a single exception the same species occur in both. Up to the present time they have yielded eighteen species, which are distributed as follows:

Protozo: (Archcocyuthes)................................. 1 species.
Brachiopod:................... ............................. 7 «
Ismellibranchiatat.......... ........... .................. 1 "
Gasternpodia ......... ...................................... 1 "
Peteropndi: (IIfolithes)...................................... 2 "
Ammelida isulterella)......... ............................ 1 "
Crustac:a...................................................... 5 "
Total, 1 S "

Of these, six-Obolella (Avicula ?) desquamata (Hall), 0. (Orbicala?) crassu (II.), O. (Orlicula) calata (IH.), Metoptoma rugosa (H.), Thecie triangularis (H.), and Agnostus lobutus (H.)-were figured and described in the first volume of the Palaontology of New York in 1St7, from this locality; and two-Conorephutites (Atops) trilinentus (hmm.) and Olenclus (Ellliptocephellus) asuphoides (B.),* from Greenwich, Washington comnt. All the rest are new or undeeribed. $\dagger$

Desiring further information in regard to certain of these new species, I several months since wrote Mr. A. Billings, Patacontologist of the Geological Survey of Camada, at the same time giving him a list of the species in my possession from this ruarter. In reply Mr. B. informed me that he was just engaged upon a collection of new fossils from the Lower lotsdam formation below Quebee, which he strongly suspected to be identical with my own: and on comparison it was found that fifteen out of the cighteen species from Troy were held by us in common, and shown to be perfectly identical. Such an unlooked-for result of course surprised us greatly. 'That the Lower Potsdim formation below Quebec, and the western portion of the 'haconic series near Troy are of the same are, there secus now but little room for doubt.

Two very characteristic fossils of this formation are the opercula of two species of IIyolithes, upon which I communic.ated a

[^3]note in the preceding number of this Journal. One of them was there described as a "minute, circular species, with four pairs of lateral muscular impressions and two smaller dorsal, all radiating from a point near one side;" the other as "larger, and like a Discinn on the outside." The former occurs quite abundiantly in the Troy limestones, and is a very beautiful little object. It varies in size from a mere point to a diameter of three lines. Perfect specimens have a rich, polished appearance. The other occurs more rarely. As might maturally be expected, these rocks contain immense numbers of Iyolithes. Indeed, large portions of the limestone are oiten almost wholly composed of them.

Without donbt this formation in New York will jet afford many new species: The evembedded limestone east of Troy, to which especial attention has been given, as well as portions of the conglomeratres, are liturally loaded with fossils, and promise richy to repay investigation for a long time to come. Their associated slates, shales and sandetones have as yet afforded no dossils. Near Itansingbargh, howerer, where what is at present reganded as at lower member of the formation, comsisting of heary and thin-bedded sriy sandstones with interstratified black slates, is exposed, a few obscure Fuenids have been found, but these rocks have been but imperfectiy investigated. Neither the thickuess nor precise castem limit of this formation has yet been ascertained.
Troy, N. S., May 2i, 15ד1.

- 'These rocks hive hith:rto hertn referred, though with some doubt, to the catciferons portion of the Quebere Gromp hut all modern investigitions in our older stratit have steadily pointed to their higher antiquity; and it is simply justice to state that, by several geologists besides these who have adopted Prof. Emmons' views of their age; this has long heen suspected.


## ON SOME NEW SPECIES OF PALAOZOTC FOSSILS.

By E. Bilingas, F.G.S.



Fig. 1. Iyyolithes communis. 2. II. Americanus. 3. II. 3 micans. 4. II. prenceps. In these diarrams a represents the rate of tapering of the shell on the ventral side: $b$, the transwerse section (except in $3 b$, which is the inner surface of ane opentun enlarged two diameters). The small figure in 3 a represents the apmeal portion of a specimen. N.B.-All these species vary slightly in the rate of tapering.

## Genus Iyolities, Eichuald.

In the following description of new species of Ifyolithes, I shall call the side of the fossil which is most flat!ened, or from which there is a projection in front of the aperture, "the ventral side." Directly opposite is the "dorsum." The lateral walls, whether consisting of two sloping planes, as in firs. 2, or rounded as in the other figures, I shall desiguate simply : the sides." Ihe "width" of the aperture is the erreatest distance between the two most projecting points of the sides. Whis is sometimes close to the ventral side as in fies. 2. Whe " depth " is the distance between the median line of the ventral side and the dorsum, and is at right angles to the width. 'That part of the ventral side which projects beyond the aperture is the " lower lip." The "rentral limb" of the opereulum is that side which is in contact with the lower lip, when the operculum is in place, in the aperture. The
"dorsal limb" is the opposite side of the operculum, in contact with the dorsum. In some of the epercula there is a point around which the surface markings are arranged concentrically; this is the "nuclens."

The following species occur in the pebbles and boulders of a conglomerate which constitutes an important formation on the south shore of the St. Lawrence below Quebec. Whe age of the rock in which these pebbles are found, is not yet certainly determined, but it is, at all events, near that of the Potsdam.
H. communis.-This species atains a length of about cighteen lines, ahthough the majority of the specimens are from ton to fifteen lines in lengeth. The rentral side is flat (or ouly slighty convex) for about two-thirds the width, and then rounded up to the sides. The latter are uniformly convex. The dorsum, althourh depresed convex, is never distinetly flattened, as is the ventral side. The lower lip projects forward for a distance equal to :bout one-fourth or one-third the depth of the shell. In a specimen whose width is three lines the depth is two lines and ahall:

The operculum is ne:aly circular, gently but irreqularly conves, externally and concave within. The ventral limb is seen on the outside as an obecurely triamgular, slighily devated space, the apex of the triangle being situated uearly in the centre of the operculum. The base of the trimgle forms the ventral margin. This limb ocenpies about one-third of the whole superficies of the external surfiace. The remainder, constituting the dorsal limb, is wearly flat, slightly cleazted from the margin towards the cuntre. On each side of the apex of the reatral limb there is a slight depressin, ruming from the nuclens ont to the edge. On the inside there is an obscure ridere, corresponding to each one of the external depressions. It is most prominent where it reaches the edge. These two ridges meet at the sentre, and divide the whole of the inner surfiee of the operculum into two nearly equal portions.

Whe surface of the opereulum is concentrically striated. The shell itself in some of the specimens is covered with fine longitudinal strie, from five to tem in the width of a line. The shell varies in thickness in different individuals. In some it is thin and composed of a single layer, but in others it is much thickened by concentric lamine, and thas approaches the structure of a Selterelle. There are also tine engivdling stria, and sometimes obscure sub-imbricating rings of growth.

This species has been found at Bic and St. Simon.
Fig. 1, $b$, representing the transverse section, is not so distinctly flattened on the ventral side as it is in most specimens.

Collected by T. C. Weston.
H. Americanus.- Length from twelve to eighteen lines, tapering at the rate of alont four lines to the inch. Section triangular, the three sides flat, slightly convex or slightly concave, the dorsal and lateral edges cither quite sharp or acutely rounded. Jower lip rounded, projecting about two lines in fullgrown individuals. Surface finely striated. the strice curving forwards on the rentral sides, and passing upwards on the sides at nearly a right angle, curve slightly backwards on the dorsum. In a specimen eighteen lines in length, the width of the aperture is about six lines and the depth about. four, the proportions being slightly variable.

The opereulum has a very well-defined conical ventral limb, the apen of which is situated above the centre, ar nearer the dorsal than the ventral side. The dorsal limb forms a fat margin, and is so situated that when the operculum is in plate, the plane of this flat border must be nearly at right angles to the longitudinal axis of the shell. In an operculum six lines wide, the height of the lower limb to the apex of the cone, is two and a-half lines, and the width of the flat border, which constitutes the dorsal limb, about one line.

