The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/

Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-ciessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de I'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de depart de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

PROCEEDINGS
 ()
 THE CMNADIAN InSTITOTE, TORONTO,

Beiag a continuation of the "fianadian Journal" of Science, fiteratumeand fistory.

CONTENTS:

notes on american parabitic copepoda. By R. Ramsiy Wright, m.a., B. Sc.,
Professor in University College, Toirnto (Illustrated).

NOTICE OF A REMARKABLE MEMORIAL HORN. THE PIEDGE OF A TREITY
WITH THE CREEK NATION IN 1765. Py Danipi. Wilson, LL.D., President of University College

the magnetic iron ores of vic oria Couicty. With Notes on charcoal
Iron Smelting. By W Hamilon Mfakitt, F.G.S., Assoc. R.S. M.. \&c. \&c, Mining
Engineer and Metallurgist, Mal Huilding. Toronto

TGRONTO:
COPP, CI, ARK \& CO.
1882.

NOTES ON

AMERICAN PARASITIC COPEPODA.

No. I.

BYR. RAMSAY WRIGHT, M.A., B.Sc.
Professor in Unirersily College, Toronto.

In the course of some helminthological investigations concerning the Fresh-Water Fishes of this region, the results of which I hope to publish shor ${ }^{-4}$ ly, my attention has occasionally been attracted to Parasitic Copepoda, the careful examination of which I have hitherto been obliged to defer. The present paper has for its object the consideration of three of these forms.

I.

Ergasilus centrarcifidarum, n. sp.
The gills of various members of the family Centrarchide are found in this neighbourhood to be infested by a small species of Ergasilus, which usually occurs abundantly on infected individuals. I have observed that the same parasite may also occur on the Perch, but it is much more commonly met with on the Rock Bass (Ambloplites mupestris), the common Sun-Fish (Eupomotis aureus, Gill and Jordan), and the Long-Eared Pond-Fislı (Lepomis auritus [L.] Raf.), especially on the first of the three. I have only met with female specimens.

Cemaricters.

Length of body, exclusive of furcal bristles, $\frac{1}{2}$ mm., of ejg-sacs 1 mm. Ceplealothorax nearly as broad as long. Median constriction barely noticeable. The longest of the antennulary bristles as long as tive antennnule. Mandible without palp. Basal joint of natatony limbs naked. Ramus internus of 1st pair, with single bristle or inner border of 1 st and 2nd joints, and 5 terminal bristles: of succeeding pairs, with 2 bristles on the 2nd joint. Ramus externews of 1 st pair with 1 spine on outer border of 1st, 2 on outer border of Srd, und a bristle on inner border of 2nd joints: of succeeding
puirs, without the a spines on Srd joint. Furcul bristles f, 一? 1 principal, 2 subsidictry, of which one very short.

The appendacies.-Antennule:.
One of these is represented in Fig. 13, from the posterior aspect.

They are 6 .jointed, and originate on the under side of the head at some little distance from each other. There is no antemnulary sternum. Of the joints the 2nd is the largest, and with its exception, the 6th the longest. All the joints bear simple bristles, the longest of which are nearly as long as the antennule itself. The bristles of the first four joints are chiefly directed downwards; of the two terminal joints backwiuds and outwards. Into each bristle branches of the antennulary nerve may bo seen to pass.
Astennet.
As in the other species of the genus, the antennæ form strong prehensile claws by which the animal clings on to the gill-filaments of its host. The antemnary sternum is well developed (Figs. 12 and 14, st.), and enters at its extremities into the construction of the hinge-joints, which the anteme form with their sockets. The basal joint is much inflated (as in E. gibbus V. Nordmann) on its outer and lower aspect, while on the opposite it is strengthened by 2 chitinous ledges, which descend from the hinge between it and the succeeding joint (c^{2}, Fig. 14) to the socket (c^{1}). When viewed from the surface one of these ledges gives the appearance of a diagonal division in the basal joint. ${ }^{1}$ The hinge between the 2nd and third joints is somewhat complicated, but its arrangement, as well as those of the chief flexor and extensor muscles entering the appendage, may be studied in Fig. 14. The terminal joint is particularly short and curved; in this respect unlike the same part in E. Sieboldii. ${ }^{2}$

Appendages of tiee mouth.
These have been only satisfactorily described for E. Sieboldii by Claus.

[^0]The parts are somewhat difficult to study in the present speeics on account of its small size, but the main facts elacidated by Clans are found to obtain also here. I have not detected any labrum. The basal joint of the mandible is very large, and works in a somewhat oval socket from which a chitinous ledge is continued forwards and outwards. The cutting edge is provided with several strong bristles. No palp is to be seen. The maxilla (mx., Fig. 15) is, however, more intimately attached to the mandible than in E. Sieboldii. That it is the maxilla, and not a mandibular pal ${ }_{p}$, is shown by its articulation to a chitinous ledge continued forward from the socket of the maxillipede, and on which the basal joint of the mandible also partly rests.

The second maxillipede is absent: the first 2 -jointed and armed on the anterior and inferior faces of the lower joint with short, stout bristles. The maxillipedary sternum is particularly strong.

The mathtory feet.

Except in details, which I have found to be constant, and which ought to be looked to for specific characters, the present species agrees with E'. Siebollii. The five sterna bolonging to the five thoracic somites are constructed on the same type, and are formed of 2 transverse chitinous thickenings continuous with each other at the sockets of the limbs. The sockets ($a_{\text {Fig. 16) project more or less: }}$ from the surface of the body, and enter into the formation of a very free ininge-joint, with the basal segments of the limbs. These are also movably articulated to the posterior of the two sternal thickenings. The figure shows how the bristles and spines are disposed in the external and inter ${ }^{\circ} \mathrm{l}$ rami of the 1st natatory limb. The internal rami of the $2 \mathrm{nc}: 3 \mathrm{rd}$ and 4 th pairs differ from that of the lst in having two bristles on the second seginent instead of one, while the external rami of the 2 nd, 3rd and 4 th pairs differ from that of the lst in the absence of the 2 spines on the terminal segment. The basal joint is not ciliated as in E. Siebouldii. The natatory limbs of the fifth pair are represented by a bristle articulated to the end of the comparatively well developed sternum.

I have not been able to determine the precise function of the curious chitinous structures situated at the opening of the oviduct, and which Claus has figured much more accurately than previous authors. They are evidently developed from the lining membrane
of the terminal portion of the oviduct. Three or four short chitinous pieces situated above the opening, and connected with each other, 1 at first supposed to be a coiled tube similar to that described as passing in various free forms from the receptaculum seminis to the end of the oviluct.' But there is no trace of a receptarulum seminis in Ergasilus, and these chitinous pieces serve to form a hinge for the two longer pieces which stretch back within the segment on each side. (Fig. 18). The muscle attached to the shorter chitinous pieces may serve to abduct the egg sacs.

The furcal bristles are differently disposed from any described species of Ergasilus. I am not confident that the arrangement represented in Fig. 7 is constant, but it seems fairly commonSome variability must be assigned to these structures, as Olsson (loc. cit.) has noticed the occurrence of three in E. Sieboldii, and I have observed the internal (stronger) bristle bifurcated on one or two occasi mis.
The esistac:, although often unequal, are generally twice the length of the body of the female.

II.

Lenviforoda edwardsir. Olison.
(Prodromus fanam Copepodorum parasitantium Scandinavire. Act. Unir. Lund., $1563,1.36$.