This species occurs at Bic and St. Simon; also at Troy, N.Y., where it has been found abundantly by Mr. S. W. Ford of that city. It is Thece triungularis of Hiall, Pal. N.Y., vol. I., p. 213, 1847. As that name was preoccupied by a specics previonsly deseribed by Col. Porilock, Geol. Rep. on Imendonderry; p. 375, pl. $2 S$ A, fiy. $3 u, 3 b, 3 c, 1 S+3$, it must be changed. It is a very abundant species, and varies a grood deal.

The Camadian specimens were collected by T. C. Weston.
II. micass.--'lhis is a long slender eyindrical species, with a nearly circular section. The rate of tapering is so small, that it amounts to scancely hall a line in length of eighicen lines, where the width of the tule is from one to two lines. The largest specimen collected is two and a-half lines wide at the larger cetremity, and if perfect would be four or five inches in length.

The operculum does not show distinctly a division into a dorsal and rentral limb. It is of an ovate form, depth somowhat greater than the width, the nucleus :bbout on-third the depth
from the dorsal margin. Externally it is gently concave in the ventral two-thirds of the surface; a space around the nucleus is convex, and finely striated concentrically. On the inner surface there is a small pit at the dorsal third of the depth, indicating the position of the nucleus. From this point radiate ten elongate ovate scars, arranged in the form of a star, the rays towards the ventral side being the longest. None of these scars quite reach the margin.

The shell and operculum are thin and of a finely lamellar structure, smooth and shining.

Occurs at Bic and St. Simon; also at Troy, N. $\downarrow$.
Collecturs, T. C. Weston and S. W, Ford.
Sometimes numerous small specimens from half a line to three lines in length are found with the operculum on the same slab.

This shell appears to me at present to constitute a new genus, differing from the mijority of the species of IIyolithes in its circular section, the operculum not divided into dorsal and ventral lines, and in the remarkable system of muscular impressions on the interior. Barriande has figured an operculum of the same type, differing from this in having only three instead of five pairs of impressions. They are, however, arrauged on the same plan in both the Camadian and Bohemian species.* It is possible that our species may be a Salterella.
H. princers.-Shell large, sometimes attaining a length of three or four inches, tapering at the rate of about three lines to the inch. In perfectly symmetrical specimens, the tramsverse section is nearly a semicircle, the ventral side being almost flat, usually with as slight convexity, and the sides and the dorsum uniformly rounded. In many of the individats, however, one side is more abruptly rounded thim the other, in eonsequence of which the median line of the dorsum is not directly over that of the ventral side, and the specimen seems distorted. This is not the result of pressure, but is the original form of the shell. Sometimes, also, there is a rounded groove along the median line of the dorsum. The latter is somewhat more narrowly rounded than the sides. Jower lip uniformly convex, and projecting about three lines in a large specimen. Surface with fine strix and small sub-imbricating ridges of growth. These curve forwards on the ventral side. In passing upwards on the sides, they

[^4]at first slope backwards from the ventral edge, and then turn upwards and pass over the dorsum at a right angle to the length.

When the width of the aperture is seven lines, the depth is about five. The operculum has not been identified.

Collected by T. C. Weston at Bic and St. Simon.
Genus Obolella, Billings.


Fig. 5. Interior of the ventral valve of 0 . gemma, enlarged about five diameters. aa, the two small sears at the hinge; bl, the two central scars; $c$, the smal! pit near the hinge: $d d$, the two principal muscular scars ; $g$, the groose in the area.
6. Interior of the ventral valve of $O$. desquamata, Itall,* enlarged $2 \frac{1}{2}$ diameters.
7. Interior of the ventral valle of Ololus 1 1pollinis, Eichwald, copied from Davidson's "Introduction to the study of the fossil Brachiopoda."

Generic Characters.-Shell unarticulated, ovate or suborbicular, leaticular, smooth, concentrically or radiately striated, sometimes reticulated by both radiate and concentric strio. Ventral valve with a solid beak and a small more or less distinctly groeved area. In the interior of the rentral valve there are two elongated sub-lincar or petaloid muscular impressions, which extend from near the hinge line forward, sometimes to points in front of the mid-length of the shell. These are either straight or curved, parallel with each other or diverging towards the front. Between these, about the middle of the shell, is a pair of small impressions, and close to the hinge line a third pair, iikewise small, and often indistinct. There is also, at least in some species, a small pit near the hinge line, into which the groove of the area seems to terminate. In the dorsal valve there are six impressions

[^5]corresponding to those of the ventral valve, and sometimes an obscure rounded ridge along the median line.

If we compare the interior of the ventral valve of an Ololella with that of Ololus Apollinis, we see that there are six muscular impressions in each, but not arranged in the same manner. The two small sears at at the hinge line are most probably the same in both genera. The two lateral sears lb of Obolus have no homologue in Obolelhr, muless they be represented by the two large meses ded. Should this be the case, however, the great difference in their position, would no doubt be of generic value. I think it more probable that the large sears del of Obolella reprepresent the cemtal pair ce of Oholus. Agram. Eichwald says that in the interior of the rentral ralve of $O$. Apollonis there is a longitudinal septum (shown in the above fire. 7 at $s$ ), which separates the fwo adductors ce, and extends to the eardinal groove (I suppose he mems the arouse $g$ on the are: ) $\%$ No such septum oceurs in any species of Obelellin. I hare not seen any deseription of the dorsal value of the $O$. Appollimis sufficiently perifect to afford a me:ms of comparison with that of Olonella, but the differenes in the ventral valve alone are so great that the two generat can scarcely be identical. They are, howerer, closely related. and oceur in nearly the same geological horizon.

In the rocks below Quebee and at the Straits of Belle Isle, we find the following species of Obolchle:-

1. O. desqummuth, M:Al, = Acienlu.? desqumuta, Pal. N.Y., rol. 1. p. 292, pl. S0, fige. 2. Oceurs at I'roy, N. XV.
2. O. crassa, M : $\mathrm{I}=$ Orbicmln:? crusse, op. cit. p. 299 , pl. 79 , firs. S. Occurs at I'roy.
3. O. cmluth, H:All: $=$ Orbicula corlata, op. cit. p. 290, pl. 79: fige 9. Uecurs at limy.
4. O. gemma, n. sp.
5. O. circe n. sp.
6. O. chrommict, Billiuss, has been found as yet only at the Straits of Buelle Isle.

The following are new species:
O. demm.-Shell rery smail, :bont two or three lines in length, owate, both valves moderately convex and we:nly smooth.

[^6]Ventral valve ovate, the anterior maryin broadly rounded, with sometimes a portion in the middle nearly straight; greatest width at about one-third the length from the front, thence tapering with gently convex or ne:arly straight sides to the beak, which is acutely rounded. The area is about one-fifith or one-sixth the whole leugth of the shell, with a comparatively dec ${ }_{i}$ ) sroove, which extends to the apex of the beak. Whe dorsal valve is nearly circular, obscurely angular at the beak, and rather more broadly romed at the front margin than at the sides.

In the interior of the ventral walve there are two small muscular impressions of a lunate form, close to the cardinal margin, one on each side of the median line. A second pair consists of two clongate subblinear scars, which extend from the posterior third of the length of the shell to points situated at about one-fourth the length from the front margin. These sears are nearly straight, pamallel or slighty diverging forwards and divide the shell longitudinally into three ne:nly equal portions. .Between them. about the midule of the shell, :are two other small obseurely defined impressions. There is also a small pit close to the hinge line and in the median line of the shell. In the interior of the dorsal valle there is an obseare rounded ribge which runs from the beak along the median line almost to the front maryin. Close to the hinge line there is a pair of small scars, one on cach side of the ridge. The other impressions in this valve have not been made out.

Thlue surfice of both ralves is in general ne:mly smooth, but when well preserved shows some obscure concentric striec.

This speciess is closely allied to O. chromatica, the species on which the gemas wis founded, only differing from it, so far as the extemal chanacters are concerned, in being much smaller; and the beak of the ventral walve more extended.

Ocems: at Bic and St. Simon. Collected by T. C. Weston.
O. Curee.-Orate, front and sides uniformly rounded, posterior extremity more narrowly rounded than the front, length and width about equai. greatest width at the mid-length, rather strongly and uniformly convex, surfice nearly smooth, but with fine concentric strie. Length seven lines, width a little less. The rostral portion of the shell is much thickened for about one-fifth the lengeth, and in this part there is a deep and wide groove. In front of the thickened portion the muscular impressions are indistinctly
seen, but appear to be formed on the same plan as those of the ventral valve of the genus.

The above description is drawn up on one exterior, and several interiors of the same valve, apparently the ventral valve. The exterior is very like that of 0 . desquamata, and is of the same size, but the interior shows it to be an entirely distinct species.

Length of the largest specimen seen, seven lines; width about the same, or slightly less.

Occurs at Trois Pistoles. Collected by T. C. Weston.
Platyceras primevim.-Shell minute, consisting of about two whoris, which as seen from above are ventricose, but most narrowly rounded at the suture; the inner whorl scarcely elevated above the outer. The under șide is not seen in the specimen. Diameter, measured from the outer lip across to the opposite side, one line; width of last whorl at the aperture, about one-third of a line.

Collected at Bic by T. C. Weston.
(Proposed new genus of Brachiopoda.)
Gemus Monomerella, N. G.
Generic cimaracters.-Shell unarticulated, orate or orbicular; ventral valve with a large arca and with muscular impressions like those of I'rimerella. Dorsal valve with muscular impressions in the central and posterior portion of the shell, nearly like those of Obolus. In the ventral valve there is only a single septum, which extends from the cardinal line a greater or less distance forwards. There are two eavities in the shell bencath the area. In the dorsal valve there are no cavities in the shell. The main difference between this genus and Trimerelle are, thus, as follows:-

Irimerellu.-Cavities in both valves.
Monomerelle.-Carities in the ventral ralve but none in the dors:al.

The abore description is intended to be mercly introductory. As Mr. Davidson will soon fully describe and illustrate the genus from both Canadian and Swedish specimens, no more need be said ibout it here.

This genus was discovered in the spring of 1S71, at Hespelar, Ontario, in the Guelph limestonc, by T. C. Weston. Before
venturiug to describe it, I sent a specimen to Mr. Davidson. and on returning it he stated that he considered it to be a new genus, "very closely allied to Trimerellu." Lately I received a letter from him in which he states that he has obtaned the same genus from Wisby, Island of Guthland, and he requested me to ame it, as he was about to publish the Swedish species.

We have two distinct species, both occurriug in the Guelph limestone. This formation I consider to be abunt the age of the Aymestry limestone of the English geologists. I shall characterize our species briefiy as follows. Full descriptions and figures will be given hereafier.
M. presch. - Yentral valve ovate, greatest width at about the anterior third of the length, thence tupering with gently convex sides to the narrowly romaded beah; front marim broudly rounded; septum :about one third the length of the shell. Dorsal valve about one fourth shorter than the sentral, and mure broally rounded at the anterior extremity. On a side view the outline of the ventral walve would be, so far as we can judge from a cast of the interior, somewhat straight, or only gently arched from the beak to the front margin. The dorsal valve, on the other hand, is rather strondy convex, most prominent in the auterior half. It is evident that the general carity of the shell of the dorsal valve extends a short distance under the area.

Length of ventral valve, eighteen lines; greatest width, thirteen or fourteen lines; length of dorsal valve about fourteen lines. There are some fragments in the collection which indicate a larger size.

Oceurs in the Guelph limestone at Hespelar, Ontario. Collected by T. C. Weston.
M. orbiculamis.-Broadly ovate, nearly circular, lenticular, both valves moderately convex; septum about one-third the lengeth. The casts seem to show that a thin plate extends forwards a short distance from the cardinal edge, supported by the septum. The length and width appear to be about twelve or ffteen lines.

Occurs with M. prisca. T. C. Weston, collector.
Both Trimerella and Monomerella are sub-genera of Obolus.
There is, besides the above, a third group which differs from the other two in having no cavitias in either valve. It include
the species I have ealled Obolus Centedensis and O. Galtensis. For this group I would propose the name Obolfllina. It differs from Obolus Apollinis in the form of the arca of the ventral valve, and in having a small pair of muscular impressions in the dorsal valve, in front of the large central pair. In all three of these sub-genera, there are species which have the large muscular impressions of the ventral valve obliguely striated or grooved. This seems to show that the museles were not single but composed of several bands. The tiree genera pass gradually into each other, and yet $I$ think some sort of a subdivision is required. It seems almost absurd to place such shells as T'. grandis and $O$. Canadensis in the same generic group.

## NATURAL IISTORY SOCIETY.

## FIELD DAY AT MONTARVILLE.

The fourth of these social gatherings took place on Saturday, June 3rd, the place selected being Montarville, or as it is commonly ealled, Boucherville Mountain. The weather being propitions, about one hundred persons assembled at the Bonarenture Street Station, at 9 a.m., from whence they were conveyed by a special train to Boncherville Station, which was reached about 10.15. From this point vehicles of various descriptions conveyed the excursionists to the grove near the lake on the grounds of Madame Bruncau, the lady of the manor. When all were assembled torcther, the President, Principal Dawson, stated that parties would be formed to examine, respectively, the geulogical features, the zoology, and the botimy of the mountain. Principai Dawson, Dr. T. Sterry Hunt, and Mr. A. R. C. Selwyn, undertook the direction of the geological party; Mr. Whiteaves was deputed to lead the roological expedition; but as no botanist was forthcoming to explain the points of interest in the various plants that might be met with, Mr. S. J. Iyman volunteered to act as guide to those Who wished to aseend the mountain. Rach party took a different direction, with the understanding that all were to meet again at the lake at 2 p.m. The results obtained by the geologists will be found described in Dr. Hunt's and Principal Dawson's remarks farther on. It may be mentioned, however, that on the way Priucipal Dawson picked up two picees of rock of Hudson River
group age, one containing a portion of a crinoidal column, the other specimens of Orthis testudinaria and Lepteence sericea. The followers of Mr. Lyman failed to reach the summit of the hill opposite the lake, and on their return many could sympathise with the plaint of Beattie's Minstrel,

> :Ah who can tell hene hird it is to clomb."

The zoologists formed a small but compact body, and looked as if they meant business. A large number of chipmunks were seen daring the day, and several of their curious underground burrows were met with. The birds noticed were the black-billed cuckno, Coccygus erythruphthealnus; the gold-winged woodpecker, Colaptes aurutus; the ruby-throated humming-bird, I'rochilus colubris; the tyrant flycatcher, I'yrommus Carolinensis; the golden-crowned thrush, Seitrus currocapillus; the yellow-rumped and the black-throated green warblers, Dendroica coronata and virens; the red-cyed and the warbling vireo, Firco olivaceus and gilnus; the cat-bird, Mimus Curolinensis; the swamp sparrow, Melospizu pulustris; and the blue jay, Cymuru cristuta. We are indebted to Mr. Patsmore for this list of birds observed. No reptiles of special interest were observed; in the lake, specimens of the Americim perch, the sum-fish, cat-fish, roach-dace, and striped minnow, were taken. Among the butterflies captured were Papilio I'umus and asterias, Colius Chrysostheme, a Iycanu, Venessu Antiupu; a skipper, probably Mesperia hobomache, a Hippurchin, and the now formidable cabbage butterfly, Pieris ruper, a sfrecies closely allied to those "large white butterflies" spoken of by Mrs. Browning in Auroral Jeeigh,

> "Which look as if the Miay flower had e:.ught life, And patpitated forth uron the wind."