Prof. Osler, Montreal, obtained several specimens of a species of Lernceopoda from the gills of the brook trout (Salmo fontinalis), which differs markedly from the S. Salmonece of Baird, but agrees very well with Milne-Edwards' figure of Basanistes Salmonea from Salmo umbla (Hist. Nat. d. ('rust., Tab. XLI., f. 3). In the abovecited memoir, Olsson proposes the specific name of L. Edwardsii for Milne-Edwards' form, and describes its characteristic features from specimens (from unknown host) in the Muscum of the University of Lund. It can hardly be doubted that, at any rate, this species of Busunistes is a true Lernceopoda. ${ }^{2}$

[^1]In size my specimens agree best with L. Elwardsii and L. alpina Olsson, but the details furnished of the latter ${ }^{2}$ forbid their reference to this species, while on the whole they agree very well with Olsson's description of the former. This is, however, not accompanied by details of the appendages, and as Kurz olserves " it is to these, and not to the form of the body or the angle which the "arms" make with it, that we must look for corstant characters on which to ground ralid species. I prefer, therefore, to describe the appendages of the present form under the above specific name, rather than attribute too much importance to the difference in shape of the chitinous bulla in Olsson's description.

The shape of the body is sufficiently indicated by the outline sketch, Fig. 1, which also indicates the hump on the cephalothomax, opposite the origin of the arms. The length of the body, exclusive of egg-sacs, is 4 mm ., of the egg-sacs 2 mm . (they are probably somewhat more shrmken in proportion by their preservation in alcohol than the body), while the arms are about $2 \frac{1}{2} \mathrm{~mm}$. long. The position of the lst and 2 nd pairs of antemme, and of the projectiug upper lip, in relation to the anterior border of the cephalothorax, may be seen from the outline sketch from abore, Fig. 2. The lst pair of antenne are much more easily studied from above than from below, owing to the lateral projections from the upper lip, x, Fig. 3, which nearly conceal them from that aspect. They measure 0.07 mu. in length, are indistinctly 3-jointed, and bear on the rounded end of the terminal joint 3 minute spines, of which the mellim one is distinctly artieulated to the antemna, v, Fig. 3. The second pair of antenne may be most conveniently examined from below and from the side. They consist of a thick stem indistinctly 3 -jointed, the basal joint being far the longest, and alone provided with a chitinous plate (che, Fig. 3), and of two short branches, dorsal and ventral (d and v, Figs. 3 and 5), of which the dorsal is the longer and more internal of the two. It is composed of one joint, the rounded extremity of which is provided with mumerons curved chitinous points for the most part directed inwards. The ventral and more internal branch has two joints, of which the terminal one (t, Fig. 5) is more palp-like than the other parts of the antemna,

[^2]while the basal one bears two discoidal chitinous ontgrowths, armed with curved points, of which one ic lateral, while the other is rentral, in position (o and o^{2}, Figs. 3 and 5).

The mandibles (Fig. 6) are 0.1 mm . in length, of which one-third belongs to the toothed portion. This differs from any of the maudibles figured by Kurz in the absence of secondary teeth.

The maxillae (Fig. 7) are tri-articulate, the basal joint inflated on its lateral aspect, and the terminal joint ending in an outwardlydirected curved spine. The palp originates from the distal part of the second joint above a spine, and itself terminates in two sharp points. The maxilla measure 0.095 mm . in length, of which onehalf is occupied by the basal joints.

The maxillipedes of the first pair, as in the other members of the genus, originate behind the second pair, and are independent as far as their attachment to the bulla. This is best described as mushroomshaped, and its bilateral character is as well indicated by a surface view (after the fragments of gill have been removed from it), (Fis. S), as by the fict that it is easy to prepare sepanately the halves helonging to each maxillipede (Fig. 9).

The maxillipedes of the second pair measure 0.73 mm . in length, and present the typical chanacters described by Kurz for these appendages in other f.emeopodide. Their specific characters may be studied in Figs. 3 and 10.

Fis. 11 reproduces the punctated appeazance presented by the border of the lower lip, which measures 0.03 mm . from its attached to its free margin ; the later has only a very narrow fringe.

On comparing Olsson's figures of L. alpinus with mine, it is apparent that the bulla presents considerable resemblance; the ond antenne also bear a similar spiny excreseence, but have a pointed instead of a blunt ventral brameh; while two chitimous appendages project between the maxille from the ledge miting their basal joints. If the figure of the 2nd maxillipede is accurate, it also differs considerabiy in outline. The details of Milne-Edward's figure of Busanistes salmonea are insufficient for comparison, but the resemhance of the 2 nd antemne and the end maxillipedes ($3 c, 3 a, \mathrm{Pl}$. XLI. loc. cit.) is sufficiently striking to justify the conchusion that the form found on the European S. amble and on our Brook Trout are
identical; a conclusion which is rendered more probable by the fact that the hosts both belong to the subgeneric group of the Charrs.

Acbitueres moropteri, n. s.

The specimens for which I have selected the above specific name were found in consilerable numbers, both male and female, in the mouth cavity and on the gill-arches of the small-mouthed Black 13ass Micropterus salmoides [(Lac.) Gill]. As far as the size of the female is concerned, and the character of its fixation in the mucous membrane of its host, it might well be referred to A. percaram V. Nord.; but the relatively larger size of the male, the constant downward direction of the arms, the shape of the bulla, some details of structure in the other appendages, and the cylindrical form of the cog-sacs, point to the specific distinctness of this form. I am assured by Prof. D. S. Kellicott that it is also distinct from his A. Ameloplytis from the mouth of the Rock Biess; otherwise I should hive been inclined to suspect the identity of the two American forms. I have never met with any Achtheres in our common Perch.

The fomale measures on an average 4 to $4 \frac{1}{2} \mathrm{~mm}$., the cylindrical egrssacs $2 \frac{1}{2} \mathrm{~mm}$. Fig. 1 represents the appendages of the head from the ventral aspect. The antennula are attached at some considerable distance behind the mouth: their basal joints are the longest and - stoutest of the three. The internal rami of the antenne seem to present little difference from A. percarum, but the ends of the external rami are furnished with toothed sicklo-shaped spines.

The mandibles, Fig. 2, have 9 teeth, of which the third is the shortest of the first six, and the last three are successively smaller. The innes edges of the mandibles are sharpened into a knife-edge, which is broadest immediately behind the teeth.

The maxille are two-jointed-the distal joint bearing a lateral two-jointed bristle-like palp, and two terminal rami of the same character. The maxillary sternum forms a prominent fold (mxs., Fig. 1), owing to the advance of its appendages in front of the attachment of the antemne.

The internal maxillipedes are threc-jointed : the basal joints are united, the second are stont and furnished with a hook on the inner side (vide left side of Fig. 4), while the third are armed with a strong terminal curved claw articulatel to the joint, which on its inner aspect is further furnished with two trenchant servated ridges.

Of the muscles which move the terminal joint, the flexors are by far the most powerful ; whence the ordinary position of these joints.

The arms in length ($1 \frac{1}{2} \mathrm{~mm}$.), transverse wrinkles, de., resemble those of A. percarum, but instead of lying in front of the head have a downward direction as in Lerneopoda. Unlike this genus there is no continuously chitinized bulla, and the separation of the plate which represents it from the mucons membrane is much more difficult than in that form. The plate is somewhat hollowed out on its distal surface (cup-shaped in A. percarrm V. Nordmann), and from it radiate many fine threads of chitin, which modoubtedly are the cause of the extremely intimate coalescence with the mucous membrane. The proximal surfice of the phate is strengthened by a reticulum of chitinous bars, which become narrower as they approach the margin of the plate.

I have not had the opportunity of examining any living specimens, and an thus unable to contribute anything to the further knowledge of the soft parcs.

Fig. 5 represents the postabdomen of the female before the spermatophores are attached. The two amals for impregnation open upon its extremity: their walls are chitinous, and are especially thick posterionly. In many females the spermatophores (Fig. 3) may be found sometimes empty, with the narrow ends of their terminal capsules inserted in these orifices, while in others nothing remains of the sperimatophores, except these capsules. It is in this condition that they were interpreted by Claus as receptacula seminis belonging to the female; but when entire they may usually be separater without difficulty from the female post-abdomen; the greater or less ease with which they may be detached from the terminal orifices depending on the amount of cement with which they have been attached to the orifices. Occasionally the cement may be present in such quantities as to doform the postabdomen. The mode of furmation of the brown capsules and of the cement is discussed further on.