The following is a list of the beetles found during the day :Cicindela pulvelis; Dejean. Dicerce divaricata, Saý. I'terostichus mutus, Say. Mchanotus laticollis. Chimnius sericeus, Forster. Dendroides concolor. Jachnosterna fusca, Frolich.
Seven species of land shells were collected, the rarest of which was IIelix multidentate, Binney. It will be observed that no specimens of much rarity in any brameh of Natural History were collected, the most common plant noticed during the day was the yellow lady's slipper.

About two p.m. the scattered parties re-assembled in the grove
near Madame Bruncau's residence; and an hour was allowed for rest and refreshment. The various collections of plants were then examined, and the following prizes were arrarded:-

For the best named collection in botany or \%oology. No competitor.
For the largest number of species of flowering plants, unnamed. 1. Master Raukin Dawson, 21 species. 2. Miss Lovell, 13 species.
Mr. Whiteaves grave a short verbal account of the objects of interest met with in the department of zoology, after which

The President of the Society, Principal D.awson, F.R.S., came forward, and after a few remarks introduced Dr. T. Steray Huser, who proceded to sive a brief notice of the Mountain of Montarville and its geologic:l history. This mountain, he said, stands in the north-cast part of the Seigniory of Montarville, and being near the Scigniory and Parish of Boucherville is sometimes known as Buacherville Mountain. The family Bruncau, the present lords of the mimor, to whose kind eourtesy the Natural History Society was indebted for the privilege of holding its meeting on the domain, have however caused the Parish Church near by to be dedicated to St. Bromo, and hence the mountain or rather the group of hills around was now frequently spoken of as the Mountain of St. Bruno. Tn proceding to speak of its geological history; Dr. Hunt remarked that Montarville has so much in common with the adjacent mometain of Beloil, which the Natural History Socicty had visited two years since, that much of what he then said would be equally applieable to the present occasion. He next proceeded to describe the two great classes of rocks into which most of the solid portion of the carth's crust may be divided, viz: stratified and erupted rocks; the formed being chiefly layers of sand, clay and carbonate of lime deposited as sediments from water, and subsecuently hardened into rocks, somewhat as mortar and cement harden. 'These sediments, many thousand feet in thickness, accumulated during ages in the subsiding bottom of the ocean, and enclose the fossil remains of the various species of animals and plants which then lived. The erupted or non-stratified rocks are found breaking through the stratified rocks of various periods from the oldest to the most recent. They are composed of crystalline minerals, chicfly different species of feld-spar, mic:a, hornblende, pyroxene or augite, olivine and quartz. The nature of these various minerals, and of the different rocks which are made
of mixtures of two or more of them was then explained, showing the difference between gramite, trachyte, syenite, dolerite, diorite, and basalt, all of which are crupted rocks. Many of these from their peculiar jointed structure, occasionally show at their outcrops a step-like arrangement, which has procured for them the common name of trap, from a Swedish word signifying a stair. It is applied indiseriminately to almost all ancient crupted rocks, and has therefore little scientific value. Such roeks are closely related to the lavas of modern voleanos, which when soldified under pressure resemble trachyte, dolerite, basalt, etc. As the source of lavas is many thousand feet bencath the surface, the lower parts of the lava columns must always be thus solidified. Dr. Hunt then proceeded to explain that Moutarville was the site of an ancient and extinet rolcano belonging to paliecozoic times, and that the erystalline rocks there seen were the basal portion of the former eruption of hava. The whole valley around, ${ }^{2}$ being the northward extension of the valley of Lake Champlain to the St. Lawrence, had in palmonoic times been filled with soft stratified rocks to a height much above the present summits of Mount Royal and Beloeil, and presented a plateau, above which probably active volcanos marked the sites of the mountain just named, and of Rougemont, Yamaska, Momoir, and Montarville. In some cases, however, there is reason to suspect that there may be masses of crupied rock which never came to the surfice, and hence did not appear as active volcanos in subsequent ages. The croding action of the elements, air and water, cut away the soft sedimentary rocks. and swept away the volemic peaks, leaving little more than the hard cores of eryst: lline rock below, which were better able to resist the eroding agencices. He called attention to the fact that the stratified sediments near their contact with the erupted rocks had been much hardened, and still remained in place, preserving, however, their fine grain, and showing fussil shells within a few inches of the line of contact with the crystalline dolerite, near the spot where the company stood. Whe slow disintegrating action of the air, water and frost was shown in the crumbling of this crystalline rock bene:ith their feet, a process to which the oxydation of iron pyrites which had given rise to white crusts of soluble sulphates of iron and magnesia, contributed. The supposed source of erupted rocks was briefly alluded to as probably the fusion of deeply-buried stratified rocks, and the fact was noticed that not only different volcanos in the same region, but the same volcanos at different periods, Vol. VI.

G
No. 2.
discharge lava of very unlike characters. This fact was then compared with the different characters of the various mountains of erupted rock around us. Thus Belocil was in great part, at least, a micaceous diorite; Monnoir a diorite of amother type; Yamaska presents two kinds of erupted rock, unlike either of these. Montarrille, though in a great part a dolerite consisting of a coarse grained mixture of black pyroxene with white feldspar, shows in the hill rising from the lake just behind the manor-house, a rock of very different type, consisting of a coursely crystalline mixture of dark green jyroxene with a considerable amount of amberbrown olivine or chrysolite, which in other parts of the mass is associated with a white feldspar and with black pyroxene. The various roeks of these different mount:ins have been deseribed in detail by the speaker in "The Geolowy of Cimadi," He concluded by saying that the stratificd rocks around the mountain have a history not less beautiful and curious than that of crupted rocks, and would now be deseribed by one far more competent to the task than himself-Principal Dawson.

Dr. Hust concluded his remarks amid much applause.
Principal Dawson then said that ancient thourh the voleanos referred to by the last speaker were, there were still more ancient facts represented by some of the specimens which had been collected. The fossil shells and crinoids represented by specimens which he exhibited, showed the evidences of an ancient Lower Si Jurian se:i, which once overspread all the plain of Canada, and in which flourished multitudes of curinus creatures now extinct. He particularly referred to the Crinoids or stone lilies, some curious specimens of which had been collected. He then thanked the company for their presence, referred to the fact that the excursion had been honored by the presence of the Director of the Geological Survey, and by many of the elite of the citizens of Montreal, and to the kindness of the lady of the manor, who had so liberally given them the use of her grounds; and cordially invited all who might have been interested in the day's works to conncet themselves with the Society. The President was warmly applauded.

A little after $40^{\circ}$ clock the conveyances were again in requisition, and the party returned to Boucherville Station, and arived at Montreal about 7 p.m.
J. F. W.

## GEOLOGY AND MDNERAYOGY.

On the Canadian Thilobite witi Legs.-The following is an extract from the Report of the Committee of the British Association on the Structure and Classification of the Fossil Crustacea, at the Edinburgh meeting, August, 1871. The committee consists of Henry Woodward, F.G.S., F.Z.S., Dr. Duncan, F.R.S., and R. Etheridge, F.R.S. The report was drawn up by Mr. Woodward.
"Since noticing the occurrence of an Isopod (Puluga Carteri), from the Kentish, Cambridge, and Bediord Chalk, Dr. Ferd. Roemer, of Breslau, has forwarded me the cast of a specimen of the same Crustace:n from the Chalk of Upper Silesia. This, together with the example from the Mincene of Turin, gives a very wide geographical as well as chronological range to this genus.

A still more remarkable extension of the Isopoda in time is caused by the discovery of the form which I have named Proearcturus in the Devonian of Herefordshire, apparently the remains of a geigantic Isopod resembling the modern Arcturus Baffusii.

I have also described from the Lower Ludlow a form which I have referred with some doubt to the Amphipoda, under the generic name of Necrogammarus.

Representatives both of the Isopoda and Amphipoda will doubtless be found in numbers in our Palmozoic rocks, sceing that Macrouran Decapods are found as far back as the Coal-measures,* and Brachyurous forms in the Oolites. $\dagger$

Indeed the sugrestion made by Mr. Billings as to the Trilobita being furnished with legs (sec Quart. Journ. Geol Soc., vol. xxvi., pl. 21, fig. 1), if established upon further evidence, so as to be applied to the whole elass, would carry the Isopodous type back in time to our carliest Cambrian rocks.

I propose to carry out an investigation of this group for the purpose of confirming Mr. Billings's and my own observations, by the examination of a longer series of specimens than have hitherto
been dealt with. In the meantime the authenticity of the conclusions arrived at by Mr. Billings having been called in question by Drs. D.ma, Verrill, and Smith (see the American Journ. of Science for May last, p. 320 ; Amals and Mar. Nat. Hist. for May, p. 366). I have carefully considered their objections, and have replied to the sume in the Geologican Magazine for July last, p. 289, Pl. VIII.; and I may be permitted here to briefly state the arguments pro and con, secing they are of the greatest importance in settling the systematic position of the 'Jrilobita among the Crustacea.

Until the discovery of the remains of ambulatory appendares by Mr. Billings in an Asaphus from the Trenton Limestone (in 1870), the only appendage heretofore detected associated with any Trilobite was the hypostome or lip-plate.

From its close agrement with the lip-phate in the reent $A$ pus, rearly all nataralists who have paid attention to the Trilobita in the past dhirty years have concluded that they possessed only soft membranaceous gill-feet, similar to those of Brunchipus, Apus, and other Phyllopods.

The type-number of segments in Crustacea is 20 or 21 . In all the higher forms, as in the Decapod:1, Stomapoda, Iropoda, etc., several of these segments are coalesced either in the head, thorax, or abdomen, so that we never meet with a Crustacem having 21 distinctly marked segments until we arrive at the Branchiopodit and Phyllopoda, many of which have their full number of separate segments.

In the Trilobita, a very variable number of body-ringe is met with, from 6 even to 26 (in ILarpes ungula, Sternb.), so that on that account alone the Trilobita must be consiliered as a much lower type than the Isopodia, in which the body-segments are usually seren in number. There seems, however, no wood reason against the conclusion that the Trilobita were an carlier and more generailized type of Crustacea from which the latter and more specialized Isopoda have arisen.

The large compound sessile eyes, and the hard, shelly, manysegmented body, with its compound caudal and head shield, differ from any known Phyllopod, but offer many points of amalory with the modern Isopode, and one would be led to presuppose the Trilobites possessed of organs of locomotion of a stronger texture than mere branchial frills.

The objection raised by Drs. Dana and Verrill to the special
case of appendages in the Asuphus assumed by Mr. Billings to possess ambulatory legs, is, that the said appendages were merely the semicaleified arches in the integument of the sternum to which the true appendages were attached.

A comparison, which these gentlemen have themselves suggested, between the abdomen of a Macrouran Decapod and the Trilobite in question, is the best refutation of their own argument.

The sternal arches in question are firmly united to each tergal piece at the margin, notalong the median ventral line. If, then, the supposed legs of the Trilobite correspond to these semicalcified arehes in the Macrouram Decapod, they might be expected to lie irregularly along the median line, but to unite with the tergal picces at the lateral border of each somite. In the fossil we find just the contrary is the case; for the organs in question occupy a definite position on either side of a median line along the rentral surface, but diverge widely from their corresponding tergal picees at each lateral border, being directed forward and outward in a very similar position to that in which we should expect legs (not sternal (arches) to lic beneath the body rings of a fossil crustaceanThe presence, lowever, of semicaleified stermal arches presupposes the posecssion of stronger organs than mere foliaceous gill-fect; whilst the broad shicld-shaped coudul phate suggests most stromgly the position of the branchice. In the ease of the Irenton Ascepheus $I$ shall be satisfied if it appears, from the arguments I have put forward, that they are most probully legs-fecling assured that more evidence ought to be demmended, before deciding on the systematic position of so large a group as the Trilobita from only two specimens:*

With reg.red to the embryology and development of the modern King-Crab (Limulus polyphemus), we must await the comelusions of Dr. Anton Dohm before duciding as to the affinities presented by its larval stages to certain of the Trilobita, such relations being only in general axternal form. Dr. Packard (Reports of the American Association for the Adrancement of Science, August, 1870) remarks, "The whole embryo bears a very near resemblance to certain genera of Trilobites, as Trinucleus, Asaphus, and others;" and he adds, "previous to hatching it strikingly resembles Trimucleus and other Trilobites, suggesting that the two groups should, on embryonic and structural grounds, be included in the same order, especiatly now that Mr. E. Billings

[^7]has demonstrated that - Asophus possessed cight pairs of five.jointed legs of uniform size."

Such statements are apt to mislead, unless we carefully compare the characters of cach group. And first let me express a caution against the too hasty construction of a classification based upon larval characters.

Larval charicters are uscful guide-posts in defining great groups, and also in indicating affinities between great groups; but the more ve become aequainted with larval forms the greater will be our tendency (if we attempt to base our classifeation on their study) to merge groups together which we had before hel to be distinct.

To take a familiar instance : if we compare the larval stages of the common Shore-Crab) (Curcinus menosi) with I'trygotus, we should be obliesei (aceording to the arguments of Dr. Packard) to place them near to or in the same troup.

The eyes in both are scesile, the fanctions of locomotion, prohe:sion and mastication are all perionach by one set of appendays, which are :aticheol to the monh; the aboleminal swements


Such characters, lawever, are common to bine laveo of many Cra-tacems widny serarated when ablult, the fact beine that in the lareal st:use we find in this sroup, what has been so often
 mandy: as shanwing forth in the lartal siages of the road alourg whelh its ancosors trawlhd cre they arrived from the remote past :at the jiviny preven.

If we patee due clam:eters of Limulus sum Ploryphtus, side by

 ciassification.

Jomeron (Finsil, extinet)

2. (na-llt diximb tiy $=\cdots$

ミ. . Ill tix- ismbis s•rving an monlliज5:9715:
 iug lıram:itia ar rejrouinctive orstuns.
5 (hlac- soramedis destitate of any


7. Aindansin:il sugucnis fres auc! ardSareaclopoct?
8. Mctastoma, large.

## I.

J.imutias (Finssil nud livinat).


 जrgentis.
 inte the branchite or rejproluctive orgtalls.
5. (uther siguments destitute of any - mpus ntingos.
G. Therrecie segtuents anchylosed.
7. Alduminial siguments anchylosed aud rudimentiry.
S. Metantumas: rudimentary.

## II.

Irilolita (Fossil, extinet).