The male measures as much as $1 \frac{1}{3}$ mm., thus being fuily one-third of the length of the female. Usually I have found the male attached to the post-aldomen of the female, occasionally further forward on the body, in one case on the arms. The appendages of the head,

[^3]although proportionately smaller, have all the specific characteristics of the female. The antennule (Fig. 7) are slenderer, and the internal bristles of the basal joints more distinct, while the hooks on the external rami of the antenne are simple, and do not present the toothed sickle-shaped form observable in the female. The strengthening chitinous plates (ch., Fig. 7) are also of different form. The mandibles and maxille seem only to differ in size.

The peculiar form of the first maxillipedes described by V. Nordmann for A. percarum can also be seen here. The deep and narrow sternum of these appendages (Fig. S), shaped somewhat like a dice box, gives origin to the powerful adductor muscles, which occupy the greater part of the cavities of the basal joints. Of the two muscles which move the terminal claw-like joint, the flexor is much the more powerful, and keeps the claw shat against the toothed chitinous outyrowth of the basal joint.

The second maxillipedes (Figs. 6 and 9) are two-jointed, the distal joint terminating in two claws, both of which are hinged to it, and which are anterior and posterior in position. The anterior shuts into the posterior, which is hollowed out to receive it. The basal joint is strengthened by a diagonal chitinous bar: it is to this that V. Nordmamn reters as a " muscle of almost cartilaginous consistence." The basal joints abut against each other in the middle line, and give rise to a cylindrical structure, which forms a striking feature in the profile view of the malo (Fig. 6). This is represented from the ventral aspect in Fig. 9, in which an evident orifice may be seen. This may possibly be the outlet of certain little glamdular masses situated in the basal joints of the appendages (gl., Fig. 9), but the want of fresh specimens has hindered a satisfactory elucidation of this organ. The glands may possibly be homologous with the arm ghands of the female: whether their secretion is employed for the fixation of the male on the female I have not determined. A thorough examination of the male repooductive apparatus of the Lerneopodide is very desimble for the purpose of clucidating the formation of the spermatophores in the Parasitic Copepola, as Gruber has recently done for the Free forms. ${ }^{1}$ I regret that my alcoholic specimens have not permitted an exhaustive study of this point.

Fig. 10 represents the abdomen of the male from the ventral surface, and is intended to illustrate the position of the male reproductive organs. The testes occupy the anterior segment of the abdomen, and the lst portion of the vas deferens is dilated by the accumulated seminal elements. The 2nd portion is convoluted and beset with glandular tissue, till it opens into the pocket containing the spermatophore in course of formation. The ripe spermatophore may be studied in Fig. 11. No indication of the canal or capsule with which the spermatophore is attached to the female can be seen at this stage. The case of the spermatophore passes by a neck-like constriction into the case of the developing spermatophore, and it is through the aperture formed by the rupture of this constriction that the contents pass out. These correspond to the three elements described by Gruber for the Free Copepoda, viz., a globular central mass, 085 mm . in diameter, representing the axial cement in the free forms, numbers of rod-liko spermatozoa (not more than 2μ in leng(th), occupying the greater part of the rest of the axis of the spermatophore, and lastly, the refractive polygonal discharging corpuscles (the Austreibemasse of German Zoologists).

These I have only ohserved in preparations taken from alcoholic specimens of the male, and I have not had the opportunity of studying the mode of fixation of the spermatophore on the female. Two kinds of cement have been described in the Free Copepoda, (1) that situated in the spermatophoral dilation of the vas deferens, which serves to fix the ejected spermatophore to the female, and (2) that in the axis of the spermatophore, and which in Canthocamptus, e.g., forms a curved canal through which the spermatozoa are ejected.

That the former kind of cement exists also in Achtheres is readily seen from the pieces of it adhering to the post-abdomen of the female, and which I have referred to above as being often present in considerable quantity. It appears to be formed by the glands grouped round the lower part of the vas deferens. The second sort of cement is ejected from the spermatophore in the form of a somewhat globular mass, composed of a peripheral translucent layer with finely granular contents. It appears to me that this mass undergoes a change similar to what takes place in Canthocamptus only more complicated, viz., that after the fixation of the spermatophore to the
female the globular mass is extruded through the opening in the spermatophoral wall referred to above, and inserted into one of the openings of the canals through which fertilization is effected(\mathbf{v}. o. Fig. 5) : its peripheral layer then becomes indurated and brown in colour, and is then transformed into the brown capsule, while its contents are poured out to form the convoluted canal through which the remaining contents of the spermatophore pass into the body of the female. That the brown capsule acts as a sort of receptaculum seminis is also possible: because spermatozoa are to be observed in it, even after the detachment of the empty spermatophore.

DESCRIPTION OF THE PLATES.

PLATE I.

Figs. 1-11.-Lemeopoda Edwardsii. Figs. 12-1S.-Ergasilus Centrarchidarum.

Fig. 1.-Outline of body, female.
Fig. 2.-Outline of head and antemane from upper surface; ol, the upper lip ; a^{1}, antemnulae ; a^{11}, antemnae.
Fig. 3.-Ventral surface of head; d, the dorsal; v, the ventral branch of the antemae ; oand o^{1}, chitinous outgrowths on the latter ; ch, chitinous plate in 2nd joint of anteman; mx, maxilla ; mxyp ${ }^{2}$, the internal maxillipedes, the second pair according to some morphologists.
Fig. 4.-One of the first pair of antennae.
Fig. 5 .-One of the second pair of antemane from the outer side; t, the terminal joint of the ventral ramus.
Fig. 6.-Toothed part of mandible.
Fig. 7.-Maxilla with palp, mxt.
Fig. S.-Chitinous bulla from surface.
Fig. 9.-Tmer surface of one half of a bulla in comection with the arm.
Fra. 10.-An internal maxillipede.
Fxe. 11.-The free border of the lower lip.

Fig. 12.-Ergasilus Centrarchidarum from ventral surface ; 1-5, the natatory limbs.
Fig. 13.-The lst pair of antennae from behind.
Fig. 14.-The 2nd pair; $c^{1} c^{2} c^{3}$, hinges between the various joints; $c^{1} e^{2} \epsilon^{3}$, exteusor muscles ; f, tlexor ; st, antennary sternum.

Fig. 15.-Mouth-parts ; $m x$, maxilla; mxp, maxillipede; $8 t$, maxillipedary sternum; mm, muscles; ch, points to the chitinous bar which runs from the socket of maxillipede to the socket of the maxilla.
Fig. 16.-lst pair of natatory limbs ; s, the sternum ; a, the socket; b, the basal joint; ri, ramus internus; re, ramus externus.
Elg. 17.-Genital segment and rest of abdomen from below; go, genital orifice; ch, chitinous rods.
Fig. 18.-Attachment of egg-sac to genital aperature, showing tine disposition of the chitinous rods.

PLATE II.

mLlUSTRATING ACHTHERFS MHCROPTERI.

Fig. 1.-Head of female from ventral surface ; lettering as above.
Fia. 2. - Mandible of female.
Frg. 3.-Empty spermatophore detached from female.
Fici. 4.-Internal maxillipeles.
Fig. 5.-End of abdomen, female, to show the canals for impregnation with their orifices, $v o$, to which the brown capsules are often found attached.
Fig. 6.-Outline of male from side; m, the mouth ; 11 , the cylindrical process from the external maxillipedes.
Fig. 7.-The two pairs of antenuae of the male from the inner aspect ; ch, the chitinous supporting plates.
Fig. 8.-First pair of maxillipedes.
Fig. 9.-Right 2nd maxillipedes from below ; μ^{11}, the cylindrical process.
Fig. 10.-Abiomen of male from below; the preparation is slightly oblique; f, the furcal appendages; $g l$, the glandular heaps in these; a, the arms; in, the intestine; $m \mathrm{~m}$, muscles of the abdominal wall broken ; t, the testis ; $v l^{1}$, 1st, $v c^{2}$, 2nd portion of vas deferens.
Fig. 11.-Spermatophores dissected out, the ripe one ruptured below the neck-like constriction which joins it to the developing spermatophore; the globular cement mass is emerging, behind it are the rod-like spermatozoa; the discharging corpuscles still line the wall of the spermatophore ; sppl, the spermatophoral pouch; gl, the glands which secrete the cement which fixes the spermatophore in the first place to the ablomen of the female.