1. Eyes sessile, compound.
2. No ocelli visible.
3. (Appendages partly oral, partly ambulatory, arranged in pairs).
4. Thanacic sexments rariable in numbicr, from 6 ecen to 26 , free and movalble (animal sometimes roiling in a ball).
5. Abilominal somites coillesced forming broad candal shield (bearins the branchic beneath).
6. Lip-plate; urll dercloped.

Isopoda (Fossil, and living).

1. Feres sessile, compound.
2. No ocelli visible.
3. Append:sces partly oral partly ambulatory, arransed in pairs.
4. Thoracie segments usually seren, free and movalle (animal sometimes rolling in a hall).
5. Abdominal somites coaleseed, forminer hrowd catudal shichd, hearing the branchia benc:ath.
G. Lip-plate, small.

Should our further researches contirm Mr. Billinges diecovery fully; we may propose for the second pair of these groups a common designation (as in the case of the Merostomatia); meamtime. the above may serve as representing the present state of our knowledse.

## BOTANY AND ZOOLOGY.

Porelatr Names of Plants-Botamists generally ignore the use of :my other th:an scientific names for plants, because it leads to a areat deal of confusion in their umenclature, the same uame being frequently :upplied to two or more plants of entirely different species, and sometimes of windy separated renera; :and in other cases the same phant will receive a dozen or more names, varying in different combries, and cren in various sections of the same comery, amone people speaking the same langaze. For precise nomenclature, therefore, the manes siven by acknowledged authorities in the botmical world have to be acepted by amateurs and professional men. Nevertheless, the popular names of plants are not merely empirical, but are founded, as the scientific names are founded, upon some peculiar feature or use of the plime.

Of late years these popular names have become the object of rery interestiug reserrch, is throwing much light upon cthoological history, the antipuity of various nations, and the migrations of the larger tribes of men. We can not, of course, so iato a lengethy account of these maters; or wive the derivation of all the popular names in use-it would require a larese volume to do this; but we will give : few examples of the results of the
rescarches made as to the names of some common trees and plants. With the exception of the hazel-nut, and some other wild berries, the Apple appears to be the only fruit known to our European ancestors, as it is the only name not derived from the Latin or French. In the Zend, or old Persian linguage, and in the Sanscrit, the name for water is up, and for fruit $p$ 'hutu; hence ethnologists think that the name is compounded of these two words, meaning "water fruit," or "juice fruit." This corresponds with the Latin name pomum, derived from po, to drink, which is a somewhat curious coincidence. In Welsh it was formerly called apalis, now apfel; in high-German, aphol; in German, apfcl: in Anglo-Saxon, apl, or, appel; in old Damish, epli; in modern Damish, able; in Swedish, aple; and in Lithuanian, obolys, or olelis. This close similarity in the mame as used by these various nations, renders it highly probable that they all come from the same root or stock, and that such root or stock originally inhabited the western spur of the Himalay:m Mount:ins or northern Persia.

Arain, the name of Becel-tree, given to the Fugus sylvatica, is another curious proof of our descent from Asiatic nations. In Sanserit the word lofko signifies a letter, and the word bôkôs writinys. In Swedish the name of the Beech-tree is Lok: in Damish, lioz: ; in Dutch, lewh; in German, luch; in modern high.ferman: buteror; in old high-German, pmocha; and in Angolo.Sixom, bur: lerer; and beoce-names applied indifferently to this tree and to a book, because the ancient books of these different mations were writen in their lhunic characters upon tablets or leaves made from the bark of this trec. Ethologists, therelire, comsider this as amother proof of our descent from the nations of V"pier Awia, the more so as the use by the Greeks of the word bildes, as sipaifying a book; is derived from the name of am Preypiam phant that was used in making the material upm which they wrote, showing that our ancestors received their aucient alphabetic signs from India by the way of the north, and not by a southern route.

As a curious example of the way in which the names of plants become iramsmitted in paesing from one lauguage to another: we instance one of the names of the Carnation, or Dienthus curyophy/lus. Chaucer, in his Ganterbury Tales, speaks of "A primerole, " pigesesnic." This last word, the glossaries state, means "pig's-cye", the first one meaning the primrose. Now
"piggesnic" really means Whitsuntide Pink, and comes from the German words Pingsten, or Pfingst, derived from a Greek word for fiftieth, meaniug the fiftieth day after Easter, and eye from the French aellet, a Pink. The word Pingsten, therefore, has reference to the time of its blooming, and eye to the circular markings in the flower, and thus Pinksteneye has passed into Piggesnic.

The Fiolu tricolor, or Pansy, is an instance of numerous and various names beiug applied to the same plant. The above name. comes from the French word penséc. Because it has three colors in the sime flower it is called "Three faces under a hood," and also "Herb Trinity;" and from its coloring, "Flame Flower." It is also called "Heart's-casc," but this name properly belongs to the Waliflower, which was formerly called giroffec, or Clove Flower, because cloves were in former times considered geod for diseases of the heart. Of amatory names, the Pamsy has probably more than any other plant; we name a few of them: "Kiss Me cre I Rise," :"Kiss Me at the Garden Gate," "Jump up. and Kiss Mc," "Cuddle Me to You," "Tittle my Fancy," " l'ink of my Johm;" "Love in Idle," or "in Vain,": "Love in Idlences," and many others.

The old herbalists were great believers in the doctrine of signatures; by which thoy meamt that some particular chanacter or habit of the phant indicated its medical use. Thus the spotted leaves of the J'uhnonaria indicated that it was: a remedy for pulmonary complants; the tubers of the roots of Serophularia, being hard and kowty; musi be good for glandular affections, and berase the Saxifrage wrows in the clefts of the rocks it must be grood for stone in the bladder. They even ascribed different inalities to various parts of the same phants. An old author sas: : " The seed of samic is black; it darkens the cyes with blackues and obscurity. This is to be understood of healthy eyce. But those which are dull through vicious humidity, from these grarlic drives it away. The skin of garlic is red; it expels blood. It has a hollow stem, and thercfore helps affections of the windpipe."

Some common names are the embodiment of some poetic thought of our forcfathers, as the Diusy; Belle's-perennis, which comes from the Anglo-Saxon dages-arge, or the old English Dai-csey-ghe, meaning the eye of day, because its flowers are only
open in the day time; though some derive the name from duis, a camopy, from the shape of the flower, as in the line,

> "The daisic dad umbrad her crounall small"-
crownall meaning coronal, the upper part of a canopy.
Other names derive their origin from the uses to which the plant is put, as the Dorwood; which is not named after the animal, but because the wood was formerly used for making skewers, the proper name being duwheood, or skewer-wood, this name coming from the Anglo-Saxon dutc or dolc; German, dolch; Spanish, dugu; French, cuayuc; and old linglish, clugge.

A curious instance of confusion and tramsposition of names is to be found in the Forget-me-not, as this mame has only been given to the pretty blue Myosotis within the past forty or fifty years. For more than two hundred years the name had been given by the English to the Ajuga chameepitys, or Ground-pine, on account of the unpleas:unt taste it leares in the mouth. Some of the German botanists and herbalists gave the name to a plant known botanically as Teucrium. Botrys. In Deumark and some parts of Germany the name was applied to the Specdwell or Ter. onica chumadtyys, and by others to Ginaphatiam leomtopodium. The mame appears properly to belong to the Veronic., having reference to the way in which the flowers fall off and are blown away as soon as it is grathered; hence the valediction "Speedwell:" "Farewell," " Guod-by," " Forget-me-not:" etc., as applied to this plant. The later application was brought about by the legend in a story of modern date in which a drowning lover snatches it from the river bank, and as he sinks throws it ashore, as a token of remembrance.

> J. H. in "Hearth and Home."

## MISCELLANEOUS.

OMTGARY-SHR RODERICK MPEF MURCHISON, BART., K.C.B., LI.D., D.C.L., M...., F.R.S.: F.G.S., ©C., ©C., ©C.