NOTICE OF A

REMARKABLE MEMORIAL HORN,

THE PLEDGE OF Λ TREATY WITH THE CREEK NATION
IN 1765.

BY DANIEL WILSON, LL.D., F.R.S.E.,
President of University College.

Accidental ciicumstances have recently brought under my notice, and ultimately led to the acquisition for the musem of the University of Toronto, of a curious relic of one of the great Indian confederacies which still maintained its influence as the colonial history of the older plantations of North Americal drew to a close. The daie on the memorial horn now referred to carries the mind back to a period when the warriors of the Creek nation, to whom it refers, were still a powerful native confederacy ; and negotiated with haughty condescension, alike with their Indian rivals, and with the representatives of the Sovereign of Great Britain. The Creek nation has not, even now, passed away. Some of the members of the confederacy still clain a share in their ancient inheritance; but in the intervening century the marvellous changes which have trimspired render the historical memorial here referred to scarcely less strange than if it recorded some of the first interviews with the men of the new world by Emropean adventurers of the sixteenth, instead of the eighteenth century.

The Creek nation is not to be confounded with the Crees of our Canadian North-west. An extensive tract of country in what now constitutes the Southern States was, in the 18th century, occupied by the Cherokees, Choctaws, Chickasaws, Catawbas, Uchees, and Muscogees. To all of those the English appear to have loosely applied the term "Creeks." But the name strictly belongs to a nation formed by the union of a number of minor Indian tribes with the Muscogees, who occupied the country in the northern part of the States of Georgia and Alabama, watered by the Chatahoochee and the Flint rivers; the Alabama river forming the contested boundary
line between the Creeks and the Choctaws. The Muscogees, who were the central tribe of the powerful Creek confederacy, cherished a tradition that their ancestors first issued out of a cave near the Alabamat river. De Brahm reckoned the number of the Creeks at 15,000 , including women and children. They were brave and powerful warriors, shrewd and politic in their relations with outsiders; and intensely jealous of all, whether red or white men, who did not belong to their own confederacy.

De Bry, in his "Brecis Nurratio," 1591, presents a spirited description of the Mfico, or chief, and his warriurs, in convention. A. council meeting was orened by the cup-bearer handing to him a shell filled with a decoction of the cassine or ilex ynupon. This is a powerful diuretic; and its medicinal influences were invoked to purge them from all hindrance to thoughtful deliberation. This done, all partook of it, drinking it from shells made of the large pynela of the Gulf. They next engaged in a solemn dance; and then, seated in the Council House, listened to the addresses of the orators and principal men among their tribes. When this was done, the Mico sprinkled them all with water, saying: "Thus may the blood of your cnemies flow freely." Then he poured water on the council fire and extinguishod it, exclaiming: "Thus as I extinguish the flames so may your enemies be vanquished and exterminated."

The carious relic of this ancient Indian people, which has been recently acquired for the museum of the University of Toronto, was the property of Mr. J. A. R. White, of Walkerton, Ontario ; and, as will be seen, is not only an interesting memorial of colonial intercourse with one of the most powerful southern tribes upwards of a century aso; but has acquired altogether novel and romantic associations from the more recent incidents of its singular history. Its late owner served in the Royal Engineers, and, as a member of that corps, was during the terrible revolt of the Sepoys in British India. He was present, along with his company, at the siege of Lucknow, and took this horn from the body of a Sewor, or light dragoon of the Bengal mutineers, killed in a skirmish at the stone bridge at Lucknow, on the 17th March, 1857. The native Sewor, he presumes, had acquired it among the spoils of some English dwelling sacked by the mutineers. The inscription shows it to have originally belonged to a British officer; but the date carries us back upwards of a century ; and so adds to the singularity of the recovery of this
curious relic of a conference with the warriers of the Creek nation in 1765, away on the opposite side of the globe, on one of the remote tributaries of the Ganges.

The style of engraving of the horn fully accords with its date. A shield, left blank, has inscribed below it:

"Wilinam Sgarp, Esq., Liect. of the Ninti Regiment, ligG."

This is, no doubt, the original owner of the horn. At a table, seated under a canopy, are a group apparently of British officers, wearing the three-cocked lats of the 18 th century. In front a group of Indians appears seated on the ground : with the exception of two who occupy chairs nearer the table, and smoke their tomahawk pipes. Behind the officers another group of Indians engage in a dance: and this inscription is graven below: "An Indian beloved dance performed by yc Creeks." Underneath the whole is this inscription : "The Congrass held at Picalata betwixt Governor Grant the Head Men and Warriors of the Creek Nation, November the 17th, 1765." Beneath this, in reverse, is a man shooting at a flying deer.

The horn, it may be added, appears to have been originally a powder horn. But it was cracked, and the bottom detached from it, as its late owner believed, owing to the native Sewor, from whose body he took it, having fallen on it when he received his death blow. It has subsequently been protected, as will be seen, by a silver rim placed round the lower end, so as to give it the appearance of a hunting hom.

Picalata may probably still be identified in the Picolata, a swall portal town, in St. John's County, Florida. If so, it indicates the site chosen for the Congress of 1765 , considerably to the south of the region occupied by the principal members of the Creek confederacy.

In Browncll's "Indian Races," and also in Drake's "Biography and Fistory of the Indians of North America," notices occur of Colonel James Grant-the same person, in all probability, as is named on the inscribed horn as Governor Grant. French cmissaries were busy fomenting strife, and exciting the Indians of Carolinas against the English. At a grand conclave of the Cherokee nation in 1760, Latinac, a French officer, stepped out and drove his hatchet into a log, calling out: "Who is the man that will take this up for
the King of Srance." Salone, a young warrior of Estatoc, laid hold of it and cried out: "I am for war! The spirits of our brothers who have been slain still call upon us to revenge their death. He is no better than a woman who refuses to follow me." It was immediately after this event that Col. Griant assumed command of the British forces in Carolina. Brownell says:
"In the following spring (i.e. in 1761), Col. James Grant, who had succeeded to the command of the Highlanders employed in Britisha service in Americil, commenced active operations agrainst the belligerent nation-the Cherokees. What with the aid of the Provincials and friendly Indians, he was at the head of about twenty-six hundred men. The Chickasaws and Catawbas lent some assistance to the English; but the Creeis are said to have alternately inclined to the French or English, according as they received or hoped for fatvours and presents.
"The army reached Fort Prince George on the 27 th of May (1761), and there old Attakullakulla, a Cherokee chief who had been long the fast friend of the English, made his appearance, deprecating the proposed vengeance of the whites upon his people. He was told that the English still felt the strongest regard for him individually, but that the ill-will and misconduct of the majority of the nation were too palpable and gross to be suffered to go longer unpunished. Colonel Grant marched from the fort in the month of Jume. The Cherokees made a desperate but unavailing stand; they were routed and dispersed, leaving their towns and villages of the interior to be destroyed by the invaders. Etchoe was burnt on the day following the battle. . . . Upon the return of the army to Fort Prince George, after this campaign, Aitakullakulla again visited the camp, bringing with him a number of other Cherokee chiefs. Broken down by their disastrous losses, and disgusted with the deceitful promises of the French, they gladly acceded to such terms as Col. Grant thought fit to impose, and a treaty of peace was formally concluded."

Drake, in referring to the same campaign against the Indians of Carolina, says:
"Such was the condition of the country that a second application was made to General Amherst for aid, and he promptly afforded it. Colonel James Grant arrived there early in 1761, and not long after took the field with a force of English and Indians, amounting to
about 2,000 men. He traversed the Cheroke country, and subhlucel that people in a hard fought battle near the same place where C'ol. Montgomery was attacked the year before. It lasted about three hours, in which about 60 whites were killed and wounded. The loss of the Indians was mukıown. Colonel Grant ordered his dead to bo sunk in the river, thea the Indians might not find them to practice upon them their barbarities. He then proceeded to the destruction of their towns, 1.) in mumber, which he accomplished without molestation. Peace was at last efleested by the mediation of Attakullakulla."

Aftel this date, 1762, it is said: "Altairs looked peaceable and prosperous for some years." The natives made over a large additional tract of land to the growing colony of Georgia. The date, 1765, does not appear. But in 1767 , there was temporary tronble, settled by Governor Wright at Saramuah. The Creoks oceasioned this trouble, having seized, or stolen, as it was said, some horses found on their territory belonging to the whites.

It thus appears that, at the date of the Congress named on the curious memorial hom, which perpetnates its graven record of the incilents of a conference with the Creek nation on the 17 th November, 1765 , the Creeks and other nations of the great Minscogee confederacy were being stirred up to war against the English, chiefly through the machinations of their French rivals. In 1701, Colonel James Grant was appointed by General Amherst, the Commander-in-Chief, to conduct the military operations in Carolina argainst the belligerent Indians; and to him, it may be assumed, was thereafter entrusted the civil, as well as the military, conduct of alfairs in the extensive southern region occupied by the Indian nations of the Muscogee confederacy. The sonthern Indians vere ohd enemies of the Troofuois, the staunch allies of the English against the French on the St. Lawrence; and were the more easily stirred up to attack the English settlers in Virginia and the Carolinas. But James Adair-a trader long resident among the southern Indians-in a "History of the American Indians," published by him in 1775 , ascribes their inveterate hostility to the English to their crediting to the machinations of the latter the introduction of the small-pox. When South Carolina was first settled, he says: "The Catawbas were a numerous and warlike people, mustering about l.,500 warriors, but small-pox and the use of ardent spirits reduced them to less than
a tenth of their former numbers." And he describes a waste area seren miles in extent, still showing the traces of cultivation once carried on by them throughout its whole extent. In 173S, nealy half of the Cherokees perished by the small-pox; but the Creeks early recognized the necessity of isolating those attacked by the disease ; and so, to a large extent, escaped the decimating influence of this temible seourge.

The Indians of the Six Nations still preserve at Tuscarora, on the Grand Piver, the Silver Communion Service brought with them from the old home of their most warlike tribe, in the Mohawl Valley, of the State of New York, and which bears the inseription :

[^4]

THE MAGNETIC IPON ORES

OF VICTORIA COUNTY,
WITH NOTES ON CHARCOAL IRON SMELTING.

by w. hamilto menritt, f. g. S., Assoc. R. S. M., sc., sc.
Mining Enginecr and Mctallurgist, Mail Muilding, Toronto.

During the past summer 1 was called upon to make a general report of the iron occurrences in the ricinity of the Victoria Railroad, and I now have much pleasure in bringing to your notice, in a condensed form, the result of my investigations.

The Miles Location, or Old Snowdon Mine, has received notice at the hands of Prof. Chapman in a report published in $187 . t$, therefore the gencral character of the ore will be known to some of yon.

The Victoria Railroad, as you know, runs from Sindsay to Haliburton, some 55 miles. A short distance north of Lindsay a branch was huilt by Mr. Miles, which rums in a westwardly direction to his iron location, six miles from the main line. I shall now briefly refer to the geological outianes, which I do not think have been previously recorded.

Going north from Lindsily, sevoral escapements of horizontal beds of Silurian Limestone are passed through. On crossing the Burnt River, after leaving Fenclon Falls, an outcrop of Granite appears on west side of the Raihoad. Some compact limestone, approaching a marble in texture, which takes a grood polish, and a bed of lithographic stone, are passed in cuttings near Felly's Bridge.

The crystalline rocks come in between Felly's Bridge and Kinmount (at which place they are well defined), but owing to the overgrown condition of the country, it was impossible to note their junction.

The crystalline rocks belong to the Laurentian Series, the strongest iron carrying rocks in our country. Their strike here, as is general, is about N. N. E. and S. S. W. and dip about 40% E.

They consist of alternating granite, gneiss, syenite and erystalline limestone, with occasional bands of dioritic rocks, which, howerer; are not so strongly developed in this as in the Mradoc region.

The occurrence of latharlorite rock or norite, which is found at the Miles Location, am titamiferous iron beds, which oceur at Pine Lake and other places, would seem to point to the norian or upper laturentian of Logan, but there is not a universal enough development to justify such a conclusion.

To the East of Kinmount the gneiss is replaced b_{j} crystalline limestome, in which rock the Victoria, or Old Snowdon, mine oceurs. Continuing Eastward, between the Victoria mine and the Howland and Ledyard locations, the roal is very circuitous, and not on the mal , therefore my onservations of the rocks might be misleating as to their actual occurrence. Halfway between the Snowdon and Leilyary locations, quartrite and in fine granel pinkish sjenite take the place of limestone. The erystalline limestone appears agrin before arriving at the Ledyad location, and contimes westwand heyond the Howland promerty further than I went.

In the Lodyard property there is a baind of dioritic rock (doleritic in places), in whech are the iron occurrences found in that property.

Coming back to Kimmount, and then going in a westwardly direction, the gneiss is replaced by a band of crystalline limestone a mile wide, which again is immediatety succeedel by gneiss and sycuite.

Not far from the limestone the Paxton mine is in a syanite gneiss, with nurrow beds of crystalline limestone occuring in places both above and below the ore

Erom Kinmount North the gencral character of rocks is precisely the same as alleady mentioned, gramite, gneiss, syenite and crystalline limestone. The geological featares of that part of the comntry which I saw are preciscly the same as the Madoc region, with the exception of a stronger development of the dioritic ridges in the Madoc region.

In this district, hornblendic proxenic rock and crystalline limestone are, as a rule, associated with the iron ore. In the Maduc district the Ermatite mine is an example of the intimate connection of the iron ore with crystalline linestone, while the Seymore mine is an example where that rock is wanting.

From the accumulation of instances, however, it would seem that in searching for iron ores, especially in the Victoria district, it would be well to keep in the vicinity of the bands of crystalline limestone, for as a rule the ores occur both in it and near its junction with granite, hornblendic and pyroxenic rocks.

I understand it to have been shewn by Mr. Vemnor, in his investigrations in Hastings, that the iron deposits occur in defined helts, which can be traced for long distances. Ny investigation in Victoria anfortunately was of ton local a chamacter to emable me to establish the continuity of the ore deposits, but it seems probable that in Snowdon Township the deposits are not merely local, but that a belt can be followed from Lot $2\left(\right.$ in $_{\text {in }}$ the I. Concession as far as Lot 30 in the V. Concession, a distance of 3 miles, including five locations, or possibly further in the same direction.

In Sweden the mincral bearing horzons can be followed, 'a: ing the same direction as the encasing rocks, and fresh masses of iameral will be met with at intervals for dozens of kilometers, and each beal generally consists of several parallel beds separated by rock more or less barren.

In the famons Dimnamore district the magnetite occurs in an irregular belt of a mile amb a half in lengih, embelded in erystaline limestone: and it has been mined to a depth of more than 600 feet.

The iron ocenerences that came mader my noiice bear the character of beds deposited with the enclosing rocks, the lie both of the ore hed and the intercalated minerals being the same as that of the country rock.

The Victori: mine would seem an exception, as the strike of the bed is 42% N. W. and S. E., being nearly at an angle of 45% to the general strike of the rocks of the country ; but it is possible that it fault rumning through the valley immediately to the N. W.: may have altered the strike of the ore deposits, especially as at the edge of the valley, close to which the mine has been openeal, there is evidence of much disturb:nce.

I shall not inflict you with the detailed deseription of the varions mines in operation, and uudeveloped locations that I was obliged in include in my report.