The death of Sir Roderick Murchison, although at the ripe age of 50 years, is a lues which Geologists and Geographers are alike called upon to moum. In relation to both these seienees, he has for many years justly occupied the most prominent positions. But, apart from his high social and scientific standing, he was a man full of genial and kindly feeling, who could be readily
approached; and those who knew him most intimately acknowledge that he was never known to fail his friends in the hour of need, but was ready to aid them with his advice, his influence, and his purse, as many a young scientific man amongst us can testify.

Born at Tarradaln, in Ross-shire, he received his early education as a boy at the Grammar School at Durham.

But the associations of his Highland home-his ancient Scottish pedigree, numbering in the long roll many a staunch supporter of the Stu:rts, who had freely laid down their lives for their Sovereign-combined with the stiming erents which marked the period of his own youth, no doubt powerfully influenced young Murchism in selecting a profession, until in imagination he too, like lioderick Vich Alpine, heard the momains say-

> "Wo you as to your sites of yore, lielonst the tare and chanore !"

Inaring made up his mind to follow the military profession, he was sunt by his fither, Mr. Kemeth Murchison, to the Royal Mintary Collze, (ireat Malow, after which, haring pursued his situlies for at in months at the Cuiversity of Edinburs. he obtained at commis.ion in the army in 1 sot, and joining his regiment the foilh ingey year, served in the 3 lith Foot with the army in Span aml Portugal under lard Welingetom, afterwards on the St..fi of his moke, Gumal Sir Aicxander Mackenzie, and lastly as Cuntin in the ith Drawoms. He took an active part in sichai of the most importut bottles in the war, and eamed the rtputain of being a brave and able oflicer. He carried the cohenes of his requment at the l3ate of Vimiema, and afferwards acemphened the amy in its adrance to Madrid and its junction with the foree under Sir John Mowe, and shared in the dangers and retreat att Cormmat. it the end of the war in 1815, he maried Charlotte, only daughter oi the late General Francis Hugonin. It was Sir hoderick's own conviction that to his wite: influence was mainly to be attributed the choice he made in following scientific pursuits with her, and griving up, as he did, the ordiary amusements of a retired cavalry officer:* She was his frictud, compamion, and fullow-labourer in geviogy, aiding him in his ubsurvations, and moking for him those remarkable geolo-

[^8]gical sketches of landscape that illustrate his works. He is also said to have early become acquainted with Sir Humphry Davy, who suggested to him that he should attend the lectures of the Royal Institution. This adrice he followed, and he also studied with Mr. Richard Phillips, F.R.S.

In 1825 he was elected a Fellow of the Geological Society of London, and in the same year he read his first paper on "The Geological Formation of the North-west extremity of Sussex, and the adjoining parts of Hants and Surrey," before that Socicty. $\dagger$

In 1826 he recorded the results of his investigations in the Oolitic series of Sutherland, Ross, and the Hebrides, and in the same year he was elected to the Fellowship of the Royal Society; the following year he agrain visited the Highlands in company with Professor Sedgwick and suceeded in showing that the primary Sandstone of MeCulloch was really the true Old Red Samdstone or Deronian.

In 18:S he resolved to extend his researches abroad, and to study the extinct volcanos of Auvergne and the geology of the Tyrol. He was accompamied on this occasion by Mr. (now Sir Charles) Iyyell.

Following Dr. Buckland's advice, Murchison next devoted himself to a carcful examination of the geology of Hereford, Shropshire, and the Welsh Borders, the ancient comutry of the Silures, and it was upon this investigation that his great Silmian system was afterwards founded.

These rescarches he afterwards followed up by others in Pembrokeshire, to the west of Milford Haven; and his conclusions as to the stratigraphical relation between the Devonian and the underying Silurian systems was made public at the mecting of the British Association for the Adrameement of Science in 1831, but his great work did not appear until 1839 .

Further geographical investigations in Devon and Commall followed, in which Professor Sedgwick took part, and in 1835 and 1S39, two journcys were performed by Sedgwiek and Murchison to the Rhenish Provinces; on the latter occasion M. de Verneuil also accompanied them. The result of these researches,

[^9]and comparison of the English Devoniaus with those of Rhenish Prussia, was published in 1839, and a final classification adopted.

In 18t0, accompanied by De Verneuil, Murchison visited Russia, at that period very little known geologic:llly.

They examined the banks of the rivers Volkoff and Siass, and the shores of Lake Onega, thence to Archangel and the borders of the White Sea, and followed the river Dwina in the government of Vologda. They traversed the Volga and returned by Moscow to St. Petersburg, examining the Valdai Hills, Lake Ilmen, and the bamks of the rivers which they passed. inhey then returned to England, but having been invited by the late Emperor Nicholas to superintend a Geological Survey of Russia, the two geologists returned to St. Petersburg in the spring of 1841, and being joined by Count Keyserling and Lientenant Kokscharow, they proceded to explore the Ural Momenians, the Southern Provinces of the Empire and the Coal Districts between the Dneiper and the Don. In 1842 Murchison travelled alone through several parts of Germany, Poland, and the Carpathian Mountains, the better to underst:md the relations of the great formations to cach other over wide areas. In 1844 he explored the Palaozoic rocks of Sweden and Norway. In 1S45-6 he completed his great joint work on "The Geology of Russia and the Ural Mountains," in two quarto rolumes of 700 and 600 pages, copiously illustrated with maps, sections, and plates of fossils. Not long after the publication of this work, Mr. Murehison was knighted by her Majesty, the Eimperor hating previously conferred several Russian orders on him, including that of St. Stamishas. In $1 S 49$ he received the Copley medal from the Royal Society, in recognition of his having established the Silurian system in geology.

His researches (extending over six visits) in the Alps, Apennines, and Carpathian mountains, established the fact of a graduated transition from Secondary to Tertiary rocks, and clearly separates the great Nummulitic formation from the Cretaceous formations with which it was confounded.

Ranking next in importance to his definition of the Silurian System was his differentiation of the Permians. Haring satisfied himself that the Lower Red Sandstone, and the Magnesian Limestone and Marl Slates constituted one natural group only, which, from their organic contents, must be entirely separated from the overlying formations, he proposed, in 1841, that the group should
receive the name of the "Permian" system, from Perm, a Russian Government, where these strata are more extensively developed than elsewhere, occupying an area twice the size of France, and containing an abundant and varied suite of fossils. The name Permian is now generally adopted.

In 1854 Sir Roderick published the first edition of his bestknown work, "Siluria," which had, in 1867, reaehed its fourth edition, and contains 566 parges 8 vo . of closely printed matter, 41 plates and explamations.

In 1855 he produced a memoir in conjunction with Prof. Morris on the German Palnozoic rocks, and shows that there is no break between the Permian system and the Triassic series.

By the death of Sir H. T. de la Beche, Sir Roderick, in 1855, succeeded to the post of Dircetor General of the Geological Survey and the Muscum of Practical Geology in Jermyn Strect, which have owed their efficiency for the past fifteen years very largely to his energy and constant attention.

Sir Roderick Murchison will long be remembered both in the world of seicnce and of commerce in counexion with the discovery of gold in Australia. Long years before the actual discovery of gold in Australia was made known, he inferred the presence of auriferous deposits in the Australian mountain-ranges from the aualory which existed between their rock formations and those of the Ural mountains, with the physical characters of which he had made himself familiar. He endeavoured most earncstly at the time to awaken the attention of the Home Government to the great importance of the subject to our colonies in the Southern hemisphere, but with little success.

During his scientific career he has been identified most intimately with the Geological Society. He acted as Secretary for five years, was elected President in 1831-2, and again in 1842-3.

He aided Sir David Brewster, in 1830, to establish the British Association, of which for several years he acted as General Secretary. He was President at the Mecting for 1846, at Southampton.

In 1844 he was elected President of the Royal Geographical Society, and again in 1845, in 1852, and in 1856; indeed, he has held the Presidential chair of that Society almost down to the present time; having been succeeded only a few months ago by Sir Henry Rawlinson.

His cnergetic efforts in advocating the search after Sir John

Franklin; his success in raising a monument to Lieutenant Bellot, of the French Navy; his advocacy of the explorers of Central Africa, Burton, Speke, Grant, Baker, and especially his friend Livingstone, are among the proofs of his earnest self-devotion to the cause of Geographical research.

Amongst the many workers in the fields of science how fow there are whose actual published labours extend over balf a century; yet almost the last Blue Book which has appeared, namely, " the Report of the Commissioners appointed to inquire into the several matters relating to Coal in the United Kingdom," (Vol. I. General Report and Twenty-two Sub-reports, folio, 1871), bears Sir Roderick's name second on the Commission.

The Council of the Geological Society awarded him the Wollaston Gold Medal, in 1864, in recognition of his contributions to geology as an inductive science. The Universities of Oxford, Cambridge, and Dublin have also bestowed on him their Honorary Degree.

He held for many years the post of a Trustee to the British Museum, with great advantage to the Natural History Departments in that Institution, which he specially promoted.

Sir Roderick was created, in 1863, a Knight. Commandant of the Order of the Bath (civil division), and in the following year he received the prize mamed after Baron Cuvier from the French Institate. In 1859 the Royal Society of Scothand presented him with their first Brisbane grold medal, for his scientific classification of the IIghland rocks, and for the establishment of the remarkable fact that the Gneiss of the north-west coasts is the oldest rock in the British Islands. He was created a baronet in Jamuary, 1866.

One of his latest acts consisted in offering the munificent sum of $£ 6,000$ to found a Chair of Geology and Mineralogy in the University of Edinburgh, on condition that the Government would supplement the proceeds by an amnual grant of $£ 200$. This was duly acceded to, and the chair so endowed, is now held by Professor Gcikie, F.R.S, etc.

The death of Lady Murchison in 1869 was most keenly felt by Sir Roderick, indeed it may be said to have given him a shock from which he never wholly recovered. He was first attacked by paralysis in December, 1870, but gradually rallied until two months since, when he had as second stroke, but the symptoms had lately abated. A slight attack of bronchitis, caused
by a cold caught in riding out on the 19th ulto., ended his valuable and well-spent life on Sunday evening, Oct. 22, at 8.30 p.m.

His scientific career, now brought to a close, represents the period of the dawn and development of Geology as a science in this country. He commenced work at the moment when William Smith issued the first Geologically-coloured map of England, and he has lived on to see half the world surveyed geologically, and has himself mapped a vast extent of territory in Europe for his Silurian kingdom.

In conclusion (to quote the words of the Daily News), "the honors he won are a great testimony to the scientific enlightenment of the age. We have cromned Science Queen, and all her servants form her court, and wear the titles she bestows. And, truly, a scientific man carns his honours more nobly, and wears them more honourably than those who win them in political intrigue or on the field of battle. Sir Roderick Murchison, dying at eighty, covered with titles of literary and scientific honour, and s:atisfied with social position and renown, is a prophet of the comiag time. He may uot be looked back on as a great scientific genius; but he is one of the pioncers of that new order of renown which is won by fruitful service rather than by destructive deeds."
-From the Geological Magazine for November, 1871.
(Proposed new genus of Pteropoda.)

## Genus Hyolithellus, N. G.

Since the sheet containing the description of Myolithes micans was printed off, I have arrived at the conclusion that a new genus for its reception should be instituted. I propose to call it Ifyolithellus. It. differs from Hyolithes, in its long slender form and in the peculiar structure of its operculum.

E. Billings.

Published December, 1871.


[^0]:    －Siziner S－himparelli．Hirector of the（hervatory of Milam，who，
    
    

[^1]:    tion of their radian point on the supposition of the orbit being a very chonsated ellipse, arreed very closely with those of the orbit of Comet 11. 1Stion: calculated by Dr. Oppolzer. In the same letter Schiaparelli sives clements of the orbit of the Dovember meteors, hat these wrote not suficienty accurate to enable him to identify the orbit with that of any known comet. (In the olst of Tamary, 1S6T, M. Feverrier sate more accurate elcments of the orbit of the November meteors: and in the Astronomische Diechrichirn of Jamuary 9, Mr. C. F. W. Peters; of Alionat, pointed out that these clements closely agreed with dhose of Trmples (omet (I. 1S60), calcalated by Dr. Opionlece; and on Febru-
     the metcors, himself noticed the same arrecment. Adams arrived quite independentiy at the conclusion that the orhit of 33. years buriod is the one which must be chosen, eat of the five indicated log Irof. Newton. Mis calculations were sufficiently advanced before the l-tiers referred to appeared, to show that the other four orbits offered hy. Leton were inadmissible. But the calculations to begone through to hand the secular motion of the node in such an elongated orbit as that of the meteors, were necessarily very long, so that they were not completed till ibout March, 1ses. They were communicated in that month to the Cambridse Philosophical Society; amd in the month following to the Astronomical Socirit.

[^2]:    - The above courses are magnetic, the average variation being about 180 W .
    Vol. VI.

[^3]:    - These two species, to which areat intorest has lonse attached, Were, until quite recently, su!posed to le contined to am exposure of the "dack Slate" of Dr. Emmons. ahout two moles north of bald
    
     tion of the specimens furnished ly that locality: how ive their thas relations have long bern considered donhtinl anong seologists. But the state of preservation on whith ther ar: now forma in lamestonc leaves no lonser a donht ase the ir true aftinities. (iood specimens of these species are comparatively are in the limestones at Troy; though fratgments of large individuals of the ohearlhes asifhoides are very common. I am indelited to Mr. Billings fior havins jointed ont to me the specitic identity of the 'lroy specimens with tha: . Hops and Ellipfocrhhing-an acknowledgm-ni which was mintentionally omitted in this paper as originally publisheci. ds it is, howerer, abont to be repuhlishood in the : Laturalest ant Geoloyist," I spladly emhrace this opportunity to set the matter risht.
    $\dagger$ Cinkess one of them should prove identical with the species of Cipricardia fisured by Emmons (American Geoloys, p. 113; plate 1, fig. 1.)

[^4]:    - Systême Silurian, \&e., vol. III., pl. 9, fis 16 II, and fig. 17.

[^5]:    - Engraved from a figure kindly drawn for me by Thos. Davitson, Esq., F.R.S., of Brighton, England. The specimen is from the origina! locality of the species, Troy, N.Y. Collected by T. C. Weston

[^6]:    - Speaking of the adductors, he says: : Line crite Iongitudinal oceupe le miliru des dernieres impressions el arrive jusqu'an sillon cardinat." (Lecthea hossie:i, vol. 1: p. 925.)

[^7]:    - One in Canada, and one in the British Muscum; both of the same spocies.

[^8]:    - Sec l:otice of Lady Murchison, Geob. Mag., 1869, Vol. VI., p. 22T, by Prof. Geakic, F.R.S.: President Edinburgh Geological Socicty.

[^9]:    $\dagger$ This paper is of great historical interest, being accompanied by a letter from.the illustrious Baron Cavier, in which he gives a detailed description of the leptilian remains forwarded to him by Mr. Murchison for examination. The specimens which are figured and described in this paper are now preserved in the British Musemm.