I shall simply give the result of a momber of analyses from specimens I obtained :t the mines, which shew, firstly, the richnens of selected ore, which is better than the averate shipped to the United States; secondly, the areage ore wichout close selection; and thirdly, the ore that has been thrown on the dump as too poor to ship to Bessimer works.

The ore varies in texture from crystalline magnetite, with small crystals and an open texture practically free from sulphar, as formd
at the Paxton mine in Lutterworth, or a closer grained magnetite carrying a certain amount of prrites, as is seen in the Snowdon occurrences, to a compact crystalline ore containing more or less titanium, such as is found at Pine Lake and other phaces.

In all case; the analyses of the pieked speeimens were pactically the same, about 60% metallic iron, and practically free from phosphorus, sulphur and tit:mium.

The areratse samples of ores from the Snowdon properties, which would represent the character of the Vietoria, Miles, Leedyard and Howland, is the following :
silic:ı . .. $2!.20$
Oxites of hron .. $66.2 S$
Alt.mina.. 3.70
Lime ... ј. 0 .
Magnesiir \quad.19
Sulphur .. . $1.6 \cdot$.
Phosphoros 02
'lit:mium 00
100.0^{-}
Metallic Iron. 45.00
These would require thorough calcining to remove the sulphur. At the ILowland mine it was calcined very roughly in large pieces in healis of 100 tons, butas simples of the calcined ore which I obtained shewed the same amome of sulphar as the raw ore, the present system of calcining is practically useless.

Silica . 19.30
Almmina . 6.2.

Magnesiir .ins
Sulphar . 03
I'hosphorus . None.
Titanium .15

Metallic Iron

45.64

This ore has the decided advantage of being so free from sulphur that it would not require calcining.

The third elass of samples I collected and mentioned as taken from the dump, shewed that waste ore contained over 30% metallic iron.

There is it good deal of hornhlend intimately mixed with these ores. Mieroscopic examinations shewed a little more free silica in the Paxton than the other ores.

The minerals occurring with the ores in this district arc calcite, homblend, actinolite, augite, felspar, mica, iron pyrites, quartz, aud I found specimens of olevine, seapolite and serpentine.

To obtain a true estimate of the value of the above ores, we will consider those of Sweden which most closely resemble them, and which are at the same time recognized as equal to any in the world.

In a very interesting pamphlat on the actual state of the iron industry in Sweden, written in 18i8, by Richard Akorman, Professor at the School of Mines of Stockholm, and one of the best known metallurgists of the dity, a very great number of amalyses of Swelish iron ores are given, nearly so0. The average ore as shewn by these contains from 45 to 50% metallic irm, and the majority requires calcining to remove the sulphur. Mr. Akerman states that some calcareous ores, especially useful for mixing with the silicious ores, are mined as low as 20% iron. Jhis pamphlet also tells us that in Sweden, with a smaller population than ourselves, $48 t$ mines were worked in 1S76, from which 787,950 tons of ore were mised. From the alove facts it is evident that our magnetic iron ores are equal in composition to the celebrated Swedish ore, and they are similar in occurrence. Therefore, notwithstanding the fice that it does not pay to ship under 50% metallic iron to the United States, the majority of Swedish ore would be excluded- -by which fiact we can rest anssured that our magnetic iron ores must soon be much more extensively worked ; which, with the sid of the dianond borer for exploration and stcam mills, will, without doubt, be most successfully accomplished.

The Cleveland and Pittsburg smelters are looking about most anxiously for new supplies of ores, as those from Lake Superior are becoming rery expensive. They are even meditating opening up part of West Virginia with a Railroad 300 miles long, to getat a low grade ore. We have the adrantages to offer thom of better ore and che:ip return freight in coal vessels to Cleveland.

A few words on the question of iron smelting with charcoal I thought would not be amiss in connection with this preper.

It is ncedless to mention there is no industry that is of such importance to the mooperity of a country as the smelting of iron ; Buyland is of course the most striking eximple or this. Were it not for her smelting works the United Stites would not have the balanee of her commerec on the export side.

Concomitantly with the present great prosperity in France, her iron industries have taken most gigantie strides.

Belgium, Germany, Swelen, and even Russia, are examples of the great henefits which acerue to comatries from the encouragement of iron smeltims.

In Ontario it is a question whether we could smelt with mineral fuel, without : high protection.

It seems very probable that smelting with charcoal can be carried on with prolit in those parts of the Province where iron ore, lange quantities of timber, laithoul facilities and good water power are combined.

These essentials are mited in the Yictoria district. As before mentioned, the stambard ropuired in the ore to he shipped to the United Stites is such a very high ore that a seriously large proportion of grool ore is left as a waste product.

In the vicinity of the iron mines in Victoria County, there are large tracts of woods which have been partially culled of the cinoicest timber, yet enongh remains for the manufacture of chareal for a long time to come. In lumbering, the brunches and tops of the trees are left; these make excellent charooal. Therefore a smelting works would prevent great waste both of the mine and forest. Settlers would soon find the buming of charcoal a handsome little perquisite.

One point in locating a works is important, and that is unless there is in any deposit a provel quality of ore in sight, it would be very dangerous to risk the supply of a works to one deposit, as the defnsits vary much in size; but the smelting works should be in a position to tap the production of several proved deposits.

In Sweden it is common to combine a saw mill with iron smelting works, as the refuse is made of much uso in producing gas for the regenerative furnaces.

The cost of crection of a plain but substantial plant, with charcoal furnaces, to turn out 100 tons (minimmm) per week, would be prohably $\$ 00,000$. With Whitewell hot blast staves, Westman calcining
kilns, and expenses connected with water power and other details, thetotal cost would reach the neighbourhood of $\$ 100,000$.

As regards the production of charcoal iron. In 1880 the Cnited States produced 537,508 gross tons of charcoal pigs irun from 151 blast furnaces, and in 1879 Sweden 336,176 gross tons of pig iron from 182 blast furnaces.

In 1880 France turned out 66,330 tons of charcoal pig, and 29,148 tons with coke and charcoal mixed. Styria, Carinthia, Carniola, Austrian Tyıol and Saltzhurg produced in 1574 collectively 217,400 tons, and liussia in 1879 produced 429,865 gross tons of pig iron, mostly with charcoal and magnetite as the ore. We might say that nbout two million tons of iron are produced from charcoal per ammum.

In Austria, two parts of compressed peat and one of charcoal are used at Vordernberg. Smelting by lignite has at hast been successfully accomplished in the latter country. This question is of vital importance to our North-West territories.

I will close by finally stating that the question of chareoal smelting is one worthy of attention, and our lucal government would do well to have a thorough report made upon the subject.

CANADIAN INSICITUTE.
 REPOR' OF THE COUNCIL FOR ISSI-S2.

In presenting this their 33rd Ammual Report, the Council of the Canadian Institute are happy to be able to state that the progress of the Institute during the last Session has been upon the whole satisfactory.

Onc important change has been successfully made in reverting to the old weekly mectings, instead of only on alternate weeks, and it is satisfactory to be able to report that the meetings have been well attended, and many interesting papers have been read hy the members. There is, however, still room for improvement in that respect, and the Council sees no reason to doubt that in the next Session, when the members have become more used to the new arrangement, there will be a further increase of attendance, and more realiness in bringing interesting communications before the meetings.

Another arrangement of some importance has been accomplished, namely, that the use of our buihling and library has been extended to the Natural History Society, thus giving some aid and encouragement to a Socicty having similar oijects with our own, and at the same time making the advantages of our Institute more generally linown.

Another important trimsaction has been the sale of about 30 feet of the vacant land on the western side of our building, thas enabling us to reduce our mortgase debt by nearly one-third, with a proportionate decrease of the interest payable; and we are not without hopes that an arrangement may be made to reduce the rate of intetest now paid. This will probably enable us to enlarge the publication of our transactions, which would add very materially to the utility of the C:malian Institute.

The Treasurce's reports, the papers communicated at the meetings, the additions to the library, and the present condition of the membership, are, as usual, appended.

All which is respectfully submittel.
JOHN LANGTON, President.

MEMBERSHIP.

Members at the commencement of Session, 1SS1-S2 126
Members clected during the Session 17143
Deaths 4
Total Membership, March 31st, 1882 139
Composed of :
Corresponding Member 1
Honorary Members 2
Life Members 17
Ordinary 119

REPORT FROM TREASURER FOR SESSION OE 1881-S2.

I submit accounts shewing the financial coudition of the Canadian Institute, and consider further comment unnecessary.

Summiny of Current Account t	1SS2.
"Cash from A mnual Subscriptions	29400
"Subscriptions to Building Fund	15 S 00
" Life Membership.	2500
" liene from Warchouse	6000
" Rent from Meelical Suciety, Toronto	500
" Rent from Natural History Society	7 \%
"Journals, \&e., sold	475
" C'ash due to Treasurer	13375
	\$2,S33 08
By Principal on Mortgage	\$1,5S9 00
" Interest on Mortgage.	35000
" Salary to Librarian.	33600
" Printing Journal	15213
" Fuel	8693
" Periolicals	S0) 5.5
" Advertising	(i) 00
" Insurance	4250
"Commission on Sale of Land	3972
" Water	$2+00$
" Gas.	1243
" Taxes	$109 \pm$
" Express charges	10 52
" Postage and Telegrams	892
" Contingencies	7 S5
" Repairs...	679
" Engrossing	500
" Law expenses	250
	S2,833 08

We certify to have examined the vouchers and the addition, which we find correct. The balance due the Treasurer being onc hundred and thirty-three dollars and seventy-five cents.
$\left.\begin{array}{l}\text { JAMES BAIN, jun., } \\ \text { G. KENNEDY, Auditors. }\end{array}\right\}$

24th April, 1SSO.
BUILDING FUND ACCOUN'T.

To Amount at last Audit . $\$ 1,34700$			
	ipti	R. Wilkes	100) 10
*	*	Copp, Clark	3000
،	،	Prof. R. R.	1000
،	"	J. Kirkland	600
،	"	Dr. Ellis	1000
"	"	N. Cawdry	200

" Sale of 30 feet of Laud	$\begin{array}{r} \$ 1,50500 \\ 1,5 S S \quad 75 \end{array}$
	\$3,093 75
By Amount due on Mortgage .	S., 00000
" Amount paid on Mortgage	1,589 00
" Amount now chue and bearing interest at	$\stackrel{\cong}{\because, 41100}$

ASSET'S AND LIABILITIES.
Assets.
Canadian Institute Building § 11,00000
" "6 Warchouse ©
" " Ground 2,500 00
" " Library 5,000 00
" ." Specimens I,200 00
" ، Personal l'roperty 40000$\$ 20, S \div 000$Liability.
Amount due by Mortgage \$3,411 00
JOHN NOTMAN,
I'recasurer.

COMMUNICATIONS.

The following valuable and interesting papers and communications were read and received from time to time at the ordinary meetings held during the Scssion ISSI-2:
May 14, ISSI.-Anmual Report and Election of Officers. C. Carpmael, M.A., exhibited and explained the photographic curves from the instruments during the magnetic storns on the 11 th, 12th and l3th days of August, 1SS0, and also of the storm on the 31st January, 1SSi.

October 29, 18S1. -Inaugural address by the President.
Nocember 5, 1SS1.—lev. Dr. Scadding, on "The Dethronement of Latin in the Modern Scholastic World," being a continuation of "A Boy's Books, Then and Now."
November 12, 1SS1.-Prof. R. Ramsay Wright, B.Sc., on "A Cell and its Parasites."
November 19, 1SSI.-Dr. W. H. Ellis, M.A., on "The Water Supply of Toronto."
November 26, 1SSI.-Dr. Covernton, on "State Medicine: Ancient, Medieval, and Modern."
December 3, 1581 .-John Notman, Fsq., "Remarks on the origin of Numerals.' Paper on "The Genesis of Worlds."
Deemher 10, ISSI.-A. Elvins, Esq., on "The Lumar Surface," illustrated by photographs and drawings.
December 17, ISS1.-W. Hamilton Merritt, F. G. S., on "The Magnetic Jron Ores of Victoria County," with notes on Charcoal Iron Smelting.
Januar! 1.t, ISS2.-Lev. Professor Camphell, M.A., on "Deciphering Hittite Inscriptions." Januery 21, 1SS2.-Rev. R. Von Pirch, on "Linguistic Studies."
Januery: \because S, 1582. -John Langton, M.A., ou " P'opular Errors and Prejudices."
Felvul?! 4, 18S2.—Dr. J. Workman, on "The Origin of the English language," with a translation of a Danish poem.
Frbutery ll, 1SS2.-LRev. Dr. MacNish, LL.D., "Are the Poems of Ossian of Seottish or of Irish origin?"
February 1S, 1SS2.-J. M. Buchan, M.A., on "The proportions of the Constituents of the English Language."
February ${ }^{5}$, 1 SS2. - Dr. Daniel Wilson, L L.D., on "Incidents illustrative of the changes wrought on the native Indian tribes from the practice of adoption."
March 4, ISS:.-C. A. Herschfelder, Est, on "The mamers and customs of the aboriginal Americans."
Murch 11, 1SS2.-Dr. P. H. Bryce, M.A., on "Hypnotism and its Phenomena."
Bfarch 25, 1SS2.—Dr. Jos. Workman, "Is it true that the Celtic languages have contributed but little to the English and its affiliated languages?"
April 1, 1SS2.-Notes on "Vapour 'Cension and Specific Heat," by W. J. Loudon, B.A.
April 22, 1SS2. -W. Brodie, Esq., on "Cauadian silk producing Moths."
ADDITIONS AND DONATIONS TO THE IIHRARE OF THE CANADIAN INSTITUTE Received from aprie lsi, ISSl, to marci 3lst, 1SS2.
Canada:
The Revuc Canadienne, Montreal, $1 S 81$.
The Camadian Naturalist, Montreal, No. 1, Vol. X.
The Camadian Journal of Medical Science, $1 S 81$.
The Ammal Report of the Entomological Society, 1881.
The Cianadian Eutomologist.

Canada-(Continued).
Report of Progress Geological Survey of Canada, 1880-18S1.
Report of Meteorological Service of Canada, $1 S 81$.
Pamphlet on the adoption of a Prime Meridian to be common to all Nations, by Sandford Fleming, Esq., C. M. G. (the author).
Report of the Historical and Scientific Society of Manitoba, 1852.
Report of the Superintendent of Education, Quebec, ISSI.
Transactions of the Literary and Historical Society, Quebec, 1881.
Statutes of Ontario, 1881.
Exgland:
Proceedings of the Geological Society of London, 1 SS1.
Proceedings of the Royal Geographicai Society, 1881.
Index and Journal of the Royal Geographical Society, 1 SS1.
Journal of the Royal Microscopical Society, 1851.
Quarterly Joumal of the Geological Seciety, London, ISSI.
Journal of the Anthropological Institute, London, $1 S 81$.
Transactions of the Manchester (icological Society, 1581.
Transactions of the Cambridge Philosophical Society, 1 SSI.
Proccedings of the Cambridge Philosophical Society, $1 S 51$.
Transactions of the Victoria Institute, 1881.
Report of the Leeds Philosophical and Literary Society, 1 SS1.
Southern Skies, by H. E. Lieut.-(ieneral Sir J. H. Lefroy, C. B.
Catalogue of the Library of the Royal (ieographical Society, 1571.
Pamphlets on Free Trade and Protection, London.
Rainfall and Climate of India, by Sir Joseph Fayrer, K. C. S. I., F. R. S.
Financial Reform Almanack, 1 SS2.
Procecdings of the Mauchester Literary aud Philosophical Socicty, 1879.
Memoirs of the Manchester Literary and Philosophical Society, 1579.
Trubner's Literary Record, 1 SSl.
Minutes and Proceedings of the Institute of Civil Engincers, 1580-81.

Scotland:

Transactions of the Edinburgh Geological Sncicty, $1 S S 0$ and $1 S S 1$.
'Transactions and Proceedings of the Botanical Society, 18S1-S2.
Proceedings of the Royal Society of Edinburgh, 1S79-S0.
Proceedings of the Philosophical Society of Glasgow, 1579.S0.
'Transactions of the Royal Scottish Socicty of Arts, ISSl.
Proceedings of the Royal Physical Society, Edinburgh, 1579-80.

Ireland :

Transactions of the Royal Irish Acadeny, Dublin, 1S80-S1.
Proceedings of the Royal Dublin Socicty, 1881.
Transactions of the R yyal Dublin Society, 1881.
Journal of the Roya? Geological Society of Ireland.

India:

Records of Geological Survey of India, 1850-81.
Memoirs of Geological Survey of India, 1880-S1.
Memoirs of Geological Palæoritologia Indica, 1880.

New Soctin Wales:

Reports of the Council of Education, 1879 .
Journal and Proccedings of the Royal Society, 1879-80.
Ammal Report, Department of Mines, for 1878.9.
Maps, Departinent of Mines, for 1Sts-9.
Report upon certain Museums, by A. Liversidge, 1880.

Nen Zenland:

'ransactions aud Proceedings of the New Zealand Institute, 1.580.
Tasmania:
Proceetlings and Report of the Royal Society of Tasmania, $1 S S 0$.
United Spates:
The Names of the Gods in the Riche Myths, Central America, by D. f. Brinton, M. D.
The American Journal of Science, 1881.
The Journal of the Franklin Institute, 1581.
Proceelings of the American Antiquarian Society, 1881-2.
Transactions of the Academy of Science of St. Louis, 1850.
Anniversary Memoirs of the Boston Society of Natural History, 1830-80.
Transactions of the New York Academy of Sciences, I881-S2.
Bulletin of the Buffalo Society of Natural Sciences, 1881.
Amals of the New York Academy of Sciences, 1881.
Report of the New York State Museum of Natural History, 1579.
Records of the Proprietors of the Worcester Society of Autiquaries, 1581.
The Philadelphia Magazine of History and Biography, 1881.
Proceedings of the Acalemy of Natural Sciences of Philadelphia, $15 S 1$.
Journal of Speculative Philosophy, by W. 'T. Harris, 1 SSI.
Bulletin of the Museum of Comparative Zoology, Cambridge, 1581.
Report of the Museum of Comparative Zoology, Cambridge, 1S80-si.
Proceedings of the Worcester Society of Antiquity, 1881.
Proceedings of the Boston Society of Natural History, 1881.
Memoirs of the Boston Society of Natural History, 1 SS1.
Report of the Comptroiler of the Currency, 1880.
Library Bulletin of the Harvard University, 1881.
Bulletin of the Essex Institute, 18s1.
Visitors' Guide to Salem. H. P. Iives, Publisher.
Anuual Report of the Peabody Institute, Baltimore, 1851.
Report of the New York State Library, 1 SSO.
Bridgeport Scientific Society, Amual Address by President N. H. Powers, D.D., 1881.
Memoirs of the Peabody Academy of Science, Salem, 1881.
Adstria:
Koniglich bohmische Gesellschaft der Wissenschaften, Prag, 1879-80.
K. K. Sternwarte zu Prag. Beobachtungen, Prag, 1879-S0.
K. K. Geographische Gesellschaft, Vienna, 1879-80.
K. K. Zoologisch-Botanische Gesellschaft, Viemna, 1880.
K. K. Geologische Reichsanstadt, Vienna, 1880-31.

Belgiom：
Aeademic Royal des Sciences，des Lettres，et des Beaux Arts，Brussels， $15 \mathrm{~s} \cdot 9.50$.
Demarm：
Academic Rayal des Sisiences，Cepenhagen，1SS0－S1．
Fraver：
Suciet：Xatiomale，des Xaturales Sciences，Cherbourg， $1 \mathbb{C} 9$.
Societi deologique De Normandic，Harre， 1579 ．
Societe Insenienrs Civils，Paris，ISSI．
Sucicte：（icologigne，b：aris， 1850.
シャルハッ：
Naturhi－um；cher Verin der Preassischen Rheinlanle und Westphalens， bom， 1 ssi．
Naturwisemsehaftlichen Vercins ou Bremen，Bremen，1sso－sl．
Nat．és．（iesellscinait．Isis in 1）resden，Dresden，ISSl．
K．Geselischaft der Wissensehaten，Gottingen，ISSI．
Naturwisenschaftichen Verelns von Hamburg－iltona，Hamburg， $15 S 1$.
Geowrathischen Gesellschaitt zu Hamuver，Hamover， 1879.
Die lhysikalisch－0 komische（ieselliselaft，Konigsberg，1576－S0．
Komighiche Akademic der Wissenschaften in Munchen，Munchen， 1880.
Der K．Stemwarte bie Munchen，Munchen， 1 Ss！
Iraly：
Del Re Instituto Di Studi Superiori e Di Perfezionamento in Firenze， Fhemee，1S80－SI．
Socict：Toscana bi Scienza Naturale，Pisa， 1 SSI．
Gnsmus．Di Guido Cera，Torino， 1 SSl．
Menion：
Museo Aagional De Mexico，Mexico，LSSO－S1．
Nombranis：
Kominkhikf Akademic Van Wetenscappen，Amsteriam，1S79－S0．
Seciete Hollandaise Des Sciences at Harlem，Harlem，1850－S1．
Archives Ja Musee Teyler，Fifrlem，1579－s1．
Kominklijk Nölerlandsch Meteorologisch Iustitui，U＇trecht，1S79－S0．
Sweden：
Kiongliga Srenska Vetcnskapo－Akademic，Stockholm，1S76－S1．

[^0]: 1 Vide Olsson, Ofversigt af Kongl. Vet. Akad. Forhand, 18ï7, No. 5, p. 76.
 2 v. Claus Zeit. Wiss. Zcol., Tal. XXIII., Fig. 14. In a revision of the species of Ergasilus, it will probably be found that apart from the size, form of body, nad length of eggsacs, the form of the appendages will afford valuable specific characters. As far as I am aware, however, Claus' figures are the only ones which possess the necessary aceuracy of detail.

[^1]: 1 Ans. Gruber, Zeit. Wiss. Zuol. XXXII., p. 40 seq.
 a Apart from the rounded tubercies on the abdomen of B. nuchonis, the shortness and thickness of the "arms," and their separate attachment to the chitinous billa, are regarded as eharacteristic of the:genus; but the different specens of Lernacopoda vary much in this respect. In the form described in the text it is easy to prepare the bulla into the halves belonging to ench arm.

[^2]: 2 Ofversigt af K. Fetensk, Akad. Förhand, 15it, Nio 5, 1. S2, Figs. 9-13.
 2 Studien ubur die Familie der Lernaopodiden, Zeit. f. Wiss. Zool., B. XNIN., p. 3s?

[^3]: 1 Zeit. wiss. Zal. XI. The similar structures of Lamproglena have been more recently (Zeit wiss. Zool. XXI.) spoken of hy Clatis as belonging to the spormatophoral appurstus.

[^4]: "A. R. 1711. The Gift of Her Manesty, Ans, by the Grace of God, of Gheit Brithi, Frayee, and Ireland, and of Her Playtations in Nortl Amemca, Quees: To Her Indin Chappel of the Monawns.',

 This singularly interesting memorial is of earlier date, and associated alike with a race peculianly identified with Canatdian history and with its royal donor. Nevertheless the Picalata horn may be fitly classed with the Silver Communion Plate "of the Indian Chapel of the Mohawks," as a historical memorial of incidents otherwise lost sight of, and of a representative Indian nation now disappearing from the scenes where little more than a century ago it treated on proud equality with the representatives of the British Crown.

